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Abstract

The United States Air Force has a pilot shortage. Unfortunately, training an Air

Force pilot requires significant time and resources. Thus, diligence and expediency

are critical in selecting those pilot candidates with a strong possibility of success.

This research applies multivariate and statistical machine learning techniques to pi-

lot candidates pre-qualification test data and undergraduate pilot training results

to determine whether there are selected pre-qualification tests or specific training

evaluations that do a “best” job of screening for successful pilot training candidates

and distinguished graduates. Flight experience, both during training and otherwise,

indicates pilot training completion and performance.
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PREDICTING PILOT SUCCESS USING MACHINE LEARNING

I. Introduction

1.1 Problem Statement

The United States Air Force has a pilot shortage, especially fighter and special

operations pilots. According to the United States Government Accountability Office

(GAO) there are a combined 445 unfilled operational positions from those two com-

munities which results in 87 percent fill for fighter pilot positions and 97 percent fill

for special operations pilot positions [1]. The United States Air Force has explored

multiple ways to expand the pilot pool from providing different retention bonuses

to changing the medical requirements to expand the candidate pool. Other analyses

have examined personnel demographics studies to examine candidate retention by

different categorical factors such as age, gender, and race. Meyer [2] conducted this

study and found that women and minorities were more likely to attrite UPT, but

found no trend in age. Pilot training also takes a long time; over a year in most cases.

Air Force Education and Training Command (AETC) is attempting to shorten Un-

dergraduate Pilot Training (UPT) using different techniques. One of the techniques

that AETC is evaluating is Pilot Training Next (PTN) which utilizes virtual reality

technology to help instruct pilot candidates.

Another avenue explored by AETC is saving money by streamlining the number of

tests that candidates need to take, while not undermining the value these tests provide

as a screening mechanism for pilot candidates. Historically, UPT for the United States

Air Force provides numerous pre-evaluation tests to evaluate the potential success of

1



pilot candidates and skills assessment tests once enrolled. Pre-evaluation tests include

the Air Force Officer Qualifications Test (AFOQT), the Pilot Candidate Selection

Method (PCSM), and the Test of Basic Aviation Skills (TBAS). While in UPT, pilot

candidates are assessed using written tests for instrument knowledge and orientation,

daily rides and check rides for situational proficiencies, and flight commander rankings

to assess the candidates understanding of group dynamics. This thesis explores the

plethora of tests to find out whether any specific test or combination of tests may

more accurately predict the success of pilot candidates in their UPT experience. Of

the many possible factors that a pilot candidate has, the next section focuses the

study on specific areas of interest.

1.2 Identifying the Research Lens

When applying to UPT, potential candidates need to complete certain tests that

assess verbal and scientific reasoning, as well as spatial reasoning and baseline reac-

tion timing crucial for pilot success. Through the previous studies conducted and

the data collected from the Air Force Personnel Center, this study hopes to define

any relationships between the pre-aptitude and proficiency tests and success in pilot

training. With the scope of the research established, the next section addresses the

purpose of the research.

1.3 Research Purpose

This study examines the relationships between the pre-aptitude and proficiency

tests and eventual success in pilot training. This work builds on previous studies

conducted and uses the data collected from the Air Force Personnel Center [2].

Applying to UPT, cadets need to complete certain tests that assess verbal and

scientific reasoning, as well as spatial reasoning and baseline reaction timing crucial

2



for pilot success. It is the result of these tests that are used in the analyses provided

in this work. The next section takes the purpose of the research and formulates

questions that this research answers.

1.4 Research Questions and Hypothesis

The primary research question addresses the measures of pilot success: what tests

seem to best measure pilot training success? Since the methodology employed uses

multivariate (or machine learning) methods, a sub-question is which multivariate

technique preforms the best for this data? Which of the multivariate techniques

provide the most useful insight into the test data examined to help answer the driving

research question. Ultimately, the study examines whether candidates with more

experience flying and higher PCSM and TBAS scores will perform better in UPT.

1.5 Overview

Chapter II describes the previous research and studies done on pilot evaluations

as well as an in-depth description of the pilot parameters and assessments and an

overview of the machine learning techniques used in this study. Chapter III explains

the process used for evaluating the data to include data cleaning performed, pre-

processing techniques used, prediction algorithms utilized, and verification procedures

executed. Chapter IV goes through the results of the study evaluating the accuracy

of the predictions, different characteristics deemed important, and overall trends.

Lastly, Chapter V provides conclusions as well as further avenues of research.
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II. Literature Review

2.1 Background

Since the United States Air Force officially started in 1947, leaders have attempted

to find pilots that have “the right stuff.” Hunter and Burke [3] identified 68 published

studies from 1940 to 1990 addressing which predictor variables to include in pilot

selection that accurately quantifies “the right stuff”.

The most significant predictive factors they found for graduating pilots were cog-

nitive ability, including verbal, quantitative, and undergraduate grade point average

(GPA). This is referenced in several other studies, from fighter pilot performance

analysis during the Korean War in 1957, to validation of the USAFs current Pilot

Candidate Selection Method (PCSM) and use of the AFOQT, 2008 through 2018 [4][5]

[6] [7][8]. Hunter and Burke also confirmed that job skills, dexterity, and reaction time

were also good predictive factors of pilot training success [3].

When it comes to addressing the retention problem of Air Force pilots, leadership

wants to recruit the people more likely to embrace the pilot culture in addition to

being technically proficient and able to handle the stresses of flying. Wilson conducted

a study that measured the stresses a pilot endures during a flight and found that

during different stages of a flight, the pilot’s heart rate varied by a rate of 6 hertz

(Hz) during takeoff and landing, rising from 80 beats per minute (bpm) to 98 bpm

during the takeoff phase and decelerating from 113 bpm to 98 bpm during landing

[9]. To identify prior to UPT whether a candidate will handle those stresses, the

Air Force attempts to find candidates that possess the right resiliency characteristics

necessary for UPT. This is done using the personality test conducted as a component

of the AFOQT called the Self-Description Inventory (SDI+). The SDI+ is a 220-item,

trait-based measure that assesses the Big 5 domains of Neuroticism (the ability to feel

4



distressed or anxious), Extraversion, Openness, Agreeableness, and Conscientiousness

(the ability to be careful or diligent), with a measure of Machiavellianism (the ability

to manipulate others) included in the test [7].

2.2 Prior Studies

This thesis uses the same data most recently used for demographic analysis of both

attrition and performance. In that recent study, Meyer [2] used statistical hypothesis

testing to find categorical biases between age, gender, and race. Using linear regres-

sion techniques, she found that women and minorities were more likely to leave pilot

training while no such bias existed for age. This data contains various test results

ranging from personality tests to prior entry tests (like the AFOQT and PCSM) to

check ride scores and flight commander evaluations from all pilot candidates between

2011 and 2018 which includes over 27,000 data points spread out between 12,000

unique manned and unmanned pilot candidates. Since the pre-selection process is

similar between the Remotely Piloted Aircraft (RPA) and the manned aircraft pi-

lots, and the two training programs contain comparable measures, the studies and

analysis conducted are combined. The AFOQT and PCSM tests attempt to char-

acterize the traits needed for pilot success [10]. These next sections address specific

aspects of prior studies conducted on UPT students and applicants in different eras,

but none of the subsequent studies conducted utilized the same data as the study

Meyer conducted analyzing UPT attrition on the demographic areas of age, gender,

and race [2].

2.3 USAF Pilot Selection Process

The United States Air Force chose pilot candidates from the pool of commis-

sioned USAF officers by selection boards from 1965 through 1995. They evaluated
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these candidates based on pilot suitability, including medical and physical fitness fac-

tors, academic performance, aptitude test scores, commanders recommendations, and

previous flying experience [5]. While a majority of that data can still be attained,

everything except for academic performance and aptitude test scores is based solely

on the results of the pre-entry tests conducted on pilot candidates.

Candidates progressing through UPT are assessed primarily on their academic

performance and aptitude test scores [11]. The way the Air Force quantifies aptitude

prior to acceptance into UPT is through the AFOQT, the PCSM, and the TBAS. The

PCSM also assesses a candidate’s previous flying experience by adding the flight hours

to the overall score. Pilot aptitude is tested in two different aspects: operational and

technical proficiency. To assess a candidate’s operational proficiency while in pilot

training, instructors ask them to perform progress checks and elimination checks [11].

Meanwhile, a candidate’s technical proficiency is measured by academic performance

using classroom tests [11].

2.4 Pre-Aptitude Tests

Pilot candidates in the United States Air Force have many tests they must take

prior to entry into pilot training. Similar to the Scholastic Assessment Test (SAT)

or the American College Test (ACT) that high school seniors take prior to entry into

college, the aptitude tests required for pilot candidates assess their communicative

and analytical competences. The difference with these tests are the assessments

for spatial awareness, reactive capability, and mental acuity required for UPT. The

aptitude tests pilot candidates take include the AFOQT, TBAS, and the PCSM.
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2.4.1 Air Force Officer Qualifying Test

The AFOQT is comprised of five different subtests designed to assess the different

relevant skills necessary to become an Air Force Officer. The first subtest evaluates a

candidate’s verbal skills by testing their verbal analogies, which tests the candidate’s

ability to reason and determine relationships between words and their word knowl-

edge, which assesses verbal comprehension including the ability to understand written

languages through the use of synonyms [12]. The second subtest assesses a candidate’s

quantitative skills by measuring their arithmetic reasoning skills, which evaluates their

ability to understand arithmetic relations expressed as word problems and their math

knowledge, which provides a measure of the ability to use mathematical formulas, re-

lations, and terms [12]. The third subtest evaluates a candidate’s spatial reasoning

skills using block counting, rotated blocks, and hidden figures. Block counting ana-

lyzes three-dimensional sets of blocks for spatial awareness. Rotated blocks allow for

the candidate to visualize and mentally manipulate objects. Hidden figures assesses

the candidate’s ability to breakdown complex figures into simple components [12].

The fourth subtest is specifically designed for the focus of this research: the aircrew

evaluations contain instrument comprehension, aviation information, and general sci-

ence. Instrument comprehension measures the ability for the student to determine

altitude based on instrument readings, aviation information assesses knowledge of

general aviation concepts, principles, and terms, and general science provides a mea-

sure of knowledge and understanding of scientific concepts, instruments, principles,

and terms [12]. The last subtest utilizes table reading to measure the candidate’s

ability to quickly and accurately extract information from tables [12].

Since the adoption of the AFOQT, there have been many studies done on its va-

lidity. The Air Force Research Laboratory (AFRL) has conducted studies comparing

the results from different versions of the AFOQT and adjusting the score qualifica-
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tions. With regards to adjusting the score qualifications, AFRL conducted a study

to observe the adverse impact of making the AFOQT qualifications more restrictive

on gender and race admissions in 2006. Comparing the selection rates, AFRL found

an increased adverse impact on women and minorities for officer qualifications [13].

In 1998, AFRL conducted another study attempting to quantify the barriers for

entry into UPT and Navigator Training divided by the different sources (direct ac-

cessions via the Air Force Academy, Officer Training School, and Reserved Officer

Training Corps, and active duty cross training from different career fields) [14]. While

they did not evaluate the effectiveness of the AFOQT in this study, they used it as

one of the barriers for UPT, but not for navigator training because at that time nav-

igators cadets from the Air Force Academy were not required to take the AFOQT

to become a navigator [14]. The 1998 study utilized UPT and navigator training

applicants from 1992-96 and evaluated the barriers comparing gender and racial cat-

egories as well as compare the relationships between the different requirements for

entry into the two trainings - Physical Training Test scores, Relative Standing Scores,

Grade Point Average (GPA), the AFOQT Verbal and Quantitative scores, and a Cat-

egorized Order of Merit [14]. The Categorized Order of Merit (COM) combines the

previous measures while assigning weights based on priority, assigning higher weight

to GPA and Standing [14]. The results from [14], only taking into account the Air

Force Academy applicants from the class of 1996, indicate a direct correlation be-

tween Standing and Board Rating, a positive correlation between GPA and selection

relative to class rank, positive correlations between Military Performance Averages

and Flight Screening performance relative to selection in class rank, and no trend in

AFOQT Pilot scores and selection relative to class rank [14].

While these past studies accounted for the effects of the barriers on demographic

applicants, the focus of the current study is similar to components of the 1996 AFRL
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study, the relationships between the different prerequisite tests and success in pilot

training without looking at divisions for race, gender, or where the candidate is coming

from.

2.4.2 Test of Basic Aviation Skills

The TBAS is a computer-administered cognitive and perceptual-motor-based test

specifically designed to assess pilot skills directly [15]. The TBAS contains nine

different subtests: the first four subtests test basic components, the next three tests

combine the first four tests, one of the tests evaluates emergency procedures, and the

last test assesses unmanned-aerial vehicles. Three and five digit listening tests (3DIG,

5DIG) utilize the candidate’s listening skills by having them wear headphones and

listen for three or five specified digits or targets when the test lists out a series of

letters and numbers [15].

For example, in the three digit listening test, the candidate may have to listen

for 1, 4, and 8. If they hear “A H B T U K W N Q 6 L 8 P M 9 4 X” they

should click the trigger immediately after hearing the number 8 and the number 4.

After the two listening tests, the candidate takes an airplane tracking test (ATT)

section that measures the ability to track a moving target horizontally and vertically

by keeping a set of crosshairs centered on an airplane that appears on the computer

screen [15]. Next the candidate performs a horizontal tracking test (HTT) by using

rudder pedals to adjust the aircraft’s speed and keep the aircraft inside a box [15].

The next subtest, airplane tracking and horizontal tracking test (AHTT), combines

the previous two test by having the candidate keep the plane in the box using rudder

pedals while tracking another plane using crosshairs [15]. The two listening tests

are then added to the testing tasks for the next two subtests, the airplane tracking,

horizontal tracking, and three digit listening test (AHTT3) and the airplane tracking,
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horizontal tracking, and five digit listening test (AHTT5) [15]. These two tests have

the candidate perform the three assigned tasks simultaneously and are graded on

accuracy [15]. In the penultimate subtest called the emergency scenario test (EST),

the candidate responds to audio warnings indicating an emergency situation while

performing the airplane tracking and horizontal tracking tests [15]. The last subtest,

the UAV Test, requires the candidate is given a UAV with its heading and a map of the

ground view. The candidate must identify map locations with this information [15].

In 2005, AFRL conducted a study to validate the creation of the TBAS to replace

the Basic Attributes Test (BAT) as a supplement to the PCSM [15]. This replace-

ment was deemed necessary since the BAT hardware and software had not been

updated since 1993 [15]. While testing the validity of the TBAS components, they

evaluated the subtests individually combined with the AFOQT and compared the

regression results with the Specialized Undergraduate Pilot Training (SUPT) T-37

outcome (whether the student passed or failed) and the T-36 total score that com-

bines the various checks that they do. Using a sample size of 994 SUPT candidates,

their results when comparing the SUPT total scores indicate a 0.0027 incremental

improvement when components are added to the AFOQT [15]. Comparing the in-

dividual components of the TBAS added to the AFOQT comparing the SUPT total

scores, the highest individual incremental improvement is shown when the UAV test

is added to the AFOQT [15]. They also recommended prior to implementation of

the TBAS a subgroup analyses and supporting documentation that conveys testing

policies. Since this study is not testing the validity of the tests required for UPT,

TBAS is only used as a feature for analysis being tested against the success of pilot

candidates.
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2.4.3 Pilot Candidate Selection Method

The PCSM is a composite test that previously combined the scores of the AFOQT

pilot composite, several subtests from the BAT, and any previous flying experience,

prior to the implementation of the TBAS [13]. AFPC processes the component re-

sults into a constantly refined model that ranks an applicant’s probability to succeed

in pilot training. The PCSM combines the AFOQT pilot composite, the TBAS, and

any previous flying experience. In previous studies, PCSM demonstrated a direct cor-

relation to pilot training success; the higher the PCSM score, the greater probability

of completing pilot training, higher class ranking, and increased likelihood of being

qualified to fly a fighter platform [13]. While there are no minimum qualification

scores for the PCSM to qualify for pilot training, AFRL has suggested using a 25th

percentile cutoff prior to operational implementation and a 50th percentile cutoff four

years after implementation [13]. However, a 2006 study indicates that implementing

these qualification standards would adversely affect female selection for pilot training

and would slightly affect the minority selection into pilot training (in the latter case,

the affect is only visible implementing a 50th percentile cutoff) [13].

Armstrong Laboratory conducted a study on the PCSM prior to the adoption of

the TBAS in 1992 [16]. This study included the BAT and the different components

associated with the test. According to their descriptions of those component subtests,

the BAT included a psychomotor test that required the candidate to complete similar

tasks to the ATT and the HTT subtests of the TBAS as well as tests that evaluate a

candidate’s willingness to take risks and process information quickly. In performing

regression analysis to compare all of the tests (AFOQT, the three BAT components,

and flying experience) as well as explore models utilizing combinations of the five

test variables and comparing the passing or failing of UPT as well as class rank, the

results indicated that individually, the AFOQT had the most impact on passing UPT
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and class rank with a correlation factor of 0.308 for passing UPT and 0.347 for class

rank [16]. When observing the combinations of tests, the largest contributor to a

change in success, when combined with the AFOQT, was flying experience observing

a 3.6 percent increase in passing UPT and a 4.1 percent increase in improved class

rank [16]. The improvement in correlation when all of the tests were added to the

model was 7.1 percent to passing UPT and 7.9 percent to improved class rank. This

current study does not utilize the TBAS, so these results are used anecdotally when

determining the model combination that best predicts pilot success [16].

2.5 Personality Tests

Unlike the easily quantifiable qualities of pilots outlined in the other tests, per-

sonality, while testable and important, is not as easy to quantify. Many studies

attempted to quantify the importance of certain personalities in certain professions.

Tupes and Christal [7] were the first to furnish evidence for the five factor personality

model based on their work for the United States Air Force. Much of their initial work

remained unknown and kept internally until their later publication in 1992, but the

work led to the development of the Self-Description Inventory (SDI) for the AFOQT.

Through the collaborative efforts of The Technical Cooperation Program (TTCP),

the SDI has been adopted by the militaries of the United Kingdom, Canada, New

Zealand, and Australia for research purposes. For the United States Air Force, the

SDI is a 220-item (changed from 163 at it’s inception), trait-based measure that as-

sesses the Big 5 domains of Neuroticism, Extraversion, Openness, Agreeableness, and

Conscientiousness, with a measure of Machiavellianism included in the test [7].

Darr [17] performed a meta-analysis of the SDI evaluating the SDI characteristics

to job performance among enlisted personnel. She examined three different lengths

of the SDI: a 163-question SDI used by the USAF, a 75-question SDI used by the
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Canadian Armed Forces, and a 172-question SDI used by the Royal British Navy and

compared the results to data on the 34,217 military members in her study [17]. She

found that the trait most positively correlated to job performance was conscientious-

ness, the trait that correlated the most with training performance was extraversion,

and the trait that correlated the most with counter-productive work behavior was

neuroticism. Darr also points out that some of the negative correlations with person-

ality align with personalities desired for certain military situations (e.g. in the case

of a soldier working with chemical or nuclear material, thinking outside the box or

experimenting with new techniques could have adverse consequences) [17]. Her study

also recognizes the limitation of only testing the correlations of those certain person-

alities to military success and the validity of performing a study within a civilian work

structure [17]. Similar to Darr’s study, this current study quantitatively analyzes the

SDI testing results to model success in pilot training.

Prior behavioral studies were conducted by Armstrong Laboratory. One of those

studies in 1992 evaluated a generic personality inventory on pilot candidates to search

out desirable and undesirable characteristics with the goal of eventually implementing

a personality test that searches for positive personality traits such as resiliency and

filters out negative personality traits such as anxiety [18]. Siem [18] tested the Auto-

mated Aircrew Personality Profiler (AAPP) which consists of 202 items representing

16 scales from several instruments: the Minnesota Multiphasic Personality Inventory,

one of the more commonly used diagnostic tools in clinical practice; the State-Trait

Anxiety Inventory; the Personal Orientation Inventory, an instrument designed to as-

sess an individual’s aptitude for self-actualization; the Interpersonal Behavior Scale,

which measures assertive and aggressive tendencies; and the Jenkins Activity Survey,

designed to measure personality factors associated with chronic heart disease [18].

Using principal factoring with oblique rotation, five factors emerged with eigenval-
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ues greater than 1.0 - Hostility, Self-Confidence, Values Flexibility, Depression, and

Mania - on which all but one scale (Amorality) manifested factor loadings with an

absolute value greater than 0.30 [18].

2.6 Data and Sample

The data used in this study contains 216 different factors and over 27,000 data

points spread out over 12,000 UPT, Undergraduate RPA Training (URT), and Un-

dergraduate Combat Systems Officer (CSO) Training (UCT) applicants. All three

different trainings require the same components to determine a final score: Category

Check T-Score, Daily Maneuver T-Score, Academic T-Score, and Flight Commander

Ranking T-Score.

One difference between the three training avenues is the weighting between the

Academic T-Score and the Flight Commander Ranking T-Score between the UP-

T/URT and UCT. For UPT and URT, the Category Check T-Score is 40 percent of

the total score, the Daily Manuever T-Score is 20 percent of the total score, the Aca-

demic T-Score is 10 percent of the total score, and the Flight Commander Ranking

T-Score is 30 percent of the total score. For UCT, the first two categories have the

same weight, but the Academic T-Score is 30 percent of the total score and the Flight

Commander Ranking T-Score is 10 percent of the total score.

The applicants in the data span the entirety of the three commissioning sources of

the United States Air Force Academy (USAFA), Air Force Reserve Officer Training

Corps (AFROTC), and Officer Training School (OTS). Each applicant should have

at least three data points associated within the data set assuming the applicant

passes every step of their pilot training. Assuming the applicant’s acceptance into

pilot training, they have at least one data point within the data set even if they

fail the Initial Flight School (IFS). With completion of the initial flight school, the
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data contains all of their pre-UPT assessment scores (including AFOQT, PCSM, and

TBAS) as well as all of their flight check score and their class ranking (including their

class size).

2.7 Machine Learning Techniques

This study examines machine learning classification techniques as well as a regres-

sion technique with the data provided for the study. These techniques are reasonable

given the output of this study is a binary outcome predicting whether a pilot candi-

date completes UPT. Classification techniques used in this study include Neural Nets,

Naive Bayes, Random Forests (in the form of Bootstrap Forest), Decision Trees (in

the form of Boosted Tree), and K -Nearest Neighbors while the regression technique

examined is Logistic Regression.

2.7.1 Logistic Regression

The first technique applied in this study is Logistic Regression. Logistic Regres-

sion is a type of linear regression where the response variable has only two possible

outcomes denoted by 0 and 1. The models in this study follow a formula similar to

yi = x′iβ + εi. (1)

Since the response is binary, the error term, εi can only take on two values, namely,

εi = 1− x′iβ, when yi = 1

εi = −x′iβ, when yi = 0 .

Each variable xi is a factor in the model while the β values are the applicable

weights for the factors that help best classify each candidate data point.

Glonek and McCullagh [19] described the many ways to implement logistic re-

gression when there are multiple factors to consider. They include two real-world
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applications to data sets, one of which is called ‘Six Cities Data’. The ‘Six Cities

Data’ tested the health effects of air pollution using an annual binary response indi-

cating the presence or absence of wheeze between the ages of 7 and 10 for each of 537

children from Stuebenville, Ohio [19]. In the study, the factors tested were various

fits for the marginal odds for wheeze (log, bivariate, trivariate, and fourth-order), the

mother’s smoking habits, the child’s age, and the interactions between the marginal

odds for wheeze, the mother’s smoking habits, and the child’s age. Glonek and Mc-

Cullagh compared all the different deviations and combinations of the factors and

the variable fits with varying results. However, only one of their models involves the

same set of factors (five models in total) with no second-order effects, interactions,

or beyond tested to maintain simplicity. There is no previous literature on the UPT

data to indicate necessary interactions or the need to explore second-order effects.

2.7.2 Decision Trees

Some machine learning classification techniques utilize variations of Decision Trees.

Decision Trees are a type of directed, acyclic graph where the nodes represent deci-

sions and the branches have two or more descendent nodes representing possible paths

from one node to another defined by the algorithm of the decision tree.

Friedl and Brodley used multiple types of Decision Trees in their study on the

“Classification of Land Cover from Remotely Sensed Data” [20]. The three types they

examined were Univariate Decision Trees, Multivariate Decision Trees, and Hybrid

Decision Trees. They cite several advantages for decision trees over traditional classifi-

cation procedures used in the remote sensing realm: trees are strictly non-parametric,

trees do not require assumptions regarding the distributions of input data, and trees

handles nonlinear relations between features and classes, allow for missing values,

are capable of handling both numeric and categorical inputs, and their classification
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structure is explicit making it easily interpretable [20]. To assess the performance

of the Decision Tree technique, they used cross-validation by splitting the data into

three parts: 70 percent training, 20 percent pruning, and 10 percent testing [20]. The

pruning step removes inaccurate classifications. These steps are necessary in their

implementation of Decision Trees because the data set they used contains 11 differ-

ent classifications of their dependent variable for each of the different terrain features

in the land data they considered. Since the dependent variable in this study only

classifies between two options, pruning is not necessary.

This study uses the Boosted Tree classification in JMP-13 Pro. Boosted tree takes

a large additive decision tree and builds upon it using layers. Each layer is built using

the residuals of the previous layer which corrects for any poor model fit. The final

prediction of an observation is the sum of all the predictions from the previous layers.

2.7.3 Random Forests

Another Decision Tree variation used in this study is Random Forest classifica-

tion. Random Forest classification utilizes multiple decision tree classifications that

are combined using bootstrap aggregation, or bagging. Bootstrap aggregation is a

technique that reduces overfitting and improves the outcome of learning on limited

sample size. Bagging works by creating some M specified subsets of the data with n

samples per subset. The n samples are uniformly sampled with replacement from the

original data set. For each bootstrapped sample, the labels are preserved. Next, k

individual learning modules are created for each bootstrapped sample. The outputs

of these modules are then combined. JMP-13 Pro uses Bootstrap Forest classification

which is an application of Random Forest classification. This utilization of Bootstrap

Forest and Boosted Tree assesses the accuracy of the models and predictors.
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2.7.4 Naive Bayes

Naive Bayes is a classification technique that uses Bayes’ theorem (below) to

categorize data.

P (A|B) =
P (B|A)P (A)

P (B)
(2)

The Naive Bayes algorithm is called naive because of the assumptions made about

the data. One assumption is that all of the features of the data set are of equal

importance and are independent [21]. However even if these assumptions are violated,

this algorithm still performs well [21]. Depending on the number of variables taken

into account in the model, Naive Bayes could take longer to run as model complexity

increases [21].

Rish [22] studied Naive Bayes classification to find the scenarios that best utilized

the strengths of the technique. He found that the accuracy of Naive Bayes is not

directly correlated with the amount of feature dependencies measured [22]. However,

he did find that a better predictor of accuracy is the loss of mutual information

between features [22]. This study uses Naive Bayes to assess the accuracy of the

models and predictors.

2.7.5 Neural Nets

Neural nets is short for neural networks. This technique emulates neurons in the

human brain respond to stimuli with sensory inputs. Neural Nets use hand-labeled

data that feed into a system of input nodes. Those input nodes feed forward in one

direction into other layers of nodes. Each connection between layers in the neural net

have certain weights associated with them that are multiplied by the value from the

previous node. As the data moves forward through the neural net, the products in
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every node are added together and compared to a threshold value within the layer as

depicted in equation 3.

y(x) = f(
n∑

i=1

wixi) (3)

If the sum is below the threshold value, no information is passed. However, if

the sum exceeds the threshold value, the node “fires” like in the brain, sending the

sum to the next layer until the data are correctly classified. Initially, the weights

assigned between the nodes are random values. As the data flows through the neural

net, those random weights are adjusted until the training data with the same labels

consistently yields similar results. Figure 1 depicts an example of a Neural Net.

Figure 1. Neural Net Example [21]

Many studies use neural nets for pattern recognition. Ciresan used neural nets in

handwriting recognition [23]. He trained five models with two to nine layers containing

a different amount of nodes in each layer utilizing a test-to-training set ratio of 1:6

with 70,000 total data points [23]. He cites an error percentage of less than 1 percent

for all of the models. However, each of the input layers has between 1,000 and 9,000

neurons, has multiple layers, and run times between 23 and 115 hours [23].

Contrary to the Ciresan study, the current use of Neural Nets uses a larger portion
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for testing since this data set is smaller than Ciresan’s used for handwriting recogni-

tion. This study uses Neural Nets to assess the accuracy of the models and predictors.

JMP-13 Pro can create one-layer or two-layer Neural Nets that utilize hyperbolic tan-

gent nodes, linear nodes, and Gaussian nodes. Those one-layer or two-layer Neural

Nets can then be boosted by a specified number of models. The number of models

specified by boosting takes the predicted values from the first model, scales them us-

ing the learning rate, them subtracts them from the actual values to produce a scaled

residual. These residuals are then fit to a new model where the responses are scaled

residuals of the previous model. This process continues until the number of models

are completed or the addition of a new model fails to improve the validation statistic.

The hyperbolic tangent transforms values to be between -1 and 1, and is centered on

the scaled version of the logistic function. The hyperbolic tangent function follows

equation 4

e2x − 1

e2x + 1
. (4)

The linear transformation is the identity function. The linear combination of

factors is not transformed. This transformation is most often used in conjunction

with one of the nonlinear activation functions. In this case, the linear activation

function is in the second layer while the nonlinear activation functions are in the first

layer. For a continuous target variable, if only linear activation functions are used,

the model for the target variable reduces to a linear combination of the factors. For

a nominal target variable, the model reduces to a logistic regression. The Gaussian

function is useful for radial basis function behavior or when the response surface is

Normal in shape. This function follows equation 5, where x is a linear combination

of the factors
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e−x
2

. (5)

2.7.6 K-Nearest Neighbors

K -Nearest Neighbors is both a classification technique and an imputation tech-

nique that classifies and imputes missing data. The technique works by labeling

feature data or blank data based on feature data that is in close proximity. For each

example in the data, the algorithm calculates the distance between that example and

the neighbor examples already added. The distance and the index are then added to

an ordered collection that are sorted from smallest to largest. The algorithm then

picks the first k entries and obtains their labels, yielding the mode of the classifica-

tion. For the implementation of K -Nearest Neighbors, the optimal k varies based on

the number of factors in the models.

Horton and Nakai used K -Nearest Neighbors as a way to predict the cellular local-

izations sites of proteins in yeast and E.coli [24]. They compared KNN with Decision

Trees, and Naive Bayes, as well as their own probabilistic model, and found that KNN

performs consistently among the best in both data sets [24]. They determined unique

k values for each data set using leave-one-out cross validation [24]. Like the Horton

and Nakai study, this study utilizes K -Nearest Neighbors to assess the accuracy of

the models and predictors. However, KNN will also be used to impute missing values

to enhance the accuracy of the unknown data.

This chapter addressed the data collected in the study and previous studies done

on subsets of the data. Some of the studies conducted were more recent but not

conducted on potential pilots or actual aviators, while other studies were conducted on

pilot candidates but are not reflective of the current tests. With the previous studies

on the data observed, the next section of this chapter identified machine learning
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classification techniques that can be applied to the data, how those techniques work,

and previous studies conducted using those techniques. The next chapter addresses

the specific applications of the machine learning techniques on the data used for this

study.
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III. Methodology

This study tests machine learning classification techniques as well as a regression

technique using the data provided described in the previous section as well as demo-

graphic data. The demographic data assessed includes race, gender, commissioning

source, college, major, and whether the candidate was enlisted or an officer. Classi-

fication techniques used in this study include Neural Nets, Naive Bayes, Bootstrap

Forest, Boosted Tree, and K -Nearest Neighbors while the regression technique tested

is Logistic Regression.

3.1 Assumptions/Delimitations

This study assumes that the UPT student data were entered accurately and that

the student records maintained their integrity during the data transfer from AF-

PC/DSYX to AFIT/ENS. The delimitation of this analysis is that causes for sta-

tistically significant differences are not proposed. This study aims only to analyze

pilot training applicants and students; it does not address the process prior to pilot

candidate selection nor does this study directly address how to increase USAF pilot

recruitment.

3.2 Implications

This study identifies areas for further research regarding which tests, personal-

ities, or other performance measures indicate varying levels of success in UPT for

both course completions and distinguished graduates (DGs). If a coherent model is

developed, it is possible to tailor training and recruitment based on the applicable

model factors. Various other pilot-affiliated organizations and commissioning sources

could use these results to determine candidates worthy of scholarships and which
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candidates would be more competitive applicants for UPT.

3.3 Analysis Process

Prior to a data analysis, the data must be cleaned and verified, and missing values

imputed before performing the analysis. The previous study conducted by Meyer [2]

did not implement analytical tools, meaning there are no definitive models defined

for predicting UPT completions and DGs. This suggests the need for using multiple

exploratory multivariate techniques before attempting to create a model that utilizes

only the significant factors. Multivariate analysis techniques are implemented in

Python and JMP-13 Pro to handle the computations.

3.3.1 Data Cleaning & Imputation

The data were cleaned to get a more accurate representation of UPT candidates.

Of the 27,894 data points and the 232 columns of data, 34 columns had less than

11 percent entries filled and only 10 columns had 100 percent entries with non-blank

values. Some columns are easily filled such as the “Age at Class Start” which is

calculated using the difference between the “Start Date” and “Date of Birth” columns.

Other columns received imputed values based on whether the student completed the

course. Because of those different imputation considerations, the data split into the

students that completed courses and those that did not. Once the split was made,

logical imputations were made. For the students that completed the course, their

“Attrition Reason” became “N/A” while the ones that did not complete the course

had an “Unknown” attrition reason. The students that did not have policy waivers

had “N/A”. The students that did not have prior enlisted experience had “0” put in

the appropriate columns. The Python code utilized for data cleaning and imputation

can be found in Appendix A.
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Using the splits of passing student data and failing student data, the data set is

first imputed exhausting all the implications from the literature review and previous

thesis conducted. After completing the logical data imputations, the columns are then

evaluated using a percent fill criteria. Since a majority of the important test data

and UPT check and composite score columns had at least 60 percent fill, that was

the criteria for the passing student data leaving 198 columns. That data entries were

then filtered for any blank entries within the row, downsizing a subset that originally

contained 25,832 entries to 9,995 complete entries. To maintain that balance with the

failed student subset, those same 198 columns from the passing student subset were

used for the failed student subset. The filtering for any blank entries within the rows

downsized the failed student subset from 2,062 entries to 55 complete entries. The

two subsets were then recombined to make a working data set with 10,050 total data

points. After being combined again, the columns were evaluated to ensure a balance

of categorical feature data.

After the data were combined and filtered, 26 of the 199 features contained cate-

gorical data. To use that categorical data, those features are One-hot encoded which

involves giving each category within a feature their own binary feature which reveals

whether that category is used or not. The categorical features were then evaluated

for the number of categorical bins and then filtered to minimize the number of bins

per feature. Once complete, the categorical features that contained more than 20

identifiable categories were removed bringing the number of features down from 199

to 188. Applying one-hot encoding, the number of features then increased from 188

to 292 features that contained more than one entry.

Running the data through each classification technique and logistic regression

chose to classify every prediction as a pass while accepting the losses. This was

attributed to the lack of balance between UPT successes and failures (0.55 percent
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of the total remaining data is failures compared to 99.45 percent successes). This

imbalance led to restarting the data cleaning and imputation process.

From the initial 232 features, features with dates, selected categorical features,

and features with less than 60 percent fill were eliminated. This time, after one-

hot encoding the categorical features, the remaining columns with missing data were

imputed using k -nearest neighbors (with k=1 and k=7 to test accuracy results once

the machine learning techniques were implemented). This maintained a 27,894-point

data set, but increased the number of features from 179 to 283.

For the distinguished graduate (DG) study, a new feature was created, ‘Class

Percentile’. ‘Class Percentile’ was calculated by dividing the ‘Class Rank’ feature

by the ‘Class Size’ feature. ‘DG Indicator’ was then made by taking the candidates

that graduate in the top 10 percent or better and assigning them a ‘1’ while all other

candidates were assigned a ‘0’. The new binary variable is used as a target variable

for another study and not as a feature for the UPT Completion study. The addition

of the new feature increased the total number of features to 284.

3.3.2 Predictive Screening

Once the data set was finalized, the JMP ‘Predictive Screening’ tool was used on

the complete data set containing 284 factors. JMP-13 Pro uses Bootstrap Forest to

rank-order the given factors in order from most applicable to least applicable to the

target variable. Bootstrap Forest is a combination of bootstrapping and random forest

classification. JMP-13 Pro bootstraps the specified training data set by extrapolating

data points. It then creates many decision trees off of that data set, and then takes

an average of the results of the decision trees to complete the Bootstrap Forest.

Through the ‘Predictive Screening’ tool in JMP, the overall best factor in predict-

ing who will complete pilot training is the ‘Flight Experience Hours’ factor. To obtain
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improved fidelity in predicting UPT completion, three different subsets of data were

created depicting different stages of the UPT process: the first subset included all

of the factors a candidate has prior to acceptance into UPT to include demographic

information (i.e. race, age, flight experience, etc.) called the preemptive subset, the

second subset includes only the test scores of the tests that the candidates take prior

to UPT acceptance (i.e. AFOQT, PCSM, personality tests, etc.) called the test sub-

set, and the third subset includes all of the factors that a candidate is tested on while

at UPT (i.e. check scores, online hours, offline hours, etc.) called the post-acceptance

subset.

After making the three subsets of data, predictive screening was performed again

to provide a starting point of relevant factors for making models on the three subsets.

The factors included in the model for the preemptive subset are ‘Flight Experience

hours’, ‘Age at Class Start’, and ‘Dominance/Leader’ which is a result of a personality

test conducted by the AFOQT. The factors included in the model for the test subset,

‘TCO’, ‘Reading Comprehension’, ‘Dominance/Leader’, ‘Well-Adjusted’, ‘Interper-

sonal Tactics’, ‘Team Player’, ‘AFOQT-Pilot’, and ‘PCSM Score’. ‘Well-Adjusted’,

‘Interpersonal Tactics’, and ‘Team Player’, are also personalities evaluated on the

AFOQT. Lastly, the factors included in the model for the post-acceptance subset are

‘Flight Count’, ‘Offline Aircraft hours’, ‘Device Experience hours’, ‘Device Aircraft

hours’, ‘Online Count’, ‘Offline Count’, ‘Require Flight Count’, ‘Check Score’, and

‘Flight Aircraft hours’.

Through the ‘Predictive Screening’ tool in JMP, the top eight best factors in

predicting DGs came from the test scores students obtain while attending UPT,

which are: ‘Composite Score’, ‘Daily T-Score’, ‘Flight Weighted Score’, ‘Check T-

Score’, ‘Flt/CC [Flight Commander] T-Score’, ‘Flt/CC Raw Score’, ‘Daily Score’,

and ‘Academic T-Score’. Like the analysis observing students completing UPT, the
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same three subsets were used to test DGs. But when ‘Predictive Screening’ was used

on the Preemptive and Test subsets, the relevant factors between the two subsets

were nearly identical. This prompted the consolidation of the ‘Preemptive’ subset

and the ‘Test’ subset into a singular ‘Pre-Acceptance’ subset for the DG study. For

the DG study, two subsets were observed: a ‘Pre-Acceptance’ subset that includes

all of the entry tests required, demographic information, and prior flying experience;

and a ‘Post-Acceptance’ subset that includes all of the tests that a student performs

at UPT.

After distinguishing the two subsets for the DG study, the ‘Predictive Screening’

tool in JMP was used to provide a starting point of relevant factors in predicting

DGs. For the ‘Pre-Acceptance’ subset, the relevant factors included in the model were

‘Flight Experience (in hours)’, ‘FAA Flight Hours’, ‘PCSM Score’, and ‘AFOQT-Pilot

Score’. The relevant factors included in the ‘Post-Acceptance’ model for DGs were

‘Composite Score’, ‘Daily T-Score’, ‘Flight Weighted Score’, and ‘Check T-Score’.

3.3.3 Factor Building

Once the factors were determined, a factor analysis was used on each set of factors.

If there are any correlations between the factors, then factor analysis will group similar

factors together so that a weighted combination of the grouped factors can be created

for the final model based on the importance of each factor within the group. Prior

to creating the formula for each new aggregate factor, the sub factors are normalized

using the Min-Max normalization technique which divides the difference between

each data point and the minimum by the difference between the maximum and the

minimum of each factor as displayed 6

v − vmin

vmax − vmin

. (6)
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For the preemptive subset, no such aggregate factors are made. For the test

subset, the AFOQT-Pilot score and the PCSM scores are combined together based

on equation 7, now called the ‘AFOQT-Pilot & PCSM Score’.

0.6 ∗ AFOQT Pilot Score + 0.4 ∗ PCSM Score. (7)

Also in the test subset, ‘Dominance/Leader’, ‘Well-Adjusted’, ‘Interpersonal Tac-

tics’, and ‘Reading Comprehension’ scores are combined based on equation 8 hereby

called the ‘Leadership Personalities & Reading Comprehension Score’.

0.3 ∗Well Adjusted Score + 0.3 ∗ Interpersonal Tactics Score

+ 0.25 ∗Dominance/Leader Score + 0.15 ∗Reading Comprehension Score.
(8)

For the post-acceptance subset, ‘Flight Count’, ‘Required Flight Count’, and

‘Flight Aircraft hours’ are combined together based on equation 9 hereby called the

‘Combined Flight Score’.

1

3
Flight Count +

1

3
Required F light Count +

1

3
Flight Aircraft Hours. (9)

Also in the post-acceptance subset, ‘Offline Aircraft hours’, ‘Online Count’, and

‘Offline Count’ are combined based on equation 10 and hereby called the ‘Combined

Online-Offline Score’.

0.4∗Offline Aircraft Hours + 0.4∗Offline Count + 0.2∗Online Count. (10)
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Finally, in the post-acceptance subset, ‘Device Experience hours’ and ‘Device Air-

craft hours’ are combined together based on 11 below and hereby called the ‘Combined

Device Score’.

0.5 ∗Device Aircraft Hours + 0.5 ∗Device Experience Hours. (11)

Another factor analysis was performed on the two DG models, but no significant

relationships were observed between the two sets of factors.

3.4 Technique Parameters

After building the necessary factors, each model was evaluated using five machine

learning techniques and a regression technique. These techniques used accommodate

the binary response outcome of whether a pilot candidate completes UPT. The clas-

sification techniques used are: Neural Nets, Naive Bayes, Bootstrap Forest, Boosted

Tree, and K -Nearest Neighbors while the regression technique tested is Logistic Re-

gression. To measure the effect of ‘Flight Experience (in hours)’, Boosted Tree, Boot-

strap Forest, and Neural Nets were run solely on that one factor and compared to

the preemptive model. For these techniques, 33 percent of the data are utilized for

training while the remaining 67 percent of the data are utilized for testing.

3.4.1 Logistic Regression

Logistic Regression is linear regression where the response variable has only two

possible outcomes denoted by ‘0’ and ‘1’. In the first study, successfully passing UPT

is a ‘1’ and failing UPT is a ‘0’. In the second study, graduating UPT in the top 10

percent is a ‘1’ while the remaining 90 percent is a ‘0’.

For all of the logistic regression models, the target level is 1. Interactions were

considered, but rejected. The Preemptive model follows the form of
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y = 1.38917363 + 0.00140082 ∗ Flight Experience Hours +

0.04420651 ∗ Age at Class Start + (−0.2343582) ∗Dominance/Leader Score.
(12)

The Test model follows the form of

y = 2.69867331 + (−0.0001581) ∗ Team Player Score + (−0.000031721) ∗ TCO

+ 1.39851123 ∗ AFOQT & PCSM Score

+ (−2.2995235) ∗ Leadership Personalities & Reading Comprehension Score.

(13)

The Post-Acceptance model follows the form of

y = (−0.0408055) + 0.03417692 ∗ Check + (−3.4968712) ∗ Combined F light Score

+ (−3.4561414) ∗ Combined Online/Offline Score

+ 9.39623253 ∗ Combined Device Score.
(14)

The Pre-Acceptance Model for the Distinguished Graduate analysis follows the

form of

y = (−2.768466) + (−0.0103508) ∗ Flight Experience hours

+ (−0.0137626) ∗ AFOQT − Pilot Score + 0.00071588 ∗ FAA Flight Hours

+ 0.02639282 ∗ PCSM Score.

(15)

The Post-Acceptance Model for the Distinguished Graduate analysis follows the
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form of

y = (−39.96381) + 0.53020677 ∗ Composite Score

+ (−0.0966235) ∗ Flight Weighted Score + 0.12023264 ∗Daily T − Score

+ 0.05206896 ∗ Check T − Score.

(16)

3.4.2 Machine Learning Techniques

Some of the machine learning classification techniques utilize variations of Decision

Trees. One of the Decision Tree variations utilized in this study is Boosted Tree

classification. Boosted tree takes a large additive decision tree and adds layers. Each

layer is built using the residuals of the previous layer which corrects any poor fitting.

The final prediction of an observation is the sum of all the predictions of the previous

layers.

The settings employed for Boosted Tree were as follows: 50 layers with a minimum

five splits and three splits per tree, a 10 percent learning rate and an overfitting

penalty of 0.01 percent. All instances of Boosted Tree fully examine all of the rows

and columns specified for the models. The layers of Boosted Tree for each model

follows a similar format to Figure 2.

The settings employed for Bootstrap Forest were as follows: 100 trees in the forest

with one term sampled per split, a minimum of 10 splits per tree, a maximum of 2,000

splits per tree, and a minimum split size of 27. Additionally, a 1 percent bootstrap

sample rate was applied in this technique. No other specific settings were needed to

implement Naive Bayes. Naive Bayes had no other specified settings outside of the

specified partition for testing and training.

Each implementation of Neural Nets uses a ‘Holdback’ validation method for split-
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Figure 2. Boosted Tree Layer 1 for the Preemptive Model

ting the data set into test and train with the same 33 percent-67 percent ratio split.

For the structures, each net has two layers composed of three hyperbolic tangent sig-

moid nodes, three linear nodes, and three Gaussian nodes with five model iterations

for boosting. This means that each implementation of Neural Nets contains 90 nodes.

Each Neural Net utilizes a learning rate of 10 percent and squared penalty method

that fits one tour. The implementations of Neural Nets for each model follows a

similar format to Figure 3.

Figure 3. Neural Net for the Preemptive Model

For the implementation of K -Nearest Neighbors, the optimal k varies based on
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the number of factors in the models. The more variables included in the model, the

greater value of k required to maximize predictive power. As the k -value approaches

the number of variables in the model, the model approaches the maximum value of

accurate classifications. The way JMP implements K -Nearest Neighbors to a given

data point is by choosing the k smallest Euclidean distance between predictor values

of that data point and the predictor values of the surrounding data points. This

process is completed for all data points and then repeated for a specified k iterations.

The k -values in the confusion matrices in Appendix B for the completion analysis and

Appendix C for the Distinguished Graduate Analysis are the values that maximize

prediction accuracy and reflect the best performing iteration.
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IV. Analysis

4.1 Pilot Training Completion Analysis

The machine learning techniques and models are compared using the type I er-

ror rates (false positives) and accuracy of predicting successes and failures which are

depicted in the histograms below. Each technique applied to each model is assessed

by maximizing the accuracy of predicting both failures and successes while mini-

mizing the amount of type I errors (false positives). In this study, there are 25,832

students that complete UPT and 2,062 students that fail to complete UPT. The con-

fusion matrices for each technique applied in each model can be found in Appendix

B. Corresponding Receiver Operator Characteristic (ROC) Curves for Neural Nets,

Bootstrap Forest, Boosted Tree, and Logistic Regression are found in Appendix D,

but do not add anything to the actual results of the technique comparisons.

4.1.1 Preemptive Model

The Preemptive model utilizes a candidate’s ‘Flight Experience (in hours)’, age

at the start of UPT, and their ‘Dominance/Leader’ score. Since ‘Flight Experience

(in hours)’ is the best predictive indicator of pilot success, that individual factor used

in Neural Nets, Bootstrap Forest, and Boosted Tree is also compared to the created

model.

For the Preemptive model, Logistic Regression and the Neural Net that only uti-

lizes a candidate’s ‘Flight Experience (in hours)’ are ineffective since they predict all

candidates as successful completions. Evaluating the techniques in the preemptive

model, Boosted Tree, K -Nearest Neighbors, and Bootstrap Forest utilizing ‘Flight

Experience’ are the best techniques in predicting failures in UPT. By a narrow mar-

gin, K -Nearest Neighbors outperforms all other machine learning techniques tested
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because it more accurately predicts failures (see Figure 4) and it has one of the small-

est false positive rates (see Figure 5). The model itself seems to have large variance

of predicting UPT failures, which works better with a Neural Net, Boosted Tree, and

K -Nearest Neighbors.

Figure 4. Preemptive Model Accuracy

Figure 5. Preemptive Model Success Rates
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4.1.2 Test Model

The Test model utilizes a candidate’s TCO score, their ‘Team Player’ score, their

‘AFOQT-Pilot & PCSM score’, and their ‘Leadership Personalities & Reading Com-

prehension score’.

Figure 6. Test Model Accuracy

For the Test model, Logistic Regression is ineffective since it predicted all points

as successful completions. Besides the Logistic Regression model, all other machine

learning techniques perform similarly. Naive Bayes, however, performs the second

worst with around 4 percent of successful failures predicted. By a narrow margin,

Neural Net outperforms the other machine learning techniques because it predicts

the most failures (see Figure 6) and has the smallest type I error rate (see Figure 7).

Comparing the Test model to the Preemptive Model, the Preemptive model predicts

failures better than the Test model.

Figure 7. Test Model Success Rates
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4.1.3 Post-Acceptance Model

The Post-Acceptance model utilizes a candidate’s ‘Flight Check’ score, their ‘Com-

bined Online-Offline score’, their ‘Combined Flight Score’, and their ‘Combined De-

vice Score’.

Figure 8. Post-Acceptance Model Accuracy

For the Post-Acceptance model, Naive Bayes substantially outperforms all other

machine learning techniques by predicting more than twice as many failures as the

other techniques (see Figure 8) and almost half as many type I errors (see Figure 9).

Figure 9. Post-Acceptance Model Success Rates
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Comparing the Post-Acceptance model to the other two models, there are some

techniques where the Preemptive model outperforms the Post-Acceptance model.

Figure 10 depicts the best performing model for each technique in terms of predicting

UPT failures and false success rates. Based on the results in Figure 10, half of the best

performers utilize the Preemptive model (excluding the best Bootstrap Forest output

that solely utilizes ‘Flight Experience in hours’), but the best performing model is

when Naive Bayes utilizes the Post-Acceptance model.

Figure 10. Best Model Comparisons

4.2 Distinguished Graduate Analysis

This next analysis assesses the same factors but changes the criteria from whether

a pilot candidate succeeds or fails to whether a candidate is eligible to finish as

a distinguished graduate (DG). The purpose is to determine what factors in certain

points of the UPT process could best predict whether a pilot candidate could graduate

as a DG. In this analysis, a DG is a binary variable with a success defined as a

candidate that graduates UPT in the top 10% of their class. Redefining success

as being a DG shifts the balance between success and failure even further than the

completion criteria. In this data set, there are 1,338 pilot candidates that fulfill the
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defined DG criteria while there are 26,556 that do not fulfill that criteria.

The techniques compared in this study are the same techniques used in the UPT

completion study, however instead of evaluating the techniques for false positives and

accurate predictions of both successes and failures, they are evaluated for false pre-

dictions and accurate DG predictions. The full confusion matrices for each Machine

Learning technique applied to each model are in Appendix C. The ROC curves for

each technique applied to each model are in Appendix E but do not add much to the

analysis.

4.2.1 Pre-Acceptance Model

The Pre-Acceptance Model is composed of four factors: ‘Flight Experience (in

hours)’, ‘FAA Flight Hours’, ‘AFOQT - Pilot’ Score, and ‘PCSM Score’. Using the

same techniques in the completion analysis, the Pre-Acceptance model does a poor

job of predicting DGs. Based on the results found in Figure 11, all of the techniques

applied inaccurately predicted DGs with the two best techniques predicting roughly

12 percent (Naive Bayes) and 10 percent (K -Nearest Neighbors) of the DGs. On a

positive note, all of the machine learning techniques applied to this model yield low

incorrect prediction rates with all lower than 6 percent.

Figure 11. Pre-Acceptance Distinguished Graduate Model Accuracy
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4.2.2 Post-Acceptance Model

The Pre-Acceptance Model is composed of four factors: ‘Composite Score’, ‘Daily

T Score’, ‘Flight Weighted Score’, and ‘Check T Score’. Comparing this model to the

Pre-Acceptance model, this Post-Acceptance model does a much better job of pre-

dicting DGs. Based on the results in Figure 12, all techniques accurately predicted at

least half of the DGs with most techniques hovering between 60 percent and 67 per-

cent roughly five times more than the Pre-Acceptance model. Naive Bayes performs

the best by predicting roughly 87 percent of the 1,338 DGs more than seven times the

performance of the Naive Bayes in the Pre-Acceptance model. All of the techniques

applied have low incorrect prediction rate with most techniques maintaining below a

3 percent false prediction rate. The Naive Bayes is the only exception maintaining a

false prediction rate of roughly 5 percent.

Figure 12. Post-Acceptance Distinguished Graduate Model Accuracy
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V. Conclusion

5.1 Insights on Pilot Training Completion

This study has confirmed the USAF selection criteria for acceptance into the

UPT program. Above all other factors in the application process, the factor that best

predicts that a candidate will complete UPT is, not surprisingly, how well a candidate

performs at UPT. The amount of flight experience a candidate shows enough promise

to warrant further investigation. Of the different tests that a candidate takes prior to

acceptance into UPT, some are more applicable to UPT, such as the Pilot Score of

the AFOQT and the PCSM Score as these appear to be the best indicators of UPT

completion. Overall, flight experience by itself and UPT performance are better

indicators of pilot success than the AFOQT-Pilot Score and the PCSM Score.

5.2 Insights on Distinguished Graduates

This study confirms the USAF selection process for DG are the best performers at

UPT. While good pilot-related AFOQT scores, PCSM scores, and prior flight expe-

rience are beneficial for successfully completing UPT, those factors do not accurately

predict whether a pilot candidate will graduate in the top 10 percent of their class.

There is some underlying factor besides the residual error that prevents some of those

top performers from earning DG. That could be explained by some sort of disciplinary

or other factor unable to be collected.

5.3 Areas of Further Research

While the data included in this study uses a lot of demographic information to

include commissioning source, race, gender, and age, there is some demographic in-

formation that is not included such as university or undergraduate major that had
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so many unique categorical factors that could not be reasonably simplified. Some

information that would capture similar information that is not included in this study

would be whether the degrees the candidate has earned are technical or non-technical

degrees as well as what region or state the candidate is from.

The data used was sparse, at least 60 percent fill was used for this study. The

features that were not completely filled were imputed using K -Nearest Neighbors.

Imputation can lead to the inaccuracy of some of the models and factors. A clearer

data picture might have made Naive Bayes more accurate in some of the models. Pre-

vious research also indicates that Random Forests would work better if the dependent

variable values are balanced between the classes. Including all applications might give

more balance to the data. While the start date of a UPT class was included in this

study, it’s primary use was to calculate the age of a student at the start of a class.

The class start date could also be used to perform a time-series analysis to explore

any possible cyclical trends in UPT data over time.

As more pilot candidates go through the Pilot Training Next (PTN) program,

there could be a comparison study to the traditional UPT tracks. This study could

also expand into a joint-service study to compare the quality of pilot training between

the military services. Instead of having to estimate whether a candidate earns DG,

the accuracy of the study would be improved if that information is added to the data

set from the candidate’s records.
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Appendix A. Python Code for Data Cleaning and
Imputation

1 #Necessary Packages

2 import pandas as pd

3 import numpy as np

4 import datetime as dt

5 import time

6 from dateutil.relativedelta import relativedelta

7 from datetime import date

8 from sklearn import preprocessing

9

10 #upt_data2 = pd.read_excel(r’D:\ Thesis Work\Merged data - cleaned

for Capt Uber - 24 Aug.xlsx ’)

11 filename = ’Merged data - cleaned for Capt Uber - 24 Aug.xlsx’

12 upt_data = pd.read_excel(filename)

13 upt_guide = pd.read_csv(r’D:\ Thesis Backup\Thesis Work\Data for

Modeling\UPT Test Data3.csv’)

14

15 #Observing column fills

16 upt_pct = upt_data.count() /27894

17

18 #Adding a class percentile

19 upt_class_pct = upt_data["Class Rank"] / upt_data["Class Size"]

20 upt_data.insert (12, "Class Percentile", upt_class_pct , True)

21

22 #Changing the format of the Date columns.

23 upt_data["Date of Birth"] = pd.to_datetime(upt_data["Date of Birth"

],format=’%Y%m%d’)

24 upt_data["Class Start"] = pd.to_datetime(upt_data["Class Start"],

format=’%Y%m%d’)

25 upt_data["Completion Date"] = pd.to_datetime(upt_data["Completion

44



Date"],format=’%Y%m%d’)

26 upt_data["Attrition Date"] = pd.to_datetime(upt_data["Attrition Date

"],format=’%Y%m%d’)

27 upt_data["Entrance Active Duty"] = pd.to_datetime(upt_data["Entrance

Active Duty"],format=’%Y%m%d’)

28

29 #Removing unusable columns.

30 upt_data = upt_data.drop([’Platform earned ’, ’Acft Type’, ’Major ’, ’

Undergraduate ’, ’Years Prior Service ’], axis =1)

31

32 #Other Imputations & Fixes

33 upt_data["Time of Enlisted Yrs"]. fillna(0,inplace=True)

34 upt_data["Time of Enlistment Months"]. fillna(0,inplace=True)

35 upt_data["Policy Waiver"]. fillna("N/A",inplace=True)

36 upt_data[’Complete ’] = upt_data[’Complete ’]. replace (2,1)

37 #Fixes for Course column

38 upt_data.loc[upt_data[’Course ’].str.contains(’P-V4A -G’,case=False),

’Course ’] = ’P-V4A -G’

39 upt_data.loc[upt_data[’Course ’].str.contains(’3 (T-38C)’,case=False)

, ’Course ’] = ’P-V4A -N-3’

40 upt_data.loc[upt_data[’Course ’].str.contains(’(T-6)’,case=False), ’

Course ’] = ’P-V4A -N’

41 upt_data.loc[upt_data[’Course ’].str.contains(’CV4PA ’,case=False), ’

Course ’] = ’C-V4P -A’

42 upt_data.loc[upt_data[’Course ’].str.contains(’PV4C -E SUPTH ’,case=

False), ’Course ’] = ’P-V4C -E SUPTH ’

43 #Fixes for Track column

44 upt_data[’Track ’]. fillna(’missing ’,inplace=True)

45 upt_data.loc[upt_data[’Track ’].str.contains(’3B’,case=False), ’Track

’] = ’3B’

46 upt_data.loc[upt_data[’Track ’].str.contains(’3A’,case=False), ’Track

’] = ’3A’
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47 upt_data.loc[upt_data[’Track ’].str.contains(’INTERNATIONAL BF’,case=

False), ’Track ’] = ’INTL’

48 upt_data.loc[upt_data[’Track ’].str.contains(’missing ’,case=False), ’

Track ’] = np.nan

49 upt_data[’Track ’]. unique ()

50 #Fixes for the Education column

51 upt_data[’Education ’]. fillna(’missing ’,inplace=True)

52 upt_data.loc[upt_data[’Education ’].str.contains(’e.g.’,case=False),

’Education ’] = ’Undergraduate Degree ’

53 upt_data.loc[upt_data[’Education ’].str.contains(’missing ’,case=False

), ’Education ’] = np.nan

54 upt_data[’Education ’]. unique ()

55

56 #Data Checks

57 upt_data[’Policy Waiver ’]. unique ()

58 upt_data["Attrition Reason"]. unique ()

59 pd.value_counts(upt_data[’Course ’].values , sort=True)

60

61 #Trying to find a pattern of data fill to find imputation techniques

.

62 upt_pass_data = upt_data[upt_data[’Complete ’] != 0]

63 upt_fail_data = upt_data[upt_data.Complete == 0]

64 upt_pass_pct = upt_pass_data.count() /25832

65 upt_fail_pct = upt_fail_data.count() /2062

66

67 #More Data Checks

68 upt_pass_data[’Attrition Reason ’]. unique ()

69 upt_fail_data[’Attrition Reason ’]. unique ()

70 upt_data[’Composite Score ’]. describe ()

71 upt_fail_data[’Composite Score ’]. describe ()

72

73 #Fail Data Imputation
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74 upt_fail_data[’Attrition Reason ’]. fillna(’UNKNOWN ’,inplace=True)

75 upt_fail_data[’Completion Date’]. fillna(’N/A’,inplace=True)

76 upt_fail_data[’Age at Class Start ’] = upt_fail_data[’Attrition Date’

] - upt_fail_data[’Date of Birth ’]

77 upt_fail_data[’Age at Class Start ’] = upt_fail_data[’Age at Class

Start ’]/np.timedelta64 (1,’Y’)

78

79 #Pass Data Imputation

80 upt_pass_data[’Attrition Reason ’]. fillna(’None’,inplace=True)

81 upt_tl = pd.Timedelta(pd.offsets.Day (730))

82 grad_date = upt_pass_data[’Class Start ’] + upt_tl

83 upt_pass_data[’Attrition Date’]. fillna(grad_date ,inplace=True)

84 upt_pass_data[’Age at Class Start ’] = upt_pass_data[’Class Start ’] -

upt_pass_data[’Date of Birth ’]

85 upt_pass_data[’Age at Class Start ’] = upt_pass_data[’Age at Class

Start ’]/np.timedelta64 (1,’Y’)

86

87 #Imputation Exploration Data Checks

88 upt_pass_data[’Class Size’]. describe ()

89 upt_pass_data[’Class Size’]. median ()

90 upt_data[’Age at Class Start ’]. describe ()

91

92 #After Logical Imputations , append Pass & Fail Data.

93 upt_data2 = upt_pass_data.append(upt_fail_data)

94 upt_pct2 = upt_data2.count () /27894

95

96 #Removing date formatted columns.

97 upt_data2 = upt_data2.drop([’Date of Birth ’, ’Completion Date’, ’

Class Start ’, ’Attrition Date’, ’Entrance Active Duty’, ’AFOQT

Date Tested ’, ’DATE of Original Scan’, ’Date Scanned ’], axis =1)

98

99 #Trying to find a pattern of data fill to find imputation techniques
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.

100 upt_pass_data2 = upt_data2[upt_data2[’Complete ’] != 0]

101 upt_fail_data2 = upt_data2[upt_data2.Complete == 0]

102 upt_pass_pct2 = upt_pass_data2.count () /25832

103 upt_fail_pct2 = upt_fail_data2.count ()/2062

104

105 #Obtaining Testable Copies of the Datasets

106 upt_test = upt_data2.copy()

107 upt_ftest = upt_fail_data2.copy()

108 upt_ptest = upt_pass_data2.copy()

109 upt_ptest_pct = upt_ptest.count () /25832

110 upt_test_pct = upt_test.count() /27894

111 upt_ftest_pct = upt_ftest.count ()/2062

112

113 #Remove columns with <60% fill

114 #Imputation Column Fill Tolerance

115 tol = 0.6

116

117 #Step 0: Remove columns with <60% fill.

118 upt_data2.dropna(axis=1,thresh =27894*tol ,inplace=True)

119

120 #Test 1: No further imputation

121 upt_test.dropna(axis=1,thresh =27894*tol ,inplace=True)

122 upt_test.dropna(axis=0, how=’any’, inplace=True)

123

124 upt_data2.dropna(axis=1,thresh =27894*tol ,inplace=True)

125 upt_data2.dropna(axis=0, how=’any’, inplace=True)

126

127 pd.value_counts(upt_data2[’Complete ’].values , sort=True)

128

129 #Test 2: w/ Separate Filtering Tolerance Criteria

130 #Column Filtering for Pass Data.
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131 upt_ptest.dropna(axis=1, thresh =25832*tol , inplace=True)

132 upt_ptest.dropna(axis=0, how=’any’, inplace=True)

133

134 #Column Filtering for Fail Data.

135 tol2 = 0.08

136 upt_ftest.dropna(axis=1, thresh =2062* tol2 , inplace=True)

137 upt_ftest.dropna(axis=0, how=’any’, inplace=True)

138

139 #Testing Age Imputation

140 upt_ftest_ac[’Date of Birth’]. describe ()

141 upt_f_age = upt_ftest_ac[’Attrition Date’] - upt_ftest_ac[’Date of

Birth ’]

142 upt_f_age = upt_f_age/np.timedelta64 (1,’Y’)

143 upt_ftest_ac[’Age at Class Start’]. fillna(upt_f_age ,inplace=True)

144 #Testing Class Info Imputations

145 upt_ftest[’Class Start’]. fillna(upt_ftest[’Attrition Date’],inplace=

True)

146 upt_ftest[’Class Size’]. fillna (50, inplace=True)

147 upt_ftest[’Class Rank’]. fillna (50, inplace=True)

148 upt_ftest[’Class Percentile ’] = upt_ftest[’Class Rank’]/ upt_ftest[’

Class Size’]

149

150 #Categorical Imputation

151 upt_test[’Track ’]. fillna(’missing ’,inplace=True)

152 upt_test[’Officer or Enlisted ’]. fillna(’missing ’,inplace=True)

153 upt_test[’Gender ’]. fillna(’missing ’,inplace=True)

154 upt_test[’Reserve or Guard ’]. fillna(’missing ’,inplace=True)

155 upt_test[’TBAS Version ’]. fillna(’missing ’,inplace=True)

156 upt_test[’Education ’]. fillna(’missing ’,inplace=True)

157 upt_test[’Status ’]. fillna(’missing ’,inplace=True)

158 upt_test[’Aero Rating ’]. fillna(’missing ’,inplace=True)

159 upt_test[’Source ’]. fillna(’missing ’,inplace=True)
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160 upt_test[’Race’]. fillna(’missing ’,inplace=True)

161 upt_test[’EDLEV ’]. fillna(’missing ’,inplace=True)

162 upt_test[’DEGREE ’]. fillna(’missing ’,inplace=True)

163

164 upt_test = upt_test.drop([’Class ’], axis =1)

165 upt_test = upt_test.drop([’Key # to match ’], axis =1)

166 upt_test = upt_test.drop([’EDLEV ’], axis =1)

167 upt_test = upt_test.drop([’DEGREE ’], axis =1)

168 upt_test = upt_test.drop([’TestDate ’], axis =1)

169 upt_test = upt_test.drop([’ProcDate ’], axis =1)

170 upt_test = upt_test.drop([’Status ’], axis =1)

171 upt_test = upt_test.drop([’Age at Exam’], axis =1)

172 upt_test = upt_test.drop([’Required Flight Check ’], axis =1)

173

174

175 upt_test_ohe = pd.get_dummies(upt_test)

176 upt_test_ohe = upt_test_ohe.loc[:, (upt_test_ohe != 0).any(axis =0)]

177 upt_test_ohe_labels = list(upt_test_ohe.columns.values)

178 upt_test_ohe_pct = upt_test_ohe.count() /27894

179

180 #K-Nearest Neighbors Imputation

181 pip install missingpy

182 from missingpy import KNNImputer

183 imputer = KNNImputer(n_neighbors =7, weights="uniform")

184 upt_test_knni7 = imputer.fit_transform(upt_test_ohe)

185 upt_knni7_pct = upt_knni7.count () /27894

186

187 upt_knni7 = pd.DataFrame(upt_test_knni7 , columns=upt_test_ohe_labels

)

188

189

190 #Fail Test Data Checks
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191 upt_ftest_ac[’Daily Score’]. describe ()

192 upt_ftest_ac[’Daily T Score’]. describe ()

193 upt_ftest_ac[’Check’]. describe ()

194 upt_ftest_ac[’Check T Score’]. describe ()

195 upt_ftest_ac[’Flight Weighted Score’]. describe ()

196 upt_ftest_ac[’Academic ’]. describe ()

197

198 upt_ptest_ac[’Completion Date’]. describe ()

199 pd.value_counts(upt_ptest_ac[’Completion Date’].values , sort=True)

200 upt_ptest_ac = upt_ptest_ac.drop([’Attrition Date’], axis =1)

201 upt_ftest_ac = upt_ftest_ac.drop([’Attrition Date’], axis =1)

202 upt_ptest_ac = upt_ptest_ac.drop([’Completion Date’], axis =1)

203 upt_ftest_ac = upt_ftest_ac.drop([’Completion Date’], axis =1)

204

205 #Column Filtering for Pass Data.

206 upt_ptest_ac.dropna(axis=1, thresh =25832*tol , inplace=True)

207 upt_ptest_ac.dropna(axis=0, how=’any’, inplace=True)

208 upt_ptest_ac_pct2 = upt_ptest_ac.count ()/9995

209

210 #Column Filtering for Fail Data.

211 tol2 = 0.08

212 hdrs_upt_ptest_ac = list(upt_ptest_ac.columns.values)

213 upt_ftest_ac = upt_ftest_ac[hdrs_upt_ptest_ac]

214 upt_ftest_ac2 = upt_ftest_ac.copy()

215 upt_ftest_ac.dropna(axis=1, thresh =2062* tol2 , inplace=True)

216 upt_ftest_ac.dropna(axis=0, how=’any’, inplace=True)

217

218 #After Logical Imputations , append Pass & Fail Data.

219 upt_data3 = upt_ptest_ac.append(upt_ftest_ac)

220 upt_pct2 = upt_data2.count () /27894

221

222 #Sanity Checks
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223 pd.value_counts(upt_test[’Officer or Enlisted ’].values , sort=True)

224 pd.value_counts(upt_test[’Attrition Reason ’].values , sort=True)

225 pd.value_counts(upt_test[’Training Location ’].values , sort=True)

226 pd.value_counts(upt_test[’Course ’].values , sort=True)

227 pd.value_counts(upt_test[’Gender ’].values , sort=True)

228 pd.value_counts(upt_test[’Race’].values , sort=True)

229 pd.value_counts(upt_test[’Source ’].values , sort=True)

230 upt_test[’Age at Class Start ’]. describe ()

231 upt_test[’Required Flight Check ’]. unique ()

232

233

234 #Exporting to a CSV

235 upt_knni7.to_csv(’UPT Data KNN7 Imputed.csv’)
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Appendix B. Pilot Training Completion Analysis Confusion
Matrices

Confusion matrices are used on the validation sets for each technique for compar-

ison, with the exception of logistic regression which uses the entire data set.

Table 1. Confusion Matrix of Logistic Regression for the Preemptive Model

Actual Predicted Count
Complete 0 1

0 0 2,062
1 0 25,832

n = 27,894

Table 2. Confusion Matrix of Neural Net for the Preemptive Model

Actual Predicted Count
Complete 0 1

0 267 421
1 81 8,529

n = 9,298

Table 3. Confusion Matrix of Bootstrap Forest for the Preemptive Model

Actual Predicted Count
Complete 0 1

0 14 642
1 0 8,593

n = 9,249
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Table 4. Confusion Matrix of Boosted Tree for the Preemptive Model

Actual Predicted Count
Complete 0 1

0 260 428
1 51 8,503

n = 9,242

Table 5. Confusion Matrix of K-Nearest Neighbors for the Preemptive Model

Actual Predicted Count
Complete 0 1

0 308 404
1 286 8,307

n = 9,305; k = 2

Table 6. Confusion Matrix of Naive Bayes for the Preemptive Model

Actual Predicted Count
Complete 0 1

0 60 635
1 268 8,300

n = 9,263

Table 7. Confusion Matrix of Neural Net for Flight Experience Only Model

Actual Predicted Count
Complete 0 1

0 276 412
1 173 8,437

n = 9,298
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Table 8. Confusion Matrix of Bootstrap Forest for Flight Experience Only Model

Actual Predicted Count
Complete 0 1

0 245 454
1 85 8,472

n = 9,256

Table 9. Confusion Matrix of Boosted Tree for Flight Experience Only Model

Actual Predicted Count
Complete 0 1

0 128 565
1 35 8,560

n = 9,242

Table 10. Confusion Matrix of Logistic Regression for the Test Model

Actual Predicted Count
Complete 0 1

0 0 2,062
1 0 25,832

n = 27,894

Table 11. Confusion Matrix of Neural Net for the Test Model

Actual Predicted Count
Complete 0 1

0 60 628
1 33 8,577

n = 9,298
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Table 12. Confusion Matrix of Bootstrap Forest for the Test Model

Actual Predicted Count
Complete 0 1

0 55 626
1 23 8,521

n = 9,225

Table 13. Confusion Matrix of Boosted Tree for the Test Model

Actual Predicted Count
Complete 0 1

0 63 600
1 28 8,536

n = 9,227

Table 14. Confusion Matrix of K-Nearest Neighbors for the Test Model

Actual Predicted Count
Complete 0 1

0 32 665
1 148 8,386

n = 9,231; k = 4

Table 15. Confusion Matrix of Naive Bayes for the Test Model

Actual Predicted Count
Complete 0 1

0 82 600
1 457 8,062

n = 9,201
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Table 16. Confusion Matrix of Logistic Regression for the Post-Acceptance Model

Actual Predicted Count
Complete 0 1

0 138 1,924
1 272 25,560

n = 27,894

Table 17. Confusion Matrix of Neural Net for the Post-Acceptance Model

Actual Predicted Count
Complete 0 1

0 320 368
1 65 8,545

n = 9,298

Table 18. Confusion Matrix of Bootstrap Forest for the Post-Acceptance Model

Actual Predicted Count
Complete 0 1

0 197 520
1 26 8,549

n = 9,292

Table 19. Confusion Matrix of Boosted Tree for the Post-Acceptance Model

Actual Predicted Count
Complete 0 1

0 143 529
1 13 8,537

n = 9,222
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Table 20. Confusion Matrix of K-Nearest Neighbors for the Post-Acceptance Model

Actual Predicted Count
Complete 0 1

0 414 283
1 170 8,432

n = 9,299; k = 4

Table 21. Confusion Matrix of Naive Bayes for the Post-Acceptance Model

Actual Predicted Count
Complete 0 1

0 125 537
1 231 8,323

n = 9,216
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Appendix C. Distinguished Graduate Analysis Confusion
Matrices

Confusion matrices are used on the validation sets for each technique for compar-

ison, with the exception of logistic regression which uses the entire data set.

Table 22. Confusion Matrix of Logistic Regression for the Pre-Acceptance Model

Actual Predicted Count
Complete 0 1

0 26,542 1,326
1 14 12

n = 27,894

Table 23. Confusion Matrix of Neural Net for the Pre-Acceptance Model

Actual Predicted Count
Complete 0 1

0 8,849 3
1 429 17

n = 9,298

Table 24. Confusion Matrix of Bootstrap Forest for the Pre-Acceptance Model

Actual Predicted Count
Complete 0 1

0 8,829 0
1 432 0

n = 9,261
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Table 25. Confusion Matrix of Boosted Tree for the Pre-Acceptance Model

Actual Predicted Count
Complete 0 1

0 8,761 15
1 416 15

n = 9,207

Table 26. Confusion Matrix of K-Nearest Neighbors for the Pre-Acceptance Model

Actual Predicted Count
Complete 0 1

0 8,749 112
1 385 42

n = 9,288; k = 4

Table 27. Confusion Matrix of Naive Bayes for the Pre-Acceptance Model

Actual Predicted Count
Complete 0 1

0 8,666 143
1 383 59

n = 9,251

Table 28. Confusion Matrix of Logistic Regression for the Post-Acceptance Model

Actual Predicted Count
Complete 0 1

0 26,321 235
1 461 877

n = 27,894
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Table 29. Confusion Matrix of Neural Net for the Post-Acceptance Model

Actual Predicted Count
Complete 0 1

0 8,765 87
1 148 298

n = 9,298

Table 30. Confusion Matrix of Bootstrap Forest for the Post-Acceptance Model

Actual Predicted Count
Complete 0 1

0 8,708 64
1 178 257

n = 9,207

Table 31. Confusion Matrix of Boosted Tree for the Post-Acceptance Model

Actual Predicted Count
Complete 0 1

0 8,743 83
1 147 303

n = 9,276

Table 32. Confusion Matrix of K-Nearest Neighbors for the Post-Acceptance Model

Actual Predicted Count
Complete 0 1

0 8,738 115
1 138 283

n = 9,274; k = 4
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Table 33. Confusion Matrix of Naive Bayes for the Post-Acceptance Model

Actual Predicted Count
Complete 0 1

0 8,358 443
1 56 378

n = 9,235
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Appendix D. Pilot Training Completion Analysis ROC
Curves

Figure 13. Preemptive Model ROC Curve - Logistic Regression

Figure 14. Preemptive Model ROC Curve - Logistic Regression (Flight Experience
Only)
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Figure 15. Preemptive Model ROC Curve - Bootstrap Forest

Figure 16. Preemptive Model ROC Curve - Bootstrap Forest (Flight Experience Only)
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Figure 17. Preemptive Model ROC Curve - Boosted Tree

Figure 18. Preemptive Model ROC Curve - Boosted Tree (Flight Experience Only)
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Figure 19. Preemptive Model ROC Curve - Neural Nets

Figure 20. Preemptive Model ROC Curve - Neural Nets (Flight Experience Only)
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Figure 21. Test Model ROC Curve - Logistic Regression

Figure 22. Test Model ROC Curve - Bootstrap Forest
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Figure 23. Test Model ROC Curve - Boosted Tree

Figure 24. Test Model ROC Curve - Neural Nets
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Figure 25. Post-Acceptance Model ROC Curve - Logistic Regression

Figure 26. Post-Acceptance Model ROC Curve - Bootstrap Forest
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Figure 27. Post-Acceptance Model ROC Curve - Boosted Tree

Figure 28. Post-Acceptance Model ROC Curve - Neural Nets
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Appendix E. Distinguished Graduate Analysis ROC Curves

Figure 29. Pre-Acceptance DG Model ROC Curve - Logistic Regression

Figure 30. Pre-Acceptance DG Model ROC Curve - Bootstrap Forest
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Figure 31. Pre-Acceptance DG Model ROC Curve - Boosted Tree

Figure 32. Pre-Acceptance DG Model ROC Curve - Neural Nets
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Figure 33. Post-Acceptance DG Model ROC Curve - Logistic Regression

Figure 34. Post-Acceptance DG Model ROC Curve - Bootstrap Forest
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Figure 35. Post-Acceptance DG Model ROC Curve - Boosted Tree

Figure 36. Post-Acceptance DG Model ROC Curve - Neural Nets
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