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Abstract 

Decision makers lack a clear, generalizable method to quantify how additional 

investment in inventory and capacity equates to additional levels of resilience. This 

research facilitates a deeper understanding of the intricacies and complex 

interconnectedness of organizational supply chains by monetarily quantifying changes in 

network resilience. The developed Area under the Curve metric (AUC) is used to 

quantify the level of demand that each asset allocation can meet during a disruptive 

event. Due to its applicability across multiple domains, the USAF F-16 repair network in 

the Pacific theater (PACAF) is modeled utilizing discrete event simulation and used as 

the illustrating example. This research uses various levels of production capacity and 

response time as the primary resilience levers. However, it is essential to simultaneously 

invest in inventory and capacity to realize the greatest impacts on resilience. Real-world 

demand and cost data are incorporated to identify the inherent cost-resilience 

relationships, essential for evaluating the response and recovery capabilities across the 

developed scenarios. Results indicate that recovery capacity and response time are the 

greatest drivers of recovery after a disruption. Additionally, numerous network designs 

employing various levels of design flexibility are evaluated and recommended for future 

capacity expansion. 

 

 



v 

Acknowledgments 

I would like to thank my advisor, Maj Breitbach, for his continuous support, 

guidance, and patience. He has truly been instrumental to my professional development. 

Additionally, I would like to thank my readers, Lt Col Cox and Dr. Steeneck, for 

donating a significant amount of their time to the development of this research. Lastly, I 

would like to thank Dr. Johnstone and Dr. Gaudette for their understanding of the 

academic rigor that is involved to complete this program. I truly would not be at this 

stage without the steadfast support of all of you.  

 
       Zachary B. Shannon 

 

 

 



vi 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Acknowledgments................................................................................................................v 

Table of Contents ............................................................................................................... vi 

List of Figures .................................................................................................................. viii 

List of Tables ..................................................................................................................... ix 

I.  Introduction .....................................................................................................................1 

1.1 Background & Motivation ......................................................................................2 
1.2 Problem Statement..................................................................................................4 
1.3 Research Questions ................................................................................................5 
1.4 Research Overview .................................................................................................5 

II. Literature Review ............................................................................................................6 

2.1 General Resilience Strategies .................................................................................6 
2.2 Investment in Resilience .......................................................................................10 
2.3 Production Capacity and Inventory Tradeoff .......................................................13 
2.4 Resilient Design Flexibility ..................................................................................15 
2.4.1 Long Chain Flexibility Approach ......................................................................17 
2.5 Literature Conclusion ...........................................................................................20 

III. Methodology ................................................................................................................21 

3.1 Conceptual Design ................................................................................................22 
3.2 Data Collection .....................................................................................................22 
3.3 Baseline System Description ................................................................................24 
3.4 Model Verification & Validation .........................................................................27 
3.5 Scenario Development..........................................................................................28 
3.6 Flexibility Design .................................................................................................31 
3.7 Disruption Incorporation ......................................................................................34 
3.8 Resilience Measurement .......................................................................................35 
3.9 Cost Assignment ...................................................................................................37 

IV. Analysis and Results ....................................................................................................39 

4.1 Baseline Structure .................................................................................................40 
4.1.1 Impacts on Transient Performance Metrics .......................................................40 
4.1.2 Criticality of Response Time .............................................................................43 
4.2 Simple Allocation Structure .................................................................................46 
4.2.1 Impacts on Transient Performance Metrics .......................................................47 
4.2.2 Criticality of Response Time .............................................................................47 
4.3 Long Chain Structure ...........................................................................................47 



vii 

4.3.1 Impacts on Transient Performance Metrics .......................................................50 
4.3.2 Criticality of Response Time .............................................................................51 
4.4 Resilience Costs ....................................................................................................53 
4.5 Validity of an Expedited Response Time .............................................................55 

V.  Conclusions and Recommendations ............................................................................58 

5.1 Problem Statement Resolution .............................................................................58 
5.2 Findings ................................................................................................................59 
5.3 Future Research Opportunities .............................................................................61 
5.4 Limitations ............................................................................................................62 
5.5 Conclusion ............................................................................................................62 

Appendix A: PACAF Baseline Simulation Design ...........................................................64 

Appendix B: Output Consolidation Code (Femano et al., 2019) .......................................65 

Appendix C: Area Under the Curve Code (Femano et al., 2019) ......................................66 

Appendix D: Plot Time Series Code (Femano et al., 2019) ..............................................69 

Bibliography ......................................................................................................................70 

 



viii 

List of Figures 

Page 

Figure 1: Disruption Time Periods (Melnyk et al., 2013)................................................... 9 

Figure 2: Various Flexibility Configurations (Graves & Tomlin, 2003) .......................... 19 

Figure 3: Adopted Research Methodology ....................................................................... 21 

Figure 4: Developed Network Designs ............................................................................. 32 

Figure 5: Post-Disruption Behavior .................................................................................. 35 

Figure 6: Performance Metrics & Disruption Time Periods (Femano et al., 2019) ......... 36 

Figure 7: Baseline Response Comparison (10 vs. 40-Day) .............................................. 43 

Figure 8: Varying Response Time - Baseline Structure (1.00 Initial Cap, 1.40 Recovery 

Cap) ............................................................................................................................ 44 

Figure 9: All Responses – Baseline Structure (1.00 Initial Cap, 1.40 Recovery Cap) ..... 44 

Figure 10: Long Chain Response Comparison (10 vs. 40-Day) ....................................... 50 

Figure 11: Varying Response Time – Long Chain Structure (1.00 Initial Cap, 2.10 

Recovery Cap) ............................................................................................................ 52 

Figure 12: All Responses – Long Chain Structure (1.00 Initial Cap, 2.10 Recovery Cap)

 .................................................................................................................................... 52 

Figure 13: Structure Performance/Cost Comparison ........................................................ 55 

 

  



ix 

List of Tables 

Page 

Table 1: Baseline System Capacity Allocation ................................................................. 22 

Table 2: Consolidated Data Sources ................................................................................. 24 

Table 3: 2018 System Parameters ..................................................................................... 24 

Table 4: Avionics, Hydraulics, & E/E Severity Mix ........................................................ 27 

Table 5: Propulsion Severity Mix ..................................................................................... 27 

Table 6: Developed Baseline Scenarios ............................................................................ 30 

Table 7: Baseline 40-Day Response Output ..................................................................... 42 

Table 8: Baseline Performance with Prolonged Response Times .................................... 45 

Table 9: Simple Allocation Structure Output ................................................................... 46 

Table 10: Long Chain 10-Day Response Output Original Inventory Levels ................... 49 

Table 11: Long Chain 10-Day Response Output Increased Inventory Levels ................. 49 

Table 12: Long Chain Performance with Prolonged Response Times ............................. 53 

Table 13: Baseline Structure Response P-Values ............................................................. 57 

Table 14: Long Chain Structure Response P-Values ........................................................ 57 



1 

RESILIENT AIRCRAFT SUSTAINMENT:  
QUANTIFYING RESILIENCE THROUGH ASSET  

AND CAPACITY ALLOCATION 
 

I.  Introduction 

As the world continues to globalize, complexity amongst organizational supply 

chains continues to grow (Christopher & Peck, 2004; Pettit et al., 2010). Supply chains 

have lengthened, and the need to rely upon strategic partners has risen, creating an 

advanced interconnectedness among critical nodes (Christopher & Peck, 2004). This 

leads to a drastic increase in the operational vulnerabilities and uncertainties that firms 

continuously face (Tang, 2006). Ultimately, this creates the need to investigate ways to 

become more efficient and competitive in an environment that is constantly changing. To 

sustain a competitive advantage, decision makers often attempt to achieve “fully 

integrated and efficient” supply chain operations usually at the cost of risk mitigation 

capabilities elsewhere (Christopher & Peck, 2004:1). This foundational tradeoff between 

efficiency and risk mitigation exists in many respects of the supply chain and further adds 

to the narrative of an uncertain future (Pettit et al., 2010; de Neufville & Scholtes, 2011). 

Therefore, an organization’s ability to mitigate the impact of network disruptions on 

network performance is critical to the short-term ability to meet demand, but more 

importantly, to an organization’s long-term survival.  

This research facilitates a deeper understanding of the complex interconnectedness of 

organizational supply chains by using the example of the F-16 repair network located in 

the Pacific Air Force (PACAF) theater. This research helps to further develop a 

generalizable tool and methodology to quantify network resilience. It analyzes 

incremental changes in resilience from the simultaneous investment in resilience levers. 
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Additionally, foundational cost-resilience relationships are identified, providing essential 

insight into the response and recovery capabilities of various network designs. PACAF 

was strategically chosen because of its immense geographic area, as well as the continual 

rise in operational and strategic capabilities of US adversarial threats located in theater. 

This research posits the use of the Area under the Curve (AUC) metric, which identifies 

the number of mission-capable days the network can support over time (Femano et al., 

2019). The AUC provides decision makers the ability to forecast network performance 

levels resulting from predetermined asset allocations and corresponding investment while 

facing a network disruption. 

1.1 Background & Motivation 

Supply chains are extremely complex networks consisting of critical nodes that are 

essential for the achievement of operational and strategic initiatives (Blackhurst et al., 

2005; Bakshi & Kleindorfer, 2009; Pettit et al., 2010; Tukamuhabwa et al., 2015). They 

are critical to the ability to meet demand and drive earnings, all the while playing an 

instrumental role in the ability to develop advantages that set organizations apart from 

competitors. Effective supply chains are a major driving factor of customer satisfaction, 

and the inability to proactively mitigate and respond to an increasingly uncertain future 

could have lasting and grave effects on the ability to sustain strategic operations and meet 

customer demand (de Neufville & Scholtes, 2011).  

The importance of organizational resilience cannot be overstated. The ability to 

recognize an uncertain future facilitates a greater level of preparedness needed to hedge 

against downside risk (de Neufville & Scholtes, 2011). Take, for example, the recent 
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outbreaks of the coronavirus. Similar to the SARS outbreaks in 2003, the virus has 

quickly spread to parts outside of Wuhan, China, impacting countries across the globe 

(Otani, 2020). News of the outbreak hit financial markets especially hard. For instance, 

the S&P 500 reacted accordingly by yielding the worst trading session in months (Otani, 

2020). A rather optimistic view of 2020 global economic growth has been severely 

dampened by the unknown economic impacts of the virus, further exacerbating the need 

for proactively safeguarding organizational resources.  

The ability of an organization to withstand the impact of a disruption has been 

explored extensively in the literature. Resiliency tactics, such as the capability factors 

presented by Pettit et al. (2010) and mitigation strategies proposed by Chopra and Sodhi 

(2004), provide foundational insight as to the wide range of response options 

organizations have at their disposal. Much of the developed research on supply chain 

resiliency is qualitative in nature (Tukamuhabwa et al., 2015). Much of the quantitative 

analysis is limited and provides minimal usefulness. A generalizable tool that measures 

the practicality of qualitative strategies and can be implemented to gauge resiliency is 

greatly lacking from a supply chain resiliency perspective.  

In a military context, specifically the USAF’s F-16 repair network located in the 

Pacific (PACAF), the level of vulnerabilities that exist due to environmental factors and 

adversarial capabilities, create the continuous need to safeguard mission critical assets to 

maintain operations. PACAF provides an ideal test case for the applicability of this tool. 

For instance, PACAF features inherent flexibility due to the implementation of the repair 

network integration (RNI) construct. Implemented to supplement local maintenance 

capabilities, the RNI construct is meant to provide a holistic Air Force view of “off-
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equipment repair capabilities” and “integrated, agile support” to the warfighter by 

enhancing design and capability allocations across the repair network (RNIO et al., 

2016). Moreover, the RNI construct is aimed at eliminating repair of Intermediate-level 

(I-level) and Depot-level (D-level) discrepancies in isolation to create a more robust and 

flexible repair capability for USAF operations (RNIO et al., 2016).  

PACAF currently features a relatively high level of repair flexibility regarding I-level 

discrepancies for Avionics, Hydraulics, and Electrical & Environmental (E/E) at all four 

operating locations. However, centralization exists for the I-level overhauls of the F110-

GE-129 engine. For instance, if a propulsion I-level discrepancy is identified at Osan 

AFB, the entire engine is packed, wrapped, and shipped to the propulsion centralized 

repair facility (CRF) located at Misawa AFB. Although centralization provides enormous 

benefits from efficiency and economies of scale, it simultaneously increases the 

vulnerabilities of the network (Tripp et al., 2010; Forbes & Wilson, 2018). Hence, if 

Misawa experiences a disruption, the impacts and subsequent ability to perform F110-

GE-129 engine overhauls could be catastrophic.  

1.2 Problem Statement 

Decision makers must strike a balance between supply chain vulnerabilities and 

supply chain capabilities (Pettit et al., 2010). Network outages due to disruptions are 

often exacerbated due to the lack of visibility, connectedness among nodes, redundant 

capability or just flat out underestimation (Tang, 2006). Hence, many of the tangible 

losses organizations incur would be greatly diminished with a cost-effective, easily 
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adaptable tool that provides decision makers the ability to quantify, analyze, and evaluate 

the impact of predetermined asset allocations on disruption performance.  

1.3 Research Questions  

This research explores the following research questions to better understand how the 

investment in resiliency impacts an organization’s ability to perform during a disruption. 

Specifically, this research asks: 

1. How do different investments in inventory and production capacity equate to 

different levels of resilience across the sustainment network? 

2. How should the investments in inventory and production capacity be allocated 

across the sustainment network? 

1.4 Research Overview 

The research questions are answered through the analysis of a discrete-event 

simulation (DES) model that quantifies the level of resilience resulting from various 

levels of resilience investment. An extensive literature review draws upon the following 

literature streams: general resilience strategies, investments in resilience, production 

capacity and inventory tradeoff, and resilient design flexibility. The developed model is 

then applied to PACAF. Subsequently, sustainment data and results are analyzed over the 

different investment scenarios and network designs to identify resilience-cost 

relationships. Lastly, findings, future research opportunities, and limitations are presented 

to further facilitate a deeper understanding of resilience incorporation.  
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II. Literature Review 

The following chapter provides an overview of the relevant research on supply chain 

resiliency. Existing literature lacks a clear, generalizable way to quantify incremental 

changes in network resilience due to the manipulation of resilience levers. Specifically, 

USAF decision makers lack the ability to quantify how additional investments in 

resilience equates to additional resilience. Much of the relevant literature streams have 

focused on a reactive approach to mitigate supply chain disruptions. However, this 

research provides decision makers insight into how network performance changes after a 

disruption based on a predetermined asset allocation. The relevant literature streams 

explored to address this gap include: general resilience strategies, investment in 

resilience, production capacity and inventory tradeoff, and resilient design flexibility.  

2.1 General Resilience Strategies 

Supply chain resilience “is the ability of a system to return to its original state or 

move to a new, more desirable state after being disturbed” (Christopher & Peck, 2004:2). 

However, it has never been more elusive or necessary for supply chain decision makers 

(Christopher & Peck, 2004; Forbes & Wilson, 2018). First and foremost, the concept of 

supply chain resilience is relatively unexplained (Christopher & Peck, 2004; Blackhurst 

et al., 2005; Wang & Ip, 2009). Furthermore, the rapid rise of globalization has led to 

“increased consumer expectations, more global competition, longer and more complex 

supply chains, and greater product variety with shorter product life cycles” (Sheffi & 

Rice Jr., 2005:41). Subsequently, increased organizational complexity in conjunction 

with a lack of known methods to tangibly implement and quantify resilience has given 
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rapid rise to large-scale vulnerabilities that could drastically change the outlook of an 

organization’s going concern (Blackhurst et al., 2005; Bakshi & Kleindorfer, 2009; Pettit 

et al., 2010; Tukamuhabwa et al., 2015). Although disaster and contingency planning 

have been widely explored, organizational contingency planning often exists in a silo, 

embedded away from the necessary cohesiveness that is required to build a resilient 

supply chain (Christopher & Peck, 2004). Carter and Rogers (2008) perform an extensive 

literature review to formulate a holistic framework to implement Sustainable Supply 

Chain Management (SSCM). Transparency and cohesiveness are greatly emphasized to 

ensure the successful implementation of such strategies (Carter & Rogers, 2008). 

Christopher and Peck (2004) assert that the lack of a foundational research base has 

created the inability to fully comprehend the importance and breadth of resilience 

incorporation in an organization’s supply chain. Moreover, decision makers lack 

generalizable tools that can assist in gauging and implementing resilience into the supply 

chain (Christopher & Peck, 2004). This research will provide a tangible method to 

illustrate the importance of supply chain resilience incorporation and assist decision 

makers in gauging current levels of resilience due to a predetermined allocation of 

production capacity and inventory assets.  

Craighead et al. (2007) argue that disruptions are inherently unavoidable; therefore, 

risk is constant in supply chains. Direct correlations are drawn from the disruption 

severity to the supply chain characteristics of density, node criticality, complexity, 

recovery and warning (Craighead et al., 2007). Specific to recovery, the ability of an 

organization to proactively and reactively allocate capacity in the event of a disruption 

greatly mitigates the impact of a disruption on performance (Craighead et al., 2007). 
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Ivanov et al. (2014) and Ivanov (2018) introduce the propagation effect that may occur 

without the proper recovery implementation. Although both proactive capacity and 

reactive capacity allocations work best in unison, proactive recovery capacity is more 

effective at limiting the propagation of the disruption throughout the entire supply chain. 

The literature presents copious amounts of varying definitions for the numerous 

resilience levers at the decision maker’s authority. Using the definitions set forth in the 

literature, this research creates a method to add practicality to the many definitions that 

have been created.  

Sheffi and Rice Jr. (2005) equate supply chain resilience to the reduction in 

probability of a disruption occurrence, thus, reducing overall system vulnerabilities. 

Specifically, resilience is created with the addition of inherent system flexibility and built 

in redundancy (Sheffi & Rice Jr., 2005). Melnyk et al. (2013) build upon this basic 

resilient structure by attributing the resilience of an organization’s supply chain to the 

utilization of capacity to resist and recover from a disruption. Additionally, they 

recommend analyzing the system’s transient states when measuring the impact of a 

disruption, and ultimately the network’s cumulative resilience. Figure 1 illustrates the 

time periods associated with Melynk et al. (2013) concept of resistance and recovery 

capacity. An organization’s ability to resist the impact of a disruption can be 

characterized by taking the integral above the curve for the time period TO – TP, while 

the ability to recover from a disruption can be characterized by taking the integral above 

the time period TP – TR (Melnyk et al., 2013). The smaller this integral, the greater the 

ability of an organization to resist and recover from a disruption (Melnyk et al., 2013).  
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Figure 1: Disruption Time Periods (Melnyk et al., 2013) 

This research also emphasizes the need of an organization to resist and recover from a 

disruption. However, and contrary to Melnyk et al. (2013), this research integrates the 

area under the curve (AUC) which provides a more accurate measure of cumulative 

network performance over the specified disruption time period (Femano et al., 2019). 

Additionally, the AUC provides a greater ability to analyze the impacts of resilience 

investments on network performance because it provides a forecast of the level of 

demand that can be met resulting from predetermined assets in the event of a disruption 

(Femano et al., 2019).  

Blackhurst et al. (2005) recognize the need for resilience stemming from larger 

supply chains and increased dispersion. More specifically, the rise of global sourcing and 

transition to efficient operations, such as the incorporation of agility and lower inventory 

levels, further emphasizes the need for built-in resilience (Blackhurst et al., 2005; 

Kleindorfer & Saad, 2005; Tang & Tomlin, 2008; Bakshi & Kleindorfer, 2009; Pettit et 
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al., 2010; Schmitt & Singh, 2012). Blackhurst et al. (2005) offer insightful analyses on 

disruption discovery, disruption recovery, and network redesign by conducting a “major 

multi-industry, multi-methodology, empirical study” which highlights general disruption 

behavior from an extremely broad perspective (Blackhurst et al., 2005:4078). However, 

the research is strictly qualitative and offers no quantification of various network 

redesigns or recovery strategies. Therefore, this research seeks to add to the largely 

conceptual nature of supply chain resilience literature by quantifying incremental changes 

in resilience.  

2.2 Investment in Resilience 

One of the issues with designing the supply chain for resilience is that much of the 

literature on resilience incorporation is conceptual in nature. Hence, a quantifiable 

method and tool that tests different resilience strategies will pay dividends for USAF 

decision makers when making resource allocation decisions.  

Sheffi (2001) focuses primarily on the probability of a deliberate attack on a firm’s 

supply chain. Sheffi (2001) asserts that three main investment strategies exist that will 

maximize an organization’s resilience: (1) supplier relationships, (2) inventory 

management, and (3) knowledge and process backup. Sheffi identifies the cost tradeoff 

that exists between using local suppliers versus offshore suppliers. Although the use of 

local suppliers is more expensive, they offer quicker lead times. The use of offshore 

suppliers is often less expensive; however, the lead time is much longer (Sheffi, 2001). 

The concept of “Strategic Safety Stock,” which describes bolstered inventory levels used 

in the event of a disruption, is a useful way to help smooth out system performance level 
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during disruption impact (Sheffi, 2001; Chopra & Sodhi, 2004; Tang, 2006; Liu et al., 

2016). Tang (2006) echoes similar sentiment when recommending robust supply chain 

strategies. In particular, the use of “strategic stock” aids firms in responding to a wide 

range of demand when a disruption occurs (Tang, 2006). The use of redundant resources 

to increase network resiliency is not a new concept. Wang and Ip (2009) illustrate the 

impact of redundant, flexible, and decentralized resources on an aircraft servicing supply 

chain by modeling various levels of resilience. However, managerial insight into the 

different cost relationships between the various resilient concepts is not offered.  

Christopher and Peck (2004) develop four main concepts for creating supply chain 

resilience: (1) resilience should be inherent to the system, (2) a high level of 

organizational cohesiveness is needed if risk is going to be managed, (3) the ability to 

lower response time is critical, and (4) risk management culture must be embedded in the 

identity of an organization. Additionally, Christopher and Peck (2004) identify the 

importance of the inherent tradeoff between expanded capacity and increased inventory, 

which provides added flexibility when coping with the impacts of unforeseen disruptions 

or demand surges (Chopra & Sodhi, 2004; Christopher & Peck, 2004; Tomlin, 2006; 

Lücker et al., 2019).  

Pettit et al. (2010) introduce three propositions that identify the sought after “zone of 

resilience.” This equilibrium balances an organization’s capabilities with the 

organization’s vulnerabilities (Pettit et al., 2010). They assert that if a supply chain does 

not sufficiently invest to develop capabilities to offset the negative impacts of its 

vulnerabilities, excessive risk will occur. Conversely, excessive investment into risk 

mitigation capabilities will eventually begin to consume profitability (Pettit et al., 2010). 
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Additionally, Pettit et al. (2010) identify 14 mitigation capabilities that aim to address 

system vulnerabilities. In other words, networks that are prone to disruptions with limited 

resilience capabilities often place themselves in situations with excessive risk. Networks 

that invest heavily in the ability to mitigate vulnerabilities may be over investing and 

experience diminishing returns on those capabilities (Pettit et al., 2010). This research 

seeks to provide a method for striking a balance between network capabilities and 

network vulnerabilities.  

In the time leading up to a disruption, whether anticipated or unforeseen, firms have 

numerous options at their disposal to help mitigate or respond to the event of a disruption 

(Kleindorfer & Saad, 2005; Tomlin, 2006; Yang et al., 2009). Yang et al. (2009) examine 

how the numerous risk management strategies change when one entity is faced with 

asymmetric information (Yang et al., 2009). Specifically, Yang et al. (2009) examine the 

necessary adoption of mitigation tactics and associated costs for organizations when 

facing asymmetric information. Tomlin (2006) and Ivanov et al. (2014) assert that 

mitigation tactics are proactive in nature, thus, if the firm decides to proceed, a cost will 

be incurred even if a disruption does not occur. For instance, if a firm builds excess 

inventory in anticipation of a disruption, the acquisition cost and holding costs are 

incurred even if the disruption does not occur (Chopra & Sodhi, 2004). A firm may also 

want to proceed with a contingency tactic, which is inherently reactive in the sense that 

the firm only enacts this strategy if a disruption has occurred (Tomlin, 2006; Ivanov et 

al., 2014). For instance, in the event of a disruption, a firm may be able to shift 

production from one supplier to another (Tomlin, 2006). Tomlin (2006) highlights that 

the firm need not proceed with only one of these tactics, and that the greatest benefit in 
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added resiliency comes from an investment in simultaneous resilience tactics. Investing 

in isolation leads to inefficiencies within the system (Femano et al., 2019). This research 

applies this insight when balancing production capacity and inventory investments.  

Schmitt and Singh (2012) build upon the mitigation and contingency tactic strategies 

of Tomlin (2006) by utilizing discrete-event simulation (DES) to illustrate the impacts of 

inventory placement and other methods. Using a real-world example of a consumer-

packaged goods company, Schmitt and Singh (2012) and Snyder et al. (2012) emphasize 

the importance of capacity to mitigate a disruption impact shown by varying the level of 

capacity and response time. Although the use of disruption capacity is extremely 

important in a firm’s ability to recover, the reaction time of the disruption capacity is 

often more important than the capacity itself (Schmitt & Singh, 2012; Femano et al., 

2019). For instance, following a disruption, a 20% increase in capacity with a 1-week 

reaction time better mitigated the disruption impact than a 50% capacity increase with a 

4-week reaction time (Schmitt & Singh, 2012). The speed at which a firm reacts to a 

disruption can often have the greatest impact on mitigation and recovery (Schmitt & 

Singh, 2012; Femano et al., 2019).  

2.3 Production Capacity and Inventory Tradeoff 

Decision makers are continuously challenged to maximize specific outputs given a 

finite level of resources to do so. Both in a commercial and military context, maximizing 

the availability of parts, equipment, and systems are of the highest priority (Sleptchenko 

et al., 2003). Given the inherent nature of network vulnerabilities, disruptions, and finite 
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resources, the investment tradeoff between resilience levers is an integral part of any 

supply chain.  

Maximizing the availability of any system entails two primary methods: increasing 

inventory or reducing throughput times (Sleptchenko et al., 2003). Increasing system 

inventory to buffer against longer than usual throughput times and increasing capacity to 

shorten throughput times leaves decision makers with an interesting paradox 

(Sleptchenko et al., 2003). As Tomlin (2006) highlights, the isolated investment in a 

single capability will be limited without the simultaneous investment in multiple 

capabilities. In other words, if capacity is proactively and reactively increased without 

supplementing inventory, the full potential of the capacity will not be realized, and vice 

versa (Femano et al., 2019). Hence, decision makers are faced with an extremely 

challenging dilemma: how does a firm simultaneously invest in resilience capabilities to 

maximize the availability of a given system?  

Sleptchenko et al. (2003) take a two-pronged approach to address this problem. Using 

the VARI-METRIC procedure for parts inventory within a repair network, Sleptchenko et 

al. (2003) model a similar multi-echelon repair network consisting of local and depot-

level repair capabilities and illustrate the following: First, given a finite budget constraint, 

the goal is to maximize cumulative system availability. Second, given a specified 

availability target, an approach to minimize the investment costs is taken using the 

tradeoff of spare parts and production capacity (Sleptchenko et al., 2003). Although 

valuable insight into the cost relationships between spare inventory and capacity is 

provided, a resilience-building approach was not taken. This research incorporates a 

randomized disruption to measure the cost-resilience relationships between various levels 
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of inventory and capacity and captures the overall impact on system performance over a 

specified time period.  

Lücker et al. (2019) use the concept of reserve mitigation inventory (RMI) and 

reserve capacity to minimize the impact of an unforeseen disruption at a single location. 

Lücker et al. (2019) utilize RMI in a reactive manner contrary to the resistance concept 

developed by Melnyk et al. (2013). However, immediately following a disruption, the 

firm may use both measures instantaneously. Realistically, a time period will exist before 

an organization is able to respond. Under stochastic demand, Lücker et al. (2019) offer 

valuable insight into the optimal investment strategy of RMI and reserve capacity by 

evaluating the following risk strategies: inventory, reserve capacity, mixed, and passive 

(Lücker et al., 2019). This research quantifies resilience changes based on the investment 

in predetermined production capacity allocations, all the while emphasizing the need for 

the simultaneous increase in spare inventory.  

2.4 Resilient Design Flexibility 

Perhaps the single most important mitigation strategy an organization may utilize is in 

the flexibility design of its network. Process and design flexibility are essential in 

allowing organizations to vary their level of responsiveness while facing continuous 

uncertainties (Jordan & Graves, 1995). Flexibility is defined here as the ability to 

“restructure previously existing” production capacity to best mitigate and facilitate 

system recovery (Carvalho et al., 2012). Inventory is an excellent way to bolster 

resilience while facing continuous uncertainties (Sheffi, 2001; Chopra & Sodhi, 2004; 

Tang, 2006; Liu et al., 2016). Proactive mitigation techniques, particularly, the 
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stockpiling of inventory can be extremely expensive (Tomlin, 2006). Therefore, Liu et al. 

(2016) introduce the concept of virtual stockpile pooling (VSP). Aimed at lowering the 

massive holding costs associated with higher inventory levels, VSP differentiates from 

the dedicated stockpile and integrated stockpile approach by “allocating the integrated 

stockpile amongst multiple locations” (Liu et al., 2016:1746). This approach enables 

transshipments to compensate for locations that are below their allocated stock levels 

(Liu et al., 2016). It does so by creating thresholds or “red lines” representing the amount 

that a location can go above or below its allocated threshold. Fluctuations beyond the 

allocated threshold are dependent upon the ability of another location to compensate by 

increasing or decreasing its allocated threshold (Liu et al., 2016). In theory, the 

implementation of VSP for an Air Force repair network could prove beneficial; however, 

the quantity and localized nature of less severe repairs does not create the need for VSP 

incorporation within the scope of this research. Although, used in a proactive and reactive 

manner, bolstered inventory levels drastically reduce the impact on performance levels of 

organizations following a disruption (Sheffi, 2001; Chopra & Sodhi, 2004; Tang, 2006; 

Liu et al., 2016; Femano et al., 2019).  

Saghafian and Van Oyen (2011) highlight that a flexible design can be achieved by 

incorporating a backup supplier and gathering risk information through the use of 

primary suppliers. When facing the reality of finite budgets and the prospect of unreliable 

suppliers, a process is derived that assists in identifying which primary suppliers should 

be backed up (Saghafian & Van Oyen, 2011). This assumes that the achievement of full 

flexibility (backing up all primary suppliers) is not cost feasible (Saghafian & Van Oyen, 

2016). This approach “backs up” or bolsters the investment in production capacity prior 
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to the disruption occurring based on expected demand. In the context of a military repair 

network, strategic vulnerability assessments would occur to identify which nodes would 

benefit the most from redundant capabilities based on adversarial capabilities, location, 

and mission criticality.  

Forbes and Wilson (2018) highlight the need for supply chain flexibility by 

introducing a case study on a wine distribution supply chain in Christ Church, New 

Zealand during the devastating earthquakes in 2010 and 2011. Although specific to the 

wine distribution industry, Forbes and Wilson (2018) examine organizational capabilities 

by comprehensively analyzing each entity’s pre-event readiness, disruption response 

efforts, and long-term recovery efforts after a disruption occurred (Forbes & Wilson, 

2018). Specifically, Forbes and Wilson (2018) identify the critical need for capital 

expenditure decentralization. Although decentralization can be costly, the inherent 

“geographical dispersion and flexibility” facilitated a greater performance level during 

the disruption than that of their competitors (Forbes & Wilson, 2018:486). However, not 

all organizations have the financial capability for such measures. Therefore, organizations 

should aim to strike the delicate balance between network capabilities and vulnerabilities 

(Pettit et al., 2010). This research examines the impacts on network performance by 

varying the level of flexibility that is inherent to the PACAF network design. 

2.4.1 Long Chain Flexibility Approach  

Effectively designing the network to efficiently allocate capacity in a proactive 

manner allows cumulative network performance to better withstand any impact that may 

arise due to a disruptive event (de Neufville & Scholtes, 2011). Building upon the added 
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benefits of flexibility incorporation, the “long chain” or “one chain” strategy, introduced 

by Jordan and Graves (1995) describes a flexibility approach that connects all production 

plants and serviceable products by “product assignment decisions” (Jordan & Graves, 

1995:577). For instance, two plants can service each product, and each plant only 

services two products (Graves & Tomlin, 2003). This concept is illustrated by using the 

example of ten production plants and ten products, each with their own individual 

demand. The “no flexibility” design highlights an instance where each plant produces 

only one product and yields a cumulative capacity utilization of only 85.3% (Jordan & 

Graves, 1995). Next, the “full flexibility” example provides each plant the ability to 

produce every product. This design yields a capacity utilization of 95.4%; however, the 

cost of doing so is not feasible (Jordan & Graves, 1995). Graves and Tomlin (2003) build 

upon this concept by developing a process flexibility framework. The stark differences in 

the various network design structures are illustrated in Figure 2, which uses the terms 

“long chain” and “one chain” interchangeably. Although the “three chain” and “one 

chain” strategies have an equal number of links, the ability to meet demand, as indicated 

by sales and capacity utilization greatly benefits the “one chain” design (Jordan & 

Graves, 1995). As mentioned, the “total flexibility” approach yields similar results to the 

“one chain” design. However, the cost of “total flexibility” greatly exceeds that of “one 

chain,” or partial flexibility (Jordan & Graves, 1995). For the remainder of this research, 

this flexibility strategy will be referred to as the “long chain” structure.   
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Figure 2: Various Flexibility Configurations (Graves & Tomlin, 2003) 

The long chain structure allows the incorporation of flexibility into the system design, 

thereby, easing the shift of capacity to handle random fluctuations in demand from plant 

to plant, which facilitates a higher performance level (Graves & Tomlin, 2003). 

Additionally, flexibility incorporation allows quicker response times without sacrificing 

costs of buffer inventory and buffer capacity (Simchi-Levi & Wei, 2012). This research 

utilizes the long chain flexibility approach by illustrating the associated benefits when 

facing a disruption. Although the PACAF network design is inherently flexible, the cost 

of operational expansion would prove infeasible. The impacts on cumulative network 

performance resulting from the incorporation of the long chain structure and the resulting 

cost savings are illustrated in the methodology and results sections.  
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2.5 Literature Conclusion 

This research builds upon the supply chain resilience literature by measuring the 

impact of different resilience strategies. Specifically, this research addresses the 

identified literature gap by incorporating the outlined flexibility approaches in 

conjunction with the inherent tradeoff between inventory and production capacity to 

quantify how additional investment in the resilience levers equates to additional levels of 

resilience. More importantly, this tool builds upon the literature foundation by providing 

essential insight into the inherent cost-resilience relationships to better facilitate network 

performance in the event of a disruption.  
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III. Methodology 

This research addresses the gap in the literature by developing a simulation model to 

incrementally quantify the impact of resilience investment. The PACAF F-16 repair 

network is modeled to demonstrate the degree to which resiliency is currently 

incorporated and to determine how varying the level of investment and network designs 

impact cumulative network resilience. The identified resilience levers are spare 

inventory, production capacity, and the speed at which a disruption response occurs. A 

comprehensive examination of resilience lever manipulation and its subsequent impact on 

the pre-disruption and post-disruption performance levels will provide key insight as to 

the optimal allocation of resources across the network. The examination of key variables 

on the system’s ability to resist the occurrence of a disruption, mitigate the impact on 

performance level, and expedite recovery after a disruption has occurred will provide a 

system’s approach to examining network resilience levels. 

The adopted research methodology consists of the following steps: 

 

Figure 3: Adopted Research Methodology 



22 

3.1 Conceptual Design 

This research models the impact of a network disruption on the PACAF F-16 repair 

network as it is currently structured. Furthermore, various network designs are proposed 

and tested using the numerous flexibility approaches outlined in the literature. Repair 

network operations located at Misawa AFB, Kunsan AFB, Osan AFB, and Eielson AFB 

are modeled by incorporating four individual Product Repair Groups (PRGs): Propulsion, 

Avionics, Hydraulics and Electrical & Environmental (E/E). The distribution of resources 

(capital fixtures necessary for repair) for each location are based off the quantity of 

resources for the F-16 C & D models located at Shaw AFB. For instance, identified 

quantities of production capacity at Shaw AFB are distributed to each location in PACAF 

in proportion to the amount of allocated aircraft located at each base. Table 1 illustrates 

the back shop capacity allocation for the initial baseline system.  

Table 1: Baseline System Capacity Allocation 

 

3.2 Data Collection 

The Air Force’s Logistics, Installations, and Mission Support-Enterprise View 

(LIMS-EV) was utilized as the primary source of data. LIMS-EV is the “single entry 

point” or consolidated warehouse of Air Force logistics data and was created to ensure 

Back Shop Eielson Osan Kunsan Misawa Total
Propulsion 2 2 4 4 12
Avionics 3 3 5 6 17

Hydraulics 1 2 3 3 9
E/E 1 1 2 2 6

Prop CRF 5 5
Total 7 8 14 20 49
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“one version of the truth” for all logistics data exploitation (Petcoff, 2010). Therefore, 

this research relies heavily upon the accessibility and accuracy of the consolidated 

database. When identifying and gathering the necessary data, all results were filtered to 

contain the relevant metrics for the chosen network and chosen airframe. Sortie quantity, 

flying hours, total aircraft inventory (TAI), and break rates were gathered and 

incorporated from various dashboards located within LIMS-EV. Furthermore, specific 

line replaceable unit (LRU) data is gathered from the DLR Flying Dashboard. 

Additionally, small focus groups with each PRG back shop were held that facilitated 

discussion and validation of model assumptions. Conversations with subject matter 

experts (SMEs) were utilized to gather pipeline times between critical nodes during the 

repair process. Empirical data was gathered and consolidated from notes based on first-

hand experience at Shaw AFB. Table 2 shows a consolidated list of gathered and 

incorporated data, while Table 3 illustrates the 2018 system parameters that are 

incorporated into the simulation at time 0. Additionally, Custodian Inventory Reports 

(R14s) were gathered from each PRG back shop located at Shaw AFB which contains the 

item description, quantity on-hand, and original acquisition cost of all capital fixtures 

necessary to perform repairs. The repair cycle time (RCT) was gathered for the 

incorporated LRUs from SMEs located at the 635th Supply Chain Operations Wing 

(SCOW).  
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Table 2: Consolidated Data Sources 

 

Table 3: 2018 System Parameters 

 

*Data changed in accordance to Distribution Statement A 

3.3 Baseline System Description 

This research utilizes SIMIO, a discrete-event simulation software well suited for the 

design and emulation of complex, multi-layered problem sets requiring the use of many 

experimental designs (Femano et al., 2019). To develop the most accurate representation 

of the network, conversations with RNI Node Managers located at the SCOW were used 

to validate repair capability assumptions for each modeled location. The validity of using 

repair operations from Shaw AFB to model bases in PACAF was validated with SMEs. 

The back shops in PACAF for the associated PRGs all have I-level capabilities except for 

Data Data Source
2018 Sortie Generation Data LIMS-EV: Weapon System View
2018 PACAF Break Data LIMS-EV: Weapon System View
PACAF Transportation Data USTRANSCOM
PRG Categorization LIMS-EV: Cost of Logistics

NSN Demand Data
LIMS-EV: Supply Chain 
Management View

NSN Cost Data D200: Dr. Marvin Arostegui
Repair Cycle Time (RCT) 635th SCOW: MSgt Marr
Custodian Inventory Report (R14) PACAF SMEs

CAPEX Estimates
Historical Air Force Construction 
Cost Handbook (2007)

Base AC* Sortie Quant* Total FH* Break Rate Sorties/Day* Hrs/Sort* DDay Prob
Eielson 25 2000 4000 13.82 7.69 2.00 0.25
Osan 25 3000 5000 13.82 11.54 1.67 0.25

Kunsan 25 5000 8000 13.82 19.23 1.60 0.25
Misawa 25 6000 9000 13.82 23.08 1.50 0.25
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the propulsion capability. Operations are modeled by accurately duplicating the routing 

of broken LRUs within each PRG. Each base contains flight line maintenance and the 

respective back shop for each PRG. As broken LRUs are generated, the PRG that 

contains the specific LRU is determined and used exclusively to route the part to the 

appropriate back shop. Depending upon the severity, I-level breaks may be laterally 

shipped to the base with the current capacity to perform the repair. I-level repairs may be 

laterally shipped to the base that is most in need. Therefore, the network contains 

organizational (O-level) and intermediate (I-level) capabilities. The only centralized 

repair facility (CRF) is the propulsion back shop located at Misawa AFB. As breaks are 

identified, and it is determined to be an engine, Eielson, Kunsan, and Osan all pack, 

wrap, and ship whole engines to the Misawa propulsion CRF for repair. Therefore, 

excluding propulsion, all local back shops possess I-level capabilities. Depot level 

maintenance is not within the scope of this research. 

Table 3 shows the quantity of assigned aircraft to each operating location in USAF’s 

PACAF theater. Flying operations are conducted using 2018 flying schedule data. The 

data is used to create an interarrival time of breaks as an exponentially distributed 

function of the number of aircraft allocated to each base, the sortie quantity, flying hours, 

and cumulative PACAF break rate. The interarrival time is given by: 

 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑇𝑇𝐼𝐼𝑇𝑇𝐼𝐼 = (
𝐹𝐹𝑖𝑖

𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼
)/(𝐴𝐴𝑖𝑖 ∗ 𝑆𝑆𝑖𝑖 ∗ 𝐻𝐻𝑖𝑖) (1) 

 

where, 

𝑭𝑭𝒊𝒊 represents the total flying hours for base i, 
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𝑨𝑨𝒊𝒊 is the total number of mission capable aircraft at any given time for base i, 

𝑺𝑺𝒊𝒊 is the average number of sorties using a 260-day flying schedule for base i,  

𝑯𝑯𝒊𝒊 is the average duration in hours of each sortie for base i.  

 

As an entity is generated (break occurs), an LRU is assigned, which corresponds to a 

PRG, thereby determining the routing of the part in the repair process. LRU assignment is 

based upon the 2018 annual demand for each LRU determined in LIMS-EV.  

As the discrepancy is identified by flight line maintenance, crews will determine the 

PRG and ultimately the LRU that has failed. As Table 4 and Table 5 illustrate, a severity 

of 1 to 4 is assigned to all breaks for propulsion, avionics, E/E, and hydraulics. The 

propulsion severity mix is drawn from a separate table to enable this research to more 

accurately reflect the number of propulsion I-level discrepancies. As the LRU arrives at 

the appropriate back shop, the associated repair cycle time is determined and assigned as 

a random exponential distribution. The repair cycle time was assigned to each LRU by 

using a weighted average based off the corresponding annual demand for each LRU. 

However, if an engine was routed to the propulsion CRF, a processing time of 30-days is 

used to represent an accurate depiction of the amount of time to turn the engine 

serviceable. The weighted average was necessary to realize the benefits from incremental 

investment in production capacity. The weighted average raised the repair time for higher 

demanded items, thus allowing a queue to build at the associated back shops. The 

baseline structure features one propulsion CRF. If a propulsion LRU is generated, and 

severity 4 is assigned, the entire engine is dropped and routed to the CRF located at 

Misawa. For propulsion, avionics, E/E, and hydraulics, severities 1 to 3 are routed 
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directly to the local back shop. Excluding propulsion, lateral shipments of severity 4 

breaks are permitted which provides the flexibility to ship the part to the base which 

currently has the available capacity to perform the repair. As the part is repaired at the 

back shop, the repaired part will be shipped to the base that is currently most in need, 

where the part will be placed on an awaiting aircraft or increase local on-hand spare 

inventory as depicted in Figure 5.  

Table 4: Avionics, Hydraulics, & E/E Severity Mix 

 

Table 5: Propulsion Severity Mix 

 

3.4 Model Verification & Validation 

Extensive model verification occurred using the model trace function in SIMIO. 

Tracing allows the step-by-step tracking of individual entities flowing from node to node 

throughout the duration of the repair process. A method was followed that verified the 

precise location of each entity within the simulation. This verification ensured the proper 

assignment of specific PRGs and subsequently, LRUs, which led to the verification of 

routing to the appropriate back shop and/or CRF. Model assumption validation was 

Eng Sev Sev Mix Rpr Lvl BSProcessingTime (Hrs) Prop CRF (Days)
1 0.45 O-Level LRU RCT -
2 0.13 O-Level LRU RCT -
3 0.17 O-Level LRU RCT -
4 0.25 I-Level LRU RCT -

Eng Sev Sev Mix Rpr Lvl BSProcessingTime (Hrs) Prop CRF (Days)
1 0.35 O-Level LRU RCT -
2 0.25 O-Level LRU RCT -
3 0.2 O-Level LRU RCT -
4 0.2 I-Level - Random.Exponential (30)
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achieved based on continuous feedback from conversations with SMEs located at Shaw 

AFB, the 635th SCOW, and PACAF. Time series outputs of total throughput, processing 

times, and queues were generated to validate system performance over time. 

Each iteration completion generated system statistics that provided metrics such as 

the number of breaks specific to each location, number of repairs specific to each 

location, and system utilization metrics such as throughput and time in system. 

Utilization metrics were validated with phone calls to SMEs located at the specific back 

shops in PACAF. 

3.5 Scenario Development 

Baseline scenarios were first developed to aid in the verification and validation 

process and to gain a fundamental understanding of the system’s performance levels. 

Baseline scenarios were generated with current PACAF repair capabilities to provide an 

accurate representation of system behavior over time. All scenarios were run over a 

2,000-day time period with an incorporated warm-up period of 1200-days. Due to the 

size and inherent complexities of the model, a 1200-day warm-up period was necessary. 

Although system statistics are generated for an 800-day time period, this research 

primarily focuses on the transient states of performance. For instance, a randomized 

disruption occurs at day 1400. Regardless of the response time frame, all scenarios have 

recovered by day 1600. Therefore, from day 1400 to 1600, the AUC is utilized to 

evaluate system performance. The baseline structure represents the PACAF F-16 repair 

network as it is currently structured. Therefore, all other resilience scenarios and network 
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designs will be compared to the baseline structure in both performance and cost over the 

specified time period.   

This research uses the following classifiers to identify the time periods of interest 

during a disruption: 

 

Pre-Disruption: Day 1200 to day 1400 

Post Disruption – Decline: The time at which the disruption occurs until a specified 

response has been enacted. 

Post Disruption – Recovery: Time at which the response occurs until the system 

performance has recovered (Day 1600).  

 

Existing within the post disruption time period is the AUC metric used to quantify the 

level of demand the network can meet during the Post Disruption - Decline and Recovery 

periods. The AUC for each period is described as follows (Femano et al., 2019): 

 

Area under the Curve – Decline (AUC-Decline): The total network performance under 

the Post Disruption – Decline curve.  

Area under the Curve – Recovery (AUC – Recovery): The total network performance 

under the Post Disruption – Recovery curve.  

Area under the Curve – Total (AUC – Total): Cumulative network performance during 

all stages of the disruption. 

 

The primary resilience levers are production capacity and response time. However, 

the simultaneous investment in spare inventory is essential to realize the greatest benefit 

from increased capacity (Femano et al., 2019). All expanding scenarios include some 

allocation of inventory, production capacity, and a varying response time. Table 6 
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illustrates the developed scenarios used for the baseline structure. A cost and 

performance threshold of 80% MC Rate was used to scope the number of needed 

scenarios. Baseline structure capacity is varied up to a 30% increase of the originally 

assigned allocations, while the capacity used to recover from the disruption is increased 

up to 50% of the initial capacity allocation. Additionally, the scenarios in Table 6 were 

used in conjunction with a 10, 20, 30, and 40-day response time to emphasize the 

importance of an expedited response. All designed scenarios were evaluated using the 

developed AUC metric, in addition to the network’s cumulative mission capable (MC) 

rate. Moreover, 100 replications were performed on each scenario. The AUC is used as 

the primary metric of resilience because it provides a more accurate representation of 

system behavior and the ability to meet demand over the disrupted time period. 

Table 6: Developed Baseline Scenarios 

 

 

Scenario
System 
Initial 

Capacity

Recovery 
Capacity Scenario

System 
Initial 

Capacity

Recovery 
Capacity

1 1.00 13 1.00
2 1.10 14 1.10
3 1.20 15 1.20
4 1.30 16 1.30
5 1.40 17 1.40
6 1.50 18 1.50
7 1.00 19 1.00
8 1.10 20 1.10
9 1.20 21 1.20
10 1.30 22 1.30
11 1.40 23 1.40
12 1.50 24 1.50

Initial System

1.00 1.20

1.10 1.30
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As replications are completed, SIMIO produces and exports a comma separated value 

(CSV) file for each replication. The baseline scenarios outlined by Table 6 produced 

2,400 CSVs for one response time (100 files for each scenario). After all developed 

scenarios have been completed, the CSVs are imported into MATLAB, which 

consolidates, batches, and integrates the area under the curve for each scenario. 

MATLAB then produces a consolidated table containing the time period metrics 

associated with each scenario that are used for investment and design comparison. All 

consolidation, batching, and integration code can be seen in detail in appendix B, C, and 

D.   

3.6 Flexibility Design 

In addition to varying amounts of predetermined resilience levers, network design 

performance is evaluated using the process flexibility approach introduced by Jordan and 

Graves (1995) and Simchi-Levi and Wei (2012) in the literature. The process flexibility 

approach assumes a finite amount of network production capacity and varying amounts 

of connectedness among repair nodes. For instance, the baseline structure is rather robust, 

and all locations have avionics, hydraulics, and E/E capabilities. For propulsion, 

however, centralization exists for I-level capabilities. Hence, the baseline system 

provides adequate resistance to disruptions that are enacted upon it. However, if the CRF 

at Misawa for propulsion is affected, the subsequent events that follow and the impact on 

the network’s ability to perform engine overhauls would be disastrous. Therefore, various 

levels of flexibility were implemented and tested using allocations of network resources 

to do so.  
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This research employs two additional designs selected for their stark cost/resilience 

difference when facing uncertain futures. Each location is assigned the initial amount of 

production capacity in proportion to the amount of allocated aircraft as presented in Table 

1. The employed network designs strategically increment capacity at various locations to 

illustrate the impact on the network’s ability to maintain system throughput at the back 

shops in the event of lost capacity at a location. Figure 4 illustrates the differences 

between the various network designs.  

 

 

Figure 4: Developed Network Designs 

The second design uses the long chain flexibility approach developed by Jordan and 

Graves (1995). This approach is extremely beneficial for system designs that feature 

limited flexibility incorporation. However, as the baseline structure is rather flexible 

regarding the allocation of repair capabilities, it is not flexible when capacity is 
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considered. This research employs the long chain approach to illustrate an alternative 

design to achieve desired levels of flexibility at tremendous cost savings. The inability to 

alter PACAF as it is currently structured is recognized. Therefore, we posit the use of the 

long chain strategy to recommend methods of future capacity expansion. As Jordan and 

Graves (1995) describe, the capacity for each PRG is allocated to exactly two locations. 

Every location possesses the ability to perform repairs for exactly two PRGs, which 

forms “one chain” flexibility as illustrated in Figure 2 and disperses cumulative risk 

(Jordan & Graves, 1995). The third design, or simple allocation structure, supplements all 

existing recovery capacity at non-impacted locations with Misawa’s production capacity 

(greatest quantity). Chosen to illustrate the impacts of significantly increasing recovery 

capacity on the AUC, this design illustrates the cost associated with a higher level of 

resilience. Additionally, the simple allocation structure realizes a large increase in spare 

inventory across all locations to illustrate the need for simultaneous investment to support 

the increase in production capacity. Furthermore, multiple propulsion CRFs are utilized 

to show the benefits of centralization dispersion. All developed designs are evaluated 

using the experimentation function in SIMIO to allow the simultaneous manipulation of 

the identified resilience levers. Additionally, all established designs possess the ability to 

laterally ship I-level discrepancies.  

The long chain structure increases levels of recovery capacity only. The simple 

allocation structure does not realize an additional investment in initial or recovery 

capacity due to the extremely large initial resilience investment. Furthermore, the long 

chain structure increases up to 210% of the original long chain initial capacity allocation. 

The large investment increase in the long chain scenarios was cost feasible and necessary 
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to reach Pre-Disruption MC Rates. Similar to the simple allocation structure, the long 

chain structure’s large increase in recovery capacity warranted an increase in spare 

inventory for the design.  

3.7 Disruption Incorporation 

All developed scenarios were run using predetermined resilience levers over 2,000-

days to gain a fundamental understanding of the impacts of simultaneously manipulating 

resilience levers on cumulative system performance. To gauge system performance and 

to determine the level of system resilience, all developed scenarios were run with the 

incorporation of a randomized disruption (DDay) at day 1400, where, as Table 3 

illustrates, a disruption eliminates all the repair capabilities specific to one location via an 

equal probability. After a specified delay, it is assumed all aircraft that were located at the 

impacted location are equally distributed to the three remaining bases. Moreover, this 

research assumes that operations at the impacted location are unrecoverable and 

therefore, lost for the remaining duration of the simulation. Furthermore, process logic 

prevents all subsequent I-level breaks from being routed to the impacted location. Figure 

5 illustrates the general pre- and post-disruption behavior.  
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Figure 5: Post-Disruption Behavior 

3.8 Resilience Measurement 

Consistent with Melnyk et al. (2013), this research argues that system resilience is 

most accurately assessed during the system’s transient states. Shown in Figure 6, each 

simulation iteration was broken into three distinct time periods as described in section 3.5 

(Femano et al., 2019). This research builds upon the foundation set forth in the literature 

by using the identified concepts to illustrate and quantify the effects of simultaneous 

manipulation of resilience levers on each of the three time periods. As Figure 6 

illustrates, the system’s resistance to the disruptive event occurs in the Pre-Disruption 

time period of the simulation. The recovery of the system begins at the Minimum 

Performance Level (MPL) of the system during the disruptive event and ends in the Post 

Disruption – Recovery time period.  
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Figure 6: Performance Metrics & Disruption Time Periods (Femano et al., 2019) 

This research employs the concept of the AUC to quantify the number of MC days 

that the system can support resulting from various levels of resilience investment 

(Femano et al., 2019). Contrary to Melnyk et al. (2013), who employ the use of the area 

above the disruption curve, this research argues that the AUC provides a more accurate 

representation of cumulative performance over the disruption time period. The area above 

the curve measures lost performance in the event of a disruption, which ultimately, 

deemphasizes network starting performance (Femano et al., 2019). Additionally, this 

research further develops a generalizable resilience metric, which represents the networks 

achieved AUC in proportion to the desired AUC, or total realized demand over the 

disruption time period (Femano et al., 2019). 

 

 𝐵𝐵𝐼𝐼𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼 𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑅𝑅 =  
𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡
𝐷𝐷𝑡𝑡

 (2) 
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This metric proves extremely generalizable because regardless of the organization, it will 

experience some drop in performance resulting from a disruption, and it will experience 

some level of demand that must be met during the disruption. Hence, this resilience 

metric provides an indication of the level of demand that can be met due to various levels 

of resilience investment. The analysis and results section builds upon the associated time 

periods and AUC by introducing the various time period metrics illustrated in Figure 6.  

3.9 Cost Assignment 

Essential to the foundation of this research is the ability to monetarily quantify 

varying levels of investment. Cost estimates of the associated capacity and inventory 

allocations, as well as the capital expenditures necessary to house them, allows decision 

makers to associate the required level of investment needed to reach a desired level of 

resilience. This research employs USAF R14s to assign a cost to the ability to perform a 

simultaneous repair at each specific back shop. For example, the propulsion R14 for 

Shaw AFB was used as the basis of cost for one unit of incremental capacity across all 

propulsion locations in the developed scenarios. Cost was linearly assigned to provide a 

representation of the necessary investment. 

Spare inventory quantities were gathered specific to each location using the D200 

database. Furthermore, the cost of each LRU was gathered from D200 and linearly 

assigned to each incremental unit of spare inventory. 

An accurate representation of the necessary capital expenditures is essential for 

illustrating the benefits of the long chain strategy. Hence, generalizable costs associated 

with the CAPEX repair facilities were gathered using the Historical Air Force 
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Construction Cost Handbook (2007). Costs were determined using the given size (square 

feet) and cost per square foot. Additionally, location specific factors, which account for 

the specific costs of construction associated with each modeled location, were used in 

generating a final cost estimate. 

Lastly, the cost of personnel needed at each location was determined by taking the 

average annual base pay of personnel with the pay grade of E-1 to E-7 with 2 through 20 

years in service to generate an average annual salary. This figure was multiplied by the 

number of individuals located at each repair back shop across all locations. This research 

recognizes that as the level of production capacity increases, so too does need for 

personnel. Hence, the cost of personnel is increased by the cost percentage increase in 

production capacity as compared to the initial production capacity investment for each 

design.  

An important distinction must be made regarding cost assignment. All incorporated 

costs represent the fixed costs necessary to perform a repair. Personnel, however, border 

the line between fixed and operational costs. Personnel costs are included for the purpose 

of this research because personnel are a fixed requirement for a given repair capability 

over the time periods for which the model is run.  
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IV. Analysis and Results 

This research tests three network designs: baseline structure, simple allocation 

structure, and the long chain structure. PACAF was strategically chosen as the test case to 

apply this simulation because of the rising capabilities of US adversaries and 

vulnerabilities of the network to natural disaster. The simple allocation and the long chain 

structure reiterates the need for simultaneous investment in inventory and production 

capacity, while also illustrating the realized benefits and cost differences in various levels 

of flexibility incorporation. All scenarios used to test the various network designs are 

evaluated during their transient states. Numerous disruption response times are 

implemented that “turn on” predetermined amounts of recovery capacity for the specific 

scenario. Hence, this research shows the importance of predetermined asset allocations 

on a location’s ability to respond to a disruption. An important distinction will be made 

regarding the costs of these production capacity assets in the resilience cost section. 

Associated with the established time periods outlined in section 3.5 are three 

performance metrics: The Pre-Disruption MC Rate, the Minimum Performance Level 

(MPL), and the Recovery Performance Level (RPL). Fully understanding the 

performance of a network in the event of a disruption requires a deep understanding of 

the interconnectedness of the mentioned performance metrics. They are defined as 

follows:  

 

Pre-Disruption MC Rate: The average daily MC Rate from day 1200 to day 1400.  

Minimum Performance Level (MPL): The network’s minimum level of performance 

resulting from a disruption. 
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Recovery Performance Level (RPL): The average daily performance after network 

performance has recovered.  

 

The following sections illustrate the importance of these metrics on network 

performance. The emphasis is on the ability to maintain performance after the disruption 

has occurred. In doing so, the ability to meet a specified level of demand during a 

disruption begins where the Pre-Disruption MC Rate ends. In other words, a network’s 

starting performance is extremely important for cumulative system performance 

throughout all stages of a disruption.   

4.1 Baseline Structure 

The baseline structure represents PACAF as it currently operates. It provides valuable 

insight as to how the network resists and recovers from a disruption due to its inherent 

flexibility and current capabilities. Table 7 shows the output generated from the 

developed scenarios outlined in Table 6. Each scenario represents a predetermined level 

of initial capacity and recovery capacity. The scenario with 1.00 of initial and recovery 

capacity represents PACAF’s performance without any additional investment in 

resilience. No additional investment in production capacity leads to grave consequences. 

For instance, all bases have an equal probability of experiencing a disruption. If Misawa 

experiences the disruption, the CRF and all other repair capabilities are lost, further 

exacerbating the consequences on PACAF cumulative performance.  

4.1.1 Impacts on Transient Performance Metrics 

The baseline structure does not simultaneously increase the investment in spare 

inventory as the amount of capacity increases. However, Table 7 emphasizes the 
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importance in a network’s ability to maximize its Pre-Disruption MC Rate in the event of 

a disruption. The transient performance of the network starts with the Pre-Disruption MC 

Rate, and the higher the starting point for the decline to occur, the greater the AUC - 

Decline will be. Shown in Table 7, as the investment in initial capacity increases, so too 

does the Pre-Disruption MC Rate, yielding a higher AUC – Decline and MPL. 

Subsequently, a higher MPL leads to the ability to meet a greater level of demand during 

the Post Disruption – Recovery period as illustrated by the increase in AUC – Recovery 

and ultimately a higher RPL. Similarly, Figure 7 illustrates the impact of an expedited 

response time and additional production capacity investment on the network’s AUC – 

Total. However, an important phenomenon is illustrated in the baseline structure. Notice 

that the RPL realizes marginal gains as the Pre-Disruption MC Rate increases. This 

further reiterates the necessity of simultaneous investment in inventory and production 

capacity. Although the network’s ability to perform in the face of disruption undoubtedly 

increases with a greater level of investment, a sub-optimal output is realized when only 

production capacity is increased. This point is further illustrated using the simple 

allocation and long chain structure. Alternatively, the investment in recovery capacity has 

the greatest benefit to RPL in the baseline structure.  
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Table 7: Baseline 40-Day Response Output 

 

Pre Disruption

Initial Cap Recovery Cap Avg MC Rate MPL AUC-D RPL AUC-R AUC-Total Total $$

1.00 70.74 53.04 11,261 N/A N/A 11,261 126,246,142$ 

1.10 70.74 58.06 2,560 58.84 9,481 12,041 127,402,468$ 

1.20 70.74 58.09 2,560 61.83 9,870 12,430 128,405,856$ 

1.30 70.74 58.09 2,560 65.85 10,463 13,023 129,233,582$ 

1.40 70.74 58.09 2,560 71.82 11,355 13,915 130,546,799$ 

1.50 70.74 58.09 2,560 74.75 11,815 14,374 131,319,197$ 

1.00 75.08 54.61 2,686 54.51 9,157 11,842 127,402,468$ 

1.10 75.08 57.10 2,686 55.56 9,437 12,123 128,558,794$ 

1.20 75.08 59.01 2,686 58.36 9,770 12,456 129,562,182$ 

1.30 75.08 59.88 2,686 63.34 10,391 13,077 130,389,908$ 

1.40 75.08 59.95 2,686 71.03 11,261 13,947 131,703,125$ 

1.50 75.08 59.95 2,686 74.33 11,739 14,425 132,475,523$ 

1.00 77.71 60.35 2,844 59.13 9,820 12,663 129,992,628$ 

1.10 77.71 62.54 2,844 60.27 10,099 12,943 131,148,954$ 

1.20 77.71 64.22 2,844 62.17 10,358 13,202 132,152,342$ 

1.30 77.71 64.61 2,844 66.90 11,012 13,855 132,980,068$ 

1.40 77.71 64.66 2,844 73.57 11,697 14,540 134,293,285$ 

1.50 77.71 64.69 2,844 77.03 12,167 15,011 135,065,683$ 

1.00 82.86 63.80 3,030 63.20 10,512 13,542 130,820,354$ 

1.10 82.86 65.90 3,030 64.52 10,973 14,003 131,976,679$ 

1.20 82.86 67.59 3,030 66.48 11,125 14,155 132,980,068$ 

1.30 82.86 69.46 3,030 67.84 11,388 14,419 133,807,793$ 

1.40 82.86 69.46 3,030 72.36 12,239 15,269 135,121,011$ 

1.50 82.86 69.46 3,030 75.42 12,389 15,419 135,893,408$ 

Scenario Post-Disruption - Decline Post Disruption - Recovery

1.00

1.10

1.20

1.30
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Figure 7: Baseline Response Comparison (10 vs. 40-Day) 

4.1.2 Criticality of Response Time 

An organization’s ability to quickly identify and respond to a disruption is essential to 

its performance during and after a disruption. The disruption response time is varied after 

a disruption occurs and assumes that the response time is tied directly to the ability to 

“turn on” the predetermined asset allocations of recovery capacity at the remaining 

locations. The response time is a function of an organization’s ability and willingness to 

invest in predetermined asset allocations. Figure 8, Figure 9, and Table 8 illustrate the 

consequences of a prolonged response time on cumulative network performance.  
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Figure 8: Varying Response Time - Baseline Structure (1.00 Initial Cap, 1.40 

Recovery Cap) 

 

Figure 9: All Responses – Baseline Structure (1.00 Initial Cap, 1.40 Recovery Cap) 
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Table 8: Baseline Performance with Prolonged Response Times 

 

 

Illustrated by the decline in Figure 8 and Figure 9, an expedited response time is greatly 

beneficial to the network’s ability to meet demand during the disruption by yielding a 

higher MPL and AUC - Total across all associated time periods. This research assumes 

that regardless of the response time, the investment level across all response times is the 

same. It is important to note that, realistically, this may not be the case. A higher cost 

may be associated with an expedited response time. Additionally, the ability to expedite a 

disruption response significantly limits the network’s downside risk. For instance, Figure 

8 shows the average MC Rate (Black line), the 50th percentile (Green lines), and the 

minimum and maximum MC Rates (Blue lines) across all replications. Moreover, Figure 

9 shows the impact of a prolonged response time on MPL of the network. The dashed 

lines point to the exact minimum reached on the y-axis resulting from the associated 

response time. The minimum MC Rate is significantly higher with a 10-day response as 

compared to a prolonged response time.  

Response time is a critical driver to an organization’s ability to facilitate a recovery to 

pre-disruption performance levels. If, for instance, decision makers lack the ability to 

increase investment in inventory and production capacity, an expedited response time 

provides the ability to mitigate downside risk and maintain performance in the event of a 

Pre Disruption

Response Time Initial Cap Recovery Cap Avg MC Rate MPL AUC-D RPL AUC-R AUC-Total Total $$

10-Day 1.40 70.74 67.82 705 71.45 13,779 14,484 130,546,799$ 

20-Day 1.40 70.74 62.36 1,359 71.32 12,793 14,152 130,546,799$ 

30-Day 1.40 70.74 59.91 1,971 71.23 12,015 13,986 130,546,799$ 

40-Day 1.40 70.74 58.09 2,560 71.82 11,355 13,915 130,546,799$ 

Scenario Post-Disruption - Decline Post Disruption - Recovery

1.00
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disruption. Therefore, an expedited response time is a viable alternative to hedge against 

the inability to use resources that have been lost in the event of a disruption. 

4.2 Simple Allocation Structure 

The simple allocation structure realizes a significant increase in resilience investment 

across all locations. The simple allocation structure allocates the network’s greatest 

capacity quantity (Misawa) and assigns it as recovery capacity at all other locations. 

Furthermore, the simple allocation structure incorporated an additional propulsion CRF at 

Kunsan to illustrate the beneficial impacts of decentralization on network performance 

while facing disruptions. Additionally, and in a similar manner to production capacity, 

the simple allocation structure allocated Misawa’s spare inventory quantity across all 

locations to illustrate the need for simultaneous inventory investment to realize the 

greatest benefit from the increase in recovery capacity. Therefore, the simple allocation 

structure demonstrated the highest level of resilience resulting from the large increase in 

resilience investment. Table 9 highlights the performance and costs of the simple 

allocation structure. Due to the large increase in resilience and subsequent performance, 

an increased investment in initial and recovery capacity was not utilized. Hence, the 

number of needed scenarios was drastically reduced.  

Table 9: Simple Allocation Structure Output 

 

Pre Disruption

Response Time Initial Cap Recovery Cap Avg MC Rate MPL AUC-D RPL AUC-R AUC-Total Total $$

10-Day 1.00 72.66 68.82 727 84.84 16,783 17,510 177,264,060$ 

20-Day 1.00 72.66 61.00 1,453 85.42 15,263 16,716 177,264,060$ 

30-Day 1.00 72.66 55.39 2,180 85.57 14,418 16,598 177,264,060$ 

40-Day 1.00 72.66 53.91 2,858 86.17 13,632 16,490 177,264,060$ 

1.00

Scenario Post-Disruption - Decline Post Disruption - Recovery
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4.2.1 Impacts on Transient Performance Metrics 

Table 9 illustrates the impact of higher initial inventory quantities on the network’s 

Pre-Disruption MC Rate. Spare inventory has a greater impact on the ability of the 

system to resist the occurrence of a disruption (Melnyk et al., 2013). As shown, the Pre-

Disruption MC Rate is greater in the simple allocation structure than in the baseline 

structure at the same level of initial capacity investment. Thus, the simple allocation 

structure leads to a higher MPL across all scenarios and response times at the same level 

of initial capacity as compared to the baseline structure. Furthermore, due to the high 

level of investment in recovery capacity, the corresponding RPL and AUC – Recovery all 

meet significantly higher demand. Thus, recovery capacity has the greatest impact on a 

network’s ability to recover from a disruption.  

4.2.2 Criticality of Response Time 

The ability of an organization to expedite its disruption response is further 

emphasized using the simple allocation structure design. Regardless of the investment in 

recovery capacity, decision makers must emphasize the need of a rapid response to 

realize the full potential of the recovery capacity.  

4.3 Long Chain Structure 

The third design uses the long chain flexibility approach identified in the literature to 

allocate production capacity across PACAF (Jordan & Graves, 1995). Note that the 

baseline structure is inherently flexible. For instance, each location possesses I-level 

repair capabilities for at least three PRGs. The exception is Misawa due to its ability to 

perform the repair of propulsion I-level discrepancies. Therefore, the long chain approach 
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eliminates a portion of the inherent flexibility of the network by allocating the ability to 

perform the repair of only two PRGs at each location. In doing so, the original production 

capacity allocation for each PRG is split and assigned to the two locations that possess 

capabilities for that specific PRG in equal sums. The initial capacity quantity for the 

network is equal to that of the baseline structure. Furthermore, only recovery capacity is 

increased in the developed scenarios. Due to the large investment necessary in recovery 

capacity to recover to pre-disruption performance levels, the developed long chain 

scenarios were duplicated, once with no added spare inventory, and once with an 

additional investment in spare inventory. The results are compared in Table 10 and Table 

11, which also show the developed scenarios and response output for the 10-day response 

time. Figure 10 shows the impact of additional resilience investment and an expedited 

response time on the network’s AUC – Total. 
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Table 10: Long Chain 10-Day Response Output Original Inventory Levels 

 

Table 11: Long Chain 10-Day Response Output Increased Inventory Levels 

 

Pre-Disruption

Response Time Initial Cap Recovery Cap Avg MC Rate MPL AUC-D RPL AUC-R AUC-Total Total $$

1.00 68.19 46.92 10,412 N/A N/A 10,412 93,286,471$   

1.10 68.19 44.34 680 44.34 9,954 10,634 94,465,440$   

1.20 68.19 48.58 680 48.58 10,354 11,034 95,775,334$   

1.30 68.19 51.14 680 51.14 10,562 11,243 97,337,275$   

1.40 68.19 53.71 680 53.71 10,921 11,602 98,559,419$   

1.50 68.19 57.21 680 57.21 11,427 12,107 99,938,087$   

1.60 68.19 58.44 680 58.44 11,588 12,269 101,005,107$ 

1.70 68.19 60.22 680 60.22 11,864 12,544 102,227,250$ 

1.80 68.19 63.04 680 63.04 12,174 12,854 103,789,191$ 

1.90 68.19 64.75 680 64.75 12,500 13,180 105,099,086$ 

2.00 68.19 65.19 680 65.19 12,667 13,347 106,278,054$ 

2.10 68.19 66.03 680 66.03 12,973 13,653 107,457,023$ 

Scenario Post Disruption - Decline Post Disruption - Recovery

10-Day 1.00

Pre-Disruption

Response Time Initial Cap Recovery Cap Avg MC Rate MPL AUC-D RPL AUC-R AUC-Total Total $$

1.00 71.14 51.37 11,121 N/A N/A 11,121 96,038,078$   

1.10 71.14 52.51 711 52.68 10,602 11,313 97,217,046$   

1.20 71.14 55.69 711 55.33 11,151 11,863 98,526,941$   

1.30 71.14 57.04 711 57.07 11,465 12,176 100,088,882$ 

1.40 71.14 58.10 711 58.90 11,640 12,351 101,311,025$ 

1.50 71.14 60.11 711 60.99 11,996 12,707 102,689,694$ 

1.60 71.14 61.61 711 62.52 12,199 12,910 103,756,713$ 

1.70 71.14 62.73 711 63.85 12,410 13,121 104,978,857$ 

1.80 71.14 64.68 711 65.36 12,684 13,396 106,540,798$ 

1.90 71.14 66.88 711 67.67 13,069 13,780 107,850,692$ 

2.00 71.14 68.48 711 68.81 13,327 14,039 109,029,661$ 

2.10 71.14 68.61 711 69.90 13,476 14,188 110,208,629$ 

Scenario Post Disruption - Decline Post Disruption - Recovery

10-Day 1.00
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Figure 10: Long Chain Response Comparison (10 vs. 40-Day) 

4.3.1 Impacts on Transient Performance Metrics 

Perhaps there is no better example of the need for simultaneous investment than the 

developed long chain scenarios. Although the realized benefits of increased investment 

on disruption performance is consistent with the previous designs, the impacts of 

increased inventory on the network’s ability to maintain a higher level of demand are 

undeniable. Mentioned throughout this research is the need to invest in inventory and 

production capacity in unison. To invest in one without the other will lead to a sub-

optimal output (Femano et al., 2019). Table 11 greatly reiterates this point. Within all 

stages of the disruption, the scenarios with an increased investment in inventory 

outperformed the scenarios that did not simultaneously increase the investment. For 

instance, higher quantities of inventory facilitated a higher Pre-Disruption MC Rate, 

which led to a higher MPL across all scenarios. Furthermore, and contrary to the baseline 
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scenarios which experienced a higher starting point due to the increased investment in 

initial capacity, the greater starting point facilitated a greater RPL for the scenarios with 

increased inventory. Once again, this is due to the need for an increase in inventory to 

realize the greatest potential from the increase in production capacity.  

4.3.2 Criticality of Response Time 

Due to the inherent structure of the long chain design, the total production capacity 

for one PRG is halved and allocated to each assigned location. When a disruption occurs, 

the network loses a greater portion of the allocated production capacity as compared to 

the baseline or simple structure. Hence, the impact of a disruption without an appropriate 

predetermined asset allocation is further exacerbated. As shown in the following section, 

the benefits from employing the long chain approach comes from the ability to invest in a 

greater amount of capacity to respond to a disruption at a much lesser cost. This 

production capacity allocation inherently places a greater need to respond after a 

disruption has occurred. Figure 11 and Figure 12 show the beneficial impacts of an 

expedited recovery using the long chain approach. Similar to Figure 8, Figure 11 

provides the average MC Rate (Black line), the 50th percentile (Green lines), and the 

minimum and maximum MC Rates (Blue lines) across all replications. 
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Figure 11: Varying Response Time – Long Chain Structure (1.00 Initial Cap, 2.10 

Recovery Cap) 

 

Figure 12: All Responses – Long Chain Structure (1.00 Initial Cap, 2.10 Recovery 

Cap) 
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Table 12: Long Chain Performance with Prolonged Response Times 

 

 

As outlined in the literature, if an organization’s ability to respond to a disruption is 

obstructed, the use of increased inventory creates a resistance to the disruption by 

enabling the organization to maintain a higher level of performance after the disruption 

occurs (Melnyk et al., 2013; Femano et al., 2019). Table 11 shows that the greater 

quantity of inventory provides a greater AUC – Decline and AUC – Recovery. Therefore, 

if an expedited response time is not feasible, greater levels of inventory provide the 

ability to hedge against downside risk by providing resistance to the disruption.  

4.4 Resilience Costs 

The PACAF theater is used to demonstrate the applicability of the developed tool, but 

this research provides a generalizable simulation tool that may be applied across multiple 

domains. The assigned costs are specific to that of PACAF, but the structure of this tool 

allows ease of translatability across numerous theaters, airframes, and industry related 

repair networks.  

From a cost feasibility standpoint, this research recognizes that the simple allocation 

structure is not likely to be implemented. It is included to further emphasize the 

importance of decentralization and simultaneous investment. The long chain structure 

inherently subtracts from the flexibility of the baseline and simple allocation structure. 

Pre Disruption

Response Time Initial Cap Recovery Cap Avg MC Rate MPL AUC-D RPL AUC-R AUC-Total Total $$

10-Day 2.10 71.14 68.61 711 69.90 13,476 14,188 110,208,629$ 

20-Day 2.10 71.14 63.93 1,385 70.18 12,524 13,909 110,208,629$ 

30-Day 2.10 71.14 59.40 2,004 69.93 11,730 13,734 110,208,629$ 

40-Day 2.10 71.14 57.73 2,587 70.06 10,989 13,576 110,208,629$ 

1.00

Scenario Post-Disruption - Decline Post Disruption - Recovery
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However, the cumulative performance of the overall network is extremely comparable to 

that of the baseline structure at a substantially reduced cost. When implementing the long 

chain design, the massive cost savings are realized from the decrease in the large capital 

expenditures necessary to house the repair capabilities of four PRGs at one location.  

Figure 13 illustrates the usefulness of the resilience metric when comparing 

performance across multiple structures and response times. Specifically, Figure 13 

provides insight into the level of resilience investment needed to reach Pre-Disruption 

MC Rates (1.00) after a disruption occurs using the baseline and long chain structures. 

More importantly, Figure 13 highlights the overlapping performance and stark cost 

difference between the baseline and long chain structures. 

The resilience metric provides a direct indication of how an organization performs in 

the event of a disruption. When a disruption strikes, demand does not cease to exist. 

Therefore, regardless of the organization, some level of demand will need to be met when 

a disruption occurs. The resilience metric allows decision makers and organizations to 

predict the level of demand that can be met resulting from predetermined investments in 

resilience.  
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Figure 13: Structure Performance/Cost Comparison 

4.5 Validity of an Expedited Response Time 

Figure 13 combines the scatter output from the baseline and long chain structures for 

performance and cost comparison. As the investment in resilience increases using the 

long chain structure, the resulting AUC – Total increases linearly. Additionally, the 

difference between the 10- and 40-day response time is clear. However, as the resilience 

investment is increased using the baseline structure, the results are not as distinct between 

the 10- and 40-day response. To validate that there is in fact a difference between an 

expedited and a prolonged response time in AUC - Total, this research employed the 

Paired T-Test to statistically test the difference between varying responses. A Paired T 

Test was chosen to test the difference between the two dependent samples (Milton & 

Arnold, 2003). Specifically, this test allows the researcher to evaluate the following: 
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 𝐻𝐻0:𝑢𝑢𝑥𝑥 =  𝑢𝑢𝑦𝑦 
𝐻𝐻1:𝑢𝑢𝑥𝑥 >  𝑢𝑢𝑦𝑦 

 
(3) 

which determines whether there is a statistical difference between the response time 

means. To conduct the statistical test, a test statistic was developed from the following 

equation (Milton & Arnold, 2003): 

 𝑇𝑇 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝑢𝑢𝐷𝐷 − 0
𝑆𝑆𝐷𝐷/√𝐼𝐼

 (4) 

where, 

uD  is the mean of the differences between two response times, 

0 is the hypothesized difference between two response times, 

SD is the standard deviation of the difference in means between two response times, 

n is the sample size.  

 

Since multiple response times are being analyzed, the chance of rejecting the null 

hypothesis when it is true (type 1 error), drastically increases (Statistics Solutions, 2019). 

Hence, the Bonferroni correction was implemented to lower the significance level by 

dividing 0.05 by 4 (the number of response time comparisons) (Statistics Solutions, 

2019). This maintains a cumulative 95% confidence level that regardless of the 

comparison, an expedited response is more beneficial than a prolonged response. Using n 

and the developed T Stat, a p-value is determined and compared to the new alpha of 

0.0125. Table 13 and Table 14 illustrate the p-values associated with the developed T Stat 

for each structure and response time. The simple allocation structure was not included 

because it did not meet the minimum required investment scenarios.  
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Table 13: Baseline Structure Response P-Values 

 

Table 14: Long Chain Structure Response P-Values 

 

 
As illustrated by Table 13 and Table 14, the p-values for each response time comparison 

prove extremely significant across all scenarios. As expected, as the time between two 

comparisons increase, the p-value decreases, which further validates the benefits of an 

expedited response. Hence, this research can reject the H0 and conclude that regardless of 

the structure and response time comparison, an expedited response time yields a higher 

AUC – Total than that of a prolonged response time.  

  

Response 10 20 30 40
10 - - - -
20 0.00056 - - -
30 0.00003 0.00346 - -
40 0.00001 0.000002 0.00075 -

Baseline Structure

Response 10 20 30 40
10 - - - -
20 0.00078 - - -
30 0.00009 0.00074 - -
40 0.00006 0.00018 0.00083 -

Long Chain Structure
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V.  Conclusions and Recommendations 

The research provides a generalizable simulation tool to quantify the level of network 

resilience resulting from predetermined asset allocations and various network designs in 

the face of disruption. The PACAF theater is used to demonstrate the application of the 

model. Additionally, the importance of bolstering network resilience by simultaneously 

investing in multiple resilience levers is demonstrated. The research illustrates the grave 

consequences of a lack of preparedness on performance following a disruption. 

Moreover, this research demonstrates how a well-designed network can meet demand at a 

reasonable cost. 

5.1 Problem Statement Resolution 

For both military and industry, the need to recognize and accept an inherently 

uncertain future is essential for the going concern of any organization (de Neufville & 

Scholtes, 2011). Decision makers must possess the ability to analyze and evaluate how an 

organization’s identified resilience levers may be implemented in building lasting 

organizational resilience. Specifically, decision makers must be able to forecast future 

levels of resilience resulting from predetermined asset allocations and their associated 

cost levels. 

To answer Research Question 1, this research developed a discrete-event simulation 

tool to properly identify and apply organizational resilience levers to build cumulative 

resilience. The profound impacts on network performance are illustrated when inventory 

and production capacity are increased in unison. The methodology proposed is 

translatable across theaters, airframes, and multiple other domains. The three scenarios 
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illustrate the tradeoffs between resilience investment and network performance. 

However, resilience levers are dependent upon the organization utilizing this tool. The 

quantity and complexity of the chosen resilience levers must be tailored to fit the needs of 

the specific organization or industry using this method.  

Research Question 2 addresses the allocation of assets while facing disruption. 

Specifically, in addition to the baseline structure, this research employs two additional 

network designs to evaluate asset allocations on disruption mitigation. Strategically 

chosen to illustrate the impacts of simultaneous investment, the simple allocation and 

long chain structures greatly alter the amount of investment needed to achieve a desired 

performance level. By varying the amount of capital expenditure necessary to support 

repair operations and the amount of production capacity at each location, the simple 

allocation and long chain structures illustrate the impacts of various levels of flexibility 

on overall performance and cost of network resilience. The simple allocation and long 

chain structures provide a worst- and best-case scenario in terms of cost feasibility of 

reaching a desired performance level. More importantly, implementing multiple network 

designs shows the ease of drastically shifting the structural integrity of the tool, further 

illustrating its adaptable nature.  

5.2 Findings 

This research provides an approach to evaluate resilience investment decisions across 

multiple domains. Metrically and monetarily quantifying specific levels of predetermined 

asset allocations on cumulative network performance allows an organization to more 

effectively allocate organizational resources to achieve a desired level of performance. 
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Additionally, the proposed AUC metric provides a generalizable method to gauge various 

levels of network resilience during the network’s transient states of a disruption.  

This research facilitates a deep understanding of the identified resilience levers and 

their associated impacts on the transient performance of a network. Understanding the 

key phases following a disruption is essential to optimizing the investment in resilience 

levers to mitigate the impact on performance.  

When faced with an imminent disruption, the greatest mitigating impacts result from 

the simultaneous investment in spare inventory and production capacity. The 

combination of initial capacity and inventory is essential to an organization’s ability to 

withstand the impact of a disruption, while the ability to respond with predetermined 

asset allocations is essential to the ability to recover. The level of network performance 

recovery is a direct result of the response time and pre-disruption performance. 

Therefore, the criticality of an organization’s pre-disruption performance level must be 

emphasized. Additionally, the ability to optimize the recovery of a network is a function 

of the inventory-capacity investment prior to the disruption occurring, as shown using the 

long chain structure. Hence, this tool provides a means of striking the delicate balance 

between inventory and capacity by quantifying the impact on performance resulting from 

a specified investment level.  

Additionally, when implementing capacity expansion, the long chain flexibility 

approach provides the most cost-effective means to do so. The ability to limit the capital 

expenditure associated with expansion is the greatest realized benefit of implementing the 

long chain approach. The inherent freeing of capital provides a more cost-effective means 

of facilitating resilience by allowing an increased investment in resilience levers, 
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specifically in inventory and recovery capacity to hedge against the impacts of a 

disruption.  

5.3 Future Research Opportunities 

The study of disruption impacts on network performance is not recommended without 

a deep knowledge and understanding of an organization’s network and capabilities. This 

tool aids in developing an understanding of the intricacies and interconnectedness of a 

USAF repair network. An opportunity for future research exists for implementing a more 

realistic disruption impact. For instance, within the developed scenarios, once a 

disruption occurs, the impacted location instantly loses all repair capabilities. This may 

not be the case. A deep-dive analysis into the impacts of a disruption on the applied 

network would prove beneficial in implementing a more general approach to disruption 

evaluation and ultimately, the shifting of salvageable resources from the impacted 

location.  

The chosen repair network and airframe represents a small, yet extremely important 

part of cumulative USAF performance. This model was specifically built with the 

necessary foundations needed for airframe expansion. Multiple airframes and theaters 

could be applied within this tool to accurately measure and quantify resilience and 

associated investment from a wider Air Force perspective.  

Furthermore, an extensive review of the many organizational resilience levers is 

necessary to determine the level of investment needed to maximize their performance. A 

thorough cost-analysis is necessary for organizations to maximize the impact of 

investment dollars across all identified resilience levers. Additionally, necessary socio-
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technical layers could be implemented that considers the behaviors of decision makers 

when experiencing a disruptive event (de Neufville & Scholtes, 2011). Ultimately, this 

would provide a more accurate representation of network performance when faced with 

budgetary and capacity constraints.  

5.4 Limitations 

The use of product repair groups and their associated LRUs further facilitated a deep 

understanding of the many intricacies of PACAF during disruption. Additionally, 

location specific spare quantities and their associated costs were necessary to generate the 

most accurate cost representation of PACAF resilience. However, this research assumes 

every identified discrepancy is a Level-3 break and that only one failure may occur on an 

aircraft at a time. As breaks are generated and identified by flight line maintenance, 

regardless of the break severity, the cumulative MC Rate is lowered. Realistically, more 

failures may occur at once and lower severity breaks may not drop the aircraft out of 

mission-capable status. For a more accurate performance and cost representation of the 

applied network, logic could be inserted that allows the failure of multiple parts on one 

aircraft simultaneously.  

5.5 Conclusion 

This research established a generalizable methodology and tool to quantify and assess 

how incremental investment in resilience levers equates to additional resilience. This 

research employed the USAF PACAF F-16 repair network as the illustrative example of 

its usefulness, but this tool is extremely applicable across many platforms. This research 

posits the use of the AUC metric to better understand an organization’s ability to meet 



63 

demand during the transient states of a disruption. Additionally, the inherent tradeoff of 

spare inventory and production capacity is illustrated by comparing the corresponding 

AUCs and cost of each design scenario.  

When evaluating network performance in the event of a disruption, decision makers 

must possess a deep understanding of the disruption time periods and the inherent 

interconnectedness of the associated time period metrics. The proactive use of 

predetermined asset allocations is only as useful as an organization’s understanding of 

their impacts on disruption time period metrics. In other words, the importance of the 

simultaneous investment in inventory and production capacity is essential to maximizing 

pre-disruption performance. As illustrated using the baseline structure, sub-optimal 

performance will be realized with investment in isolation (Femano et al., 2019). 

Furthermore, an organization’s disruption response time drives its ability to recover. 

Regardless of the resilience investment level, a prolonged response time poses grave 

consequences on an organization’s ability to meet pre- and post-disruption demand. 

Although the illustrative example lies military centric, it is strategically chosen for its 

similarities and applicability across multiple domains. Paired with the use of the 

developed time period metrics and AUC, this tool provides decision makers a greater 

ability to predict network performance following a disruption and therefore make more 

informed resource allocation decisions.  
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Appendix A: PACAF Baseline Simulation Design  
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Appendix B: Output Consolidation Code (Femano et al., 2019) 

agg_TS = []; 
is_filename = 1; 
for i=1:numel(spares)  %spares 
    for j =1:numel(servers) %added servers 
        for k = 1:numel(ddays) %date of disruption 
            is_filename = 1; 
            for r = 1:reps 
                s = num2str(spares(i)); 
                c = num2str(servers(j)); 
                d = num2str(ddays(k)); 
                try 
filename = [Exp_name, '_',s,'Spares','_',c,'Cap','_','DDay',d,'_Rep',num2str(r),'.csv'] 
                    [T, SL] = AggregateStateData(filename,time_unit); 
                    size(T) 
                    agg_TS = [agg_TS;repmat(spares(i), numel(T),1), repmat(servers(j),          
numel(T),1),repmat(ddays(k), numel(T),1), repmat(r, numel(T),1), T,SL]; 
                catch 
                    warning('No such scenario. Going to next scenario'); 
                    is_filename = 0; 
                    r = reps; 
                end 
            end 
 
            end 
        end 
end 
    save(['agg_TS_' Exp_name], 'agg_TS'); 
    parameters = [spares, servers, ddays reps, time_unit]; 
    save(['parameters_',Exp_name], 'parameters' ); 
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Appendix C: Area Under the Curve Code (Femano et al., 2019) 

TS = agg_TS(agg_TS(:,1)==spares(1) & 
agg_TS(:,2)==servers(1)&agg_TS(:,3)==ddays(1)&agg_TS(:,4)==1, :); 
T = TS(:,5); 
maxT = T(end); 
time_unit = T(2)-T(1); 
endT = (maxT-5*time_unit)/time_unit; 
  
figure; 
z =1; 
key_measures = []; 
  
%Fit Baseline disruption case first 
for i=1:numel(spares)  %spares 
     s = num2str(spares(i)) 
     c = num2str(servers(1)) 
     d = num2str(ddays(1)) 
     [Exp_name,' ',s,' Spares',' ',c,' Servers',' ','Dday on ',d] 
     T=[]; 
     SL = []; 
    for r = 1:reps 

TS = agg_TS(agg_TS(:,1)==spares(i) & 
agg_TS(:,2)==servers(1)&agg_TS(:,3)==ddays(1)&agg_TS(:,4)==r, :); 

        T = [T,TS(1:endT,5)]; 
        SL = [SL, TS(1:endT,6)]; 
    end 
     km = analyze_ts(T(:,1),mean(SL,2), T_dis, T_rec,0,1,0) 
    %area under disruption 
     fun_pre = @(x,Tpre)x(1)+Tpre*0; 
     fun_dis = @(x,Tdis)(x(3)-x(4))*exp(-((Tdis - x(5))./x(1)).^x(2))+x(4); 
     A_pre = km(1); 
     x_dis = km(2:end-1); 
     A_All_Min = km(end); 
     
     au_dis = integral(@(T)fun_dis(x_dis,T), T_dis, T_end); 
     au_rec = 0; 

key_measures = [key_measures;spares(i),0,T_dis, T_rec, km(1:end-1), au_dis, 
au_rec, au_dis+au_rec, A_All_Min]; 

      
     
     plot(T, fun_pre(A_pre, T), 'LineWidth', 2) 
     hold on 
     plot(T, fun_dis(x_dis,T), 'LineWidth', 2) 
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     plot (T(:,1),mean(SL,2), 'LineWidth', .5) 
     
     axis([0 2000 0 100]); 
     
     title([s,' Spares',', ',c,' Servers']); 
     xlabel('Day'); 
     ylabel('Available Aircraft'); 
end 
figure;     
A_dis = mean(key_measures(:,9)); 
for i=1:numel(spares)  %spares 
    z=1; 
    for j =2:numel(servers) %added servers 
        for k = 1:numel(ddays) %date of disruption 
           s = num2str(spares(i)) 
           c = num2str(servers(j)) 
           d = num2str(ddays(k)) 
           [Exp_name,' ',s,' Spares',' ',c,' Servers',' ','Dday on ',d] 
           T=[]; 
           SL = []; 
           for r = 1:reps 

TS = agg_TS(agg_TS(:,1)==spares(i) & 
agg_TS(:,2)==servers(j)&agg_TS(:,3)==ddays(k)&agg_TS(:,4)==r, :); 

             T = [T,TS(1:endT,5)]; 
              SL = [SL, TS(1:endT,6)]; 
            end 
            T = T(:,1); 
            km = analyze_ts(T,mean(SL,2), T_dis, T_rec, A_dis, 1,1); 
              
            fun_pre = @(x,Tpre)x(1)+Tpre*0; 
            fun_dis = @(x,Tdis)(x(3)-x(4))*exp(-((Tdis - x(5))./x(1)).^x(2))+x(4); 
            fun_rec = @(x,Trec)(x(3)-x(4))*(1-exp(-((Trec - x(5))./x(1)).^x(2)))+x(4); 
             
            A_pre = km(1); 
            x_dis = km(2:6); 
            x_rec = km(7:end-1); 
            A_All_Min = km(end); 
             
            au_dis = integral(@(T)fun_dis(x_dis,T), T_dis, T_rec); 
            au_rec = integral(@(T)fun_rec(x_rec,T), T_rec, T_end); 

key_measures = [key_measures;spares(i),servers(j),T_dis, T_rec, km(1:end-1), 
au_dis, au_rec, au_dis+au_rec, A_All_Min]; 

             subplot(1, numel(servers)-1, z); 
             
     Tpre = T(T<=T_dis); 
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     SLpre = SL(T<=T_dis); 
     Tdis = T(T>=T_dis&T<=T_rec); 
     SLdis = SL(T>=T_dis&T<=T_rec); 
     Trec = T(T>=T_rec); 
     SLrec = SL(T>=T_rec); 
             
            plot(Tpre, fun_pre(A_pre, Tpre), 'LineWidth', 2) 
            hold on 
            plot(Tdis, fun_dis(x_dis,Tdis), 'LineWidth', 2) 
            plot(Trec, fun_rec(x_rec,Trec), 'LineWidth', 2) 
             
            plot (T(:,1),mean(SL,2), 'LineWidth', .5) 
             
            axis([0 2000 30 100]); 
             
            title([s,' Spares',', ',c,' Servers']); xlabel('Day'); ylabel('Available Aircraft'); 
            %z= z+1          
        end 
         z= z+1; 
    end 
end 
key_measures = real(key_measures); 
save(['key_measures_', Exp_name],'key_measures'); 
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Appendix D: Plot Time Series Code (Femano et al., 2019) 

TS = agg_TS(agg_TS(:,1)==spares(1) & 
agg_TS(:,2)==servers(1)&agg_TS(:,3)==ddays(1)&agg_TS(:,4)==1, :); 
T = TS(:,5); 
maxT = T(end); 
time_unit = T(2)-T(1); 
endT = (maxT-5*time_unit)/time_unit; 
  
for i=1:numel(spares)  %spares 
   for j =1:numel(servers) %added servers 
        for k = 1:numel(ddays) %date of disruption 
            s = num2str(spares(i)) 
            c = num2str(servers(j)) 
            d = num2str(ddays(k)) 
            [Exp_name,' ',s,' Spares',' ',c,' Servers',' ','Dday on ',d] 
            try 
            T=[]; 
            SL = []; 
         for r = 1:reps 

TS = agg_TS(agg_TS(:,1)==spares(i) & 
agg_TS(:,2)==servers(j)&agg_TS(:,3)==ddays(k)&agg_TS(:,4)==r, :); 
T = [T,TS(1:endT,5)]; 
SL = [SL, TS(1:endT,6)]; 

            End 
subplot(numel(spares), numel(servers), z); 

            hold on; 
            plot(T(:,1), prctile(SL,25, 2), '-g', 'LineWidth', .5); 
            plot(T(:,1), prctile(SL,75, 2), '-g', 'LineWidth', .5); 
            plot(T(:,1), mean(SL,2),'-k', 'LineWidth', 1.25); 
            axis([1200 2000 10 100]); 
                     
            title([s,' Spares',', ',c,' Servers']); 
            xlabel('Day'); 
            ylabel('Available Aircraft'); 
            z= z+1;        
            catch 
            warning('No such scenario. Going to next scenario'); 
            end 
        end 
    end 
end 
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asset allocation can meet during a disruptive event. Due to its applicability across multiple domains, the USAF F-16 
repair network in the Pacific theater (PACAF) is modeled utilizing discrete event simulation and used as the 
illustrating example. This research uses various levels of production capacity and response time as the primary 
resilience levers. However, it is essential to simultaneously invest in inventory and capacity to realize the greatest 
impacts on resilience. Real-world demand and cost data are incorporated to identify the inherent cost-resilience 
relationships, essential for evaluating the response and recovery capabilities across the developed scenarios. Results 
indicate that recovery capacity and response time are the greatest drivers of recovery after a disruption. 
Additionally, numerous network designs employing various levels of design flexibility are evaluated and 
recommended for future capacity expansion. 
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