
Ground Weather RADAR Signal
Characterization through Application of

Convolutional Neural Networks

THESIS

STEPHEN M LEE, 1st Lt, USAF

AFIT-ENS-MS-20-M-158

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-MS-20-M-158

GROUND WEATHER RADAR SIGNAL CHARACTERIZATION

THROUGH APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

STEPHEN M LEE, B.S.

1st Lt, USAF

26 March 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENS-MS-20-M-158

GROUND WEATHER RADAR SIGNAL CHARACTERIZATION

THROUGH APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS

THESIS

STEPHEN M LEE, B.S.
1st Lt, USAF

Committee Membership:

Dr. Lance E. Champagne
Chair

Lt Col Andrew J Geyer, Ph.D.
Reader

AFIT-ENS-MS-20-M-158

Abstract

The 45th Weather Squadron supports the space launch efforts out of the Kennedy

Space Center and Cape Canaveral Air Force Station for the Department of Defense,

NASA, and commercial customers through weather assessments. Their assessment of

the Lightning Launch Commit Criteria (LLCC) for avoidance of natural and rocket

triggered lightning to launch vehicles is critical in approving space shuttle and rocket

launches. The LLCC includes standards for cloud formations, which requires proper

cloud identification and characterization methods. Accurate reflectivity measure-

ments for ground weather radar are important to meet the LLCC for rocket triggered

lightning. Current linear interpolation methods for ground weather radar gaps result

in over-smoothing of the vertical gradient and over-estimate the risk of rocket trig-

gered lightning, potentially resulting in costly, unnecessarily delayed launches. This

research explores the application of existing interpolation methods using convolutional

neural networks to perform two-dimensional image interpolation, called inpainting,

into the three-dimensional weather radar scan domain. Results demonstrate that

convolutional neural networks can improve the accuracy of cloud characterization

over current interpolation methods, potentially resulting in fewer launch delays with

substantial associated cost savings due to increased capability to meet the LLCC.

iv

Acknowledgements

I would like to thank Mr. William Roeder with the 45th Weather Squadron for his

insights. I would also like to thank my faculty research advisor Dr. Champagne, and

committee member, Lt Col Geyer, for their support. Finally, I would like to thank

my wife and children for their patience.

STEPHEN M LEE

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . vii

List of Tables . viii

I. Introduction . 1

1.1 Problem Statement . 1
1.2 Background . 1
1.3 Motivation . 4
1.4 Summary . 4

II. Literature Review . 5

2.1 Overview . 5
2.2 Radar Gap Interpolation . 5
2.3 Neural Network Architecture . 5
2.4 Photo Image Interpolation using Neural Networks 8
2.5 Radar Image Interpolation with CNNs . 9

III. Methodology . 10

3.1 Data Description . 10
3.2 Model Architecture . 11
3.3 Model Evaluation . 12
3.4 Hardware and Software . 13

IV. Results and Analysis . 14

4.1 Overview . 14
4.2 Analysis . 14
4.3 Training the Model . 15
4.4 Limitations . 16

V. Conclusion and Future Work . 19

5.1 Conclusion . 19
5.2 Future Work . 19

Appendix A. Python Code . 21

Bibliography . 34

vi

List of Figures

Figure Page

1. Radar Beam Coverage versus Range [1] . 3

2. Common neural network activation functions[2] . 6

3. Simple feedforward neural network . 7

4. 2D Convolution . 7

5. Padding allows the kernel to fully scan edges and corners 8

6. CNN Architecture . 11

7. MSE by Epoch . 16

vii

List of Tables

Table Page

1. Summary Statistics . 14

viii

GROUND WEATHER RADAR SIGNAL CHARACTERIZATION

THROUGH APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS

I. Introduction

1.1 Problem Statement

Can a convolutional neural network (CNN) result in more accurate ground weather

radar (WR) gap interpolation over the current linear interpolation model for cloud

characterization?

1.2 Background

The 45th Weather Squadron (WS) supports space launch efforts out of the Kennedy

Space Center and Cape Canaveral Air Force Station for the Department of Defense,

NASA, and commercial customers through weather assessments to satisfy its mission

to exploit the weather to assure safe access to air and space[3]. A part of its mission

is to assess the Lightning Launch Commit Criteria (LLCC). The LLCC for avoidance

of natural and rocket triggered lightning to launch vehicles during ascent must be sat-

isfied to approve space shuttle and rocket launches[4]. The LLCC includes standards

for cloud formations, which requires proper cloud identification and characterization

methods.

The area covered by a radar beam as the antenna rotates through elevation scans

is called its volume coverage pattern (VCP). Part of the radar scan strategy for

ground weather radar uses different, contextual based VCPs in order to increase scan

1

efficiency. Unfortunately, this means ground WR suffers from vertical gaps as the

elevation angle increases (see figure 1).

Current linear interpolation methods to fit the data result in smoothing and lose

small scale information[5]. This smoothing may result in predicted cloud shapes that

over-estimate the risk of natural and rocket-triggered lightning. An improvement in

vertical interpolation method may identify additional launch opportunities that meet

the LLCC and would otherwise be missed.

This is especially applicable to cumulus clouds that visually have extremely sharp

edges. Sharp edges imply that these cumulus clouds will have very high gradients of

reflectivity at the cloud edges including cloud top. Therefore, the linear interpolation

method currently used to fill-in the WR beam gaps will underrepresent the true

gradient. This will lead the WR to overestimate the height of the cumulus cloud top,

which in turn will lead to falsely evaluate the LLCC Cumulus Rule as violated under

conditions where the lauch vehicle trajectory will approach too close to the cloud

body.

According to NASA-STD-4010, “The LLCC identify each condition that is re-

quired to be met in order to launch. These include criteria for trained weather per-

sonnel to monitor the meteorological conditions and implement each launch constraint

developed using the following Natural and Triggered Lightning Launch Commit Cri-

teria. The launch operator is required to have clear and convincing evidence that

none of the criteria is violated at the time of launch.” The LLCC was instituted

in response to events where Apollo XII and Atlas/Centaur-67 triggered lightning

upon launch. Apollo XII recovered and completed the mission successfully; however,

Atlas/Centaur-67 was destroyed, and “since Atlas/Centaur-67 and the rigorous im-

plementation of the LLCC, no other launch vehicles have intercepted or triggered

lightning on launch[4].”

2

Figure 1. Radar Beam Coverage versus Range [1]

According to the 45th WS, “approximately 35% of launches from CCAFS/KSC are

delayed, and 5% scrubbed, due to the Lightning Launch Commit Criteria,” which can

cost hundreds of thousands, if not millions of dollars per lost launch opportunity[6].

These potential costs drive the 45th WS and space launch community to constantly

seek incremental improvements to the LLCC prediction ability.

Data is provided from National Centers for Environmental Information (NCEI)

website National Oceanic and Atmospheric Administration (NOAA). NCEI’s radar

archive includes the Next Generation Weather Radar System (NEXRAD) and Ter-

minal Doppler Weather Radar networks[7]. This research focuses on the base data,

called Level-II, which includes the original three meteorological base data quantities:

reflectivity, mean radial velocity, and spectrum width, as well as the dual-polarization

base data of differential reflectivity, correlation coefficient, and differential phase[8].

3

1.3 Motivation

The objective of this research is to develop an improved cloud-shape interpolation

method. Current WR interpolation uses simple averaging of reflectivity between radar

scans and does not perform any extrapolation for missed cloud tops or bottoms[9].

Using CNNs for WR interpolation is a novel solution approach to this problem since

it expands the already well-performing CNN model architecture for two-dimensional

color image interpolation into a new three-dimensional cloud reflectivity image do-

main.

1.4 Summary

Chapter 2 reviews current research into weather prediction as well image interpo-

lation using neural networks. Chapter 3 explains the methodology used to develop

the ground weather radar reflectivity interpolation model as well as its evaluation

criteria. Chapter 4 presents the model results and compares them to the existing lin-

ear interpolation model. Chapter 5 covers the the conclusions and proposes possible

avenues for future research.

4

II. Literature Review

2.1 Overview

This chapter discusses past research into ground weather radar scan elevation gap

linear interpolation methods as well as background for nonlinear interpolation using

deep learning neural networks through CNNs.

2.2 Radar Gap Interpolation

Lakshmanan et. al. demonstrate how linear interpolation methods reduce the

bias and variance in cloud formation height estimation. Despite the displayed ad-

vantages, however, they state that there is not always improvement over traditional

scanning techniques[10]. Augst and Hagen have outlined the issues with classic linear

regression by highlighting how “measurements with a great elevation angle have less

weight to the calculation of the velocity,” low elevation angles neglect the vertical

wind component of radial velocity, and operational radars have “a lack of data cov-

erage increasing with altitude[5].” Essentially, due to the nature of ground WR data

collection, higher elevation angles have less power to calculate the reflectivity cross

section, as well as result in larger radar scan gaps, with the possibility of missing

portions of the cloud tops entirely without the ability to extrapolate.

2.3 Neural Network Architecture

Neural networks define a series of mapping functions, often called activation func-

tions, to best approximate the relationship between inputs and outputs (see figure

2 for some common activation functions). Activation functions evaluate in chained

equations, referred to as the layers of the network, where the functions make up the

nodes of the network and the connections are defined by the weighted outputs of

5

each previous layer. Neural networks seek to minimize the error between the ap-

proximations and true values by updating the weights through stochastic gradient

descent[11].

Figure 2. Common neural network activation functions[2]

The output f from each layer is defined as

f (1) = g(1)
(
W(1)Tx + b(1)

)
(1)

f (2) = g(2)
(
W(2)T f (1) + b(2)

)
(2)

...

f (n) = g(n)
(
W(n)T f (n−1) + b(n)

)
(3)

6

Figure 3. Simple feedforward neural network

for n layers where g is the activation function used for each layer, x is the input

for the initial layer, W is the weights for the inputs, and b is the bias for the function.

CNNs utilize at least one convolution step to emphasize the relationship between

observations close to each other when organized into a grid-like structure. This is

accomplished by using a kernel of a smaller size than the input data to filter the

image into feature maps for the activation functions.

Figure 4. 2D Convolution

Since the kernel is the same throughout a layer, the relationships between observa-

tions in the grid are equally weighted. Additional convolutional layers allow indirect

connections between nodes that would not normally be possible since the direct con-

nections are limited by the size of the kernel. Methods to increase the performance

of CNNs include pooling the outputs of nodes into summary statistics that reduce

7

the dimensionality of the output space, as well as padding the edges of the grid with

empty values in order to allow a kernel to fully map the features along the outside of

the grid. See figure 5 for an example of padding.

Figure 5. Padding allows the kernel to fully scan edges and corners

2.4 Photo Image Interpolation using Neural Networks

Notable work using CNNs for two-dimensional image interpolation, or inpaint-

ing, includes the method introduced at the 32nd Conference on Neural Information

Processing Systems[12]. Now referred to as Multi-Column Generative Advesarial

Networks (GANs), these special CNNs selectively mask portions of image data in

order to make predictions of the missing contents. This method incorporates meth-

ods from context-encoders[13] where portions of an image are predicted based on

their surroundings, and GANs [14], which introduce a separate branching network

that attempts the classify the predictions as real or fake and minimizes the ability of

the network to discriminate between the truth values and the generated values. A

multi-column GAN requires a pre-trained classification network that is incorporated

8

into the context based interpolator that attempts the trick the discriminator. As the

efficacy of two-dimensional photo image inpainting increases it leaves an opportunity

to start at the ground up for three-dimensional images such as radar scans.

2.5 Radar Image Interpolation with CNNs

Current ground WR work uses CNNs for “nowcasting,” or radar scan extrapolation

for precipitation. Examples include using a recurrent neural network combined with a

CNN to develop a prediction layer with a image processing convolutional layer[15], as

well as current work using downsampling/upsampling CNN blocks to predict subse-

quent radar scans[16]. These are useful for rainfall predictions, but there is currently

no work using image interpolation using neural networks on ground WR scans for

cloud characterization.

The use of radar super resolution attempts to use high resolution scans as truth

data in order to improve the estimates from lower resolution scans[17]. These struc-

tures use a modified GAN framework for training in order to obtain a high amount of

visual similarity between the different radar scan resolutions for post-processed two-

dimensional representations. The limitations of super resolution data to develop a

more generalized framework include the limited accessibility of high resolution scans

as well as the fact that super resolution frameworks do not account for masked or

missing scans.

9

III. Methodology

3.1 Data Description

The data in this study consists of 1246 radar scans from NOAA for 20 to 24

June 2016 in Tampa, Florida. Scans were extracted into netCDF file format using

NOAA’s weather and climate toolkit[18]. The reflectivity, elevation, azimuth, and

distance measurements of each scan were read into numpy array files. Scan sizes were

standardized between scans with different volume coverage patterns by padding unob-

served indeces in scans with zeros. Final array sizes were 1556 distance measurements

around 360 azimuth angles and 11 elevation scans with a reflectivity measurement at

each index. Radar scans were randomly separated into training, validation, and test

sets, with a training set of 873 radar scans, validation set of 251 radar scans, and test

set of 122 radar scans.

Suitable truth data is required for predicting the reflectivity of unobserved eleva-

tion angles. This study assumes that a model that can predict reflectivity at masked

elevation angles will be sufficient to predict the reflectivity at unknown elevation an-

gles. Since NOAA does not record reflectvity for echo top scans below 18.5 decibels

relative to the reflectivity factor (dBZ), dBZ being a unit of measurement comparing

the return of a radar signal called the reflectivity, this study will be limited to cloud

top predictions at 18.5 dBZ and above. Input data included all scan information

where the masked elevation angle was assigned 99999 for reflectivity, and output data

consisted of the predictions for reflectivity at the masked elevation angle. The masked

elevation angle was chosen randomly between each input observation with a common

random seed between runs.

10

3.2 Model Architecture

The CNN architecture consists of three convolutional layers followed by two fully

connected dense layers. The first convolutional layer has eight filters and a kernel size

of 1*32*128. The activation function for the first convolutional layer is an exponential

linear unit to accommodate negative reflectivity values. The second convolutional

layer has 32 filters and a kernel size of 1*16*64. The third convolutional layer has

128 filters and a kernel size of 1*8*32. These both had rectified linear unit activation

functions to fit piecewise linear functions to the input data to accommodate the

irregularities of the input data. The number of filters increased with each layer to

increase the level of abstraction, and the kernel size was lowered to accommodate the

limit on the number of parameters the model could store.

The first dense layer has 256 nodes with a tanh activation function to standardize

the outputs between -1 and 1, and the final layer has an output space equal to a

single elevation scan of 1*1*360*1556 with a linear activation function. See figure 6

for a layout of the layers.

Figure 6. CNN Architecture

11

The outputs are normalized between layers by subtracting the mean and dividing

by the standard deviation to avoid covariance shift, which could cause overfitting

or introduce computational complexity, and the kernel weights are average pooled

after each convolutional layer into summary statistics for the next layer to reduce the

dimensionality and increase computational power.

3.3 Model Evaluation

The trained CNN model with the lowest validation set mean squared error will be

used for test set comparison with the base model. Models will be compared on mean

error,

ME = Σn
i=1

(yi − ŷi
n

)
(4)

mean squared error (MSE),

MSE = Σn
i=1

((yi − ŷi)
2

n

)
(5)

mean absolute error (MAE),

MAE = Σn
i=1

(|yi − ŷi|
n

)
(6)

maximum absolute error,

MaxAE = max
i
{yi − ŷi} (7)

and R-Squared,

R2 = 1− SSe

SSt

= 1− Σn
i=1

((yi − ŷi)
2

(yi − ȳ)2

)
(8)

12

where n is the number of observations, yi is the true value of the observation, ŷi

is the predicted value of the observation, SSe is the sum of the squared error between

the predicted and true observation values, and the SSt is the total sum of all squared

differences between the true values and their mean.

A mean error near at or near zero indicates that the predictions should not be

substantially skewed to over or under estimate the true value of the observations. A

low MSE indicates that there is little variability in the difference between the predicted

values and the observed values, and is of particular note because predictions that are

further from the true value will have more impact on the value of the MSE, which

is valuable when the precision of characterization is important to penalize more for

being further from the actual shape. The MAE is important because it characterizes

a one-to-one scaling of error in relation to each other. The maximum absolute error

indicates an upper limit of how far off a prediction may lie from the true value. The

R-Squared is the best measure of accuracy because it represents how much variability

is explained by the model.

3.4 Hardware and Software

All model training and evaluation was conducted on a Windows 10 Pro for Work-

stations enabled computer with a Intel(R) Xeon(R) Gold 5120 CPU, 512 GB RAM,

and NVIDIA Quadrio GP100 GPU, as well as Python 3.7 packages Tensorflow-GPU

1.13.1, Keras 2.2.4, CUDA 10.1, and CuDNN 7.6.0, with all necessary dependencies.

13

IV. Results and Analysis

4.1 Overview

The proposed model out-performed the existing model on all recorded statistical

measures for the test set.

Table 1. Summary Statistics

Mean MSE MAE Max R
Error Absolute Squared

Error
Base Model -0.8048 62.56 3.541 61.50 0.4769
CNN Model -0.1513 33.26 2.18 31.00 0.7219

4.2 Analysis

The mean error of the base model tends to over-estimate the reflectivity values,

as expected. The CNN model also tends to overestimate, but at an average of less

than one-fifth of the magnitude exhibited by the base model. The reduction of MSE

using results from the CNN model to nearly half shows a substantial reduction in

the smoothing problem since the predictions fit the actual values much closer. This

continues to be the trend when measuring the MAE, so even when the weights of large

errors and small errors are equal the CNN model continues to have nearly half the

amount of error. Since precipitation commonly occurs at reflectivity values around or

above 20 dBZ, a maximum error of 31.00 dBZ is relatively large as an upper bound,

but there are obvious improvements from the maximum observed error of 61.50 dBZ

from the base model, which displays a direct improvement in the magnitude of the

over-estimated values. Finally, the improvement of the R-Squared by nearly 25%

shows that much more of the variability in the observed values is explained by the

CNN.

14

4.3 Training the Model

Figure 7 shows the training performance of the CNN prior to testing against the

base model. The training MSE shows general improvement across epochs, the time

required to perform a full training cycle that updates the function weights, with

the validation MSE following the trend. The fact that the validation MSE does not

diverge substantially from the training indicates that the model is actually training to

explain a general framework of the input features, and is not simply trying to overfit

and predict the outputs. This means the model should perform consistently just as

well from new, independent observations from the training, with similar performance

characteristics.

The primary consideration from figure 7 is that the sporadic performance of the

model across training epochs indicates room for improvements in the model structure.

This means the model likely has room for hyperparameter tuning, which are the user

defined parameters that are not updated by the model training. Most likely the

learning rate, or the scaling of the gradient for the weight parameter updates, is too

large, which causes the weights to update too dramatically. Essentially, the updates

overshoot the optimal weight values and converges to a suboptimal solution. A lower

learning rate would require longer training but is more likely to have a stable gradient

descent during backpropagation. A good alternative is to mix approaches so that the

learning rate can reduce between epochs, so that the gradient descent will not get

stuck early on by a low learning rate, but it reduces in later epochs so that it will not

overshoot the optimal or a nearly optimal solution. The learning rate used was the

default value of 0.001. Other possible hyperparameters to tune include experimenting

with different numbers of layers, kernel sizes, number of filters, or activation functions.

The effects of changing those may have dramatic, unpredictable effects because they

change the inherent nature of the model.

15

Figure 7. MSE by Epoch

4.4 Limitations

This research has been heavily constrained by hardware limitations. Data storage

has been the biggest issue, where one hour of unprocessed radar scans can be in the

upwards of 200 MB in size, and less than one week of processed scans can take up

over 100 GB of hard drive space. The data arrays are very large, and require close to

10 GB of dedicated GPU memory and 90 minutes of training time per epoch with the

current settings to perform mathematical operations. Hyperparameter tuning and

model architecture restructuring can not only crash the GPU memory if the number

of function weight parameters increase, but may also slow training with no guarantee

of prediction improvements. These all result in problems where additional models

are time intensive to build with no performance guarantee, and saving the prediction

errors increases the data storage requirements.

16

The most straightforward solution to the hardware limitations is to improve the

hardware, especially the data storage. Increasing data storage is particularly impor-

tant to save the distributions in error between multiple models. This would enable

the assessment of the model’s bias to over or under predict radar scans, as well as

if there are any areas where the predictions are consistently bad or random large

errors unbalance the overall error estimate. This could also make room to save the

distribution of network weight updates to observe the characteristics of the network,

such as high activity nodes or even nodes that die by having their weights go to zero,

which would help provide insight into a more efficient architecture or observe the sen-

sitivity to changes in activation functions or number of nodes. Another solution is to

use image downsampling to reduce the size of the input arrays. This would allow an

increase in layer complexity since fewer parameters would be needed, but this would

place an unknown limit on the prediction accuracy due to the loss of small scale data.

If hardware is not a limiting factor then more data may provide more insight.

Image upsampling with super-resolution radar images would provide finer detail scans

that can be used for truth data. Using cloud scans from throughout the year, as well

as cloud scans in other geographical areas, would test the model’s ability to generalize.

The current model is built with the assumption that radar scans are independent from

each other, but alternative model frameworks should be explored that can account

for the time aspect, whether the immediate previous radar scan, or the seasonality of

scans.

One final consideration is that ground WR has a scan threshold of 18.5 dBZ

for echo top readings due to diminishing returns with radar power frequency bands,

which is a low priority for most precipitation based predictions, but cloud bodies

exist at lower dBZ values for overall shape, a measurement important for the LLCC.

17

Higher frequency radar scans that captured the entire cloud body may improve true

prediction precision.

18

V. Conclusion and Future Work

5.1 Conclusion

A CNN model will likely reduce the number of delayed or canceled rocket launches

due to fewer LLCC rule violations since the CNN model is less likely to over predict

cloud reflectivity values, which could range in a cost savings between $150,000 to

$1,000,000 for even a single recovered launch depending on the vehicle[6]. The vari-

ance in predictions for the CNN model is also lower, so it is likely the predictions will

consistently avoid the over-smoothing issue from the current method that leads to

so many LLCC rule violations that result in delayed rocket launches. The improved

accuracy of the cloud characterization will also provide additional insight into the

weather properties as a general product for the weather community.

5.2 Future Work

This research was constrained to purely consider the quantitative values associ-

ated with cloud shape characterization (reflectivity). Future work should also consider

qualitative cloud characteristics to better distinguish between bodies for predictive

purposes. This could be implemented through introducing a new branch in the neural

network that separately categorizes the cloud characteristics and adds that informa-

tion as part of the interpolation process. Not only will this help inform predictions

by accounting for commonalities within groups such as cumulus clouds or anvil top

clouds, for example, but the missing elevation scans are a characteristics themselves

due to the VCP. VCP’s, which utilize the context of the current weather to determine

elevation scans, indicate the severity of the precipitation present, which can be used

to inform predictions.

19

Another thing to consider is a framework that incorporates the temporal aspect

of the scans, such as time of day or season. Even moreso important is that, though

treating the WR scans as independent images performs relatively well, they are not

truly independent. As the clouds are scanned they propagate through the atmosphere.

This is similar to viewing a moving object through a picket fence - though at any one

time the whole image is not visible, the entirety of the object will be revealed within

incremental observations. This information can be used to improve the interpolation

as the cloud moves through space.

Finally, the scope of the radar scans should be increased. Not only can the ground

WR scan gap interpolation be greater generalized by utilizing scans from different

geographical regions, radar scans themselves are not limited to weather. As contextual

information is introduced into the model framework the network can be trained to

account for non-weather related objects, and as the network gains an understanding

of the properties of these foreign objects it should be trained to account for, and

even interpolate the shape and movement of the objects. This would lead to a true

framework that can generalize three-dimensional radar images based on context and

characteristics, as well as object permanency as it moves through space in time.

20

Appendix A. Python Code

import t en so r f l ow as t f

import matp lo t l i b . pyplot as p l t

import netCDF4 as nc

import numpy as np

import keras as ks

from keras . models import Sequent ia l , load model

from keras . l a y e r s import Dense , Act ivat ion , Conv3D , Flatten ,

AveragePooling3D , BatchNormalization ,

Dropout , Reshape

from keras import opt imizer s , c a l l back s , r e g u l a r i z e r s

from keras import backend as K

from keras . c a l l b a c k s import ModelCheckpoint

import s h u t i l

import time

import os

gpu opt ions = t f . GPUOptions (a l low growth=True)

s e s s i o n = t f . I n t e r a c t i v e S e s s i o n (c o n f i g=t f . Conf igProto (gpu opt ions= \

gpu opt ions))

i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ()

de f processData (f i l ename , f i l e p a t h) :

raw data = nc . Dataset (f i l e p a t h+f i l ename)

21

r e f l = raw data . v a r i a b l e s [‘ R e f l e c t i v i t y ’]

r e f l = np . l i b . pad (r e f l , ((0 ,11− r e f l . shape [0]) ,

(0 , 0) ,

(0 ,1556− r e f l . shape [2])

) , ‘ constant ’)

e l e v = raw data . v a r i a b l e s [‘ e levat ionR ’]

az = raw data . v a r i a b l e s [‘ azimuthR ’]

d i s t = raw data . v a r i a b l e s [‘ distanceR ’]

e lev m = np . t i l e (e lev , (1556 , 1 , 1))

elev m = np . moveaxis (elev m , 0 , −1)

elev m = np . l i b . pad (elev m ,((0 ,11− elev m . shape [0]) ,

(0 , 0) ,

(0 ,1556− elev m . shape [2])) ,

‘ constant ’)

az m = np . t i l e (az , (1556 , 1 , 1))

az m = np . moveaxis (az m , 0 , −1)

az m = np . l i b . pad (az m ,((0 ,11− az m . shape [0]) ,

(0 , 0) ,

(0 ,1556−az m . shape [2])) ,

‘ constant ’)

d ist m = np . t i l e (d i s t , (11 , 360 , 1))

22

dist m = np . l i b . pad (dist m , ((0 , 0) ,

(0 , 0) ,

(0 ,1556− l en (d i s t))) ,

‘ constant ’)

imageFi le = np . s tack ([r e f l , elev m , az m , dist m])

imageFi le = np .ma. f i l l e d (imageFi le , f i l l v a l u e =0)

re turn imageFi le

de f g e tFu l lF i l ePa th s (d i r e c t o r y) :

f i l e P a t h = []

f o r f i l e in os . l i s t d i r (d i r e c t o r y) :

f i l e P a t h . append (os . path . abspath (os . path . j o i n (d i r e c to ry , f i l e)))

r e turn f i l e P a t h

CLEAN SORT DATA = False

i f CLEAN SORT DATA == True :

np . random . seed (1)

f o r f in os . l i s t d i r (‘ . / Raw Data / ’) :

data = processData (f , ‘ . / Raw Data / ’)

j = f . r e p l a c e (‘ . nc ’ , ‘ ’)

np . save (‘ . / Image F i l e s /{} . npy ’ . format (j) , data)

23

source = ‘ ‘ . / Image F i l e s ”

dest1 = ‘ ‘ . / Train Images ”

dest2 = ‘ ‘ . / Val Images ”

dest3 = ‘ ‘ . / Test Images ”

f i l e s = os . l i s t d i r (source)

f o r f in f i l e s :

randNum = np . random . rand (1)

i f randNum < 0 . 7 :

s h u t i l . move(source + ‘/ ’+ f , dest1 + ‘/ ’+ f)

e l i f randNum > 0 . 9 :

s h u t i l . move(source + ‘/ ’+ f , dest3 + ‘/ ’+ f)

e l s e :

s h u t i l . move(source + ‘/ ’+ f , dest2 + ‘/ ’+ f)

de f maxSquareError (y true , y pred) :

r e turn K. max(K. square (y t rue − y pred))

de f varSquareError (y true , y pred) :

r e turn K. var (K. square (y t rue − y pred))

de f rSquare (y true , y pred) :

resSS = K. sum(K. square (y t rue − y pred))

totSS = K. sum(K. square (y t rue − K. mean(y t rue)))

re turn (1 − resSS /(totSS + K. e p s i l o n ()))

de f meanError (y true , y pred) :

24

r e turn K. mean(y t rue − y pred)

de f graphHistory (h i s t o r y) :

‘ ‘ ‘ Function f o r graphing the t r a i n i n g and v a l i d a t i o n l o s s ’ ’ ’

summarize h i s t o r y f o r l o s s / metr ic

f i g = p l t . f i g u r e ()

p l t . p l o t (h i s t o r y . h i s t o r y [‘ mse ’])

#p l t . p l o t (h i s t o r y . h i s t o r y [‘ v a l l o s s ’])

p l t . t i t l e (‘ Model Loss ’)

p l t . y l a b e l (‘MSE’)

p l t . x l a b e l (‘ Epoch ’)

p l t . l egend ([‘ Tr . Loss ’ , ‘ Val . Loss ’])

p l t . show ()

de f makeCNN () :

model = Sequent i a l ()

model . add (Conv3D(8 ,

(1 , 32 , 128) ,

padding=‘same ’ , data format= ‘ ‘ c h a n n e l s f i r s t ” ,

input shape =(4 ,11 ,360 ,1556)))

model . add (BatchNormal izat ion (a x i s =1))

model . add (Act ivat ion (‘ e lu ’))

model . add (AveragePooling3D ((1 , 8 , 16) ,

padding=‘same ’ ,

data format =‘ c h a n n e l s f i r s t ’))

model . add (Conv3D(32 ,

25

(1 , 16 , 64) ,

padding=‘same ’ ,

data format= ‘ ‘ c h a n n e l s f i r s t ”))

model . add (BatchNormal izat ion (a x i s =1))

model . add (Act ivat ion (‘ re lu ’))

model . add (AveragePooling3D ((1 , 4 , 8) ,

padding=‘same ’ ,

data format =‘ c h a n n e l s f i r s t ’))

model . add (Conv3D(128 ,

(1 , 8 , 32) ,

padding=‘same ’ ,

data format= ‘ ‘ c h a n n e l s f i r s t ”))

model . add (BatchNormal izat ion (a x i s =1))

model . add (Act ivat ion (‘ re lu ’))

model . add (AveragePooling3D ((2 , 2 , 2) ,

padding=‘same ’ ,

data format =‘ c h a n n e l s f i r s t ’))

model . add (Flat ten ())

model . add (Dense (256 , a c t i v a t i o n =‘tanh ’))

model . add (Dense (1∗1∗360∗1556 , a c t i v a t i o n =‘ l i n e a r ’))

model . compi le (opt imize r =‘adam ’ ,

l o s s =‘mse ’ ,

met r i c s =[‘mae ’ ,

maxAbsoluteError ,

varError ,

26

rSquare ,

meanError])

r e turn model

c l a s s DataGenerator (ks . u t i l s . Sequence) :

de f i n i t (s e l f , f i l e l i s t , b a t c h s i z e =4, s h u f f l e=True) :

””” Constructor can be expanded ,

with batch s i z e , d imentat ion e tc .

”””

s e l f . f i l e l i s t = f i l e l i s t

s e l f . b a t c h s i z e = b a t c h s i z e

s e l f . s h u f f l e = s h u f f l e

s e l f . on epoch end ()

de f l e n (s e l f) :

‘ Take a l l batches in each i t e r a t i o n ’

r e turn i n t (l en (s e l f . f i l e l i s t)/ s e l f . b a t c h s i z e)

de f g e t i t e m (s e l f , index) :

‘ Get next batch ’

Generate indexes o f the batch

indexes = s e l f . indexes [index : (index +1)]

s i n g l e f i l e

27

f i l e l i s t t e m p = [s e l f . f i l e l i s t [k] f o r k in indexes]

Set o f X and y

X, y = s e l f . d a t a g e n e r a t i o n (f i l e l i s t t e m p)

re turn X, y

de f on epoch end (s e l f) :

‘ Updates indexes a f t e r each epoch ’

s e l f . indexes = np . arange (l en (s e l f . f i l e l i s t))

i f s e l f . s h u f f l e == True :

np . random . s h u f f l e (s e l f . indexes)

de f d a t a g e n e r a t i o n (s e l f , f i l e l i s t t e m p) :

‘ Generates data conta in ing b a t c h s i z e samples ’

exc luded ang l e s = np . random . cho i c e (11 ,1 , r e p l a c e=False)

X = np . empty ((s e l f . ba t ch s i z e , 4 , 11 , 360 , 1556))

y = np . empty ((s e l f . ba t ch s i z e ,1∗1∗360∗1556))

Generate data

f o r i , f in enumerate (f i l e l i s t t e m p) :

data = np . load (f , a l l o w p i c k l e=True)

X[i ,] = data

X[i , 0 , exc luded ang l e s , : , :] = 99999

y [i ,] = data [0 , exc luded ang l e s , : , :] . f l a t t e n ()

re turn X, y

28

model = makeCNN()

model . summary ()

t r a i n D i r = ‘ ‘ . / Train Images ”

va lDi r = ‘ ‘ . / Val Images ”

t e s t D i r = ‘ ‘ . / Test Images ”

tra inImages = ge tFu l lF i l ePa th s (t r a i n D i r)

valImages = ge tFu l lF i l ePa th s (va lDi r)

te s t Images = ge tFu l lF i l ePa th s (t e s t D i r)

trainGen = DataGenerator (t ra inImages)

valGen = DataGenerator (valImages)

testGen = DataGenerator (te s t Images)

TRAIN MODEL = False

i f TRAIN MODEL == True :

np . random . seed (52)

h i s t = model . f i t g e n e r a t o r (genera to r=trainGen ,

epochs =10,

verbose =1,

v a l i d a t i o n d a t a=valGen ,

max queue s ize =8,

c a l l b a c k s =[ModelCheckpoint (‘ ‘ . / model . h5 ” ,

29

s a v e b e s t o n l y=True ,

monitor=‘ v a l l o s s ’ ,

mode=‘min ’)]) # ,

h i s t o r y])

bestModel = ks . models . load model (‘ ‘ . / model . h5 ” ,

cus tom objec t s={

‘ maxAbsoluteError ’ : maxAbsoluteError ,

‘ varError ’ : varError ,

‘ rSquare ’ : rSquare ,

‘ meanError ’ : meanError

})

graphHistory (h i s t)

np . random . seed (52)

e l e v a t i o n a n g l e s = [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0]

totSquareError = 0

totAbso luteError = 0

testMaxAbEr = 0

totSS = 0

totSumError = 0

i = 0

h = 0

f o r f in tes t Images :

30

data = cp . load (f , a l l o w p i c k l e=True)

exc luded ang l e s = cp . random . cho i c e (11 ,1 , r e p l a c e=False)

f o r k in exc luded ang l e s :

i f (k − 1 < 0) or (10 < k + 1) :

t e s t P r e d i c t = cp . z e r o s l i k e (data [0 , k , : , :])

totSS = totSS + cp . sum(cp . square (data [0 , k , : , :] − \

cp . mean(data [0 , k , : , :])))

e l i f (data [0 , k + 1 , : , :] != cp . z e r o s l i k e (data [0 , k , : , :])) . any () :

t e s t P r e d i c t = cp . d i v id e (cp . add (data [0 , k + 1 , : , :] ,

data [0 , k− 1 , : , :]) ,

2)

totSS = totSS + cp . sum(cp . square (data [0 , k , : , :] − \

cp . mean(data [0 , k , : , :])))

e l i f (data [0 , k−1 ,0 ,0] == cp . z e r o s l i k e (data [0 , k , : , :])) . a l l () :

t e s t P r e d i c t = cp . z e r o s l i k e (data [0 , k , : , :])

totSS = totSS + cp . sum(cp . square (data [0 , k , : , :] − \

cp . mean(data [0 , k , : , :])))

e l s e :

t e s t P r e d i c t = cp . d i v id e (cp . add (data [0 , k + 1 , : , :] ,

data [0 , k− 1 , : , :]) ,

2)

totSS = totSS + cp . sum(cp . square (data [0 , k , : , :] − \

cp . mean(data [0 , k , : , :])))

t e s t E r r o r = data [0 , k , : , :] − t e s t P r e d i c t

i = i + np . prod (t e s t E r r o r . shape)

squareError = cp . square (t e s t E r r o r)

31

testMaxAbEr = max(cp . max(cp . abs (t e s t E r r o r)) , testMaxAbEr)

totAbso luteError = totAbso luteError + cp . sum(np . abs (t e s t E r r o r))

totSquareError = totSquareError + cp . sum(squareError)

totSumError = totSumError + cp . sum(t e s t E r r o r)

h += 1

pr in t (‘ ‘ F in i shed step ” , h)

testMSE = totSquareError / i

testMAE = totAbso luteError / i

testMeanError = totSumError/ i

testVar = testMSE − np . square (testMeanError)

testRSq = 1 − totSquareError / totSS

np . random . seed (52)

testCNN = bestModel . e v a l u a t e g e n e r a t o r (testGen)

p r i n t (‘ ‘ The t e s t MSE us ing averages i s ” , testMSE ,

‘ ‘ and the MSE us ing the CNN i s ” , testCNN [0] , ‘ ‘ . ”)

p r i n t (‘ ‘ The t e s t MAE us ing averages i s ” , testMAE , ‘ ‘ and the MAE us ing the CNN i s ” , testCNN [1] , ‘ ‘ . ”)

p r i n t (‘ ‘ The t e s t mean e r r o r us ing averages i s ” , testMeanError ,

” and the mean us ing the CNN i s ” , testCNN [5] , ‘ ‘ . ”)

p r i n t (‘ ‘ The t e s t var i ance us ing averages i s ” , testVar ,

” and the var iance us ing the CNN i s ” , testCNN [3] , ‘ ‘ . ”)

p r i n t (‘ ‘ The t e s t Rˆ2 us ing averages i s ” , testRSq ,

” and the Rˆ2 us ing the CNN i s ” , testCNN [4] , ‘ ‘ . ”)

p r i n t (‘ ‘ The t e s t max abso lu t e e r r o r us ing averages i s ” , testMaxAbEr ,

32

” and the max us ing the CNN i s ” , testCNN [2] , ‘ ‘ . ”)

33

Bibliography

1. W. Roeder and D. Short, “The new weather radar for americas space program in
florida: Scan strategy design,” 2009. 45th Weather Squadron, Patrick AFB, FL.

2. S. Sharma, “Activation functions in neural networks.” https://

towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6/,
September 2016.

3. “About us.” https://www.patrick.af.mil/About-Us/Weather/, May 2019.

4. NASA, “NASA standard for lightning launch commit criteria for space flight,”
June 2017. NASA STD 4010.

5. A. Augst and M. Hagen, “Interpolation of operational radar data to a regular
cartesian grid exemplified by munichs airport radar configuration,” Journal of
Atmospheric and Oceanic Technology, vol. 34, pp. 495–510, March 2017.

6. W. Roeder and T. McNamara, “A survey of the lightning launch commit criteria,”
2005. 45th Weather Squadron, Patrick AFB, FL.

7. NOAA, “Radar data.” https://www.ncdc.noaa.gov/data-access/

radar-data, June 2019. National Centers for Environmental Information.

8. NOAA, “NEXRAD.” https://www.ncdc.noaa.gov/data-access/

radar-data/nexrad, June 2019. National Centers for Environmental In-
formation.

9. Office of the Federal Coordinator for Meteorological Services and Supporting Re-
search, “Federal Meteorological Handbook No. 11 Wsr-88D Meteorological Ob-
servations Part C Wsr-88D Products and Algorithms,” Fcm-H11C-2017, no. 11,
2017.

10. V. Lakshmanan, K. Hondl, C. Potvin, and D. Preignitz, “An improved method
for estimating radar echo-top height,” Weather and Forecasting, vol. 28, April
2013.

11. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

12. Y. Wang, X. Tao, X. Qi, X. Shen, and J. Jia, “Image inpainting via generative
multi-column convolutional neural networks,” in Proceedings of the 32Nd Inter-
national Conference on Neural Information Processing Systems, NIPS’18, (USA),
pp. 329–338, Curran Associates Inc., 2018.

13. D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context
encoders: Feature learning by inpainting,” CVPR, pp. 2536–2544, 2016.

34

14. I. Goodfellow, J. Pougetabadie, M. Mirza, B. Xu, D. Wardefarley, S. Ozair, A.
Courville, Y. Bengio, “Generative adversarial nets,” University of Montreal, Dept
of Operations Research, Montreal, Canada, pp. 1–9, 2014.

15. E. Shi, Q. Li, D. Gu, Z. Zhao, “A method of weather radar echo extrapolation
based on convolutional neural networks,” Lecture Notes in Computer Science,
vol. 10704, pp. 16–28, January 2018.

16. M. Choma, “Extrapolation of radar echo with
neural networks.” https://medium.com/pocasi/

extrapolation-of-radar-echo-with-neural-networks-f87772f70db2,
August 2019.

17. K. Armanious, S. Abdulatif, F. Aziz, U. Schneider, B. Yang, “An adversarial
super-resolution remedy for radar design trade-offs,” EUSIPCO, 2019.

18. S. Ansari, “Noaa’s weather and climate toolkit.” https://www.ncdc.noaa.gov/

wct/index.php, January 2020.

35

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sept 2018 — Mar 2020

Ground Weather RADAR Signal Characterization
through Application of Convolutional Neural Networks

Lee, Stephen, M., 1st Lt

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-MS-20-M-158

William P. Roeder, 45 WS/SYR
1201 E. H. White II St.
MS 7302
Patrick AFB, FL 32923-3238
COMM 321-853-8410, DSN 467
Email: william.roeder@us.af.mil

45 WS/SYR

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

The 45th Weather Squadron supports the space launch efforts out of the Kennedy Space Center and Cape Canaveral Air

Force Station for the Department of Defense,NASA, and commercial customers through weather assessments. Their assessment of the

Lightning Launch Commit Criteria (LLCC) for avoidance of natural and rocket triggered lightning to launch vehicles is critical in approving

space shuttle and rocket launches. The LLCC includes standards for cloud formations, which requires proper cloud identification and

characterization methods. Accurate reflectivity measurements for ground weather radar are important to meet the LLCC for rocket

triggered lightning. Current linear interpolation methods for ground weather radar gaps result in over-smoothing of the vertical gradient and

over-estimate the risk of rocket triggered lightning, potentially resulting in costly, unnecessarily delayed launches. This research explores the

application of existing interpolation methods using convolutional neural networks to perform two-dimensional image interpolation, called

inpainting, into the three-dimensional weather radar scan domain. Results demonstrate that convolutional neural networks can improve the

accuracy of cloud characterization over current interpolation methods, potentially resulting in fewer launch delays with substantial

associated cost savings due to increased capability to meet the LLCC.

CNN, weather, interpolation, rocket, lightning

U U U UU 45

Dr. Lance. E. Champagne, AFIT/ENS

937-255-3636, x4646;lance.champagne@afit.edu

