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AFIT-ENS-MS-20-M-171 

 

Abstract 

The mission of the 45th Weather Squadron (45 WS) is to “exploit the weather to assure 

safe access to air and space” for Patrick Air Force Base, Cape Canaveral Air Force Station 

(CCAFS), and Kennedy Space Center (KSC) in support of various operations (United States Air 

Force, n.d.). To support that mission the 45 WS hosts a suite of weather detection instruments 

that include a lightning warning system that consists of an array of 31 electric field mills (EFM) 

and a lightning detection and ranging system (Department of the Air Force, 1976).  

Electric field mills at Cape Canaveral continuously record data from 31 separate EFM 

sites 24 hours a day at a rate of 50 Hz. This produces 4,320,000 lines of recorded data daily for 

each EFM site, a total of more than 16 billion data points annually for the active thunderstorm 

season. This study seeks to determine a single electric field mill reading threshold for lightning 

onset and a separate single EFM reading threshold for lightning cessation. Statistical analysis of 

the EFM and Lightning Detection and Ranging (LDAR) parameters show there is no measurable 

correlation between EFM readings and lightning activity. Further, attempts to build models using 

threshold analysis, standard least squares regression fitting, nominal logistic regression fitting, 

and negative binomial regression fitting are unable to accurately predict any meaningful amount 

of lightning activity. The best of these models only account for 16% of the variance in the 

dataset. Overall results show EFM readings do not correlate well with lightning activity and any 

attempts to predict lightning proved ineffective. 
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45 WS ELECTRIC FIELD MILL LIGHTNING PREDICTION THRESHOLD 

ANALYSIS 

I. Introduction 

1.1 General Issue 

The mission of the 45th Weather Squadron (45 WS) is to “exploit the weather to assure 

safe access to air and space” for Patrick Air Force Base, Cape Canaveral Air Force Station 

(CCAFS), and Kennedy Space Center (KSC) in support of various operations (United States Air 

Force, n.d.). To support this mission the 45 WS hosts a suite of weather detection instruments 

that include a lightning warning system that consists of an array of 31 electric field mills (EFM) 

and a lightning detection and ranging system (LDAR) (Department of the Air Force, 1976). To 

ensure safe operations, the threat of lightning within 5 nautical miles (NM) of each supported 

location determines which operations personnel may perform. These delays can lead to monetary 

losses, loss of production, or cancellation and postponement of launch activities. Launch commit 

criteria violations lead to delayed launches and increases in launch costs (Merceret et al., 2010). 

Currently, launch activities cannot take place when EFM sensor values exceed a 

threshold of 1000 V/m (Merceret et al., 2010). At this threshold, the threat of rocket induced 

lightning is very high. The 45 WS desires a similar threshold value that can predict a lightning 

strike within 30 minutes. 

1.2 Problem Statement 

The 45 WS is interested in determining an EFM threshold reading value that can predict 

lightning onset and a separate EFM threshold value that accurately predicts lightning cessation. 
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1.3 Research Objectives/Questions/Hypotheses 

The hypothesis of this research is that there exists some threshold value above the mean 

clear-sky sensor reading of an EFM that indicates a strong potential for lightning activity to 

occur. The objectives of this research are to establish correlation among parameters of interest 

and build predictive models using threshold analysis and generalized linear regression techniques 

for time series data to accurately predict when a storm will begin and end. 

1.4 Research Focus 

This research focuses on establishing correlation between EFM sensor readings and 

lightning activity in order to conduct threshold analysis and construct regression models for time 

series analysis. 

1.5 Investigative Questions 

The questions answered in this analysis are: what factors from the available EFM and 

LDAR dataset best correlate to each other and to the occurrence of lightning storms? Does a 

threshold value for EFM readings that accurately predicts storm onset (30 minutes prior to first 

lightning strike) exist? Does a separate threshold value that accurately predicts storm cessation 

(15 minutes after last lightning strike) exist? If the threshold analysis does not produce a useful 

result can a standardized linear regression model accurately predict storm onset or cessation? Is a 

nominal logistic model useful in predicting if a storm will be present or not? If EFMs seem to be 

more responsive than predictive, then can a negative binomial model accurately predict when a 

storm is ending? Should the study use the variance of the EFM readings over 1-minute period 

instead of the mean EFM reading?  
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1.6 Methodology 

The methodology used in this research includes data preparation, statistical analysis, and 

model building. The datasets are cleaned, reduced, combined, and augmented with specific 

parameters of interest. Various statistical processes used in the analysis include basic methods of 

statistical analysis, threshold analysis, standardized linear regression, nominal logistic regression, 

and negative binomial regression model building techniques to predict storm onset and cessation. 

1.7 Assumptions/Limitations 

A fundamental assumption is changes in the electric field of the air cause lightning. 

Another assumption is it is acceptable to reduce 50 Hz EFM data to 1-minute averages. That is 

how the range user receives the data in real-time for analysis, so the sponsor requested using the 

1-minute EFM mean readings. The choice of response parameters is a potential limitation that 

determines how well models built on the dataset perform. Therefore, the research considers and 

explores several lightning response formats for correlation and modeling. 

1.8 Implications 

Current lightning warning practices at KSC are conservative. Establishing an EFM 

threshold value for lightning onset and/or lightning cessation has the potential of reducing range 

downtime and saving costs for range users. 

1.9 Preview 

The next chapter presents a literature review on various reports, instructions, manuals and 

texts related to the Eastern Range, lightning detection and measurement techniques, regression 

model time series analysis techniques, and prior research completed in these areas. Chapter 3 

overviews the methodology used including: the equipment used, data preparation steps taken, the 

types of statistical analysis performed, and creation of the various threshold and regression 
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models. Chapter 4 explains the results of the output from the statistical analysis and discusses 

how well each of the regression techniques applied perform comparatively. Finally, chapter 5 

concludes the report with a summary of the research performed and recommendations for next 

steps. 
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II. Literature Review 

2.1 Chapter Overview 

This chapter provides a brief overview of the literature related to the Eastern Range, 

lightning detection and measurement techniques, regression model analysis techniques, and prior 

research completed in these areas. 

2.2 Eastern Range 

2.2.1 Overview 

The Eastern Range, 45th Space Wing (45 SW), is a Major Range and Test Facility Base 

(MRTFB) Activity situated on Florida’s east coast (OUDSR, 2007).  The Eastern Range includes 

Cape Canaveral Air Force Station (CCAFS), National Aeronautics and Space Administration 

(NASA) Kennedy Space Center (KSC), and a corridor extending out over the Atlantic Ocean. As 

an MRTFB, the Eastern Range infrastructure and associated workforce must be preserved as a 

national asset to provide test and evaluation capabilities to support the Department of Defense 

(DoD) acquisition system (OUDSR, 2007). To ensure availability of this capability, range safety 

requirements safeguard personnel and assets on the range. CCAFS and KSC are situated in an 

area that receives the highest lightning activity in the United States, known as “Lightning Alley 

(Flinn et al., 2010; Roeder & Saul, 2016).” The 45 WS provides operational support for activities 

conducted in and around the Eastern Range, which include observation services, meteorological 

forecasting, meteorological watch, supporting organizations’ thresholds and requirements, and 

launch and landing weather support, all spelled out in detail in the 45th Space Wing Instruction 

(45 SWI) 15-101 (45 WS/DO, 2018). 
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2.2.2 Instrumentation 

The Eastern Range offers multiple meteorological services as described in the 45 SWI 

15-101 and ETR Meteorological Handbook (45 WS/DO, 2018; Department of the Air Force, 

1976). Surface instrumentation include: Mecurial Barometer, Barograph, Psychrometer, 

Hygrothermograph, Wind Measuring Set, Cloud Height Se, Ceiling Light Projector, Weather 

Radar, Launch Pad Lightning Warning System (LWS), and Weather Information Network 

Display System (Department of the Air Force, 1976). The Eastern Range has received various 

updates to its instrumentation to better detect lightning (Flinn et al., 2010). The 45 WS 

implemented an update to its Lightning Detection and Ranging (LDAR) system in 2008 when 

the Four-Dimensional Lightning Surveillance System (4DLSS) went operational. The 45 WS 

also upgraded the Cloud to Ground Lighting Surveillance System (CGLSS) and integrated the 

system into the 4DLSS. In addition, the 45 WS uses the Launch Pad Lightning Warning System, 

which is a network of 31 surface electric field mills (Flinn et al., 2010).  

2.2.3 Range Safety Requirements 

AFSPC MANUAL 91-701 establishes range safety requirements for lightning on the 

Eastern Range for all activities performed at CCAFS. Volume 1 tasks range users to perform and 

document preliminary hazard analysis, to include lightning hazards (Air Force Space Command, 

2016). Lightning protections and detection systems are required to keep employees, rockets, 

launch pads, payloads and processing facilities safe from harm (National Aeronatics and Space 

Administration, 2005). AFSPC MANUAL 91-701 Volume 3 establishes the requirements for 

lightning protection systems on buildings and equipment that complies with NFPA 780: 

Standard for the Installation of Lighting Protection Systems (Air Force Space Command, 2019). 

AFSPC MANUAL 91-701 Volume 5 has more specific requirements for launch vehicles, 



 

7 

payloads and ground support equipment for protection against lightning, typically by bonding 

grounding systems (Air Force Space Command, 2018). Finally, AFSPC MANUAL 91-701 

Volume 6 provides operating restrictions for personnel due to lightning and establishes criteria 

for lightning hazard watches and warnings. Operations Safety Plans (OSP) detail procedures for 

reaction to lightning including what actions are to be taken during lightning watches and 

lightning warnings (Air Force Space Command, 2014, p. 21). Lightning watches are established 

when lightning is forecast to occur within 5 nautical miles of a specific lightning alert area (Air 

Force Space Command, 2014, p. 31). A lightning warning is established when lightning is 

imminent or occurring within a 5 nautical mile boundary of a specific lightning alert area (Air 

Force Space Command, 2014, p. 31). 

2.2.4 Launch Commitment Criteria 

An important resource detailing the history of Lightning Launch Commitment Criteria 

(LLCC) is a report produced by NASA, “A History of Lightning Launch Commit Criteria and 

the Lightning Advisory Panel for America’s Space Program,” which gives a detailed background 

and chronology of studies and criteria related to the formation of LLCC. Range users consider 

two types of lightning when establishing range safety and launch commit criteria. The first is 

natural lightning, which is the focus of this research, and the second is triggered lightning that is 

caused when a vehicle flies into a high electric field (Merceret et al., 2010, p. 34). Studies from 

triggered lightning incidents that occurred with the Apollo XII mission and the loss of Atlas-

Centaur 67 rocket due to triggered lightning establish a trigger lightning warning for EFM 

readings in excess of 1000 volts per meter (V/m) (Merceret et al., 2010, p. 41). There is currently 

no established threshold for EFM readings for naturally occurring lightning. Instead, a series of 
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criteria are established based on the detection of lightning, existence of storm clouds, and the 

temperature of cloud tops (Merceret et al., 2010, pp. 128–132). 

2.3 Lightning Measurement Methods 

2.3.1 Overview 

The 45 WS on the Eastern Range employs several sensors to detect and report the 

presence of lightning in and around the Eastern Range. These sensor systems include the 4DLSS, 

LDAR, CGLSS, and the LPLWS as described in Section 2.2.2. The data made available and used 

for this study only include the 31 LPLWS EFM sensor data and LDAR sensor data. The 

following sections discuss these systems in further detail. 

2.3.2 Electric Field Mill (EFM) 

The 45 WS employs an array of 31 electric field mills (EFM) to detect the static 

atmospheric electric field within 5 nautical miles of the sensor (Flinn et al., 2010). The field 

mills are numbered from 1 to 34, but exclude sensor numbers 3, 23, and 33, which have either 

been moved to new locations or decommissioned. Figure 1 shows the locations of all 31 sensors. 

The sensors depicted by a blue marker are considered coastal sensors while the red markers 

depict inland sensors. 



 

9 

 
 (Snazzy Maps, 2019) 

Figure 1: EFM Locations 

 

An EFM “works by alternately exposing a sensor element to the electric field and an 

uncharged reference (Bloemink, 2013).” The electric field generated during a thunderstorm is 

caused by the shearing of electrons as particles in a storm ascend and collect on the descending 

particles (Bloemink, 2013). Figure 2 depicts the charge state conditions of the ground and cloud 

during storm generation. 
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 (Bloemink, 2013) 

Figure 2: Lightning Storm Electric Field Generation 

 

The electric field charges the exposed sensor element. The sensor element discharges 

back to its ground state when covered. This induces a charge to the sensor element that is then 

converted to a voltage proportional to the external electric field (Bloemink, 2013). The EFMs in 

use by the 45 WS collect and record the atmospheric electric field in units of volts per meter 

(V/m) at a rate of 50 Hz. Real time display of EFM data at the weather station show a 1-minute 

running average of the EFM V/m reading for each sensor. 

2.3.3 Lightning Detection and Ranging 

The function of the lightning detection and ranging (LDAR) system is to detect and 

determine the X, Y, and Z position of electrical discharge associated with thunderstorm activity 

and display that activity to the weather office to track the position and movement of 

thunderstorms (Poehler & Lennon, 1979). The X position represents the latitudinal distance in 
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meters of a lightning strike from the LDAR central station, the Y position is the longitudinal 

distance in meters of a strike from the station, and Z is the height at which the lightning occurs. 

Depending on height, these could be depicted as cloud-to-cloud or cloud-to-ground lightning, all 

of which encompass total lightning. The LDAR system consists of six sensors stationed around a 

central station and sensor as shown in Figure 3 (Merceret et al., 2010, p. 28). Only three of the 

six sensors are required to obtain lightning strike data, while the other three sensors constitute an 

independent system used to validate the accuracy of the data (Poehler & Lennon, 1979). The 

sensors can detect the pulsed 60-80 MHz portion of the RF signal emitted by each lightning 

event more than 2 milliseconds apart. By using the location of each of the sensors and the time it 

takes for the lightning event RF signal to reach each sensor, they can triangulate the location of a 

lightning event (Poehler & Lennon, 1979).  The LDAR data displays locally at the 45 WS 

weather office and Patrick AFB weather station at a limited rate. However, it is recorded at a 

much higher rate in digital format for processing and analysis. The latter data source is used for 

the analysis in this study (Poehler & Lennon, 1979).  
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 (Merceret et al., 2010) 

Figure 3: LDAR Sensor Locations 

 

2.4 Relevant Research 

2.4.1 NASA Reports 

There have been numerous research studies carried out by National Aeronautics and 

Space Administration, the United States Air Force, and other agencies near Cape Canaveral Air 

Force Station, Florida. These studies are detailed in the NASA report, “A History of the 

Lightning Launch Commit Criteria and the Lightning Advisory Panel for America's Space 

Program (Merceret et al., 2010).” Some of these studies date back to the early 1940s with the 

Thunderstorm Project and the Thunderstorm II project in the 1970s (Braham Jr., 1996; Poehler & 

Lennon, 1979). These studies primarily focus on understanding the inner workings of mesoscale 

disturbances of the atmosphere in an effort to make air travel safer (Braham Jr., 1996).  

The first study primarily focuses on turbulence within a storm system. The Thunderstorm 

II project focuses on the study of and improvements to the LDAR system in place at KSC and 

CCAFS, ground based electric field mills, and an airborne electric field mill sensor (Poehler, 
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1977). This study shows that the LDAR system, with the addition of electric field mill sensors, 

can determine the position, waveshape, rate of rise, and peak current of ground strikes. It also 

shows that the system is reliable, accurate, and has redundancy (Poehler & Lennon, 1979). An 

important result of the Thunderstorm II study is that the electric field intensity required to initiate 

lightning discharge is as low as 200 kV/m in the presence of water drops (Poehler, 1977). It also 

suggests correlation between LDAR and airborne EFM readings. This study does not explain 

how the EFM readings reported by an airborne sensor differ from a ground-based sensor or how 

the readings compare since the airborne readings recorded far exceed the values provided in the 

current study’s available EFM data. 

The loss of the Atlas-Centaur 67 rocket due to triggered lightning in 1987 led to the 

formation of the Lightning Advisory Panel along with additional research activities into 

atmospheric electricity, lightning and triggered lightning. One of the major studies during this 

period is the Airborne Field Mill Program (ABFM I) which is similar to the Thunderstorm II 

project. In this study an aircraft fitted with five electric field mills takes direct measurements of 

the electric field vector in thunderstorm-related clouds (Merceret et al., 2010, p. 53). The 

summer studies conducted through ABFM I show that fields at the ground were never below 1 

kV/m while fields aloft were below 5 kV/m when cumulous clouds were present within 5-6 

nautical miles of the LPLWS network (Merceret et al., 2010, p. 55). This gives a good indication 

of the range of EFM values to consider for the lightning prediction threshold for this research. 

2.4.3 AFIT EFM Studies 

There are several studies from AFIT, requested by the 45 WS, that use various statistical 

analysis methods conducted on the same KSC EFM dataset. These studies include the use of 

artificial neural network analysis, ellipse fitting methods, and recurrent neural network modeling 
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of the EFM data with varying results. Hill (2018) proposes using artificial neural networks and 

EFM data to predict lightning strike potential. Using a 15 minute prediction Hill’s best neural 

network model is able to achieve a reported accuracy of 90.3% with a true positive rate of 77.6% 

and a probability of false detection rate of 8.3 %, and an overall operational utility index of 

53.9% (Hill, 2018).  

Speranza (2019) also attempts to predict lightning strikes around KSC and CCAFS using 

optimal Long Short-term Memory Neural Network models. Speranza makes several deviations 

from the study conducted by Hill (2018). Speranza uses a different methodology and different 

subset of the EFM data. While Hill uses 1-minute means on EFM data, Speranza reduces his 

dataset to 1-hour increments. Ultimately, Speranza’s model, based on hourly look backs of 48 

hours is able to predict lightning with a maximum accuracy of 84%, but is not very useful due to 

the low resolution (Speranza, 2019). 

Sanderson (2019) focuses on using LDAR data in an effort to reestablish a new lightning 

storm warning radius from 5 nautical miles to 4 nautical miles using an ellipse fitting method. 

This change in effect is able to reduce range user’s downtime and increase productivity. 

Sanderson’s proposal saves approximately 22.5 8-hour man days annually for the months of May 

through September (Sanderson, 2019). 

2.4.2 EFM Research by Other Institution 

Lucas et al. (2017) study 18 years of KSC EFM data. They also include readings from 

meteorological sensors in and around the area to determine meteorological impacts to the EFM 

readings. Their study primarily focuses on EFM response during fair-weather conditions and 

suggest there are different responses and signatures between coastal and inland electric field 

mills (Lucas et al., 2017). They are also able to show noticeable variations in the ambient electric 
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field mill readings are affected by wind direction, varying levels of cloud cover, and diurnal 

variation effects (Lucas et al., 2017). 

Antonio da Silva Ferro et al. (2018) show an EFM response to lightning within 20 km of 

the sensor. In this study, the researchers consider 1-minute averages of the EFM measurements, 

showing this to be a satisfactory smoothing technique to filter high frequency oscillations. This 

study concludes that, using a 45 minute warning window, the EFM sensor is able to provide a 

60% probability of detection at a threshold of 900 V/m at a radius of 10 km (Antonio da Silva 

Ferro et al., 2018). 

2.5 Statistical Analysis 

2.5.1 Overview 

Many techniques are available to analyze time series data. This study uses basic statistical 

analysis, like calculating mean, variance, and correlation, to more involved processes, such as 

least squares regression, nominal logistic regression (NLR) and negative binomial regression to 

determine how different variables relate to a response variable of interest. This section 

summarizes several studies that use these different techniques and demonstrates how to apply 

them to the time series dataset involved in this research.  

2.5.2 Statistical Relationships 

 This study uses statistical analysis of variables to determine if a relationship exists 

between provided EFM sensor reading data and the occurrence of lightning. While there are 

studies specific to the particular dataset used in this research, finding similar studies to suggest a 

different approach is more challenging. Several studies into research and analysis of noisy time 

series data typically apply varying techniques to denoise the data prior to processing, such as the 

use of wavelets (Lucas et al., 2017). Masselot et al. (2018) show that aggregating the response 
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prior to applying regression model fitting offers good performance. In this technique the 

aggregation of �̃�𝑡 is: 

�̃�𝑡 = ∑ 𝑤𝑖𝑦𝑡+1

𝑖∈𝐼

 
(1) 

where 𝑤𝑖 are the weights attributed to each observation and 𝐼 is the aggregation window 

(Masselot et al., 2018). 

Zhu et al. (2013) search for linear correlations in sparse and noisy data sets. They 

acknowledge the importance of finding correlations to show the dependencies among the varying 

features in a dataset. The techniques they reference primarily concern themselves with 

discriminant analysis approaches from classification literature. Their technique of research builds 

upon those principles to the concept of global linear correlation (Zhu et al., 2013). This research 

focuses on the former, discriminant analysis approach. 

2.5.3 Threshold Analysis 

 Antonio da Silva Ferro et al. (2018) give a good example to follow for performing 

threshold analysis on EFM reading data. It is possible to use prebuilt software tools to study 

thresholds within time series data. One such package is T-Time, a Java based visual data mining 

tool that allows for interactive data exploration. T-Time is described as being able to assist users 

in identifying potentially interesting threshold values (Aßfalg, Kriegel, Kunath, Pryakhin, & 

Renz, 2008). The techniques behind the software include interval generation, applying distance 

functions on intervals, and using distance functions on interval sequences. Unfortunately, this 

particular software does not appear to be available. Another package, available in R, is “threg.” 

This packages uses an estimation procedure with a threshold regression model (Xiao, Whitmore, 

He, & Ting Lee, 2015). The approach suggested by da Silva Ferro et al. (2018) is the preferred 

method for this study since the scripts are simple to create and understand how they are working. 
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2.5.4 Regression Models 

This study makes use of various regression analysis techniques for time series analysis to 

generate descriptive models that may predict detection of a potential lightning strike. Kedem and 

Fokianos (2002) describe several regression methods for differing types of time series data, 

including general, binary/categorical, and count time series. Dynamic modeling could prove 

useful, as suggested by Laine, as these models offer a very generic framework to analyze time 

series data (Laine, 2019). However, due to the nature of the EFM dataset having a consistent 

mean value throughout the day, this work’s primary focus is on standard least squares regression, 

nominal logistic regression, and negative binomial regression models. 

Standard least squares regression is used “to relate the mean response of a variable of 

interest to a set of explanatory variables by means of a linear equation” (Kedem & Fokianos, 

2002). This type of regression is only useful, however, if the observations in the data are normal 

and independent, or one can at least assume the observations to be so. The general form for the 

regression model is: 

𝑋(𝑡) = 𝑎(𝑡, 𝜃) + 𝜀(𝑡), 𝑡 ≥ 0, 
(2) 

where 𝑎(𝑡, τ), (t, τ)ϵℝ+ × Θ𝑐, is a continuous function, and random noise 𝜀 = {𝜀(𝑡), 𝑡ϵℝ (Ivanov 

& Orlovskyi, 2018). 

Kedem and Fokianos (2002) describe regression models for dealing with binary 

responses, which is a subset of categorical time series regression models. Logistic regression is 

considered one of the simplest models for binary classification that can directly estimate 

posterior probabilities (Kurita et al., 2009). Logistic regression models model events that occur 

as either a success or a failure. The following expresses the dichotomy as: 
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𝑌𝑡 =̅ 𝐼[𝑋𝑡𝜖𝐶] = {
1,   𝑖𝑓  𝑋𝑡𝜖𝐶

0,   𝑖𝑓 𝑋𝑡𝜖𝐶̅  (3) 

where 𝐶̅ is the complement of the set 𝐶 (Kedem & Fokianos, 2002). Additionally, the cumulative 

density function (CDF) and probability functions are (Kedem & Fokianos, 2002): 

𝐹𝑙(𝑥) =
𝑒𝑥

1 + 𝑒𝑥
=

1

1 + 𝑒−𝑥
, −∞ < 𝑥 < ∞ 

(4) 

and 

𝑃(𝑌2 = 𝑦2|𝑌1 = 𝑦1) = 𝑃00 ( 
𝑃01

𝑃00
 )

𝑦1

(
𝑃10

𝑃00
 )

𝑦2

(
𝑃11𝑃00

𝑃01𝑃10
 )

𝑦2𝑦1

 
(5) 

Reforming the equation gives: 

log {
𝑃(𝑌2 = 1|𝑌1 = 𝑦1)

𝑃(𝑌2 = 0|𝑌1 = 𝑦1)
 } = 𝜃2 + 𝜃12𝑦1 

(6) 

where 

𝜃2 = log (
𝑃10

𝑃00
 ) , 𝜃12 = log (

𝑃11𝑃00

𝑃01𝑃10
 ). 

(7) 

 

Pang et al. (2019) use a binary logistic regression model to establish a linear or nonlinear 

relationship between independent and dependent variables. Using the binary logistic regression 

technique they show low missed forecasting, but high false alarm rates when predicting severe 

weather (Pang et al., 2019). 

Count time series are generally modeled using a Poisson distribution model (Kedem & 

Fokianos, 2002). A subset of the Poisson model is the negative binomial regression model. 

Negative binomial models are useful when there is a possibility of over-dispersion or extreme 

observations in the variables (Chen et al., 2016). The negative binomial cumulative distribution 

function is: 
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𝑦𝑡|ℱ𝑡−1~𝒩ℬ ( (𝛾𝑡 − 1)−1𝜇𝑡,
𝛾𝑡 − 1

𝛾𝑡
 ) , (𝛾𝑡 − 1)−1𝜇𝑡, 𝛾𝑡 − 1 ≥ 0, 

𝑃(𝑦𝑡 = 𝑘|ℱ𝑡−1) =
 Γ((𝛾𝑡 − 1)−1𝜇𝑡 + 𝑘)

Γ((𝛾𝑡 − 1)−1𝜇𝑡)Γ(𝑘 + 1)
(

1

𝛾𝑡
 )

(𝛾𝑡−1)−1𝜇𝑡

( 1 −
1

𝛾𝑡
 )

𝑘

.  

(8) 

2.6 Summary 

This chapter discussed literature relating to activities at the Eastern Range, the techniques 

and technologies used for measuring and studying lightning phenomenon, studies related to 

lightning research and EFM and LDAR analysis, and research covering various statistical 

methods. This section included a summary of the importance of the Eastern Range as an MRTFB 

and the protection of personnel and assets as described in various instructions, manuals and 

reports. It detailed the types of equipment used by the 45 WS and researchers in support of range 

activities. This chapter presented a summary of the works relevant to this research. Finally, this 

section reported on and summarized reports related to different statistical analysis. The next 

chapter explains the research methodology. 
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III. Methodology 

3.1 Chapter Overview 

This chapter describes the methodologies used in the analysis of predictive qualities of 

EFM data. First, this chapter describes the materials used in analysis to include the software, 

hardware, and sensors. Next, this section details the steps used to create, clean, reduce, and 

augment the data. Finally, this section finishes by describing various statistical processes used in 

the analysis including the methods of statistical analysis, threshold analysis, standardized linear 

regression and NLR model building methods to predict storm onset and cessation, and a negative 

binomial method to predict lightning storm cessation. 

3.2 Materials and Equipment 

3.2.1 Computer Hardware and Software 

 Due to the large size of the dataset, in terms of number of both number of files to process 

and the amount of data points recorded, the research greatly benefits from the capability to use a 

programming language, especially one already tailored toward data analysis and statistics. There 

are several programming languages to choose from. However, being open source and having a 

large amount of support available make the R programming language version 3.6.1 with the 

RStudio GUI interface version 1.1.143 an ideal choice for processing the dataset (R Core Team, 

2019). The machines available to run the software include two mobile laptops running 64-bit 

Windows 10 Home Edition, with an Intel Quad-Core i7 CPU and 16 GB of RAM in each. These 

machines are useful for processing data when away from the desk. However, due to the large 

number of files, the large size of those files, and the desire to use parallel processing they quickly 

showed inability to process the dataset in a reasonable amount of time. To help reduce the 

processing time, an HP Z620 workstation with two Xeon E5-2687W 8-core processors and 192 
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GB of RAM running both Linux and Windows 10 Professional performed the majority of the 

data processing tasks. 

 After the data was cleaned, processed, aggregated, and augmented in R, it was converted 

into a CSV file for use in JMP 13.0 for statistical analysis of the dataset (SAS Institute Inc., 

2019). The JMP data analysis software offers an easy to use interface to interact with the dataset, 

choose the desired parameters to analyze and compare, and perform the various types of analysis 

to include multivariate analysis and model fitting. JMP also proved useful in its ability to 

produce graphical output in addition to analysis in text format. Microsoft Excel provided 

capability for further processing of JMP output to summarize the JMP results and better 

represent findings. 

3.2.2 Datasets 

 The dataset used for this research and analysis include EFM sensor readings and LDAR 

data recordings. They are available on a portable hard disk drive and also available from 

NASA’s Spaceport Weather Archive (Smith, 2019). The EFM data is composed of daily sensor 

files for each EFM sensor located at KSC and CCAFS. This study makes use of four years of 

LDAR data grouped into monthly files. The entirety of the dataset takes up nearly 3 terabytes of 

hard disk space prior to processing. 

3.3 Data Preparation 

3.3.1 EFM Data 

 The data available for processing includes four years of “lightning season” data EFM and 

LDAR readings for the months between May and September. The 50 Hz EFM data is broken up 

into 34 distinct sensor “.RAW” files for each day, of those 34 “.RAW” files, only up to 31 files 

contain data since EFM sensors 3, 23, and 33 are deactivated. Daily folders group the “.RAW” 
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files for all sensors for each day of data. Those daily folders combine into 6 groups of 5 days for 

each month of data and 5 months of data group into years from 2013 to 2016. 

 The first step in data preparation involved using the R programming language to read in 

the “.RAW” files for each sensor for a single day. These sensor files have three columns: date in 

Julian format, time in microseconds, and sensor reading in V/m. Figure 4 shows an example of 

how R displays the “.RAW” file format. A single daily data frame combines individual sensor 

files by column for each day; it contains the date, time, and the sensor readings across 31 

columns.  

 
Figure 4: Example Raw “.RAW” EFM Data Format 

 

Reducing 50 Hz sensor readings to 1-minute averages helps reduce time needed for 

processing and the size of the dataset by 1/300 of its original length. Real-time displays of the 

EFM data show EFM readings for each sensor as a 1-minute running average of the electric field 

in V/m. In addition to columns that represent the 1-minute mean sensor reading for each EFM, 

the variances for 1-minute of sensor data are stored in columns representing each sensor. The 

completed dataset combines 1-minute mean sensor readings and 1-minute variances by row into 

a single dataset and 1-minute variance for every day of the 4 years of available EFM data. 

3.3.2 LDAR Data 

 The LDAR data are processed and cleaned before they are combined with the EFM 

dataset. The first step involves reading in the LDAR “.txt” files which are provided for every 
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month over the 4-year period included in this study. Each “.txt” file of LDAR data contain one 

month of comma delimited files with 5 columns. The first column includes the date and time, the 

second column is latitudinal distance in meters from the center of the LDAR sensor network, the 

third column is longitudinal distance in meters from the center of the LDAR sensor network, the 

fourth column represents the height at which the lightning is detected (this height column is 

ignored since there is only interest if lightning occurs in the area, not if it is a cloud-to-cloud or 

cloud-to-ground strike), and the fifth column is the Unix epoch time with a base time starting at 

00:00:00 on 1 January 1970. Figure 5 shows an example of the formatting of a raw “.txt” file. 

 
Figure 5: Example Raw “.txt” LDAR Data Format 

 

 The first step for processing the LDAR data was to read it into an R data frame, then 

separate the combined date and time column into separate columns with the same formatting as 

the date and time of the EFM data. The latitude and longitude data must go through several 

transformations prior to analysis. Using equation (9), where 𝜆𝐿𝐷𝐴𝑅 is the latitudinal location of 

the center of the LDAR sensor in degrees, 𝑥𝑠𝑡𝑟𝑖𝑘𝑒 is the latitudinal distance in meters of a 

lightning flash from the LDAR sensor, and 𝑟𝐸𝑎𝑟𝑡ℎ is the radius of the Earth in kilometers, 

transforms the raw latitudinal distance into a coordinate in degrees latitude. 
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𝜆𝑠𝑡𝑟𝑖𝑘𝑒 = 𝜆𝐿𝐷𝐴𝑅 +
(
𝑥𝑠𝑡𝑟𝑖𝑘𝑒

1000 )

𝑟𝐸𝑎𝑟𝑡ℎ
∗

180

𝜋
 (9) 

Similarly, the calculation shown in equation (10) transforms raw longitudinal distance to degrees 

longitude, where 𝜑𝐿𝐷𝐴𝑅 is the longitudinal location of the center of the LDAR sensor in degrees, 

𝑦𝑠𝑡𝑟𝑖𝑘𝑒 is the longitudinal distance in meters of a lightning flash from the LDAR sensor, and 

𝑟𝐸𝑎𝑟𝑡ℎ is the radius of the Earth in kilometers. 

𝜑𝑠𝑡𝑟𝑖𝑘𝑒 = 𝜑𝐿𝐷𝐴𝑅 +

(
(

𝑦𝑠𝑡𝑟𝑖𝑘𝑒

1000
)

𝑟𝐸𝑎𝑟𝑡ℎ
∗

180
𝜋

)

cos (𝜆𝐿𝐷𝐴𝑅 ∗
𝜋

180)
 

(10) 

The following steps calculated the distance in nautical miles between each lightning 

strike and each EFM sensor in the sensor array using the latitudinal and longitudinal coordinates 

of the lightning strikes and the coordinates of each EFM sensor. The spherical law of cosines 

transformation in equation (11), where 𝜆𝐸𝐹𝑀𝑖
 is the latitudinal coordinate of an EFM sensor in 

radians, 𝑖 is the sensor number from 1-34, 𝜆𝑠𝑡𝑟𝑖𝑘𝑒 is the latitudinal coordinate of a lightning strike 

in radians, 𝜑𝐸𝐹𝑀𝑖
 is the longitudinal coordinate of an EFM sensor in radians, 𝜑𝑠𝑡𝑟𝑖𝑘𝑒 is the 

longitudinal coordinate of a lightning strike in radians, and 𝑟𝐸𝑎𝑟𝑡ℎ is the radius of the Earth in 

nautical miles, calculated the distance between two geographic coordinates (Veness, 2019). 

𝐷𝑖𝑠𝑡 = 𝑎𝑏𝑠[acos(𝑠𝑖𝑛(𝜆𝐸𝐹𝑀𝑖
) ∗ sin(λstrike) + cos(λEFMi

) ∗ cos(λstrike)

∗ cos(φEFMi
− φstrike)) ∗ 𝑟Earth] 

(11) 

 Next, the LDAR dataset was reduced by all lightning strikes into a single reading for each 

EFM for each minute of the day. To do this, the minimum lightning strike distance observed over 

each 1-minute period for each EFM sensor is calculated and stored in a separate column 

representing each EFM sensor. The data are displayed as a binary of 1000 if a minimum 
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lightning strike distance is within 5 nautical miles of the sensor, otherwise the value is set to 0 

for no lightning detected within that distance. A binary value of 1000 was chosen over using 1 so 

that lightning strikes could hold more leverage in model building in case the binary columns are 

treated as continuous variables rather than nominal or binary categories. Additionally, it makes it 

easier to differentiate when graphed with other variables. 

3.3.3 Combined EFM/LDAR Dataset 

 After processing the EFM and LDAR data, a left-join command combined the two 

datasets into one where the EFM dataset serves as the base dataset. There are many rows of data 

representing minutes with no lightning; “NA” values fill the LDAR columns in these empty 

segments for the lightning strike distance columns and 0s for the binary lightning strike columns. 

The binary strike columns are referenced to create an additional 31 columns that represent 

lightning storm periods. A lightning storm period is the time 30 minutes before the first lightning 

strike occurs to 15 minutes after the last lightning strike. Lightning within 5 nautical miles of a 

sensor and within 45 minutes of each other are part of the same storm. A no storm period is any 

time period where there is more than 45 minutes without any lightning strikes. Subsets of the 

dataset representing storm only and no-storm only data were appended into additional datasets 

for use in different analysis methods. 

In addition to the mean sensor readings and variance calculations, the dataset included 

calculated 1-minute mean absolute value of each sensor’s readings and 1-minute centered mean 

absolute value for use in threshold evaluation. Appendix A provides a sample of the completed 

dataset. 
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3.4.1 Statistical Relationships 

Basic statistical analysis on the dataset checked for any relationships between the 

variables within the dataset against the lightning response. Analysis included plotting the data, 

exploring the distribution of the EFM sensor readings, and checking for correlations among the 

EFM readings treated as independent variables. Additionally, analysis investigated correlations 

between the EFM readings as the input variable and lightning distance as the response variable. 

This study primarily used JMP 13.0 throughout to analyze the interaction between the EFM 

dataset and the lightning and storm response (SAS Institute Inc., 2019). 

The first step in the statistical analysis checked the EFM sensor data for correlation with 

each other, with lightning strike distance, and the presence of storms as a binary response. This 

analysis provided an idea of how EFM sensors react in response to lightning activity. For EFMs 

to be useful in the prediction of lightning storms there should be high correlation of EFM sensor 

readings and lightning distances and storm activity. This type of analysis does propose the 

question: which variable is the independent variable and which is the response? This research, 

however, considered the EFM sensor readings to be the independent variables predicting 

lightning activity as a response. 

It was prudent to first plot the available data to gain insights into its behavior. The first 

plots were a scatter plot of an EFM’s sensor readings by time-of-day. This plot provided insight 

into if and how the time-of-day affects EFM readings for each of the 31 individual EFM sensors. 

Appendix B contains each of these plots for each sensor. Further analysis checked each EFM 

sensor output for normality using normal quantile plots. Appendix C shows these distribution 

plots for each EFM sensor. Scatter plots comparing EFM sensor readings with minimum 
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lightning distances for each 1-minute mean time interval were also plotted and are shown in 

Appendix D. 

Centering the EFM data for each sensor was also a parameter desired for analysis. R 

scripts calculated the mean sensor reading for each EFM sensor during periods when no-storms 

occur. This was expressed as the mean, 𝜇𝑗 of the sensor, 𝑗, conditioned on the binary response of 

the storm, 𝑌𝑗, occurring within 5 nautical miles of the sensor, and storm defined as the time 

period encompassing 30 minutes prior to the first lightning strike and 15 minutes after the last 

lightning strike. 

𝜇𝑗(𝑥𝑗|𝑌𝑗 = 0) ;  j = [1,2,4: 22,24: 32,34] 
(12) 

This calculated mean centered the EFM reading by taking the absolute distance of the sensor 

reading from the mean and stored the values in a new column in the working dataset using: 

𝜇𝐶(𝑖,𝑗) = |𝑥𝑖,𝑗 − 𝜇𝑗|  ∀𝑖 ;  j = [1,2,4: 22,24: 32,34]. 
(13) 

The centered mean columns were then aggregated into a single column representing the overall 

EFM response for the entire EFM network covering KSC. Equation (14) expresses the function 

as: 

μi =
∑ 𝑥𝑖,𝑗

𝑛
𝑗=1

𝑛
 ; 1 ≤ 𝑖 ≤ 31. (14) 

Additionally, the calculation for the geometric mean from the centered mean is the following: 

μ̃i = ( ∏ 𝑥𝑖,𝑗

𝑛

𝑗=1

 )

1
𝑛

 ; 1 ≤ 𝑖 ≤ 31. (15) 

Figure 10 shows the overall centered mean of all EFMs and the geometric mean of all sensors as 

a function of the time-of-day. Appendix E shows the full set of plots for 2013-2016. 
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Finally, a multivariate correlation analysis checked the 1-minute mean EFM sensor data 

for correlations among each other. Correlation analysis also checked for correlation among EFM 

sensor readings and the minimum distances lightning occurs from each of the EFM sensors. The 

correlation is calculated using Equation 16: 

𝜌 =
𝜎𝑋𝑌

𝜎𝑋𝜎𝑌
=

𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=

𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
. 

(16) 

 

Table 1 and Table 2 show the results for correlation. 

3.4.2 Threshold Analysis 

 R performed threshold analysis. The processing involved: 

a. If storm is occurring and EFM reading is above a threshold value, then response was 

counted as a true positive (TP). 

b. If storm is occurring and EFM reading is below a threshold value, then response was 

counted as a false negative (FN). 

c. If storm is not occurring and EFM reading is above a threshold value, then response 

was counted as a false positive (FP). 

d. If storm is not occurring and EFM reading is below a threshold value, then response 

was counted as a true negative (TN). 

The analysis considered threshold values from 100 V/m to 4000 V/m in 100 V/m increments. 

The analysis also considered and evaluated response times of 30 minutes to 1 minute prior to the 

first lightning strike in 1-minute decrements and a time period 15 minutes after the last lightning 

strike in a storm. The analysis evaluated each individual EFM sensor by location and to the 

overall mean and geometric mean of all EFM sensor readings. 
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3.4.3 Standard Least Squares Regression 

 With all the parameters readily available in the working dataset, it was a relatively quick 

process to also consider and check other models for response and goodness-of-fit. The three 

models were storm response as a function of the overall mean EFM sensor readings, the 

geometric mean EFM sensor readings, and as a function of all of the EFM sensors, 

simultaneously. JMPs Fit Model analysis tool performed the model fitting (SAS Institute Inc., 

2019). One output from the JMP provided analysis to consider is the 𝑅2 value as it represents the 

goodness-of-fit of the model. 𝑅2 showed how well the model explains the variance in 

parameters. Analysts consider the model to be a good fit for the dataset for high values of 𝑅2. 

3.4.4 Nominal Logistic Regression 

 Storm activity was modeled as a binary event. Either a storm exists (timeframe 

encompassing 30 minutes prior to the first lightning strike to 15 minutes after the last lightning 

strike) or it does not exist. The binary storm response considered the 5 nautical mile radial area 

encompassing each of the EFM sensors. Additionally, a binary response considered a storm 

occurring over any part of the KSC detection zone. Generalized regression analysis produced a 

nominal logistic regression (NLR) model for each sensor location. Outputs from this analysis 

included an 𝑅2 value for the model and the parameter effects. The 𝑅2 value indicates how well 

the model describes the data. Finally, the NLR analysis output provided a confusion matrix that 

showed how well the model predicts the TP, FN, FP, and TN response. These accuracies of the 

prediction rates reported in the confusion matrices are plotted, along with the 𝑅2 values, on a 

graph for each EFM sensor location along with the prediction rate using the overall centered 

mean EFM sensor reading with storm response over any area of KSC. Figure 24, Figure 25 and 

Appendix F show the output from the NLR model generation. 
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3.4.5 Negative Binomial Regression 

 A set of lightning response columns contained values that count down the time from 30 

minutes prior to a lightning strike until 15 minutes after for each individual storm for each sensor 

location. A subset of the dataset represented active storms for each sensor. A new database 

combined these individual sensor subsets for active storms for evaluation. The input variables 

included all EFM sensor readings while the response was the ending time for each storm for each 

sensor. The negative binomial regression analysis function created a NBR model for each sensor. 

Items of interest in the output were the 𝑅2 value for the model to check for goodness of fit and 

the parameter estimates as this shows which parameters are relevant to the model. Figure 27 

displays the calculated 𝑅2 values for each model as bar chart. 

3.4.6 Variance Calculations 

 Analysis considered the 1-minute variance for each EFM sensor in an effort to establish 

other potential dependences within the dataset. calculates the variance during the EFM data 

processing step, as (Yau, 2020): 

s2 =
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

 
(17) 

Multivariate correlations between the variance for each sensor were considered. Additionally, 

correlations between the variance and the minimum distance of lightning strikes from each 

sensor location were considered. Table 5 and Table 6 show these correlations values for the 

variance. 

3.5 Summary 

This chapter described the equipment, software, and raw data and systematic 

methodology used to prepare and analyze the dataset in this research. The next section discusses 

results of statistical analysis and regression model performance. 
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IV. Analysis and Results 

4.1 Chapter Overview 

 This chapter discusses the analysis on the research dataset and results of the statistical 

analysis techniques used and performance characteristics of different regression models. 

Preliminary analysis visualized the dataset and performed some basic statistical analysis. Next, 

the study explores and reports on correlations between parameters. Once statistical analysis is 

complete, JMP creates models for the various regression analysis techniques given: threshold 

analysis, standard least squares regression, nominal logistic regression, and negative binomial 

regression. Summaries of each section report on the results of model performance. 

4.2 Preliminary Analysis 

To better understand the structure and behavior of the supplied dataset it is convenient 

and useful to first visualize the parameters graphically. Starting with the initial 1-minute mean 

EFM sensor data, an EFM sensor reading vs. the time-of-day is plotted, shown in Figure 6 and 

Appendix B, to determine if there may be any time effect on the EFM sensor readings. It appears 

there is a diurnal effect where the EFM readings stay close to their mean value during daylight 

hours, but show more variation during the night. However, further analysis in correlation 

indicates that time-of-day is not a statistically significant factor affecting EFM readings in 

general. 
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Figure 6: EFM 1 Sensor Readings by Time 

 

 Normal distribution quantile plots were generated for each of the EFM sensor readings. 

Figure 7 and Appendix C shows an example EFM sensor normal quantile plot. The normal 

quantile plots for each of the EFMs shows a bell-shaped curve. However, readings near the 

sensor mean heavily dominate the EFM dataset. The normal quantile plot also shows the 

distributions have very heavy tails. This may suggest that looking for EFM and lightning 

response might lay somewhere in the fringes. 

 
Figure 7: EFM 1 Sensor Normal Quantile Plot 
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 Another plot of interest was sensor readings as a function of the minimum distance of a 

lightning strike to a sensor location. Figure 8 and Appendix D show the EFM sensor reading 

versus distance plots. These cases treated EFM readings as a response to lightning rather than 

lightning responding to EFMs as in the majority of this research. However, it makes sense to 

look at lightning and EFMs in this way since the storm formation processes are causing the 

changes in the electric fields of storm clouds. These plots suggest that as storms get closer to an 

EFM, the range of recorded electric field readings increases. 

 

 
Figure 8: EFM1 Sensor Readings by Minimum Lightning Distance 

 

 The mean sensor reading for each EFM during periods where no storms are occurring 

within 5 nautical miles of the sensor were calculated and displayed in Figure 9. This bar chart for 

the mean EFM sensor readings show that sensor means are between 100 and 200 V/m. There is 

an interesting phenomenon with these averages. Sensors 1, 4, 8, 9, 13, 16, 26, 27, and 28 are all 

in close proximity to the ocean compared to the other sensors as seen in Figure 1. This may 

suggest that there is an environmental factor caused by the ocean that has an effect on the EFM 
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sensors. These observations coincide with observations made by Lucas et al. (2017). The mean 

sensor readings are also important in centering the data in an effort to get a more consistent 

response from each sensor reading regardless of its local ambient effects. 

 

 
Figure 9: No-Storm EFM Sensor Average Readings 

 

Figure 10 shows the plots for the centered mean and centered geometric mean as a 

function of time-of-day. As with the individual EFM sensor vs. time-of-day plots, these plots 

show a potential diurnal effect for periods of daylight and night. 

 
Figure 10: Centered Mean and Geometric Mean EFM Readings vs Time 
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 The final part of the preliminary analysis converted the working dataset to a time-

extension format in R and plotted the result (Dan Vanderkam et al., 2018). Appendix E shows 

the annual plots for each 5-month period of the lightning season using the centered mean sensor 

reading. Scrutinizing these plots show some areas of interest that suggest the EFM readings may 

not be a good predictor of lightning activity. Figure 11 shows relatively flat EFM response 

during periods of high lightning activity. 

 

 
Figure 11: Issue, Flat EFM Response during Storms 

 

In Figure 12, the EFM sensor readings show changes only after a lightning strike occurs. This 

suggests that the EFM sensors are responding to lightning activity rather than lightning activity 

responding to the electric field, or perhaps the sensitivity of the EFM sensor does not extend out 

to 5 nautical miles. 
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Figure 12: Issue, EFM Response after First Lightning 

 

Finally, Figure 13 shows an example of situations where the EFM sensor reading spike away 

from their average sensor reading, but there is no reported lightning activity within a 5 nautical 

mile radius of the sensor area. 

 
Figure 13: Issue, EFM Spikes with No Storms Present 

 

These issues bring into question whether EFM readings are a good measure or predictor of 

lightning activity. Further analysis helps in narrowing down a solution. 

4.3 Investigative Questions Answered 

 The questions answered in this analysis are: what factors from the available EFM and 

LDAR dataset best correlate to each other and to the occurrence of lightning storms? Does a 

threshold value for EFM readings that accurately predicts storm onset (30 minutes prior to first 

lightning strike) exist? Does a separate threshold value that accurately predicts storm cessation 
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(15 minutes after last lightning strike) exist? If the threshold analysis does not produce a useful 

result can a standardized linear regression model accurately predict storm onset or cessation? Is a 

nominal logistic model useful in predicting if a storm will be present or not present? If EFMs 

seem to be more responsive than predictive, then can a negative binomial model accurately 

predict when a storm is ending? Should the study use the variance of the EFM readings over 1-

minute period instead of the mean EFM reading? 

4.3.1 Correlation Comparisons 

 A multivariate correlation analysis helped determine how well different parameters 

predict or interact with other parameters. Table 1 compares the 1-minute mean EFM sensor 

readings for each sensor. The blue shading on the table show a relationship where the parameters 

are more highly correlated, whereas the red shading show little to no correlation among the 

parameters of interest. As expected, sensors within close proximity to each other have high 

correlations with one another. The table shows low correlation between time and any of the EFM 

sensor readings, which is contrary to what the scatter plots in Section 4.2 suggested. This is 

likely because most EFM sensor readings remain relatively close to the mean, overwhelming any 

excursions from the mean sensor value. 

Table 2 displays the 1-minute mean EFM sensor readings as compared to lightning 

distance. The analysis assumed that if EFM readings can predict lightning, then there should be a 

strong correlation between EFM readings and lighting distance. The red shading and low values 

depicted in this table show otherwise. Since there is not a high correlation between EFM 

readings and lightning strikes or the existence of lightning storms it suggests there are potentially 

other external factors affecting EFM readings not captured by LDAR data alone or that EFM 

readings are not a good indicator of lightning activity. 
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Table 1: 1-Minute Mean, Sensor to Sensor/Time Multivariate Correlation 

 
 

 

 

 

  

Time

Mean 

KSC1

Mean 

KSC2

Mean 

KSC4

Mean 

KSC5

Mean 

KSC6

Mean 

KSC7

Mean 

KSC8

Mean 

KSC9

Mean 

KSC10

Mean 

KSC11

Mean 

KSC12

Mean 

KSC13

Mean 

KSC14

Mean 

KSC15

Mean 

KSC16

Mean 

KSC17

Mean 

KSC18

Mean 

KSC19

Mean 

KSC20

Mean 

KSC21

Mean 

KSC22

Mean 

KSC24

Mean 

KSC25

Mean 

KSC26

Mean 

KSC27

Mean 

KSC28

Mean 

KSC29

Mean 

KSC30

Mean 

KSC31

Mean 

KSC32

Mean 

KSC34

Time 1.000 -0.040 -0.053 -0.032 -0.057 -0.069 -0.075 -0.046 -0.040 -0.070 -0.070 -0.053 -0.033 -0.051 -0.023 -0.034 -0.065 -0.072 -0.056 -0.058 -0.044 -0.059 -0.064 -0.058 -0.032 -0.029 -0.025 -0.045 -0.038 -0.030 -0.029 -0.037

Mean KSC1 -0.040 1.000 0.621 0.666 0.601 0.573 0.426 0.539 0.452 0.458 0.424 0.399 0.350 0.340 0.090 0.282 0.316 0.288 0.284 0.288 0.242 0.221 0.178 0.121 0.238 0.165 0.124 0.146 0.140 0.120 0.132 0.126

Mean KSC2 -0.053 0.621 1.000 0.509 0.769 0.587 0.684 0.444 0.378 0.607 0.483 0.404 0.298 0.332 0.108 0.250 0.356 0.378 0.289 0.295 0.236 0.252 0.191 0.155 0.204 0.167 0.119 0.145 0.149 0.125 0.135 0.134

Mean KSC4 -0.032 0.666 0.509 1.000 0.618 0.746 0.424 0.806 0.673 0.545 0.557 0.582 0.531 0.504 0.139 0.440 0.435 0.378 0.412 0.400 0.340 0.292 0.249 0.177 0.363 0.243 0.162 0.196 0.198 0.148 0.172 0.176

Mean KSC5 -0.057 0.601 0.769 0.618 1.000 0.772 0.680 0.548 0.462 0.773 0.633 0.523 0.367 0.408 0.133 0.303 0.451 0.453 0.360 0.375 0.292 0.319 0.257 0.177 0.255 0.201 0.149 0.175 0.181 0.139 0.157 0.163

Mean KSC6 -0.069 0.573 0.587 0.746 0.772 1.000 0.556 0.715 0.606 0.756 0.742 0.673 0.484 0.523 0.161 0.399 0.520 0.492 0.441 0.446 0.361 0.356 0.292 0.212 0.332 0.237 0.167 0.210 0.207 0.152 0.179 0.186

Mean KSC7 -0.075 0.426 0.684 0.424 0.680 0.556 1.000 0.395 0.342 0.695 0.539 0.411 0.287 0.349 0.115 0.263 0.426 0.480 0.338 0.354 0.303 0.327 0.263 0.193 0.235 0.181 0.122 0.174 0.162 0.143 0.149 0.153

Mean KSC8 -0.046 0.539 0.444 0.806 0.548 0.715 0.395 1.000 0.841 0.539 0.616 0.721 0.659 0.627 0.175 0.547 0.490 0.419 0.506 0.475 0.421 0.335 0.289 0.236 0.446 0.313 0.213 0.250 0.254 0.192 0.216 0.226

Mean KSC9 -0.040 0.452 0.378 0.673 0.462 0.606 0.342 0.841 1.000 0.486 0.587 0.741 0.806 0.718 0.182 0.649 0.505 0.423 0.570 0.517 0.483 0.355 0.308 0.250 0.531 0.368 0.257 0.298 0.309 0.219 0.248 0.263

Mean KSC10 -0.070 0.458 0.607 0.545 0.773 0.756 0.695 0.539 0.486 1.000 0.786 0.610 0.404 0.475 0.164 0.359 0.578 0.584 0.442 0.463 0.385 0.406 0.321 0.229 0.317 0.238 0.160 0.225 0.208 0.170 0.185 0.189

Mean KSC11 -0.070 0.424 0.483 0.557 0.633 0.742 0.539 0.616 0.587 0.786 1.000 0.790 0.508 0.594 0.204 0.447 0.687 0.643 0.547 0.567 0.474 0.466 0.366 0.277 0.402 0.304 0.203 0.272 0.255 0.200 0.223 0.235

Mean KSC12 -0.053 0.399 0.404 0.582 0.523 0.673 0.411 0.721 0.741 0.610 0.790 1.000 0.644 0.758 0.220 0.557 0.657 0.551 0.630 0.606 0.523 0.428 0.345 0.274 0.474 0.336 0.222 0.282 0.275 0.206 0.232 0.247

Mean KSC13 -0.033 0.350 0.298 0.531 0.367 0.484 0.287 0.659 0.806 0.404 0.508 0.644 1.000 0.775 0.279 0.783 0.476 0.398 0.603 0.522 0.528 0.354 0.322 0.256 0.641 0.443 0.308 0.345 0.371 0.249 0.282 0.305

Mean KSC14 -0.051 0.340 0.332 0.504 0.408 0.523 0.349 0.627 0.718 0.475 0.594 0.758 0.775 1.000 0.219 0.779 0.632 0.518 0.803 0.696 0.663 0.464 0.416 0.328 0.679 0.478 0.311 0.401 0.397 0.280 0.322 0.342

Mean KSC15 -0.023 0.090 0.108 0.139 0.133 0.161 0.115 0.175 0.182 0.164 0.204 0.220 0.279 0.219 1.000 0.162 0.232 0.178 0.210 0.206 0.192 0.147 0.124 0.088 0.482 0.107 0.067 0.095 0.088 0.068 0.079 0.078

Mean KSC16 -0.034 0.282 0.250 0.440 0.303 0.399 0.263 0.547 0.649 0.359 0.447 0.557 0.783 0.779 0.162 1.000 0.464 0.388 0.680 0.559 0.607 0.367 0.352 0.302 0.841 0.556 0.388 0.428 0.451 0.300 0.343 0.374

Mean KSC17 -0.065 0.316 0.356 0.435 0.451 0.520 0.426 0.490 0.505 0.578 0.687 0.657 0.476 0.632 0.232 0.464 1.000 0.791 0.671 0.760 0.605 0.624 0.489 0.349 0.436 0.350 0.237 0.337 0.303 0.248 0.284 0.277

Mean KSC18 -0.072 0.288 0.378 0.378 0.453 0.492 0.480 0.419 0.423 0.584 0.643 0.551 0.398 0.518 0.178 0.388 0.791 1.000 0.561 0.658 0.532 0.696 0.533 0.374 0.369 0.308 0.223 0.327 0.285 0.257 0.274 0.268

Mean KSC19 -0.056 0.284 0.289 0.412 0.360 0.441 0.338 0.506 0.570 0.442 0.547 0.630 0.603 0.803 0.210 0.680 0.671 0.561 1.000 0.840 0.836 0.554 0.519 0.407 0.677 0.546 0.348 0.476 0.459 0.343 0.386 0.396

Mean KSC20 -0.058 0.288 0.295 0.400 0.375 0.446 0.354 0.475 0.517 0.463 0.567 0.606 0.522 0.696 0.206 0.559 0.760 0.658 0.840 1.000 0.802 0.654 0.584 0.429 0.560 0.479 0.322 0.455 0.420 0.337 0.371 0.374

Mean KSC21 -0.044 0.242 0.236 0.340 0.292 0.361 0.303 0.421 0.483 0.385 0.474 0.523 0.528 0.663 0.192 0.607 0.605 0.532 0.836 0.802 1.000 0.584 0.592 0.465 0.657 0.597 0.400 0.551 0.517 0.403 0.451 0.452

Mean KSC22 -0.059 0.221 0.252 0.292 0.319 0.356 0.327 0.335 0.355 0.406 0.466 0.428 0.354 0.464 0.147 0.367 0.624 0.696 0.554 0.654 0.584 1.000 0.775 0.519 0.387 0.373 0.263 0.405 0.349 0.336 0.345 0.329

Mean KSC24 -0.064 0.178 0.191 0.249 0.257 0.292 0.263 0.289 0.308 0.321 0.366 0.345 0.322 0.416 0.124 0.352 0.489 0.533 0.519 0.584 0.592 0.775 1.000 0.661 0.389 0.417 0.324 0.496 0.416 0.433 0.443 0.417

Mean KSC25 -0.058 0.121 0.155 0.177 0.177 0.212 0.193 0.236 0.250 0.229 0.277 0.274 0.256 0.328 0.088 0.302 0.349 0.374 0.407 0.429 0.465 0.519 0.661 1.000 0.346 0.400 0.370 0.531 0.442 0.569 0.532 0.470

Mean KSC26 -0.032 0.238 0.204 0.363 0.255 0.332 0.235 0.446 0.531 0.317 0.402 0.474 0.641 0.679 0.482 0.841 0.436 0.369 0.677 0.560 0.657 0.387 0.389 0.346 1.000 0.686 0.474 0.525 0.553 0.366 0.427 0.464

Mean KSC27 -0.029 0.165 0.167 0.243 0.201 0.237 0.181 0.313 0.368 0.238 0.304 0.336 0.443 0.478 0.107 0.556 0.350 0.308 0.546 0.479 0.597 0.373 0.417 0.400 0.686 1.000 0.633 0.700 0.796 0.496 0.578 0.643

Mean KSC28 -0.025 0.124 0.119 0.162 0.149 0.167 0.122 0.213 0.257 0.160 0.203 0.222 0.308 0.311 0.067 0.388 0.237 0.223 0.348 0.322 0.400 0.263 0.324 0.370 0.474 0.633 1.000 0.627 0.747 0.544 0.626 0.719

Mean KSC29 -0.045 0.146 0.145 0.196 0.175 0.210 0.174 0.250 0.298 0.225 0.272 0.282 0.345 0.401 0.095 0.428 0.337 0.327 0.476 0.455 0.551 0.405 0.496 0.531 0.525 0.700 0.627 1.000 0.820 0.709 0.814 0.824

Mean KSC30 -0.038 0.140 0.149 0.198 0.181 0.207 0.162 0.254 0.309 0.208 0.255 0.275 0.371 0.397 0.088 0.451 0.303 0.285 0.459 0.420 0.517 0.349 0.416 0.442 0.553 0.796 0.747 0.820 1.000 0.604 0.716 0.806

Mean KSC31 -0.030 0.120 0.125 0.148 0.139 0.152 0.143 0.192 0.219 0.170 0.200 0.206 0.249 0.280 0.068 0.300 0.248 0.257 0.343 0.337 0.403 0.336 0.433 0.569 0.366 0.496 0.544 0.709 0.604 1.000 0.835 0.720

Mean KSC32 -0.029 0.132 0.135 0.172 0.157 0.179 0.149 0.216 0.248 0.185 0.223 0.232 0.282 0.322 0.079 0.343 0.284 0.274 0.386 0.371 0.451 0.345 0.443 0.532 0.427 0.578 0.626 0.814 0.716 0.835 1.000 0.830

Mean KSC34 -0.037 0.126 0.134 0.176 0.163 0.186 0.153 0.226 0.263 0.189 0.235 0.247 0.305 0.342 0.078 0.374 0.277 0.268 0.396 0.374 0.452 0.329 0.417 0.470 0.464 0.643 0.719 0.824 0.806 0.720 0.830 1.000
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Table 2: 1-Minute Mean, Sensor to Lightning Distance Multivariate Correlation 
Dist 

LM1

Dist 

LM2

Dist 

LM4

Dist 

LM5

Dist 

LM6

Dist 

LM7

Dist 

LM8

Dist 

LM9

Dist 

LM10

Dist 

LM11

Dist 

LM12

Dist 

LM13

Dist 

LM14

Dist 

LM15

Dist 

LM16

Dist 

LM17

Dist 

LM18

Dist 

LM19

Dist 

LM20

Dist 

LM21

Dist 

LM22

Dist 

LM24

Dist 

LM25

Dist 

LM26

Dist 

LM27

Dist 

LM28

Dist 

LM29

Dist 

LM30

Dist 

LM31

Dist 

LM32

Dist 

LM34

Mean KSC1 0.155 0.159 0.152 0.158 0.155 0.161 0.151 0.149 0.158 0.155 0.152 0.147 0.148 0.151 0.144 0.153 0.155 0.147 0.149 0.146 0.151 0.146 0.139 0.142 0.138 0.131 0.136 0.135 0.133 0.133 0.133

Mean KSC2 0.155 0.159 0.156 0.160 0.159 0.164 0.156 0.156 0.162 0.161 0.159 0.155 0.157 0.160 0.155 0.162 0.165 0.159 0.161 0.159 0.164 0.162 0.159 0.154 0.153 0.149 0.154 0.153 0.153 0.153 0.152

Mean KSC4 0.162 0.166 0.160 0.164 0.162 0.167 0.158 0.156 0.164 0.161 0.158 0.153 0.154 0.157 0.150 0.158 0.160 0.153 0.154 0.151 0.154 0.149 0.142 0.148 0.143 0.136 0.141 0.140 0.136 0.137 0.138

Mean KSC5 0.162 0.167 0.163 0.167 0.166 0.171 0.163 0.162 0.169 0.168 0.166 0.161 0.163 0.166 0.160 0.168 0.170 0.164 0.166 0.164 0.169 0.166 0.162 0.159 0.158 0.153 0.158 0.156 0.156 0.156 0.155

Mean KSC6 0.174 0.178 0.175 0.179 0.178 0.182 0.175 0.175 0.181 0.180 0.178 0.174 0.176 0.178 0.173 0.180 0.182 0.177 0.178 0.176 0.180 0.177 0.172 0.172 0.169 0.164 0.169 0.168 0.167 0.167 0.167

Mean KSC7 0.169 0.173 0.172 0.176 0.176 0.180 0.173 0.173 0.179 0.179 0.177 0.173 0.176 0.179 0.174 0.182 0.185 0.179 0.181 0.180 0.186 0.185 0.184 0.174 0.175 0.172 0.177 0.175 0.177 0.177 0.175

Mean KSC8 0.170 0.174 0.170 0.173 0.172 0.175 0.169 0.167 0.173 0.172 0.169 0.165 0.166 0.168 0.163 0.169 0.170 0.165 0.166 0.163 0.166 0.161 0.154 0.161 0.157 0.150 0.154 0.154 0.150 0.151 0.152

Mean KSC9 0.166 0.168 0.165 0.168 0.167 0.169 0.164 0.163 0.168 0.166 0.164 0.161 0.161 0.163 0.159 0.164 0.164 0.160 0.161 0.158 0.159 0.155 0.148 0.157 0.152 0.146 0.149 0.149 0.144 0.146 0.147

Mean KSC10 0.176 0.179 0.177 0.181 0.180 0.183 0.177 0.177 0.183 0.182 0.180 0.176 0.178 0.181 0.175 0.182 0.184 0.179 0.181 0.179 0.183 0.181 0.176 0.175 0.173 0.169 0.174 0.172 0.171 0.172 0.171

Mean KSC11 0.181 0.184 0.182 0.185 0.185 0.187 0.183 0.182 0.187 0.186 0.185 0.182 0.183 0.185 0.181 0.186 0.187 0.183 0.184 0.183 0.185 0.182 0.177 0.180 0.177 0.173 0.176 0.176 0.173 0.174 0.174

Mean KSC12 0.148 0.150 0.149 0.151 0.151 0.152 0.149 0.148 0.152 0.151 0.150 0.147 0.148 0.150 0.146 0.150 0.151 0.148 0.148 0.147 0.147 0.145 0.139 0.145 0.142 0.138 0.140 0.140 0.137 0.138 0.138

Mean KSC13 0.176 0.177 0.174 0.176 0.175 0.177 0.173 0.171 0.175 0.174 0.172 0.169 0.168 0.170 0.166 0.170 0.170 0.166 0.167 0.164 0.164 0.159 0.150 0.163 0.158 0.150 0.154 0.154 0.148 0.150 0.151

Mean KSC14 0.171 0.173 0.172 0.173 0.173 0.174 0.171 0.170 0.174 0.173 0.171 0.169 0.169 0.171 0.167 0.171 0.171 0.168 0.168 0.166 0.167 0.163 0.156 0.165 0.161 0.155 0.158 0.158 0.153 0.155 0.156

Mean KSC15 0.058 0.061 0.060 0.063 0.063 0.066 0.061 0.062 0.066 0.066 0.065 0.063 0.065 0.067 0.064 0.069 0.071 0.068 0.069 0.069 0.073 0.073 0.074 0.065 0.067 0.068 0.070 0.068 0.072 0.071 0.070

Mean KSC16 0.162 0.162 0.161 0.162 0.161 0.161 0.159 0.158 0.160 0.159 0.158 0.155 0.155 0.156 0.152 0.155 0.155 0.152 0.152 0.149 0.148 0.144 0.136 0.150 0.144 0.137 0.140 0.140 0.133 0.136 0.137

Mean KSC17 0.184 0.185 0.186 0.187 0.187 0.188 0.186 0.186 0.189 0.189 0.188 0.186 0.187 0.188 0.185 0.188 0.189 0.187 0.187 0.186 0.186 0.184 0.178 0.184 0.181 0.177 0.180 0.180 0.176 0.177 0.178

Mean KSC18 0.186 0.188 0.189 0.190 0.191 0.191 0.190 0.190 0.193 0.193 0.193 0.190 0.192 0.193 0.190 0.194 0.194 0.193 0.194 0.193 0.194 0.192 0.189 0.190 0.189 0.186 0.189 0.188 0.186 0.187 0.187

Mean KSC19 0.174 0.175 0.175 0.176 0.176 0.176 0.175 0.174 0.176 0.176 0.175 0.173 0.173 0.174 0.171 0.174 0.173 0.172 0.172 0.170 0.169 0.166 0.159 0.170 0.166 0.160 0.162 0.163 0.157 0.159 0.160

Mean KSC20 0.185 0.186 0.187 0.188 0.188 0.187 0.187 0.187 0.189 0.188 0.188 0.186 0.187 0.187 0.185 0.187 0.186 0.186 0.186 0.184 0.183 0.180 0.173 0.183 0.180 0.174 0.177 0.177 0.172 0.173 0.174

Mean KSC21 0.165 0.165 0.166 0.166 0.166 0.165 0.166 0.166 0.166 0.166 0.166 0.165 0.165 0.165 0.164 0.164 0.164 0.164 0.163 0.162 0.160 0.157 0.152 0.162 0.159 0.154 0.155 0.156 0.151 0.152 0.154

Mean KSC22 0.173 0.173 0.175 0.175 0.176 0.175 0.176 0.177 0.177 0.178 0.178 0.177 0.178 0.178 0.177 0.178 0.177 0.178 0.178 0.177 0.176 0.174 0.170 0.177 0.175 0.172 0.173 0.174 0.170 0.171 0.172

Mean KSC24 0.176 0.176 0.179 0.178 0.180 0.177 0.181 0.181 0.179 0.180 0.181 0.181 0.182 0.181 0.181 0.180 0.179 0.181 0.180 0.180 0.177 0.175 0.170 0.181 0.179 0.175 0.176 0.177 0.171 0.173 0.175

Mean KSC25 0.177 0.175 0.180 0.177 0.179 0.174 0.182 0.183 0.177 0.179 0.181 0.183 0.182 0.180 0.184 0.178 0.175 0.181 0.179 0.179 0.173 0.172 0.167 0.183 0.181 0.178 0.176 0.179 0.171 0.174 0.176

Mean KSC26 0.163 0.162 0.161 0.162 0.161 0.160 0.160 0.158 0.160 0.159 0.158 0.156 0.155 0.155 0.153 0.154 0.153 0.152 0.151 0.149 0.147 0.142 0.134 0.150 0.144 0.137 0.139 0.140 0.133 0.135 0.137

Mean KSC27 0.164 0.163 0.164 0.163 0.163 0.160 0.163 0.162 0.161 0.160 0.161 0.160 0.158 0.158 0.158 0.156 0.154 0.155 0.154 0.152 0.148 0.144 0.137 0.155 0.149 0.142 0.143 0.145 0.136 0.139 0.141

Mean KSC28 0.152 0.148 0.151 0.148 0.149 0.144 0.150 0.149 0.145 0.145 0.146 0.147 0.144 0.143 0.145 0.140 0.138 0.140 0.139 0.137 0.132 0.128 0.121 0.141 0.135 0.129 0.129 0.131 0.122 0.125 0.127

Mean KSC29 0.167 0.164 0.168 0.165 0.166 0.162 0.168 0.168 0.164 0.164 0.166 0.167 0.165 0.164 0.165 0.161 0.159 0.162 0.160 0.159 0.154 0.151 0.144 0.163 0.158 0.152 0.152 0.154 0.146 0.148 0.151

Mean KSC30 0.161 0.158 0.161 0.158 0.159 0.155 0.160 0.159 0.157 0.156 0.157 0.158 0.156 0.155 0.156 0.152 0.150 0.153 0.151 0.150 0.145 0.141 0.134 0.153 0.147 0.141 0.141 0.144 0.135 0.138 0.140

Mean KSC31 0.152 0.149 0.153 0.149 0.151 0.145 0.153 0.153 0.148 0.149 0.150 0.153 0.150 0.148 0.151 0.145 0.142 0.147 0.145 0.144 0.138 0.135 0.129 0.149 0.144 0.140 0.138 0.141 0.132 0.135 0.137

Mean KSC32 0.162 0.159 0.163 0.160 0.161 0.155 0.163 0.163 0.158 0.159 0.160 0.162 0.160 0.158 0.161 0.155 0.152 0.156 0.154 0.153 0.147 0.144 0.136 0.158 0.152 0.146 0.145 0.148 0.138 0.141 0.144

Mean KSC34 0.158 0.155 0.158 0.155 0.156 0.152 0.157 0.156 0.153 0.153 0.153 0.155 0.152 0.151 0.152 0.148 0.146 0.149 0.147 0.145 0.140 0.137 0.130 0.149 0.143 0.137 0.137 0.139 0.130 0.133 0.135
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4.3.2 Threshold Analysis to Predict Storms Onset and Cessation 

 A primary objective of this research was to determine if there exists a threshold value for 

EFM sensor readings that accurately predicts storm onset, 30 minutes prior to the first lightning 

strike, and a separate threshold for storm cessation, 15 minutes after the last lightning strike of 

the storm. As the next few figures show, the ability to predict storms using threshold analysis is 

inversely proportional to the ability to predict periods of no storms. As the threshold value 

increases from 100, more 1-minute mean EFM reading time-segments fall below the threshold 

value. Figure 14 shows a knee in the curve between 300 and 400 V/m. This is the first point of 

interest for further analysis. At 1300 V/m the true negative (TN) prediction reaches 99.5% 

accuracy. However, the desire is to predict lightning. The best lightning prediction occurs at a 

threshold of only 100 V/m with a true positive (TP) accuracy of 74%, while the TN rate is just 

under 18%. This serves little to no utility to a user. False negative (FN) rates were also 

considered. Since false negative reporting poses a dangerous scenario for range users it is of 

great interest to minimize. However, the FN rate gets worse as the threshold value increases, so 

there is no utility in this value, either. The 15-minute cessation threshold follows suit showing 

best prediction rate at 100 V/m, which serves no useful utility. Figure 15 shows prediction 

accuracy in response to prediction time; the assumption that prediction accuracy would be better 

with times closer to a lightning strike. However, Figure 15 shows only a slight increase in 

prediction accuracy for a TP result from the desired 30-minute prediction interval. 
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Figure 14: Storm Onset & Cessation Threshold Accuracy 

 

 
Figure 15: Threshold Prediction Accuracy by Time 

 

 Figure 16 shows using the centered mean sensor readings gave less accurate results than 

the individual sensor counts. The knee now occurs at 300 V/m. The TP storm onset prediction 

accuracy at 100 V/m is 20% and decreased with increasing threshold. The TN rate reaches 

99.5% accuracy at 1400 V/m. There is a more pronounced difference in varying time interval of 

the prediction as shown in Figure 17, however the accuracy for TP predictions are still poor. 
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Figure 16: Storm Onset & Cessation Threshold Accuracy using Centered Mean Sensor Readings 

 

 
Figure 17: Centered Mean Sensor Threshold Prediction Accuracy by Time 

 

Using the centered geometric mean sensor readings gave less accurate results than previous two 

threshold models, Figure 18. The knee occurs at 300 V/m. The TP storm onset prediction 

accuracy at 100 V/m is 11% and decreases as threshold increases. The TN rate reaches 99.5% 

accuracy at 900 V/m. There is a more pronounced difference in varying time interval of the 

prediction as shown in Figure 19, however the accuracy for TP predictions are not useful. 
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Figure 18: Storm Onset & Cessation Threshold Accuracy using Centered Geometric Mean Sensor Readings 

 

 
Figure 19: Centered Geometric Mean Sensor Threshold Prediction Accuracy by Time 

 

 Performing the same threshold analysis by a binary storm response rather than time 

response provided slightly better utility in predicting no-storm TN. Figure 20 shows the 

threshold for 95% (note: this differs from previous TN threshold accuracy of 99.5%) occurs at 

2100 V/m, while the best TP accuracy occurs at 100 V/m with an accuracy of 55%. 
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Figure 20: Storm Onset & Cessation Threshold Accuracy by Binary Storm Response 

 

The threshold analysis did not provide a useful result through any of the four methods 

provided for either storm prediction or storm cessation. The TP accuracy for storm onset for the 

All Sensors model is 74.39%, while the storm cessation accuracy is 68.02% at 100 V/m 

thresholds for both. 

Table 3: Threshold Analysis Utility 

 

 

4.3.3 Standard Least Squares Regression Models to Predict Storms 

 This section of analysis used least squares regression to predict lightning activity given 

EFM sensor readings. Three models were built, the first using all EFM sensor readings to predict 

a single lightning end time response variable, followed by the centered mean EFM readings and 

the centered geometric mean EFM readings to predict the same single lightning end time 

response variable. The first model produced does not perform well (see Figure 21). The 𝑅2 and 

𝑅𝑎𝑑𝑗
2  are quite low with a value of around 0.0444. This is not a good model. Other insights 
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gleaned from the output in Figure 21 were that sensors 4, 9, 12, 15 and 18 are not significant to 

the model. 

 
Figure 21: Least Squares Regression Model for All Sensor Readings by Storm Response 

 

The next least squares regression model used the centered mean EFM readings as the 

independent variable with lightning end time as the response, Figure 22. This model performed 

much better than the previous, however an 𝑅2 and 𝑅𝑎𝑑𝑗
2  of 0.167 was still too low. There were no 

insignificant parameters within the model.  
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Figure 22: Least Squares Regression Model for Centered Mean by Storm Response 

 

The final least squares regression model produced used the centered geometric mean 

EFM readings as the independent variable with lightning end time as the response, Figure 23. 

This model performed much better than the first model, but not quite as well as the model based 

on centered mean. The 𝑅2 and 𝑅𝑎𝑑𝑗
2  for this model were 0.139. As in the previous model, this 

was too low for the model to be of any utility. There were no insignificant parameters within the 

model. 
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Figure 23: Least Squares Regression for Centered Geometric Mean by Storm Response 

 

 The method of least square regression model fitting did not produce a viable model that 

could account for a majority of the variability in the dataset. Table 4 gives a summary of the 

measured 𝑅2 for each of the three models produced. The best performing model was the one that 

used a single centered mean EFM reading as the independent variable. 

Table 4: Least Squares Regression Model Fit Value 

 

Since the storm times were not modeled through the techniques attempted so far, NLR models 

were considered to predict a binary response corresponding to storm and no-storm events in the 

next section. 
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4.3.4 Nominal Logistic Regression Model to Predict Storms 

 Nominal logistic regression (NLR) models, a subset of categorical regression models, are 

useful for binary response variables. For these cases a storm, binary (1000), was the interval 30 

minutes prior to the first lightning strike and 15 minutes after the last lightning strike. No-storm, 

binary (0), was the interval 15 minutes after the last lightning strike of a storm and 30 minutes 

before the first lightning strike of the next storm. Figure 24, shows an example output of the 

nominal logistic fit analysis provided by JMP using the centered mean EFM sensor readings for 

the independent variable and the binary storm response for a storm occurring anywhere on KSC. 

Items of interest from this output were the 𝑅2 value and the prediction test offered by the 

confusion matrix. The NLR model ran with all EFM sensor readings as the independent variables 

and a binary storm response for each sensor location. Appendix F provides the JMP output for 

each of the 31 models. 
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Figure 24: Logistic Regression Analysis EFM Centered Mean by Binary Storm Response 

 

 The prediction accuracy for TP, FN, TN, and FP, along with the 𝑅2 for the NLR model 

produced for each sensor location are reported in Figure 25 where the numbers 1:34 along the 

bottom of the graph represent sensor numbers; 35 is a recording of the NLR shown in Figure 25. 

The nominal regression model did well in predicting a TN response for when there are no storms 

at a rate of 99.7%, but performed poorly in predicting TP for when storms occur at an average 

rate of around 9.4%. The 𝑅2 values for the models range from around 0.04 to 0.16 for the 

individual sensor locations and 0.10 for the centered mean model. 



 

50 

 
Figure 25: Logistic Regression Analysis EFM Sensor by Binary Storm Response 

 

The nominal logistic regression models were good predictors of no-storm events, and 

minimized reporting storms when no storms are present (FP rate). However, they were not useful 

in predicting storms and only accounted for up to 16% of the variance in the dataset. The next 

section explores a set of models using a count time series regression technique. 

4.3.5  Negative Binomial Regression to Predict End of Storms 

 In negative binomial regression the dependent variable is a count of a certain number of 

events. In setting up the models to predict the end of a lightning storm the time remaining until 

the end of the storm, in minutes, for each sensor location was the count parameter. The 

independent variables were the 1-minute mean EFM sensor readings. The working data was 

subset to only include storm data for each sensor. JMP generated the negative binomial 

regression model for each sensor (SAS Institute Inc., 2019). Appendix G displays the models. 

Figure 26 shows an example of the JMP output for a negative binomial regression model for 

storms occurring over the 5 nautical mile radial area around EFM sensor 1.  These models and in 
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Figure 26 and Appendix G show there are several parameters that are not significant in the 

models. 

 
Figure 26: NB Regression to Predict Lightning Cessation by Sensor Location 

 

The 𝑅2 values for these models range from 0.008 to a maximum 0.046. Figure 27 shows these 

values plotted as a bar graph. 

 
Figure 27: Negative Binomial Regression Fit to Predict Storm Cessation 
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 The negative binomial regression model did not prove to have any utility in predicting the 

end of a storm based given the EFM sensor reading input. The negative binomial regression 

model was by far the worst performing of the different regression techniques applied for this 

time series dataset. The next section explores the EFM variance and its correlation properties to 

determine if they would be a better parameter to use in estimating lightning response. 

4.3.6 Consideration for EFM Variance Instead of Mean 

 Analysis considered the 1-minute variance for each of the 31 EFM sensors using the 

multivariate correlation technique previously applied to the 1-minute mean EFM sensor readings. 

Table 5 shows that the EFM sensors within close proximity to others have higher correlation 

than those further away, however the correlations did not extend as far away as they did for the 

1-minute mean EFM sensor comparisons. Table 6 compares the 1-minute variance for each EFM 

sensor with the minimum distance of lightning from a sensor location. As with the 1-minute 

mean sensor comparisons, there is little to no correlation between the EFM variance readings and 

lightning activity. 
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Table 5: 1-Minute Mean, Sensor to Sensor Multivariate Correlation 

 
 

  

var 

KSC1

var 

KSC2

var 

KSC4

var 

KSC5

var 

KSC6

var 

KSC7

var 

KSC8

var 

KSC9

var 

KSC10

var 

KSC11

var 

KSC12

var 

KSC13

var 

KSC14

var 

KSC15

var 

KSC16

var 

KSC17

var 

KSC18

var 

KSC19

var 

KSC20

var 

KSC21

var 

KSC22

var 

KSC24

var 

KSC25

var 

KSC26

var 

KSC27

var 

KSC28

var 

KSC29

var 

KSC30

var 

KSC31

var 

KSC32

var 

KSC34

var KSC1 1.000 0.734 0.718 0.648 0.687 0.507 0.549 0.415 0.531 0.494 0.429 0.304 0.343 0.051 0.238 0.346 0.313 0.273 0.287 0.213 0.217 0.191 0.152 0.202 0.149 0.095 0.141 0.125 0.123 0.117 0.022

var KSC2 0.734 1.000 0.547 0.776 0.655 0.748 0.449 0.336 0.644 0.494 0.382 0.250 0.274 0.045 0.186 0.303 0.343 0.228 0.249 0.189 0.218 0.185 0.137 0.159 0.123 0.082 0.118 0.107 0.109 0.103 0.021

var KSC4 0.718 0.547 1.000 0.629 0.831 0.432 0.839 0.678 0.563 0.588 0.582 0.474 0.472 0.064 0.371 0.391 0.348 0.340 0.345 0.253 0.262 0.223 0.152 0.272 0.170 0.113 0.151 0.142 0.123 0.122 0.029

var KSC5 0.648 0.776 0.629 1.000 0.793 0.711 0.550 0.429 0.778 0.646 0.499 0.315 0.339 0.059 0.227 0.375 0.416 0.278 0.309 0.226 0.260 0.207 0.130 0.183 0.130 0.084 0.124 0.115 0.109 0.103 0.023

var KSC6 0.687 0.655 0.831 0.793 1.000 0.617 0.798 0.650 0.818 0.793 0.683 0.490 0.480 0.074 0.337 0.445 0.469 0.380 0.393 0.303 0.302 0.260 0.168 0.266 0.180 0.120 0.169 0.157 0.138 0.137 0.032

var KSC7 0.507 0.748 0.432 0.711 0.617 1.000 0.404 0.325 0.756 0.578 0.416 0.255 0.289 0.054 0.203 0.391 0.478 0.256 0.306 0.221 0.301 0.235 0.170 0.170 0.131 0.096 0.128 0.120 0.133 0.118 0.023

var KSC8 0.549 0.449 0.839 0.550 0.798 0.404 1.000 0.893 0.570 0.653 0.724 0.668 0.626 0.084 0.506 0.413 0.394 0.459 0.432 0.358 0.294 0.266 0.191 0.384 0.257 0.174 0.215 0.212 0.178 0.177 0.051

var KSC9 0.415 0.336 0.678 0.429 0.650 0.325 0.893 1.000 0.478 0.589 0.743 0.809 0.726 0.087 0.630 0.402 0.373 0.516 0.459 0.407 0.289 0.268 0.193 0.476 0.315 0.205 0.247 0.252 0.201 0.202 0.059

var KSC10 0.531 0.644 0.563 0.778 0.818 0.756 0.570 0.478 1.000 0.853 0.635 0.370 0.426 0.081 0.285 0.542 0.602 0.372 0.430 0.316 0.366 0.296 0.201 0.238 0.183 0.120 0.177 0.165 0.162 0.151 0.032

var KSC11 0.494 0.494 0.588 0.646 0.793 0.578 0.653 0.589 0.853 1.000 0.831 0.478 0.567 0.108 0.363 0.669 0.665 0.492 0.550 0.404 0.428 0.355 0.246 0.303 0.229 0.152 0.221 0.205 0.200 0.189 0.045

var KSC12 0.429 0.382 0.582 0.499 0.683 0.416 0.724 0.743 0.635 0.831 1.000 0.634 0.747 0.122 0.506 0.631 0.559 0.602 0.608 0.475 0.400 0.353 0.255 0.409 0.298 0.196 0.266 0.253 0.220 0.223 0.062

var KSC13 0.304 0.250 0.474 0.315 0.490 0.255 0.668 0.809 0.370 0.478 0.634 1.000 0.800 0.175 0.784 0.372 0.331 0.604 0.497 0.485 0.279 0.280 0.204 0.627 0.415 0.276 0.301 0.323 0.234 0.244 0.078

var KSC14 0.343 0.274 0.472 0.339 0.480 0.289 0.626 0.726 0.426 0.567 0.747 0.800 1.000 0.116 0.829 0.546 0.457 0.830 0.714 0.679 0.409 0.395 0.283 0.719 0.501 0.323 0.398 0.405 0.301 0.321 0.089

var KSC15 0.051 0.045 0.064 0.059 0.074 0.054 0.084 0.087 0.081 0.108 0.122 0.175 0.116 1.000 0.081 0.112 0.091 0.112 0.112 0.094 0.074 0.065 0.045 0.073 0.055 0.034 0.049 0.047 0.039 0.041 0.010

var KSC16 0.238 0.186 0.371 0.227 0.337 0.203 0.506 0.630 0.285 0.363 0.506 0.784 0.829 0.081 1.000 0.347 0.303 0.702 0.546 0.599 0.306 0.323 0.235 0.863 0.590 0.384 0.409 0.462 0.295 0.321 0.100

var KSC17 0.346 0.303 0.391 0.375 0.445 0.391 0.413 0.402 0.542 0.669 0.631 0.372 0.546 0.112 0.347 1.000 0.768 0.601 0.706 0.539 0.586 0.446 0.294 0.336 0.282 0.185 0.277 0.249 0.242 0.238 0.058

var KSC18 0.313 0.343 0.348 0.416 0.469 0.478 0.394 0.373 0.602 0.665 0.559 0.331 0.457 0.091 0.303 0.768 1.000 0.503 0.648 0.473 0.710 0.501 0.319 0.289 0.251 0.175 0.274 0.234 0.244 0.239 0.049

var KSC19 0.273 0.228 0.340 0.278 0.380 0.256 0.459 0.516 0.372 0.492 0.602 0.604 0.830 0.112 0.702 0.601 0.503 1.000 0.890 0.893 0.526 0.524 0.364 0.735 0.599 0.378 0.509 0.509 0.380 0.405 0.109

var KSC20 0.287 0.249 0.345 0.309 0.393 0.306 0.432 0.459 0.430 0.550 0.608 0.497 0.714 0.112 0.546 0.706 0.648 0.890 1.000 0.869 0.666 0.606 0.402 0.579 0.504 0.325 0.479 0.449 0.380 0.394 0.098

var KSC21 0.213 0.189 0.253 0.226 0.303 0.221 0.358 0.407 0.316 0.404 0.475 0.485 0.679 0.094 0.599 0.539 0.473 0.893 0.869 1.000 0.574 0.613 0.445 0.695 0.659 0.439 0.612 0.593 0.452 0.488 0.124

var KSC22 0.217 0.218 0.262 0.260 0.302 0.301 0.294 0.289 0.366 0.428 0.400 0.279 0.409 0.074 0.306 0.586 0.710 0.526 0.666 0.574 1.000 0.802 0.497 0.326 0.330 0.249 0.391 0.325 0.352 0.348 0.068

var KSC24 0.191 0.185 0.223 0.207 0.260 0.235 0.266 0.268 0.296 0.355 0.353 0.280 0.395 0.065 0.323 0.446 0.501 0.524 0.606 0.613 0.802 1.000 0.725 0.371 0.414 0.335 0.537 0.443 0.481 0.475 0.093

var KSC25 0.152 0.137 0.152 0.130 0.168 0.170 0.191 0.193 0.201 0.246 0.255 0.204 0.283 0.045 0.235 0.294 0.319 0.364 0.402 0.445 0.497 0.725 1.000 0.284 0.370 0.348 0.565 0.451 0.644 0.585 0.103

var KSC26 0.202 0.159 0.272 0.183 0.266 0.170 0.384 0.476 0.238 0.303 0.409 0.627 0.719 0.073 0.863 0.336 0.289 0.735 0.579 0.695 0.326 0.371 0.284 1.000 0.757 0.467 0.533 0.604 0.358 0.408 0.115

var KSC27 0.149 0.123 0.170 0.130 0.180 0.131 0.257 0.315 0.183 0.229 0.298 0.415 0.501 0.055 0.590 0.282 0.251 0.599 0.504 0.659 0.330 0.414 0.370 0.757 1.000 0.676 0.713 0.845 0.510 0.598 0.161

var KSC28 0.095 0.082 0.113 0.084 0.120 0.096 0.174 0.205 0.120 0.152 0.196 0.276 0.323 0.034 0.384 0.185 0.175 0.378 0.325 0.439 0.249 0.335 0.348 0.467 0.676 1.000 0.696 0.836 0.592 0.704 0.177

var KSC29 0.141 0.118 0.151 0.124 0.169 0.128 0.215 0.247 0.177 0.221 0.266 0.301 0.398 0.049 0.409 0.277 0.274 0.509 0.479 0.612 0.391 0.537 0.565 0.533 0.713 0.696 1.000 0.870 0.742 0.851 0.179

var KSC30 0.125 0.107 0.142 0.115 0.157 0.120 0.212 0.252 0.165 0.205 0.253 0.323 0.405 0.047 0.462 0.249 0.234 0.509 0.449 0.593 0.325 0.443 0.451 0.604 0.845 0.836 0.870 1.000 0.656 0.779 0.186

var KSC31 0.123 0.109 0.123 0.109 0.138 0.133 0.178 0.201 0.162 0.200 0.220 0.234 0.301 0.039 0.295 0.242 0.244 0.380 0.380 0.452 0.352 0.481 0.644 0.358 0.510 0.592 0.742 0.656 1.000 0.873 0.169

var KSC32 0.117 0.103 0.122 0.103 0.137 0.118 0.177 0.202 0.151 0.189 0.223 0.244 0.321 0.041 0.321 0.238 0.239 0.405 0.394 0.488 0.348 0.475 0.585 0.408 0.598 0.704 0.851 0.779 0.873 1.000 0.184

var KSC34 0.022 0.021 0.029 0.023 0.032 0.023 0.051 0.059 0.032 0.045 0.062 0.078 0.089 0.010 0.100 0.058 0.049 0.109 0.098 0.124 0.068 0.093 0.103 0.115 0.161 0.177 0.179 0.186 0.169 0.184 1.000



 

54 

Table 6: 1-Minute Variance, Sensor to Lightning Distance Multivariate Correlation 
Dist 

LM1

Dist 

LM2

Dist 

LM4

Dist 

LM5

Dist 

LM6

Dist 

LM7

Dist 

LM8

Dist 

LM9

Dist 

LM10

Dist 

LM11

Dist 

LM12

Dist 

LM13

Dist 

LM14

Dist 

LM15

Dist 

LM16

Dist 

LM17

Dist 

LM18

Dist 

LM19

Dist 

LM20

Dist 

LM21

Dist 

LM22

Dist 

LM24

Dist 

LM25

Dist 

LM26

Dist 

LM27

Dist 

LM28

Dist 

LM29

Dist 

LM30

Dist 

LM31

Dist 

LM32

Dist 

LM34

var KSC1 -0.136 -0.140 -0.135 -0.139 -0.137 -0.142 -0.134 -0.133 -0.139 -0.138 -0.135 -0.132 -0.133 -0.135 -0.130 -0.136 -0.138 -0.132 -0.134 -0.131 -0.135 -0.132 -0.127 -0.129 -0.126 -0.121 -0.125 -0.124 -0.122 -0.123 -0.123

var KSC2 -0.157 -0.162 -0.157 -0.162 -0.160 -0.165 -0.157 -0.156 -0.163 -0.162 -0.159 -0.155 -0.157 -0.159 -0.153 -0.161 -0.164 -0.157 -0.159 -0.157 -0.162 -0.159 -0.154 -0.153 -0.151 -0.146 -0.151 -0.150 -0.149 -0.149 -0.149

var KSC4 -0.140 -0.144 -0.139 -0.143 -0.141 -0.145 -0.138 -0.137 -0.143 -0.141 -0.139 -0.135 -0.136 -0.138 -0.133 -0.139 -0.140 -0.135 -0.136 -0.134 -0.136 -0.132 -0.127 -0.132 -0.128 -0.124 -0.127 -0.126 -0.123 -0.124 -0.125

var KSC5 -0.141 -0.144 -0.140 -0.144 -0.143 -0.147 -0.140 -0.139 -0.145 -0.144 -0.142 -0.138 -0.139 -0.142 -0.137 -0.143 -0.145 -0.140 -0.141 -0.139 -0.143 -0.140 -0.135 -0.136 -0.134 -0.130 -0.133 -0.132 -0.131 -0.132 -0.131

var KSC6 -0.158 -0.161 -0.158 -0.161 -0.160 -0.164 -0.157 -0.156 -0.162 -0.161 -0.158 -0.154 -0.155 -0.158 -0.152 -0.159 -0.161 -0.155 -0.157 -0.154 -0.157 -0.154 -0.148 -0.151 -0.148 -0.143 -0.147 -0.146 -0.144 -0.144 -0.144

var KSC7 -0.165 -0.169 -0.166 -0.170 -0.169 -0.173 -0.166 -0.166 -0.171 -0.170 -0.168 -0.165 -0.167 -0.169 -0.164 -0.171 -0.173 -0.167 -0.169 -0.167 -0.171 -0.169 -0.165 -0.163 -0.162 -0.158 -0.162 -0.161 -0.160 -0.160 -0.160

var KSC8 -0.151 -0.154 -0.150 -0.153 -0.151 -0.155 -0.148 -0.147 -0.153 -0.151 -0.149 -0.145 -0.145 -0.147 -0.143 -0.148 -0.149 -0.144 -0.145 -0.142 -0.144 -0.140 -0.134 -0.141 -0.137 -0.131 -0.134 -0.134 -0.130 -0.132 -0.132

var KSC9 -0.143 -0.145 -0.142 -0.145 -0.143 -0.146 -0.140 -0.139 -0.144 -0.142 -0.140 -0.137 -0.137 -0.139 -0.135 -0.139 -0.140 -0.136 -0.136 -0.134 -0.135 -0.131 -0.125 -0.133 -0.128 -0.123 -0.126 -0.126 -0.122 -0.123 -0.124

var KSC10 -0.151 -0.154 -0.151 -0.154 -0.153 -0.156 -0.151 -0.150 -0.155 -0.154 -0.153 -0.149 -0.151 -0.153 -0.148 -0.154 -0.156 -0.151 -0.152 -0.150 -0.153 -0.150 -0.146 -0.148 -0.145 -0.141 -0.145 -0.144 -0.142 -0.143 -0.143

var KSC11 -0.149 -0.152 -0.150 -0.152 -0.152 -0.154 -0.149 -0.149 -0.153 -0.152 -0.151 -0.148 -0.149 -0.150 -0.146 -0.151 -0.152 -0.148 -0.149 -0.147 -0.149 -0.146 -0.141 -0.145 -0.142 -0.138 -0.141 -0.140 -0.137 -0.138 -0.139

var KSC12 -0.151 -0.153 -0.151 -0.153 -0.152 -0.154 -0.150 -0.149 -0.154 -0.152 -0.151 -0.148 -0.148 -0.150 -0.146 -0.151 -0.151 -0.147 -0.148 -0.146 -0.147 -0.143 -0.137 -0.144 -0.140 -0.135 -0.138 -0.138 -0.134 -0.135 -0.136

var KSC13 -0.145 -0.146 -0.144 -0.146 -0.144 -0.146 -0.142 -0.140 -0.145 -0.143 -0.141 -0.138 -0.138 -0.139 -0.136 -0.139 -0.139 -0.136 -0.136 -0.133 -0.133 -0.129 -0.123 -0.133 -0.128 -0.122 -0.125 -0.125 -0.120 -0.122 -0.123

var KSC14 -0.156 -0.157 -0.156 -0.157 -0.156 -0.157 -0.154 -0.153 -0.156 -0.155 -0.154 -0.151 -0.150 -0.152 -0.148 -0.151 -0.151 -0.149 -0.149 -0.146 -0.145 -0.141 -0.134 -0.146 -0.141 -0.135 -0.137 -0.138 -0.132 -0.134 -0.135

var KSC15 -0.027 -0.027 -0.025 -0.026 -0.025 -0.027 -0.024 -0.023 -0.025 -0.024 -0.024 -0.022 -0.022 -0.023 -0.021 -0.023 -0.023 -0.021 -0.021 -0.020 -0.021 -0.019 -0.016 -0.020 -0.018 -0.015 -0.017 -0.017 -0.015 -0.015 -0.016

var KSC16 -0.141 -0.142 -0.140 -0.141 -0.140 -0.140 -0.138 -0.137 -0.139 -0.138 -0.137 -0.134 -0.133 -0.134 -0.131 -0.134 -0.133 -0.131 -0.131 -0.128 -0.127 -0.123 -0.117 -0.129 -0.124 -0.118 -0.120 -0.121 -0.115 -0.117 -0.118

var KSC17 -0.145 -0.147 -0.146 -0.148 -0.148 -0.148 -0.147 -0.146 -0.149 -0.148 -0.148 -0.146 -0.146 -0.147 -0.145 -0.148 -0.147 -0.146 -0.146 -0.144 -0.144 -0.142 -0.136 -0.143 -0.140 -0.136 -0.138 -0.138 -0.134 -0.136 -0.136

var KSC18 -0.161 -0.163 -0.163 -0.164 -0.164 -0.165 -0.163 -0.163 -0.165 -0.165 -0.164 -0.162 -0.163 -0.165 -0.162 -0.165 -0.165 -0.163 -0.164 -0.162 -0.163 -0.161 -0.155 -0.161 -0.158 -0.154 -0.157 -0.157 -0.153 -0.155 -0.155

var KSC19 -0.150 -0.150 -0.150 -0.151 -0.151 -0.150 -0.150 -0.149 -0.150 -0.150 -0.149 -0.147 -0.147 -0.148 -0.145 -0.147 -0.146 -0.145 -0.145 -0.143 -0.141 -0.137 -0.131 -0.143 -0.138 -0.133 -0.135 -0.136 -0.130 -0.132 -0.133

var KSC20 -0.155 -0.155 -0.156 -0.156 -0.157 -0.155 -0.156 -0.155 -0.156 -0.156 -0.156 -0.154 -0.154 -0.155 -0.152 -0.154 -0.153 -0.153 -0.152 -0.151 -0.149 -0.146 -0.139 -0.150 -0.146 -0.141 -0.143 -0.144 -0.138 -0.140 -0.141

var KSC21 -0.147 -0.147 -0.148 -0.147 -0.148 -0.145 -0.147 -0.147 -0.147 -0.146 -0.146 -0.145 -0.145 -0.145 -0.143 -0.144 -0.142 -0.143 -0.142 -0.140 -0.138 -0.134 -0.128 -0.141 -0.137 -0.132 -0.133 -0.134 -0.128 -0.130 -0.131

var KSC22 -0.155 -0.155 -0.156 -0.156 -0.157 -0.155 -0.157 -0.157 -0.156 -0.157 -0.157 -0.157 -0.157 -0.157 -0.156 -0.156 -0.155 -0.156 -0.155 -0.155 -0.152 -0.150 -0.145 -0.155 -0.152 -0.148 -0.150 -0.150 -0.145 -0.147 -0.148

var KSC24 -0.159 -0.158 -0.161 -0.159 -0.161 -0.157 -0.161 -0.162 -0.159 -0.160 -0.161 -0.161 -0.161 -0.160 -0.161 -0.159 -0.157 -0.159 -0.158 -0.158 -0.153 -0.151 -0.146 -0.160 -0.156 -0.152 -0.152 -0.154 -0.147 -0.149 -0.151

var KSC25 -0.149 -0.147 -0.151 -0.148 -0.150 -0.145 -0.151 -0.152 -0.148 -0.149 -0.150 -0.152 -0.150 -0.149 -0.152 -0.147 -0.144 -0.148 -0.147 -0.147 -0.141 -0.139 -0.134 -0.150 -0.147 -0.143 -0.142 -0.144 -0.137 -0.139 -0.141

var KSC26 -0.141 -0.140 -0.140 -0.140 -0.139 -0.138 -0.138 -0.137 -0.138 -0.137 -0.136 -0.135 -0.133 -0.134 -0.132 -0.132 -0.131 -0.130 -0.130 -0.128 -0.125 -0.122 -0.115 -0.129 -0.123 -0.118 -0.119 -0.120 -0.114 -0.116 -0.117

var KSC27 -0.133 -0.131 -0.132 -0.131 -0.131 -0.128 -0.131 -0.130 -0.129 -0.128 -0.129 -0.129 -0.127 -0.126 -0.126 -0.124 -0.123 -0.123 -0.122 -0.121 -0.117 -0.114 -0.108 -0.123 -0.118 -0.113 -0.113 -0.115 -0.108 -0.110 -0.112

var KSC28 -0.129 -0.126 -0.128 -0.126 -0.126 -0.122 -0.127 -0.126 -0.123 -0.123 -0.123 -0.124 -0.122 -0.121 -0.122 -0.118 -0.117 -0.118 -0.117 -0.115 -0.112 -0.109 -0.103 -0.119 -0.113 -0.108 -0.108 -0.110 -0.104 -0.105 -0.107

var KSC29 -0.135 -0.132 -0.135 -0.133 -0.133 -0.130 -0.134 -0.134 -0.131 -0.131 -0.132 -0.133 -0.131 -0.130 -0.131 -0.128 -0.126 -0.128 -0.127 -0.125 -0.121 -0.119 -0.113 -0.129 -0.124 -0.119 -0.119 -0.121 -0.114 -0.116 -0.118

var KSC30 -0.128 -0.126 -0.128 -0.126 -0.127 -0.123 -0.127 -0.127 -0.124 -0.124 -0.125 -0.125 -0.123 -0.122 -0.123 -0.120 -0.119 -0.120 -0.119 -0.117 -0.114 -0.111 -0.105 -0.120 -0.115 -0.110 -0.111 -0.112 -0.106 -0.108 -0.109

var KSC31 -0.133 -0.131 -0.134 -0.131 -0.132 -0.128 -0.134 -0.133 -0.129 -0.130 -0.131 -0.133 -0.131 -0.129 -0.131 -0.127 -0.125 -0.128 -0.126 -0.125 -0.121 -0.119 -0.113 -0.129 -0.125 -0.120 -0.120 -0.122 -0.115 -0.117 -0.119

var KSC32 -0.134 -0.132 -0.135 -0.132 -0.133 -0.129 -0.135 -0.134 -0.131 -0.131 -0.132 -0.133 -0.131 -0.130 -0.132 -0.127 -0.125 -0.128 -0.126 -0.125 -0.121 -0.118 -0.113 -0.129 -0.124 -0.120 -0.119 -0.121 -0.114 -0.116 -0.118

var KSC34 -0.051 -0.052 -0.047 -0.049 -0.046 -0.049 -0.044 -0.042 -0.046 -0.043 -0.041 -0.039 -0.038 -0.039 -0.036 -0.039 -0.039 -0.036 -0.036 -0.033 -0.034 -0.030 -0.025 -0.033 -0.028 -0.022 -0.025 -0.025 -0.021 -0.022 -0.023
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4.4 Summary 

The analysis showed there was little correlation between 1-minute mean EFM sensor 

readings and lightning/storm activity. The poor correlation between EFM readings and lightning 

activity also led to poor regression model generation. For the threshold model technique 

requested by the sponsor, lightning prediction based on a threshold value has no utility. While 

storm prediction rate can be as high as 74% at a threshold value of just 100 V/m, the false 

positive reporting rate shoots up to over 82%. Ideally one would want to, at a minimum, reduce 

the amount of false negative reporting, but this value only gets worse as the threshold increased. 

Table 7 shows how the four different types of models compare in performance. Overall 

the best performing models used the standard least squares regression technique and the nominal 

logistic regression model techniques, which each were able to account for around 16% of the 

variance in the dataset, however these models do not explain enough of the variance to be of 

much utility. 

Table 7: Regression Model Comparison 
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V. Conclusions and Recommendations 

5.1 Conclusions of Research 

Lightning activity is an important natural phenomenon that occurs at a high rate on the 

Eastern Range. It affects processing operations as it relates to ensuring the safety of personnel 

and equipment on the range. Weather delays due to lightning can lead to monetary losses, loss of 

production, or cancellation and postponement of launch activities. Launch commit criteria 

violations lead to delayed launches and increases in launch costs (Merceret et al., 2010). 

Therefore, it is important to identify other techniques that can assist in accurately predicting the 

occurrence of severe weather. 

This research analyzed EFM sensor readings from 31 sensor sites at KSC to determine 

their ability to predict lightning activity. It analyzed the correlations between EFM sensor 

readings and lightning/storm activity. Regression models using a threshold analysis technique, 

standard least squares regression technique, nominal logistic regression technique, and negative 

binomial regression technique were all examined for each of the 31 sensor sites and as a centered 

mean value of all the sensor sites for lightning activity that might be occurring anywhere on 

station.  

The attempts to establish correlation between the EFM sensor readings and lightning 

activity proved futile as pairwise correlations had values of less than 0.2 between the parameters. 

Table 7 shows that standard least squares regression model and nominal logistic regression 

model offered the best performance of the techniques applied. However, all modeling techniques 

failed to offer a good fit for the dataset. 
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Table 7: Regression Model Comparison 

 

The study could not establish an EFM threshold reading value to predict lightning onset 

that maximized positive identification of storm onset, cessation, or clear weather while 

simultaneously reducing false reporting of clear weather at a rate better than what a trained 

meteorologist could report based on prior day activity. 

5.2 Significance of Research 

This has been a thorough and exhaustive examination of the EFM and LDAR data. The 

techniques used were unable to establish a correlation between EFM sensor readings and lighting 

activity. This analysis leads to the conclusion that EFMs are not very useful in the prediction of 

or even indication of already occurring lightning activity. 

5.3 Recommendations for Action 

After exhaustive studies, all with varying levels of success, most being unsuccessful, 

predicting lightning storm onset or cessation should not consider only the use of EFM sensor 

readings as a predictor variable for lightning activity. 

5.4 Recommendations for Future Research 

It may be beneficial to revisit creating a new negative binomial regression model that 

uses counts of the number of total lightning strikes occurring within each 1-minute time interval 

as an independent variable with a response variable of time ending. Other weather data may also 

help prove useful in predicting storm movements to give better prediction accuracy than EFM 

data alone. 
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5.5 Summary 

The primary goal of this research was to establish an EFM threshold value to predict the 

occurrence of lightning within a specified area proved unsuccessful. The multivariate techniques 

for correlation eluded to an inability to make predictions using EFM sensor readings due to low 

correlation values. A thorough analysis of the dataset showed there were no other relations 

recognized through threshold analysis and regression model building, with the best performing 

models only providing a goodness-of-fit 𝑅2 of approximately 0.16. The multitude of studies on 

this dataset should be enough to establish the case to stop looking at EFM sensors to make 

predictions on natural lightning events. 
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Appendix A: Sample Working Dataset 

 

 

  

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Column Label Date Time KSC1 KSC2 KSC4 KSC5 KSC6 KSC7 KSC8 KSC9 KSC10 KSC11 KSC12 KSC13 KSC14 KSC15

1 2013121 0:00:00 357.6893333 485.5706667 378.7093333 339.1666667 237.76 493.1653333 228.6213333 380.6413333 624.448 645.7586667 757.9973333 500.728 NA 734.7613333

2 2013121 0:01:00 373.8986667 479.9813333 324.9346667 336.1786667 224.0786667 455.8253333 271.984 353.592 575.4786667 591.084 664.2626667 475.42 NA 647.2453333

3 2013121 0:02:00 370.8666667 440.7186667 364.3693333 306.5 228.2946667 424.8986667 308.9 330.9813333 522.664 559.576 NA 479.3026667 NA 550.3386667

4 2013121 0:03:00 331.5973333 422.728 329.0733333 277.6213333 207.1306667 402.9293333 344.5173333 320.2626667 487.88 532.1866667 NA 476.652 NA 493.6613333

5 2013121 0:04:00 380.5453333 414.8826667 324.0706667 272.244 193.348 408.0253333 344.536 306.552 457.9333333 504.5093333 NA 463.0053333 NA 457.6866667

6 2013121 0:05:00 350.7773333 402.268 388.3173333 253.156 200.188 418.656 319.936 302.676 427.7546667 500.8666667 442.5586667 403.8946667 NA 419.4506667

7 2013121 0:06:00 395.2893333 381.6066667 354.216 246.2133333 190.2293333 424.032 310.3653333 292.5426667 402.344 463.8373333 416.5986667 358.9786667 NA 384.4506667

8 2013121 0:07:00 418.1266667 392.6813333 344.728 237.8986667 201.512 434.9226667 318.6213333 278.16 387.1866667 425.6693333 369.428 386.0306667 NA 372

9 2013121 0:08:00 393.364 388 299.1786667 233.128 195.9893333 429.94 314.236 280.1453333 373.372 403.5746667 346.428 388.6426667 NA 352.3226667

10 2013121 0:09:00 389.3186667 403.9573333 290.8066667 222.1866667 200.7066667 435.2773333 293.6546667 258.896 355.8866667 371.796 317.9813333 400.1106667 NA 339.8586667

Column # 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Column Label KSC16 KSC17 KSC18 KSC19 KSC20 KSC21 KSC22 KSC24 KSC25 KSC26 KSC27 KSC28 KSC29 KSC30 KSC31 KSC32

1 602.7986667 825.848 484.1013333 1025.161333 677.1773333 988.8066667 399.0346667 573.8826667 1520.721333 NA 710.316 534.7586667 774.292 673.0986667 904.3506667 682.916

2 632.1186667 759.24 445.464 950.288 566.8413333 947.9053333 369.6986667 492.7133333 1425.712 NA 792.0146667 512.1573333 709.844 650.856 866.5466667 632.368

3 618.236 725.684 413.476 867.728 495.5213333 812.0466667 339.4266667 509.524 1351.976 NA 751.2813333 583.7986667 642.316 609.4706667 907.3386667 659.708

4 571.152 674.4306667 404.7946667 807.2413333 475.652 779.5346667 308.9533333 501.1493333 1237.78 NA 714.1693333 499.6546667 571.728 564.1506667 870.42 642.4493333

5 533.1253333 632.5306667 385.728 721.552 472.476 775.5346667 275.968 491.9133333 1102.585333 NA 678.236 366.228 540.2706667 539.8613333 825.612 553.5053333

6 456.904 577.5213333 372.2573333 686.9466667 461.076 723.1346667 250.1653333 451.2453333 934.528 NA 645.5213333 384.124 496.664 505.656 780.828 546.8093333

7 438.4693333 523.576 373.644 646.872 433.3466667 746.3386667 232.8493333 381.2786667 874.8413333 NA 647.4133333 431.8266667 428.616 449.1693333 713.556 493.0106667

8 464.38 498.0733333 374.34 629.8866667 451.6226667 679.3493333 225.6933333 366.932 720.8733333 NA 640.0426667 327.0373333 379.72 409.584 697.7773333 442.0653333

9 431.7293333 475.4746667 374.4973333 571.2493333 449.576 557.4866667 208.4026667 355.7373333 647.0386667 NA 568.86 366.92 344.5293333 352.0933333 NA 462.9253333

10 347.8706667 460.4413333 351.5586667 518.5586667 411.8826667 493.124 205.7853333 342.7066667 632.6693333 NA 516.1053333 326.6613333 309.936 333.7013333 557.9666667 403.324

Column # 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Column Label KSC34 abs.KSC1 abs.KSC2 abs.KSC4 abs.KSC5 abs.KSC6 abs.KSC7 abs.KSC8 abs.KSC9 abs.KSC10 abs.KSC11 abs.KSC12 abs.KSC13 abs.KSC14 abs.KSC15 abs.KSC16

1 785.5906667 357.6893333 485.5706667 378.7093333 339.1666667 237.76 493.1653333 228.6213333 380.6413333 624.448 645.7586667 757.9973333 500.728 NA 734.7613333 602.7986667

2 661.1026667 373.8986667 479.9813333 324.9346667 336.1786667 224.0786667 455.8253333 271.984 353.592 575.4786667 591.084 664.2626667 475.42 NA 647.2453333 632.1186667

3 628.184 370.8666667 440.7186667 364.3693333 306.5 228.2946667 424.8986667 308.9 330.9813333 522.664 559.576 NA 479.3026667 NA 550.3386667 618.236

4 590.4813333 331.5973333 422.728 329.0733333 277.6213333 207.1306667 402.9293333 344.5173333 320.2626667 487.88 532.1866667 NA 476.652 NA 493.6613333 571.152

5 576.7413333 380.5453333 414.8826667 324.0706667 272.244 193.348 408.0253333 344.536 306.552 457.9333333 504.5093333 NA 463.0053333 NA 457.6866667 533.1253333

6 530.1746667 350.7773333 402.268 388.3173333 253.156 200.188 418.656 319.936 302.676 427.7546667 500.8666667 442.5586667 403.8946667 NA 419.4506667 456.904

7 498.3853333 395.2893333 381.6066667 354.216 246.2133333 190.2293333 424.032 310.3653333 292.5426667 402.344 463.8373333 416.5986667 358.9786667 NA 384.4506667 438.4693333

8 521.1653333 418.1266667 392.6813333 344.728 237.8986667 201.512 434.9226667 318.6213333 278.16 387.1866667 425.6693333 369.428 386.0306667 NA 372 464.38

9 523.1973333 393.364 388 299.1786667 233.128 195.9893333 429.94 314.236 280.1453333 373.372 403.5746667 346.428 388.6426667 NA 352.3226667 431.7293333

10 435.748 389.3186667 403.9573333 290.8066667 222.1866667 200.7066667 435.2773333 293.6546667 258.896 355.8866667 371.796 317.9813333 400.1106667 NA 339.8586667 347.8706667

Column # 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Column Label abs.KSC17 abs.KSC18 abs.KSC19 abs.KSC20 abs.KSC21 abs.KSC22 abs.KSC24 abs.KSC25 abs.KSC26 abs.KSC27 abs.KSC28 abs.KSC29 abs.KSC30 abs.KSC31 abs.KSC32 abs.KSC34

1 825.848 484.1013333 1025.161333 677.1773333 988.8066667 399.0346667 573.8826667 1520.721333 NA 710.316 534.7586667 774.292 673.0986667 904.3506667 682.916 785.5906667

2 759.24 445.464 950.288 566.8413333 947.9053333 369.6986667 492.7133333 1425.712 NA 792.0146667 512.1573333 709.844 650.856 866.5466667 632.368 661.1026667

3 725.684 413.476 867.728 495.5213333 812.0466667 339.4266667 509.524 1351.976 NA 751.2813333 583.7986667 642.316 609.4706667 907.3386667 659.708 628.184

4 674.4306667 404.7946667 807.2413333 475.652 779.5346667 308.9533333 501.1493333 1237.78 NA 714.1693333 499.6546667 571.728 564.1506667 870.42 642.4493333 590.4813333

5 632.5306667 385.728 721.552 472.476 775.5346667 275.968 491.9133333 1102.585333 NA 678.236 366.228 540.2706667 539.8613333 825.612 553.5053333 576.7413333

6 577.5213333 372.2573333 686.9466667 461.076 723.1346667 250.1653333 451.2453333 934.528 NA 645.5213333 384.124 496.664 505.656 780.828 546.8093333 530.1746667

7 523.576 373.644 646.872 433.3466667 746.3386667 232.8493333 381.2786667 874.8413333 NA 647.4133333 431.8266667 428.616 449.1693333 713.556 493.0106667 498.3853333

8 498.0733333 374.34 629.8866667 451.6226667 679.3493333 225.6933333 366.932 720.8733333 NA 640.0426667 327.0373333 379.72 409.584 697.7773333 442.0653333 521.1653333

9 475.4746667 374.4973333 571.2493333 449.576 557.4866667 208.4026667 355.7373333 647.0386667 NA 568.86 366.92 344.5293333 352.0933333 NA 462.9253333 523.1973333

10 460.4413333 351.5586667 518.5586667 411.8826667 493.124 205.7853333 342.7066667 632.6693333 NA 516.1053333 326.6613333 309.936 333.7013333 557.9666667 403.324 435.748
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Appendix A: Sample Working Dataset (cont.) 

 

  

Column # 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Column Label fold.KSC1 fold.KSC2 fold.KSC4 fold.KSC5 fold.KSC6 fold.KSC7 fold.KSC8 fold.KSC9 fold.KSC10 fold.KSC11 fold.KSC12 fold.KSC13 fold.KSC14 fold.KSC15 fold.KSC16 fold.KSC17

1 153.8579771 320.4731117 187.1351864 220.3982556 108.0814227 328.3616088 53.45718876 209.3796575 471.8391704 503.376908 614.8455272 316.2635345 0 569.2300851 408.0242746 698.3314699

2 170.0673104 314.8837783 133.3605197 217.4102556 94.40008941 291.0216088 96.81985543 182.3303241 422.8698371 448.7022413 521.1108606 290.9555345 0 481.7140851 437.3442746 631.7234699

3 167.0353104 275.6211117 172.7951864 187.7315889 98.61608941 260.0949421 133.7358554 159.7196575 370.0551704 417.1942413 0 294.8382012 0 384.8074184 423.4616079 598.1674699

4 127.7659771 257.630445 137.4991864 158.8529223 77.45208941 238.1256088 169.3531888 149.0009908 335.2711704 389.804908 0 292.1875345 0 328.1300851 376.3776079 546.9141365

5 176.7139771 249.7851117 132.4965197 153.4755889 63.66942274 243.2216088 169.3718554 135.2903241 305.3245037 362.1275747 0 278.5408679 0 292.1554184 338.3509412 505.0141365

6 146.9459771 237.170445 196.7431864 134.3875889 70.50942274 253.8522754 144.7718554 131.4143241 275.1458371 358.484908 299.4068606 219.4302012 0 253.9194184 262.1296079 450.0048032

7 191.4579771 216.5091117 162.6418531 127.4449223 60.55075607 259.2282754 135.2011888 121.2809908 249.7351704 321.4555747 273.4468606 174.5142012 0 218.9194184 243.6949412 396.0594699

8 214.2953104 227.5837783 153.1538531 119.1302556 71.83342274 270.1189421 143.4571888 106.8983241 234.5778371 283.2875747 226.2761939 201.5662012 0 206.4687518 269.6056079 370.5568032

9 189.5326437 222.902445 107.6045197 114.3595889 66.31075607 265.1362754 139.0718554 108.8836575 220.7631704 261.192908 203.2761939 204.1782012 0 186.7914184 236.9549412 347.9581365

10 185.4873104 238.8597783 99.23251972 103.4182556 71.02808941 270.4736088 118.4905221 87.63432414 203.2778371 229.4142413 174.8295272 215.6462012 0 174.3274184 153.0962746 332.9248032

Column # 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

Column Label fold.KSC18 fold.KSC19 fold.KSC20 fold.KSC21 fold.KSC22 fold.KSC24 fold.KSC25 fold.KSC26 fold.KSC27 fold.KSC28 fold.KSC29 fold.KSC30 fold.KSC31 fold.KSC32 fold.KSC34 Mean

1 334.0294523 882.1893547 554.1714463 853.9442266 290.5905194 430.4142912 1377.153179 0 573.6310803 353.2724897 625.2908222 521.4734086 742.4407853 536.333784 621.9017388 447.0932889

2 295.392119 807.3160214 443.8354463 813.0428932 261.2545194 349.2449579 1282.143846 0 655.329747 330.6711564 560.8428222 499.2307419 704.6367853 485.785784 497.4137388 410.3501491

3 263.404119 724.7560214 372.5154463 677.1842266 230.9825194 366.0556245 1208.407846 0 614.5964136 402.3124897 493.3148222 457.8454086 745.4287853 513.125784 464.4950721 370.2676913

4 254.7227856 664.2693547 352.646113 644.6722266 200.5091861 357.6809579 1094.211846 0 577.4844136 318.1684897 422.7268222 412.5254086 708.5101186 495.8671173 426.7924054 339.198487

5 235.656119 578.5800214 349.470113 640.6722266 167.5238528 348.4449579 959.0171789 0 541.5510803 184.7418231 391.2694889 388.2360753 663.7021186 406.9231173 413.0524054 312.0767235

6 222.1854523 543.974688 338.070113 588.2722266 141.7211861 307.7769579 790.9598455 0 508.8364136 202.6378231 347.6628222 354.0307419 618.9181186 400.2271173 366.4857388 295.6798696

7 223.572119 503.9000214 310.3407797 611.4762266 124.4051861 237.8102912 731.2731789 0 510.7284136 250.3404897 279.6148222 297.5440753 551.6461186 346.4284507 334.6964054 273.0941061

8 224.268119 486.914688 328.6167797 544.4868932 117.2491861 223.4636245 577.3051789 0 503.357747 145.5511564 230.7188222 257.9587419 535.867452 295.4831173 357.4764054 255.7267083

9 224.4254523 428.2773547 326.570113 422.6242266 99.95851944 212.2689579 503.4705122 0 432.1750803 185.4338231 195.5281556 200.4680753 0 316.3431173 359.5084054 218.7731776

10 201.4867856 375.586688 288.8767797 358.2615599 97.34118611 199.2382912 489.1011789 0 379.4204136 145.1751564 160.9348222 182.0760753 396.0567853 256.741784 272.0590721 208.4031384

Column # 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

Column Label GeoMean LM1 LM2 LM4 LM5 LM6 LM7 LM8 LM9 LM10 LM11 LM12 LM13 LM14 LM15 LM16

1 397.3588304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 369.9719779 0 0 0 0 0 0 0 -30 0 0 -30 -30 -30 -30 -30

3 350.4219773 0 0 0 0 0 0 0 -29 0 0 -29 -29 -29 -29 -29

4 318.772959 0 0 0 0 0 0 0 -28 0 0 -28 -28 -28 -28 -28

5 294.924695 0 0 0 0 0 0 0 -27 0 0 -27 -27 -27 -27 -27

6 275.5290133 0 0 0 0 0 0 0 -26 0 0 -26 -26 -26 -26 -26

7 254.213552 0 0 0 0 0 0 0 -25 0 0 -25 -25 -25 -25 -25

8 241.0646191 0 0 0 0 0 0 0 -24 0 0 -24 -24 -24 -24 -24

9 216.8429686 0 0 0 0 0 0 0 -23 0 0 -23 -23 -23 -23 -23

10 199.0852854 0 0 0 0 0 0 0 -22 0 0 -22 -22 -22 -22 -22

Column # 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

Column Label LM17 LM18 LM19 LM20 LM21 LM22 LM24 LM25 LM26 LM27 LM28 LM29 LM30 LM31 LM32 LM34

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 -30 0 -30 -30 -30 0 0 0 -30 -30 0 0 -30 0 0 0

3 -29 0 -29 -29 -29 0 0 0 -29 -29 0 0 -29 0 0 0

4 -28 0 -28 -28 -28 0 0 0 -28 -28 0 0 -28 0 0 0

5 -27 0 -27 -27 -27 0 0 0 -27 -27 0 0 -27 0 0 0

6 -26 0 -26 -26 -26 0 0 0 -26 -26 0 0 -26 0 0 0

7 -25 0 -25 -25 -25 0 0 0 -25 -25 0 0 -25 0 0 0

8 -24 0 -24 -24 -24 0 0 0 -24 -24 0 0 -24 0 0 0

9 -23 -30 -23 -23 -23 -30 -30 0 -23 -23 0 -30 -23 -30 -30 -30

10 -22 -29 -22 -22 -22 -29 -29 0 -22 -22 0 -29 -22 -29 -29 -29
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Appendix A: Sample Working Dataset (cont.) 

 
  

Column # 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

Column Label bin.LM1 bin.LM2 bin.LM4 bin.LM5 bin.LM6 bin.LM7 bin.LM8 bin.LM9 bin.LM10 bin.LM11 bin.LM12 bin.LM13 bin.LM14 bin.LM15 bin.LM16 bin.LM17

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 1000 0 0 1000 1000 1000 1000 1000 1000

3 0 0 0 0 0 0 0 1000 0 0 1000 1000 1000 1000 1000 1000

4 0 0 0 0 0 0 0 1000 0 0 1000 1000 1000 1000 1000 1000

5 0 0 0 0 0 0 0 1000 0 0 1000 1000 1000 1000 1000 1000

6 0 0 0 0 0 0 0 1000 0 0 1000 1000 1000 1000 1000 1000

7 0 0 0 0 0 0 0 1000 0 0 1000 1000 1000 1000 1000 1000

8 0 0 0 0 0 0 0 1000 0 0 1000 1000 1000 1000 1000 1000

9 0 0 0 0 0 0 0 1000 0 0 1000 1000 1000 1000 1000 1000

10 0 0 0 0 0 0 0 1000 0 0 1000 1000 1000 1000 1000 1000

Column # 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

Column Label bin.LM18 bin.LM19 bin.LM20 bin.LM21 bin.LM22 bin.LM24 bin.LM25 bin.LM26 bin.LM27 bin.LM28 bin.LM29 bin.LM30 bin.LM31 bin.LM32 bin.LM34 Lightning1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1000 1000 1000 0 0 0 1000 1000 0 0 1000 0 0 0 -25

3 0 1000 1000 1000 0 0 0 1000 1000 0 0 1000 0 0 0 -24

4 0 1000 1000 1000 0 0 0 1000 1000 0 0 1000 0 0 0 -23

5 0 1000 1000 1000 0 0 0 1000 1000 0 0 1000 0 0 0 -22

6 0 1000 1000 1000 0 0 0 1000 1000 0 0 1000 0 0 0 -21

7 0 1000 1000 1000 0 0 0 1000 1000 0 0 1000 0 0 0 -20

8 0 1000 1000 1000 0 0 0 1000 1000 0 0 1000 0 0 0 -19

9 1000 1000 1000 1000 1000 1000 0 1000 1000 0 1000 1000 1000 1000 1000 -18

10 1000 1000 1000 1000 1000 1000 0 1000 1000 0 1000 1000 1000 1000 1000 -17

Column # 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

Column Label Lightning2 Lightning.bin Lightning3 lightning.end.1 lightning.end.2 lightning.end.4 lightning.end.5 lightning.end.6 lightning.end.7 lightning.end.8 lightning.end.9 lightning.end.10 lightning.end.11 lightning.end.12 lightning.end.13 lightning.end.14

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 950 1 0 0 0 0 0 0 0 0 40 0 0 52 52 52

3 960 1 0 0 0 0 0 0 0 0 39 0 0 51 51 51

4 970 1 0 0 0 0 0 0 0 0 38 0 0 50 50 50

5 980 1 0 0 0 0 0 0 0 0 37 0 0 49 49 49

6 990 1 0 0 0 0 0 0 0 0 36 0 0 48 48 48

7 1000 1 0 0 0 0 0 0 0 0 35 0 0 47 47 47

8 1010 1 0 0 0 0 0 0 0 0 34 0 0 46 46 46

9 1020 1 0 0 0 0 0 0 0 0 33 0 0 45 45 45

10 1030 1 0 0 0 0 0 0 0 0 32 0 0 44 44 44

Column # 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

Column Label lightning.end.15 lightning.end.16 lightning.end.17 lightning.end.18 lightning.end.19 lightning.end.20 lightning.end.21 lightning.end.22 lightning.end.24 lightning.end.25 lightning.end.26 lightning.end.27 lightning.end.28 lightning.end.29 lightning.end.30 lightning.end.31

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 52 52 52 0 52 52 52 0 0 0 52 66 0 0 66 0

3 51 51 51 0 51 51 51 0 0 0 51 65 0 0 65 0

4 50 50 50 0 50 50 50 0 0 0 50 64 0 0 64 0

5 49 49 49 0 49 49 49 0 0 0 49 63 0 0 63 0

6 48 48 48 0 48 48 48 0 0 0 48 62 0 0 62 0

7 47 47 47 0 47 47 47 0 0 0 47 61 0 0 61 0

8 46 46 46 0 46 46 46 0 0 0 46 60 0 0 60 0

9 45 45 45 45 45 45 45 59 59 0 45 59 0 59 59 45

10 44 44 44 44 44 44 44 58 58 0 44 58 0 58 58 44
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Appendix A: Sample Working Dataset (cont.) 

 

Column # 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

Column Label lightning.end.32 lightning.end.34 lightning.end.all DistLM1 DistLM2 DistLM4 DistLM5 DistLM6 DistLM7 DistLM8 DistLM9 DistLM10 DistLM11 DistLM12 DistLM13 DistLM14

1 0 0 0 41.85093529 40.22532045 40.0906007 38.78059831 38.46752501 37.25463443 38.96923615 38.29438851 36.78168244 36.16681115 36.56830884 37.63814729 35.93019198

2 0 0 66 42.90021227 41.33760344 41.07853724 39.85329467 39.48465413 38.39102629 39.91670691 39.20706578 37.84217008 37.17402796 37.51997416 38.34933516 36.72010657

3 0 0 65 40.64563207 39.16935748 38.75403358 37.63222521 37.19487354 36.26256548 37.55096449 36.80844852 35.60774857 34.87552689 35.16094945 36.06851318 34.38396929

4 0 0 64 43.31327675 41.64979576 41.58483267 40.230519 39.94807635 38.66381209 40.46151752 39.77871367 38.23950949 37.6531273 38.06120276 39.03585514 37.35268158

5 0 0 63 39.53858051 37.99520619 37.70965592 36.49765326 36.11811686 35.06020262 36.54823981 35.8419987 34.48361692 33.80656585 34.15122627 35.14922603 33.45029801

6 0 0 62 40.62007595 39.13002951 38.74050284 37.60094968 37.17501864 36.21706204 37.54512622 36.80915752 35.57842573 34.85698539 35.15361141 36.07753141 34.39029354

7 0 0 61 54.20211109 53.10433032 51.94775372 51.4190917 50.63085959 50.3280146 50.50521782 49.5474531 49.37227812 48.31913636 48.22612747 48.5212409 46.98715128

8 0 0 60 37.02708782 35.68549377 35.03501257 34.07168325 33.5310342 32.84960404 33.77335173 32.98416344 32.03248491 31.2041859 31.39781299 32.18954729 30.52413479

9 59 59 59 40.55070063 39.00318858 38.72227429 37.50862016 37.13087323 36.06528273 37.55957191 36.85127002 35.49516044 34.81935848 35.16280112 36.1546192 34.45691075

10 58 58 58 42.8921223 41.2393671 41.15455906 39.81281792 39.52166206 38.25762048 40.04610864 39.38109614 37.81950459 37.22501912 37.64441047 38.73595096 37.02555493

Column # 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Column Label DistLM15 DistLM16 DistLM17 DistLM18 DistLM19 DistLM20 DistLM21 DistLM22 DistLM24 DistLM25 DistLM26 DistLM27 DistLM28 DistLM29 DistLM30 DistLM31

1 35.10476868 36.58540896 33.76397862 32.81464153 34.08703245 33.13845476 32.76335057 30.22884578 28.92307961 26.35743627 35.37196627 33.22530218 32.04600375 30.45235646 31.81139813 28.1210745

2 36.0415659 37.05908331 34.73645694 33.83881764 34.87558259 34.04943728 33.4750273 31.20377233 29.83383331 27.05223353 35.683761 33.23530194 31.52824372 30.48305102 31.67095129 27.97372113

3 33.66934198 34.92575088 32.40260081 31.56503542 32.53329899 31.65482089 31.17549681 28.87802376 27.44512949 24.728876 33.65066122 31.39234877 30.03885121 28.61374462 29.922651 26.21130153

4 36.59460699 37.88572052 35.26040811 34.29386947 35.5018713 34.62254681 34.14242571 31.72535043 30.40653384 27.69449045 36.60301942 34.32499625 32.92113844 31.54683648 32.84259203 29.128642

5 32.67370228 34.05996947 31.36728572 30.47365716 31.60294502 30.68423592 30.26430914 27.83467455 26.46827579 23.83739813 32.8232008 30.6386858 29.41422665 27.86272462 29.20805183 25.51038357

6 33.66445183 34.94388493 32.39021761 31.54182427 32.54000735 31.65426223 31.18539559 28.86370781 27.44286835 24.74114163 33.6750999 31.42855341 30.09489968 28.64996139 29.96484262 26.25499598

7 46.69064831 47.06487732 45.70888839 45.23280451 45.18158216 44.5877847 43.75583756 42.34806213 40.58228942 37.50450005 45.5862057 42.94337286 40.80017616 40.30134309 41.29550703 37.73516129

8 29.88970737 30.99328613 28.68399215 27.94182994 28.67308442 27.84621027 27.2962141 25.18312706 23.65693729 20.84471815 29.68534687 27.37396214 25.95609192 24.59699946 25.88168223 22.16686877

9 33.68458991 35.0594177 32.37964604 31.48627932 32.60915064 31.6935634 31.2685779 28.84715771 27.47777956 24.83882043 33.8174141 31.62076012 30.36965169 28.84387694 30.18260871 26.48145437

10 36.18549994 37.69389972 34.83435497 33.8676754 35.18391831 34.22662978 33.86479596 31.29945918 30.01240004 27.46588681 36.48701191 34.20882487 32.78359161 31.43117577 32.72012402 29.00541353

Column # 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

Column Label DistLM32 DistLM34 varKSC1 varKSC2 varKSC4 varKSC5 varKSC6 varKSC7 varKSC8 varKSC9 varKSC10 varKSC11 varKSC12 varKSC13 varKSC14 varKSC15

1 29.27021218 30.4090462 143.7380656 19.42748205 621.9121503 34.02089585 55.24614872 208.1087011 507.2817055 140.4408385 81.70386395 412.7833527 1655.474484 69.06103635 NA 732.016377

2 29.11314112 30.16686762 1548.399198 182.0870139 78.46455307 76.1961436 152.2098815 69.69405624 269.614949 66.21294031 280.5310552 407.55813 170.094371 199.788863 NA 970.687374

3 27.36363606 28.48082062 424.4783817 28.20225231 376.7198328 136.6808936 41.43631699 142.8986978 9.331777259 52.66520662 160.1671597 20.8084935 827.7517049 95.51889919 NA 389.0069739

4 30.28080047 31.39083351 408.1765851 36.5381954 102.2900522 22.63749072 167.9935908 28.34045304 73.39949939 34.08103323 75.15731911 99.65704124 16.23766388 210.2743208 NA 259.3637595

5 26.66093178 27.79473334 613.416417 70.90320062 295.9176454 22.84407869 7.972220073 40.1567438 267.930014 111.6471784 101.1599422 12.17130332 314.6567094 192.7922356 NA 151.4936534

6 27.40726906 28.52723153 1157.285515 26.56102968 186.7348778 40.34644615 9.231733244 84.64321174 122.5434185 71.35347516 25.93245571 47.25397355 18.58475314 1078.070929 NA 144.973224

7 38.81914705 39.75458208 1262.886582 27.150339 423.0596972 19.88645104 34.22014627 44.33375392 72.92550672 71.60671513 58.97332177 129.467362 96.20166544 186.7311219 NA 58.74981616

8 23.31876324 24.42586073 323.6865177 134.359238 129.3584688 12.95404957 6.569379126 46.6202263 27.24969479 50.22047349 15.63169946 224.8082623 273.876108 158.7826538 NA 46.34078026

9 27.63262829 28.7632802 321.451988 47.32244081 215.2691679 29.64949917 45.00688852 86.82000667 118.6718613 23.61875114 35.76687162 95.34420629 408.1875452 390.7038808 NA 22.55940602

10 30.15734171 31.26409104 545.1361636 132.7250879 68.4921196 20.35594087 10.21336001 133.7409999 471.1524624 187.505019 32.10985884 45.60025075 13.44413293 240.5746111 NA 54.03537001

Column # 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

Column Label varKSC16 varKSC17 varKSC18 varKSC19 varKSC20 varKSC21 varKSC22 varKSC24 varKSC25 varKSC26 varKSC27 varKSC28 varKSC29 varKSC30 varKSC31 varKSC32 varKSC34

1 408.5116354 298.134941 643.5962636 766.8695948 1931.711123 268.8415694 7.966787151 96.61577148 733.532189 702.5693929 2172.667033 2858.478584 257.7819967 5.749514727 44.25978615 88.35306169 486.5546311

2 234.3627058 208.6332778 139.930014 344.5865849 798.5023257 400.2364504 196.9028325 942.1785484 139.5369016 169.6186942 40.70135201 716.1713033 376.1223715 227.3323748 123.6677115 255.4804028 1292.863081

3 104.9606242 162.6743688 109.9594105 734.2614365 440.4030126 1588.564677 134.1800156 55.0451057 1692.01943 321.3772752 1335.77411 864.2635527 427.8294205 103.850423 730.1313487 244.1294458 435.5780033

4 898.0229036 108.5547111 32.43531666 221.6689812 4.909865955 1192.122172 15.14420362 65.6342443 1455.604802 696.4561519 31.78992286 3178.726987 576.5875452 178.9756248 1031.730177 555.5032673 215.4881476

5 417.9662803 231.6676154 35.09504768 368.8395759 14.03410203 215.6366771 231.8736005 82.52132933 2052.128094 386.8466163 574.5784968 494.1820767 53.51791219 9.808040903 70.45427409 782.9069405 359.9437395

6 622.7610377 248.9205184 132.4846078 183.922463 159.5940887 403.6470806 12.8836261 264.8200849 857.6711064 277.5328048 31.69611026 1461.927933 243.9924348 409.5755225 374.1431304 240.9613 51.72006491

7 432.030403 156.4590437 35.06361854 104.2557012 17.14687118 33.81657708 38.56081983 555.2380909 3378.018164 2112.546552 60.2092253 2958.374747 330.4186836 108.2420736 177.9635185 39.36500789 120.6170572

8 248.2956986 66.29938869 34.89336445 14.10385684 48.99928598 2403.876592 7.609825497 66.34282361 1145.99262 371.6941662 269.4319902 42.159326 136.7138379 185.0726349 78.50458775 199.4115354 114.349448

9 119.0544244 49.45784417 61.70389419 943.7350779 113.9061927 1616.200556 30.1092293 311.7095761 170.4446531 329.6892787 424.1324441 60.98726242 191.5329839 200.7835501 1454.080929 70.66598022 245.976385

10 254.6868352 65.14427298 24.84283917 232.8001583 35.92354074 66.24137112 9.855870179 105.6371679 298.894291 66.31733868 156.0249132 509.4284477 71.85985729 23.25721729 53.27531399 588.2564428 983.5123334



 

63 

Appendix B: Scatter Plots 1-Minute Mean Sensor Values by Time 

Bivariate Fit of KSC1 By Time Bivariate Fit of KSC2 By Time Bivariate Fit of KSC4 By Time 

 
 

Bivariate Fit of KSC5 By Time  Bivariate Fit of KSC6 By Time Bivariate Fit of KSC7 By Time 
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Appendix B: Scatter Plots 1-Minute Mean Sensor Values by Time (cont.) 

Bivariate Fit of KSC8 By Time Bivariate Fit of KSC9 By Time Bivariate Fit of KSC10 By Time 

 
 

Bivariate Fit of KSC11 By Time Bivariate Fit of KSC12 By Time Bivariate Fit of KSC13 By Time 
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Appendix B: Scatter Plots 1-Minute Mean Sensor Values by Time (cont.) 

Bivariate Fit of KSC14 By Time Bivariate Fit of KSC15 By Time Bivariate Fit of KSC16 By Time 

 

 

Bivariate Fit of KSC17 By Time Bivariate Fit of KSC18 By Time Bivariate Fit of KSC19 By Time 
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Appendix B: Scatter Plots 1-Minute Mean Sensor Values by Time (cont.) 

Bivariate Fit of KSC20 By Time Bivariate Fit of KSC21 By Time Bivariate Fit of KSC22 By Time 

 

 

Bivariate Fit of KSC24 By Time Bivariate Fit of KSC25 By Time Bivariate Fit of KSC26 By Time

 

  



 

67 

Appendix B: Scatter Plots 1-Minute Mean Sensor Values by Time (cont.) 

Bivariate Fit of KSC27 By Time Bivariate Fit of KSC28 By Time Bivariate Fit of KSC29 By Time 

 

 

Bivariate Fit of KSC30 By Time Bivariate Fit of KSC31 By Time Bivariate Fit of KSC32 By Time 
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Appendix B: Scatter Plots 1-Minute Mean Sensor Values by Time (cont.) 

 Bivariate Fit of KSC34 By Time 
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Appendix C: Normal Quantile Plots for EFM Sensor Readings 
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Appendix C: Normal Quantile Plots for EFM Sensor Readings (cont.)
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Appendix C: Normal Quantile Plots for EFM Sensor Readings (cont.)
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Appendix C: Normal Quantile Plots for EFM Sensor Readings (cont.)
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Appendix C: Normal Quantile Plots for EFM Sensor Readings (cont.)
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Appendix C: Normal Quantile Plots for EFM Sensor Readings (cont.)
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Appendix C: Normal Quantile Plots for EFM Sensor Readings (cont.)
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Appendix C: Normal Quantile Plots for EFM Sensor Readings (cont.)
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Appendix C: Normal Quantile Plots for EFM Sensor Readings (cont.)
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Appendix C: Normal Quantile Plots for EFM Sensor Readings (cont.)
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Appendix C: Normal Quantile Plots for EFM Sensor Readings (cont.) 
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Appendix D: Scatter Plot 1-Minute Mean Sensor to Minimum Lightning Distance 
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Appendix E: Annual Centered Mean Sensor and Lightning Response Plots 
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Appendix E: Annual Centered Mean Sensor and Lightning Response Plots (cont.) 
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Appendix E: Annual Centered Mean Sensor and Lightning Response Plots (cont.) 

 



 

84 

Appendix E: Annual Centered Mean Sensor and Lightning Response Plots (cont.) 
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Appendix F: Nominal Logistic Regression Model to Predict Storms 

 Nominal Logistic Fit for bin.LM1 Nominal Logistic Fit for bin.LM2 Nominal Logistic Fit for bin.LM4 
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Appendix F: Nominal Logistic Regression Model to Predict Storms (cont.) 

Nominal Logistic Fit for bin.LM5 Nominal Logistic Fit for bin.LM6 Nominal Logistic Fit for bin.LM7 
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Appendix F: Nominal Logistic Regression Model to Predict Storms (cont.) 

Nominal Logistic Fit for bin.LM8 Nominal Logistic Fit for bin.LM9 Nominal Logistic Fit for bin.LM10
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Appendix F: Nominal Logistic Regression Model to Predict Storms (cont.) 

Nominal Logistic Fit for bin.LM11 Nominal Logistic Fit for bin.LM12 Nominal Logistic Fit for bin.LM13
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Appendix F: Nominal Logistic Regression Model to Predict Storms (cont.) 

Nominal Logistic Fit for bin.LM14 Nominal Logistic Fit for bin.LM15 Nominal Logistic Fit for bin.LM16 
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Appendix F: Nominal Logistic Regression Model to Predict Storms (cont.) 

Nominal Logistic Fit for bin.LM17 Nominal Logistic Fit for bin.LM18 Nominal Logistic Fit for bin.LM19 
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Appendix F: Nominal Logistic Regression Model to Predict Storms (cont.) 

Nominal Logistic Fit for bin.LM20 Nominal Logistic Fit for bin.LM21 Nominal Logistic Fit for bin.LM22 
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Appendix F: Nominal Logistic Regression Model to Predict Storms (cont.) 

Nominal Logistic Fit for bin.LM24 Nominal Logistic Fit for bin.LM25 Nominal Logistic Fit for bin.LM26 
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Appendix F: Nominal Logistic Regression Model to Predict Storms (cont.) 

Nominal Logistic Fit for bin.LM27 Nominal Logistic Fit for bin.LM28 Nominal Logistic Fit for bin.LM29 
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Appendix F: Nominal Logistic Regression Model to Predict Storms (cont.) 

Nominal Logistic Fit for bin.LM30 Nominal Logistic Fit for bin.LM31 Nominal Logistic Fit for bin.LM32 
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 Appendix F: Nominal Logistic Regression Model to Predict Storms (cont.) 

 Nominal Logistic Fit for bin.LM34 
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Appendix G: Negative Binomial Regression Models to Predict Storm Cessation 
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Appendix G: Negative Binomial Regression Models to Predict Storm Cessation (cont.) 
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Appendix G: Negative Binomial Regression Models to Predict Storm Cessation (cont.) 
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Appendix G: Negative Binomial Regression Models to Predict Storm Cessation (cont.) 
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Appendix G: Negative Binomial Regression Models to Predict Storm Cessation (cont.) 
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Appendix G: Negative Binomial Regression Models to Predict Storm Cessation (cont.) 

  

  



 

102 

Appendix G: Negative Binomial Regression Models to Predict Storm Cessation (cont.) 

  

  



 

103 

Appendix G: Negative Binomial Regression Models to Predict Storm Cessation (cont.) 
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