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NOMENCLATURE 
 
Ab =  bubble surface area 

kbα  =  solubility of gas k in blood 

ktα  =  solubility of gas k in tissue 

O2bα  =  O2 solubility in blood 

O2tα  =  O2 solubility in tissue 

O2α′  =  slope of the whole blood O2 solubility curve in the region of the prevailing 

venous O2 tension 

BN,j =  bubble number power factor 

β  =  vector of adustable parameters in the hazard function; combination of ρ 

and W  parameter vectors 

β0, β1, β2 =  adjustable parameters in fitted 
2OV  versus work rate (Watts) equation 

β =  generalized slope factor for integral distribution of bubble nuclei sizes 

βo =  slope factor for initial integral distribution of bubble nuclei sizes 

βex =  dimensionless exercise-dependent β modifying factor 

βf =  prevailing slope factor for integral distribution of bubble nuclei sizes after 

accommodation of Pcrush and exercise effects 

O2aC  =  O2 concentration in arterial blood entering tissue 

O2
Cv  =  O2 concentration in mixed venous blood leaving tissue 

kt,D  =  diffusivity of gas k in tissue 

dt =  integration time step 

dtmax =  maximum allowed integration time step 

dtmin =  minimum allowed integration time step 

dtk =  integration time step decay constant 

nΔt  =  integration time step n 

(t)Δ ji,  =  time-dependent dose in compartment j during the ith exposure 

δi =  binary outcome variable, exposure i 



 v 

nm,rδˆ  =  scaled radius change of bubble in mth size group in integration step n 

2OIF  =  inspired oxygen fraction 

f(t)  =  function in linearization of the Fick equation 

(t)Gk  =  with (t)xk , amount of gas k in Nb bubbles 

g(t)  =  function in linearization of the Fick equation 

gj =  jth comparrtment gain factor in hazard function 

h(t) =  hazard function 

Iq(t) =  indefinite integral in integrating factor for general solution of pt(t) with 

exercise 

Iex =  exercise intensity ≡ whole body O2 consumption rate 

i =  subscript for individual exposure, suppressed when reference is clear 

from context 

j =  subscript for individual compartrment, suppressed when reference is 

clear from context 

Km =  bubble surface permeability; may be subscripted for individual gas, hatted 

if scaled 

k =  subscript for individual diffusible gas 

( )βL  =  likelihood of a data set of N individual exposures, as function of β 

( ) li β  =  likelihood of individual exposure i 

LR =  compartmental bubble loss rate via VGE formation 

Λ =  3RUT-MB scale factor 

M =  modulus of elasticity; may be subscripted for bubble size group, hatted if 

scaled 

m =  subscript for individual bubble size group, suppressed when reference is 

clear from context 

exβm  =  factor (≥ 0) governing the sensitivity of β to exercise intensity, Iex 

O2Vm  =  rate of change of 2OV  with Iex 

Qm  =  rate of change of Q  with 2OV  

N =  number of exposures in training data 



 vi 

o
bN  =  total number of bubble nuclei in a compartment 

bN  =  total number of bubbles from recruited nuclei in a compartment 

bsN  =  number of bubble size groups in a compartment 

Ng =  total number of diffusible gases in model 

n =  subscript for integration step 

bn  =  number of bubbles in size group m 

nc =  number of gas-exchange compartments in model 

nk,υ  =  rate of change of arterial gas k partial pressure in integration step n 

P(0) =  probability of no-DCS 

P(E) =  probability of DCS 

ambP  =  ambient hydrostatic pressure 

'
ambP  =  ambient hydrostatic pressure less partial pressures of the infinitely 

diffusible gases, assumed the same in all compartments 

PDCS ≡  P(E), probability of DCS 

2COAP  =  alveolar CO2 partial pressure 

O2AP  =  alveolar O2 partial pressure 

kap  =  arterial O2 partial pressure 

O2vp  =  O2 partial pressure in mixed venous blood 

PB =  “prebreathe” 

mT,bP  =  total pressure of all diffusible gases in bubbles of mth size group 

kb,P  =  partial pressure of gas k in bubble 

P∞ =  total pressure of the infinitely diffusible gases in bubble 

crushp  =  bubble nucleus crush pressure 

ssP  =  prevailing compartmental gas supersaturation 

kt,p  =  partial pressure of gas k in tissue 

(t)Q  =  blood flow per unit volume of tissue 
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q =  coefficient proportional to blood flow; may be a function of time t 

RQ =  respiratory quotient 

r =  bubble radius, hatted if scaled 
o
minr  =  minimum bubble nuclear radius that can be recruited for growth at 

prevailing gas-supersaturation 

ρ =  total number of adjustable parameters in model 

ρ =  vector of adjustable parameters in (t)Δ ji, ; i=1, …, N; j=1, …, nc 

nxS  =  gas loss rate into bubbles in time step n 

σ =  gas-liquid surface tension, hatted if scaled 

σc =  crumbling compression; counters surface tension, hatted if scaled 

t1 =  time an individual is last known to be DCS-free in an exposure 

t2 =  time an individual is first known to have DCS in an exposure 

τ  =  compartmental blood-tissue gas exchange time constant; may be 

subscripted for individual gas 

Pcτ  =  Pcrush decay time constant 

O2Vτ   =  time constant associated with the exponential change in 2OV  

Vb =  bubble volume, hatted if scaled 

r0V  =  nucleonic bubble volume, hatted if scaled 

2OV  =  compartmental O2 consumption rate 

wb,O2
V  =  whole-body O2 consumption rate 

rest,wb,O2
V  =  assumed whole body O2 consumption rate during rest 

exO2VΔ   =  change in compartmental O2 consumption rate with exercise relative to 

resting rate 

W =  work rate (Watts) 

W  =  vector of compartmental weights in the hazard function 

(t)xk  =  with (t)Gk , amount of gas k in Nb bubbles, hatted if scaled 

2χ  =  chi-square statistic 
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1. Introduction 
 
Decompression sickness (DCS) in man can occur with excessively rapid and extensive 
reductions of the ambient pressure.1 Reductions of ambient pressure that put personnel 
at risk for DCS occur in diving, aviation, and spaceflight operations. Programmatic 
management of these risks requires: a) definition of risk envelopes for all routine and 
emergency decompressions that are or may be encountered by at-risk personnel; b) 
quantitative consideration of the inclusion or introduction of DCS risks in the design, 
testing, and implementation of new operational procedures and equipment, and; c) real-
time monitoring of DCS risk incurred by personnel during various operations. 
Probabilistic models of DCS occurrence are particularly well suited for application to 
these problems.2 Such models are readily used to estimate the probabilities of DCS in 
different pressure profiles and to compute decompression schedules that keep 
estimated risks of DCS within any user-specified acceptable limit.3,4 
 
Risks of DCS in early probabilistic models of DCS occurrence were based on time-
independent covariates, i.e., governing factors that are fixed properties of an exposure. 
Empirical log-logistic models of this type required additional model terms to 
accommodate added features of an exposure. As a result, such models were tailored to 
decompression profiles of particular type, limiting their ability to accommodate exposure 
profiles of arbitrary complexity. Models of this type were developed for no-stop air-
diving5 and for simple single-ascent hypobaric exposures6-11. Other dose-response 
models were applicable to more complex exposures for which a single-valued DCS 
dose could be computed. Gernhardt described the first model of this class in which the 
probability of DCS was given in terms of a computed maximum bubble volume attained 
in a series of parallel-perfused gas exchange compartments, a volume that could be 
computed for a profile of arbitrary complexity.12 Other models of this type were 
described by Gerth and Vann.13 Such models provided a mechanistic foundation that 
conformed to the well-accepted idea that DCS is initiated by in vivo bubble formation 
and growth.1,14 
 
More comprehensive probabilistic models of DCS occurrence have been developed 
based on the formalism of survival analysis.15 Such models not only account for DCS 
occurrence per se, but also account for the time of DCS occurrence in an exposure. 
With consideration that an exposure can be completed only with an outcome of DCS or 
no DCS, the probability P(0) of surviving DCS-free to time t in an exposure profile is 
given in survival models by 
 

 







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
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∫−=
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0
dth(t)expP(0) , (1) 

 
where h(t) is the hazard function that gives the instantaneous rate of DCS occurrence at 
time t in those individuals in the exposure that have not developed DCS up to time t and 
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hence remain at risk for DCS at that time.16,17 The hazard functiona expresses the 
quantitative relationships between the putative governing factors of DCS onset and the 
DCS or no DCS outcome. The probability P(E) that DCS will occur between times t1 and 
t2 in the profile is given by Eq. (2): 
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The challenge in the development of these models is to define the hazard function in 
such a fashion that it properly accommodates the known or suspected factors or 
covariates that govern DCS outcomes in the exposures of interest. 
 
A variety of survival models have been developed in which the hazard is cast in terms of 
time-independent covariates.18-23 Such accelerated failure time models incorporate time 
as a fixed-valued internal covariate which, when once specified, results in a hazard 
expression that does not vary with time in an exposure. As with other time-independent 
covariate models, additional model terms are required to accommodate added features 
of an exposure, preventing any one model from accommodating exposure profiles 
different from those for which the model was designed. 
 
Survival models are also readily based on hazard functions that vary with time in an 
exposure. Such functions respond to a covariate process given by the time-dependent 
variation of a limited number of covariates throughout an exposure.16 The covariate 
process is external to the individual at risk and hence to the model. Because the path of 
the covariate process through time (e.g., a matrix of pressure, time, inspired gas 
composition, and exercise that describes the time course of how these parameters vary 
during an exposure) is not fixed in such models, the models do not need to increase in 
complexity as the complexity of the covariate process increases. Such models can 
consequently accommodate the influences of known factors that govern DCS outcomes 
as the factors come in and out of play during different periods in exposures of arbitrary 
complexity, but exploitation of this capability has been limited in models developed to 
date.  
 
Probabilistic gas and bubble dynamics models of DCS occurrence provide the structural 
flexibility to accommodate the influences of pressure, inspired gas, and exercise on 
DCS outcomes as these factors may change in arbitrarily complex exposure profiles. 
Such models are time-dependent covariate models in which the body is represented by 
a series of hypothetical tissues or compartments that exchange gas with the 
environment via the lungs and blood. Risks of DCS are determined as functions of the 
prevailing volumes and numbers of gas bubbles in the compartments, bubbles that vary 
in volume by diffusion-limited exchange of gas between the bubbles and their 
surroundings. Tikuisis and coworkers described the first models of this type based on a 
model of extravascular gas bubble evolution similar to that described by Gernhardt.24,25 
Shortly thereafter Gerth and Vann described a time-dependent covariate model of DCS 

                                            
a The terms “hazard function” and “risk function” are used synomously in this report. The hazard 
is also referred to as the “instantaneous risk.” 
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occurrence26,27 based on a model of gas bubble evolution developed by Van Liew and 
Hlastala.28 Theoretical inconsistencies in this model of bubble evolution29 were 
corrected in a more rigorous three region unstirred tissue model able to accommodate 
multiple bubbles in a compartment.30,31 This 3RUT-MB model of gas and bubble 
dynamics was enhanced in present work to account for effects of exercise and oxygen 
breathing on in vivo gas exchange and bubble nucleation and optimized about 
laboratory data from 2598 man-exposures in widely varying types of hypobaric 
decompression profiles. 
 
 

2. Methods 
 
Our modeling approach followed the paradigm for the pathophysiology of DCS 
described by Tikuisis and Gerth.1 Excessively rapid and extensive decompression can 
cause the hydrostatic pressure in one or more body tissues to fall below the sum of the 
dissolved gas partial pressures in the tissue, producing a thermodynamically unstable 
gas-supersaturated state. The latter may be relieved with return to a gas-saturated state 
either by physiological gas elimination or by in situ nucleation and growth of gas 
bubbles. The instantaneous risk of DCS is assumed to be a function of the numbers and 
volumes of gas bubbles formed in the latter event. Following the approach pioneered by 
Haldane and coworkers,32 the body was modeled in present work as a hypothetical 
series of parallel-perfused compartments. Bubble evolution producing risk of DCS was 
then modeled in each compartment with an enhanced version of the 3RUT-MB model. 
 

2.1 3RUT-MB Model 
 
Essential features of the 3RUT-MB model are schematized in Figure 1. The hypothetical 
series of parallel perfused compartments comprising the body is shown on the left, and 
a detail of one compartment is shown on the right. 
 
As originally described, each compartment was envisioned to be perfused at a constant 
rate and contain a fixed number of bubbles of potentially different sizes. It was noted in 
principle that the model could account for the participation of multiple diffusible gases in 
the evolution of any given bubble, but the equations to do so were not explicitly given. 
Finally, oxygen was presumed to be present in tissue at a fixed partial pressure and 
particicpate in bubble evolution with water vapor and carbon dioxide as an infinitely 
diffusible gas. The quantitative relationships comprising the original 3RUT-MB model 
are outlined in Appendix A.  
 
Provisions were added to the model in present work to accommodate hypothetical 
mechanisms by which risks of DCS may be influenced by performance of exercise 
during different parts of an exposure profile. These provisions included mechanisms for 
time-dependent variation of the compartmental perfusion rate and number of bubbles, 
and for the participation of oxygen as a diffusible gas in bubble evolution with exercise-
dependent variation of the tissue oxygen partial pressure. These model enhancements 
are summarized below and described in more detail in Appendix A. A piece-wise 
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analytic approximation of the model equations was developed by exploiting the linear 
structure of the Fick equation, as described in Appendix B. The approximation is 
formulated as a set of recursive analytic relationships that advance the model state from 
one integration step to the next throughout an exposure profile.  
 
 

Figure 1. Schematic of the three-region unstirred tissue multiple bubble (3RUT-MB) 
compartmental model underlying the DCS hazard function in present work. The 
hypothetical series of parallel perfused compartments comprising the body is shown on 
the left. Each compartment is perfused with arterial blood at a characteristic volume-
average rate of Q  (mL·mL tissue-1·minute-1), which is subscripted to indicate individual 
compartments. One or more bubbles can nucleate in any compartment depending on the 
history of ambient pressure and breathing gas. The compartment shown in detail on the 
right has three bubbles. The diffusion region around each bubble is unstirred and 
heterogeneously perfused with zero gas flux at the outer boundary indicated by the light 
dotted line. Bubble 1 is totally isolated while bubbles 2 and 3 have some common 
boundary, on either side of which gas diffuses in opposite directions. Pa denotes the 
vector of arterial gas tensions, which is the same for all compartments. Pv denotes the 
vector of compartment-specific venous gas tensions. Dotted double-headed arrows 
indicate that the overall compartmental volume varies with bubble volumes, while the 
compartmental liquid volume remains constant.  
 
 
Theoretical development of the model in Appendices A and B is presented for arbitrary 
numbers of hypothetical tissue-blood gas exchange compartments and diffusible gases. 
The final enhanced 3RUT-MB model in present work, designated 3RUT-MBe1, was a 
one-compartment model with two diffusible gases, nitrogen and oxygen, implemented 
with relationships summarized in Appendix C.  
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 Quantification of Exercise 
 
Exercise is the use of energy to generate force to do work or oppose a resistance. 
Power is the rate of energy usage, or equivalently, the rate of doing work. It is well 
known that the whole-body O2 consumption rate, wb,O2

V , increases linearly with the 
power output (W/time) for most types of exercise.33,34 Accordingly, the intensity of 
exercise performed during any given period of time in an exposure, regardless of the 
type of exercise, was characterized in present work by the prevailing wb,O2

V  during the 
period. Exercise effects on model parameters in the period were then considered in 
terms of the exercise intensity level, Iex, given by 
 
 Iex=MAX( wb,O2

V - restwb,,O2
V , 0.0), (3) 

 
where wb,O2

V  is the rate of whole-body O2 consumption during the period of exercise 

and restwb,,O2
V  is an assumed rate of whole body O2 consumption during rest. 

 
 

 Compartmental Oxygen Consumption, Perfusion, and O2 Tension 
 
Cardiac output and regional blood flow have been shown to be linear functions of the 
rate of whole body O2 consumption ( wb,OV 2

 ) and the regional oxygen consumption 

rate ( 2OV ), respectively.35 It was assumed on this basis that the O2 consumption rate in 
a given model compartment is a linear function of the whole body O2 consumption rate: 
 
 restOVO ,VexImV

2O22
 +⋅= , (4) 

 
where 

O2Vm  is the rate of 2OV  change with Iex, and rest,OV 2
  is the rate of tissue O2 

consumption at rest. The compartmental blood flow rate was then assumed to increase 
linearly with the compartmental O2 consumption rate: 
 
 restrest,OOQ Q)VV(mQ

22
 +−⋅= , (5) 

 
where Qm  is the rate of change of Q  with 2OV , restQ  is the resting compartmental 

blood flow rate at rest,OVOV 22
 = , and Q  and restQ  are in units of flow per unit tissue 

volume. Exercise then directly affects the kinetics of blood-tissue exchange of gas k by 
altering the compartmental time constants for such exchange: 
 

 
k

k

b

t
k αQ

α
τ


=  for inert gases and 

O2

t
O2 αQ

α
τ O2

′
=


 for O2, (6) 
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where 
ktα  and 

kbα  are the solubilities of inert gas k in tissue and blood, 

respectively, and O2α′  is the slope of the whole blood O2 solubility curve in the 
region of the prevailing venous O2 tension [see Eq. (B.50)]. The respective 
compartmental gas exchange half times are kk,1/2 τ ln(2)τ ⋅=  and 

O2O2,1/2 τ ln(2)τ ⋅= .  
 
Exercise also affects tissue O2 tension by increasing the rate of metabolic O2 
consumption: 
 
 Q/VCCC 2OO2v,O2a,O2av,

=−=  (7) 
 
Because oxygen constitutes only a small fraction of the overall gas pressures during 
diving, most models for computing diving decompressions either neglect the presence 
of oxygen altogether or consider oxygen to contribute only a constant small quantity to 
the prevailing total gas tension in tissue.36 In earlier gas and bubble dynamics models, 
oxygen was additionaly assumed to be infinitely diffusible – and always in equilibrium – 
between bubble and tissue.13,25-27 A number of models of DCS incidence in diving 
exposures have been developed in which oxygen at arterial tensions above a certain 
threshold tension contributes to DCS risk accumulation as if it were an inert gas.37,38 
More rigorously, the compartmental oxygen tension varies nonlinearly with lower values 
of the arterial oxygen tension because of the metabolic consumption of oxygen and the 
sigmoidal nature of the oxyhemoglobin dissociation curve.39 This nonlinear behavior and 
its dependence on exercise was accommodated in the present model by consideration 
of exercise-dependent variations of compartmental oxygen consumption and numerical 
integration of the oxyhemoglobin dissociation curve [Appendix B]. 
 
Exercise-induced changes in compartmental gas exchange time constants were 
assumed to occur instantaneously with onset or cessation of exercise and were 
incorporated into expressions for the time-dependence of compartmental dissolved gas 
tensions as described in Appendix A. Methods to account for kinetics of such changes 
are considered in Appendix B. 
 
 

 Bubble Nucleation 
 
The number of bubbles in each modeled compartment was allowed to increase with the 
compartmental gas supersaturation during decompression, as nuclei were recruited 
from a hypothetical pre-existing population in the compartment. The population of pre-
existing nuclei was assumed to have a logarithmic distribution of sizes that could be 
affected by pressure and exercise. Increases in pressure shifted each distribution to 
smaller, more difficult to recruit sizes, while exercise shifted each distribution to larger, 
easier to recruit sizes. The nucleation model for this recruitment process was adopted 
from Yount40,41 as described in Appendix A.  
 
Notably the Yount model considers only integer numbers of bubbles, with one sensibly 
being the minimum nonzero number of bubbles in a compartment. In contrast, the 
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present implemention of the Yount model allows fractional numbers of bubbles to avoid 
discontinuities in the hazard as compartmental gas supersaturations increase during 
decompression. The rationale for this allowance follows from the recognition that each 
modeled gas exchange compartment is not associated with any particular anatomic site, 
but is considered to represent a collection of sites distributed arbitrarily thoughout the 
body. Quantities characterizing the compartment are averages from across the 
collection of distributed elements that the compartment represents. Thus, most 
compartmental properties, such as the blood-tissue gas exchange half-time, are intrinsic 
properties independent of the volumes or distribution of elements comprising the 
compartment, while the bubble number is an extrinsic property dependent in an 
indeterminant fashion on the overall volume of the compartment. 
 
 

 Venous Gas Emboli (VGE) Formation 
 
VGE formation caused by migration of bubbles from the tissue into the vasculature was 
modeled as a mechanism for non-diffusive loss of gas from the tissue.42 VGE formation 
was assumed to decrease the number of bubbles remaining in a modeled compartment 
while the size of the remaining bubbles remains unchanged. The number of bubbles in 
a compartment was reduced at the end of each integration step by a proportion, LR, of 
the prevailing number of bubbles, so that the number remaining for the next integration 
step was given by 
 
 [ ] LR)(1N0, MAXN

n1n bb −⋅=
+

, (8) 
 
where the subscripts n and n+1 refer to values at the beginning and end of the nth 
integration step. In turn, the proportionality factor was increased with bubble volume: 
 
 nVGEr0b ΔtN)V(VLR ⋅⋅−=  , (9) 
 
where )V(V r0b −  is the amount by which the prevailing volume of any one of the Nb 
bubbles in the compartment exceeds the nucleonic volume and VGEN  (mL-1min-1) is the 
rate of change of the proportionality constant. The number of bubbles lost to the 
vasculature as VGE at the end of each [tn, tn+1] interval is 1nn bb NN

+
− . Note that this 

bubble loss increases with exercise to the extent that exercise increases nbN . 
 

2.2 Definition of the Hazard Function 
 
As described in Appendix D, the instantaneous risk of DCS at time t, h(t), was 
expressed as a function of the prevailing compartmental bubble volumes and modified 
bubble number at the end of each integration step: 
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 ( )∑ ⋅−=
c

jN,
j

n

j

B
jb,r0jb,j N)V(Vgh(t) , (10) 

 
where nc is the number of modeled gas exchange compartments, gj is a compartmental 
gain factor, and the prevailing number of bubbles Nb,j in each compartment at time t is 
raised to a power of BN,j. The instantaneous risk was integrated over time by numerical 
trapezoidal integration, whle varying the time step size depending on the rate of bubble 
growth or resolution (Appendix A, Section 8.5). Note that the compartmental 
contribution to the instantaneous risk increases more sharply with increasing 
compartmental bubble number as the power factor BN,j increases. 
 

2.3 Model Optimization by Likelihood Maximization  
 
The implementation of Eq. (10) contains parameters, β = (β1, β2, …, βp), that govern its 
quantitative behavior. These parameters scale the influences of explanatory variables 
(e.g., pressure, time, inspired O2 fraction, etc.) or are required “mechanistic” 
constants.43 Values of these parameters required to yield model performance in best 
possible conformance with selected training data are found by maximizing a likelihood 
function of the parameters.16,17 The likelihood, L(β), of one or more trials is defined as 
the probability of the observed overall outcome. Assuming statistical independence of 
all possible outcomes, the likelihood of an individual exposure, li(β), is the product of the 
probabilities of the possible outcomes, each conditioned by actual experience through 
the influence of an outcome variable, δi: 
 
 ( ) )i-(1

iiii (0)P(E)P = l δδ ⋅β , (11) 
 
where (E)Pi  and (0)Pi  are given by Eqs. (1) and (2), respectively, δi = 0 if DCS does not 
occur in the exposure, and δi = 1 if DCS occurs. Marginal outcomes, for which 0 < δi < 1, 
are also allowed.b The likelihood of a trial of N exposures is then given as the product of 
the likelihoods of the individual exposures: 
 

 ( ) ( ) ilL
N

1i
ββ ∏

=
= . (12) 

 
Parameter values were systematically adjusted to maximize Eq. (12) about the training 
data described in Section 2.4 using an implementation of the Marquardt algorithm.46 For 
convenience, Eq. (12) was cast in terms of the natural log of the likelihood to obviate 
need to work with excessively small-valued numbers. The results are the “best fit” 
values of the parameters for use in model applications. The maximum log likelihood 
                                            
b The tendency for marginal outcomes in diving exposures to occur predominantly in only certain 
profile types has been shown to adversely bias model performance on other types of profiles, 
motivating a recommendation to code marginal events as nonevents (δi = 0).45,45 The few 
marginal outcomes in the present altitude data were coded witih outcome variable δi = 0.1. 
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achieved by the model on the data serves as a quantitative index of model goodness-of-
fit. A central and singularly most important feature of this approach is that a model is 
made to provide estimates of DCS risks and times of DCS occurrence that are in 
closest possible agreement with observed DCS incidences and times of occurrence in 
the actual experience expressed in the training data. 
 

2.4 Model Training Data 
 

 Augmented NMRI Standard format 
 
The description of the pressure and respired gas profile for each exposure in the model 
training data was coded in Augmented NMRI Standard (ANS) format, which comprised 
a record of exposure outcome followed by a sequence of nodes that gave the pressure 
and inspired gas composition at successive times in the exposure.27 Each node gave 
the conditions prevailing at the end of a profile stage or segment that was either a travel 
stage (compression or decompression) or an isobaric stage, either of which may have 
ended with start of a breathing gas switch that completed in the ensuing stage or 
stages. An unbroken description of the profile was obtained by linear interpolation in the 
time domain between successive nodes. The model was exercised on the profile by 
sequentially processing these nodes, preserving the model state at the end of each 
stage as the initial state for the next stage. The format accommodates an arbitrary 
number of nodes per profile, allowing representation of profiles of arbitrary complexity.  
 
 

 USAF Data 
 
Altitude exposure data from the United States Air Force Armstrong Laboratory 
(USAFAL) Hypobaric Decompression Sickness Database comprised a large portion of 
the model training data. This database existed in two different architectures as it 
evolved from its inception in the early 1980s to its most current form described by 
Webb.47  
 
In its first form, the database contained exposure profile information sufficient to 
construct a detailed node-by-node description of each profile.48 This information 
faithfully described each exposure as it was actually completed: Time at altitude ended 
at actual time of descent start when the occurrence of DCS caused termination of the 
exposure before completion of the planned time at altitude. Data for 1194 man-
exposures completed at USAFAL between 1983 and 1993 had been extracted from the 
data base in this first form for earlier work13 and was used in present work. DCS onset t1 
and t2 times for application of Eq. (2) were arbitrarily defined for each exposure that 
culminated with a DCS incident. In such cases, t1 and t2 were defined to bracket the last 
10 min of the isobaric stage preceding final descent to ground level. This was equivalent 
to assuming that the subject remained DCS-free until 10 min before reporting DCS, 
which then caused immediate termination of the exposure with descent to ground. 
These t1 and t2 assignments are consistent with the use of DCS onset as the 
experimental end-point for the exposures in the USAFAL protocols. Thus, with the 



 10 

exception of DCS cases that might have occurred after final return to ground, the 
assumed t1 and t2 values did not differ substantially from the actual values. 
 
Data for an additional 673 man-exposures completed after 1993 were extracted from 
the USAFAL Hypobaric Decompression Sickness Database in its second and current 
form.47 In this form, the detailed node-by-node description of each profile is replaced 
with a summary description of the profile as it was planned: Actual time at altitude is 
replaced with planned time at altitude, although time of DCS onset is recorded for those 
exposures that terminated with DCS. DCS onset t2 times were taken as the recorded 
DCS onset times and, as with the legacy USAFAL data, each corresponding t1 time was 
arbitrarily defined to be 10 min before the recorded DCS onset time.  
 
 

 NASA Data 
 
Data from eleven chamber tests conducted at NASA-JSC between 1980 and 1995 and 
recorded in the NASA-JSC historical database of altitude tests comprised the 
preponderance of the remaining data used for model calibration.49,50,51,52,53 Missing and 
erroneous entries were corrected by review of original laboratory logbooks. Deficiencies 
in profile descriptions were rectified and DCS onset times were determined from case 
summaries. The number of protocols per test varied from 1 to 6, with a total of 31 
across the 11 tests. The data were from 237 subjects; 176 males and 61 females; who 
participated in a total number of 549 altitude exposures, 82 of which culminated in 
diagnosed cases of DCS and 467 of which were completed with no DCS for a 14.9% 
overall incidence of DCS. Data for male and female subjects within a given test series 
were pooled. 
 
As in the legacy USAFAL data, time at altitude in each profile ended at the actual time 
of descent start when the occurrence of DCS caused termination of the exposure before 
completion of the planned time at altitude. No DCS onset after return to ground was 
recorded. Profiles were terminated at time of completion of planned time at altitude if 
DCS did not occur, or at time of DCS onset if DCS occurred. 
 
Data from an additional 178 man-exposures completed at Duke University, the 
Canadian Defense and Civil Institue of Environmental Medicine, and the University of 
Texas Medical Branch in the course of Phases I through IV of a NASA prebreathe 
reduction protocol54,55,56 comprised the remainder of the model training data.  
 
 

 Exercise Coding 
 
As described in Section 2.1.1, periods of exercise in each profile were characterized by 
the whole body O2 consumption rate during the period. Work rates reported in units of 
percent peak whole body O2 consumption rate ( peak2,OV ) were converted to absolute 

whole-body O2 consumption rates in L⋅min-1 by assuming  3.15V   100% peak2,O =  L·min-
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1.c Work rates reported in watts (W) were converted to whole-body O2 consumption 
rates with the following quadratic formula parameterized by fitting to the data of Astrand, 
et. al.,34 highlighted in Table 1:   
 
 2OV  (L·min-1) 2

210 WβWββ ++= , (13) 
 
where: 
 
 
 
 
 
The goodness-of-fit of Eq. (13) to its calibration data is shown graphically in Figure 2. 
The fitted y-intercept, β0=0.305 L·min-1, is the value used for the resting whole-body 2OV  
assumed for all subjects. 
 
Work rates reported in kcal·hr-1 were converted to whole-body O2 consumption rates in 
L⋅min-1 by assuming 0.2 L O2 are consumed to produce each kcal of energy  
(5 kcal·L O2-1).33 Finally, work rates reported in mL O2·kg-1·min-1 were converted to 
whole-body O2 consumption rates in L⋅min-1 by assuming a subject body weight of 70 
kg. 
 
Along with the calibration data for Eq. (13), Table 1 gives metabolic rates in various 
units during exercises typical of those performed during USAF and NASA EVA altitude 
exposures. The tabulated data for whole body wb,O2

V  versus work rate in watts are 
included in Figure 2.  

                                            
c A whole-body peak2,OV  of 40.8 mL⋅kg-1⋅min-1 was assumed for development of a NASA Exercise 

Prebreathe Model.57 This value corresponds to 3.15 L⋅min-1 for a 77.3 kg subject. 

β0 =  3.0536x10-1 
β1 =  1.1369x10-2 
β2 =  5.4762x10-6 
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Table 1. Metabolic Rates During Exercise* 

Watts kcal·hr-1 mL O2·kg-1·min-1 L·min-1 % peak,O2
V  

0.00 91.6 4.4 0.305 9.7 
6.46 113.8 4.81 0.379 12.0 
8.81 121.8 5.82 0.406 12.9 
14.90 142.8 6.83 0.476 15.1 
20.59 162.5 7.7 0.542 17.24 
21.59 166.05 7.9 0.553 17.6 
25.00 177.9 8.5 0.593 18.8 
28.17 189.0 9.0 0.630 20.0 
50.00 266.3 12.7 0.888 (0.9) 28.2 

100.00 449.1 21.4 1.497 (1.5) 47.5 
139.66 600.0 28.6 2.000 63.5 
150.00 640.2 30.5 2.134 (2.1) 67.7 
155.45 661.5 31.5 2.205 70.0 
167.44 708.8 33.8 2.363 75.0 
200.00 839.5 40.0 2.798 (2.8) 88.8 
225.68 945.0 45.0 3.150 100.0 
250.00 1047.0 49.9 3.490 (3.5) 110.8 

* Highlighted data from Table 9.5 in Astrand, et al.34 
1.) knee bends and overhead presses; "BSI exercises."58 
2.) light exercise, Shuttle suit donning simulation, NASA PRP.56 

3.) leg ergometer exercise, NASA PRP.56 

4.) work rate of 15-20% peak,O2
V  stated for 4-station (3 exercise, 1 rest)/16 

min NASA EVA exercise simulation.59 
[The simulation consisted of arm exercise for 4 min at each of 3 stations; 

a) subject standing: cycle ergometer hand-cranking at 24 rpm, 4 
Newtons resistance, alternating arms after every two revolutions, 

b) subject standing: apply 25 ft-lbs force with torque wrench for 5 sec 
to each of 5 bolt-like projections mounted on the top, bottom, left, 
right, and forward-facing surfaces of a wall-mounted rectangular 
box, alternating arms from position-to-position, and 

c) subject seated: rope pull against 17 lb (8.5 kg) resistance from arm’s 
reach at head level to waist once each 5 sec, alternating left, right, 
then both arms; 

and a 4-min period of Doppler VGE monitoring during which subject was 
supine and sequentially flexed the four limbs while otherwise remaining at 
rest. The four-station cycle was repeated until completion of the intended 
EVA simulation.]60 

5.) average metabolic rate of 166 ± 17 kcal·hr-1cited for NASA EVA exercise 
simulation described in (3) above.61 
[also ref 62: males 119.4-193.3 kcal·hr-1 (147.95 ± 24.51 SD); females 
91.5-114.5 kcal·hr-1 (104.6 ± 8.9 SD)]. 
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Figure 2. Whole-body O2 consumption rate, wb,O2

V , versus work rate. The extrapolated 

value for rest,wb,OV 2
  at zero work rate is 0.305 L·min-1. 

 
 
Exercise performed during a segment was characterized by an entry in the ANS code 
for the segment equal to the subject wb,O2

V  during the segment.63,64 No exercise 
information was required for a segment if the segment was completed with the subject 
at rest and, conversely, subjects during segments coded without exercise information 
were presumed to be at rest during the segment. This convention allowed the modeling 
system to remain consistent with earlier profiles coded in the ANS format without 
exercise information, but required specification of the resting rate of whole-body O2 
consumption, rest,wb,OV 2

 , for the subject in each profile. In present work, rest,wb,OV 2
  = 

0.305 L·min-1 was assumed for all subjects in all profiles [Eq. (13)]. Nodes were added 
with appropriate time and exercise intensity information to accommodate changes in 
exercise intensity during segments in which no other covariate changed. 
 
 

 Overall Training Data Summary 
 
The complete training dataset, named A1309, is summarized in Appendix E, excepting 
four man-exposures; man-flight numbers 88073, 91097, 93022, and 93033; of the 1194 
exposures extracted from the original USAFAL Hypobaric Decompression Sickness 
Database. Each of these exposures had a unique profile that could not be associated 
with any study in the database and each culminated with occurrence of DCS. The 
coded NASA data included information on observed grades (0 – IV Spencer scale) and 
onset times of venous gas emboli detected with Doppler ultrasound instruments, but 
such information was not used in the present modeling work. 
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3. Results 
 

3.1 Optimized 3RUT-MBe1 Model Parameters 
 
The single compartment 3RUT-MBe1 model was fit to the combined NASA and USAF 
altitude data to obtain the optimized parameters given in Tables 2 and 3. Parameters 
assigned fixed values in the optimization process are indicated in Table 3. 
 
 
Table 2. 3RUT-MBe1 Model Fit Statistics 
 

# Profiles in dataset = 2153 
Total # individual trials = 2598 
Total # DCS marginals = 3 
Total # DCS positives = 862 
Overall DCS incidence = 33.191 % 
 
MODEL Log Likelihood  
   

Fitted -3774.066872  
Perfect -0.97524892  
I-O Null -1651.0873  

   
c-index = 0.674018  

   
Tissue Gas Half-time (min) 

   
1 O2 284.05 
 N2 284.05 
   

Integration control parameters*: 
5.000×10-04  : dtmin; Minimum time step (Max resolution, minutes) 
1.000×10-02  : dtmax; Maximum time step (Min resolution, minutes) 
6.931×10-03  : dtK; time step decay constant 
*See Appendix A, Eq. (A.52) 

 
The optimized model yields a log likelihood of -1771.5 and c-indexd of 0.612 on the 
1194 man-exposures from the first version of the USAFAL database compared to -
1742.0 and 0.560, respectively, yielded on the same data by an earlier model in which 
DCS was expressed in terms of the evolution of only a single bubble in the modeled 
compartment, exercise effects on blood tissue gas exchange were not considered, and 
compartmental dissolved oxygen was considered as a component of the fixed metabolic 
gases.13 Reoptimization of the present model about these data yielded a log likelihood 
of -1743.0 and c-index of 0.645.
                                            
d Concordance index. Gives the fraction of all possible pairs of exposures in the data for which 
the model-estimated risks of DCS are in the same order as the observed incidences of DCS.65  
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Table 3. Optimized 3RUT-MBe1 Model Parameters 
Parameter Type* Value Std Error Coeff. of 

Variation 

OH2
P ; water vapor pressure (mm-Hg) F 4.700E+01 --- --- 

RQ; Respiratory Quotient F 1.000E+00 --- --- 

2COt,p ; Tissue 2CO  partial pressure 
(mm-Hg); all tissues. 

F 4.500E+01 --- --- 

Gain, g A 6.188E-02 7.38E-03 1.19E-01 

2O,bα ; O2 solubility in blood F 2.356E-02 --- --- 

2N,bα ; N2 solubility in blood F 1.410E-02 --- --- 
0
bN ; Total # nuclei A 1.198E+00 8.70E-02 7.26E-02 

0β ; initial nuclei size distribution slope A 4.868E-05 1.11E-06 2.27E-02 

M; elastic modulus (atm·V-1) A 1.341E-07 9.09E-02 6.77E+05 

VGEN ; VGE gas loss rate (mL-1·min-1) A 4.758E+00 3.28E-01 6.89E-02 

cσ  factor A 1.964E+01 1.30E+00 6.64E-02 

2O,tα ; [mL(SPD,37)·mL-1·atm-1] A 4.536E-02 2.70E-03 5.95E-02 

2NKα ; N2 solubility factor:

222 t,ONNt, αKα ⋅α=
[mL(SPD,37)·mL-1·atm-1] 

F 5.985E-01 --- --- 

Vt; tissue volume (mL) A 5.279E-02 6.51E-03 1.23E-01 

Q ; blood flow rate (mL·min-1) A 4.698E-03 2.99E-04 6.37E-02 

2Ot,D ; O2 diffusivity (cm2·min-1) A 1.414E-03 7.61E-05 5.39E-02 

2NKD ; N2 diffusivity factor: 

222 Ot,NNt, DKDD ⋅=  
F 9.091E-01 --- --- 

BN; bubble number power factor A 2.172E+00 3.99E-02 1.84E-02 

Pcrush decay time constant A 2.014E+02 2.33E+02 1.15E+00 

exβm ; ( exβ =1+
exβm * Iex) A 6.162E-01 4.52E-02 7.33E-02 

rest,O2
V ; 2OV  @ rest A 4.401E-05 2.12E-06 4.82E-02 

2OVm  ; slope 2OV  vs Iex A 1.677E-03 6.90E-04 4.12E-01 

Qm  ; slope βf vs 2OV  A 6.997E+00 3.14E+00 4.49E-01 

σ; surface tension (dyne·cm-1) F 30 --- --- 
*A ≡ adjustable parameter A1309-3RUT-MBe1 
F ≡ fixed parameter 
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3.2 Model Goodness-of-Fit 
 

 Observed and Estimated DCS Occurrence Density Distributions 
 
Goodness-of-fit of the optimized model is illustrated graphically in Figure 3 by 
comparison of the observed DCS occurrence density distribution for the training data 
with that estimated for the data by the model. Eleven profiles accounting for 8.3 
observed cases of DCS are omitted in this analysis for lack of t1 and t2 data. The small 
numbers of observed (30.9) and estimated (41.6) cases of DCS in the hours before the 
last decompression occurred after earlier decompressions in repetitive altitude and 
staged ascent profiles. The observed incidence of DCS onset increases sharply after 
the last decompression and peaks in the second hour after the last decompression. The 
shape of the estimated occurrence density distribution faithfully follows that of the 
observed distribution but with a tendency for overprediction before last decompression 
and a consistent trend for underprediction after last decompression. (The hour-by-hour 
difference between observed and estimated numbers of DCS cases is illustrated in 
Figure 4.) As a result, the model estimates a total number of 793.9 DCS cases (the sum 
of the illustrated numbers of estimated cases in each hour) compared with a total 
number of 854.0 observed cases. 
 

 
Figure 3. Observed and model-estimated occurrence density distributions for model 
training data computed at hourly resolution relative to the time of completion of last 
decompression. 
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Figure 4. Differences between the observed and estimated numbers of DCS cases in 
hourly intervals before and after the time of completion of last decompression. 
 
 

 Pearson Residuals and Global Chi-Square 
 
Model fit was also assessed by examining group-specific and global Pearson χ2 
statistics.17 Examination of group-specific residuals is useful to distinguish areas in a 
data set over which a model performs well from those over which it performs poorly. 
The squared Pearson residual for each group is given by 
 

( ) ( )
( )kkk

kkk
k π1πn

2πno2residualPearson 
−⋅⋅

⋅−
= , (14) 

 
where ok is the number of observed DCS cases, nk is the number of man-exposures, 
and kπ  is the average model-estimated PDCS for exposures in the kth group given by66 

∑
=

⋅
=

k

k

jj
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c

1j n
πm

π . (15) 

In Equation (15), ck is the number of profiles in the kth group and jm  and jπ  are the 
number of exposures and the model-estimated PDCS for the jth profile in the group, 
respectively.  
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In place of the group average model-estimated risk given by Eq. (15), all profiles in each 
group were assumed to have estimated DCS risk equal to that for the profile with the 
highest estimated risk in the group. That profile was inevitably the profile with the 
longest time at altitude in the group, a profile that the subject had completed DCS-free. 
Coded times at altitude for profiles completed without DCS in each group were nearly 
the same and were within minutes of the planned times at altitude. Thus, the risk 
estimates for profiles that were terminated early due to DCS occurrence were adjusted 
for the unrealized risks that would have accumulated to produce the same outcome had 
the profiles been continued to the planned times at altitude. These adjustments cast the 
present goodness-of-fit assessments in the same form as those for time-independent 
covariate models developed by other workers for profiles with fixed times at altitude; 
models based on planned times at altitude or models fit only to profiles with the same 
times at altitude. 
 
Results for all of the 117 groups in the training data are shown in Appendix F with the 
groups in order of increasing squared Pearson residual. Also shown is the running sum 
of the squared Pearson residual, 

( ) ( )
( )∑

−⋅⋅
⋅−

=∑=χ
==

g

1k kkk

2
kkk

g

1k

2
k

2
π1πn

πnoresidualPearson , (16) 

each of which equals the global chi-square goodness-of-fit statistic for the g groups 
included in the sum. Each 2χ  follows a chi-square distribution with g−ρ degrees of 
freedom, where ρ is the total number of adjustable parameters in the model (= 16 in 
3RUT-MBe1). As the P-value of the chi-square increases, the evidence decreases that 
model estimated incidences are statistically different from observed incidences. 
Evidence is usually considered insufficient to reject a model if the P(χ2) of its fit to the 
data groups exceeds 0.05. The P value corresponding to each 2χ  is shown in the 
rightmost column of the table in Appendix F. A double line is placed after the last group 
in the table with P > 0.05. Model fit to groups above this line cannot be rejected at P < 
0.05 significance, while it can be concluded at P < 0.05 significance that the model fails 
to fit the data for groups below the line. Thus, model fit to data for 1621 man-exposures 
in 84 groups cannot be rejected, while the model fails to fit the remaining data for 973 
man-exposures in 33 groups. 
 
All profiles in the CO2 study series, all profiles in the BSI (Bends Screening Index) study 
series except those in the BSI-A group, and the preponderance of the profiles 
completed in the EffctEX (Exercise effects) study series are among the profiles with the 
highest Pearson residuals.  Incidences in the BSI study series were generally under-
estimated, while incidences in the EffctEx series were generally over-estimated. It can 
therefore be argued that the data from these studies is not combinable with the other 
data and that a more restricted training data set that excludes these studies should be 
used.  
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The estimated number of DCS cases for each group in Appendix F is plotted versus the 
corresponding observed number of DCS cases in Figure 5. Panel A illustrates the raw 
data, while the bubble plot in panel B shows regions where the data are most 
concentrated. Figure 6 illustrates the same information for only those groups in 
Appendix F for which the cumulative global chi-square P-value is greater than 0.05. 
Both figures show that the model overestimates – often substantially – the DCS 
incidences in groups with no observed cases of DCS. 
 
 
A 

 
B 

 
Figure 5. Plots of estimated incidences of DCS versus observed incidences for all 
groups in the training data. Bubble size in panel B is proportional to the number of man-
exposures in each group. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

P D
C

S
(E

st
)

PDCS (Obs)
A1309-3RUT-MBe1

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

P D
C

S
(E

st
)

PDCS (Obs)
A1309-3RUT-MBe1



 20 

A 

 
B 

 
Figure 6. Plots of estimated incidences of DCS versus observed incidences for 84 
groups (1621 man-exposures) in the training data fitted by the model (cumulative chi-
square P > 0.05 for groups in order of increasing Pearson residual). Bubble size in 
panel B is proportional to the number of man-exposures in each group. 
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4. Discussion 
 
The present model is the first applied to altitude decompression data able to 
accommodate how DCS risk is influenced by arbitrarily varying levels of exercise in 
different periods of a given exposure. This ability is facilitated by a time-dependent 
covariate model structure that includes explicit consideration of hypothetical exercise 
effects that act to enhance the efficacy of oxygen breathing before decompression 
(prebreathe) – reducing the risk of DCS during subsequent altitude exposure – and 
increase the risk of DCS when exercise is performed after decompression at altitude. 
The influences of exercise on DCS incidence and time of occurrence in diving 
exposures were also recently considered in a time-dependent covariate model able to 
accommodate profiles of arbitrary complexity, but were not shown to be significant.67 
This result was not unexpected, given that exercise in the diving exposures considered 
was typically performed only before decompression and tended only to increase risks of 
DCS. Exercise effects consequently added insufficient heterogeneity to the data to 
warrant model factors to differentiate profiles with different exercise regimens.  
 
 

4.1 Prebreathe and Exercise Effects on Gas Elimination 
 
Exercise during prebreathe reduces the risk of DCS by hastening inert gas elimination 
and reducing the gas superaturation produced by subsequent ascent to altitude. The 
modeled exercise-induced enhancement of inert gas elimination is illustrated in Figures 
7 and 8. Figure 7 shows the relationship between compartmental oxygen consumption 
and exercise intensity (whole-body 2OV ). In turn, the compartmental oxygen 
consumption is the independent variable in the relationship illustrated in Figure 8 for the 
dependence of compartmental blood flow and the blood-tissue gas exchange half-time 
on exercise intensity.  
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Figure 7. The relationship between compartmental oxygen consumption and whole-
body 2OV  (Iex, L⋅min-1) given by the parameterized Eq. (4). 
 
 

 
Figure 8. Compartmental blood flow (mL·mL tissue-1·min-1) and corresponding gas 
exchange half-time (minutes) as functions of whole-body 2OV  (Iex, L·min-1). 
 
 
Figure 9 illustrates how different intensities and durations of exercise manifest in the 
compartmental nitrogen and oxygen tensions during hypothetical 3-hr oxygen 
prebreathes before 30-min ascents to 0.292 atm (4.3 psia). Ten minutes of 75% 

peak,O2
V  exercise performed early in an otherwise resting prebreathe abruptly 
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decreases both nitrogen and oxygen tensions relative to their values in the resting 
prebreathe. The lower values persist through decompression, resulting in lower gas 
superations during and after decompression. In comparison, while the divergence to 
lower nitrogen and oxygen tensions is more gradual with performance of lighter, 17.6% 

peak,O2
V  exercise throughout most of the prebreathe, both tensions decrease to lower 
values than in the resting or short, heavy exercise cases by the end of the prebreathe, 
resulting in the lowest gas supersaturations at altitude among the three cases.  
 
 

  
Figure 9. Modeled effects of exercise on compartmental nitrogen elimination (Left 
Panel) and oxygen tension (Right Panel) during ground-level oxygen prebreathes. 
Heavy solid lines: Resting throughout; Dashed lines: 10 min 75% peak,O2

V  (Iex = 2.363 

L·min-1) exercise starting at 20 min, rest at all other times; Dotted lines: 17.6% peak,O2
V  

(Iex = 0.55 L·min-1) exercise starting at 20 min and continuing until ascent start at 180 
min, rest at all other times throughout. 
 
 

4.2 Prebreathe and Exercise Effects on Bubble Nucleation 
 
Both prebreathe and exercise affect the compartmental populations of pre-existing 
bubble nuclei from which bubbles are recruited to grow to produce risk of DCS. The 
numbers of nuclei recruited, along with the volumes they subsequently attain, govern 
the actual levels of DCS risk produced. Exercise shifts the distribution of nuclei to larger 
sizes, causing more nuclei to be recruited at a given supersaturation than before the 
exercise. Figure 10 illustrates this effect on the numbers of bubbles recruited in the 
presently parameterized model during 0.55 L·min-1 exercise at various altitudes after 
no-prebreathe ascents.  
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Figure 10. Modeled effects of exercise on number of bubbles nucleated at altitude with 
no prebreathe. Left Panel: Modeled numbers of bubbles recruited at rest and during 
exercise, Iex = 0.55 L·min-1, at various levels of gas-supersaturation, PSS. Right Panel: 
( ) NB

bN  factor in the hazard function corresponding to the recruited numbers of bubbles 
at the respective supersaturations in the Left Panel. 
 
 
The numbers of bubbles recruited at altitude are also affected by oxygen breathing 
before decompression. Prebreathe shifts the distribution of nuclei to smaller sizes by 
imposing a Pcrush, causing fewer nuclei to be recruited at a given supersaturation than 
without the prebreathe. These effects are illustrated in Figures 11 and 12 for a Pcrush of 
0.139 atm, the Pcrush produced by a 3-hr resting ground level oxygen prebreathe. 
 

  
Figure 11. Modeled effects of a 3-hr resting ground-level prebreathe on numbers of 
bubbles recruited during resting exposures at altitude. Left Panel: Modeled numbers of 
bubbles recruited at rest and after a 0.139 atm crush at various levels of gas-
supersaturation, PSS. Right Panel: ( ) NB

bN  factor in the hazard function corresponding 
to the recruited numbers of bubbles at respective supersaturations in Left Panel.  
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Figure 12. Modeled effects of a 3-hr resting ground-level prebreathe on numbers of 
bubbles recruited during exercising exposures at altitude. Left Panel: Modeled numbers 
of bubbles recruited at rest and during exercise, Iex = 0.55 L·min-1, after a 0.139 atm 
crush at various levels of gas-supersaturation, PSS. Right Panel: ( ) NB

bN  factor in the 
hazard function corresponding to the recruited numbers of bubbles at the respective 
supersaturations in the Left Panel. 
 
 
Values of the ( ) NB

bN  factor between zero and unity in the hazard function are a 
consequence of the fractional compartmental bubble number allowed in this model. As 
a result, the contribution of a given bubble volume to the hazard is potentiated by 
increasing numbers of bubbles, as intended, but the effect is to increasingly attenuate 
an overall diminution of the bubble volume contribution as the bubble number increases. 
One or more bubbles may attain a given volume but produce negligible risk with low 
numbers of bubbles. Bubble number thus acts as a potent factor that scales the 
contribution of bubble volume to the accumulation of DCS risk. 
 
Figure 13 illustrates the modeled influence of exercise at altitude on the estimated risk 
of DCS during 4-hr exposures at 30,320 ft altitude (= 4.3 psia Shuttle EVA suit pressure) 
after resting oxygen prebreathes of various durations. At each level of exercise 
illustrated, the risk of DCS decreases with increasing oxygen prebreathe time. After 
short prebreathe times, exercise at altitude tends to increase the risk of DCS. After 
longer prebreathes, exercise-induced enhancement of inert gas elimination becomes 
increasingly important so that the risks of DCS at the higher levels of exercise tend 
towards the risks of DCS for resting subjects.  
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Figure 13. Estimated risks of DCS (PDCS) during 4-hour exposures at 30,320 ft altitude 
(4.3 psia) while exercising at indicated levels (Iex=whole-body 2OV , L·min-1) after resting 
oxygen prebreathes of various duration. 
 
 
Figure 14 illustrates the modeled influence of exercise on the estimated risk of DCS 
during 4-hr exercising exposures at 30,320 ft altitude (= 4.3 psia Shuttle EVA suit 
pressure) after oxygen prebreathes of various duration with exercise at indicated levels 
throughout. Even light exercise at a wholebody oxygen consumption rate of 0.5 L⋅min-1 
throughout the oxygen prebreathe greatly reduces the predicted risk of DCS during 
subsequent exposure to altitude. 
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Figure 14. Estimated risks of DCS (PDCS) during 4-hour exposures at 30,320 ft altitude 
(4.3 psia) while exercising at Iex=0.55 L·min-1 after oxygen prebreathes of various 
duration with exercise at indicated levels throughout. 
 
 

4.3 Comparative Model Performance 
 
Performance of the present model can be compared with performance of other 
published models on selected data. An accelerated failure time model described by 
Conkin, et al.,7 is one such model from which results are readily calculated for 
comparison to 3RUT-MBe1 model results. Performance of the two models on NASA 
data subsets Test 1 through Test 7 is illustrated in Figure 15, with results of 
corresponding chi-square assessments of model fit given in Table 4.  
 
The Conkin, et al., model provides estimates of DCS risk only for single exposures to 
altitude based on the values of computed gas tensions in a single 360-min half-time gas 
exchange compartment at the time of ascent start. Values for these tensions at the start 
of each recorded exposure were included in the raw NASA data and used to compute 
the illustrated risks for the Conkin, et al., model. The profiles for subsets Test 4b 
through Test 4f comprise data from profiles with successively increasing numbers of 
repetitive exposures to 4.3 psi separated by intervals at 10.2 psi. The Conkin, et al., 
model provides estimated conditional probabilities of DCS for the last exposure in such 
profles governed only by fixed properties of the last exposure and the computed gas 
tensions at the start of that exposure. Because successive exposures in a given test 
were coded as a single profile for 3RUT-MBe1 model optimization, estimated risks of 
DCS tabulated for these subsets in Appendix F are the total risks accumulated over 
each entire multi-exposure profile. Risks of DCS for the last exposure in such profiles, 
conditional on the subject not having developed DCS by the start time of the last 
exposure, were approximated from the difference between the cumulative risk for the 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0 60 120 180 240 300

P D
C

S
(%

)

Exercising pre-breathe time (min)

Rest
Iex = 0.5
Iex = 1.0
Iex = 2.0

A1309-3RUT-MBe1



 28 

profile of interest and the cumulative risk of the profile with one fewer repetitive 
exposure.  
 
The chi-square for the Conkin, et al., model on all of the subsets is much lower than the 
chi-square for the 3RUT-MBe1 model. Corresponding P-values warrant rejection only of 
the 3RUT-MBe1 model. The situation reverses with omission of Test 6 data. The chi-
square for the 3RUT-MBe1 model is then less than the chi-square for the Conkin, et al., 
model and the corresponding P-values motivate rejection of neither model. Thus, the 
3RUT-MBe1 model outperforms the Conkin, et al., model on all of the subsets except 
Test 6. The 0.1% 3RUT-MBe1 model estimate of PDCS for the Test 6 profile is 
considerably lower than the observed 3.4% DCS incidence for reasons that are not 
clear. 
 
 

 
Figure 15. Model performance on data from NASA Tests 1 through 7.  
 
 
  

0.0

10.0

20.0

30.0

40.0

0.0 10.0 20.0 30.0 40.0

Es
tim

at
ed

 In
ci

de
nc

e,
 %

Observed Incidence, %

3RUT-MBe1
Conkin, et al., 1996
Identity



 29 

Table 4. Chi-square Results for Performance of Conkin, et al., 
1996 and 3RUT-MBe1 Models on Data from NASA Tests 
1 through 7 

 
Note: Residuals in shaded cells were computed with 

approximated conditional probabilities of DCS for the 
last exposure in each profile (See text). 

 
 
The USAF Altitude Decompression Sickness Risk Assessment Calculator (ADRAC) 
developed by Pilmanis, et al.,23 is another accelerated failure time model from which 
data are available for comparison to 3RUT-MBe1 model results. ADRAC is a stratified 
time-independent covariate model with values of some parameters uniquely defined for 
different ranges of altitude. Unlike the present 3RUT-MBe1 model, ADRAC is applicable 
only to profiles with single ascents to a given altitude at which subjects may be either at 
rest or performing exercise at one of three discrete levels; mild, moderate, or heavy. 
The model also accommodates effects of resting ground-level oxygen prebreathes, but 

Conkin, et al., 1966 3RUT-MBe1
Test 1a 0.514 0.006
Test 1b 0.030 0.003
Test 1c 2.048 1.854
Test 2a 0.014 0.035
Test 2b 0.296 3.127
Test 3a 1.904 0.595
Test 3b 5.781 1.791
Test 3c 0.056 1.434
Test 3d 0.080 0.023
Test 4a 1.044 0.028
Test 4b 0.099 0.536
Test 4c 0.642 0.130
Test 4d 0.015 0.046
Test 4e 0.566 0.078
Test 4f 0.013 0.038
Test 5a 0.042 0.951
Test 5b 0.122 0.883
Test 6 0.113 34.358

Test 7a 2.639 0.160
Test 7b 0.002 0.077

χ2(All) 16.018 46.152

P= 0.591 0.000

χ2(not including Test 6) 15.905 11.794

P= 0.531 0.812

Data subset (Pearson Residual)2
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exercsie during such prebreathes cannot be considered. Pilmanis and coworkers 
completed a series of man-exposures to validate this model. Performance of the 
present 3RUT-MBe1 model on the data from these exposures is compared to the 
corresponding performance of the ADRAC model in Figure 16. Results from 
corresponding chi-square assessments of model fit in Table 5 indicate that the 3RUT-
MBe1 model outperforms the ADRAC model on all of these data except the data for 
validation profile A. The model underpredicts the observed DCS incidence for this 
profile that included only a moderately long resting prebreathe followed by exercising 
exposure to the highest altitude tested in the series. 
 
 

 
Figure 16. Model performance on USAF ADRAC validation data consisting of 153 man-
exposures on five different profiles: A) 90 min prebreathe; 35K ft EVA sim (light 
exercise)/180 min; B) 30 min prebreathe; 25K ft, 30% peak,O2

V  exercise-rest cycles 

(heavy exercise)/240 min; C) 15 min prebreathe; 22.5K ft, 30% peak,O2
V  exercise-rest 

cycles (heavy exercise)/240 min; D) No prebreathe; 18.0K ft, 30% peak,O2
V  exercise-

rest cycles (heavy exercise)/360 min; E) 75 min prebreathe; 30K ft rest/240 min. 
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Table 5. Chi-square Results for Performance of ADRAC 
and 3RUT-MBe1 Models on USAF ADRAC 
Validation Data 

 
 
 
Performance of the present 3RUT-MBe1 model on data from man-exposures completed 
to develop a reduced prebreathe protocol for Space Shuttle extra-vehicular activities is 
compared to the corresponding performance of the NASA-RM2004 model10 in Figure 
17. The NASA-RM2004 model is an accelerated failure time model cast in terms of 
time-independent covariates applicable only to stylized profiles typical of 4-hr Shuttle 
extravehicular activity (EVA) exposures with astronauts at Shuttle extravehicular 
mobility unit (EMU) – or EVA suit –  pressure of 4.3 psia (30,320 ft altitude in the U.S. 
Standard Atmosphere) after various types of exercising prebreathe. Results from 
corresponding chi-square assessments of model fit in Table 6 indicate that the 3RUT-
MBe1 model outperforms the NASA-RM2004 model on all of these data except the data 
for PRP Phase I. 
 

 
Figure 17. Model performance on NASA PRP data, Phases I through IV.  
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A 0.011 6.111
B 0.855 0.747
C 2.386 1.239
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Table 6. Chi-square Results for Performance of NASA-RM2004 and 

3RUT-MBe1 Models on NASA PRP Data 
 

 
 
 

4.4 Feaures of Model Performance 
 
Important features of the 3RUT-MBe1 model compared to those of the other log-logistic 
models considered above are illustrated by considering 3RUT-MBe1 model 
performance on the PRP Phase II profile described in Table 7. The profile is a prototype 
Space Shuttle extravehicular activity (EVA) profile with a 2-hr exercise-enhanced O2 
prebreathe that was ultimately transitioned into Space Shuttle operational use.56 A 
requirement to breathe ambient atmosphere for a period of 15 - 90 min during the Hard 
Upper Torso (HUT) donning procedure in the crewlock was a significant operational 
constraint on prebreathe design. To mitigate the adverse impact of this air breathing 
break, the EVA crew complete the donning procedure for the Lower Torso Assembly 
(LTA) of the Shuttle EMU in the crewlock while being slowly decompressed to 9.6 psia. 
The crewlock is then backfilled with O2 to bring the crewlock to a pressure of 10.2 psia 
with the maximium allowed FO2 of 26.5%, afterwhich the crew breathes ambient 
atmosphere to complete the HUT donning procedure.e Oxygen breathing is resumed 
with recompression of the crewlock to cabin pressure and completion of a 35 min O2 
prebreathe before final decompression to EMU pressure and egress for EVA. 
 
  

                                            
e A 12-hr minimum O2-breathing stage at 10.2 psia before decompression to Shuttle suit 
pressure and egress for EVA was a standard feature of Shuttle prebreathe protocols before the 
2-hr prebreathe protocol was developed. 

NASA-RM2004 3RUT-MBe1
I 1.361 5.124
II 3.362 3.145
III 0.710 0.137
IV 0.609 0.079

χ2 (All) 6.042 8.485
χ2 (not including I) 4.681 3.360

Subset (Pearson Residual)2
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Table 7.  PRP Phase II Profile Description 
• 100 min “adynamic” air breathing period. (Ground-based micro-gravity simulation; 

subjects semi-recumbent and prohibited from walking from start of this period until 
end of the EVA simulation.) 

• 50 min O2-breathing period during which exercise is performed to enhance N2 
washout.  Schedule: 

   1 min rest; pulmonary residual volume washout 
 10 min;  75% peak,O2

V  exercise (Iex = 2.36); dual cycle (upper and lower body) 
cranking on Monark cycle ergometers 

 39 min rest (Subject transfer to altitude chamber) 
 ------------------------------------------------------- 
 50 min total in segment 
• 20 min decompression to 9.6 psia; lower torso assembly (LTA) donning. 

“Intermediate exercise” (Iex = 0.41) programmed to simulate work of LTA donning is 
started 5 min into this decompression and continued throughout the ensuing 40 min. 

• 10 min repressurization to 10.2 psia; Backfill crewlock with O2 to raise O2 to 26.5%. 
• 30 min “air” break (26.5% O2; balance N2) at 10.2 psia; hard upper torso (HUT) 

donning, comms check, etc. (PIO2=0.184 atm). 
End “intermediate exercise” at 15 min into “air” break. 

• Switch to O2 and start 5 min repressurization to 14.7 psia cabin pressure. 
• 35 min O2 breathing period at 14.7 psia; crewlock prebreathe. 
• 30 min crewlock decompression to 4.3 psia suit pressure. 
• 4 hr EVA simulation (Iex = 0.55) at 4.3 psia. 
----------------------------------------------------------------------------------------------------- 
 Total prebreathe time, including air break: 150 min  (2 hr 30 min) 
 Total O2 time: 120 min  (2 hr) 
 Total Test Duration, excluding post-flight watch: 530 min  (8 hr 50 min) 

 
 
Various aspects of model performance on this profile are shown in Figures 18 and 19. 
Exercise-induced acceleration of N2 elimination during the initial 75% peak,O2

V  exercise 
period is readily apparent in the compartmental N2 tension profile shown in panel A of 
Figure 18. It is also apparent that as a result of the prebreathe-induced reduction of 
compartmental N2, the gas supersaturation prevailing on arrival at the Shuttle suit 
pressure of 4.3 psia (0.293 atm) is considerably reduced from what would have 
prevailed had no prebreathe been performed. The bubble number and volume profiles 
in panel B are the modeled responses to this supersaturaion. Bubbles are nucleated in 
increasing number as the supersaturation develops during decompression, reaching a 
maximum number on arrival at suit pressure. The bubble volume profile shows that 
each of the bubbles continues to grow throughout the ensuing 4-hr period at suit 
pressure. This growth drives the migration of some bubbles from the tissue to the 
vasculature perfusing the tissue, which in turn causes the number of bubbles to 
decrease. The corresponding instantaneous risk of DCS, which is a function of both 
bubble volume and bubble number, is shown in panel C of Figure 18. Because of the 
loss of bubbles to the circulation, the instantaneous risk passes through a maximum 
and decreases somewhat before completion of the 4-hr period at 4.3 psia. 
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Figure 18. Model performance on a NASA PRP Phase II profile. Pressure, inspired O2 
fraction, and compartmental O2 and N2 tension profiles are shown in panel A. 
Corresponding compartmental bubble number, bubble volume, and instantaneous DCS 
risk profiles are shown in panels B and C. All panels: 75% peak,O2

V  exercise (Iex = 2.36) 
[a arrows]; intermediate exercise (Iex = 0.41) [b arrows]; EVA exercise (Iex = 0.55) 
[c arrows]. 
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Figure 19. Pressure and model-estimated cumulative risk of DCS during the NASA 
PRP Phase II profile described in Table 7 and illustrated in Figure 18. Exercise periods 
are labeled as described in Figure 18. 
 
 
All illustrated model features for this PRP Phase II profile, including the instantaneous 
and cumulative risks of DCS, are computed as they evolve in response to changes in 
the covariates of pressure, inspired O2 fraction, and exercise intensity within the profile. 
As a result, the instantaneous risk of DCS varies with time as illustrated in panel C of 
Figure 18. This model behavior contrasts sharply with that of models with time-invariant 
covariates and constant hazards in any given profile, such as the ADRAC,23 and 
Conkin, et al.,7,10 models considered above. Such models are based on planned times 
at altitude or are fit only to profiles with the same times at altitude, and reduce to simple 
occurrence-only binary quantal response assays, which are insensitive to the shape of 
the actual hazard function within any given profile.17 Such models can be used to 
illustrate how the probability of DCS changes with time in a given profile only by 
compiling model solutions for different profiles with successively increased times at 
altitude. However, because these models are not fit to actual failure times but to 
factitious failure times presumed equal to the planned times at altitude or to the fixed 
time at attitude of the data, the time-dependences of DCS risk accumulation obtained in 
this fashion are extrapolations strictly beyond the scope of the models. 
 
 

4.5 Model Deficiencies and Remaining Issues 
 
The favorable chi-square comparisons above depend on the adjustment of model-
estimated DCS incidences for risk that would have accumulated in profiles that were 
terminated early due to occurrence of DCS. However, the overall results indicate that 
the model does not perform as favorably on other profiles in the calibration data. 
Referring to data in Appendix F, the sum of the adjusted estimated incidences of DCS 
exceeds the sum of the actual incidences by 38 (896.5 vs. 858.3) in the full set of 
calibration data, and by 43 (501.2 vs. 458.3) in the 84 subsets of the calibration data 
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considered to be fit by the model according to chi-square tests of subsets ordered by 
Pearson Residual. In contrast, comparison of the observed and model-estimated 
occurrence density functions, where such adjustments are inapplicable, indicates that 
the model tends to incorrectly delay DCS risk accumulation and underestimate 
incidences by 3 – 15 % in the first four hours after last decompression. Thus, the model 
overestimates risk in the latter parts of long expoures at altitude, and provides only poor 
representations of the actual time courses of DCS risk accumulation in many types of 
profile. 
 
Model failure to capture essential features of the time courses of DCS risk accumulation 
may reflect that some subsets in the calibration data are not combinable due to 
oversimplification of exercise effects. The types of exercise performed in the profiles of 
the various data subsets varied widely, ranging from various isometric and isotonic arm 
and leg weight lifting exercises, constant torque arm pull exercises, fixed resistance 
rope pull arm exercises, knee bends, stair stepping, leg cycle ergometry, arm cycle 
ergometry, and dual cycle ergometry. The intensity of the exercises, regardless of type, 
was considered only in terms of the whole-body oxygen consumption rate associated 
with the exercise. This oxygen consumption rate was not normalized with respect to any 
subject-specific index such as maximum oxygen consumption rate or body weight. 
Other workers have argued convincingly that such normalization is essential for whole-
body oxygen consumption to accurately represent the intensity of work performed by 
different subjects in a given type of exercise.10,58 Moreover, exercise at altitude in most 
profiles was intermittent, with periods of exercise alternated with periods of rest. 
Exercise intensity during profile segments in which such intermittent exercise was 
performed was defined in the present calibration data as the whole-body oxygen 
consumption rate averaged over all periods of exercise and rest in the segment. All 
possible characterizations of different types of exercise were collapsed into a single 
independent variable, the average whole-body oxygen consumption rate, because of 
lack of data to support more detailed descriptions and to limit the number of covariates 
in the model, a compromise that almost certainly limited the attainable scope of model 
success. 
 
Consideration of exercise effects on compartmental bubble nucleation to be manifest 
instantaneously with the onset of exercise was an additional simplifying assumption in 
the present model. With exercise at altitude coded to commence upon arrival at altitude, 
the exercise-induced shifts in the compartmental populations of pre-existing nuclei 
occurred at the points in the profiles with the highest compartmental gas 
supersaturations, where conditions prevailed to recruit the largest number of bubbles 
and promote the highest rates of DCS risk accumulation. It is therefore unlikely that 
treatments of the kinetics of exercise effects on compartmental bubble nucleation 
different from that implemented in the present model could cause higher risks of DCS 
earlier in an altitude exposure. On the other hand, exercise effects on blood-tissue gas 
exchange were also considered to be fully manifest immediately upon commencement 
of exercise and fully absent immediately upon cessation of exercise. Consideration of 
on-effect kinetics for such effects would cause the higher gas supersaturations 
prevailing upon initial arrival at altitude to persist and promote early bubble growth and 
higher rates of DCS risk accumulation than with the instant-on exercise-induced 
acceleration of gas elimination presently assumed. Incorporation of on- and off-effect 
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kinetics for the influences of exercise on blood-tissue gas exchange – as described, for 
example, in Appendix B – has yet to be explored. 
 
Finally, the Λ parameter in the 3RUT-MBe1 model was assumed constant in present 
work to allow use of the piece-wise analytic solution of the model equations described in 
Appendix B. In principle, however, the Λ parameter accommodates the influences on 
bubble evolution of heterogeneity in the diffusion field around each modeled bubble.31 
Because such influences include bubble-bubble interactions when more than one 
bubble is present in a compartment, Λ must vary with time as a function of bubble 
number and volume. Such time dependent variation of Λ warrants examination as a 
model feature that may allow more accurate modeling of the time courses of DCS risk 
accumulation at altitude. 
 
 

5. Conclusions 
 
A probabilistic model of DCS incidence and time of occurrence has been developed that 
is able to accommodate the influences of pressure, changing inspired inert gas, oxygen 
breathing, and exercise in profiles of arbitrary complexity. The model is a time-
dependent covariate survival model in which the risks of DCS are determined as 
functions of the prevailing volumes and profusions of gas bubbles in a perfusion-limited 
gas exchange compartment. The bubbles vary in volume by diffusion-limited exchange 
of gas between the bubbles and their surroundings according to an implementation of 
the three-region unstirred tissue model of gas bubble evolution elaborated to 
accommodate the influences of exercise and oxygen breathing on compartmental gas 
exchange and bubble nucleation. The model has been shown to provide performance 
superior to that of other published models on a variety of data subset collections that is 
much more diverse than can be handled by any one of the other models. 
 
Model successes are tempered by model failure to accurately represent the time 
courses of DCS risk accumulation at altitude and consequent failure to fit all subsets of 
the calibration data. The subsets on which the model fails may be incombinable with the 
subsets on which the model succeeds, in large part due to the wide variety of exercise 
types performed in the different subsets and the oversimplification of the independent 
variable for exercise in the model. Model tendency to skew DCS risk accumulation to 
later periods at altitude and underestimate risk early in the exposures may be rectified 
with implementation of model features that were not exercised in the present model. 
 
Numerical issues with model implementation remain to be solved before the model will 
be applicable to diving data. 
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8. Appendix A. Three-Region Unstirred Tissue Multiple 
Bubble (3RUT-MB) Model of Tissue Gas and Bubble 
Dynamics 

 
 
In the original 3RUT-MB model,30,31 the total gas bubble volume (t)Vg  in a given 
hypothetical tissue compartment at time t is the sum of the volumes of Nb bubbles of 
equal radius r(t) and volume ( ) ( )tr
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Several versions of the 3RUT-MB model equations for computing Vg(t) have been 
developed as described below to handle increasingly general and more complex 
scenarios for bubble evolution in tissue, including cases in which the bubbles are not of 
equal volume, evolve under the influences of multiple diffusible gases, and are present 
in numbers that change with time.  
 
 

8.1 Single Diffusible Gas 
 
In single diffusible gas systems, the diffusible gas is inert and the metabolic gases water 
vapor, carbon dioxide (CO2), and oxygen (O2) are assumed to be infinitely diffusible – 
and hence always in equilibrium – between bubble, tissue, and blood.  
 

 Multiple Bubbles of Same Size 
 
The bubble radius r and inert gas pressure Pb in each of the Nb bubbles in a single 
diffusible gas system satisfy the equation for the rate of change of bubble radius given 
by  
 

 
3Mr

3
8π

3r
4σPambP

dt
ambdP

3
r

r
1Λ)bPt(pK

dt
dr

++∞−

−












 +−

= , (A.2) 

 
where the bracketed term in the numerator on the right is the inert gas flux per unit area 
across the bubble-tissue surface (positive for inward flux), K is the permeability (= 
solubility × diffusivity) of the diffusible gas in tissue, pt is the spatial average tissue inert 
gas tension, Pb is the diffusible gas partial pressure in the bubble, Pamb is the ambient 
hydrostatic pressure, σ is surface tension, M is tissue modulus of elasticity, and Λ is a 
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parameter with dimension 1/r that accommodates all effects of perfusion heterogeneityf 
and bubble-bubble interactions on bubble evolution. P∞ is the total pressure of the 
infinitely diffusible gases in the bubble, i.e., 

22 OCOO2H PPPP ++=∞ , equal to p∞ in the 

tissue. P∞ and its components are assumed constant and the same in all tissue 
compartments. The diffusible gas partial pressure in each bubble is given by the 
LaPlace equation with an added term to account for the pressure exerted by tissue 
elasticity: 
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The spatial average tissue inert gas tension pt in Eq. (A.2) has been shown to be given 
by 
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Inspired gas is assumed to contain no CO2 and equilibrium is assumed between 
alveolar gas and arterial blood, so pa equals the alveolar inert gas partial pressure PA as 
given by combining Dalton's law for alveolar gas and the alveolar gas equation;68  
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and solving for PA: 
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where 

2OIF  is the fraction of oxygen in dry inspired gas, 
2COAP  is the alveolar CO2 

partial pressure (assumed equal to 35 mm-Hg in present work), and RQ is the 
respiratory quotient (ratio of the rate of whole body CO2 production to the rate of whole 
body O2 consumption = wb,Owb,CO 22

V/V  ).  
 

                                            
f Spatial variations in perfusion are assumed to sum to zero over the tissue volume. 
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The equations for dr/dt and dpt/dt are coupled nonlinear equations that require 
numerical solution.  
 
 

 Multiple Bubbles of Different Sizes 
 
The relationships in Eqs. (A.2) through (A.4) are readily elaborated to accommodate the 
solution for the radii and gas pressures of multiple bubbles present in an arbitrary 
distribution of bsN  different sizes. Such elaboration entails repeating the dr/dt and Pb 
solutions in Eqs. (A.2) and (A.3) for the bubbles of each size in the distribution. Thus, for 
bubbles of mth size, Eq. (A.2) becomes 
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, (A.9) 

 
and Eq. (A.3) becomes 
 

 )(trM
3

4π
(t)r

2σPP(t)P 3
mm

m

m_
ambbm

++= ∞  . (A.10) 

 
Although not necessary, the bubble surface permeability, Km, surface tension, mσ , and 
modulus of elasticity, Mm, are considered to be different for each bubble size group.  
 
Eq. (A.4) for the tissue gas tension, tp , also requires modification to account for the net 
gas exchange between all bubbles and the tissue, as such exchange differs for bubbles 
of different sizes. The right-most term in Eq. (A.4) is replaced by the sum of the 
amounts of gas exchanged between tissue and all bubbles of bsN  different sizes to 
yield: 
 

 ∑−=+
bsN

m

m
mat

t
dt

)t(dx
Gqpqp 

dt
dp

, (A.11) 

 
where  
 

 
tVtα

n

3
4πG mb

m 





= , 

 
 (t)(t)rP(t)x 3

mbm m
= , 
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and 
mbn  is the number of bubbles in the mth size group; i.e., the number of identically 

sized bubbles of radius rm. 
 
Finally, the total volume of bubbles in the tissue is given by appropriate elaboration of 
Eq. (A.1): 
 

 ∑=∑=
bs

mm

bs

m

N

m
bb

N

m

3
mbg (t)Vn(t)r

3
4πn(t)V . (A.12) 

 
Determination of rm and mbP  for bubble size groups m=1, 2, …, Nbs, and tp  at any time 
t requires computation time in excess of that required for the Nbs = 1 case (multiple 
bubbles of the same size) roughly in proportion to the number of bubble sizes 
considered.  
 
 

 Exercise Effects on Blood-Tissue Gas Exchange 
 

Blood flow Q  changes with activity level and consequently varies with time, which 
causes the time constant τ to be a function of time. Accordingly, Eq. (A.11) is modified 
to explicitly indicate the time-dependence of the coefficients: 
 

 ∑−=+
bsN

m

m
mat

t
dt

(t)dx
Gq(t)pq(t)p

dt
dp

, (A.13) 

 

where 
t

b
α

(t)Qα
τ(t)
1q(t)


==  is proportional to blood flow.  

 
Eq. (A.13) is a linear differential equation in pt with a variable coefficient q(t). Solutions 
of Eq. (A.13) with general and specific models of q(t) are described in Appendix B. The 
specific q(t) model includes dependence of compartmental Q  on compartmental O2 
consumption, which is in turn dependent on exercise intensity. 
 
 

8.2 Multiple Diffusible Gases 
 
The bubble evolution Eq. (A.9) is elaborated as follows to accommodate more than one 
diffusible gas: 
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;   m = 1, 2, …, Nbs, (A.14) 

 
where Ng is the total number of gases with finite diffusivity and the subscript k denotes 
the kth gas with spatial average tissue tension ktp , bubble gas partial pressure mk,bP , 

and bubble surface permeability m,kK  associated with bubbles of the mth size. Note that 
Λ  is assumed to be the same for all bubble sizes and diffusible gases but that each 
diffusible gas beyond the first (gases for which k > 1) introduces an additional 
permeability coefficient.  
 
The total pressure 

mT,bP  of all diffusible gases in bubbles of mth size is computed using 

Eq. (A.10) as with a single gas: 
 

 (t)rM
3

4π
(t)r

2σPP(t)P 3
mm

m

m_
ambb mT,

++= ∞  . (A.15) 

 
However, the partial pressure of each diffusible gas k in the mth size bubble, mk,bP , must 
be determined by integrating the flux × area product for gas k in conjunction with the 
dr/dt integration.  
 
The average tissue tension is computed separately for each diffusible gas using Eq. 
(A.13); 
 

 ∑−=+
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kk
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N
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mk,
mk,aktk

t
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(t)dx

G(t)pq(t)pq
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; k = 1, 2, …, Ng; (A.16) 

 
where 

kt
p  and 

kap  are the average tissue and arterial tensions of the kth diffusible 

gas, respectively, 
k

k

t

b

k
k

)t(Q

)t(
1)t(q

α

α
=

τ
=


, 

 

 
tt
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α

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 π

= ,  

and 

 (t)(t)rP(t)x 3
mbmk, mk,

= . 

 
)t(kτ  – and hence (t)kq  – is different for each gas because of differences in 

solubility ratio, kk tb αα . The arterial tension of the kth diffusible gas, kap , is obtained 
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under the assumptions applied in the single diffusible gas case with appropriate 
elaboration of Eq.(A.6): 
 

 ( ) 
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2CO2kkk AOHambIaA ,   k=1, …, Ng. (A.18) 

 

Note that the gas fraction sum, ∑
g

k

N

IF , in Eq. (A.17) must equal ( )
O2IF1− . 

Eqs. (A.14), (A.15), and (A.16) are the requisite equations for computing the evolution of 
bubbles of Nbs different sizes, and the corresponding bubble pressures and total 
volumes, when more than one diffusible gas is present in the tissue. Eq. (A.14) for the 
rate of change of bubble radius is more complex than Eq. (A.9) for the Ng = 1 case, but 
there is no increase in the number of equations, Nbs. Eq. (A.16) for the average tissue 
gas tension is the same as before, but there are now as many of these equations as the 
number of diffusible gases, Ng. Thus, the overall model comprises a total of (Nbs + Ng) 
equations for each tissue compartment along with Eq. (A.12) for calculating the gas 
volume Vg(t).  
 
 

 Tissue O2 Tension with O2 as a Diffusible Gas 
 
When equilibrium of O2 tensions between bubble and tissue is not assumed, bubble 
evolution is influenced by O2 pressure gradients across the bubble-tissue interface. 
Under such conditions, O2 must be treated as a gas with finite diffusivity along with the 
inert gases present in the tissue. Because O2 mass balance between bubble, tissue, 
and blood must include accounting for the metabolic consumption of O2 in the tissue 
and the nonlinear relationship between blood O2 content and O2 partial pressure due to 
O2 binding to hemoglobin in blood, the expression for tissue O2 tension as it is affected 
by bubble-tissue and tissue-blood gas exchange is more complex than the 
corresponding expression for the inert gases. 
 
As for the inert gases, the expression for tissue O2 tension, 

2Otp , is obtained from the 
expression for mass balance of O2 in tissue, which differs from that for the inert gases 
and is given by 
 

( ) [ ] [ ] )(tV(t)V(t)P
dt
dn

V
1CC(t)Qpα
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N

1m
bbb

t
vatt

bs

mmO2,mO2O2O2O2
 −⋅−−= ∑

=
,(A.19) 

 
where (t)Q  =  blood flow per unit volume of tissue 

(t)VO2  =  tissue O2 consumption rate 
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O2aC  =  O2 concentration in arterial blood entering tissue, 

O2
Cv  =  O2 concentration in mixed venous blood leaving tissue, 

O2ap  =  arterial O2 partial pressure, 

O2vp  =  O2 partial pressure in mixed venous blood, 

O2tα  =  O2 solubility in tissue, and 

O2bα  =  O2 solubility in blood. 

 
Note that )t(V 2O , along with (t)Q , are explicit functions of time as exercise-induced 

changes in compartmental Q  are presumed to be driven by changes in O2V  (Section 
8.2.2). 
 
Under steady-state conditions, the derivative terms in Eq. (A.19) are absent, and O2 
consumption is the product of blood flow and the arterial-venous O2 content difference. 
Note that Eq. (A.19) reduces to Eq. (A.16) for the inert gases with substitution of the 
subscript k for subscript O2, 0Vk =  (gas k inert), kkk aba pC α= , and 

kkkkk tbvbv ppC α=α= , with equilibrium assumed between end-capillary venous 
blood and tissue, in accord with the 3RUT-MB model assumption that blood-tissue gas 
exchange is perfusion limited. 
 
The arterial and venous O2 contents, O2aC and 

O2VC , in Eq. (A.19) are readily computed 

at any time from the prevailing arterial and mixed venous O2 partial pressures; 
2Oap  and 

O2O2 tv pp = , respectively; and a suitable approximation of the oxyhemoglobin 
dissociation curve. As for the inert gases, equilibrium between alveolar gas and arterial 
blood is assumed so that 

2Oap  equals the alveolar O2 partial pressure 2OAP  given by: 
 

 ∑−−−==
kCO2O2O2 AAO2HambA PPPPPap , (A.20) 

where ∑ kAP  is given by Eq. (A.17).  

 
A variety of empirical equations have been described that relate O2 content and O2 
partial pressure in blood. We use a simple expression developed by Lobdell for O2S , the 
fraction of hemoglobin saturated with O2 at partial pressure 2OP :69 
 



 A-8 

 2
21

2
21

2O
pbpb0.1

papa
S

++

+
= , (A.21) 

where a1 = 0.34332, 

 a2 = 0.64073, 

 b1 = 0.34128, 

 b2 = a2 = 0.64073, 

 
η
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
=

half

2O
p
p

p  with 

 η = 1.58678, and 

 halfp  = half-saturation 2Op  of hemoglobin 
  (with 2Op  in units of mm-Hg, halfp = 25.0 mm-Hg.) 

 

The O2 content of blood 2OC  in mL O2/ mL blood at O2 tension O2p  is then given by 

 
O2cO2bO2 SHbpαC

O2
+= , (A.22) 

 
where Hbc is the O2 carrying capacity of hemoglobin in whole blood (= 0.20 mL/mL) and 

O2bα  is the solubility of O2 in plasma in mL O2/ mL plasma mm-Hg, and 2OS  is obtained 
from Eq. (A.21).  
 
There is no analytic solution of the nonlinear differential Eq. (A.19) for 

2Otp , which must 
therefore be solved numerically. Recursive relations for the numerical solution of Eq. 
(A.19) are given in Appendix B.  
 
 

 Exercise Effects on Tissue O2 Consumption 
 
Exercise-induced changes in compartmental )t(V 2O

  are readily modeled as a single 
exponential function of time: 
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 , (A.25) 

 
where 

rest2OV  is the resting O2 consumption, O2Vτ  is the time constant associated with 

the exponential change in 2OV , and exO2VΔ   is the increase in O2 consumption from its 
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resting value after reaching a steady state (t = ∞) with exercise at intensity exI . 

exO2VΔ   is given by 
 
 exV2O ImV

2Oex  =∆ , (A.26) 

 
where 

2OVm   is a factor governing the sensitivity of O2V  to exercise. The time required 
to reach a given fraction f of the total 2OV  response to a change in exercise intensity is 

given by solving 









−−=

O2Vτ
texp1f


 for t: 







−

=
f)(1

1lnτt O2V . Thus, with a time 

constant O2Vτ  of 0.75 minute, 98% of the change to a new level of O2 consumption is 
reached in approximately 3 minutes after a change in exercise intensity. 
 
 

8.3 Bubble Nucleation and Variable Bubble Number 
 
Bubbles are recruited from a pre-existing population of bubble nuclei in each 
compartment as the gas supersaturation increases during decompression. This 
recruitment process causes the number of bubble size groups to increase as 
decompression proceeds, so that bsN  becomes a function of time. In present models, 
the pre-existing nuclei are assumed to be stabilized against extinction by skins of 
adsorbed amphiphilic molecules, and have an integral distribution of sizes given by40  
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−=

β
r

expNN mino
bb , (A.27) 

 
where bN  is the number of nuclei present in the compartment with radius ≥ rmin, o

bN  is the 
constant total number of nuclei in the compartment, and β is a compartment-specific 
distribution slope factor.  
 
The distribution of nuclear sizes is assumed to be affected by pressure, under the 
constraints that: (i) no nuclei are extinguished by any overpressures, and (ii) the original 
ordering of nuclear sizes is always preserved. Under these constraints, the number of 
nuclei with radii greater than or equal to minr  after exposure to an overpressure given by  
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must equal the number of nuclei with radii greater than or equal to o

minr  in the 
distribution before the exposure. Using Eq. (A.27), we therefore have 
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where oβ  is the slope factor for the initial nuclear size distribution.  
 
If the adsorbed skins on the nuclei are assumed to remain always permeable to 
dissolved gases, the post-crush gas supersaturation ssP  required to nucleate the bN  

bubbles in Eq. (A.29) depends on the initial o
minr  and Pcrush as given by [6]: 
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where Eq. (A.30) is the Laplace equation with tissue elasticity neglected and σc (> σ) in 
Eq. (A.31) is the “crumbling compression” that counters the tendency for surface tension 
to extinguish nuclei of o

minr  radius. The crumbling compression is constant for given o
minr  

and Nb, but decreases linearly with decreasing o
minr  and increasing Nb. 

 
The slope factor, β, for the distribution at a given pressure is obtained using Eqs. (A.29), 
(A.30), and (A.31): 
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= . (A.32) 

 
The o

minr  and minr  in Eq. (A.29) correspond to the respective pre- and post-crush Pss 
values required to nucleate a given number of bubbles Nb. These radii and their 
corresponding oβ  and β  factors were initially defined in terms of the supersaturations 
required to form the same number of bubbles in two samples from a given gelatin 
preparation before and after a crushP  exposure.40 In the present context, we wish to 
determine the supersaturation at which bubbles initially begin to form after a crushP  
exposure. If the number of bubbles in any specific anatomical compartment must 
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increase in integer increments, this supersaturation is that at which the first bubble 
forms. Thus, for given oβ  and o

bN , Eq. (A.29) with Nb = 1 is rearranged to give o
minr : 

 
 ( )o

b
oo

min Nlnr β= . (A.33a) 
 
In present work, however, each hypothetical compartment represents an average of an 
indeterminate number of distributed anatomical sites. The number of bubbles in each of 
these composite compartments was consequently considered to increase continuously 
with allowance of fractional bubble numbers so that Eq. (A.33a) became:  
 
 ( ) ( )[ ]min

b
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min NlnNlnβr −= , (A.33b) 

 
where min

bN  is an arbitrary minimum number of bubbles, 1N0 min
b <<<  , allowed in a 

compartment. 
 
Note from Eq. (A.32) that oβ=β  when o

mincrush r2P σ= , which consequently defines the 
minimum crushing pressure required to affect the initial distribution.  
 
Substituting Eq. (A.30) into Eq. (A.27) gives the cumulative number of nucleated (or 

recruited) bubbles at an arbitrary amb
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Exercise is modeled to affect the nuclei size distribution and bubble nucleation by 
modifying the distribution slope factor as follows: 
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where exβ  is a compartment-specific, dimensionless factor given by 
 
 exβex Im1β

ex
+= . (A.36) 

 

exI  is a measure of exercise intensity (= 0 at rest) and ex
mβ  is a factor (≥ 0) governing 

the sensitivity of the distribution slope factor to increasing exercise intensities. 
 
Increasing values of Pcrush decrease βf and shift the population of nuclei towards smaller 
sizes, while increasing values of βex increase βf and shift the population of nuclei 
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towards larger sizes. The bubble of largest size in the distribution governs the inception 
of bubble formation. The radius of this bubble is given by: 
 
 ( ) ( )[ ]min

b
o
bfmin NlnNlnβr −= . (A.37) 

 
The corresponding nucleonic volume, minV , is 
 
 3

minmin r 
3
4V π= . (A.38) 

 
Supersaturations of magnitude smaller than required to recruit a nucleus of rmin radius 
are sustained metastably; i.e., without bubble formation. Larger supersaturations are 
accompanied by bubble nucleation and growth from increasing numbers of nuclei 
recruited as given by Equation (A.34). Increasing Pcrush consequently increases the 
threshold supersaturation for bubble inception and reduces the number of nuclei 
recruited to become macroscopic bubbles at given supersaturations larger than this 
threshold. Increasing exβ , on the other hand, decreases the threshold supersaturation 
for bubble inception and increases the number of nuclei recruited to macroscopic 
bubbles at supersaturations above this threshold. In the present model 
implementations, compartmental βf is updated for effects of Pcrush throughout a given 
profile only when no nucleated bubbles are present in the compartment. Compartmental 
βf is updated for the effects of exercise at the outset of every stage in which exercise is 
performed.  
 
Note that Eq. (A.28) indicates that Pcrush increases with increases in Pamb or decreases in 
the total dissolved gas tension. Thus exercise-induced decreases in tissue N2 and O2 
tensions during oxygen prebreathes increase Pcrush and shift the distribution of nuclei to 
smaller sizes that require higher supersaturations to recruit.  
 
The population of pre-existing nuclei is presumed to be dynamic, maintained by ever-
active mechanisms for nuclei generation. The effects of a given crush must 
consequently decay over time as the population of nuclei is restored to the pre-crush 
state – even at pressure. Thus, the prevailing Pcrush is considered to instantaneously 
achieve the computed crush pressure when the computed Pcrush is increasing. When the 
computed P crush is constant or decreasing, the prevailing Pcrush is modeled to decay to its 
initial value o

crushP  according to: 
 
 )ct/τexp( )P(PoPP P

o
crushcrushcrushcrush −−+= , (A.39) 

 
where Pcτ  is the Pcrush decay time constant. 
 

 Single Time-Dependent Bubble Size Approximation 
 
In order to obviate need to track the evolution of multiple bubbles of different sizes in 
any given compartment, each newly nucleated bubble is assumed to instantaneously 
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attain the size of prevailing already-nucleated bubbles. Because all bubbles are 
consequently the same size, rm, 

mbP , and pt must be tracked for only a single bubble 

size group (Nbs = 1) in which only bn  changes: 
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Eq. (A.16) is thus simplified: 
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where nb – and hence kG  – are now explicit functions of time: 
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Maintenance of mass balance in this approach requires a change in bubble gas content 
and a resultant adjustment in tissue gas tension corresponding to the difference 
between the nucleonic volume and the prevailing bubble volume whenever a nucleus is 
‘recruited’ during decompression. Regardless of the functional representation of the 

(t)G k  factor, it may be approximated by a constant in each integration interval. 
Implementation of this approach in the numerical solution of Eq. (A.41) for ktp  is 
described in Appendix B. 
 

8.4 Scaled 3RUT-MB Model 
 
If the Λ parameter is constant and independent of the other parameters in the 3RUT-MB 
model, the dependent variable rm can be scaled by defining mm Λrr =ˆ , where the 
overstrike “hat’ denotes a scaled quantity. Substituting for rm in terms of mr̂  in Eq. (A.14) 
yields 
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where m,k
2

m,k K3K̂ Λ= , mmˆ σΛ=σ , and 
3
m

m
Λ

M
3

4πM̂ 





=  are the scaled permeability, 

surface tension, and tissue modulus of elasticity, respectively, for a bubble in the mth 
bubble size group. Note that mr̂  is dimensionless with Λ having dimension of 1/radius, 

m,kK̂  having dimension of 1/time, and mσ̂  and mM̂  having dimension of pressure. The 
permeability coefficient for each diffusible gas beyond the first in the tissue (gases for 
which k>1) can be specified relative to the first on the basis of the unscaled coefficients:  
 

 











=












=

m,1

m,k
m,1

m,1

m,k
m,1m,k K

K
K̂

K̂

K̂
K̂K̂ . 

 
Similarly, substituting for rm in terms of mr̂ , mσ  in terms of mσ̂ , and mM  in terms of mM̂  in 
Eq. (A.15) yields the following for the total diffusible gas pressure in bubbles of the mth 
bubble size group: 
 
 )t(r̂M̂

)t(r̂
ˆ2PP)t(P 3

mm
m

m_
ambb m,T

+
σ

+= ∞ . (A.43) 

 
The components of )t(bP m,T ; i.e., the individual partial pressures of the diffusible gases in 

the bubble, m,kbP , k = 1, 2, …, Ng; are determined as part of the numerical integration of 
Eq. (A.42) described in Appendix B [see Eq. (B.41)].  
 
Finally, from Eq. (A.16) the average tissue tension of the kth diffusible gas is given by 
 

 ∑−=+
bs

kk
k

N

m

m,k
m,kaktk

t

dt
)t(x̂d

Ĝp)t(qp)t(q
dt

dp
;   k = 1, 2, …, Ng, (A.44) 

 

where 
tt

b
mk, Vα

n

3
4πG

k

m
ˆ

ˆ 





=  with 3

tt ΛVV̂ = , and 

 

 (t)rP(t)x 3
mbmk, mk,

ˆˆ = . 

 
Neither Eq. (A.42), (A.43), or (A.44), which comprise the bubble dynamics equations for 
the scaled system, contain the scale factor Λ . The scale factor can therefore be 
chosen arbitrarily. A single solution of the equations with a given value of Λ is 
analytically related to all other solutions of the equations obtained with any other value 
of Λ. Scaling non-dimensionalizes the bubble volume for application in the hazard 
function of survival models. 
 
In terms of the dimensionless scaled bubble volumes in the mth size group,  
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Eq. (A.12) for total bubble volume is then expressed in scaled form as 
 

 ∑∑ =Λ=
bs

mm
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mm

N

m
bb

N

m
bb

3
g n (t)V̂n (t)V(t)V̂ . (A.45) 

 
With the single time-dependent bubble size approximation in Eq. (A.40), m=1, and minr , 

o
minr , cσ , oβ , and fβ  in Eqs. (A.27) through (A.37) of the bubble nucleation model then 

scale with the compartmental Λ ; minmin rr̂ Λ= , 0
min

0
min rr̂ Λ= , ccˆ σΛ=σ , ooˆ βΛ=β , and ff

ˆ βΛ=β . 
Eq. (A.45) then becomes 
 
 (t)n (t)V̂(t)V̂ bbg = . (A.46) 
 
Eqs. (A.42), (A.41), (A.44), and (A.45) or (A.46) describe the scaled 3RUT-MB model in 
its final form.  
 

8.5 Model Operation and Initial Values 
 
The tissue tensions of the inert gases at profile start were assumed equal to the 
corresponding arterial tensions in the saturation steady state at ground level pressure 
breathing air.  
 
Unlike the tissue tensions of the inert gases, the tissue O2 tension (

02Otp ) is not equal to 

the arterial O2 tension in the saturation steady state because of the metabolic 
consumption of O2 in the tissue ( 0V 2O > ). The tissue O2 tension (

02Otp ) for initiating the 

calculations at profile start was calculated assuming 
02O02O vt pp =  and using the steady 

state O2 mass balance relationship between blood flow and O2 consumption given by 
the Fick principle: 
 
 ( ) ( )

002O02O02O 2Ovaav VCC Q   C Q  =−= . (A.47) 

 
Solving Eq. (A.47) for 

02OvC  yields 

 

 
Q

V
CC 0

02O02O

2O
av 


−= . (A.48) 
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The partial pressure 2Ovp  corresponding to 
02OvC  was then determined using the secant 

method to numerically invert the blood O2 content versus partial pressure curve, Eq. 
(A.22), at 

02OvC . 

 
Exercise-induced changes in compartmental (t)VO2  and consequent changes in 

compartmental blood flow, Q , were assumed to manifest instantaneously. 
 
Present models incorporated the simplification described in Sections 11.3.1 and 12.2.2, 
wherein multiple bubbles in a given tissue compartment are considered to evolve in 
parallel at the same size, requiring consideration of only a single bubble size group. The 
initial nucleus size of the bubble was specified by Eq. (A.37), which includes an 
accounting for the effects of O2 prebreathe and exercise on bubble nucleation. 
 
The initial pressure of the kth diffusible gas in the bubble ( 0,kbP ) was computed assuming 
that the ratio of the gas pressure to the total bubble pressure is the same as the ratio of 
the tissue tension of the gas to the total tissue tension at the moment of recruitment; 
i.e., 
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∑

 when r0b VV = , (A.49) 

 

where 3
0

0
rM

r
σ2

ambP
gN

1k
bP

0k,0


++′=∑

=
 , 

 
and 

0ambP′  is the ambient hydrostatic pressure when the first bubble is nucleated, less 

pressures exerted by the infinitely diffusible gases (CO2 and water vapor; O2 pressure is 
not subtracted when treated as a finitely diffusible gas). Nominal values for tissue CO2 
pressure and water vapor pressure at body temperature are 45 and 47 mm-Hg, 
respectively. The total correction for CO2 and water vapor was thus 45 + 47 = 92 mm-
Hg.  
 
From Eq. (A.49), the initial bubble pressure of the kth diffusible gas is 
 
 ∑=

k
brb 0,kk0,k

PcP  (A.50) 

 
and the scaled bubble gas content is 
 
 3

0r̂k,0bPk,0x̂ = . (A.51) 
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Before bubble nucleation (and after complete bubble resolution), when compartmental 

nk,nk, bPtp ≤  for all diffusible gases, the bubble was assumed to remain stable at its 

nucleus size with δrn = 0. 
 
The coupled bubble radius and bubble pressure equations were solved with the 
piecewise analytic solution derived in Appendix B. The integration step size, dt, for each 
time step was reduced or increased as a function of  the rate of bubble radius change, 

dtrd̂ , in the previous step according to: 
 

minkminmax dt)]dtrd(exp[-dt )dt-(dtdt += ˆ , (A.52) 
 
where dtmax and dtmin are the largest and smallest allowed time step sizes, respectively, 
and kdt  is a decay constant. 
 
Numerical instabilities in the solution were avoided by comparing the sum of the bubble 
diffusible gas partial pressures to the sum of the tissue diffusible gas tensions in each 
iteration of the recursive solution process. If the bubble pressure sum exceeded the 
tissue tension sum with positive dr/dt at any point in an isobaric stage, the stage was 
restarted with the integration step size reduced by a factor of ten. 
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9. Appendix B.  Piece-Wise Analytic Approximation of the 
Three-Region Unstirred Tissue Multiple Bubble (3RUT-MB) 
Model of Tissue Gas and Bubble Dynamics 

 
 
The three-region, unstirred-tissue, multiple-bubble (3RUT-MB) model of gas and bubble 
dynamics [36] comprises two sets of coupled nonlinear differential equations; one for 
the rates of change of volumes and pressures of gas bubbles in a hypothetical tissue 
compartment, and a second for the rates of change of dissolved gas tensions in the 
compartment. These equations must be solved simultaneously by numerical methods. A 
numerical piece-wise analytic approximation of the coupled equations was developed 
for efficient and stable solution of the equations. 
 
To simplify the notation in the development, we begin by considering the evolution of 
one or more bubbles of the same size under the influence of a single diffusible gas. We 
then advance to consider the evolution of multiple bubbles of different sizes under the 
influence of a single diffusible gas and conclude by considering the evolution of multiple 
bubbles of different sizes under the influence of multiple diffusible gases. 
 

9.1 Single Diffusible Gas 
 

 Multiple Bubbles of Same Size 
 
9.1.1.1 Changes in Bubble Radius and Bubble Gas Pressure 
 
The changes in bubble radius, r, as well as the bubble pressures exerted by the 
diffusible gases that participate in the evolution of a bubble are determined from the Fick 
equation, which is expressed for a single diffusible gas in the 3RUT-MB model as  
 
 ( ) )P(pr1ΛAK)V(P

dt
d

btbbb −+= , (B.1) 

 
where ( ) )bPtp(r1 −+Λ  is the pressure gradient of the diffusible gas at the bubble 
surface, Ab is the bubble surface area (= 2r4π ), and K, pt, Pb, and Λ are defined as 
before. With the dimensionless scaled bubble radius rΛr̂ = , 

3

3

b
3Λ

r̂ 4πV =  and 
2

2

b
Λ

r̂ 4πA = . 

Substituting for r, Vb, and Ab in terms of r̂  in Eq. (B.1), we obtain 
 

 ( ) )Pp(
r̂

r̂4K)r̂P(
dt
d1

3
4

bt2

2
3

b3 −





 Λ

+Λ
Λ

π=
Λ

π
, 

 



 B-2 

 ( ) )P(pr̂r̂KΛ3)r̂(P
dt
d

bt
223

b −+= , 

 

 tpr̂2r̂K23bPr̂2r̂K23)3r̂bP(
dt
d






 +Λ=





 +Λ+  , 

 

 tpr̂2r̂K)3r̂bP(
2r̂

1
r̂
1K)3r̂bP(

dt
d






 +=










++


 , (B.2) 

 
where K3K 2Λ=


 is the scaled permeability, which has a dimension 1/time. 

 

With 3r̂bPx̂ = , 







+= 2r

1
r
1Kf(t)

ˆˆ


, ( ) t
2 prrKg(t) ˆˆ +=


, and bubble radius r̂  and tissue 

gas tension pt treated as explicit functions of time, Eq. (B.2) becomes 

 g(t)xf(t)
dt
xd

=+ ˆˆ , (B.3) 

which is a linear differential equation in x̂  with variable coefficients. Eq. (B.3) is solved 
using the integrating factor method to obtain the following recursive relationship (See 
Section 9.3): 
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 (B.4) 

 
where nx̂ , fn, and gn are respectively the values of )t(x̂ , f(t), and g(t) at time tn, and 

1nx +ˆ , fn+1, and gn+1 are the corresponding values at time tn+1. The step size, 
∆tn = tn+1 - tn, is subscripted to indicate that it may be assigned a different value for each 
integration step. 
 
The coefficients on the right side of Eq. (B.4) are now evaluated using the definitions of 
f(t) and g(t) and denoting )t(r̂  at times tn and tn+1 by nr̂  and 1nr̂ + , respectively, and the 
change )nr̂1nr̂( −+  by nr̂∆ . Defining the tissue tension 

ntp  as the value of pt at time tn 
and assuming that 

ntp  stays steady in the interval [tn , tn+1], consistent with the quasi-
static approximation on which the 3RUT-MB model is based, we have the following for 
the coefficient (gn + gn+1): 
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Considering nr̂∆  to be sufficiently small so that terms containing powers of nr̂∆  may be 
ignored, we have  
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where 

nr̂
nr̂

nr̂
∆

=δ  is the fractional change in bubble radius in the nth integration step. 

 
Now, for the coefficient (fn + fn+1), we have 
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The 2)nr̂1( −δ+  and 1)nr̂1( −δ+  terms in the above equation are of general form, n)x1( + , 

which is expanded about 0x =  and approximated to first order by )nx1()x1( n +≅+ . 

Substituting the first order approximations for the 2)nr̂1( −δ+  and 1)nr̂1( −δ+  terms yields 
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The following expression for the coefficient associated with ∆tn/2 on the right side of Eq. 
(B.4) is then obtained from Eqs. (B.5a) and (B.5b) and the definition of nx̂ : 
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The coefficient associated with 2

nt∆ /8 on the right side of Eq. (B.4) is 
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Now, for the coefficients associated with the last term on the right side of Eq. (B.4), we 
have 
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and 
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Combining Eqs. (B.8a) and (B.8b), the coefficient associated with the last term on the 
right side of Eq. (B.4) is 
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The expressions for the coefficients given by Eqs. (B.6), (B.7), and (B.9) are inserted 
into Eq. (B.4) to obtain 
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and =

n1L  sum of the terms with nr̂δ  as multiplier in the expression for 1nx̂ +  
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Eqs. (B.12a) and (B.11a) are combined to obtain the following expressions for An: 
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Likewise, Eqs. (B.12b) and (B.11b) are combined to express Bn as follows: 
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The bubble diffusible gas pressure is given in terms of the scaled radius 1nr̂ +  by Eq. 
(A.43): 
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Substituting the first order approximations for ( ) 1

nr̂δ1 −+  and ( )3nr̂δ1+  about 0r̂δ n =  
yields  
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The final equation for determining nrδ̂  is obtained by equating 1nbP

+  given by Eqs. 
(B.12) and (B.15); 
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and rearranging terms to yield 
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The fractional change in bubble radius at the nth integration step is then given by solving 
Eq. (B.17) for nrδ̂  to obtain: 
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9.1.1.2 Tissue Gas Tension with Time-Dependent Changes in Tissue Blood Flow 
 
With the tissue gas tension 

ntp  constant in the interval [tn , tn+1], consistent with the 
quasi-static approximation [see Eq. (B.5a)], 

ntp is updated to 
1ntp

+
 at the end of the 

interval based on calculations that account for gas transfer between blood, tissue, and 
bubbles during the interval. We use the integrating factor method to obtain a recursion 
formula for solving Eq. (A.13) for a single diffusible gas and a single bubble size group; 
i.e., for calculating 1ntp

+
 at time tn+1 given ntp  at time tn with k=1 and 1bsN = . We first 

treat the blood flow coefficient q(t) in Eq. (A.13) as a general function of time. We then 
modify the relation with a specific model for q(t) under exercise conditions.  
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9.1.1.2.1 General Model of Time-Dependent Changes in Blood Flow 
 
We multiply both sides of Eq. (A.13) by the integrating factor exp[Iq(t)], where Iq(t) is the 

indefinite integral, ∫=
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The first two terms of Eq. (B.20) result from integrating by parts. In the interval [tn , tn+1],  
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Multiplying both sides of Eq. (B.21) by ( )
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Eq. (B.23) is the general solution for determining tissue gas tension using any function 
q(t) to represent changes in blood flow. The specification of q(t) may be based on 
experimental data, if available, or on a model of blood flow changes during exercise. 
The integrals in Eq. (B.23) may require numerical evaluation if q(t) is an empirical 
representation of experimental data or represented by a complex model that renders 
analytic treatment infeasible.  
 

If q(t) is constant, 
τ
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1n

n

t

t

=∆=∫
+

, 



 −−=
















−∫ ∫

+ +

)
τ

Δtexp(1τdtdtq(t)exp
1n

n

1n

n

t

t

t

t

 and Eq. (B.23) 

reduces to 
 
 { }[ ] nnXnannntt ε SGυτpΔtυ)ε(1pp
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+
, (B.24) 

 

where 





−−=

τ
Δtexp1ε n

n . 
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9.1.1.2.2 Multi-Exponential Model of Time-Dependent Changes in Blood Flow 
 
We assume a multi-exponential representation of changes in (t)Q  to be general and to 
accommodate possible bi-phasic responses of blood flow to exercise. Such a 
representation, which allows evaluation of the integrals of q(t) in Eq. (B.23) to be 
analytically tractable, is given by the following equation in the interval [tn , tn+1]: 
 

 ∑
=















τ
−

−−−=
exp

n,
n,nn

N

1 exp

n
expnexex

tt
expf)QQ(Q)t(Q

 


 , (B.25) 

 

Where nQ  = blood flow per unit volume of tissue at t = tn , 

 nexQ  = steady-state blood flow that would be reached if exercise is continued 

indefinitely at its prevailing level in the interval [tn , tn+1], 

 Nexp = number of exponential components,  

 n,expf


= fraction of blood flow change associated with the th  exponential 

component in the interval [tn , tn+1], and 

 n,expτ


 = time constant associated with th  exponential component in the interval 

[tn , tn+1]. 

 

The fractions n,expf


 should add up to 1, so that at t = tn, 

nQ
N

1
expf)nQexQ(exQ)t(Q

exp

n,nn







=
=

−−= ∑ . 

As t → ∞, )t(Q  → nexQ . Also, (t)Q  = nQ  if nexQ = nQ  (resting conditions), and (t)Q  = 

nexQ  if 0τ
n,exp =


 for all exponential components (instantaneous change). With appropriate 

specification of n,expf


 and n,expτ


, Eq. (B.25) can accommodate different rates of blood 
flow change as exercise begins (onset) and ends (recovery). It should be noted that the 
blood flow level nexQ remains unchanged until there is a change in exercise level.  
 
We now evaluate the integrals in Eq. (B.23) using Eq. (B.25) to calculate q(t), which is 
proportional to )t(Q , and the change of variable, (t – tn) = δ, which leads to δ = 0 at t = 
tn, δ = tn+1 – tn = ∆tn at t = tn+1, and dt = dδ. 
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Eq. (B.26) is considerably simplified by expanding the term in brackets to obtain  
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where terms of order greater than 2 are neglected. Then Eq. (B.26) becomes 
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The error in the approximation 
n,n, exp

n

exp

n
τ

Δt
τ

Δt
exp-1



≈












−  is less than 0.5% if 01.0

t

n,exp

n <
τ

∆



, 

that is, if nexp t100
n,

∆>τ


. Assuming a nominal integration step size of 0.001 min, 

n,expτ


 > 0.1 min. This means that if the time constant is less than 0.1 min for any 
exponential component in Eq. (B.25), the integration step size must be reduced to keep 
the approximation error less than 0.5%. 
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Next, we evaluate dt
t
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, noting that the lower limit = (t – tn) for q(t) as defined by 

Eq. (B.25) is valid in the interval [tn , tn+1] with an initial value of qn. Thus, 
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The integral associated with the last term on the right side of Eq. (B.23) is then 
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The integral on the right side of Eq. (B.28) cannot be evaluated in closed form without 
approximation. Therefore, we expand the exponential terms, truncate the series by 
neglecting higher order terms, and then perform the integration, as described below: 
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Eq. (B.28) is reduced using Eq. (B.29) as follows: 
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Our final recursive relation for tissue gas tension is obtained by substituting the 
evaluated expressions for the integrals given by Eqs. (B.27) and (B.30) into Eq. (B.23) 
and rearranging terms: 
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where 
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= +  for the gas loss rate into bubbles. 

 
The variables τn and εn in Eq. (B.31) depend on qn, which is proportional to blood flow 

nQ  at time tn. The recursive relation for calculating nQ  is obtained from Eq. (B.25): 
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The parameters in this relation include steady-state blood flows at different exercise 
intensities, and time constants and blood flow fractions associated with each 
exponential component. Note that 1nQ +

  = nexQ  if the change in blood flow rate is 

instantaneous ( 0τ
n, exp =


 for all ℓ).  

 
As an example, consider a tissue compartment with a resting half time of 100 min. The 
time constant is 100/ln(2) = 144 min, and compartmental blood flow per unit volume of 
tissue is 1/144 or approximately 0.007 mL per min. The compartmental blood flow per 
unit volume of tissue during 50% maximum exercise would increase by a factor of about 
2.5 to 0.0175 mL per min, corresponding to a time constant of 57 min. Exponential time 
constants associated with such a change in blood flow would range from a fraction of a 
minute to several minutes.  
 
Eq. (B.31) is identical to Eq. (B.24) except for the dependency of τ – and hence ε – and 
G on time. The model we adopted for blood flow changes and the approximations we 
made for closed-form evaluation of the integral terms in the solution did not alter the 
basic structure of the recursive relation for calculating the tissue gas tension. This may 
not be true with more complex models of blood flow. The multi-exponential model is 
fairly realistic and the approximations (with second order terms neglected) are 
reasonable, requiring that blood flow time constants be greater than 0.1 min to limit the 
error to less than 0.5 % with an integration step size of 0.001 min. The demands on 
accuracy can always be met by reducing the step size, if the increased computational 
burden can be accommodated. 
 
9.1.1.2.3 Coupling of Compartmental O2 Consumption and Blood flow 
 
We assume that exercise-induced changes in compartmental blood flow are driven by 
changes in compartmental O2 consumption due to exercise, and that the latter changes 
are given by Eq. (A.25). The recursive relation for solving Eq. (A.25) is 
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where 1n2OV

+
 and n2OV are the O2 consumption rates at times tn+1 and tn, respectively,  

 
 

restnO2restexnex, O2exVO2O2O2 VImVVΔV  +=+=  (B.33) 
 
is the steady-state O2 consumption at exercise intensity 

nexI , and 
n2OVτ is the time 

constant associated with the exponential change in O2V  in the interval [tn , tn+1].  
 
The steady-state blood flow during exercise is then estimated by assuming that 
compartmental blood flow increases linearly with compartmental O2 consumption:  
 
 restrest,2O2OQn

Q)Vn,V(mexQ  +−⋅=  (B.34) 

 
 Multiple Bubbles of Different Sizes 

 
The recursive relationships derived above are readily elaborated to accommodate the 
solution for the radii and gas pressures of multiple bubbles present in an arbitrary 
distribution of Nbs different sizes. Such elaboration entails repeating the calculations of 

1nr +ˆ  and 
1nbP

+
 for the 

mbn  bubbles of each size m, m=1, 2, ..., Nbs, in the distribution. 

The bubble gas pressures are obtained from Eq. (B.12) 
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where Am,n is obtained from Eq. (B.13a); 
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Finally, from Eq. (B.18) 
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The tissue tension of the diffusible gas 

1ntp
+

 is calculated using Eq. (B.23) for any 
function (t)kq  or Eq. (B.31) for (t)qk  as a multiexponential, after modification to account 
for the net gas exchange between all bubbles and the tissue as such exchange differs 
for bubbles of different sizes. Accordingly, Eq. (B.23) is modified by summing the 
amounts of gas exchanged between bubbles and tissue for all bubbles of Nbs different 
sizes as follows: 
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where 1nm,x +ˆ  and nm,x̂  are the gas contents at times tn+1 and tn respectively in each of 

n,mbn  bubbles of radius rm in the mth bubble size group with 
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Similarly, Eq. (B.31) becomes 
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With constant q(t), τn becomes a constant equal to τ and Eq. (B.40) reduces to Eq. 
(B.24). 
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Determination of 1n,mr̂ + , 1nbP + , and 1ntp

+  requires computation time in excess of that 
required for the Nbs = 1 case (multiple bubbles of the same size) roughly in proportion to 
the number of bubble sizes considered.  
 
 

9.2 Multiple Diffusible Gases 
 
With Ng > 1 diffusible gases in the tissue-bubble system, the recursive relations derived 
in the previous sections hold for each diffusible gas. Referring to Eq. (B.35), the 
pressure of the kth diffusible gas in bubbles of mth size is  
 
 n,mn,m,kn,m,kn,m,kb r̂)BA3(AP
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+
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where  
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n
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t
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= . 

 
Coefficients Ak,m,n and Bk,m,n at time tn are different for each diffusible gas due to 
differences in the scaled permeabilities, kK̂ , of the gases in the tissue.  
 
The total diffusible gas pressure in a bubble must equal the hydrostatic pressure less 
the sum of the infinitely-diffusible gas partial pressures, ∞P , plus the pressures due to 
surface tension and tissue elasticity as indicated by Eq. (B.14). Therefore, for bubbles of 
size m 
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Following the steps from Eq. (B.14) to Eq. (B.18), we obtain 
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Note that Eq. (B.45) reduces to Eq. (B.18) if the number of diffusible gases Ng = 1.  
 
The tissue tension of each diffusible gas is calculated using Eq. (B.39) for any function 

(t)qk  or Eq. (B.40) for (t)qk  as a multiexponential. For the kth diffusible gas in the interval [tn 
, tn+1], Eq. (B.39) becomes 
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and Eq. (B.40) becomes 
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=υ +  is the rate of change in arterial tension of the kth diffusible gas in 

the interval [tn , tn+1]. With constant (t)qk , Eq. (B.47) applies with τk,n a constant equal to 
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τk. Omission of subscripts for gas-specific variables then renders Eq. (B.47) identical to 
Eq. (B.24). 
 
 

 Tissue O2 Tension with O2 as a Diffusible Gas 
 
Eqs. (B.41) through (B.45) also apply when O2 is considered to be among the Ng 
diffusible gases. However, Eqs. (B.46) and (B.47) require modification to account for the 
nonlinear relationship between O2 content-and O2 partial pressure in arterial blood due 
to the Hb-O2 dissociation curve. 
 
Semi-analytic solutions similar to Eq. (B.46) and (B.47) can be derived for recursive 
calculation of 

O2tP in each integration interval. To simplify notation, we describe the 

derivation for cases involving multiple bubbles of the same size in a tissue and then 
elaborate the result for cases involving multiple bubbles of different size. 
 
9.2.1.1 Multiple Bubbles of Same Size 
 

We begin by substituting 3
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=  and 3

tt

b
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V
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3
4Ĝ
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π
=  into Eq. (A.15) (with Nbs = 

1) for O2 mass balance in tissue to obtain: 
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where (t)Q  is blood flow per unit volume of tissue and the tissue O2 consumption, 

(t)VO2 , is determined with the recursive formula in Eq. (B.32). We then approximate the 
blood O2 content (plasma + Hb-bound) versus O2 partial pressure curve by a linear 
segment for the time interval [tn , tn+1] and express O2vC  , the venous O2 content 

corresponding to partial pressure 
n2Ovp  at time tn, as 

 
 ( )

nO2O2nnO2O2 vvO2vv ppαCC −′+= , (B.49) 
 
where 

nO2α′  is the slope of the whole blood solubility curve in the region of 
nO2vp . 

Referring to the a1, a2, b1, b2, p, η, and phalf parameters defined with Eq. (A.21), this 
slope is given by 
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Note that 
nO2α′  has the units of solubility. Assuming that compartmental blood-tissue 

gas exchange is perfusion limited, end-capillary blood and tissue are at equilibrium; i.e., 

2Ovp = 
2Otp ; and Eq. (B.49) becomes 

 
 

2Onn2Onn2O2O t2Ov2Ovv ppCC α′+α′−=  

 
 2Onn t2O2O pC α′+′= , (B.51) 
 
where  

 
 

n2Onn2On v2Ov2O pCC α′−=′ . (B.52) 

 
Substitution of Eq. (B.51) into Eq. (B.48) yields 
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which is valid for tn ≤ t < tn+1 with blood flow of nQ  and O2 consumption of n2OV . Dividing 
both sides of Eq. (B.53) by 

2Otα  yields 
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which upon substitution for n2OC′ from Eq. (B.51) becomes 
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Note from Eq. (B.50) that bO2 αα

n
≥′ , which obviates excessively small values of 

nO2α′  that could cause numerical errors. Rearranging terms, Eq. (B.54) for the interval 
[tn , tn+1] becomes, 
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where tx̂Ĝx̂ n2O2O2O ρ+=′  . (B.57) 
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Eq. (B.56) is identical in form to Eq. (A.22) with k=1 and 1Nbs =  for the tissue tension 

of an inert gas. Comparison of the two equations shows that variables '
2Op , 2Ox ′ , and 

n2Oτ  in Eq. (B.56) correspond respectively to variables pa, x̂ , and τ in Eq. (A.22), and 
the constant G in Eq. (A.22) is 1 in Eq. (B.56). With these changes in variables and the 
value for G, the solution to Eq. (A.22) given by Eq. (B.31) is applicable to Eq. (B.53) as 
well. Thus, for identically sized bubbles in tissue, the recursive formula for tissue O2 
tension 1nO2,tp

+ at time tn+1, given the tissue O2 tension nO2,tp at time tn, is 
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which is substituted into Eq. (B.58) to yield: 
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The rate 

n2Oυ  for O2 is defined by the difference in '
2Op  in the interval [tn , tn+1]; 
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where 

1n2OaC
+

and 
n2OaC are arterial O2 contents corresponding to arterial O2 partial 

pressures 
1n2Oap

+
and 

n2Oap at times tn+1 and tn respectively.  

 
 
9.2.1.2 Multiple Bubbles of Different Size 
 
If the tissue contains multiple bubbles of different sizes, Eq. (B.46) or (B.47) is used to 
calculate the tissue tension of each of the inert gases. Referring to Eq. (B.59), the 
corresponding tissue O2 tension is given by 
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=  for bubbles of mth size. Note that the mbn  are constant. 

 
 

 Variable Bubble Number: Single Time-Dependent Bubble Size Approximation 
 
As noted in Appendix A, the accumulation of bubbles recruited with increasing 
supersaturation during decompression is accommodated in present models by 
assuming that each newly nucleated bubble instantaneously attains the size of 
prevailing already-nucleated bubbles, which allows rn+1, 1nbP

+
, and 1ntp

+
 to be 

tracked for only a single bubble size group (Nbs = 1) in which only nb changes: 

∑=
bs

m

N

m
bb nN . Maintenance of mass balance in this approach requires a change in 

bubble gas content and a resultant adjustment in tissue gas tension corresponding to 
the difference between the nucleonic volume and the prevailing bubble volume 
whenever a nucleus is ‘recruited’ during decompression. These requirements are met 
by allowing the coefficient kĜ  to vary with the number of bubbles and by modifying Eq. 
(B.47) as described below. 
 
Let n,kĜ  denote the coefficient associated with the bubble content of gas k, n,kx̂ , at the 

outset of the nth integration step. The change in gas content, n,k1n,k x̂x̂ −+ , in the interval 

[tn, tn+1] is preceded by a change in n,kĜ  at the beginning of the interval if any new 
bubbles are considered to be recruited at the beginning of the interval. We therefore 
consider the ∆tn interval to consist of two subintervals; an initial ∆tn,0 interval in which the 
bubble number increases from 1n,kĜ −  to n,kĜ , and a subsequent ∆tn,1 interval in which 

the n,kĜ  bubbles evolve, as illustrated in Figure B.1. In the sub-interval ∆tn,0, newly 

recruited bubbles expand from gas content 0,n,kx̂  to 1,n,kx̂ . The gas content 1,n,kx̂  of n,kĜ∆  

newly nucleated bubbles at time (tn + ∆tn,0) is the same as that of 1n,kĜ −  ‘older’ bubbles 
that grow from nk,x̂  at tn to 1nk,x̂ +  at tn+1. In the sub-interval ∆tn,1, the total gas content of 
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all bubbles changes from n,1k,x̂  to 1nk,x̂ + . The total number of bubbles is 

n,k1n,kn,k ĜĜĜ ∆+= − . Including the change in n,kĜ , Eq. (B.47) becomes 
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Fig. B.1: Sub-intervals of ∆tn accommodating growth of newly formed bubbles. 

 
 
The contribution of the newly formed bubbles is evaluated assuming the change from 

n,0k,x̂  to 1,nx̂  occurs instantaneously. We thus let ∆tn,0 → 0 and, consequently n,1k,x̂  → 

nk,x̂ , to obtain 
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( )0,n,kn,kn,k x̂x̂Ĝ −∆=  with the limit evaluating to 1. 

Also, as ∆tn,0 → 0, ∆tn,1 → ∆tn and εκ,n,1 → εκ,n. Substituting these limits and using 

n,k1n,kn,k ĜĜĜ ∆+= − , Eq. (B.62) becomes  
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ĜυτpΔtυ)ε(1p

nk,nk,

−−



















 −

+−++−= +

 (B.63) 

Following a similar development from Eq. (B.61), the tissue O2 tension is given by 
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In applying Eq. (B.63) and (B.64), the change n,kĜ∆  at time tn is obtained from the 
number of nuclei recruited in the interval from the assumed nuclei size distribution; i.e., 
the number of nuclei versus their radii. The gas content 0,n,kx̂  at tn is that of the nuclei 

from which the n,kĜ∆  new bubbles were formed.  
 
The number of nuclei recruited at the outset of any integration interval and the 
corresponding n,kĜ∆  must be determined in a fashion that ensures that nuclei already 
recruited from the distribution and lost to the vasculature as VGE are not double-
counted in the nucleation process: The number of bubbles remaining in the 
compartment at any time may be fewer than the cumulative number of nuclei that have 
been recruited in the compartment at that time. Accordingly, the total number of nuclei 
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recruited must be tracked independently of the number of bubbles remaining in the 
compartment. The cumulative number of bubbles recruited for the nth integration step is 
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where 

1nmax,bN
−

 is the cumulative number of nuclei that were recruited at the outset of 

the (n-1) integration step. The number of bubbles recruited at the outset of the nth 
integration step to join those already present in the compartment (of number 1nbN

−
) is 

consequently 
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so that the number of bubbles participating in the nth integration step is 
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Increases in the compartmental bubble number density and nb as bubbles are nucleated 
from one integration step to the next with increasing supersaturation during 
decompression are accommodated in Eqs. (B.63) and (B.64) by the respective n,kĜ∆  

factors and thereafter by the sustained change in nbn  in the corresponding nk,Ĝ  factors. 
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9.3 Semi-Analytic Solution of the Fick Equation in the 3RUT-MB 
Model 

 
The Fick equation for the 3RUT-MB model given by Equation (B.3) is reproduced 
following: 
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This is a linear differential equation in the dependent variable x with coefficients that vary 
with time. We apply the integrating factor method to obtain a numerical solution of this equation 
for x(t) at time tn+1 given x(t) at time tn. Recursion of this solution through time provides the 
entire solution x(ti), i = 0, 1, 2, … 

The integrating factor is exp[If(t)], where If(t) is the indefinite integral ∫
t

dt)t(f . Both sides 

of Eq. (B.3) are multiplied by the integrating factor to obtain 
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Integration of Eq. (B.70) in the interval tn ≤ t ≤ tn+1 yields 
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Denote x(tn) and x(tn+1) by xn and xn+1, respectively. Then from Eq. (B.71) 
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Letting t – tn =  δ and  tn+1 – tn =  ∆tn in the interval [tn , tn+1], Eq. (B.72) becomes 
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We evaluate If(t) using a straight-line approximation of f(t) in the interval tn ≤ t ≤ tn+1 (Fig. 
B.3). Let fn = f(tn) and fn+1 = f(tn+1). The step size ∆tn may be adjusted based on the 
magnitude of the fractional increase in bubble radius calculated for the preceding 
integration step ∆tn-1.  
 

 
Fig. B.3: Straight-line approximation of f(t) in the interval tn ≤ t ≤ tn+1. 

 
 
Applying the trapezoidal rule of integration in the interval [tn , tn+1], 
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where 
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= +  is the slope of f(t) in the interval [tn , tn+1]. In terms of δ, the above 

equation reads 
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f(t)  =  fn + Sfn (t – tn) 

(tn+1 – t) 
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The function g(t) is approximated in a similar fashion by a straight line in the interval [tn , 
tn+1]: 
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where gn = g(tn) and 
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Substituting Eqs. (B.74), (B.75), and (B.76) into Eq. (B.73) yields 
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where 

n
Iφ  is the contribution to the solution due to g(t) in Eq. (B.3). It is the particular 

integral given by 
 

 [ ] δ
























δ−∆
δ

+
θ

δ−∆
−δ+= ∫

∆

φ d)t(
2

St
expSgI

n
n

nn

t

0
n

f

n

n
gn . (B.78) 

 
 
A closed-form expression for 

n
Iφ  is not possible because of the δ2 term contained in the 

exponent of the exponential factor. We could evaluate the integral using the trapezoidal 
rule of integration, but a more accurate evaluation is obtained by expanding the 
exponential factor in series form and truncating the series to a few terms. The truncated 
series will be valid only if the magnitude of the exponent is less than unity. Here the 
magnitude is 
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which may not be less than unity, even with very small values of step size ∆tn. 
Therefore, we split the exponential factor into two factors and express 

n
Iφ  as 
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Now, the exponent of the second (right most) exponential factor in Eq. (B.79) has a 
magnitude 
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Thus, the magnitude is no greater than the product of the step size ∆tn at the nth 
integration step and the change in fn therein, a magnitude that is consequently less than 
unity for sufficiently small values of the step size. Depending on the choice of step size, 
Eq. (B.79) may thus be evaluated to appropriate accuracy with a truncated series 
expansion of the second exponential factor. 
 
We proceed by rewriting Eq. (B.79) with a series expansion of the second exponential 
factor truncated to include terms only through order 2: 
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The terms shown in brackets on the right side of Eq. (B.80) contain terms up to order 5 
in δ. Since δ ≤ t – tn ≤ tn+1 – tn ≤ ∆tn, and the integration step size ∆tn may be chosen as 
small as desired, we neglect terms of order greater than 2 in δ, and simplify the integral 
expression for 

n
Iφ  as follows: 
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Substituting for 

n0Iφ , 
n1Iφ , and 

n2Iφ  in Eq. (B.81), we obtain 
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Returning to Eq. (B.77), we can calculate xn+1 at the nth integration step knowing xn from 
the previous step and the solution for 

n
Iφ  in Eq. (B.82). However, the solution for 

n
Iφ  

requires fn+1 and gn+1 (and thus the unknown rn+1) to determine the slopes nfS  and ngS
. This poses no problem if the functions f(t) and g(t) are known functions of time. In our 
application, f(t) and g(t) are implicit functions of time related through bubble radius, as 
indicated by Eqs. (B.1) and (B.2). We solve for bubble radius and bubble pressure 
simultaneously by applying Eq. (B.77) as well as the constitutive equation for bubble 
pressure (Young-LaPlace relationship), as indicated by Eqs. (B.12) and (B.14).  
 
The expression for 

n
Iφ  also contains fn+1 in the exponential factors. Without further 

simplification, the expression becomes a nonlinear equation in rn+1, or equivalently in the 
change in bubble radius δrn, which requires an iterative solution at each integration step 
— a significant increase in computational overhead. In order to reduce the 
computations, the expression for 

n
Iφ  in Eq. (B.82) is simplified by first expanding the 

exponential factors in series form and retaining only terms up to third order: 
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With appropriate substitution of Eq. (B.83), Eq. (B.82) becomes 
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Eq. (B.85) is a second-order approximation to 

n
Iφ . Note that this does not compromise 

accuracy as we already limited 
n

Iφ  to terms containing powers of ∆tn less than 3 to 
obtain Eq. (B.81). It is not necessary to include higher power terms in ∆tn as accuracy 
may be improved to any desired level by sufficiently decreasing the step size.  
 
 
Returning to the solution Eq. (B.77), we expand the exponential factor retaining only 
terms up to order 2 in ∆tn so that 
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Substituting for 

n
Iφ from Eq. (B.85) and 
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Equation (B.87) simplifies to our final expression for xn+1: 
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10. Appendix C. Summary of Recursive Equations for 
Solution of 3RUT-MBe1 Model 

 
 
Subscripts: 
 Compartments: i = 1, 2, …, nc (suppressed) 
 Bubble size group: m = 1, 2, ..., Nbs (suppressed) 
 Diffusible gases: k = 1, 2, …, Ng 
 Time intervals: n = 1, 2, … 
 
 Number of bubble size groups: Nbs = 1 

 Scaled model parameters: 
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a The integration step size ∆tn is arbitrary and may be altered at any integration step, based on 
the magnitude of changes in bubble radii, δrn, to reduce computation time, but it should be small 
enough to yield results with desired accuracy. 
b The initial o

crushcrush PP
0

≡  is determined from saturation conditions at profile start (see footnotes 
c and e in this Appendix). 
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c The initial tissue tension of the kth inert gas under saturation steady-state conditions, 0,ktp , is 

the aterial tension, 0,kap , for the gas given by Eq. (C.28) for the saturation pressure and 
breathing gas mix. 
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d The percent hemoglobin saturation, SO2, at prevailing oxygen tension pO2 is computed with 
Lobdell’s equation:69 
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where 

 a1 = 0.34332, 

 a2 = 0.64073, 

 b1 = 0.34128, 

 b2 = a2 = 0.0.64073, 

 η = 1.58678, and 

 halfp  = half-saturation pO2 of hemoglobin 
 (with pO2 in units of mm-Hg, halfp = 25.0 mm-Hg.) 
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VGE formation 
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e The initial tissue O2 tension under saturation steady-state conditions, 

02Otp , is the partial 

pressure, 
02Ovp , corresponding to 

0
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V
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−= , where 

02OaC  is given by Eq. (C.38) at 

2Oap  given by Eq. (C.37) for the saturation pressure and breathing gas mix. 
02Ovp  is determined 

by numerically inverting the blood O2 content versus partial pressure curve, Eq. (C.42), at 
02OvC . 
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11. Appendix D. Hazard Function Formulation and 
Optimization 

 
The hazard function in present work was elaborated from that in the BVM(3) 
probabilistic gas and bubble dynamics model developed earlier for air and N2-O2 
diving.26,27 In the latter model, the instantaneous risk of DCS at time t in exposure i, hi(t), 
is the sum of a weighted time-dependent dose, (t)Δ ji, , in each of j = 1, 2, ..., nc 
hypothetical tissue compartments. That is,  
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where wj is the weight – constant over all i and independent of time and all parameters 
in (t)Δ ji,  – associated with the jth compartment, and 
 
 i,j i,j jΔ (t) = V (t) V (0) −  . (D.2) 
 
Vi,j(t) in Eq. (D.2) is the bubble volume in the jth compartment at time t in the ith 
exposure, and Vj(0) is the initial nucleonic bubble volume in the compartment. The initial 
nucleonic bubble volume in each compartment is constant and the same for all 
exposures. Because the hazard, ih (t) , is a failure rate that must integrate over time to a 
dimensionless quantity, wj in Eq. (D.1) has dimensions of 1/(volume × time). 
 
While an implementation of the Van Liew and Hlastala two-region unstirred tissue 
model28,31,70 was used to model bubble evolution in the BVM(3) probabilistic model, the 
more theoretically robust 3RUT-MB model was used for this purpose in present work. 
Eq. (D.2) was elaborated using Eq. (A.12) to obtain the hazard function used in present 
work: 
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where m=1 has been assumed, the time-dependence of the compartmental bubble 
number is explicitly indicated, and a compartment-specific power term, 

jNβ , for the 

prevailing bubble number has been arbitrarily added to potentiate the contribution of the 
bubble number to the hazard as the bubble number increases.  
 
It is shown in Appendix A that the compartmental bubble volumes in the 3RUT-MB 
model scale with an arbitrary compartmental 3

jΛ  factor having dimension 1/volume. The 

scaled counterparts of the volumes in Eq. (D.3a), ( )3
i,j j i,jV̂ (t) V t= Λ  and 
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( )3
j j jV̂ (0) V 0= Λ , can then be calculated with the piecewise-analytic solution derived in 

Appendix B with arbitrarily specified values of jΛ .  
 
The best fit of a given expression for h(t) to a collection of DCS incidence and time of 
onset data is obtained by adjusting the parameters of h(t) to maximize the likelihood of 
h(t) about the data. The likelihood is the joint probability of the observed outcomes for all 
exposures in the data. For N independent exposures, the likelihood is given by 
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where δi is the outcome variable for the ith exposure: δi = 1 for failure (event occurred) 
and δi = 0 for no failure until end of observation (right-censored observation). Marginal 
outcomes, for which 0 < δi < 1, are also allowed. Referring to Eqs. (1) and (2) in the 
body of this report, Eq. (D.4) is elaborated to yield 
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where 1it  is the last time in exposure i at which failure had not yet occurred, 2it  is the 
first time in exposure i at which failure was known to have occurred, and ti is the right-
censored time for exposure i. The likelihood is given in terms of the parameters in the 
model used to compute (t)Δ ji, , represented by vector ρ, and the weights wj of the 
tissue compartments, represented by vector W : 
 
 )L(L Wρ,≡ . (D.6a) 
 
The vectors ρ and W  comprise the β vector in Eqs. (11) and (12) in the body of this 
report. It is now recognized that because the compartmental weights are constant and 
independent of the other model parameters, a set of optimum wj,  j = 1, 2, …, nc, exists 
for a given data set for any set ρ of other compartmental parameter values.71 This 
optimal set W  can be determined independently for the trial set ρ in each iteration of the 
optimization procedure. In present work however, the likelihood was conventionally 
maximized with the Marquart iterative nonlinear parameter optimization algorithm46 
without making any distinction between the ρ and W  vectors.  
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12. Appendix E. Summary Description of A1309 Model Training Data 
 
Data Set  Profile Description Summary 

# 
Exposures # DCS 

       Observed 
USAF       
 (4.37 psia, Unknown A) 60 min PB; 4.37 psia EVA sim/240 min;180 min GL PstB 43 23 
 (4.37 psia, Unknown B) 15 min PB; 4.37 psia EVA sim/240 min;138 min GL PstB 12 7 
 (5.45 psia, Unknown) 60 min PB; 5.45 psia (25K ft) EVA sim/240 min 21 1 
 (6 psia, Unknown) 60 min PB; 6 psia (22.5K ft) EVA sim/240 min 24 1 
 (9.5 psia, Unknown) 60 min PB; 9.5 psia (11.5K ft) EVA sim/240 min 42 0 
 100% Suit-A 0PB; 15.0K ft (8.3 psia) EVA sim/6hr, males 10 0 
 100% Suit-B 0PB; 16.5K ft (7.8 psia) EVA sim/6hr, males 10 0 
 100% Suit-C 0PB; 18.1K ft (7.3 psia) EVA sim/6hr, males 11 0 
 100% Suit-D 0PB; 18.1K ft (7.3 psia) EVA sim/6hr, females 9 0 
 100% Suit-E 0PB; 19.8K ft (6.8 psia) EVA sim/6hr, males 11 0 
 100% Suit-F 0PB; 19.8K ft (6.8 psia) EVA sim/6hr, females 10 1 
 7.8 psia-A 0PB; 7.8 psia, 50% O2, EVA sim/360 min, males 94 1 
 7.8 psia-B 0PB; 7.8 psia, 50% O2, EVA sim/360 min, females 92 4 
 8.3 psia-A 0PB; 8.3 psia, 50% O2, EVA sim/360 min, males 20 1 
 8.3 psia-B 0PB; 8.3 psia, 50% O2, EVA sim/360 min, females 11 0 
 9.5 psia Validation-A 0PB; 9.5 psia, 40% O2, EVA sim/360 min, females 20 0 
 9.5 psia Validation-B 0PB; 9.5 psia, 40% O2, EVA sim/360 min, males 12 0 
 BSI-A Bends Screening Index study: 60 min PB; 30.0K ft (4.37 psia), rest/480 min 17 10 
 BSI-B Bends Screening Index study: 60 min PB; 30.0K ft (4.37 psia), knee bends-overhead presses/480 min 36 32 
 BSI-C Bends Screening Index study: 60 min PB; 27.6K ft (4.87 psia), knee bends-overhead presses/480 min 83 66 
 BSI-D Bends Screening Index study: 60 min PB; 25.0K ft (5.45 psia), knee bends-overhead presses/480 min 28 22 
 BSI-E Bends Screening Index study: 60 min PB; 22.5K ft (6.1 psia), knee bends-overhead presses/480 min 46 24 
 Bubb Threshold-A 0PB; 16.0K ft (8.0 psia), 50% O2, EVA sim/360 min 25 0 
 Bubb Threshold-B 0PB; 14.4K ft (8.5 psia), 50% O2, EVA sim/360 min 10 0 
 Bubb Threshold-C 0PB; 12.3K ft (9.0 psia), 50% O2, EVA sim/360 min 23 3 
 Bubb Threshold-D 0PB; 11.5K ft (9.5 psia), 50% O2, EVA sim/360 min 6 0 
 Bubb Threshold-E 0PB;10.28K ft (10.0 psia), 50% O2, EVA sim/360 min 9 0 
 Bubb Threshold-F 0PB; 9.0K ft (10.5 psia), 50% O2, EVA sim/360 min 2 0 
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Data Set  Profile Description Summary 
# 

Exposures # DCS 
       Observed 
 CO2-A CO2 in PB gas: 60 min PB, 100% O2; 25K ft EVA sim/180 min 38 4 
 CO2-B CO2 in PB gas: 60 min PB, 97% O2, 3% CO2; 25K ft EVA sim/180 min 37 3 
 CO2-C CO2 in PB gas: 60 min PB, 100% O2; 25K ft EVA sim/360 min 25 24 
 CO2-D CO2 in PB gas: 60 min PB, 97% O2, 3% CO2; 25K ft EVA sim/360 min 25 19 
 DNT-A Inflight denitrogenation-staged ascent: 60 min PB;29.5K ft, 100 kcal rope pull exercise/240 min 39 24 
 DNT-B Inflight denitrogenation-staged ascent:75 min PB;29.5K ft, 100 kcal rope pull exercise240 min 18 7 
 DNT-C Inflight denitrogenation-staged ascent: 135 min PB;29.5K ft, 100 kcal rope pull exercise/240 min 33 15 
 DNT-D Inflight denitrogenation-staged ascent: 15 min PB;8.0K ft/60 min;29.5K ft, 100 kcal rope pull exercise/240 min 17 11 
 DNT-E Inflight denitrogenation-staged ascent: 15 min PB;8.0K ft/120 min;29.5K ft, 100 kcal rope pull exercise/240 min 15 6 
 DNT-F Inflight denitrogenation-staged ascent: 15 min PB;12.0K ft/60 min;29.5K ft, 100 kcal rope pull exercise/240 min 16 10 
 DNT-G Inflight denitrogenation-staged ascent: 15 min PB;12.0K ft/120 min;29.5K ft, 100 kcal rope pull exercise/240 min 16 7 
 DNT-H Inflight denitrogenation-staged ascent: 15 min PB;16.0K ft/60 min;29.5K ft, 100 kcal rope pull exercise/240 min 31 12 
 DNT-I Inflight denitrogenation-staged ascent: 15 min PB;16.0K ft/120 min;29.5K ft, 100 kcal rope pull exercise/240 min 33 13 
 DNT-J Inflight denitrogenation-staged ascent: 15 min PB;18.0K ft/ 60 min;29.5K ft, 100 kcal rope pull exercise/240 min 34 21 
 DNT-K Inflight denitrogenation-staged ascent: 15 min PB;18.0K ft/120 min;29.5K ft, 100 kcal rope pull exercise/240 min 31 14 
 EffctEx-A 60 min PB; 29.5K ft rest/240 min 46 15 
 EffctEx-B 60 min PB; 29.5K ft isometric stacked weight, arm exercise/240 min 25 10 
 EffctEx-C 60 min PB; 29.5K ft isotonic stacked weight, arm exercise/240 min 22 9 
 EffctEx-D 60 min PB; 29.5K ft isometric stacked weight, leg exercise/240 min 26 7 
 EffctEx-E 60 min PB; 29.5K ft isotonic stacked weight, leg exercise/240 min 25 8 
 EffctEx-F 60 min PB; 27.5K ft rest/240 min 13 5 
 EffctEx-G 60 min PB; 27.5K ft isometric stacked weight, arm exercise/240 min 7 3 
 EffctEx-H 60 min PB; 27.5K ft isotonic stacked weight, arm exercise/240 min 8 7 
 EffctEx-I 60 min PB; 27.5K ft isometric stacked weight, leg exercise/240 min 8 3 
 EffctEx-J 60 min PB; 27.5K ft isotonic stacked weight, leg exercise/240 min 8 4 
 EffctEx-K 60 min PB; 25.0K ft rest/240 min 4 2 
 EffctEx-L 60 min PB; 25.0K ft isometric stacked weight, arm exercise/240 min 2 1 
 EffctEx-M 60 min PB; 25.0K ft isotonic stacked weight, arm exercise/240 min 2 1 
 EffctEx-N 60 min PB; 25.0K ft isometric stacked weight, leg exercise/240 min 2 0 
 EffctEx-O 60 min PB; 25.0K ft isotonic stacked weight, leg exercise/240 min 2 1 
 EffctEx-P 60 min PB; 22.5K ft rest/240 min 1 1 
 EffctEx-U 60 min PB; 20.0K ft rest/240 min 1 0 
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Data Set  Profile Description Summary 
# 

Exposures # DCS 
       Observed 
 EffctEx-V 60 min PB; 20.0K ft isometric stacked weight, arm exercise/240 min 1 1 
 EffctEx-W 60 min PB; 20.0K ft isotonic stacked weight, arm exercise/240 min 1 1 
 EffctEx-X 60 min PB; 20.0K ft isometric stacked weight, leg exercise/240 min 1 1 
 EffctEx-Y 60 min PB; 20.0K ft isotonic stacked weight, leg exercise/240 min 1 0 
        

 35K-A 75 min PB;35K ft rest/180 min, males 37 21 

 35K-B 75 min PB;35K ft, 30% VO2 peak exercise/180 min, males 30 28 

 35K-C 75 min PB;35K ft rest/180 min, females 36 19 

 35K-D 75 min PB;35K ft, 30% VO2 peak exercise/180 min, females 31 31 

        

 40K-A 90 min PB; 40K ft (2.72 psia) resting/90 min 40 18 
        

 ZPB-A Bends Threshold study: 0PB; 22.5 K ft, rest/360 min, males 20 12 

 ZPB-B Bends Threshold study: 0PB; 22.5 K ft, EVA sim/360 min, males 21 7 

 ZPB-C Bends Threshold study: 0PB; 21.2 K ft, EVA sim/360 min, males 20 1 

 ZPB-D Bends Threshold study: 0PB; 23.8 K ft, EVA sim/360 min, males 10 5 

        

 PE1-A 60 min PB (10 min 75% VO2 peak exercise, 50 min rest); 30K ft EVA sim/240 min 26 11 

 PE1-B 60 PB (rest), EVA sim/240 min 28 21 
 PE2-A 240 min PB (rest); EVA sim/240 min 32 15 
 PE2-B 90 min PB (rest); EVA sim/240 min 32 21 
        

 MV-A ADRAC Validation A) 90 min PB; 35K ft EVA sim/180 min 31 29 

 MV-B ADRAC Validation B) 30 min PB; 25K ft, 30% VO2 peak exercise-rest cycles/240 min 31 19 

 MV-C ADRAC Validation C) 15 min PB; 22.5K ft, 30% VO2 peak exercise-rest cycles/240 min 30 9 

 MV-D ADRAC Validation D) 0PB; 18.0K ft, 30% VO2 peak exercise-rest cycles/360 min 30 4 

 MV-E ADRAC Validation E) 75 min PB; 30K ft rest/240 min 31 18 

        
NASA       
 Test 1a; Rprt 204 210 min PB; 4.3 psia LB exercise/3 hr 11 4 
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Data Set  Profile Description Summary 
# 

Exposures # DCS 
       Observed 
 Test 1b; Rprt 206 0PB; 10.2 psia*/12hr; 10.2 psia O2/40 min; 4.3 psia LB exercise/3 hr 13 3 
 Test 1c; Rprt 208 0PB; 10.2 psia*/12hr; 10.2 psia O2/90 min; 4.3 psia LB exercise/3 hr 12 4 
 Test 1d; Rprt 418 0PB; 10.2 psia*/18hr; 10.2 psia O2/40 min; 4.3 psia LB exercise/3 hr 3 2 
 Test 2a; Rprt 209 210 min PB; 9.2 psia/10 min; 4.3 psia EVA sim/230 min 23 7 
 Test 2b; Rprt 211 0PB; 10.2 psia*/12hr; 10.2 psia O2/40 min; 9.2 psia/10 min; 4.3 psia EVA sim/240 min 22 6 
 Test 3a; Rprt 212 240 min PB; 9.2 psia/10 min; 4.3 psia EVA sim/350 min 28 6 
 Test 3b; Rprt 215 45 min PB; 10.2 psia*/12hr; 10.2 psia O2/40 min; 4.3 psia EVA sim/350 min 35 8 
 Test 3c; Rprt 213 A:[240 min PB; 9.2 psia/10 min; 4.3 psia EVA sim/350 min]; 13hr SI; repeat A 14 3 

 Test 3d; Rprt 217 45 min PB; 10.2 psia*/12hr; A:[10.2 psia O2/40 min; 9.2 psia/10 min; 4.3 psia EVA sim/350 min]; 10.2 psia*/980 min; 
repeat A 12 2 

 Test 4a; Rprt 219 45 min PB; 10.2 psia*/12hr; 10.2 psia O2/40 min; 9.2 psia/10 min; 4.3 psia EVA sim/170 min 12 1 

 Test 4b; Rprt 220 45 min PB; 10.2 psia*/12hr; A:[10.2 psia O2/40 min; 9.2 psia/10 min; 4.3 psia EVA sim/170 min]; 10.2 psia*/80 min; 
repeat A 12 0 

 Test 4c; Rprt 221 45 min PB; 10.2 psia*/12hr; A:[10.2 psia O2/40 min; 9.2 psia/10 min; 4.3 psia EVA sim/170 min]; 10.2 psia*/80 min; 
repeat A; 10.2 psia*/14hr; repeat A 12 0 

 Test 4d; Rprt 222 45 min PB; 10.2 psia*/12hr; A:[10.2 psia O2/40 min; 9.2 psia/10 min; 4.3 psia EVA sim/170 min]; 10.2 psia*/80 min; 
repeat A; 10.2 psia*/14hr; repeat A; 10.2 psia*/80 min; repeat A 12 0 

 Test 4e; Rprt 223 45 min PB; 10.2 psia*/12hr; A:[10.2 psia O2/40 min; 9.2 psia/10 min; 4.3 psia EVA sim/170 min]; 10.2 psia*/80 min; 
repeat A; 10.2 psia*/14hr; repeat A; 10.2 psia*/80 min; repeat A; 10.2 psia*/14hr; repeat A 12 0 

 Test 4f; Rprt 224 45 min PB; 10.2 psia*/12hr; A:[10.2 psia O2/40 min; 9.2 psia/10 min; 4.3 psia EVA sim/170 min]; 10.2 psia*/80 min; 
repeat A; 10.2 psia*/14hr; repeat A; 10.2 psia*/80 min; repeat A; 10.2 psia*/14hr; repeat A; 10.2 psia*/80 min; repeat A 12 0 

 Test 5a; Rprt 237, 238 6hr PB; 4.3 psia EVA sim/360 min 38 4 
 Test 5b; Rprt 239 8hr PB; 4.3 psia EVA sim/360 min 11 0 
 Test 6; Rprt 241, 243 2hr PB; 10.2 psia, 28% O2/24hr; 6.0 psia, 60% O2, EVA sim/6hr 29 1 
 Test 7a; Rprt 257 0PB; 6.5 psia (21K ft) mod EVA sim (~400 kcal/hr)/180 min 11 4 
 Test 7b; Rprt 258 0PB; 6.5 psia (21K ft) mod EVA sim (~200 kcal/hr)/180 min 11 2 
 Test 8a; Rprt 378, 379 0PB; 6.5 psia (21K ft) EVA sim/180 min 40 7 
 Test 8b; Rprt 378, 379 3d x 30 min heavy treadmill exercise/day; 0PB; 6.5 psia (21K ft) EVA sim/180 min 41 10 
 Test 9a; Rprt 407, 409 ARGO, Phase I; 0PB; 6.5 psia EVA sim/180 min 24 1 
 Test 9b; Rprt 408, 410 ARGO, Phase I: 3d 6deg HDT; 0PB; 6.5 psia EVA sim, nonambulatory/180 min 23 2 
 Test 9c; Rprt 419, 420 ARGO, Phase II: 4hr PB; 4.3 psia EVA sim/180 min 11 3 
 Test 9d; Rprt 421 ARGO, Phase II: 2hr adynamia, 4hr PB (adynamia); 4.3 paia EVA sim, adynamia/180 min 7 0 
 Test 9e; Rprt 421 ARGO, Phase II: 2hr adynamia, 4hr PB (UB exercise, 3.5hr @ 188 kcal/hr); 4.3 paia EVA sim, adynamia/180 min 7 0 
 Test 10; Rprt 413, 414 flying after diving: 20fsw (dry), light exercise/400 min; SI, air/14hr; 10.1 psia (10.0K ft), rest/3hr 19 1 
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Data Set  Profile Description Summary 
# 

Exposures # DCS 
       Observed 
 Test 11a; Rprt 453, 454 ARGO Phase III: 3hr PB; 4.3 psia EVA sim, nonambulatory/240 min 28 3 
 Test 11b; Rprt 450, 451 0PB; 6.5 psia: (2 min walk, 4 min rest) cycles wVGE dtctn/120 min 4 0 
        

 PRP I NASA Prebreathe Reduction Protocol‡, Phase I    49 9 

 PRP II NASA Prebreathe Reduction Protocol‡, Phase II 50 0 

 PRP III NASA Prebreathe Reduction Protocol‡, Phase III 10 2 

 PRP IV NASA Prebreathe Reduction Protocol‡, Phase IV 69 8.3 

  Totals 2594 858.3 

 
* 26.5% O2 
‡ NASA Prebreathe Reduction Program (PRP): Man-trials conducted at Duke University, Memorial Hermann-Texas Medical Center, and Defense and 

Civil Institute of Environmental Medicine. 

Note: Four man-exposures; man-flight numbers 88073, 91097, 93022, and 93033; of the 1194 exposures extracted from the original USAFAL Hypobaric 
Decompression Sickness Database are not counted in this table but were included in the model training data. Each of these exposures had a 
unique profile that could not be associated with any study in the database and each culminated with occurrence of DCS. 
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13. Appendix F. Pearson χ2 Statistics for Optimized 3RUT-
MBe1 Model on its A1309 Training Data 

 
 

Data Set 
# 

Exposures # DCS Incidents 
 

   
   Observed Predicted      
     A1309-3RUT MBe1   
        (Pearson Residual)2  

  (N) (f) n π (f-n)2/n(1-π) cumulative 
χ2 

P 

           
Test 9e 7 0 0.000 0.00 0.000 0.00 --- 
Bubb Threshold-F 2 0 0.000 0.00 0.000 0.00 --- 
8.3 psia-A 20 1 0.984 0.05 0.000 0.00 --- 
Bubb Threshold-E 9 0 0.003 0.00 0.003 0.00 --- 
Test 1b 13 3 3.090 0.24 0.003 0.01 --- 
Test 1a 11 4 3.882 0.35 0.006 0.01 --- 
MV-D 30 4 4.143 0.14 0.006 0.02 --- 
Bubb Threshold-D 6 0 0.014 0.00 0.014 0.03 --- 
Test 3d 12 2 2.205 0.18 0.023 0.06 --- 
Test 4a 12 1 1.172 0.10 0.028 0.08 --- 
(9.5 psia, Unknown) 42 0 0.034 0.00 0.034 0.12 --- 
Test 2a 23 7 6.597 0.29 0.035 0.15 --- 
9.5 psia Val-B 12 0 0.038 0.00 0.038 0.19 --- 
DNT-E 15 6 5.587 0.37 0.049 0.24 --- 
Test 8a 40 7 7.604 0.19 0.059 0.30 --- 
9.5 psia Val-A 20 0 0.064 0.00 0.064 0.36 --- 
Test 9c 11 3 2.635 0.24 0.067 0.43 --- 
Test 7b 11 2 2.378 0.22 0.077 0.51 --- 
PRP IV 69 8.3 9.089 0.13 0.079 0.58 0.900 
ZPB-D 10 5 5.456 0.55 0.084 0.67 0.955 
DNT-C 33 15 14.052 0.43 0.111 0.78 0.978 
EffctEx-Y 1 0 0.118 0.12 0.134 0.91 0.989 
EffctEx-U 1 0 0.118 0.12 0.134 1.05 0.994 
BSI-A ? 17 10 10.731 0.63 0.135 1.18 0.997 
PRP III 10 2 2.507 0.25 0.137 1.32 0.998 
Test 7a 11 4 3.388 0.31 0.160 1.48 0.999 
EffctEx-L 2 1 0.711 0.36 0.183 1.66 0.999 
EffctEx-M 2 1 0.711 0.36 0.183 1.84 1.000 
EffctEx-O 2 1 0.711 0.36 0.183 2.03 1.000 
DNT-A 39 24 22.667 0.58 0.187 2.21 1.000 
MV-E 31 18 16.671 0.54 0.229 2.44 1.000 
EffctEx-G 7 3 3.640 0.52 0.235 2.68 1.000 
100% Suit-A 10 0 0.268 0.03 0.275 2.95 1.000 
PE2-B 32 21 19.512 0.61 0.291 3.24 1.000 
Bubb Threshold-B 10 0 0.326 0.03 0.337 3.58 1.000 
EffctEx-K 4 2 1.422 0.36 0.364 3.95 1.000 
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Data Set 
# 

Exposures # DCS Incidents 
 

   
   Observed Predicted      
     A1309-3RUT MBe1   
        (Pearson Residual)2  

  (N) (f) n π (f-n)2/n(1-π) cumulative 
χ2 

P 

           
DNT-I 33 13 11.345 0.34 0.368 4.31 1.000 
DNT-H 31 12 13.698 0.44 0.377 4.69 1.000 
Test 11b 4 0 0.361 0.09 0.396 5.09 1.000 
EffctEx-J 8 4 4.918 0.61 0.445 5.53 1.000 
Test 8b 41 10 8.189 0.20 0.501 6.03 1.000 
8.3 psia-B 11 0 0.541 0.05 0.569 6.60 1.000 
ZPB-B 21 7 8.733 0.42 0.589 7.19 1.000 
Test 3a 28 6 7.832 0.28 0.595 7.79 1.000 
EffctEx-I 8 3 4.160 0.52 0.674 8.46 1.000 
100% Suit-B 10 0 0.694 0.07 0.746 9.21 1.000 
MV-B 31 19 16.599 0.54 0.747 9.95 1.000 
PE1-B 28 21 18.824 0.67 0.768 10.72 1.000 
Test 5b 11 0 0.817 0.07 0.883 11.60 1.000 
Test 5a 38 4 6.225 0.16 0.951 12.55 1.000 
DNT-D 17 11 8.841 0.52 1.099 13.65 1.000 
EffctEx-N 2 0 0.711 0.36 1.103 14.76 0.999 
35K-B 30 28 25.949 0.86 1.200 15.96 0.999 
MV-C 30 9 11.987 0.40 1.239 17.20 0.999 
35K-A 37 21 24.255 0.66 1.268 18.46 0.998 
100% Suit-F, females 10 1 2.660 0.27 1.411 19.87 0.997 
DNT-F 16 10 7.611 0.48 1.430 21.30 0.995 
Test 3c 14 3 5.162 0.37 1.434 22.74 0.993 
DNT-G 16 7 4.782 0.30 1.468 24.21 0.991 
ZPB-A 20 12 9.249 0.46 1.522 25.73 0.987 
(4.37 psia PB15-PstB138, 
Unknown) 12 7 8.946 0.75 1.664 27.39 0.982 

Test 9b 23 2 4.484 0.19 1.710 29.10 0.975 
Test 3b 35 8 5.187 0.15 1.791 30.89 0.966 
Test 1c 12 4 2.181 0.18 1.854 32.75 0.955 
100% Suit-D, females 9 0 1.550 0.17 1.873 34.62 0.940 
DNT-B 18 7 9.923 0.55 1.919 36.54 0.922 
100% Suit-C 11 0 1.660 0.15 1.955 38.49 0.901 
PE1-A 26 11 7.738 0.30 1.958 40.45 0.877 
Test 4b 12 0 1.685 0.14 1.960 42.41 0.851 
Test 4c 12 0 1.813 0.15 2.136 44.55 0.817 
Test 4d 12 0 1.859 0.15 2.200 46.75 0.778 
Test 9d 7 0 1.677 0.24 2.205 48.95 0.736 
Test 4e 12 0 1.937 0.16 2.309 51.26 0.689 
Bubb Threshold-A 25 0 2.145 0.09 2.347 53.61 0.639 
Test 4f 12 0 1.975 0.16 2.364 55.97 0.588 
35K-C 36 19 23.599 0.66 2.602 58.58 0.528 
Test 2b 22 6 3.110 0.14 3.127 61.70 0.451 
PRP II 50 0 2.959 0.06 3.145 64.85 0.378 
EffctEx-P 1 1 0.230 0.23 3.344 68.19 0.305 
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Data Set 
# 

Exposures # DCS Incidents 
 

   
   Observed Predicted      
     A1309-3RUT MBe1   
        (Pearson Residual)2  

  (N) (f) n π (f-n)2/n(1-π) cumulative 
χ2 

P 

           
EffctEx-C 22 9 13.329 0.61 3.567 71.76 0.236 
Test 9a 24 1 4.679 0.19 3.594 75.35 0.178 
(4.37 psia PB60-PstB180, 
Unknown) 43 23 28.968 0.67 3.768 79.12 0.129 

7.8 psia-B 92 4 9.933 0.11 3.973 83.09 0.089 
100% Suit-E 11 0 2.926 0.27 3.987 87.08 0.059 
EffctEx-F 13 5 8.458 0.65 4.048 91.13 0.038 
EffctEx-H 8 7 4.157 0.52 4.049 95.18 0.024 
EffctEx-B 25 10 15.071 0.60 4.296 99.47 0.015 
Test 1d 3 2 0.580 0.19 4.306 103.78 0.008 
PE2-A 32 15 9.418 0.29 4.688 108.47 0.004 
35K-D 31 31 26.814 0.86 4.839 113.30 0.002 
PRP I 49 9 4.448 0.09 5.124 118.43 0.001 
DNT-J 34 21 14.473 0.43 5.125 123.55 0.000 
DNT-K 31 14 8.050 0.26 5.940 129.49 0.000 
(6 psia, Unknown) 24 1 6.287 0.26 6.023 135.52 0.000 
MV-A 31 29 22.970 0.74 6.111 141.63 0.000 
CO2-D 25 19 12.301 0.49 7.182 148.81 0.000 
BSI-E 46 24 15.287 0.33 7.438 156.25 0.000 
EffctEx-V 1 1 0.118 0.12 7.449 163.70 0.000 
EffctEx-W 1 1 0.118 0.12 7.449 171.15 0.000 
EffctEx-X 1 1 0.118 0.12 7.449 178.59 0.000 
40K-A 40 18 26.500 0.66 8.077 186.67 0.000 
EffctEx-E 25 8 15.071 0.60 8.353 195.03 0.000 
BSI-B 36 32 23.655 0.66 8.585 203.61 0.000 
ZPB-C 20 1 7.399 0.37 8.784 212.39 0.000 
7.8 psia-A 94 1 10.154 0.11 9.252 221.65 0.000 
EffctEx-A 46 15 25.627 0.56 9.949 231.59 0.000 
Test 11a 28 3 11.234 0.40 10.080 241.67 0.000 
CO2-A 38 4 13.394 0.35 10.175 251.85 0.000 
BSI-D 28 22 12.885 0.46 11.944 263.79 0.000 
(5.45 psia, Unknown) 21 1 8.834 0.42 11.992 275.79 0.000 
CO2-B 37 3 13.225 0.36 12.302 288.09 0.000 
BSI-C ? 83 66 48.068 0.58 15.895 303.98 0.000 
Test 10 19 1 0.047 0.00 19.577 323.56 0.000 
EffctEx-D 26 7 17.856 0.69 21.073 344.63 0.000 
CO2-C 25 24 12.226 0.49 22.190 366.82 0.000 
Bubb Threshold-C (?) 23 3 0.244 0.01 31.459 398.28 0.000 
Test 6 29 1 0.028 0.00 34.358 432.64 0.000 

        
Totals: 2594 858.3 896.453     
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	Neglect of terms of order ( 2 yields
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	Similarly, Eq. (B.31) becomes
	. (B.40)
	With constant q(t), (n becomes a constant equal to ( and Eq. (B.40) reduces to Eq. (B.24).
	Determination of , , and  requires computation time in excess of that required for the Nbs = 1 case (multiple bubbles of the same size) roughly in proportion to the number of bubble sizes considered.
	9.2 Multiple Diffusible Gases

	. (B.41)
	The total diffusible gas pressure in a bubble must equal the hydrostatic pressure less the sum of the infinitely-diffusible gas partial pressures, , plus the pressures due to surface tension and tissue elasticity as indicated by Eq. (B.14). Therefore,...
	. (B.44)
	. (B.45)
	Note that Eq. (B.45) reduces to Eq. (B.18) if the number of diffusible gases Ng = 1.
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	We begin by substituting  and  into Eq. (A.15) (with Nbs = 1) for O2 mass balance in tissue to obtain:
	, (B.48)
	where  is blood flow per unit volume of tissue and the tissue O2 consumption, , is determined with the recursive formula in Eq. (B.32). We then approximate the blood O2 content (plasma + Hb-bound) versus O2 partial pressure curve by a linear segment f...
	, (B.49)
	where  is the slope of the whole blood solubility curve in the region of . Referring to the a1, a2, b1, b2, p, , and phalf parameters defined with Eq. (A.21), this slope is given by
	with .
	Note that  has the units of solubility. Assuming that compartmental blood-tissue gas exchange is perfusion limited, end-capillary blood and tissue are at equilibrium; i.e., = ; and Eq. (B.49) becomes
	, (B.51)
	where
	. (B.52)
	Substitution of Eq. (B.51) into Eq. (B.48) yields
	, (B.53)
	which is valid for tn ≤ t ( tn+1 with blood flow of  and O2 consumption of . Dividing both sides of Eq. (B.53) by  yields
	, (B.54)
	where ,  is a time constant that changes in each time interval depending on changes in blood flow and changes in the slope of the blood O2 content versus O2 partial pressure curve at the prevailing , and  is a constant rate of change of pressure in ea...
	. (B.55)
	Note from Eq. (B.50) that , which obviates excessively small values of  that could cause numerical errors. Rearranging terms, Eq. (B.54) for the interval [tn , tn+1] becomes,
	, (B.56)
	where . (B.57)
	Eq. (B.56) is identical in form to Eq. (A.22) with k=1 and  for the tissue tension of an inert gas. Comparison of the two equations shows that variables , , and  in Eq. (B.56) correspond respectively to variables pa, , and  in Eq. (A.22), and the con...
	9.2.1.2 Multiple Bubbles of Different Size
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	As noted in Appendix A, the accumulation of bubbles recruited with increasing supersaturation during decompression is accommodated in present models by assuming that each newly nucleated bubble instantaneously attains the size of prevailing already-nu...
	Let  denote the coefficient associated with the bubble content of gas k, , at the outset of the nth integration step. The change in gas content, , in the interval [tn, tn+1] is preceded by a change in  at the beginning of the interval if any new bubbl...
	, (B.65)
	where  is the cumulative number of nuclei that were recruited at the outset of the (n-1) integration step. The number of bubbles recruited at the outset of the nth integration step to join those already present in the compartment (of number ) is conse...
	, (B.66)
	so that the number of bubbles participating in the nth integration step is
	. (B.67)
	9.3 Semi-Analytic Solution of the Fick Equation in the 3RUT-MB Model

	This is a linear differential equation in the dependent variable x with coefficients that vary with time. We apply the integrating factor method to obtain a numerical solution of this equation for x(t) at time tn+1 given x(t) at time tn. Recursion of ...
	The integrating factor is exp[If(t)], where If(t) is the indefinite integral . Both sides of Eq. (B.3) are multiplied by the integrating factor to obtain
	. (B.70)
	Integration of Eq. (B.70) in the interval tn ≤ t ≤ tn+1 yields
	i.e.,   . (B.71)
	Denote x(tn) and x(tn+1) by xn and xn+1, respectively. Then from Eq. (B.71)
	i.e.,   . (B.72)
	Letting t – tn =  and tn+1 – tn = tn in the interval [tn , tn+1], Eq. (B.72) becomes
	. (B.73)
	We evaluate If(t) using a straight-line approximation of f(t) in the interval tn ≤ t ≤ tn+1 (Fig. B.3). Let fn = f(tn) and fn+1 = f(tn+1). The step size tn may be adjusted based on the magnitude of the fractional increase in bubble radius calculated ...
	Applying the trapezoidal rule of integration in the interval [tn , tn+1],
	. (B.74)
	where is the “time constant” for the nth integration step. For the interval [t , tn+1], we have
	where  is the slope of f(t) in the interval [tn , tn+1]. In terms of δ, the above equation reads
	(B.75)
	The function g(t) is approximated in a similar fashion by a straight line in the interval [tn , tn+1]:
	, 0 ≤  ≤ tn ,  = t - tn , (B.76)
	where gn = g(tn) and  is the slope of g(t) in the interval [tn , tn+1]. Substituting Eqs. (B.74), (B.75), and (B.76) into Eq. (B.73) yields
	, (B.77)
	where  is the contribution to the solution due to g(t) in Eq. (B.3). It is the particular integral given by
	. (B.78)
	A closed-form expression for  is not possible because of the term contained in the exponent of the exponential factor. We could evaluate the integral using the trapezoidal rule of integration, but a more accurate evaluation is obtained by expanding...
	because (tn - ) ≥ 0
	substituting for
	because  ≤ tn
	,
	which may not be less than unity, even with very small values of step size tn. Therefore, we split the exponential factor into two factors and express  as
	. (B.79)
	Now, the exponent of the second (right most) exponential factor in Eq. (B.79) has a magnitude
	substituting for  and
	because  ≤ tn.
	Thus, the magnitude is no greater than the product of the step size tn at the nth integration step and the change in fn therein, a magnitude that is consequently less than unity for sufficiently small values of the step size. Depending on the choice ...
	We proceed by rewriting Eq. (B.79) with a series expansion of the second exponential factor truncated to include terms only through order 2:
	(B.80)
	The terms shown in brackets on the right side of Eq. (B.80) contain terms up to order 5 in . Since ≤t – tn ≤ tn+1 – tn ≤ tn, and the integration step size tn may be chosen as small as desired, we neglect terms of order greater than 2 in , and s...
	(B.81)
	where
	,
	and
	.
	Substituting for , , and  in Eq. (B.81), we obtain
	  (B.82)
	Returning to Eq. (B.77), we can calculate xn+1 at the nth integration step knowing xn from the previous step and the solution for  in Eq. (B.82). However, the solution for  requires fn+1 and gn+1 (and thus the unknown rn+1) to determine the slopes  an...
	The expression for  also contains fn+1 in the exponential factors. Without further simplification, the expression becomes a nonlinear equation in rn+1, or equivalently in the change in bubble radius rn, which requires an iterative solution at each in...
	. (B.83)
	With appropriate substitution of Eq. (B.83), Eq. (B.82) becomes
	. (B.84)
	We now substitute  and  in Eq. (B.84), cancel out tn in the numerator and the denominator of various terms, and retain only terms up to order 2 in tn to obtain
	Substituting ,
	(B.85)
	Eq. (B.85) is a second-order approximation to  Note that this does not compromise accuracy as we already limited  to terms containing powers of tn less than 3 to obtain Eq. (B.81). It is not necessary to include higher power terms in tn as accuracy...
	Returning to the solution Eq. (B.77), we expand the exponential factor retaining only terms up to order 2 in tn so that
	. (B.86)
	Substituting for from Eq. (B.85) and  into Eq. (B.86) yields
	(B.87)
	Equation (B.87) simplifies to our final expression for xn+1:
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