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1.0 SUMMARY 
Reservoir computing, an emerging machine learning paradigm, is considered a simplification of 
conventional recurrent neural network (RNN), offering a unique learning mechanism only at the 
readout stage to accelerate learning and computing operations. In general, the role of the reservoir 
layer is to nonlinearly transform sequential inputs onto a high-dimensional space, such that 
features of inputs can be efficiently read out by a simple learning algorithm. As such, any nonlinear 
dynamical systems can be used as reservoirs. The objective of this project was to build a new class 
of computationally-efficient delayed feedback reservoir (DFR) systems. The research takes on a 
cross-layer approach to develop a circuit- and architectural-level design of the DFR system. A 
comprehensive investigation of nonlinear transfer functions, delay systems, chaotic systems, and 
temporal decoder were conducted; moreover, a DFR system was designed and simulated with the 
low-power complementary metal-oxide-semiconductor (CMOS) technology. The circuitry was 
laid out in the Cadence Virtuoso Platform while statistical data on circuits’ performance was 
captured and examined. The research deliverables include the electronic circuit design, Simulation 
Program with Integrated Circuit Emphasis (SPICE) circuit models, layout, simulation results, and 
measurement data for the DFR system. The final outcome of this project was a DFR processor 
designed to exploit recent advancements in machine learning, integrated circuits, and 
nanotechnology. 
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2.0 INTRODUCTION 
The rapid evolvement of computing systems was perfectly predicted by Moore’s law in the past 
several decades. However, it has been observed that the rate of enhancement is starting to saturate 
and slow down, indicating as the end of Moore’s prediction due to fundamental physical limits of 
the complementary metal-oxide-semiconductor (CMOS) process [1]. Inspired by the biology and 
proposed by Dr. Carver Mead in the 1980s, the neuromorphic computing has matured to provided 
intelligent systems that able to imitate natural neuro-biological processes through highly 
parallelized computing architectures; such systems typically model the function of neural networks 
through very-large-scaled-integrated (VLSI) circuits [2]. 
 
Two well-known artificial neural networks (ANNs), feedforward neural networks (FNNs) and 
recurrent neural networks (RNNs) are powerful ANNs that are capable of learning.  Learning is 
not probable in classic computing systems reliant on preprogrammed instructions. RNNs, which 
are constructed with random recurrent connections, closely mimic feedback operations in 
neurological systems and have the capability to process temporal information. Although RNNs are 
more powerful in performing temporal tasks than FNNs, the training complexity of recurrent 
connections are, however, computationally expensive. 
 
In recent years, reservoir computing [3, 4], as shown in Figure 1, has emerged exploiting the 
dynamic behavior of conventional RNNs while drastically reduces its computational cost of 
learning. The main characteristic of the reservoir computing is that input weights, 𝑊𝑊𝑖𝑖𝑖𝑖, and weights 
of recurrent connections, 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟, within the reservoir layer are fixed at all-times whereas only 
readout weights, 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜,  are trained with a simple learning algorithm. In general, the role of the 
reservoir layer is to nonlinearly transform sequential inputs onto a high-dimensional space, such 
that features of inputs can be efficiently read out by a simple learning algorithm through output 
weighted elements. As such, any nonlinear dynamical systems can be used as reservoirs. 
 

 
Figure 1. General architecture of reservoir computing. 

 
Two well-studied representations of reservoir computing models, the echo state network (ESN) 
[3] and the liquid state machine (LSM) [4], employ the strength of conventional RNNs without the 
need for synaptic connections within the reservoir layer to be trained. The major difference that 
sets these two models of reservoir computing apart is the format of the signal. In LSM, spiking 
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signals are used as pre- and post-neural signals, while analog signals are examined in ESN. The 
general node state, 𝑠𝑠(𝑡𝑡), at the current time step of the reservoir layer can be expressed as 
 

 𝑠𝑠(𝑡𝑡) = 𝑓𝑓�𝑢𝑢(𝑡𝑡) ∙ 𝑊𝑊𝑖𝑖𝑖𝑖 + 𝑠𝑠(𝑡𝑡 − 1) ∙ 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑦𝑦(𝑡𝑡 − 1) ∙ 𝑊𝑊𝑓𝑓𝑓𝑓�, (1) 
 
where 𝑓𝑓( ) is the nonlinear activation function; 𝑢𝑢(𝑡𝑡) is the input at the current time step; 𝑠𝑠(𝑡𝑡 − 1) 
and 𝑦𝑦(𝑡𝑡 − 1) are the internal state and output state of the network, respectively, at the previous 
time step; 𝑊𝑊𝑖𝑖𝑖𝑖, 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟, and 𝑊𝑊𝑓𝑓𝑓𝑓 denote input weights, internal weights within the reservoir layer, 
and feedback weights from the output to the reservoir layer, respectively. The output state of the 
network can be then expressed as 
 

 𝑦𝑦(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) ∙ 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜, (2) 
 
where 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 is output weights. These neuron-like nodes within the reservoir layer achieved 
functionalities of (a) high dimensional projection and (b) fading memory, similar to the biological 
neuron’s behavior. These advantages make the reservoir computing especially suitable for 
neuromorphic computing paradigms. 
 
The straightforward hardware realization of neural networks usually consumes a large volume of 
memory and computing resources, as well as requires high design complexity and hardware cost. 
For example, a text-recognition software is typically designed to run on a high-performance 
computing (HPC) cluster, consisting of ~70,000 processor cores that provides a massive peak 
computing power of 500 trillion floating-point operations per second (FLOPS) [5]. Algorithm 
enhancement and conventional hardware implementation can mitigate the computational cost issue 
to some degree, but not fundamentally resolve it. It is therefore essential to design a new class of 
hardware optimized for conducting the crucial operations of neuromorphic computing, instead of 
relying on system implementations built upon traditional computer structures. 
 
In general, the hardware implementation of reservoir computing can be either digital or analog. 
The current technology mainly focuses on digital implementation. The reservoir computing based 
on digital implementation offers high computational precision, high reliability, and high 
programmability [6-10]. Synaptic weights can be stored on- or off-chip. However, disadvantages 
of digital implementation are that it requires a relatively large circuit size and consumes higher 
power compared to analog [11-15]. By contrast, analog implementation takes advantage of 
electronic and physical laws to implement basic functions. For instance, operational amplifiers can 
perform neuron-like functions, such as sigmoid transfer. Likewise, a temporal integration can be 
achieved through capacitive integration and spatial summation through Kirchhoff’s law. In analog, 
the computationally intensive calculations are automatically performed by physical processes, 
such as summing of currents or charges. Furthermore, the analog implementation of reservoir 
computing systems offers significantly higher speed, less design area, and less energy dissipation 
than digital design. 
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Compared to the current technology, this project sought to build a brain-like computing system 
with analog integrated circuits (IC), which could offer potentially disruptive capabilities in real-
time signature analysis, time series predictions, and environmental perception for autonomous 
operations and dynamic control systems. This project included circuit design, analysis, fabrication, 
and testing of the dynamic delayed feedback reservoir (DFR) system that adopts sensory encoding 
and processing methodologies employed in biological brains. The resulting dynamic time-series 
data was processed using reservoir computing processors. Current predictive control strategies 
typically take the form of black-box systems. Such systems are based on process models built from 
physical concepts and data-driven simulations that cannot cope with problems that have strong 
temporal aspects. By contrast, control systems built on the nonlinear dynamics of reservoir 
computing are capable of addressing these issues and have the potential to form the foundation for 
a new generation of deterministic adaptive processors. The underlying inspiration for reservoir 
computing is the insight that the brain processes information by generating patterns of transient 
neuronal activity excited by input sensory information. 
 
This effort’s research on nanotechnology-based neuromorphic computing system design could 
impact the society of HPC, energy-efficient computing, information technology, and 
nanotechnology. The project focused on the analog implementation of reservoir computing. The 
implementation of real-time neuromorphic systems is ideal for pattern and signature recognition 
in mobile platforms with severe Size, Weight, and Power (SWAP) constraints.  As a practical 
matter, such resource restrictions rule out traditional software approaches, which often require 
high-performance processing or run too slowly due to the inherent serial nature of von Neumann 
architectures. 
 
The research project holds great promise for many important engineering and scientific 
applications. Systems that exploit a type of non-traditional architecture that encompasses 
evolutionary systems hold great promise for leveraging these behaviors to address specific classes 
of mission-critical problems that have not been solved by the current state-of-the-art CMOS digital 
computing.  
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
This overall project was divided into four interconnected research thrusts: (1) Mackey-Glass 
nonlinear electronic design with chaotic characteristic; (2) delay-feedback loop design with an 
Integrate-and-Fire (I&F) neuron; (3) short-term memory achievement with temporal decoder; (4) 
delayed feedback reservoir system integration and optimization. 
 
Task 1.1 Comprehensive Investigation of Mackey-Glass Nonlinear Equation 
 
The biological neural system within mammal brains has highly-nonlinear recurrent connections 
with chaotic characteristics. In the hardware realization, sigmoid and hyperbolic tangent functions 
are commonly used to emulate the nonlinear behavior. However, both sigmoid and hyperbolic 
tangent functions do not have the chaotic property to mimic the biological behavior as in the neural 
system. On the other hand, the Mackey-Glass equation, a delay differential equation (DDE), falls 
into the category of chaotic system. 
 
In this task, we comprehensively investigated three types of Mackey-Glass circuit models. Design 
aspects such as nonlinearity, energy consumption, and design area were examined. Based on this 
comprehensive study of these three circuit models, we developed novel and fundamental 
methodologies to represent the nonlinear information based on neuronal activity. 
 
Task 1.2 Design and Optimization of Mackey-Glass Nonlinear Electronic Circuit with Low-
power CMOS Technology 
 
In this project, we first designed and optimized nonlinear circuitry by utilizing the working 
mechanism of single-ended charge pump (CP) using the standard 180nm CMOS technology. The 
successful design was laid out through the Cadence Virtuoso platform. Design characteristics, 
including energy consumption, design area, robustness to the CMOS process and operating 
temperature variability were documented. 
 
Task 1.3 Design of dynamic Signal Conversion Circuit with Trans-Impedance Amplifier and 
Embedded Loop Filter 
 
Most electronic circuits use voltage as a trigging reference signal; however, to enable the function 
of spiking information processing through our previously introduced temporal encoder [16], an 
analog current signal was required to trigger the spiking neuron within the temporal encoder. As 
such, the analog voltage signal needs to be converted into current by the trans-conductance 
amplifier. It should be noted that analog circuit design also has, as one of its key aspects, the 
capability conduct noise analysis. 
 
In this task, we first designed and optimized a trans-conductance amplifier with an embedded loop 
filter. The circuit was then integrated with the CP-based Mackey-Glass nonlinear electronic 
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circuitry. Design characteristics, including energy consumption, design area, robustness to CMOS 
process and operating temperature were documented. 
 
Task 2.1 Comprehensive Investigation of Delay Elements 
 
In this task, we comprehensively investigated three types of delay elements. Design aspects such 
as energy consumption, design area, and system robustness were examined. Based on the 
comprehensive study of various delay elements, we developed a practical approach to represent 
the delay-feedback loop based on the spiking neuronal activity. 
 
 
 
Task 2.2 Design and Optimization of Delay-feedback Loop with Integrate-and-fire Neurons 
 
Analog delay line design is essential for building computing-processor based dynamic reservoirs. 
Charge-coupled device and switched-capacitor solutions are well known. A drawback of these 
discrete-time circuits is the necessity of clocking and the occurrence of aliasing effects. A 
continuous-time approach may, therefore, be attractive, particularly if the delay per section can be 
controlled electronically. 
 
In this task, we designed a delay-line section with two important properties: (a) a modulus of the 
transfer function equal to unity over a broad frequency range, and (b) phase shift that depends 
linearly on frequency to provide a frequency-independent group delay. 
 
Task 2.3 Robustness Enhancement for Static Delay Loop Design 
 
The delay plays an important role in the reservoir layer, which determines the dynamic behavior 
of the system. The robustness of the I&F delay neuron is proportional to transistors’ channel length 
in the input stage of the firing threshold. Increase the channel length of transistors significantly 
improve the system robustness, which often results in a larger design area. 
 
In this task, the system robustness in terms of CMOS process and operating temperature variation 
are preliminarily studied and analyzed through Monte-Carlo simulations in the Cadence Virtuoso 
platform. Results were evaluated and used as a reference to enhance the robustness of the system 
without dramatically increase its design area. 
 
Task 3.1 Comprehensive Investigation of Analog and Digital Signal Integrators 
 
In this task, we comprehensively worked on different hardware implementation schemes on the 
temporal code to digitize the pulse decoder and signal integrator. For both analog and digital design 
schemes, we evaluated the performance in terms of implementation complexity, energy 
consumption, and computational accuracy. 
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Task 3.2 Design and Analysis of the Temporal Code to Digitized Pulse Decoder 
 
Unlike the rate encoding scheme, the information of the temporal code is encoded into the time 
interval between spikes; in other words, the total number of spike is fixed, and time intervals 
between spikes alter varied based on the given input data. Therefore, two different temporal codes 
cannot be merged directly. This project tentatively utilizes the spike-timing-dependent plasticity 
(STDP) methodology to design the decoder for extracting timing information from a temporal 
spike train. 
 
Task 3.3 Design and Optimization of Signal Integrator with Both Analog and Digital Model 
  
Both analog and digital implementations of the signal integrator were designed, and their 
performances evaluated in this task. This resulted in the evaluation of complexity, energy 
consumption, and computational accuracy were evaluated. Based on these evaluation results, we 
examined the best available design scheme for our application. 
 
Task 4.1 Delayed Feedback Reservoir System Design and Integration 
 
In this task, our DFR system together with the inter-spike-interval (ISI) temporal encoder, Mackey-
Glass nonlinear node, and static delay-feedback loop were implemented and optimized through 
the Cadence Virtuoso Platform with the standard 180nm CMOS technology. 
 
Task 4.2: Circuit Fabrication and Testing with Advanced CMOS Technology 
 
The optimized circuit and generate the layout of our designed DFR system was completed under 
this task. We fabricated our chip using the standard Global Foundries (GF) 180nm CMOS 
technology. The fabricated chip was then tested at VT’s Multifunctional Integrated Circuit and 
System (MICS) Laboratory using its state-of-the-art specialized lab facilities for integrated circuit 
measurement. 
 
Task 4.3: Exploration of Multi-layer DFR by Utilizing the Introduced DFR System 
 
The field of deep learning has attracted worldwide attention due to its hierarchical architecture that 
allows more efficient performance than a shallow structure, not only on accuracy but also on the 
processing speed. This superior performance is a result of its intrinsic deep structure. Deep neural 
networks (DNNs) were constructed by multiple layers working in the form of a processing 
pipeline. Deep learning architecture has been proven to have the exceptional performance in high-
dimensional data that is applicable to many fields, ranging from business to science. Many 
performance records are broken by deep learning architecture in the application of image 
recognition, handwritten recognition. The depth is generally defined as stacking multiple hidden 
layers in between the input and output layers that could either be defined in time or space. 
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In the reservoir computing, recurrent connections are adapted as in the reservoir, so-called the 
hidden layer. Hence, traditional reservoir computing systems rely on a depth-in-time computing 
structure. For DFR systems, the depth-in-time arises from the delayed signal that combines with 
the new input. However, for both traditional reservoir computing systems and DFR systems, a 
single reservoir layer does not create the depth-in-space computing structure. Similar to stacked 
FNNs in the deep learning field, the depth-in-space could also be achieved by stacking multiple 
reservoir layers between input and output layers. In this task, we explored the possibility of 
merging the deep learning and our introduced DFR system. 
 
Task 4.4: Proof of Concept on the Development of Hybrid Photonic + ASIC Platform 
 
Both photonic and analog IC implementations of reservoir processors have advantages and 
disadvantages. The photonic implementation offers high-speed optical processing and high 
bandwidth, but it requires a large design size and results in high power consumption. Moreover, 
the photonic implementation of reservoir processors requires expensive peripheral devices such as 
the digitizer, the waveform generator, and the mach-zehnder modulator, which are difficult to 
scale.  Analog IC implementation, on the other hand, offers compact design size and low power 
dissipation, but is susceptible to noise, which makes it difficult to design. When this report was 
written, analog IC implementations of reservoir processors have not yet been reported in the 
literature. In this task, we focused on the proof of concept development of a hybrid photonic and 
ASIC platform. We also explored the possibility of combining the advantages of both photonic 
and IC implementations of reservoir computing. 
 

3.1 Mackey-Glass Nonlinear Node Design with Chaotic Behavior 
 
3.1.1 Comprehensive investigation of Mackey-Glass nonlinear equation 
 
The input and output relationships are mathematically described by transfer functions. The step 
function was one of the earliest transfer functions to express the input-output correlation [17]. 
However, for the reservoir computing, a nonlinear mapping of input is required. Hence, in order 
to achieve such functionality, nonlinear transfer functions are employed. Sigmoid and hyperbolic 
tangent functions are the most commonly used nonlinear equation that have been adopted as the 
activation functions. The slope of the sigmoid function can be tuned by varying its coefficients. 
As the slope becomes steeper, the shape of the sigmoid function becomes more like the step 
function. However, different from the step function, the sigmoid function is a continuous function 
ranging from 0 to 1.  This function has a mix of linear and nonlinear behavior. Another nonlinear 
function that can be used is the hyperbolic tangent function. The hyperbolic tangent function, 
antisymmetric with respect to the origin, converges faster compared to the sigmoid function in 
neuron network designs. 
 
In general, sigmoid and hyperbolic tangent functions are not the only nonlinear functions that can 
be utilized as the activation function. Different nonlinear functions that could serve as the 
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activation function for the reservoir computing were explored. Initially designed to deal with 
diseases that exhibit symptoms with oscillatory instabilities, the Mackey-Glass function was found 
to be a potential candidate to serve as a transfer function for delay-feedback systems. Described 
by a DDE, the Mackey-Glass function falls into the category of delayed systems. Dynamics of the 
Mackey-Glass function depends on both current and previous states. The Mackey-Glass function 
is mathematically expressed in the following form 
 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

=
𝛼𝛼 ∙ 𝑑𝑑𝜏𝜏

1 + 𝛽𝛽 ∙ 𝑝𝑝𝜏𝜏𝑖𝑖
− 𝑑𝑑, (3) 

 
where 𝛼𝛼 and 𝛽𝛽 are arbitrary design parameters, 𝑛𝑛 is the nonlinearity coefficient, 𝑑𝑑 denotes the 
input at the current time step, and 𝑑𝑑𝜏𝜏 = 𝑑𝑑(𝑡𝑡 − 𝜏𝜏) represents the information from the previous state 
of the system. By varying the nonlinearity coefficient, the nonlinearity of the function can be 
changed accordingly. As plotted in Figure 2, the shape of the Mackey-Glass equation changes with 
the increasing nonlinearity coefficient. This property of the Mackey-Glass equation enables 
discovering the optimal regime. 
 
The dynamic of a system can be transformed from stable to chaotic regimes by tuning the delay, 
which can be either stabilizing or destabilizing. It was found that the best computational 
performance occurs in the transition region from stable to chaotic regime, which is called the edge 
of chaos [18-20]. Hence, with delay embedded in the system, Mackey-Glass equation, as plotted 
in Figure 2, possesses the potential of operating at the edge of chaos region. Compared to the 
hyperbolic tangent function, the Mackey-Glass equation exhibits higher nonlinearity. 
 

 
Figure 2. Mackey-Glass equation with different nonlinearity coefficients. 
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Implementing the Mackey-Glass function into the hardware is a promising area that needs 
widespread attention and exploration. Only a few research efforts on the implementation of 
Mackey-Glass model in electronic circuits were discovered in the literature [21-23]. Results from 
the literature demonstrate its capability of generating high-dimensional data and its potential for 
tuning dynamical behavior by varying the delay. However, all of the work focused on the concept 
of approval with discrete components. To the best of our knowledge, real-world applications with 
on-chip computing capability have not been discovered yet. 
 

 
(a) 

 
 

 
(b) 

 

 
(c) 

Figure 3. Simplified electronic circuit models of the Mackey-Glass nonlinear equation in (a) 
JFET model; (b) analog multiplier model; (c) autonomous Boolean model. 

 
The junction gate field-effect transistor (JFET) model is one of the most iconic electronic circuit 
schemes of Mackey-Glass function, as shown in Figure 3(a). In the JFET model, the nonlinear 
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characteristic is mimicked by coupling a pair of n-type and p-type JFETs. The transfer function 
can be expressed as 
 

 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 =
𝐶𝐶 ∙ 𝑋𝑋𝑖𝑖𝑖𝑖

1 + 𝑏𝑏𝑝𝑝(𝑋𝑋𝑖𝑖𝑖𝑖)𝑝𝑝 , (4) 

 
where 𝐶𝐶 is the equivalent capacitance within the low-pass filter, 𝑏𝑏𝑝𝑝 is the total finite gain within 
the amplifier stage. Among all these Mackey-Glass electronic circuit models, the JFET model has 
been widely used to implement the Mackey-Glass function due to its simple structure. To recover 
the coupling loss in the nonlinear device and reduce the noise interference of the analog signals, 
an amplifier and low-pass filter are implemented. 
 
In the analog multiplier model, the nonlinear characteristic is modeled by coupling multiple four-
quadrant-multiplication analog multipliers, as shown in Figure 3(b). The transfer function can be 
simplified as 
 

 𝑓𝑓(𝑣𝑣) = 𝛽𝛽
𝑣𝑣

𝛩𝛩𝑖𝑖 + 𝑣𝑣𝑖𝑖
 , (5) 

 
where 𝛩𝛩 is the scaling factor of the analog multiplier, and 𝛽𝛽 is the finite gain of the operational 
amplifier. Although results demonstrate its capability of nonlinear mapping, the circuit 
implementation is extremely complicated. 
 
Autonomous Boolean model, a purely digital implementation of the nonlinear function, overcomes 
design drawbacks in the analog implementation of the Mackey-Glass equation, as shown in Figure 
3(c). The nonlinear characteristic is emulated by an XOR logic gate and two digital delay loops 
with a lookup table scheme. The nonlinear function in digital format can be described as 
 

 𝑑𝑑𝑖𝑖,𝑗𝑗(𝑡𝑡) =
1
𝜏𝜏
� 𝑥𝑥𝑖𝑖(𝑡𝑡′) ⊕𝑥𝑥𝑗𝑗(𝑡𝑡′)𝑑𝑑𝑡𝑡′
𝑜𝑜+𝜏𝜏

𝑜𝑜
 , (6) 

 
where 𝑑𝑑𝑖𝑖,𝑗𝑗(𝑡𝑡) represents output signals as a 2-bit digital code. The autonomous Boolean mode is 
one of the most accurate Mackey-Glass electronic circuit models due to its advantages of noise 
immunity and the mature manufacturing process in digital implementation. 
 
3.1.2 Mackey-Glass nonlinear electronic circuit with low-power CMOS technology 
 
Generally, the structure of our introduced Mackey-Glass nonlinear electronic circuit is comprised 
of a single-ended charge pump (𝐼𝐼𝑝𝑝, 𝐼𝐼𝑖𝑖, 𝑆𝑆𝑊𝑊𝑝𝑝 and 𝑆𝑆𝑊𝑊𝑖𝑖), a loop filter, an operational amplifier, and 
an output current mirror (𝑀𝑀1 ~ 𝑀𝑀3), as illustrate in Figure 4. 
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Figure 4. Simplified design scheme of charge pump (CP)-based Mackey-Glass nonlinear 

electronic circuit. 

 
 

 
Figure 5. Operating principle of Mackey-Glass nonlinear electronic circuit through the 

physical charging and discharging behavior of CMOS transistor. 
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The nonlinearity of the Mackey-Glass equation can be emulated by coupling the physical charging 
and discharging behavior of CMOS transistors, as depicted in Figure 5. Charging and discharging 
operations of the system are achieved by comparing the potential level of the input signal and the 
threshold potential of triggering switches (𝑆𝑆𝑊𝑊𝑝𝑝 and 𝑆𝑆𝑊𝑊𝑖𝑖). When the input voltage is less than the 
threshold potential, the circuit is operated at the charging mode. Similar to the control mechanism 
of the water valve, the charging current, 𝐼𝐼𝑝𝑝, through the loop filter is regulated by the 𝑆𝑆𝑊𝑊𝑝𝑝. During 
the charging operation, the voltage across the loop filter, 𝑉𝑉𝐿𝐿, starts to increase; as the input voltage 
increases, the p-type switch, 𝑆𝑆𝑊𝑊𝑝𝑝, starts reducing charges through the loop filter, which reduces 
the charging rate; eventually, 𝑉𝑉𝐿𝐿 saturates at its threshold potential level. On the other hand, when 
the input voltage is higher than the threshold potential, the circuit is operated at the discharging 
mode. As the input voltage keeps increasing, the n-type switch, 𝑆𝑆𝑊𝑊𝑖𝑖, starts increasing the 
discharging rate, which drains charges from the loop filter to 𝐺𝐺𝐺𝐺𝐺𝐺; eventually, 𝑉𝑉𝐿𝐿 saturates at its 
minimum potential level. 
 
3.1.3 Dynamic signal conversion circuit design with trans-impedance amplifier and 

embedded loop filter 
 
Noise analysis is one of the key aspects of analog circuit design. A loop filter is often required to 
be embedded into the charge pump to eliminate noise, where the filter can be implemented with 
either passive or active filter. The active filter has embedded power gain and smaller design area 
but with limited bandwidth; while the passive filter has better stability and lower energy 
consumption but with larger design area. Considering the tradeoff between the stability, signal 
bandwidth, design area as well as energy consumption, the passive filter was implemented in our  
Mackey-Glass nonlinear electronic circuit. 
 
Most electronic circuitries use voltage as a trigging signal; however, to enable the functionality of 
the spiking computation via our temporal encoder, the analog current is needed to trigger the LIF 
neuron within our temporal encoder. Therefore, the analog voltage signal, 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜, needs to be 
converted into current by the trans-conductance amplifier. The system-level implementation of our 
Mackey-Glass nonlinear electronic circuit with the trans-impedance amplifier is illustrated in 
Figure 6. 
 



Approved for Public Release; Distribution Unlimited.  
14 

 

 
Figure 6. Simplified design scheme of charge pump (CP)-based Mackey-Glass nonlinear 

electronic circuit with trans-impedance amplifier. 

 
During the operation, the output current mirror keeps tracking the variation of 𝑉𝑉𝐿𝐿 and linearly 
generates the current to the temporal encoder. The operational amplifier, which is used to create 
the negative feedback loop to maintain the stability of the conversion process, is optimized such 
that it can operate in the sub-threshold region to achieve the minimum power consumption without 
losing the computational accuracy. The layout of our Mackey-Glass nonlinear electronic circuit 
was implemented through the standard GF 180nm CMOS technology as shown in Figure 7 and 
Figure 8. 
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Figure 7. Layout of the proposed Mackey-Glass nonlinear module. 

 
 

 
Figure 8. Layout of voltage-to-current Converter. 
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3.2 Static Delay Loop Design with Integrate-and-Fire Neuron 
 
3.2.1 Comprehensive investigation on delay models 
 
Inevitably, delay is ubiquitous in almost every system. For instance, the diffusion of substances 
(oxygen and carbon dioxide in the blood), and intrinsic time for transportation between neurons 
[24]. With the delay embedded, the system exhibits the near chaotic regime behavior. Delay 
elements in the reservoir layer compute the functionality of nonlinear mapping with delay whereby 
the biological behavior of the neural system is represented. Various electronic circuit 
implementations for delay elements have been studied including the resistor-capacitor model, 
digital delay line (DDL) model, and differential delay element model, as summarized in Figure 9. 
 

 
(a) 

 
 

 
(b) 

 
 

 
(c) 

Figure 9. Simplified electronic circuit models of delay element in (a) Resistor-Capacitor 
model; (b) differential delay element model; (c) digital delay line model. 
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The traditional Resistor-Capacitor delay model, as shown in Figure 9(a), is commonly 
implemented into analog or digital circuits to form a desired delay time due to its simple structure 
and wide controllable dynamic range. The delay time is generally known as the one time constant 
(1𝜏𝜏) of the Resistor-Capacitor circuit, which can be expressed as 𝜏𝜏 = 𝑅𝑅 ∙ 𝐶𝐶. The delay time is 
formed by the charging and discharging process across the capacitor, as shown in Figure 10. As 
the capacitor starts charging up, the voltage potential across the capacitor slowly increases. The 
one time constant (1𝜏𝜏) is triggered when the capacitor’s potential reaches 63% of its maximum 
possible voltage. 
 

 
Figure 10. Operating principle of the Resistor-Capacitor delay model. 

In general, the delay time can be controlled by regulating the resistor and capacitor. However, 
since the delay time is proportional to the resistance and capacitance values, longer delay time 
often requires a larger resistor and capacitor, which dramatically increase the die area in the IC 
implementation. 
 
The DDL model, as shown in Figure 9(c), is widely used in the IC implementation for the time 
alignment. The delay circuit is constructed by a cascading digital buffer (event number of 
inverters); in order to maintain the load driving capability, the size of each inverter is two times 
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larger compared to its previous stage. The delay is formed by the response time of each inverter, 
which is determined by the parasitic resistance and capacitance of each inverter. Unlike the 
traditional Resistor-Capacitor delay circuit, the delay that is formed by the parasitic resistance and 
capacitance via the inverter is usually in the pico-second range. A longer delay time with DDL 
often results higher power consumption and larger die area, as a large number of inverters are 
needed with scaling parameters. 
 
Similar to the DDL model, the delay time within the differential delay element model, as shown 
in Figure 9(b), is proportional to the response time of the circuit itself. Compared to the single 
inverter; the comparator requires longer response time to generate the output signal, and thus, the 
differential delay element model has the potential to generate a larger dynamic range of delay time 
with small design area. 
 
Since the neuron is the fundamental component in a neuromorphic system, power consumption 
and die area play significant roles in the neuron system design. In general, there are two 
implementations available: digital and analog. As discussed in Section 2.0, digital implementation 
is usually preferred due to its advantages in ease of implementation and noise immunity, while 
analog implementation closely mimics the physical characteristic of the neurological system. 
 
Table 1 and Figure 11 compare the digital implementation and the analog implementation. Note 
that we adopted the same normalization method to estimate power consumption, die areas, and 
transistor size. 
 

Table 1. Comparison between analog and digital implementations. 

  CMOS 
Process # of Transistors Design Area Power 

Consumption 

Analog 

[25] 350𝑛𝑛𝑛𝑛 14 N/A 52𝜇𝜇𝑊𝑊 

[26] 350𝑛𝑛𝑛𝑛 5 N/A 12𝜇𝜇𝑊𝑊 

[14] 65𝑛𝑛𝑛𝑛 31 120𝜇𝜇𝑛𝑛2 3.8𝜇𝜇𝑊𝑊 

[27] 150𝑛𝑛𝑛𝑛 20 N/A 1.5𝜇𝜇𝑊𝑊 

[28] 65𝑛𝑛𝑛𝑛 26 100𝜇𝜇𝑛𝑛2 N/A 

Digital 

[28] 65𝑛𝑛𝑛𝑛 N/A N/A 100𝜇𝜇𝑊𝑊 

[29] 65𝑛𝑛𝑛𝑛 156 538𝜇𝜇𝑛𝑛2 77.9𝜇𝜇𝑊𝑊 

[7] 130𝑛𝑛𝑛𝑛 N/A 1800𝜇𝜇𝑛𝑛2 55𝜇𝜇𝑊𝑊 

[8] 90𝑛𝑛𝑛𝑛 300 440𝜇𝜇𝑛𝑛2 14.3𝜇𝜇𝑊𝑊 
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(a) 

 
 

 
(b) 
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(c) 

Figure 11. Comparison of analog and digital neuron implementations using various CMOS 
technologies based upon (a) transistor numbers, (b) power consumption, and (c) die size. 

We normalized the data presented in Table 1 and summarized the comparison of power 
consumption between analog and digital implementations in Table 2. 

 
Table 2. Normalized Comparisons. 

 Analog Digital 

# of Transistors 19.5 225 

Design Area 74.2𝜇𝜇𝑛𝑛2 1119.7𝜇𝜇𝑛𝑛2 

Power Consumption 1.15~52𝜇𝜇𝑊𝑊 14.3~100𝜇𝜇𝑊𝑊 
 
 
3.2.2 Design and optimization of integrate-and-fire delay neurons 
 
The design scheme of our introduced I&F delay neuron is depicted in Figure 12. During the 
operation, the sensing capacitor, 𝐶𝐶𝑆𝑆, continuously tracks the current that is generated from the 
delay calibration module and charges up its potential. When the voltage potential across the 
sensing capacitor, 𝑉𝑉𝑜𝑜ℎ(𝑐𝑐) , exceeds the firing threshold voltage of input transistors, 𝑀𝑀1,2, two 
cascading inverters, 𝑀𝑀3,4 and 𝑀𝑀7,8, fire a spike as output. Meanwhile, the positive feedback loop, 
𝑀𝑀5,6, induces a high voltage at 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜, such that the sensing capacitor can be fully discharged by 
the resetting switch, 𝑆𝑆𝑊𝑊2. As such, the firing process for one output spike is accomplished. 
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In the I&F delay neuron, the delay time can be regulated by the integrating time of the membrane 
capacitor, 𝐶𝐶𝑚𝑚. The delay time constant, τ, can be expressed as 
 

 𝜏𝜏 = 𝐶𝐶𝑚𝑚 ∙
𝑉𝑉𝑜𝑜ℎ
𝐼𝐼𝑟𝑟𝑒𝑒

 , (7) 

 
where the 𝑉𝑉𝑜𝑜ℎ is the threshold voltage of the I&F neuron, and 𝐼𝐼𝑟𝑟𝑒𝑒 is the controllable excitation 
current. Theoretically, the mathematical analysis of the I&F delay neuron is similar to the 
traditional Resistor-Capacitor delay model; since the input impedance, 𝑅𝑅𝑖𝑖𝑖𝑖, of the I&F delay 
neuron is equivalent to 𝑉𝑉𝑡𝑡ℎ

𝐼𝐼𝑒𝑒𝑒𝑒
. Thus, the delay time constant can be then rewritten as 

 
 𝜏𝜏 = 𝐶𝐶𝑚𝑚 ∙ 𝑅𝑅𝑖𝑖𝑖𝑖. (8) 

 
 

 
Figure 12. Simplified design scheme of integrate-and-fire delay neuron. 
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Figure 13. Layout of the integrate-and-fire delay neuron. 

 
However, unlike the traditional Resistor-Capacitor delay model that is formed by a large capacitor, 
the delay time of the I&F delay neuron can be regulated by the input impedance as described in 
Equation (8). Consequently, a large delay time can be achieved by increasing the equivalent input 
impedance, which can be formed by reducing the 𝐼𝐼𝑟𝑟𝑒𝑒. 
 
To facilitate the functionality of dynamic behavior regulation, from periodic to chaotic or vice 
versa, the delay calibration module, as depicted in Figure 14, is implemented.  
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Figure 14. Design scheme of delay calibration module. 

 
 

 
Figure 15. Layout of delay calibration module (single-cell), where multiple cells are needed 

based on the number of delay neurons. 

 
The delay calibration module utilizes the voltage-to-current conversion technique from the 
conventional trans-impedance amplifier. The current mirror array, as shown in the dashed box in 
Figure 14, keeps sensing the variation of the input signal, 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐, and linearly generates the 
corresponding calibration current, 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐, which could be expressed as 
 

 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐 = (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑉𝑉𝑁𝑁) ∙ 𝐺𝐺𝑚𝑚, (9) 
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where 𝑉𝑉𝑁𝑁 is the feedback signal from the current mirror, and 𝐺𝐺𝑚𝑚 is the trans-conductance of the 
operational amplifier. Within the dynamic delay-feedback loop, each I&F delay neuron has 
equidistant delay time constant, and thus, the current mirror array within the delay calibration 
module is designed to achieve identical calibration currents. 
 
3.2.3 Design and optimization of delay-feedback loop 
 
The delay-feedback loop, which is constructed with multiple I&F delay neurons, as illustrated in 
Figure 16, is implemented by using the output spike train from the previous neuron as the clock 
trigging signal to its following. For instant, when the temporal spike train is generated from the 
first delay neuron, 𝑛𝑛1, within the delay loop, it resets the following delay neuron, 𝑛𝑛2; meanwhile, 
the voltage potential across the sensing capacitor of 𝑛𝑛2 starts to charge up. Over the time period of 
𝜏𝜏𝑑𝑑𝑟𝑟𝑐𝑐𝑐𝑐𝑑𝑑, 𝑛𝑛2 fires a spike as output, which results in the input spike train at a given delay time. 
 

 
Figure 16. Simplified design scheme of the delay-feedback loop. 
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Figure 17. Layout of the delay-feedback loop. 

The delay plays an important role in the reservoir layer, which determines the dynamic behavior 
of the system. The robustness of the I&F delay neuron is proportional to transistors’ channel length 
in the input stage of the firing threshold. Increase the channel length of the transistor significantly 
improve the system robustness, which often results in a larger design area. 
 

3.3 Short-term Memory Achievement with Signal Integrator 
 
3.3.1 Comprehensive investigation on signal integration 
 
By integrating the feedback signal with the new incoming input data, the DFR utilizes the delayed 
feedback loop to formulate a short-term dynamic memory, as depicted in Figure 18, such that the 
new incoming data carries the information from its previous state(s). To improve the computation 
accuracy, the feedback signal is decoded into an analog voltage followed by a gain regulator to 
scale down the potential level such that the new incoming input data is dominant. 
 

 
Figure 18. Simplified block diagram of short-term dynamic memory integration. 
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Unlike the rate encoding scheme, the information of the temporal code is encoded into the time 
interval between spikes; in other words, the total number of spike is fixed, and the time intervals 
between spikes alter based on the given input data. Therefore, two different temporal codes cannot 
be merged directly, which is illustrated in Figure 19. 
 

 
Figure 19. Integration of rate code vs. temporal code. 

To integrate two different temporal codes together, all-time intervals between spikes need to be 
extracted for computation. The time intervals in the output spike train can be express as 
 

 𝐺𝐺𝑟𝑟𝑁𝑁 = 𝑓𝑓(𝐺𝐺𝑐𝑐𝑁𝑁 ,𝐺𝐺𝑓𝑓𝑁𝑁) , (10) 
 
where 𝐺𝐺𝑟𝑟𝑁𝑁 defines the 𝐺𝐺-th time interval in the output spike train, 𝐺𝐺𝑐𝑐𝑁𝑁 and 𝐺𝐺𝑓𝑓𝑁𝑁 represent the 𝐺𝐺-
th time interval in the input pattern 𝐴𝐴 and 𝐵𝐵, respectively. Figure 20 illustrates the computing 
principle of the temporal code. 
 

 
Figure 20. Computing principle of temporal code. 

Since two different temporal codes cannot be merged directly, the time intervals between spikes 
need to be extracted. However, the spike-representative data cannot be used for data computation 
directly due to the narrowed spike width. This task tentatively utilizes the DDL with the XOR 
logic gate to extend the spike width, as demonstrated in Figure 21. 
 

 
Figure 21. Spike width extender. 
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Figure 22 depicts the interval extraction. The sampling window is used as a reference to extract 
the time intervals between spikes, and thus, time intervals are represented as digital pulses. 
Depending on the design scheme of the signal integrator, either time of arrival or lookup table 
design scheme is used. 
 

 
Figure 22. Time-interval extraction. 

 
In the analog implementation, the time-of-arrival (only the time interval between the rising edge 
of the sample window and the first spike) and current sensing scheme are tentatively utilized. 
 
With the current sensing design scheme, as shown in Figure 23, the voltage is depended on the 
integration over time through the sensing capacitor, which can be expressed as: 
 

 𝑉𝑉 =
𝐼𝐼
𝐶𝐶
∙ 𝛥𝛥𝑡𝑡, (11) 
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(a) 

 

 
(b) 

Figure 23. (a) Design scheme and (b) operating principle of current sensing. 
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where 𝐼𝐼 and 𝐶𝐶 represent the sensing current and sensing capacitor, respectively; 𝛥𝛥𝑡𝑡 defines the 
integration time, which is regulated by the pulse width modulation (PWM) of the first-time interval 
in the temporal code. In the proposed circuit implementation, the sensing capacitor is fixed; 
moreover, since the amplitude of the PWM is fixed at 𝑉𝑉𝐷𝐷𝐷𝐷, the sensing current maintains a 
constant. Thus, the voltage is only proportional to the PWM signal. 
 
In the digital implementation, all-time intervals are utilized for digital computation using the 
lookup table design scheme. Figure 24 demonstrates the design scheme with a digital integrator. 
 

 
Figure 24. Design scheme of digital integrator. 

 
3.3.2 Spike-timing-dependent plasticity-based inter-spike-interval decoder 
 
In our first-generation decoder, the decoding scheme is based on two techniques including 
capacitor charging/discharging and interval extracting[16]. In the standard CMOS process 
technology, the most accurate capacitor could be made through the metal-insulator-metal (MIM) 
capacitor, which is restricted by the technique parameter offset. This kind of parameter offset 
would introduce a great number of errors if just one capacitor is adopted and no compensation is 
applied. Furthermore, due to the narrow pulse width of a spike train, it is difficult to charge the 
capacitor into a higher value (e.g., the 100mV level). Consequently, the final output voltage would 
be in the several-mV range, resulting in very low noise immunity. In order to resolve this issue, 
we connect two spikes with STDP scheme, as demonstrated in Figure 25. 
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              (a)                                                  (b)                                                 (c) 

Figure 25. Spike-timing-dependent plasticity in (a) t_i<t_r; (b) t_i>t_r; (c) t_i=t_r. 

 
As shown in Figure 25, each column has three signals, which are reference spike, input spike, and 
output voltage, respectively. As shown in Figure 25(a), the input spike appears earlier than the 
reference spike, and thus, the output voltage increases by 2 ∙ ∆𝑣𝑣. As shown in Figure 25(b), the 
input spike appears later than the reference spike, and thus, the output voltage decreases by 2 ∙ ∆𝑣𝑣. 
The final case is described in Figure 25(c), where the input spike and reference spike appear at the 
same time, and thus, the output voltage remains unchanged. 
 

 
Figure 26. Design scheme of the STDP-based inter-spike-interval decoder. 
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As shown in Figure 26, there are three major portions in the decoder design, namely, the input 
module for the ISI spike train (constructed with transistors labeled in 𝑀𝑀𝑖𝑖), the input module for the 
reference spike train (constructed with transistors labeled in 𝑑𝑑𝑖𝑖), and the process module 
(constructed with transistors labeled in 𝑇𝑇𝑖𝑖). In the input module for the ISI spike train, the input 
spike is applied on the gate terminal of 𝑀𝑀1 and 𝑀𝑀2, which will be transformed into a spike train 
with the inverse voltage level. 𝑀𝑀3 and 𝑀𝑀4 are used to transform the inverse spike train into a current 
to charge 𝐶𝐶1 capacitor. 𝑉𝑉𝑜𝑜 is used to control the current intensity, and 𝑉𝑉𝑑𝑑 is used to ensure 𝑀𝑀5 
working in the sub-threshold region. The input module for the reference spike train has the same 
specification as the input module for an ISI spike train. These voltages across 𝐶𝐶1 and 𝐶𝐶2, which 
are represented as 𝑉𝑉1 and 𝑉𝑉2, will be then applied to the comparator, 𝐴𝐴1. Thereby, the output of 𝐴𝐴1 
can be expressed as 
 

 𝑉𝑉3 = �

𝑉𝑉𝐷𝐷𝐷𝐷, 𝑉𝑉1 − 𝑉𝑉2 > 0
1
2
𝑉𝑉𝐷𝐷𝐷𝐷, 𝑉𝑉1 − 𝑉𝑉2 = 0
0, 𝑉𝑉1 − 𝑉𝑉2 < 0

� . (12) 

 
Once the potential difference of 𝑉𝑉1 and 𝑉𝑉2 is compared by 𝐴𝐴1, 𝑇𝑇1 and 𝑇𝑇2 are used to charge 𝐶𝐶𝑟𝑟, 
while 𝑇𝑇3 and 𝑇𝑇4 are used to discharge 𝐶𝐶𝑟𝑟. Therefore, the output voltage of the decoder can be then 
determined as 
 

 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑉𝑉𝑟𝑟𝑒𝑒 ∙ �1 − 𝑒𝑒−
𝑜𝑜𝑛𝑛
𝜏𝜏𝑛𝑛�  𝑉𝑉𝑟𝑟𝑒𝑒 ∙ 𝑒𝑒

−
𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟−𝑜𝑜𝑛𝑛

𝜏𝜏𝑝𝑝  � , (13) 

 
where 𝑉𝑉𝑟𝑟𝑒𝑒 represents the transition voltage between the charging and discharging, 𝐺𝐺𝑟𝑟𝑟𝑟𝑓𝑓 is the ISI 
period of the reference spike train, and 𝑡𝑡𝑖𝑖 is determined by 𝑉𝑉3, 𝜏𝜏𝑖𝑖, and 𝜏𝜏𝑝𝑝, which can be expressed 
as 
 

 𝜏𝜏𝑖𝑖 =

⎩
⎨

⎧𝐶𝐶𝑟𝑟 ∙ �
𝑊𝑊𝑇𝑇4

𝐿𝐿𝑇𝑇4
� ∙ 𝐼𝐼𝑜𝑜𝑁𝑁 ∙ 𝑒𝑒

𝑉𝑉𝑝𝑝𝑝𝑝
𝑖𝑖𝑛𝑛𝑜𝑜

𝐶𝐶𝑟𝑟 ∙ �
𝑊𝑊𝑇𝑇1

𝐿𝐿𝑇𝑇1
� ∙ 𝐼𝐼𝑜𝑜𝑜𝑜 ∙ 𝑒𝑒

𝑉𝑉𝑝𝑝𝑝𝑝
𝑖𝑖𝑛𝑛𝑜𝑜

⎭
⎬

⎫
 , (14) 

 
where 𝐼𝐼𝑜𝑜𝑁𝑁 and 𝐼𝐼𝑜𝑜𝑜𝑜 are determined by the physical process of NMOSs and the PMOSs, respectively. 
By regulating control voltages of 𝑉𝑉𝑝𝑝 and 𝑉𝑉𝑖𝑖, the same charging and discharging speeds could be 
achieved. In other words, the output voltage of the decoder is only determined by 𝑉𝑉1 − 𝑉𝑉2. 
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Figure 27. Layout of inter-spike-interval decoder with spike-time-dependent plasticity 

methodology. 

3.4 Delayed Feedback Reservoir System 
 
3.4.1 Delayed feedback reservoir system design and integration 
 
Applications of the reservoir computing include chaotic dynamic predictions [30], character 
recognition [31, 32], speech recognition [33, 34], and the generation and prediction of chaotic time 
series [29]. In order to more closely mimic the mammalian brains, delay should be taken into 
consideration, which has been successfully implemented in the DFR system. In this context, the 
reservoirs function as time-delayed recursive networks that use feedback as a short-term dynamic 
memory for processing time-series input signals. Delay systems exhibit two prerequisites for 
reservoir computing: (1) the high dimensionality, and (2) the short-term memory. In such delay 
systems, the dynamic is influenced by its own output at the previous time step [35]. 
 
The photonic implementation of the delay-feedback system has attracted worldwide attention [23, 
36, 37]. DFR networks with photonic implementation introduce the phenomenon of optical chaos 
where complex dynamics could be beneficial for different applications [38]. However, to the best 
of our knowledge, there is no analog IC implementation for the spike-time-dependent DFR system 
in the literature. 
 
One of the simplest possible delay systems consists of a single nonlinear node whose dynamics 
are influenced by its own output at the previous time step. Such a system is easy to implement 
because it comprises only two elements, a nonlinear node, and a delay-feedback loop. The delay-
feedback loop goes through a number of virtual nodes. Each virtual node is separated by an 
equidistant delay time, 𝜏𝜏. Each virtual node holds the delayed version of the previous node’s output 
in time 𝜏𝜏 = 𝜃𝜃

𝑁𝑁
, where 𝜃𝜃 is the total time constant of the delay-feedback loop, and 𝐺𝐺 represents the 

number of virtual nodes. The dynamic characteristic of the delay system can be influenced by 
simply changing the feedback strength or the delay interval 𝜃𝜃 and 𝜏𝜏. Numerical results show that 
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the DFR system has an approximately identical performance compared to the traditional reservoir 
computing design. 
 
In general, our DFR system was constructed with a single nonlinear neuron, a temporal encoder, 
and a delay-feedback loop, as depicted in Figure 28. During the operation, analog input signals are 
first nonlinearly projected onto a higher dimensional space through the nonlinear neuron, followed 
by accumulating in the sensing capacitor within the temporal encoder, such that post-neuron 
signals are represented by a temporal spike train, enabling the spiking information processing 
capability. The encoded temporal spike train travels along the dynamic feedback loop and 
eventually integrates with the next incoming input data. Such a feedback network creates a short-
term memory, establishing connections within the context of data. 
 

 
Figure 28. System architecture of delay-feedback reservoir (DFR) system. 

 
3.4.2 Circuit fabrication and testing with advanced CMOS technology 
 
Our first-generation prototype of the spike-based DFR system was submitted for fabrication 
through MOSIS using the standard GF 130nm CMOS technology in May 22, 2017. This chip 
contained 12 DFR system modules and was separated into two sections. Each section can be biased 
and measured individually with 2 separated groups of input/output (I/O) pins. Moreover, since  
device mismatch might occurred during the fabrication process, 4 different design floor plans of 
the DFR system were implemented in this chip. In order to reduce the usage of bonding pads within 
the limited chip area, outputs from all DFR systems within the same section are shared with 1 
output pin. To prevent the interference between each output signal, a 6-to-1 multiplex was 
implemented to select the specific DFR system module that needs to be measured. In addition to 
DFR system modules, an individual nonlinear neuron, as well as the temporal encoder, were also 
included in this chip for individual performance testing. Figure 29 demonstrates the layout of our 
first-generation prototype of the spike-based DFR system. 
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Figure 29. Layout of the first-generation spike-based DFR system. 

 
The improved second-generation spike-based DFR was submitted for fabrication through MOSIS 
using the standard GF 180nm CMOS technology in December 8, 2019. This chip contains 2 hybrid 
neural network (HNN) cores, 4 single-layer DFR system modules, and a global control system. 
For individual performance testing, an individual nonlinear neuron, a temporal encoder, an ISI 
decoder, and a spiking neuron are implemented in this chip. The layout of our second-generation 
of spike-based DFR system is shown in Figure 30. 
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Figure 30. Layout of the second-generation spike-based DFR system. 

 
3.4.3 Multi-layer delayed feedback reservoir system 
 
Recently, the field of deep learning has attracted worldwide attention due to its hierarchical 
architecture that allows more efficient performance than a shallow structure, not only on accuracy 
but also the processing speed [39]. The superior performance is a result of its intrinsic deep 
structure. DNNs are constructed by multiple layers working in a fashion of processing pipeline 
[40]. The deep learning architecture has proven to have exceptional performance in high-
dimensional data that is applicable to many fields, ranging from business to science [41]. Many 
performance records are broken by deep learning architectures in applications of image 
classification and handwritten character recognition [40-42]. The depth is generally defined as 
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stacking multiple hidden layers in between input and output layers. This could either be defined in 
the time-domain or in the space-domain. 
 
RNNs could be defined as a variant of DNNs. For RNNs, the depth arises from inherent recurrent 
connections, which lead to depth-in-time. However, the training process of such neural networks 
is considered complex and time-consuming. In an endeavor to reduce the complexity of RNNs, 
the reservoir computing architecture was proposed in the field of machine learning. In DFR 
systems, the depth-in-time computing structure arises from the delayed signal that combines with 
the new input. However, for both RNNs and DFRs, a single reservoir does not create any depth-
in-space computing structure. Similar to stacked FNNs in the deep learning field, the depth-in-
space computing structure can also be achieved by stacking multiple reservoir layers between input 
and output layers. 
 

 
(a) 

 

 
(b) 

Figure 31. Illustration of deep DFR models in (a) deep DFR and (b)MI-deep DFR. 

 
Along with the analog implementation of the DFR system, we investigated the possibility of 
merging the deep learning and the DFR system. Two deep DFR structures, deepDFR, and multiple-
input (MI-deepDFR), are introduced. In the deepDFR model, the output from the previous layer 
was injected into the successive reservoir layers. The governing equation can be expressed as 
 

 �̇�𝑥1𝑐𝑐 = −𝑥𝑥1𝑐𝑐(𝑡𝑡) + 𝑓𝑓�𝑥𝑥1𝑐𝑐(𝑡𝑡 − 𝜏𝜏), 𝐼𝐼1𝑐𝑐(𝑡𝑡),𝜃𝜃� , (15) 
 
where 𝑥𝑥1𝑐𝑐(𝑡𝑡) is the state at 𝑙𝑙-th layer, 𝜃𝜃 is the time interval between each virtual node, and 𝑓𝑓( ) is 
the nonlinear mapping function by using the Mackey-Glass nonlinear activation function as shown 
below 
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 𝑓𝑓�𝑥𝑥1𝑐𝑐 , 𝐼𝐼1𝑐𝑐� =
𝑎𝑎�𝑥𝑥1𝑐𝑐 + 𝐼𝐼1𝑐𝑐�

1 + �𝑥𝑥1𝑐𝑐 + 𝐼𝐼1𝑐𝑐�
𝑖𝑖 , (16) 

 
where 𝐼𝐼1𝑐𝑐  is the input signal that injects to each layer for deepDFR model, where the input signal is 
organized as 
 

 𝐼𝐼1𝑐𝑐 = �
𝑛𝑛 ∙ 𝑢𝑢1(𝑡𝑡) 𝑙𝑙 = 1
𝑥𝑥1𝑐𝑐−1(𝑡𝑡) 𝑙𝑙 > 1

� , (17) 

 
where 𝑢𝑢1(𝑡𝑡) is the original input signal, 𝑛𝑛 is the masking operation, 𝑥𝑥1𝑐𝑐−1(𝑡𝑡) is the output state 
from the previous layer. This topology of the deepDFR model is illustrated in Figure 31(a). 
 
The other deep structure of the DFR system is similar to the deepDFR, but the input is injected 
into each layer together with the output state from the previous layer. By adding external input to 
each reservoir layer, each layer would have a more recent memory of the input signal. This might 
be useful when carrying out prediction tasks. The governing equation for the MI-deepDFR can be 
expressed as 
 

 �̇�𝑥2𝑐𝑐 = −𝑥𝑥2𝑐𝑐 (𝑡𝑡) + 𝑓𝑓�𝑥𝑥2𝑐𝑐 (𝑡𝑡 − 𝜏𝜏), 𝐼𝐼2𝑐𝑐(𝑡𝑡),𝜃𝜃� , (18) 
 
where 𝑥𝑥2𝑐𝑐 (𝑡𝑡) is the state at 𝑙𝑙-th layer, 𝜃𝜃 is the time interval between each virtual node, and 𝑓𝑓( ) is 
the nonlinear mapping function by using the MG nonlinear function as shown below 
 

 𝑓𝑓�𝑥𝑥2𝑐𝑐 , 𝐼𝐼2𝑐𝑐� =
𝑎𝑎�𝑥𝑥2𝑐𝑐 + 𝐼𝐼2𝑐𝑐 �

1 + �𝑥𝑥2𝑐𝑐 + 𝐼𝐼2𝑐𝑐�
𝑖𝑖 , (19) 

 
where 𝐼𝐼2𝑐𝑐  is the input signal that injects to each layer for MI-deepDFR model, where the input 
signal is organized as 
 

 𝐼𝐼1𝑐𝑐 = �
𝑛𝑛 ∙ 𝑢𝑢2(𝑡𝑡) 𝑙𝑙 = 1

[𝑛𝑛 ∙ 𝑢𝑢2(𝑡𝑡)   𝑥𝑥2𝑐𝑐−1(𝑡𝑡)]𝑇𝑇 𝑙𝑙 > 1
� , (20) 

 
where 𝑢𝑢2(𝑡𝑡) is the original input signal, 𝑛𝑛 is the masking operation, 𝑥𝑥2𝑐𝑐−1(𝑡𝑡) is the output state 
from the previous layer. This topology of the MI-deepDFR model is illustrated in Figure 31(b). 
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4.0 RESULTS AND DISCUSSIONS 
 

4.1 Performance Analysis of Mackey-Glass Nonlinear Node 
 
As depicted in Figure 32, it can be observed that the nonlinear correlation between input and output 
signals was successfully achieved. Similar to the nonlinear characteristic of the ideal Mackey-
Glass function, it can be observed that the nonlinearity of the transfer function in the circuit 
implementation can be regulated by controlling the CP current, 𝐼𝐼𝑐𝑐𝑝𝑝. To demonstrate such feature, 
the CP current, 𝐼𝐼𝑐𝑐𝑝𝑝, is altered to achieve various nonlinearity of the transfer function. From 
Equation (1), as 𝑛𝑛 increases, the nonlinearity of the transfer function rises accordingly. The same 
characteristic can be observed in the circuit implementation. With increasing the CP current, the 
nonlinearity of the circuit’s function can be regulated, as plotted in Figure 33. 
 

 
Figure 32. Nonlinear regime of the ideal Mackey-Glass equation and electronic circuit 

implementation. 
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Figure 33. Nonlinearity of the Mackey-Glass equation on the electronic circuit. 

 
To closely examine dynamic behaviors, the solution to the DDE equation carried out. The dynamic 
behavior of the nonlinear function is modeled by the DDE with varied delay time, as demonstrated 
in Figure 34. 
 

 
Figure 34. Dynamic behavior of the Mackey-Glass nonlinear equation when (a) τ=3; (b) 

τ=12; (c) τ=16; (d) τ=20. 
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As plotted in Figure 34, the solution converges to an equilibrium state when the delay is small. 
The dynamic behavior varies accordingly as the delay starts to increase. With the increasing time 
delay, the dynamic alters from periodic to chaotic as shown in Figure 34(a) to (d). 
 
The phase portrait is a representation of solutions, tracing the path of each particular solution. It is 
a graphical tool to visualize how the solution of a given system of differential equations would 
behave in the long run. In other words, the phase portrait is a tool to track the dynamic behavior 
of a system’s solutions. By varying the time delay, the phase portraits are illustrated in Figure 35. 
It can be observed that as the delay increases, the dynamic behavior varies from order to the edge 
of chaos and even further to completely chaotic. 
 

 
Figure 35. Phase portrait of the dynamic system in (a) τ=12; (b) τ=14; (c) τ=16; (d) τ=18; 

(e) τ=20; (f) τ=22. 
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The system robustness of the nonlinear transformation is evaluated through the Monte-Carlo 
simulation by introducing the process variation with 500 sampling points at the room temperature. 
In this task, the input signal of the nonlinear node was set to be 0.8V. As depicted in Figure 36, 
the average offset for the nonlinear node was 6mV with a standard deviation of 8mV. Simulated 
results indicate that 100% of data points lie within a band of 3σ region. 
 

 
Figure 36. Simulated system robustness with process variation in nonlinear transformation. 

 
The temperature variation was analyzed by simulating the temperature from 0°C to 60°C in the 
Cadence Virtuoso platform, as plotted in Figure 37. With simulated results in temperature 
variation, the average error rates remain below 3.5% for the nonlinear transformation if the 
temperature is below 32°C. As the temperature increases, error rates increase by up to 15.5%. 
 
Measured normalized errors of the nonlinear transformation were evaluated through 20 sampling 
points at room temperature, as depicted in Figure 38. In this task, the input signal of the nonlinear 
node was set to be 0.8V. Normalized errors were evaluated by examining the difference between 
the predicted value from the simulation and the actual value from the measurement.  With the 
testing results in the measured system robustness, the average normalized error for the nonlinear 
transformation was 1.97%. 
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Figure 37. Simulated system robustness with temperature variation in nonlinear 

transformation. 

 
 

 
Figure 38. Normalized error in nonlinear transformation. 
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4.2 Performance Analysis of Static Feedback Loop 
 
Figure 39 demonstrates a four-stage delay loop whereby the output spike trains are illustrated. The 
𝑉𝑉𝑜𝑜ℎ was fixed at 1V and the 𝐼𝐼𝑟𝑟𝑒𝑒– 𝐼𝐼𝑐𝑐𝑟𝑟𝑐𝑐𝑛𝑛 is fixed in 0.1μA, which is equivalent to 10MΩ resistance. 
Therefore, the proposed delay unit could achieve large delay time with a very small capacitor. 
Hence, the dynamic of the system can be varied from order to edge of chaos by tuning the delay 
constant with very small capacitance and resistance value. 
 

 
(a) 

 
 

 
(b) 
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(c) 

Figure 39. Output spike train with different delay time in (a)1.27μA, (b) 2.03μA, and (c) 
3.69μA. 

 
In the DFR system, the dynamic of the system can be varied from the order to the edge of chaos 
by controlling the total delay time along the delay loop. To demonstrate the delay behavior of the 
system, the delay time, 𝜏𝜏𝑑𝑑𝑟𝑟𝑐𝑐𝑐𝑐𝑑𝑑, of the I&F delay neuron is altered to achieve a large dynamic range 
of controllable delay time. As plotted in Figure 40, the delay time can be regulated from 180ns to 
1.5μs by controlling the excitation current from 50nA to 300nA. 
 

 
Figure 40. Controllable delay time. 
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To acquire 1.5μs delay via the traditional Resistor-Capacitor delay element, such a system requires 
a 100kΩ resistor and a 15pF capacitor, resulting in a large design area. The introduced I&F delay 
neuron overcomes this drawback by regulating the equivalent input impedance of the circuit. By 
injecting 50nA excitation current into the delay unit, the equivalent input impedance reaches 
25MΩ, thus, a large delay time can be achieved with an extremely small capacitor. Compared to 
the traditional Resistor-Capacitor delay element, as illustrated in Figure 41, that is built upon a 
large design area of resistors and capacitors, our I&F delay neuron has the capability to process 
the spiking information directly with a superior dynamic range of controllable delay time and a 
small design area. 
 

 
Figure 41. Design area illustration in (a) Resistor-Capacitor delay element, and (b) 

introduced I&F delay neuron. 

 
The system robustness of the delay regulation was evaluated through the Monte-Carlo simulation 
by introducing the process variation with 500 sampling points at the room temperature. In this 
task, the input signal of the I&F delay neuron was set to be 250nA. As depicted in Figure 42, the 
average offset for the I&F delay neuron was 1.99ns with a standard deviation of 2.83ns. Simulated 
results indicate that 100% of data points lie within a band of 3σ region. 
 
The temperature variation was analyzed by simulating the temperature from 0°C to 60°C in the 
Cadence Virtuoso platform, as plotted in Figure 43. With simulated results in temperature 
variation, the average error rates remain below 3.5% for the delay regulation if the temperature is 
below 32°C. As the temperature increases, error rates increase by up to 8.6%. 
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Figure 42. Simulated system robustness with process variation in delay regulation. 

 
 

 
Figure 43. Simulated system robustness with temperature variation in delay regulation. 
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Measured normalized errors of the I&F delay neuron are evaluated through 20 sampling points at 
room temperature, as depicted in Figure 44. In this task, the input signal of the I&F delay neuron 
was set to be 250nA. Normalized errors were evaluated by examining the difference between the 
predicted value from the simulation and the actual value from the measurement.  With the testing 
results in the measured system robustness, the average normalized error for the delay regulation 
was 3.48%. 
 

 
Figure 44. Normalized error in delay regulation. 

 
 

4.3 Performance Analysis of Inter-spike-interval Decoder with Spike-timing-
dependent Plasticity Methodology 

 
For an ISI spike processing module, one of the challenges was to design a robust and efficient 
decoder. There are two main steps in the encoding process: 1) convert the signal’s amplitude into 
a latency spike, and 2) integrate latency spikes into an ISI spike train. Once the encoding process 
is accomplished, the numerical dimension (amplitude) of an input signal is transformed into a 
temporal dimension (time interval). Thereby, the purpose of the ISI decoding scheme is to 
transform the encoded temporal dimension-based ISI spike train back to a numerical dimension-
based analog value, or a level-based signal. 
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In [43], a direct decoder design was discussed in which the key idea was to measure time intervals 
directly and transform these intervals into a level-based signals. However, this decoder adopts 
Sample/Hold sub-circuits to detect the position of spikes, which occupy large active design areas. 
Most importantly, as the number of spikes of an ISI temporal code increases, more Sample/Hold 
sub-circuits are needed. In other words, the reliability of the decoding operation has become a 
critical challenge when scaling up the information density of an ISI spike train. In order to 
overcome these issues, a decoding strategy, which includes the capability to handle any 
information density of an ISI spike train with a constant circuitry scaling factor, is needed. Inspired 
by the synapse updating technique, the STDP principle can be adopted to implement such a 
decoder for an ISI spike train. 
 
One of the differences between our ISI decoding scheme and traditional STDP decoding scheme 
is the output scale, also known as the amplitude level. The traditional STDP decoding could only 
generate bi-stable status, representing 1 and 0. However, our ISI decoder could map the ISI spike 
train into output with multiple scales. 
 

 
Figure 45. Operating principle of inter-spike-interval decoder. 

 
 

 
Figure 46. Signal flow of the inter-spike-interval decoder. 
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As shown in Figure 46, by applying a uniform reference spike train on the post-spike port and 
information carrier spike train on the pre-spike port, the final output from the ISI decoder would 
generate different voltages (i.e., 𝑉𝑉1, 𝑉𝑉2, 𝑉𝑉3. Under such configuration, there is no need to adopt 
additional Sample/Hold modules after the ISI decoder. Furthermore, the decoding speed increases 
significantly compared with the decoder in [43]. This is mainly because the length of an ISI spike 
train is constant and much shorter compared to the rate encoded spike train. Moreover, compared 
to the latency spike train, multiple spike trains have much higher error tolerance when the spike-
missing is considered. 
 
Unlike the bi-stable STDP application, our introduced ISI decoder could achieve multiple scales 
by applying an ISI spike code. The transient simulation results are illustrated in Figure 47. 
 

 
Figure 47. Transient response of inter-spike-interval decoder. 
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(a) 

 
 

 
(b) 

Figure 48. Simulation results of (a) the relationship between spike width and output 
signal’s scales; (b) the linearity of the output signal. 

In order to ensure that the output signal can be easily processed by other discrete systems, the 
linearity and the signal range are two important specifications that need to be considered. 
Furthermore, the tolerance on the pulse width of spikes significantly impacts the performance of 
the decoding operation. Simulated results of our introduced ISI decoder is illustrated in Figure 48. 
 
In this evaluation, a latency spike code together with four other different ISI spike codes were used 
as testing signals. As shown in Figure 48(a), there are two important properties: 1) the larger ISI 
spike train could achieve higher output range; 2) for the same scale of ISI spike train, the range of 
the output signal is influenced by the spike width (i.e., wider width leads to a larger range). For 
the latency spike train, it has only a 59mV output range even if a 30ns-wide spike is applied. On 
the other hand, a 12-spike ISI spike train with a 30ns-wide spike train has a 1V output range, which 
could be detected directly by other discrete systems without the usage of level shifters or 
amplifiers. 
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In Figure 48(b), ISI spike trains with 200KHz, 500KHz, and 1MHz were evaluated. Without 
generality, the 10-level case is adopted. Each level is related to one output voltage. Distributions 
of the output range are all in linear relationship, especially in higher frequency regime (e.g., 
1MHz). Such kind of output signal needs no extra normalization process by the following 
processor (e.g., training module). 
 

4.4 Performance Analysis of Delayed Feedback Reservoir System 
 
Figure 49 demonstrates the die photo of our fabricated first-generation DFR system. The design 
area of the whole DFR chip occupies 1.5mm×1.5mm while each DFR module takes up to 
175μm×56μm. 
 
From solutions of DDE, the Lyapunov stability analysis shows that the dynamic behavior of a 
given system could be achieved with a simple delay, and it has been proven that the best 
performance of the reservoir computing is found when operating at the edge of chaos regime [19, 
44, 45]. In [46-49], phase portraits were used to demonstrate the transition of intrinsic dynamic 
behavior from a theoretical point of view. A phase portrait is a graphics tool to visualize how the 
solutions of a given system of DDE would behave in the long run. 
 
As demonstrated in Figure 50, plotted phase portraits were obtained from measurements using two 
signals within the reservoir layer where one of them is collected with time delay. By varying the 
total delay time within the delay-feedback loop, the dynamic behavior of the system changes from 
order to chaotic as the delay increases. When the total delay time within the system is maintained 
around 1μs, the delayed signal, 𝐼𝐼(𝑡𝑡 − 𝜏𝜏), repeated traces its initial path even in a long run, resulting 
in the periodic behavior as plotted in Figure 50(b). As the total delay time within the system 
increases to 1.4μs, the delayed signal diverges from its initial path but without off-tracking from 
the equilibrium point even in a long run, resulting in the edge of chaotic behavior as plotted in 
Figure 50(c). 
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Figure 49. Die photo of the first-generation spike-based DFR system. 

 
 

 
(a) 
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(b) 

 
 

 
(c) 

Figure 50. Measured phase portrait of dynamic system in (a) T = 0.64μs, (b) T = 1μs, and 
(c) T = 1.4μs. 

From testing results on dynamic behaviors, one can see that our DFR system does go through a 
range of dynamic behaviors. It is reasonable to conclude that our fabricated DFR chip successfully 
implemented the desired functionality of delay and richness of dynamic behavior. This indicates 
that our analog DFR system closely mimics neurological systems with conduction time delay. 
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In general, the total power used by the CMOS IC consists of two parts, namely, the static power 
and the dynamic power [50]. The static power defines the power used when transistors are not in 
the switching process. The static power is independent to the speed, since input signals remain 
unchanged. On the other hand, the change of input signals charges or discharges the parasitic 
capacitor of a transistor and its corresponding loading capacitor, thereby, the dynamic power 
changes accordingly. Since the rate of charging and discharging processes is proportional to the 
sampling frequency, the dynamic power is dependent on the frequency, which can be expressed as 
 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑐𝑐𝑚𝑚𝑖𝑖𝑐𝑐 = �𝐶𝐶𝑝𝑝 + 𝐶𝐶𝑐𝑐� ∙ 𝑓𝑓 ∙ 𝑉𝑉𝐷𝐷𝐷𝐷2  , (21) 
 
where 𝐶𝐶𝑝𝑝 is the parasitic capacitance of a transistor, 𝐶𝐶𝑐𝑐 is loading capacitance, and 𝑓𝑓 is the sampling 
frequency. As depicted in Figure 51(a), the measured average error rate and simulated power 
consumption versus the sampling frequency were plotted. When the sampling frequency was less 
than 5MHz, the average error rate was below 1% with the average power consumption of 529μW. 
However, as the sampling frequency increases, the average error rate and power consumption 
increase up to 3.5% and 578uW, respectively. The power distribution of our DFR system with the 
sampling frequency at 1MHz is illustrated in Figure 51(b). The overall power consumption reaches 
526μW; the nonlinear node requires 68% of the total power consumption, while the temporal 
encoder and the dynamic delayed feedback loop take up to 13% and 19% of the total power 
consumption, respectively.  
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(a) 

 
 

 
(b) 

Figure 51. (a) Error and power analysis in terms of sampling frequency; (b) power 
distribution of the DFR system with the sampling frequency at 1MHz. 

 



Approved for Public Release; Distribution Unlimited.  
56 

 

 
Figure 52. Layout of second-generation DFR system. 

 
 

 
Figure 53. Power distribution of the second-generation DFR system. 

 
The power distribution of the newly designed DFR system was simulated with the sampling 
frequency at 1MHz and a supply voltage of 1.8V. As plotted in Figure 53, the DFR system 
consumes 390µW of power, where the nonlinear neuron requires 23% of the total power 
consumption from the DFR system, the temporal encoder, and the dynamic delay-feedback loop 
occupy 5% and 24% of the total power consumption from the DFR system, respectively, and the 
rest were consumed by the supplemental circuitries. Design specifications of the first-generation 
and second-generation of DFR system are summarized in Table 3. 
 
 

5%

23%

24%

48%

Encoder Nonlinear Neuron Delay-feedback Loop Supplements
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Table 3. Design Specification of first-generation and second-generation of Delay-feedback 

Reservoir System. 

 1st Generation [46] 2nd Generation 

Process 130nm 180nm 

Input Dynamic Range 0 ~ 300nA 0 ~ 5μA 

Activation Function sigmoid MG 

Types of Spiking Signal temporal Temporal, ISI 

Number of Neurons 6 8 

Energy Metric 16.69pJ/spike 9.63pJ/spike 

Supply Voltage 1.2V 1.8V 

Power Consumption (@1MHz) 529μW 390μW 
 
 

 
Figure 54. Floor plan of second-generation DFR chip. 
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The newly improved DFR system and the hybrid neural network (HNN) was fabricated through 
the standard GF 180nm CMOS technology in December 2019. The floor plan of the silicon chip 
is shown in Figure 54. The fabricated chip will be tested at VT’s MICS Group using their state-of-
the-art specialized lab facilities for integrated circuit testing. 
 

4.5 Chaotic Times Series Prediction Benchmark 
 
To evaluate the precision of the DFR system, a chaotic time series prediction benchmark, the tenth-
order nonlinear autoregressive moving average system (NARMA10), was carried out, which can 
be governed by 
 

 𝑜𝑜(𝑡𝑡) = 𝛼𝛼 ∙ 𝑜𝑜(𝑡𝑡 − 1) + 𝛽𝛽 ∙ 𝑜𝑜(𝑡𝑡 − 1) ∙�𝑜𝑜(𝑡𝑡 − 𝑖𝑖) + 𝛾𝛾 ∙ 𝑑𝑑(𝑡𝑡 − 9) ∙ 𝑑𝑑(𝑡𝑡) + 𝛿𝛿
9

𝑖𝑖=0

 , (22) 

 
where 𝑑𝑑(𝑡𝑡) is the random input signal at time 𝑡𝑡; 𝑜𝑜(𝑡𝑡 − 1) is the output at the previous time step; 
𝛼𝛼, 𝛽𝛽, 𝛾𝛾, and 𝛿𝛿 are random design parameters that would be replaced with a new random values 
taken from a ±50% interval around the respective original constants for every 2000 steps. During 
the simulation, the initial condition of design parameters were set to be 𝛼𝛼 = 0.3, 𝛽𝛽 = 0.05, 𝛾𝛾 =
1.5, and 𝛿𝛿 = 0.1. 
 
In this task, a total of 10 thousand sampling points were generated for training and testing phases. 
100 samples were used for the initialization, 5900 samples were used for the training and 4000 
samples were used for the testing. The prediction error was examined using the normalized root 
mean square error (NRMSE), and compared to state-of-the-art reservoir computing models. 
During the training process, output weights were trained by minimizing the deviation between 
predicted and target outputs. Both training and testing errors were achieved by the NRMSE, which 
can be defined as 
 

 𝐺𝐺𝑅𝑅𝑀𝑀𝑆𝑆𝑁𝑁 = �
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)𝑁𝑁
𝑖𝑖=1

2

𝑛𝑛𝜎𝜎𝑑𝑑�2
, (23) 

 
where 𝑦𝑦𝑖𝑖 is the predicted output, 𝑦𝑦� is the target output, 𝑛𝑛 is the total number of samples, and 𝜎𝜎𝑑𝑑�2 is 
the output variance. 
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Table 4. Performance comparison in different models. 

 Model 
NRMSE Error Rate 

Reduction Training Testing 

[51] ESN / 0.1075 36.5% 

[22] DFR / 0.15 54.5% 

[31] DFR 0.065 0.464 85.3% 

[52] DFR / 0.17 59.8% 

This Work DFR 0.0849 0.0683 / 
 
 

 
Figure 55. Target signals versus predicted signals for NARMA10 benchmark 

(demonstrated with the first 100 samples in the testing phase). 

The NRMSE of training and testing operations was then evaluated through Equation (23). NRMSE 
results along with the comparison to state-of-the-are DFR designs were tabulated in Table 4. It can 
be observed that the NRMSE from our introduced DFR computing system exhibits a 36%-85% 
reduction on the error rate compared to state-of-the-art reservoir computing modules. The 
experimental result of predicted output signals against target outputs with our introduced DFR 
system is plotted in Figure 55. 
 

4.6 Face Recognition 
 
In this experiment, we evaluated the performance and reliability of our DFR system by using the 
application of face recognition. The learning system was built by using the multi-layer perceptron 
(MLP) training model as the readout layer of our introduced DFR system. Weights were then 
trained by the backpropagation training algorithm. Since the training time increases dramatically 
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with the design scale, the hidden layer of the MLP training model was built with two neuron layers 
that contain 80 and 40 neurons, respectively. 
 

 
Figure 56. (a) Standard training database with three subjects; (b) down-sampled testing 

dataset with various salt-and-pepper noise levels. 

 
Six images corresponding to different training subjects from the Head Pose Image database [53] 
are demonstrated in Figure 56(a). A total of 48 images, which contain three different subjects with 
multiple rotation angles, were drawn. Among those images, 24 were used during the training stage, 
while the rest of the images were used for the testing phase. For the training dataset, the horizontal 
angle of face alters from 0° to 75° with an increment of 15° per rotation, while the vertical angle 
of face maintains at 0°. In the testing dataset, the alteration of horizontal angles of face follow the 
training dataset but with an additional 15° applied to the vertical angle of the face. The reliability 
of the system was investigated by introducing various levels of salt-and-pepper noise to the down-
sampled testing dataset, as depicted in Figure 56(b). 
 
Figure 57 illustrates the test bench of our hybrid training model. During the operation, each input 
image was first down-sampled to 64 × 64 pixels, and each pixel of the image was mapped onto 
higher-dimensional spaces for linear separation by our DFR system. As its output, a total of 4096 
spike trains, which represent the information of each pixel of an image, were generated from the 
reservoir layer. These spike data patterns were then recorded and converted into analog signals, 
𝑥𝑥𝑖𝑖. Within the hidden layer of the MLP training model, weighted inputs were mapped to each 
neuron in the following layer. Initially, weights were generated randomly. During the training 
stage, as each piece of data was processed, weights were calibrated based on the corrections that 
minimizing the error between actual and target outputs. The output layer, which contains three 
neurons, represents 001, 010, 100 in a digital format, such that the system can classify input 
patterns up to three different categories. In order to prevent overfitting, the cross-validation 
technique was applied during the training process. 
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Figure 57. Hybrid training model for application evaluation. 

 
The recognition rate was evaluated against different levels of salt-and-pepper noise with two 
different training models: (1) hybrid and (2) MLP-only. As depicted in Figure 58, the recognition 
rate maintains at 98% if the salt-and-pepper noise level was less than 10% by using the hybrid 
training model. The same trend can be found with the MLP-only training model, which was at a 
constant recognition rate of 78%. At low noise level, our hybrid training model exhibits a much 
higher recognition rate than that of the MLP-only training model. This trend can also be found at 
higher noise levels. As the noise level reaches 50%, the recognition rate of the hybrid training 
model was decreased to 93%. However, with the MLP-only training model at 50% of the noise 
level, the recognition rate has dropped to 67%, which was 26% more than that of the hybrid 
training model. Hence, the hybrid training model is more robust against noise than the MLP-only 
training model does. 
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Figure 58. Recognition rate with respect to various levels of salt-to-pepper noise. 

 
 

 
Figure 59. Recognition rate with respect to various dynamic behavior under different noise 

levels. 

 
In this task, the recognition rate was evaluated with various delay times. As demonstrated in Figure 
59, it can be observed that the recognition rate varies with respect to dynamic behaviors. When 
our DFR system operates at the edge of chaos regime (T = 20ms), the recognition rate was 
maintained at 98% with a noise level below 10%. As the noise level approaches 50%, the 
recognition rate at the edge of chaos regime maintains above 93%. However, if the delay deviates 
from 20ms, the recognition rate was drastically affected by the change in the dynamic behavior of 
the system, which resulted in approximately 25% decrease in the performance. 
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4.7 Performance Analysis of Multilayer Delayed Feedback Reservoir 
Systems 

 
To evaluate the performance of two deep DFR models, two-time series prediction tasks were 
carried out to study the performance of deep DFR systems. Time series prediction tasks are 
important in real-world applications not only in the engineering field, but also in medical care [54, 
55]. Computational abilities of our deep DFR models were examined using the NRMSE which 
was then compared to a baseline comparison model. Each deep DFR model contained four 
reservoir layers with 10 virtual nodes. In this task, the baseline comparison model was constructed 
by a leaky ESN model [56]. The total number of neurons used in the leaky ESN model was 40, 
which is equivalent to the total number of virtual nodes in the deep structures of DFR. The 
governing state equation for the leaky ESN is given as in [56] 
 

 𝑥𝑥(𝑡𝑡) = (1 − 𝑎𝑎) ∙ 𝑥𝑥(𝑡𝑡 − 1) + 𝑎𝑎 ∙𝑡𝑡𝑎𝑎𝑛𝑛ℎ 𝑡𝑡𝑎𝑎𝑛𝑛ℎ (𝑢𝑢(𝑡𝑡) ∙ 𝑊𝑊𝑖𝑖𝑖𝑖 + 𝑥𝑥(𝑡𝑡 − 1) ∙ 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟) , (24) 

 𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) ∙ 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 (25) 
 
where 𝑎𝑎 is the leakage term, 𝑊𝑊𝑖𝑖𝑖𝑖 is the input weight, 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟 is the weight in the reservoir. 
 
The first prediction task was the Santa Fe time series which is a typical benchmark test in the field 
of machine learning [57]. The Santa Fe dataset utilized in the task contained a total of 6600 values, 
which were generated by a laser working in the chaotic region. The dataset was divided into three 
portions, 100 values were used for initialization, 4000 samples were used for training, and 2500 
samples were used for testing.  
 
The other prediction task carried out was the prediction of the ElectroCardioGram (ECG) signal. 
The dataset consists of 7100 points whereby 100 samples were used for initialization, 5000 
samples were used for training, and the rest samples were used for testing. Figure60 shows a 
portion of the testing results for both Santa Fe and ECG time series prediction tasks. The outputs 
from the virtual nodes were linearly combined through output weights. During the training process, 
the output weights were trained by minimizing the deviation of the predicted output to the target 
signal or correct output signal. After the training, testing was carried out using the trained output 
weight. Both training and testing errors were obtained by computing the NRMSE as in Equation 
(23). 
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Table 5. Training results comparison for different models. 

Model 
NRMSE Normalized Training 

Time Santa Fe ECG 

Leaky ESN 0.0896 0.0831  

deepDFR 0.0213 0.0418 0.45X 

MI-deepDFR 0.0167 0.0319 0.57X 
 

 

 

Table 6. Testing results comparison for different models. 

Model 
NRMSE 

Santa Fe ECG 

Leaky ESN 0.0914 0.0917 

deepDFR 0.0508 0.0561 

MI-deepDFR 0.0395 0.0328 
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Figure 60. Target signal vs. predicted signal for (a) Santa Fe time series using leaky ESN; 
(b) Santa Fe time series using deep DFR; (c) Santa Fe time series using MI-deep DFR; (d) 
ECG using leaky ESN; (e) ECG using deep DFR; (f) ECG using MI-deep DFR. 

Training and testing results for each deep DFR model were tabulated in Tables 5 and 6. As can be 
seen in Table 5, MI-deepDFR exhibits the lowest NRMSE for both prediction tasks among these 
three models during training. It is clear that in both prediction tasks, training NRMSEs for deep 
DFR systems was lower than that of leaky ESN. By evaluating training results, deep DFR systems 
show 76%-81% better performance than the shallow leaky ESN model in the Santa Fe time series 
prediction task. Whereas in the ECG prediction task, deep DFR systems exhibit 50%-62% 
performance improvement. Although MI-deepDFR illustrates better computational ability than 
that of the deepDFR, the training time of MI-deepDFR requires approximately 21% longer than 
that of deepDFR. Due to the difference in architecture, there was a tradeoff between accuracy and 
training time. 
 
In Table 6, testing NRMSEs were listed for different models. During the testing stage, deep DFR 
systems exhibited 44%-57% better performance in the Santa Fe time series prediction task 
compared to that of the shallow leaky ESN model. In the ECG prediction task, the testing 
performance of deep DFR systems shows a 39%-64% improvement than the shallow model. 
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4.8 Potential of Hybrid Photonic-ASIC Platform Development 
 
Traditional reservoir computing implementations are generally composed of three distinct parts: 
an input layer, the reservoir layer, and an output layer. The recurrent part of the network, named 
as the reservoir, acts as a kernel of dynamical features. If the reservoir has rich enough dynamics, 
it is possible to perform a wide range of tasks using only linear readout neurons to extract the 
relevant information from the reservoir. While most implementations of reservoir computing are 
embodied in software, efficient hardware implementations of these concepts would provide 
numerous advantages. Hardware implementations would be capable of exploiting the full potential 
of the intrinsic parallelism of neural networks. The dedicated hardware implementation for specific 
tasks also offers advantages over software implementations where low power consumption or high 
processing speeds are a priority. 
 
In [22], authors exploited rich dynamics of delayed feedback information processing systems by 
using the system’s transient response to an external input to show that a single nonlinear node with 
delayed feedback could replace a large network of nonlinear nodes. Their results demonstrated 
that this new information processing architecture performs well in a variety of tasks, such as time-
series prediction and speech recognition. [58] and [59] introduce a photonic implementation of the 
reservoir with coupled semiconductor optical amplifiers (SOA). Table 7 shows the performance 
comparison between the photonic design and the IC implementation. Given the potential 
advantages, it is essential to explore the production of hybrid photonic-ASIC, which could offer 
an outstanding platform for hardware implementations of reservoir computing. 
 
Both photonic and IC implementations of reservoir processors have advantages and disadvantages. 
The photonic implementation offers high-speed optical processing and high bandwidth, but it 
requires a large design size and has high power consumption. Moreover, the photonic 
implementation of reservoir processors requires expensive peripheral devices (digitizer, waveform 
generator, mach-zehnder modulator, etc.) and is difficult to scale. The IC implementation offers 
compact design size and low power dissipation but is susceptible to noise, which makes it difficult 
to design. At the time this report was prepared, IC implementations of reservoir processors have 
not yet been reported in the literature.  
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Table 7. Performance comparisons between photonic and ASIC implementations. 

 Photonic ASIC 

Advantages 
● Devices are nonlinear in nature 
● High-speed optical processing 
● High bandwidth 

 
● Compact in size 
● Low power dissipation 
● Synaptic weight can be stored 

online or offline 
● High computational precision, 

high reliability, and high 
programmability 

 

Disadvantages 

 
● Large size 
● High power consumption 
● Requires expensive peripheral 

devices 
● Scaling is not easy 

 

● Analog IC implementation is 
susceptible to noise 

● Analog IC implementation is 
not available yet 
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5.0 CONCLUSIONS 
 
The recurrent part of the network for the concept we explored, called the reservoir, acts as a kernel 
of dynamical features. If the reservoir has rich enough dynamics, it is possible to perform a wide 
range of tasks using only linear readout neurons to extract the relevant information from the 
reservoir. While most implementations of reservoir computing are embodied in software, efficient 
hardware implementations of these concepts would provide numerous advantages. Hardware 
implementations would be capable of exploiting the full potential of the intrinsic parallelism of 
neural networks. Dedicated hardware implementation for specific tasks also offers advantages over 
software implementations where low power consumption or high processing speeds are a priority. 
In this effort, we designed a delay-feedback reservoir system. An advanced neuron circuit design 
for Mackey-Glass function was introduced, which bears a much closer resemblance to the behavior 
of neural networks than that of the hyperbolic tangent and sigmoid functions. In order to ensure 
the real-time operation, the digital signals were required to interface with the analog world, which 
leads to the addition of digital-to-analog and analog-to-digital converters. However, our analog 
implementation has the advantage of implicit real-time operation, resulting in a small design area 
and lower power consumption. Furthermore, our dynamic delay-based Mackey-Glass neuron 
could perform nonlinear transformation and map input signals to higher dimensional state, which 
makes it well suited for reservoir computing. 
 
Our design has five main contributions which were: 

● The introduction of a Mackey-Glass nonlinear electronic circuit that facilitates the high 
dimensional projection operation as in the neural network design; 

● A delay-feedback loop was presented with the capability to process the spiking information 
directly with a superior dynamic range of controllable delay time and a small design area; 

● An inter-spike-interval temporal decoder with the spike-timing-dependent plasticity 
methodology was revealed that could achieve multiple scales by applying an ISI spike 
train; 

● The power consumption and design area for our DFR system design were greatly reduced 
since power-hungry peripheral components, such as analog-to-digital and digital-to-analog 
converters, were not included; 

● Demonstrated the potential of deep DFR systems providing better computational ability 
than a shallow neural network. 

 
The significant technical contribution was the tape-out of the newly improved second-generation 
DFR system in December 2019 that is a spike-based DFR system. Analysis of the spike-based 
DFR with Mackey-Glass nonlinear transfer function revealed that it had a higher energy efficiency 
with less design area compared to state-of-the-art Mackey-Glass hardware implementations. More 
importantly, experimental results showed the DFR’s capability of operating at the edge of chaos 
regime with constant spike-based delay. 
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In summary, the specific objective of the project was to build a new class of computationally 
efficient delay-based reservoir computing systems that meet the requirements of high 
dimensionality and finite memory. This project pursued an agile analog IC implementation of 
spike-time encoding circuit as a signal conditioner and electronic reservoir as a dynamic processor 
for the reservoir computing system. This multidisciplinary effort bridged high-performance 
computing, nanotechnology, as well as integrated circuits and systems. The resulting DFR circuits 
and architectures could serve as the foundation for unprecedented capabilities in signature analysis 
and time-series classification with applications that fall within Air Force Research Laboratory 
(AFRL) neuromorphic computing consolidated programs. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

AFRL Air Force Research Laboratory 
ANN Artificial Neural Network 
ASIC Application Specific Integrated Circuit 
CMOS  Complementary Metal–Oxide–Semiconductor 
CP Charge Pump 
DDE Delay differential Equation 
DDL Digital Delay Line 
DFR Delayed Feedback Reservoir 
DNN Deep Neural Network 
ESN Echo State Network 
FLOPS Floating Point Operations Per Second 
FNN Feedforward Neural Network 
GF Global Foundries 
HNN Hybrid Neural Network 
HPC High-Performance Computing 
IC Integrated Circuit 
I/O Input/Output 
ISI Inter-Spike-Interval 
I&F Integrate-and-Fire 
JFET Junction Gate Field-Effect Transistor 
LIF Leaky Integrate-and-Fire 
LSM Liquid State Machine 
MI Multiple Input 
MICS Multifunctional Integrated Circuits and Systems 
MIM Metal-Insulator-Metal 
MLP Multilayer Perceptron 
MOSIS Metal Oxide Semiconductor Implementation Service 
NARMA Nonlinear Autoregressive Moving Average System 
NMOS  N-type Metal-Oxide-Semiconductor
NRMSE Normalized Root Mean Square Error
PMOS P-type Metal-Oxide-Semiconductor
PWM Pulse Width Modulation
RNN Recurrent Neural Network
SOA Semiconductor Optical Amplifier
SPICE Simulation Program with Integrated Circuit Emphasis
STDP Spike-Timing-Dependent Plasticity
SWAP Size, Weight, and Power
VLSI Very Large Scaled Integration
VT Virginia Tech


	LIST OF FIGURES
	LIST OF TABLES
	1.0 SUMMARY
	2.0 INTRODUCTION
	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Mackey-Glass Nonlinear Node Design with Chaotic Behavior
	3.3 Short-term Memory Achievement with Signal Integrator
	3.4 Delayed Feedback Reservoir System

	4.0 RESULTS AND DISCUSSIONS
	4.1 Performance Analysis of Mackey-Glass Nonlinear Node
	4.2 Performance Analysis of Static Feedback Loop
	4.3 Performance Analysis of Inter-spike-interval Decoder with Spike-timing-dependent Plasticity Methodology
	4.4 Performance Analysis of Delayed Feedback Reservoir System
	4.5 Chaotic Times Series Prediction Benchmark
	4.6 Face Recognition
	4.7 Performance Analysis of Multilayer Delayed Feedback Reservoir Systems
	4.8 Potential of Hybrid Photonic-ASIC Platform Development

	5.0 CONCLUSIONS
	6.0 REFERENCE
	APPENDIX I – PUBLICATIONS
	APPENDIX II – PRESENTATIONS AND MEETINGS
	APPENDIX III – LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

