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Abstract

The Air Forces Pilot Training Next (PTN) program seeks a more efficient pilot

training environment emphasizing the use of virtual reality flight simulators alongside

periodic real aircraft experience. The PTN program wants to accelerate the training

pace and progress in undergraduate pilot training compared to traditional undergrad-

uate pilot training. Currently, instructor pilots spend excessive time planning and

scheduling flights. This research focuses on methods to auto-generate the planning

of in-flight events using hybrid filtering and deep learning techniques. The resulting

approach captures temporal trends of user-specific and program-wide student perfor-

mance to recommend a feasible set of graded flight events for evaluation in a student’s

next training exercise to improve their progress toward fully qualified status.

iv
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CONCEPTUALIZATION AND APPLICATION OF DEEP LEARNING AND

APPLIED STATISTICS FOR FLIGHT PLAN RECOMMENDATION

I. Introduction

1.1 Background

The National Defense Strategy of The United States of America establishes that

the enduring mission of the Department of Defense is providing military forces capa-

ble of deterring war and protecting the security of the United States and its allies [1].

Each branch of the Department of Defense publishes an official operations business

plan to ensure that their operations are properly aligned with the mission established

in the National Defense Strategy and directed towards meeting mission requirements.

For the Department of the Air Force, maintaining overall force readiness has been

identified as an essential aspect of effectively executing this mission despite a national

pilot shortage. In a hearing before the Subcommittee on military personnel of the

Committee on Armed Services of the House of Representatives, Lieutenant General

Grosso, United States Air Force Deputy Chief of Staff for Manpower and Personnel

Services, emphasized the true extent of the Air Force pilot shortage. Grosso ex-

plained that funding limitations and an increase in demand for Air Force pilots in the

commercial airline industry have had a negative effect on force capacity and mission

capability in anticipation of a potential full-scale fight against adversaries. At the

end of fiscal year 2016, the Air Force’s total force structure was 1,555 pilots short

of requirements needed meet national security demands. Lieutenant General Grosso

noted that the commercial airline industry currently hires over 4,000 pilots annually,
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offering increasingly higher salaries. Grosso has identified the need for pilot produc-

tion and the Air Force’s progressive focus on developing creative, agile solutions to

meet pilot demands [2].

The impacts of the Air Force pilot shortage on force readiness have spread through-

out the Air Force. In a 2018 hearing, Air Force Secretary Heather Wilson reconfirmed

that the United States operates “in a more competitive and dangerous international

security environment than we have experienced in decades. So the restoration of the

force, the restoration of the readiness of the force, to win any fight, any time has to

be job one for all of us”[3]. Wilson emphasized that the first evidence of readiness

recovery is through force size. While production and retention of all career fields

are essential, pilot production is at the forefront. The Air Force managed to train

1,160 pilots in FY-17 and expects to reach a steady-state of 1,500 pilots per year from

FY-22 onward [3].

Pilot production stems from the ability to effectively and efficiently train pilots.

Increasing qualified pilot production requires the Air Force to provide sufficient time

and realistic training environments for Airmen to develop at accelerated paces. Cur-

rently, Undergraduate Pilot Training (UPT) operates in a three phase system that

spans about one year. The first phase introduces students to basic aircraft control

and flying with instruments in an academic environment. The T-6 aircraft is the first

aircraft that students work with. Outside of the classroom, students conduct T-6

simulator missions to gain flight experience.

At the end of the first phase, students undergo a simulator-conducted check ride

to assess basic aircraft control abilities and their flying knowledge. In phase two,

daily evaluations are scheduled, conducted, and reviewed by an Instructor Pilot (IP),

introducing students to legitimate flight hours in the T-6 aircraft. Phase two begins

with a series of basic flight events and transitions into training blocks focused on
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formation and navigation events. When a student performs a flight event during

a training exercise, the IP grades their performance as unsatisfactory, fair, good, or

excellent. Each of these grades corresponds to a score of 1 to 4, respectively. Students

continue to progress through flight events until deemed proficient in all necessary

flight events. Each possible flight event taught in undergraduate pilot training has

a required score to represent proficiency, called a maneuver item file (MIF) score.

The MIF scores for the current set of possible events are all 3 or 4, indicating that

the student must receive a good or excellent score for each flight event to be deemed

proficient.

Upon completion of the formation and navigation training, students begin moving

into more specified training tracks in either the T-38 or T-1 aircraft. When assigned to

the new aircraft, students enter into phase three of their training. Phase three consists

of similar training schedules as phase two but in a particular aircraft. If students are

deemed fully proficient within an aircraft, they will graduate from UPT at the end

of phase three and move on to their next duty assignment destined to operate in

their newly assigned aircraft [4]. The UPT process is designed to thoroughly expose

students to a vast range of flying skills and training environments.

The pilot shortage introduces pressure on the pilot training program to produce

more pilots at an accelerated pace. Increasing pilot production via the traditional

pilot training pipeline requires an increase in funding, equipment, and most impor-

tantly manpower resources that are currently unobtainable given total force personnel

shortages. The current Air Force pilot training pipeline already suffers from opera-

tional delays due to the lack of resources, introducing months of wait time between

when Airmen are assigned to attend pilot training and their official training start

dates [5]. An inability to increase resources may result in less favorable alternative

approaches to increase pilot production. One alternative method involves decreasing
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pilot training graduation requirements to the bare minimum skill set, thereby pro-

ducing more minimally qualified pilots at an accelerated pace. However, executing

similar alternatives only adds to a list of inconsistencies within the UPT program.

Secretary Wilson noted that the Air Force must move past traditional methods and

implement virtual and constructive training in order to meet current and future force

readiness demands, indicating that “sometimes now you can do more in a simulation

that you can do actually up in the air”[3]. The Air Force has initiated the Pilot

Training Next (PTN) program in Austin, Texas as an attempt to combat the current

pilot shortage without sacrificing training expectations. PTN aims to provide a more

personalized pilot training experience through the emphasized use of virtual reality

flight simulators alongside periodic real aircraft experience to progress pilot training

students through their pipeline in less time than it takes to complete traditional UPT.

PTN supports four primary factors that make it a plausible alternative to the

traditional UPT structure: immersive technology; unlimited simulator availability;

adoption of a free rein, non linear syllabus; and experience in a high risk, low re-

ward environment. Immersive virtual reality training allows for students to receive

satisfactory training time at reduced resource and maintenance costs compared to

training in a real aircraft. Virtual reality training also reduces overall strain and

time spent preparing and maintaining aircraft for flight. Traditional UPT only pro-

vides students the opportunity to get flight or simulation training during scheduled

hours, but PTN provides students access to flight simulators at all times of the day

and night. Students have access to larger, more realistic simulators in the office and

smaller simulators provided at home. Unlimited access to flight simulators allows stu-

dents to continue practicing beyond daily duty hours. Emphasizing the use of flight

simulators gives students more access to training regardless of the weather, time of

day, or aircraft availability. PTN does not follow a predefined syllabus. Instead, the
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training focuses on particular pilot training student competency, giving students the

opportunity to advance in training at their own pace.

Unlike its traditional counterpart, PTN allows students to perform multiple train-

ing exercises in a single day. A training exercise consists of either a simulated or real

flight where a student is evaluated on a series of flight skills. Each skill subject to

evaluation is defined as a flight event. The culmination of all training exercises com-

pleted by a single student throughout their pilot training experience is defined as

that student’s training campaign. The use of virtual reality also submerses students

into an environment where they can take risks and make mistakes without costly

consequences. Such an environment encourages students to try new things and learn

from them. The environment mitigates concerns of over accelerated advancement

because lives are not at stake when trying new events in a simulated environment.

Transitioning to more personalized training methods will result in higher variance

for graduation dates, but provides the opportunity for students to progress through

training faster than in an environment with a set syllabus. The first PTN graduating

class has shown that it is possible to properly prepare Air Force pilots in about six

months rather than the twelve-month schedule that UPT currently adheres to.

PTN shows potential to help solve the pilot shortage, but the current training

evaluation structure across all pilot training methods allows for various forms of sub-

jectivity to be introduced. Although standardized evaluation criteria exist, individual

performances are subject to an individual IP interpretation resulting in flight-to-flight

grading subjectivity. Other than instructor-to-instructor inconsistencies, the current

grading system suffers from subjective inconsistencies across the entirety of the train-

ing. Performances on a given event that earn higher scores during the early stages of

training are often not sufficient enough to receive the same score on the same event

later in the program. Scoring inconsistencies led to inconsistencies in determining
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the overall proficiency of individual students. Additional procedural requirements,

such as filing official paperwork for students that show regression in training, also

introduce incentives for IPs to continue to award higher scores as students progress

through training. This process has the potential to allow students to progress through

training without achieving the proper training.

PTN and AFWERX-Austin are conducting a joint initiative to produce and in-

tegrate an automated IP system, known as the AutoGradebook, within the PTN

program to eliminate evaluation subjectivity and inconsistencies. The AutoGrade-

book design consists of four primary components: an event recognition and grading

component, a feedback component, an overall scheduling tool based on outside in-

fluences, and a next flight recommendation component. During a training exercise,

students are graded on their individual ability to properly complete flight events.

Scores are assigned in accordance with performing the correct event at the correct

time under proper specifications such as speed and timing. Real-time feedback is

provided based on student performance. A scheduling tool takes into account outside

forces such as weather and physiological factors to schedule training. Recommenda-

tions are then provided in accordance with a student’s culminating scores across all

events and overall progression through training. Currently, IPs spend hours manually

performing these administrative operations. Performing administrative tasks restricts

the amount of time allocated for actual training and instructing. An automated in-

structor recommender system allows for IPs to focus on student development rather

than administrative work.

Aside from eliminating subjectivity from the evaluation process, introducing the

AutoGradebook allows for faster and more accessible training feedback. Mobile simu-

lator units equipped with AutoGradebook technology dispatched to Service Academies

or Reserve Officer Training Corps (ROTC) detachments present an opportunity to
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provide potential pilot training students with flight experience before ever arriving

at pilot training. PTN and AFWERX leadership are confident that the AutoGrade-

book can introduce a collective, automated IP opinion that objectifies the evaluation

element of pilot training to ensure a consistent skill standard while accelerating pilot

production rates.

1.2 Overview

This study conceptualizes a recommendation system for upcoming training exer-

cises during PTN based on recorded evaluation data from the previous PTN gradu-

ating classes.

1.3 Problem Statement

Every day, IPs spend hours reviewing, organizing and developing flight plans for

pilot training students. Committing valuable time to various administrative tasks

required to progress a student through training prevents IPs from focusing on person-

alized instruction and the advancement of the students. This study applies analytics

to conceptualize and develop a recommendation system that effectively provides an

IP with flight event suggestions for a student’s next flight plan. The algorithm au-

tomatically populates a list of recommended flight events well suited for a student’s

next training exercise. Recommendations are generated based on each student’s prior

flight plans, grades received in prior training exercises, and overall progression com-

pared to other pilot training students. Success is quantified by the number of similar

recommendations the algorithm provides for a given flight plan compared to a flight

plan generated from an IP.
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1.4 Research Scope

This research focuses primarily on the conceptualization of a recommendation

system that can effectively provide an IP with recommendations for training events

that a pilot training student should perform in the next step of their training. IP,

student, and flight dates are the primary factors influencing the segmentation of

recommendations.

PTN leadership provided raw data collected from their first pilot training class.

The data set consists of the scores received on every event performed during each

training exercise for the nineteen students in the original PTN class. Every flight

event does not have to be performed for each flight. Students are identified by an

identification number. Data provided does not include personally identifying informa-

tion. Calendar dates when individual training exercises were performed were recorded.

All data provided are assumed as extensive and correct. The order of each student’s

training exercises is assumed to follow the order of the dates provided. It is assumed

that any non-integer flight or simulation number in the data represents a flight cut

short due to extenuating circumstances and can safely be omitted from the data set.

While data available and funding are flexible resources, time is not. IP and student

pilot time are the most important resource in the pilot training pipeline. Continuous

student progress is assumed as the IP’s primary responsibility. Therefore, sets of

flight events organized by the IPs are always intended to advance student capability.

Conceptualization of AutoGradebook components, aside from the recommenda-

tion system, are out of scope for this research. Data provided excludes how individual

grades were determined, when check rides occurred, how many times a specific event

was attempted during an individual training exercise, weather patterns, and the time

of day of each training exercise. Influence of any outside factors on event recommen-

dation that are excluded from the data is also considered outside of scope.
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1.5 Research Objectives

1. Evaluate current PTN data collection and storage practices to make recommen-

dations for improvement.

2. Design a new metric to track student training progress more effectively than

the current method.

3. Analyze and reveal patterns for sequential event set generation throughout a

pilot training campaign.

4. Devise an algorithm that generates an appropriate set of flight events for an

upcoming flight given student evaluation history.

5. Demonstrate objectives 2-4.

1.6 Research Contributions

An initial flight plan recommender system is defined, implemented, and tested.

No other training flight plan recommender system appears to exist. Insights gathered

from current operations motivated the proposal of a more effective data environment

and student performance metric. The new student progress metrics are defined and

employed to guide recommendation for student flight plans. Guidance for establishing

an effective data environment provides a foundation for future data implementation.
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II. Literature Review

2.1 Overview

This chapter discusses the origins and evolution of recommender systems, applica-

tions in research and industry, and common recommendation generation approaches.

Additionally, this section discusses complications associated with implementing more

personalized recommender systems.

2.2 A History of Recommender Systems

In any decision-making scenario, it is essential that all possible options are ex-

plored to make a good decision. Possible options for decision makers become more

complex as a corresponding system grows in size, complexity, or influence. Histor-

ically, people have relied on peer and expert recommendations to simplify larger

decision-making scenarios. As experts or decision makers seek more personalized rec-

ommendations, social methods of acquiring information cannot always provide spe-

cific enough advice. Computer-based recommendation systems introduce the ability

to obtain more specified information or advice for a decision maker’s interests [6].

As computer-based recommendation systems became standard practice in deci-

sion support, the use of automated recommender systems grew more common. Early

automated recommender systems depended on hard-coded, user-provided specifica-

tions to filter through possible options and make suggestions. However, research has

advanced the benefits of automatic recommendation systems for decision making pro-

cesses to nearly a standard practice. Today, many online recommender systems do

not require user input to generate recommendations. Instead, modern recommender

systems often employ automatically recorded data from user activity to generate ef-

fective suggestions. [6]
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A key component in improving consumer experience rests in effectively providing

a simplified set of choices for a user. Therefore, effective recommender systems have

become essential to the success of major E-commerce companies such as Amazon and

Netflix [7]. Recommender systems are widely used in modern decision making scenar-

ios and aim to capitalize on a variety of methods to provide effective recommendations

to the targeted user.

2.3 Common Recommendation Generation Approaches

Baseline prediction methods must first be established in order to implement more

personalized recommendation algorithms. Baseline methods include non-personalized

methods such as data pre-processing and normalization [6]. Taking the average rating

over all ratings in a system exemplifies a simple baseline method. Baseline predictors

can also be enhanced for better results in ways such as combining mean values for a

given item with average deviations from those values. The most common methods

for generating user recommendations are collaborative filtering and content-based

filtering.

Collaborate filtering methods rely on the assumption that users with highly cor-

related behavior would prefer similar recommendations. Similar users are grouped

together to provide a reasonable prediction of active users preferences based on feed-

back ratings or user behavior within a system [6]. One of the original automated

collaborative filtering algorithms is the k-nearest-neighbor(k-NN) collaborative filter-

ing technique, which finds users with behavior similar to the current user and predicts

ratings to the user based on similar users’ preferences [8]. Two of the better perform-

ing methods of collaborative filtering include latent factor models and neighborhood

models, which find relationships between users, items, or both, to highlight those

important factors used to tailor recommendations [9].
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Item-based collaborative filtering, another widely used method, relies on similari-

ties between rating patterns of items rather than user behavior to make predictions.[6].

Companies that sell consumer goods, such as Amazon, often use item-based filtering

to advertise goods that meet customer needs [10]. Netflix, and other companies look-

ing to provide entertainment services tend to use hybrid approaches of item-based and

k-NN methods to capture personalities of consumers rather than the functionality of

a specific item [7].

Collaborative techniques are also used to guide population learning behavior. Par-

ticle swarm optimization (PSO), a heuristic global optimization method, compares

the location of individual points within a population with the location of the best

known point within the population. A point’s fitness is defined as the overall best

location it has achieved in the population space. The population’s fittest point is

the deemed population optima and returned as the estimated optimal point. The

locations of individual points are adjusted according to individual inertia, the indi-

vidual’s fittest point, and the population’s fittest point [11]. The algorithm redirects

points back towards the population optima if they are adjusted past it. PSO is a

proven approach for machine learning, classification tasks, neural network training,

robot task learning, and other functions often accomplished using genetic algorithms

[12].

Content-based filtering examines an individual user and produces future recom-

mendations similar to items previously preferred by the user [6]. Information retrieval

and information filtering are the primary tasks of any content-based filtering system.

Vector spacing algorithms group items with similar feature information to create pref-

erence profiles for the user. Content-based user preference profiles are portrayed as

a vectored combination of weighted item features. Multivariate techniques such as

Bayesian classifiers, cluster analysis, decision trees, and artificial neural networks are
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examples of methods for user profiling [13]. Pandora, an online music streaming com-

pany, has had success applying a content-based filtering algorithm to recommend new

music to users [7].

Deep learning models are composed of layers of artificial neural networks that

look to exploit the unknown structures within data using multiple levels of connected

weighted values. The ability for deep learning models to learn deep representations

and abstractions from data has propelled deep learning model architectures to the

leading edge of supervised and unsupervised learning tasks. The different type of

neural network models that are suitable for different recommendation tasks can be

looked at as neural building blocks for complex models. Deep neural networks can

be composed of multiple neural building blocks that form one functioning model.

The flexibility in modeling options introduces the ability to model vast amounts of

complex data, providing an additional advantage for content-based recommendation

tasks.

The PTN recommendation task must model the sequences of flight plans through-

out training. The AutoGradebook recommender system must be able to model the

temporal dynamics of a pilot training student throughout training in order to pro-

duce legitimate recommendations for flights maneuvers to be performed in upcom-

ing flights. Extensive literature finds deep neural networks successful in a variety

of sequence modeling tasks such as translation, natural language processing, music

generation, dialogue generation for chatbots, weather prediction, next-item/basket

prediction and more [14]. Two deep learning model structures that have proven suc-

cessful in capturing temporal data trends for prediction purposes are the Long Short-

Term Memory Recurrent Neural Network (LSTM RNN) and Temporal Convolution

Network (TCN) [15].

Recommender systems seek to maximize the expected utility of recommendations

13



as a whole rather than of the individual items. However, using a single recommenda-

tion method may not generate effective predictions in all scenarios. Different models

perform better given different scenarios and data available. Various individual mod-

els may capture a unique part of what a true prediction or recommendation should

be. However, one model rarely captures the entire truth. When building general-

izable models, diversity is strength. It is possible to combine modeling achitectures

to formulate a hybrid approach to recommendation [6]. Hybrid filtering is a specific

application of model ensembling where the predictions of a set of different models, or

neural building blocks, are combined to produce better predictions. In hybrid filter-

ing, methods are performed independently and combined using weights or preliminary

cascading techniques [13]. In 2011, the Recommender Systems Handbook [16] was

published, providing an in depth overview of recommendation systems and methods.

2.4 Potential Complications of Personalized Recommendations

Recommender Systems are not a one-size-fits-all solution to making decisions, so

they must be personalized to individual systems or applications. This individualiza-

tion often results in some complications. Providing more personalized recommenda-

tion based on user interaction can introduce inconsistencies in recommender system

generalization ability. In a pilot training environment, inconsistencies in student

activity or performance can introduce overall inefficiencies in recommender perfor-

mances if the student does not show any progression trends.

There are two primary types of users in any recommender system. From an

advertising standpoint, the ideal users are known as white sheep. White sheep are

users that perform similarly to many other users. Users that are less predictable,

known as black sheep, show a low correlation in behavior compared with almost

all users. Recommender systems generally perform poorly on black sheep users and
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their low correlation of behavior introduced into training data causes diminished

recommendation quality for other users in the system [17]. In pilot training, students

who outperform their peers at the beginning of training, but underperform later on,

or vice versa, may act as black sheep.

Another common complication in recommender systems is the introduction of new

data. As a new program, PTN continuously records new training data. Many recom-

mender systems discussed in the literature assume that the nature of the database

being used to train a recommender system algorithm is static. One proposed method

to dealing with dynamic databases it to implement a two-stage approach to identify

relevant recommendation options and then provide user specific recommendations

based on preferences [18]. K-NN collaborative filtering methods suffer from scaling

complications when introducing new data while item-based filtering methods do not

[6]. Recommender systems often have very specific function, so complications arise if

they are used in more general environments or are applied to a broader set of prob-

lems. Despite these complications, recommender systems are used widely in industry.

Model performance evaluation can also be difficult when building recommender

systems. Mathematical evaluation methods tend not to correctly measure the per-

formance of any given recommender system. Metrics such as root mean square error

fail to recognize the practical use of a recommender because they do not measure

the impact that recommender systems have on the user. Evaluation of recommender

systems typically focuses on a predicting task and a recommendation task. An item

is defined as all possible options a recommender provides to the user. The predicting

task regards an algorithm’s ability to identify the value of an item to the user. The

recommendation task involves an algorithm’s ability to produce the best possible list

of items according to a user’s needs. If a system is being used as a decision support

tool, the user may want the system to actually make suggestions or select the best
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decision given the current environment. Instead, it may be more relevant to evaluate

a recommender system based on metrics such as serendipity or diversity in recom-

mendations. Serendipity can be measured as recommendations that a user likes but

did not think of initially. Diversity in recommendations assures that the user gets

exposed to all possible items [6].
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III. Data Details

3.1 Overview

This chapter describes the data provided by the PTN program and initial data

cleaning needed for analysis. Recommendations for future data collection and data

storage are offered.

3.2 Data Description

PTN leadership provided raw data collected from their first pilot training class.

The raw data set consists of the scores received on every graded event performed

during each training exercise for the nineteen students in the original PTN class. The

data includes information on 128 individual flight events possible of being executed

during pilot training. Training events are distributed into 10 different event categories:

basic, patterns, contact, instruments, basic formations, tactical formations, low-level,

four-ship formations, combat air forces (CAF) introduction, and mobility air forces

(MAF) introduction. Only a subset of all possible flight event can be performed

during each training exercise. Students are identified using an identification (ID)

number within the data set. Each record in the data represents the information for

a single training exercise for a given student. The data consists of the student ID

number, training exercise date, information on all 128 possible flight events, and the

device used for training (simulation or flight). Additionally, each event falls into one

of the aforementioned ten categories defined by PTN. The ten categories and their

corresponding events are listed in Table 1.
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Table 1. List of graded flight events by category provided by PTN

Event Categories Graded Flight Events

Basic Mission Analysis/Products, Ground Ops, Takeoff,
Departure, Basic Aircraft Control, Cross-Check, Enroute
Descent/Recovery, Inflight Checks, Inflight Planning,
Clearing/Visual Lookout, Communication, Risk Mgmt/
Decision Making, Situational Awareness, Task Management,
Emergency Procedures, General Knowledge

Patterns Overhead/Closed Pattern, Visual St-In, Landing,
No-Flap Landing, Go-Around, Emergency Landing Pattern

Contact G-Awareness, TP Stalls, Slow Flight, Power On Stalls,
Contact Recoveries, Spin Recovery, Aileron Roll, Barrel Roll,
Pitchback / Sliceback, Cloverleaf, Cuban Eight, Immelmann,
Lazy Eight, Loop, Split S

Instrument Vertical S, Unusual Attitudes, Steep Turns,
Intercept/Maintain Arc, Fix to Fix, Holding, Full Procedure
Approach, Non-Precision Final, Precision Final,Circling
Approach, Missed Approach, Night Landing

Basic Formation Wing Takeoff, Interval Takeoff, Instrument
Trail, G-Warmup/Awareness, Lead Platform, Pitchout(Both),
Fingertip(Wing), Route(Wing), Fighting Wing(Wing),
Straight Ahead Rejoin, Turning Rejoin, Overshoot,
Echelon(Wing), Breakout(Wing), Lost Wingman(Both),
Extended Trail(Wing), Position Change, Formation
Approach(Both), Formation Landing(Both), Battle
Damage Check,Flt Integrity/Wingman Consideration

Tactical Formation Delay 90, Delay 45, Hook Turn, Shackle, Cross Turn,
Fluid Turn, Tactical Rejoins, Fluid Maneuvering, Tac Initial

Low-Level Course Mx, Course Entry, Time Control, Altitude Control,
Checkpoint ID, LL GPS Integration, Tactical Maneuvering
LL Lead Change

4 Ship Formation Four Ship Admin, Fluid 4, Box Formation, Offset Box,
Wall, 4-Ship Fingertip, Straight Ahead Rejoin, Turning Rejoin

CAF Introduction Heat to Guns Setup, Heat to Guns Maneuvering, Fuel
Awareness/Management, Advanced Handling, Perch Setups,
Maneuver Selection, Offensive Fighter Mnvr Exec, Defensive
Fighter Mnvr Exec, CZ Recognition, Air to Air Weapons Employ,
HA Lead Turn Exercise, HA Butterfly Setups, HA BFM Flt
Analysis, SA Conventional Range, SA Tactical Range Proc,
SA Safe-Excape Maneuver, SA Threat Reaction, SA Weapons
Employment, Air to Ground Error Analysis, TACS/JFIRE
Procedures, Air to Ground 2-Ship Mutual Supt

MAF Introduction Mission Management, VFR Arrival, Tanker Procedures,
Reciever Procedures, Airdrop Procedures, Crew Coordination,
Single Engine Approach, Single Engine GA/Missed Appch,
A/R Overrun, A/R Breakaway, FD/AP Operations,
FMS Operations
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Each student’s training exercises are ordered by date and labeled to create a

training exercise data point for each record. Unrecorded factors, such as weather or

resource availability, introduce possible volatility in specific training dates for stu-

dents. Using training exercise numbers rather than a calendar date to track progress

introduces a standard temporal metric between students. The training exercise met-

ric represents the total number of training exercises that a student has completed in

training up to that associated flight record.

While the training exercise calendar dates are included in the data, specific time

stamps of when training exercises started, when specific graded events were performed

throughout a training exercise, and timestamps for when training exercises concluded

are not provided. Introducing more temporal data may provide further insights to

how events should be paired within a single training exercise as well as the order

in which events should be performed. The absence of this additional temporal data

inhibits the ability to fully make data-driven decisions regarding how graded exercises

should be paired within a single training exercise. For example, contact events are not

typically performed at night, but a training exercise may start before sunset, where

a student may be scored on contact events, and continue into the night so a student

may be scored on a night landing. There is currently no data collected connecting

exercises or events to the time of day that they are performed. There is also no

data on the order of events performed within each training exercise. Therefore, it is

assumed that there are no event pairing constraints for the given set of 128 possible

graded flight events.

3.3 Preliminary Data Preparation and Collection Recommendations

Preliminary data cleaning was performed by AFWERX. However, further data

cleaning was necessary to prepare the data for exploratory data analysis. Ambiguous
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and inconsistent data labeling, improper data formatting, inconsistent recording, and

incomplete recording were among the most common issues found within the data.

Ambiguous data labels were converted to more specific labels. An example of this

correction includes replacing the data category label “Training Day”with the label

“Training Date”. The term “Training Day”does not specify whether the data being

provided is the ordered day since the start of training, the day that the data was

recorded, or the calendar day that the flight with corresponding scores took place.

Ambiguity is avoided by providing more specific labeling, such as “Training Date” in

the provided example. Specific data documentation was unavailable from PTN and

AFWERX, making ambiguous labeling more challenging to decipher. Future data

collection should include more context specific labeling and an associated data dic-

tionary to increase functionality and employability of all recorded data.

All data provided were collected from a manual input system; IPs manually in-

serted each individual data record. This approach structures all data as text, re-

gardless if the proper data format should be numeric, non-numeric, or temporal.

Fully manual input can also result in inconsistent input. Inconsistent spelling and

additional unnecessary characters were often found in the data, creating confusion.

These discrepancies were fixed manually in preliminary data cleaning. A “point and

click” graphical user interface would provide a simple solution to this problem and

introducing more convenience and efficiency to the data collection process in the

future.

The data also contained various incomplete or duplicate records. For most incom-

plete records, there were associated complete records occurring on the same date. This

suggests that software defects, network issues, or recording errors may cause incom-

plete and duplicate records when IPs reinsert recorded training results. Some records

that included less than five evaluation scores appear to represent evaluation updates
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for specific graded events rather than completed training exercise records that the cur-

rent data structure supports. Inclusion of duplicate or incomplete records of training

exercise data may result in skewed, and less effective, recommendations. Ambiguity in

record completeness exists given that there is not a definitive number of graded events

that may occur each flight. All incomplete or duplicate records were removed from

the dataset to limit biased recommendations that do not lead to student graduation.

Network issues and software defects are often unpredictable, but recording a data

point indicating a complete training exercise record would distinguish between com-

plete and incomplete records and provide insight into the credibility of future records.

Incorporating a confirmation option before officially submitting a record provides an

automatic solution to the addition and recording of the suggested completed record

data point. In the occurrence of a mishap, automatically saving recorded progress

and preventing the IP from creating a new record until the incomplete record is con-

firmed or canceled may provide a solution to the recording of incomplete or duplicate

data.

Upon initial cleaning, additional data were recorded in order to more effectively

capture temporal trends of student progress throughout training. Outside factors such

as days off, unsuitable weather conditions for flight or performing specific events, lim-

ited aircraft inventory, and limited IP availability contribute to unpredictability of

when the next evaluated training exercise will occur. The training dates of individual

flights are vulnerable to unknown or unrecorded factors. Therefore, a more general-

ized recording of flight order provides a more appropriate approach to track temporal

trends in student progress. A “Training Exercise” data category was calculated to

represent the total number of evaluated training exercises that a student has per-

formed leading up to the recorded exercise. Recording temporal data by training

exercise provides enough information to show student progression through training
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based solely on when and how skillfully events were executed over time, independent

of unknown influential factors.

Currently, overall student progress in flight training is monitored using a cumu-

lative MIF super score. The cumulative MIF score is calculated by taking the sum-

mation of the maximum recorded scores of each individual training event introduced

up to the current training exercise. The cumulative MIF metric is also used to com-

pare performance between students throughout pilot training. Tracking a student’s

progression through pilot training must account for the student’s depth and breadth

of event knowledge. A student’s event depth is defined as how skillful the student

is in a particular event. Depth is measured by a student’s highest received score

in a graded event. Event breadth is defined as how many of the 128 total possible

events the student has been introduced to throughout training. Breadth is measured

using the total number of individual events and the number of event categories fully

introduced to the student. The current use of the cumulative MIF score does not

distinctly account for both the breadth and depth of student progression. Therefore,

using the cumulative MIF metric leads to ambiguity in true student performance.

The following is a simplified example emphasizing the ambiguity of the current

cumulative MIF metric. Suppose an IP would like to compare progress between two

pilot training students, Student A and Student B. Both students have performed an

equal number of training exercises. Student A has been introduced to, and received,

a score of excellent on only two individual events. Student B has been introduced to,

and received, a score of unsatisfactory on eight individual events. Both students in

this scenario have a cumulative MIF score value of 8 points. There is no way for the IP

to adequately distinguish the progress of the two students from the cumulative MIF

metric alone. However, further examination of each student’s grade sheet shows that

Student A has a proficient grasp on both of the exercises they have been introduced
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to whereas Student B is consistently performing at unsatisfactory levels in all aspects

of training.

For this work, the cumulative MIF metric was replaced by a new performance

metric, the Forward Progress Score (FPS), that distinctly incorporates both training

depth and breadth. The FPS greatly enhanced the capability of the recommender

algorithm conceptualized, prototyped, and tested in this research. FPS calculation

and rational are further defined in the Modeling Approach Chapter.

3.4 Summary of Data Recommendations

The data cleaning process yielded various recommendations for developing a data

environment better designed for future data implementation. Those recommendations

are:

1. Improve the temporal aspect of data collected.

2. Timestamp training exercises.

3. Implement stronger data formatting.

4. Implement standard data labels.

5. Improved interface for data entry.

6. Incorporate record confirmation components.

7. Add outside data to support the training data collected.

8. Consider the adoption of Forward Progress Score metric.
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IV. Exploratory Data Analysis

4.1 Overview

IPs must take into account various student and environmental factors when cre-

ating training flight plans. This section dives into the data to uncover graded event

frequency and evaluation trends throughout the PTN program. Trends revealed in

this section establish the foundation for the modeling approach taken in this research.

4.2 Event Frequency Over Time

Despite sparse data, some general trends for event occurrence throughout training

are present. Event frequencies suggest that event category occurrence and proficiency

are not bound to a specific timeline in PTN. Frequency charts, shown in Appendix A

suggest that event recommendations follow patterns regarding the training exercises

when they are performed. An example of the frequency chart for a single event is

shown in Figure 1.

The data does not present a specific order in which events should be introduced,

but events within categories tend to follow similar patterns of what training days they

occur.

No pairing restrictions have been established based on the flexibility of the PTN

training program and training exercise structuring. Event frequencies alone do not

provide enough evidence to establish specific events pairings regardless if multiple

event categories may peak at similar training exercises. However, analysis of individ-

ual records suggest some event general category pairings may exist. All observations

of event pairings are generalized observations from the data and not hard set con-

straints for recommendations.

24



Figure 1. Frequency of Occurrence Example for the TP Stalls Event

Basic events are the most commonly performed event, independent of proficiency.

Basic events are performed on almost every training exercise for all students.

Instrument events do not show continuous patterns. Vertical S, unusual attitudes,

and steep turns tend to occur in early training exercises, and are revisited later if

needed. The rest of the instrument events are performed continuously throughout

training, with peak occurrences between twenty and thirty training days. An em-

phasis in instrument training also peaked during training occurring after 90 training

exercises. Late peaks in occurrence suggest that the IP emphasized specific events

because those events are essential to program graduation and the IP did not feel that

skill levels in those events were yet up to expectations.

Contact event frequency peaks around training exercise 10 and training exercise

30. They seem to occur less during the end of training. Some contact events and

instrument events are performed in the same training exercise, but there never seems

to be a shared focus of these two categories. If events from both categories were

performed in a single training exercise, there was always a heavier inclusion of one

category over the other.
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Table 2. Grouped Basic Formation Events Based on Event Occurrence Frequencies

Group A Group B
Wing Takeoff Interval Takeoff
G-Warmup / Awareness Fighting Wing (Wing)
Lead Platform Instrument Trail
Pitchout (Both) Turning Rejoin
Fingertip (Wing)
Route (Wing)
Straight Ahead Rejoin
Overshoot
Echelon
Breakout (Wing)
Lost Wingman (Both)
Extended Trail (Wing)
Position Change
Formation Approach (Both)
Formation Landing (Both)
Battle Damage Check
Flt Integrity / Wingman Consideration

Basic formation events split into two distinct groups based on temporal trends, as

shown in Table 2. Events within group A tend to be introduced earlier in training,

around training exercise 10, and are then revisited later in training. Events in group B

tend to only be performed after training exercise 40. Events in the tactical formation,

low-level, and four-ship formation categories, with the exception of the straight ahead

rejoin event, tend to occur in later training exercises, as well. Training exercises

evaluating low-level events tend to also evaluate tactical formation events as opposed

to basic formation events.

Pattern events show no temporal trends and are incorporated with events from

all other categories. Pattern events and low-level events are rarely evaluated in the

same training exercise.

CAF and MAF events are all performed towards the end of training. These events

are included to provide students with an introductory insight to the next phase of

pilot training. All MAF and CAF events were performed after training exercise 60.
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Students that graduated with fewer total number of training days did not receive

as much exposure to MAF and CAF events as those that took longer to graduate,

indicating that individual student performance may not be the only driving factor

determining when a student graduates. For example, all students completing training

in under 70 training exercises were not introduced to any MAF or CAF events at any

point in their training. Student performance in four events from the MAF category

were not evaluated in any recorded training exercises from the first PTN graduating

class. The group of four non-evaluated events includes single engine approach, single

engine GA/missed approach, A/R overrun, and A/R breakaway.

Inconsistencies in expectation for which events are introduced between students’

campaigns creates even more ambiguity to the necessary skill requirements and ex-

pectations for students to advance to the next phase of pilot training. Ambiguous

graduation expectations may be leading to inconsistent performance of graduates.

Personalization of progress and standardization of expectations must be balanced in

order to create a consistent production of capable pilots and an effective pattern of

flight event recommendation.

4.3 Temporal Progress Trends

4.3.1 Variation in Training Lengths

The data indicates that there are significant variations in the necessary amount

of training exercises individual students may need to graduate the PTN program.

Six students completed training between 60 and 79 training exercises while twelve

students completed training between 80 and 100 training exercises. The minimum

number of training exercises required for a student to graduate in the first PTN

class was 60. The maximum number of training exercises required for a student to

graduate in the first PTN class was 100. The average and median number of training
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exercises required to graduate in the first PTN class were 83 training exercises and

87 training exercises, respectively. Individual training lengths per student are shown

in Table 3. Analyzing length until completion excluding MAF and CAF events may

provide valuable insight on the true length of training. However, there is no way to

identify training completion solely based on the data other than a halt in training data

for each student. A strict, standardized completion requirement must be established

before training completion length can be appropriately projected.

Table 3. Training Exercises per Student

Student ID Training Exercises to Graduate
11 100
18 95
12 94
15 94
1 93
10 92
13 91
5 90
9 87
3 86
14 80
7 80
4 79
2 77
8 69
19 69
17 66
16 60

The data in Figure 2 shows a left-skewed density distribution for overall training

length. A left skewed density distribution suggests that students are less likely to fin-

ish training early. Factors influencing total graduation time remain unknown because

of inconsistencies in event exposure. Figure 2 shows a histogram representing the

percentage of students graduating on specific training days and a corresponding den-

sity curve to estimate what the probability of finishing training on a specific training
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Figure 2. Density plot showing the probability of finishing training on a given number
of training exercises.

exercise may look like given a larger dataset. Variance in training length supports

PTN claims to make pilot training more personalized to individual student training

progress and performance. Trends in overall student progress and individual event

performances were broken down to better understand the event recommendation pro-

cess performed by IPs before each training exercise.

4.3.2 Student Evaluation Performance Over Time

Maximum, average, and minimum score statistics for each training exercise were

calculated for all events. Scoring statistics for each training exercise were calculated

using the scores of all students that performed equal to or greater than the specified

number of training events. Figure 3 shows an example of the change in student

evaluation statistics over time for a single flight event.

Volatility in score statistics occurs because not every event is performed on every

training exercise. Students who reach proficiency in an event tend not to be reeval-

uated on that same event during their next flight. The students performing that
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Figure 3. Evaluation Statistics Example for TP Stalls Event

event in the next flight are generally students that have not reached proficiency yet.

Limited data samples also contribute to variability. Performance evaluations in the

TP Stalls event continue to improve up until training exercise 53, where the average

score is equal to the maximum score for the event. After training exercise 53, the

scores go down to 0, indicating that no students performed the associated event on

the associated training exercise. It was found that fewer students performed an event

when all three statistics in Figure 3 showed equal values on a given training exercise.

This occurred more often in later training exercises as more students got close to

graduating. Often, if the minimum, average, and maximum were equal, only a single

student performed the flight event on the corresponding training exercise. Visualiza-

tion of temporal evaluation statistics for all events can be found in Figures 14-141 in

Appendix A.

Trends for reaching proficiency, or individual MIF, were examined for each possible

graded event. Table 4 shows the minimum, median, average, and maximum number of

training events required to establish proficiency in each graded event. The values are

representative of the students in the original PTN class that reach proficiency. Any
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students that never reached proficiency in a specific event were not included in the

descriptive statistics for reaching proficiency in that event. Table 4 provides insights

regarding the number of training exercises expected for students in a new PTN class

to reach proficiency. Missing values indicate that no student reached proficiency in

the associated flight event during their training campaign.

4.3.3 Overall Student Progress

Table 5. Point Allocation Per Event Graded Evaluation

Recorded Grade Definition Point Equivalent
E Excellent 4
G Good 3
F Fair 2
U Unsatisfactory 1

NG No grade 0
N/A No recorded data 0

The MIF super score was calculated for every training record per student to ana-

lyze how well MIF can track training progress. Points were allotted according to how

well a student scored on every completed event during a flight. At each training exer-

cise, a student’s individual event MIF scores were calculated according to maximum

grades and the corresponding point allocations in Table 5.

A score of 0 was recorded for all events not performed or any events that were

performed but not graded during a training exercise. A visual representation of all

student MIF super scores over time is shown in Figure 4.

Each line in Figure 4 represents the cumulative performance throughout training

of one of the 18 students that graduated from the first PTN class. There was only one

student who failed out of the first class of PTN. The disenrollment was assumed based

on an absence of recordings after training exercise 26 and poor evaluation performance

leading up to that point. Data from that student were omitted from the dataset used
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Figure 4. Cumulative student performance over time cumulative MIF metric for first
PTN class including CAF and MAF events

in model development because the training path does not represent one that can be

used to graduate pilot training students.

The standard MIF threshold, represented by the thick dashed line, is the maximum

cumulative MIF score that a student can accrue by excluding MAF or CAF events

from the evaluation. The MAF threshold is the maximum cumulative MIF score a

student can accrue excluding CAF events from the grade sheet. The CAF threshold is

the maximum cumulative MIF score a student can accrue when including all possible

events in their training campaign.

Any students who finished training above the MAF threshold were on the CAF

track. Any students who finished training above the CAF threshold were on the

CAF track, but also performed some MAF events. Figure 4 shows student progress,

but there is nothing accounting for depth and breadth of student progress, so the

comparison between students is difficult. For example, there is no distinguishing
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between students that have performed poorly on many events and students that have

performed well on a few events. Although students can receive a score of excellent

and receive 4 points on every event, some events only have a maximum MIF score

of 3. This indicates that it is possible for students to score above the proficiency

threshold. The ability to go above the max individual MIF in events also increases

progress ambiguity because a score resting exactly on the performance threshold does

not necessarily mean that the corresponding student is proficient in every event.

PTN leadership and the AFWERX-Austin team have hypothesized that the sharp

increases followed by extended periods of slow increase support a notion that students

distinguish themselves when new events are introduced. According to this hypothesis,

Figure 4 shows that many new events were probably introduced to the students before

training exercise 15 and around training exercise 50. The performance of students

that grasp events quickly has a more positive rate of change when introduced to new

events.

Each student was found to progress towards the proficiency of individual events

at a personalized pace. Extreme training personalization leaves each set of event

recommendations up to the subjectivity of the IP, diffusing category based progress

trends that may occur in traditional undergraduate pilot training. However, general

progress trends in depth present themselves. Stagnating progress suggest that there

are alternative factors influencing student progress that are not represented by the

current progress metric. Also, Figure 4 suggests that the value of improving scores

in event skill follow a nonlinear relationship because it is more difficult to advance

from good scores to excellent scores than to improve from unsatisfactory scores to

fair scores.

Figure 4 shows how the length of student training can vary tremendously. The

PTN program timeline varies from student to student. Thus, a model making rec-
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ommendations cannot rely on a set curriculum timeline. Instead, a model must be

personalized to individual student’s pace of progress over time.

In the current state of the PTN program, not all students are required to be

introduced to MAF and CAF events to graduate. Therefore, all data from the MAF

and CAF tracks within training were omitted to provide a standardized visual of

events introduced to each student. Figure 5 displays the cumulative performance

over time for each student disregarding CAF and MAF data.

Figure 5 suggests that every student does not breach the standard threshold.

Failure to meet MIF proficiency standards may be the result of failure to accurately

record data or subjectivity in the MIF proficiency measure introduced by the human

component of the evaluation process. Even though there is an expected MIF score

to establish proficiency for every event, every student that graduates does not reach

that score. One possible explanation for this is that IPs have the power to waive a

students sub-MIF performance if they think the student’s performance is satisfactory

for graduation despite recorded grades.

The Forward Progress Score (FPS) was designed to better model student progress

by incorporating more depth and breadth aspects of training into a single metric.

Achieving proficiency in each event is assumed as the primary goal for each student.

The MIF super score represents student grades, but fails to clearly describe student

progress towards proficiency. The FPS uses a percent value of the individual max

MIF scores to establish a variable representing student progress toward proficiency

in each event. Applying percentages of total progress towards a set goal addresses

skill depth in the campaign toward overall proficiency more appropriately than simply

considering recorded grades.

Visuals representing student FPS score over time, including and excluding MAF

and CAF event evaluations, are represented in Figure 6 and Figure 7, respectively.
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Figure 5. Cumulative student performance over time using cumulative MIF metric for
first PTN class excluding CAF and MAF tracks

Figure 6. Cumulative student performance over time using FPS metric for first PTN
class including CAF and MAF events
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Figure 7. Cumulative student performance over time using FPS metric for first PTN
class excluding CAF and MAF tracks.

Unlike Figure 4 and Figure 5, Figure 6 and Figure 7 show a consistent progres-

sion of student performance throughout training. Visual results indicate that the

performance stagnation seen in Figure 4 and Figure 5 may be a result of the MIF

metric’s inability to account for all components of student progress. The compo-

nents of student progress are explained in detail in the Modeling Approaches Section.

Furthermore, the comparison between the figures tracking MIF score and the fig-

ures tracking FPS score shows that FPS better depicts continuous student progress

throughout the training campaign.

4.4 IP Recommendation Trends

Further analysis was performed examining the order in which IPs introduced event.

Averages for ten variables corresponding to training event selection were examined

and portrayed in Tables 6 and 7. Table 6 shows how many events are performed
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on average at each training event and how new maneuvers are introduced as more

training exercises are performed. # Total Events Used represents the number of 128

possible flight events that have been evaluated on the corresponding training exercise.

# Current Events Used represents the number of events evaluated in an exercise.

# New Events Introduced represents the number of events that were evaluated for

the first time. # Used Events performed corresponds to the number of events that

have previously been evaluated and are being evaluated again. Columns in Table 7

indicate statistics on how many events are taken away and added in the short term.

For example, New from Past 1 and Deleted from Past 1 represent the number of

events evaluated in the exercise that were not evaluated in the previous exercise and

the number of events not evaluated in the exercise that had been evaluated in the

previous exercise.

The data shows that IPs evaluate students using between 20 and 30 events on each

training exercise. Out of those events, about a quarter are events that did not occur in

the previous exercise. On average, a few events appearing in any exercise had not been

evaluated within the previous 3 exercises. Table 7 also shows that the number of new

events from the previous exercise and the number of events removed from the previous

exercise are relatively close on average, suggesting that IPs might be performing 1-

for-1 event swaps when creating new flight plans for each training exercise. Events

are introduced more frequently in the beginning of a training campaign, but become

more sporadic throughout a campaign.

Ordered lists containing the training exercises when events were introduced for

each student were produced. Analysis of event introduction orders did not provide

any insights for a standardized order of introduction between events. The personalized

nature of PTN supports the lack of standardized event introduction.

The progress curves in Figure 4 suggest that the advancement in individual event
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performance follows a nonlinear path. An in-depth analysis performed on individual

students uncovers that students tend to spend the least amount of time, in training

exercises, at the unsatisfactory level. Often, students may never receive an unsatis-

factory score on an individual event. Students spent the most time at the Good level

for each graded event. This observation is consistent throughout the data. IP bias

implemented to reassure that a student is truly proficient in a graded event before

officially recording their skill level is the hypothesized cause of this issue.
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Table 4. Statistics for reaching proficiency across original PTN class measured by
training exercise

Graded Event Min Median Mean Max Graded Event Min Median Mean Max
Mission Analysis/Products 13 31.5 33 56 Extended Trail (Wing) 56 66 66 77

Ground Ops 14 28 32 64 Position Change 28 51 49 68
Takeoff 1 28.5 28 56 Formation Approach (Both) 54 57.5 58 61

Departure 3 28 29 57 Formation Landing (Both) 49 49 49 49
Basic Aircraft Control 13 36 38 79 Battle Damage Check 45 55 57 72

Cross-Check 19 33 39 86 Flt Integrity / Wingman Consideration 31 47.5 49 73
Enroute Descent / Recovery 14 31 33 74 Delay 90 41 52 56 77

Inflight Checks 14 31 32 57 Delay 45 52 61 63 77
Inflight Planning 19 34.5 38 74 Hook Turn 52 57 61 77

Clearing / Visual Lookout 14 30 33 74 Shackle 49 61.5 62 77
Communication 13 29 32 67 Cross Turn 54 59 61 75

Risk Mgmt / Decision Making 12 29 30 53 Fluid Turn 77 77 77 77
Situational Awareness 14 32.5 36 86 Tactical Rejoins 44 61 56 62

Task Management 19 31.5 35 76 Fluid Maneuvering 54 61 61 68
Emergency Procedures 19 31 38 86 Tac Initial 47 53.5 56 69

General Knowledge 19 29 37 79 Course Mx 47 66 65 88
Overhead/Closed Pattern 14 30 30 52 Course Entry 38 55 60 88

Visual St-In 7 32 26 33 Time Control 41 51 54 70
Landing 2 28 27 45 Altitude Control 50 52 60 88

No-Flap Landing 48 58 64 88 Checkpoint ID 51 63 64 88
Go-Around 19 34 36 60 LL GPS Integration 49 58 62 88

Emergency Landing Pattern 11 17 18 31 Tactical Maneuvering 51 66 63 76
G-Awareness 28 32.5 36 57 LL Lead Change 52 67 63 76

TP Stalls 28 30.5 33 45 Four Ship Admin 62 62 62 62
Slow Flight - - - - Fluid 4 56 56 56 56

Power On Stalls 22 33 33 45 Box Formation - - - -
Contact Recoveries 21 30 33 57 Offset Box 62 62 62 62

Spin Recovery 2 7.5 10 36 Wall 70 70 70 70
Aileron Roll 16 28 28 40 4-Ship Fingertip - - - -
Barrel Roll 29 39.5 40 53 4-Ship Straight Ahead Rejoin - - - -

Pitchback / Sliceback 28 28 28 28 4-Ship Turning Rejoin 62 62 62 62
Cloverleaf 13 29.5 30 42 Heat to Guns Setup 65 69 69 73

Cuban Eight 3 32 28 38 Heat to Guns Maneuvering 59 65 66 72
Immelmann 11 32 32 43 Fuel Awareness/Management 59 69 70 81
Lazy Eight 28 40 40 56 Advanced Handling - - - -

Loop 27 31 32 40 Perch Setups 59 65 66 73
Split S 4 37 36 57 Maneuver Selection 61 65 67 73

Vertical S - - - - Offensive Fighter Mnvr Exec 62 66 67 73
Unusual Attitudes 16 19 19 22 Defensive Fighter Mnvr Exec 64 73 73 81

Steep Turns 71 75 75 79 CZ Recognition 65 70 71 78
Intercept / Maintain Arc 31 53 54 84 Air to Air Weapons Employ - - - -

Fix to Fix 4 19 22 61 HA Lead Turn Exercise - - - -
Holding 29 48.5 46 62 HA Butterfly Setups - - - -

Full Procedure Approach 27 37 38 56 HA BFM Flt Analysis 72 74.5 75 79
Non-Precision Final 26 31 36 78 SA Conventional Range - - - -

Precision Final 1 29.5 30 55 SA Tactical Range Proc - - - -
Circling Approach 16 58.5 55 86 SA Safe-Excape Maneuver - - - -
Missed Approach 11 45 45 63 SA Threat Reaction 77 77 80 87

Night Landing 17 37 34 48 SA Weapons Employment 76 85 83 89
Wing Takeoff 14 43 46 75 Air to Ground Error Analysis - - - -

Interval Takeoff 48 59 58 67 TACS/JFIRE Procedures - - - -
Instrument Trail 64 72 72 80 Air to Gnd 2-Ship Mutual Supt - - - -

G-Warmup / Awareness 14 59 58 77 Mission Management 71 85 84 97
Lead Platform 33 48 46 58 VFR Arrival 68 86 80 86

Pitchout (Both) 14 48 42 57 Tanker Procedures - - - -
Fingertip (Wing) 14 54 50 68 Reciever Procedures - - - -

Route (Wing) 42 54 53 72 Airdrop Procedures - - - -
Fighting Wing (Wing) 52 57.5 58 72 Crew Coordination 63 85 80 87
Straight Ahead Rejoin 40 43 50 67 Single Engine Approach - - - -

Turning Rejoin 51 55 57 66 Single Engine GA/Missed Appch - - - -
Overshoot 44 49 49 54 A/R Overrun - - - -

Echelon (Wing) 50 50 50 50 A/R Breakaway - - - -
Breakout (Wing) 33 53 53 64 FD/AP Operations - - - -

Lost Wingman (Both) 43 62.5 59 77 FMS Operations 72 72 78 90
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Table 6. Average Instructor Pilot Flight Plan Development Trends by Training Exercise

Training Exercise # Total Events Used # Current Events Used # New Events Introduced # Used Events Performed
1 19.7 19.7 19.7 0
2 26 21.9 6.3 15.6
3 29.2 21.7 3.2 18.5
4 31.1 22.3 1.9 20.4
5 33.6 23.1 2.6 20.5
6 38 23.5 4.4 19.1
7 40.6 23.1 2.6 20.5
8 44.1 24.9 3.6 21.4
9 47.8 24.9 3.7 21.2
10 51.3 24.8 3.4 21.4
11 52.9 26.6 1.7 24.9
12 54.6 25.9 1.6 24.3
13 56.8 25.5 2.2 23.3
14 57.6 23.9 0.8 23.1
15 58.3 24 0.7 23.3
16 58.4 22.6 0.1 22.6
17 58.4 21.4 0.1 21.4
18 58.7 21.4 0.2 21.2
19 59.1 20.8 0.4 20.4
20 59.3 21.8 0.2 21.6
21 59.3 22.6 0.1 22.6
22 59.5 23.3 0.2 23.2
23 59.7 22.8 0.2 22.6
24 59.8 23.1 0.1 23
25 60.1 22.8 0.3 22.5
26 60.2 24.7 0.2 24.6
27 60.3 21.1 0.1 20.9
28 60.5 25.9 0.2 25.8
29 60.6 25.2 0.1 25.1
30 60.7 26.5 0.1 26.4
31 60.8 27.8 0.1 27.7
32 61 27.6 0.2 27.3
33 61.2 26.6 0.2 26.4
34 61.2 26 0 26
35 61.4 27.8 0.3 27.6
36 61.9 25.9 0.4 25.5
37 62.3 26.6 0.4 26.2
38 62.9 24.2 0.7 23.5
39 63.6 25.2 0.6 24.6
40 64.1 25.6 0.5 25.1
41 64.9 27.6 0.9 26.7
42 65.3 23.8 0.4 23.4
43 65.5 25.3 0.2 25.1
44 65.8 26.6 0.3 26.3
45 66.8 26 1.1 24.9
46 67.8 25 1 24
47 69.2 25.2 1.3 23.9
48 70.7 27.1 1.6 25.5
49 71.9 25.8 1.2 24.7
50 72.8 27.1 0.9 26.2
51 74.1 27.6 1.3 26.3
52 74.7 29.5 0.6 28.9
53 75.4 31.2 0.8 30.4
54 77 28.4 1.6 26.9
55 77.4 29.8 0.4 29.4
56 77.9 30.2 0.5 29.7
57 79.3 26.5 1.3 25.2
58 80.3 27 1 26
59 81.4 25.5 1.1 24.4
60 81.6 28.3 0.2 28.2
61 83.3 26.2 1.5 24.7
62 83.5 26.5 0.2 26.2
63 83.9 26.9 0.4 26.6
64 85.2 27.9 1.3 26.6
65 86.2 26.7 1 25.7
66 86.8 30.5 0.6 29.9
67 87.8 28.1 0.4 27.6
68 88.6 29.2 0.8 28.5
69 89.1 27.2 0.5 26.7
70 91.3 27.8 0.7 27.1
71 92.9 31.4 1.6 29.9
72 93.8 27.3 0.9 26.4
73 94.5 27.4 0.7 26.6
74 94.8 29.5 0.3 29.2
75 94.9 25.3 0.1 25.1
76 95.6 27.6 0.6 27
77 96.5 25.4 0.9 24.4
78 95.8 26.2 0.4 25.8
79 96.6 24.8 0.8 24.1
80 97.2 22.1 0.2 21.8
81 96.5 26.6 0.3 26.3
82 96.8 24.7 0.3 24.4
83 97 21.2 0.2 21
84 97.1 22.6 0.1 22.5
85 97.3 23.6 0.2 23.4
86 97.8 21.4 0.5 20.9
87 96.2 23.1 0.1 23
88 94.2 21.2 0 21.2
89 94.4 21.8 0.1 21.6
90 94.4 21.6 0 21.6
91 92.4 23 0.1 22.9
92 92.7 23.8 0 23.8
93 93.4 22.4 0 22.4
94 94.2 22.2 0 22.2
95 99 24 0 24
96 88 27 0 27
97 88 28 0 28
98 88 22 0 22
99 88 21 0 21
100 88 16 0 16
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Table 7. Average Instructor Pilot Flight Plan Development Trends by Training Exercise

Training Exercise New From Past 1 Deleted From Past 1 New From Past 2 Deleted From Past 2 New From Past 3 Deleted From Past 3
1 - - - - - -
2 6.3 4.1 - - - -
3 4.8 5.1 3.2 7.5 - -
4 4.6 3.9 2.8 7.2 1.9 8.7
5 5.7 4.9 4 7.2 2.9 9.4
6 8.3 7.8 5.9 10.4 5.4 12.2
7 7.8 8.2 4.3 12.6 3.7 14.5
8 8.7 6.8 5.6 11.9 4.6 15.3
9 8.4 8.4 6.6 13.4 5.4 17.3
10 8.2 8.3 6 14.6 5.2 18.7
11 9.2 7.4 6 12.6 3.2 16
12 7.4 8.1 5.9 14 4.3 17.6
13 8 8.4 5.7 14.1 4.7 19.1
14 5.4 6.9 4.2 14.2 3.5 19.2
15 7.3 7.2 5.6 12.5 3.6 17.7
16 6.2 7.6 4.3 12.9 2.9 16.8
17 5.4 6.6 3.1 11.8 2.2 16.2
18 5.5 5.6 4.1 10.7 2.9 14.8
19 5.8 6.4 3.7 9.8 3.2 14.4
20 5.7 4.7 3.5 8.9 3 11.9
21 5.7 4.9 4.4 8.3 3.6 11.7
22 6.4 5.7 4.2 8.4 3.6 11.2
23 5.6 6.2 3.7 9.9 2.7 11.7
24 6.1 5.8 3.8 9.7 2.8 12.4
25 5.6 5.9 3.4 9.5 2.8 12.8
26 7.9 5.9 5 8.9 4.7 12.2
27 4.9 8.6 2.9 12.5 2.3 14.9
28 8.8 3.9 4.2 7.9 3.5 11.1
29 6.6 7.3 4.5 9.1 3.4 12.1
30 7.2 5.9 3.8 9.8 3.4 11.3
31 7.7 6.4 4.9 9.5 3.5 12
32 5.9 6.1 3.8 10.4 2.8 12.5
33 5.8 6.8 3.4 10.6 2.7 14.1
34 7.2 7.8 4.2 11.6 2.4 13.6
35 8.3 6.4 5.2 11.1 3.9 13.7
36 5.3 7.2 3.4 11.7 2.5 15.5
37 8.1 7.4 4.4 11 3.6 14.6
38 5.6 8 3 12.8 2.3 15.8
39 8.2 7.1 5 11.9 3.7 15.5
40 7.2 6.8 4.1 10.8 3.4 14.9
41 8.2 6.2 6.3 11.1 4.7 13.5
42 6.7 10.4 4.3 14.3 3.7 18.5
43 7.3 5.8 3.8 12.8 3.1 15.9
44 7.2 5.8 4.4 8.9 2.4 13.9
45 6.8 7.4 5.4 11.8 4.7 14.2
46 8.2 9.2 4.6 13 3.8 16.6
47 7.1 6.8 4.6 13.6 3.7 16.4
48 10.4 8.6 7.9 12.9 5.5 17.3
49 7 8.2 3.3 13.2 2.9 17
50 8.1 6.8 6 12.9 3.6 15.4
51 9.4 9 7.7 14.1 5.5 18
52 8.2 6.3 4.6 11.6 2.6 14.8
53 9.3 7.7 6.3 10.9 4.8 14.8
54 7.1 9.8 4.5 14.9 3.8 17.4
55 11.1 9.7 5.2 13.6 2.6 16.1
56 9.3 8.9 5.4 14.7 4.3 17.5
57 7.4 11.2 4.4 17.1 3.5 21.9
58 7.3 6.8 3.6 14.3 3.4 20.1
59 8.3 9.8 5.9 14.2 4.7 20.5
60 8.4 5.6 5.1 12.1 4.4 15.8
61 7.2 9.5 6 14.2 4.8 19.1
62 7.8 7.5 5.4 14.6 3.8 17.7
63 8 7.5 6.2 13.3 4.5 18.7
64 8.4 7.4 5.6 12.1 4.4 16.7
65 8.9 10.2 7 15.6 5.1 18.5
66 10.5 6.7 5.9 12.3 4.4 16.1
67 9.7 12 5.9 15 3.4 18.2
68 8.8 7.6 3.8 14.6 3.3 17.1
69 7.3 9.4 4.6 14.3 2.8 19.4
70 10 9.3 6 14.5 4.6 18
71 10.9 7.3 6.5 12.1 4.5 15.4
72 6.1 10.3 4.4 15.9 3.1 19.4
73 8.6 8.5 4.9 15.1 3.4 19.1
74 9.2 7.1 5.1 11.5 2.9 15.8
75 5.8 10 2.3 13.6 1.9 17.6
76 8.2 5.9 3.1 10.7 3 14.2
77 6.8 9.1 5.1 13.3 3.9 16.9
78 6.9 6.7 2.8 12.2 2.1 15.8
79 4.7 6.1 3.7 11.8 2.8 16.4
80 3.7 6.8 2.7 12 2.3 16.5
81 8.4 3.7 6.3 6.8 4.6 11
82 4 5.9 3 8.6 3 11.7
83 2.3 5.8 2.3 11.7 1.8 13.9
84 3.4 2 2.2 6.6 2 12.3
85 4.9 3.9 4 5 3.8 9.4
86 3.8 6 2.4 8.5 1.9 9.1
87 5.6 3.7 3.7 7.9 3 9.9
88 3.1 5.4 1.8 7.9 1.4 10.2
89 3.1 2.6 2.8 7.6 2.1 9.5
90 3.5 3.6 3 5.8 2 9.8
91 3.4 1.7 2.7 4 1.9 5.6
92 3.2 2.5 2.3 3.5 1.8 5.3
93 1.6 3 1.2 5 0.8 5.8
94 1.8 1.5 0.8 3.8 0.5 5.8
95 3 0.5 2 2 1.5 3.5
96 2 0 2 0 2 0
97 1 0 1 0 1 0
98 2 8 2 8 2 8
99 1 2 0 9 0 9
100 0 5 0 7 0 14
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V. Modeling Approach

5.1 Overview

Data trends combined with methods from related research are applied to design

an algorithm and model that generates event sets for the next flight in a student’s

training campaign. This section discusses the methodology and underlying algorithms

used to make these event recommendations.

5.2 Filtering Models

The flight planning process contains many components that must be accounted

for to properly progress a pilot trainee through training. Volatile factors include event

familiarity, individual event experience, progress through the training program, and

progress in comparison to the rest of the class; all factors are influential in making

flight planning recommendations.

Predicting accurate, personalized recommendations for events that fit a pilot train-

ing student’s true progression and challenge the student’s abilities requires a complex

solution. Fitting a hybrid model composed of both content-based and collaborative

filtering is proposed as the best approach for such a complex problem.

At each training exercise, a recommendation is made for the next set of flight

events in a continuous sequence of event sets that make up a student’s training his-

tory. Event set recommendation is viewed as an advanced sequence prediction task

called a sequential set-to-set task. The fundamental sequence prediction task aims

to predict the next value in a sequence based on the existing values in a sequence.

Sequence prediction has been used on a variety of tasks such as predicting price value

changes based on temporal price trends or predicting the next alphabet character

in a computer generated sentence based on all of the characters that preceded it.
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Flight recommendation is performed similarly. However, at each interval, the model

produces a set of values rather than a single value. Each value in the set represents

an individual event recommended for the next flight plan.

5.2.1 Motivation for Content-Based Model

Sequence prediction is a task that involves using temporal sequence data to predict

the next value or values in the sequence. For PTN, sequence prediction uses the

previous flight data of an individual student, such as the progression of accomplished

events and corresponding grades, to recommend a vector of events appropriate for

the next flight plan. Industry-leading models for dealing with this type of sequential

prediction are long short-term memory recurrent neural networks (LSTM RNNs) and

temporal convolutional networks (TCNs).

Deep learning models learn from the data provided, so limited data records may

result in limited output options for more well established models such as LSTM RNNs

or TCNs. PTN has very limited records of student data due to it’s relatively short

history. Limited training data may lead to a limited variety of output recommendation

options from LSTM and TCN models, so the outputs are subject to standardization

in length and lack personalization in flight event combinations.

The proposed solution to combat the limitations of output vectors resulting from

standard sequence prediction models is sequential set generation. Each unique flight

plan in undergraduate pilot training consists of a set of individual flight events, not

necessarily a specific vector of events that must be paired together every time. Se-

quential set generation iteratively outputs individual elements of a set of events rather

than a vector with a fixed number of flight events. Iteratively generating each indi-

vidual component of each set of flight plan events allows for new, more personalized

recommendations for the individual training exercise that avoids the limitations of
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standardized vector outputs and more accurately represents how IPs build flight plans.

5.2.2 Motivation for Collaborative Models

Collaborative filtering is used to incorporate a competitive aspect between a pilot

training student’s progress and other students’ progress throughout training. A stu-

dent’s performance at each training level is assessed and compared to that of their

peers to encourage continuous performance advancement for individuals and succeed-

ing pilot training classes. Incorporating collaborative progress into recommendations

is a preventative measure to avoid individual students from falling behind in training

due to a slower natural rate of advancement compared to pilot training peers.

Setting a golden standard for performance provides a baseline for making rec-

ommendation adjustments that converge towards a global performance expectation.

Establishing a global baseline assures that all students are progressing in a similar

manner as the top performers, even if at a slower pace.

Combining collaborative filtering models with content-based filtering models us-

ing deep learning architectures introduces the ability to make more personalized rec-

ommendations for the user. Two different content-based sequential structures for

content-based recommendation using deep learning provide adequate methods of ap-

proaching the AutoGradebook event recommendation process: sequence prediction

and sequential set generation.

5.2.3 Motivation for Hybrid Model

The model uses an ensemble of content-based and collaborative filtering methods.

A content-based model provides more personalized recommendations for each student

derived from personal training and performance. The PTN program provides for more

personalized training while also graduating pilot training students in a fraction of the
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time that the current UPT program takes. Personalized training may promote effec-

tive training progress, but providing recommendations solely on a particular student’s

performance history may result in periods of stagnated growth and ultimately longer

training duration in the program. Collaborative filtering helps limit stagnation by es-

tablishing training expectations from the global population. As a stochastic variable,

student improvement cannot always be predicted accurately. Continuously provid-

ing recommendations that guide individual student performances towards a global

performance expectation is one method of combating such stochasticity.

5.3 Proposed Content-Based Model

Literature has shown that multiple deep learning model structures can be used

to adequately make predictions in sequence to sequence tasks. The current most

commonly applied deep learning model for sequence prediction seems to be the LSTM

RNN. An LSTM RNN was applied in this research to make initial personalized event

set recommendations given temporal training data. Model construction and fitting

were conducted via the TensorFlow software library with the Keras wrapper within

the Python modeling environment. Exploration of alternative model structures and

applications is proposed for future research.

5.3.1 Model Architecture

The content-based model architecture is composed of two stacked LSTM RNN

layers. Each layer uses an activation function to take inputs and produce outputs

that will be used as inputs for the next layer in the network. A nonlinear activa-

tion function is used given the complexity of the problem and data patterns. Each

LSTM layer uses a rectified linear unit (ReLU) activation function. The ReLU acti-

vation allows network parameters to converge toward optimum quickly with the use
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of backpropogation. ReLU activation functions also help avoid vanishing gradients, a

problem that often leads to ineffective parameter updates during the backward prop-

agation training process and a less effective model. The output layer uses a sigmoid

activation function to convert all predicted values to a value between 0 and 1. Flight

events with predicted values greater than or equal to 0.5 are included in the content-

based recommendation. The model consists of 184,928 trainable parameters. Model

structure is represented in Figure 8.

5.3.2 Data Preparation

The model inputs consist of student scores recorded as percentages of the individ-

ual event MIF required for proficiency. Inputting scores as a percentage of proficiency

normalizes the values, allowing for more efficient parameter training. Sequential data

must be structured properly to input it into an LSTM RNN model. Model input se-

quence lengths of 10, 25, and 50 were explored for model performance purposes. All

input sequences must be the same size when training a model. Given the temporal

nature of evaluation history, it may not be possible to create an input sample with

a certain number of sequential data records. For example, it is not possible to make

an input sequence of length 50 if a student has not conducted at least 50 training

exercises. To counter this issue, all missing sets were forward padded with sets of

0 values representing training exercises with no flight event evaluations. Forward

padding the inputs enables model training for a variety of evaluation history quanti-

ties while maintaining consistent input size. Only the most recent training exercise

evaluations, with a total number of evaluations equal to the sequence length, were

included in the input if the input correlated to a training exercise recommendation

beyond the designated sequence lengths.

Target variables sets were also restructured to create an appropriate training and
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Figure 8. Long Short Term Memory Recurrent Neural Network Model Architecture

testing environment for the model. The training targets, referring to the single set of

flight events that the model compares results with during training to make parameter

adjustments, were gathered from the succeeding training event of the input sequence.

The training targets were reformatted from student grades to binary representations

of event occurrence.

5.3.3 Model Fitting

A supervised learning approach was applied to train the model using classifica-

tion accuracy and binary cross-entropy loss metrics. Accuracy measures how similar

the models recommendations are to the true IP recommendations in the data. This

metric is calculated as the percent of events in the content-based recommendation

that were correctly listed as occurring or not occurring when compared to the true

IP recommendations. The equation to measure accuracy between the real IP recom-

mendations and model generated recommendations is shown in Equation 1, where b

is a binary variable representing whether or not the target and predicted variables are

equal and e represents the specific graded event. be equals 1 if the model’s predicted
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value rounded to the nearest whole number is equal to the true IP recommendation

for each flight event, e, and equals 0 otherwise.

Accuracy = − 1

128

128∑
e=1

be (1)

Whether or not the model outputs the correct suggestion for all 128 graded events

is incorporated into this metric because an IP must make a binary decision whether to

include each graded event into the flight plan for each new training event. Binary cross

entropy measures the confidence of the recommendations using Equation 2, where t

represents the target value chosen by a real IP, p represents the models predicted

value, and e represents the specific graded event.

BCE(te, pe) = − 1

128

128∑
e=1

te ∗ log(pe) + 1− te ∗ log(1− pe) (2)

The sigmoid activation function in the output layer uses a value between 0 and 1

to classify events as occurring or not, respectively. If the model outputs the value of

0.5 for an individual event, that means the model’s confidence is evenly split between

the two classification. Values closer to 1 or 0 represent more confident model predic-

tions. Lower binary cross-entropy represents that the sigmoid function is generating

values closer to the real binary recommendation values of 0 or 1. Model accuracy

did not make drastic increases with the addition of more training epochs, so training

completion was determined by digression of the loss metric.

High personalization of individual student training campaigns means that each

students records are independent of the others. Students 1-4, which represent a variety
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of training durations, were set aside for a model testing set. The remaining 14 students

composed a training set used to perform leave-one-out cross validation (LOOCV) to

find a best-fit model. The grade sheet data were restructured as three dimensional

arrays with a designated sequence length number of training exercise evaluations that

acted as input for the model. A vector of binary values, 1 designating that an event

was evaluated and 0 designating otherwise, acted as the target variable associated

with each input. Parameter optimization was performed using three different sequence

lengths to check for significance in the amount of prior evaluation history needed to

effectively provide a recommendation.

Model parameter optimization was performed using 13 of the training examples

and then performance was validated on the remaining training examples. The last

training record from each student was not used in model training due to the lack of an

available target set. A single training epoch refers to the complete presentation of 13

training examples to the model. The model was arbitrarily set to train for 100 epochs,

meaning the data may continuously be fed into the model up to 100 times to make

parameter adjustments. Applying an early stopping technique prevented the model

from continuing to train if the loss metric did not improve after 15 epochs. Binary

cross-entropy improvement was defined as a decrease of less than 0.001. This process

was repeated 14 separate times to create 14 different models with corresponding

accuracy and loss metrics. The model with the lowest validation loss measurement was

chosen as the final model. The LOOCV validation technique was chosen for this task

to maximize the number of training examples used for parameter optimization given

data limitations from only 18 total students. Using more data in training helps fit a

model that can generalize predictions to the larger PTN student population rather

than overfitting a model to any specific training path. Figure 9 and Figure 10 show

the change in model accuracy and loss binary cross entropy at each training epoch,
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respectively. Validation accuracy does not improve much throughout training. With

only 13 students, limited data may be preventing further accuracy improvements.

Validation loss improved drastically during the first few training epochs, but leveled

out around epoch 10. The model continued training until a loss value improvement of

0.001 did not occur for 15 consecutive training epochs. The model parameters at the

epoch with the best loss value were recovered and used as the best fit content-based

model.

Table 8 shows the results of the best fit models trained using each sequence length.

Small variation in result values was observed from the models created in the LOOCV

process for each respective sequence length. Small variances are likely due the sparse

training data available. Further parameter tuning was discontinued due to lack of

data and results variety.

Table 8. Leave-One-Out Cross Validation Model Results

Sequence Training Validation Training Validation
Length Loss Loss Accuracy Accuracy

50 0.1759 0.1771 0.9242 0.9241
25 0.1780 0.1682 0.9241 0.9247
10 0.1886 0.1713 0.9238 0.9266

5.4 Proposed Collaborative Model

5.4.1 Establishing Performance Standards

The golden standard is defined using the total event exposure and average recorded

grades of the top ten percent of student records in the PTN database for the given

training exercise number. On the given training exercise, the average MIF ratio

score of the top ten percent of global performers is calculated for each possible event.

The set of average MIF ratio values makes up the golden standard for performance

at the given training exercise. This set of values provides a reference for expected
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Figure 9. Training and Validation Accuracy per Epoch

Figure 10. Training and Validation Loss per Epoch
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progress towards proficiency in each graded event upon reaching the given training

exercise. The FPS value for the golden standard is calculated as a reference for

student orientation around the established progress expectation.

An individual event progress (IEP) score is calculated for each event by subtracting

a student’s individual MIF ratio value from the golden standard MIF ratio values.

The resulting IEP value represents how far a student is from the expected progress

standard. A positive value means the student’s progress for a specific event being

below the golden standard for the event at the given training exercise. A negative

value means the student’s progress for a specific event is above the golden standard

at the time. A student is deemed above the golden standard if their set of IEP scores

does not contain any positive numbers, indicating they are above the standard for

every event. Otherwise, a student is deemed below the golden standard.

Collaborative filtering for recommendations is tailored based on each student’s

orientation to the golden standard at the given training exercise. Recommenda-

tions given to any student resting below the establish golden standard are tailored

to progress them towards the standard. Recommendations for students resting above

the golden standard are tailored strictly to improve student FPS.

5.4.2 Below the Standard

Inspired by the PSO algorithm, the collaborative filtering model compares the

current student progress scores of each possible event with the scores in the golden

standard. Collaborative based recommendations for students below the golden stan-

dard are tailored to advance students towards the golden standard using event specific

adjustments similarly to how the PSO algorithm adjusts point conditions toward a

population optima.

The set of IEP scores is implemented along with the likelihood of the specific event
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occurring at the given point in training to calculate the utility of recommending

a specific event on the given training exercise. The event with the most positive

utility provides the most benefit to student progress and has the most incentive for

recommendation. The event with the most negative utility provides the most benefit

to student progress and has the least incentive for recommendation. All event utilities

are calculated and stored in descending ordered.

The model then separately scans all events recommended from the content-based

model and the list of all events excluded from the content-based recommendation.

The event with the lowest utility from the initial recommendation is swapped out

with the event with the highest utility from the list of initially excluded events. No

event swapping will take place if all events from the content-based recommendation

yield higher utility than any of the excluded events.

A student below the standard in many graded events may require more tailored

recommendations to push them towards the expected skill level for a given training

exercise. Therefore, the algorithm makes event swaps accordingly using the values

found in Table 9. The ranges for number of events in Table 9 were set arbitrarily and

only allow fewer swaps to be performed than the number of events below the golden

standard. No more than 6 event swaps from the content-based recommendation may

be performed. Thus, the influence of the collaborative model on final recommenda-

tions is limited to maintain the personalization of training campaigns gained from the

content-based model.

Incorporating additional performance standards, such as a local standard, for

more tailored recommendations has been explored for the given problem, as well.

This application proved unnecessary current task, but may be useful in alternative

applications of the AutoGradebook. Further discussion on the incorporation of addi-

tional performance standards can be found in the Future Work section.
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Table 9. Number of event swaps according to the number of graded events below the
golden standard (GS)

Number of events
below the GS Event swaps preformed

1-5 1
6-10 2
11-20 3
21-30 4
31-40 5
41+ 6

5.4.3 Above the Standard

Students above the golden standard are still expected to improve throughout

training, so the flight recommendation system must continue to suggest events that

will improve student progress. However, working toward the golden standard no

longer benefits student progress in this case. Unlike the PSO algorithm, this model

does not attempt to redirect students back toward the golden standard once they

have passed it. Instead, a separate greedy heuristic search algorithm is applied to

enhance student learning and performance beyond the golden standard. Using the

FPS metric provides an alternative approach to make recommendations that are

predicted to maintain student training progression.

The FPS is calculated using a hierarchical point system, incorporating three

components of student progression to more precisely express student advancement

through training. The three components of student progression determining the FPS

include individual event scores, introduction to new event categories, and proven pro-

ficiency in event categories. Depending on student progress, it is an IP’s subjective

opinion whether to choose to introduce new events rather than emphasize on events

where students have already received graded evaluations and vice versa. Point al-

locations for each component of the FPS are derived according to the preference of

each component of progress. The preferences of the student progress components are
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expressed in descending order in Table 10.

Table 10. Ranking of Possible Progressive Events Occurring From Recommendation

Ranking Event
1 Achieving proficiency on all events in a category
2 Achieving proficiency in a single event
3 Introduction of all events in a category
4 Introduction of a single event
5 Individual event performance increase from U to F
6 Individual event performance increase from F to G

Events in descending order of value

Complete proficiency in all events is the overall goal of each student training

campaign. Therefore, achieving proficiency across multiple events is more valuable

than achieving proficiency in one event and weighted as the most valued event that

can occur. An event must be introduced for student progress in that event to improve.

Achieving proficiency in a single event is the next most favorable outcome of a training

event.

Achieving near-proficiency across multiple events is more beneficial to the overall

training campaign than achieving near proficiency in a single event. It is not possible

to achieve near proficiency in multiple events if only a single event has been intro-

duced. Therefore, points allocated for being introduced to a set of events are greater

than points allocated for an event evaluation that is only one letter grade away from

proficiency. Naturally, it is more valuable for multiple events to be introduced than

for a single event to be introduced.

Introducing a new event shows progress in both skill depth and breadth, so it is

more valuable for a student to be introduced to a new event than for the student to

progress without reaching proficiency. In addition, the data shows that a good score

is the most frequent evaluation score for students. This indicates that progress tends

to stagnate just before achieving proficiency and students are expected to maintain a
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good evaluation score over multiple training exercises rather than immediate progres-

sion to proficiency. To account for this stagnation, progressing from a fair grade to a

good grade is the least valuable progressive event outcome from a training exercise.

The first component of the FPS calculation applies the individual event scores to

account for training depth. Each event has its own individually designated MIF score

to represent proficiency in that event. Given that each event may have a different

individual MIF score, taking the cumulative MIF score introduces more ambiguity

regarding how close to proficiency a student may be. Calculating the fraction of a

student’s current maximum score over the designated individual MIF score for each

individual event provides a clearer metric of a student’s progress toward proficiency

in an individual event. The individual event fraction (IEF) is calculated using Equa-

tion 3.

IEFman =
MaxScoreman

MaxMIFman

(3)

In Equation 3, man represents an individual flight event index, MaxScoreman

represents the student’s highest earned score during any graded evaluation of event

man, and MaxMIFman represents the minimum score a student must receive on event

man in order to be deemed proficient in that event. IEFman represents the student’s

calculated IEF score for the specified event, man.

Exploratory data analysis concluded that recorded evaluation data seemed to con-

tain IP bias that influenced how quickly a student advanced their individual event

performance. The IEF directly incorporates the biased data. A model using biased

data must account for that bias in order to generate a more appropriate prediction.

Therefore, a hierarchical point system was developed in accordance with trends from

provided data to allot points for student performance on each event based on IEF
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values. Maximum individual MIF scores for all events are either 3 or 4, so divisional

boundaries within the hierarchy were established with consideration that not all max-

imum MIF scores are equal. Receiving a fair score in any event with a maximum MIF

score of 3 receives equivalent progress points to receiving a good score in any event

with a maximum MIF score of 4 to simplify model calculations.

Incorporating IEF into the FPS accounts for the depth component of student

progress. For each event, the Cumulative Event Points (CEP) scores are allotted

based on IEF and inserted into the FPS equation. The value hierarchy of allotted

points is expressed in Table 11.

Table 11. Point Allocation Per Event Graded Evaluation

IEF value Additional Points Allotted Cumulative Points Allotted

IEF ≥ 1 2.25 5

1 > IEF ≥ 2
3

0.50 2.75

2
3
> IEF > 1

3
0.75 2.25

1
3
≥ IEF > 0 1.5 1.5

IEF = 0 0 0

The hierarchical point system is not collective. This means that for each event a

student can only receive one of the values from the Cumulative Points Allotted column

of Table 11. The possible CEP values for each event are expressed in the Cumulative

Points Allotted column of Table 11. A student will never have a CEP score greater

than 5 for an individual event throughout a training campaign. Applying the points

system defined in Table 11, the equation to calculate the first component of the FPS

score is expressed as:
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Component1 =
∑

man∈manPossible

CEPman (4)

where man represents an individual flight event and manPossible represents the set

of all possible flight events for evaluation.

The second and third components of the FPS calculation incorporate the ten

event categories to account for training breadth. The second component applies an

additional point bonus to the FPS if all events within an event category have been

introduced at any point up to the current training exercise. The equation to calculate

the second component of the FPS score is expressed as:

Component2 =
10∑

cat=1

SWeightcat ∗ Scat ∀ SWeight ∈ SeenWeights (5)

where cat represents an individual event category index, SWeight represents the de-

fined weighted value of being introduced to all events within a category, cat, by the

given training exercise, and Scat is a binary variable representing whether all events

within a category, cat, have been introduced to the student by the given training

exercise. SWeights represents the set of individual weighted values corresponding to

the introduction of all events for each event category. A value of 1 for the variable

Scat means that all events within a category, cat, have been introduced to the student,

0 otherwise.

The third component applies an additional point bonus to the FPS if student

performance in all events within an event category reach proficiency any point up to

the current training exercise. The equation to calculate the third component of the
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FPS score is expressed as:

Component3 =
10∑

cat=1

MWeightcat ∗Mcat ∀ MWeight ∈ MIFWeights (6)

where cat represents an individual event category index, MWeight represents the

defined weighted value of reaching proficiency in all events within a category, cat,

by the given training exercise, and Mcat is a binary variable representing whether

all events within a category, cat, have reached proficiency to the student by the

given training exercise. MIFWeights represents the set of individual weighted values

corresponding to reaching proficiency in each event category. A value of 1 for the

variable Mcat means that the student has reached proficiency in all events within a

category, cat. A value of 0 for the variable Mcat means that the student has not

reached proficiency in all events within a category, cat.

The final equation for the calculation of the FPS for a single student is:

FPSstud,TE = Component1 + Component2 + Component3 (7)

where stud represents a specific student and TE represents the training exercise

having the FPS.

A set of advancing event combinations is produced by implementing swaps be-

tween the content-based recommendation and the list of excluded events. Advancing

combinations are created by making a one-for-one swap between an event in the

content-based recommendation and an excluded event yielding higher event utility.

Only one event swap is implemented because the student is already performing above

the standard. There is no guaranteed way to ensure continued progress, but a single

swap designed to raise the FPS adds an element of predicted advancement in event

depth or breadth that is most beneficial to a student’s progress state at the time.
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Corresponding FPS values are calculated for each advancing event combination

and the initial content-based recommendation. A greedy heuristic algorithm is applied

to identify the set of events yielding the highest predicted FPS for the immediate

future. The set of events yielding the highest predicted FPS constitutes the final

recommendation for the user. A single random selection from the premier event

sets is chosen as the final recommendation when various sets of events yield equally

dominating FPS scores.

The Recommender System Algorithm shows the complete process from user inputs

to final recommendations.

Recommender System Algorithm

1: User initializes userID and TE
2: Initialize userData as all data from userID
3: Initialize globalData as all data excluding userID

4: for each flight event do

5: Calculate IEFuserID

6: end for
7: for each event category do

8: Check if all events have been introduced
9: Check if all events have reached proficiency

10: end for
11: Calculate current FPS score for userID
12: Restructure userData for LSTM inputs

13: Categorize event recommendations using LSTM model for initial recommendation

14: Calculate userID FPS for TE+1 according to initial recommendations

15: for each student in globalData do

16: for each flight event do

17: Calculate IEF
18: end for
19: for each event category do

20: Check if all events have been introduced
21: Check if all events have reached proficiency

22: end for
23: Calculate student FPS at TE
24: end for
25: Identify top 10% performers at TE based on maximum FPS

26: for each flight event do

27: IEFGS = Avg(IEFs in top 10%)

28: Calculate P(event occurring on TE

29: studentStatus = (IEFGS) − (IEFuserID)

30: Utility(flight event) = P(event occurring on TE)* studentStatus

31: end for
32: if any(studentStatus)≤ 0 then

33: Perform all possible utility advancing event swaps to create various alternative recommendations from the initial recommen-
dation

34: Calculate projected FPS for all alternative recommendations

35: Final Recommendation = Initial Alternative Recommendation with Max Projected FPS

36: else
37: Make 1-for-1 event swapping adjustments from initial recommendation

38: Final Recommendation = adjusted initial recommendation

39: end if

The Recommender System Algorithm begins by initiating the user ID and next

training exercise in training. Next, grade sheet data is split between into two data sets:
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the user’s evaluation history and a global data set excluding the user’s history. The

user’s IEF values are then calculated for each flight event and each category is checked

for introduction and full proficiency of all events. FPS scores are calculated for each

student at the initialized training exercise number. Next, the user’s evaluation data is

restructured into a three dimensional array and input into the content-based LSTM

RNN model to generate an initial recommendation. Lines 15-24 in the Recommender

System Algorithm calculate the current FPS for all students in the Global data.

Next, the top 10% of performers in the global data are identified and the average

IEF values between them define a golden standard for training performance. Lines

26-31 define how far away the user is from reaching proficiency in each maneuver

and calculate an expected utility for recommending each event. The user is then

labelled as above or below the golden performance standard. Lines 33-35 show that

if the user is above the golden standard, then utility-advancing alternatives to the

initial recommendation are generated and the option with the highest projected FPS

score is used as the final recommendation for the user. Lines 36-38 show that if the

user is below the golden standard, then event adjustments will be made to the initial

recommendation in an attempt to progress the user towards the golden standard.

The adjusted recommendation is then used as the final recommendation.
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VI. Results and Analysis

6.1 Overview

This section presents final testing results for the content-based model. Also, final

results produced by the full hybrid recommender system are explained and analyzed.

6.2 Model Results

6.2.1 Examples of Recommended Flight Event Sets

Figures 11 and 12 are examples of the evaluation data used to plan a student’s next

training exercise, the flight plan the IP put together for the student’s next training

exercise, and the flight plan that the model recommended for the student’s next

training exercise. Figure 11 shows the model’s recommendation compared to an IP’s

actual flight plan for a student’s third training exercise. As shown, only data from

the first two training events is available to help make a decision for the next flight’s

graded events. Figure 12 shows the model’s recommendation compared to an IP’s

actual flight plan for the same student’s twenty-first training exercise. In Figure 12,

there are 20 previously evaluated training exercises available to help make a decision

for the next flight’s graded events. While IPs use all of a student’s evaluation data,

the model only takes up to 50 of a student’s most recent training exercise evaluations

into consideration when making recommendations.

6.2.2 Content-Based Recommendation Testing

The content-based model creates initial recommendations based on IP generated

data. The incorporation of the collaborative model is designed to make improvements

to content-based recommendations using global trends in the data. Therefore, it is
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Figure 11. IP-chosen event recommendations vs. model-generated event recommenda-
tions on training exercise 3

Figure 12. IP-chosen event recommendations vs. model-generated event recommenda-
tions on training exercise 21
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valid to exclude utility advancing maneuver swaps when measuring model perfor-

mance.

Testing was performed on the best-fit LSTM RNN model identified in the Model

Approach Chapter using the evaluation history of the four students not included in

the training set. Table 12 depicts the final testing results for the model generated

using each input sequence length. The testing loss and accuracy were calculated using

Equation 2 and Equation 1, respectively. Testing results showed only a fraction of a

percent difference in performances between models with different sequence lengths.

The final model selected uses a sequence length of 50, meaning that up to 50 previ-

ous training exercise evaluations are taken into consideration when generating each

recommendation. The driving factor behind this decision was that trends in the data

showed that sometimes students are introduced to a flight event early in their training

campaign and then would not revisit that event until much later. Using a sequence

length of 50 ensures that event progress is recognized by the model despite the time

since a student last performed that event.

Table 12. Model Testing Results

Sequence Length Testing Loss Testing Accuracy
50 0.2146 0.9145
25 0.2113 0.9170
10 0.2151 0.9136

Figure 13 shows model testing accuracy with respect to training exercise. Volatil-

ity in accuracy with regard to training exercise number suggests that the model is not

performing consistently throughout training campaigns. More specifically, the model

performs more accurately before a student’s fifth training exercise, between the twelfth

and twentieth training exercise, and after exercise 75. The model performance suffers

around the fiftieth training exercise. The reasons for this are unknown. However,

high model performance suggests that the model makes flight plan recommendations
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similar to true IP recommendations.

6.2.3 Final Maneuver Set Recommendation

The resulting output of this hybrid model is the final recommendation for the user.

The final recommendation is composed of a set of training events to perform and be

evaluated during the succeeding training exercise of a students training campaign.

The order of the flight events recommended has no significance to the user and does

not imply an order of execution during the training exercise.

The primary driver for automating the flight planning process is to reduce the

amount of time IPs spend on administrative tasks, allowing them to reallocate their

time to working directly with the students. To test recommendation time, the full

hybrid model was used to make recommendations for each training exercise of the

students in the training set. The time of generation was recorded for flight plan

recommendations generated for 331 individual training exercises. Time testing results

show an average recommendation time of 8.14 seconds with a standard deviation of

0.10 seconds. The median generation time was 8.04 seconds. Generation times ranged

from a minimum of 7.93 seconds to a maximum of 10.05 seconds.

6.3 Analysis of Results

Standard model training, validation, and testing techniques offer a baseline for

recommender system performance expectations. However, recommender systems are

often designed to improve user experience when there is no single correct path forward,

so the best way to test this system is through real-time trial and error with IPs.

Developing personalized training campaigns for every student in conjunction with

the lack of a single optimal path towards fully qualified status makes generating

recommendations with 100 percent accuracy extremely improbable. Perfect accuracy
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Figure 13. Model Accuracy with regard to Training Exercise

in recommendations would suggest the presence of a standardized syllabus for training

progression rather than personalized recommendation tailored to individual student

needs.

High model performance despite sparse data suggests that there are consistent

trends for flight plan generation that are generalized and used across the students

population. This also suggests that the performance dips in Figure 13 show the

region of training duration where PTN IPs are incorporating the most personalization

to student flight plans.

The resulting recommendation time statistics prove that automating the flight

planning process has the ability to drastically decreases the amount of time an IP

must allocate for flight planning from hours to only seconds on a daily basis. This

tool shows potential to play a substantial role in decreasing IP time spent perform-

ing administrative responsibilities even if the IP takes a few minutes to adjust each

recommendation.
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VII. Conclusions

The Air Force’s PTN program has had success in effectively shortening the length

of undergraduate pilot training campaigns for pilot training students. Operational

differences from traditional undergraduate pilot training through the emphasis of vir-

tual reality flight simulation alongside periodic real aircraft experience allow for a

more efficient pilot training process. Automating tedious tasks performed by IPs pro-

vides an opportunity to make the pilot training process even more efficient. Student

evaluation data from the original pilot training class were provided from PTN to

explore methods of flight plan automation and uncover program insights.

Exploratory data analysis was conducted on pilot training student evaluation data

from the original PTN class to provide insights on the flight evaluation process, stu-

dent progress trends, and the current data collection and storage practices of the PTN

program. The data unveils nonlinear trends in skill depth advancement, allowing stu-

dents to move away from lower scores quickly but stagnate just under proficiency

for longer. Inconsistencies in the overall flight event and category exposure between

students appears to be linked to training campaign duration, not simply student per-

formance. Also, students appear to be graduating from the PTN program without

official record of full proficiency in all graded flight events. Creating an administra-

tive tool to aid IPs presents a low risk problem because the IPs can always make

adjustments to recommendations. However, clear graduation requirements must be

established and enforced to create a fully autonomous tool, such as the expectation

of the AutoGradebook.

A new metric, called the Forward Progress Score (FPS), was developed to better

track student progress throughout undergraduate pilot training. Unlike the method

currently employed, FPS incorporates both breadth and depth of student skill ad-

vancement. The FPS uses progress tracking metrics such as proficiency of individual
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graded events, quantity of introduced events and event categories, and proficiency of

entire event categories to capture the multidimensional aspect of student advancement

through a training campaign.

A hybrid filtering approach using both content-based and collaborative models

was applied to generate a set appropriate flight events for evaluation in a students

next training exercise. A long short-term memory recurrent neural network was

trained and tested on real IP recommendations from the data to produce an initial

student-specific recommendation. Testing solidifies the model’s ability to produce

flight event recommendations averaging 92 percent similarity to actual IP recom-

mendations. A global golden performance standard was defined and used along side

the forward progress scores to supplement student-specific recommendations with ap-

propriate event adjustments and guide continuous student progression throughout a

training campaign.

The final model only requires the user, in this case an IP, to provide a student

identification number and corresponding training event number for which they would

like a flight plan recommendation. Recommendation generation, from the time user

inputs are provided to the time an event set is output, only takes seconds provided

PTN evaluation history data is readily available.

Industry leading artificial intelligence and applied statistics techniques were suc-

cessfully implemented to devise a model that generates a set of graded flight events

for an upcoming flight while discouraging overall progress stagnation. In it’s proto-

typical state, this model is designed to be used as a tool to aid the IP’s flight planning

process rather than perform it fully.
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VIII. Future Work

8.1 Overview

The inherent uniqueness of PTN and the AutoGradebook concept open a variety

of focus areas for future research. Additional research on the flight event recom-

mendation task provides an opportunity to further refine a model that effectively

generates flight event recommendations. A variety of approaches can be taken in

conducting future work for flight event recommendations. Recommended future re-

search includes, but is not limited to, in-depth model parameter tuning, incorporation

of progression rates into projected FPS scores, the inclusion of event occurrence cor-

relations, creation of additional collaborative-based progress standards, and creation

of a reinforcement learning mechanism to increase model autonomy and performance

over time.

8.2 Content-Based Model Tuning and Alternatives

Minor parameter tuning was conducted in this study. Future related work may

emphasize improvement on the content-based model through parameter tuning given

the collection of data from more recent PTN classes. Model fitting parameters to con-

sider include but are not limited to input sequence lengths, number of hidden layers,

training duration, activation functions, number of epochs, and training batch sizes.

Alternative model structures may also be explored for better recommendations. Tem-

poral Convolutional Networks have been shown to capture temporal data trends for

sequential predictions. Alternatively, sequential set generation by individual events

may also provide a valid approach to the event recommendation task.
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8.2.1 TCN Model

Recommending the order that events are performed in flight is outside of the scope

of this research. Therefore, the order of event recommendation is irrelevant, as well.

LSTM RNN models and take a series of vectors as input and output a single vector

for the given task. The resulting vector suggests a specific order of events. Given that

the order of the recommended events does not matter for the given task, a set-based

output may be more suitable. Rather than generating an entire event set at once,

events for the next flight may also be individually generated.

A TCN model structure is another approach at performing multi-output binary

classification. TCNs function similarly to LSTM RNNs by using a series of evaluation

data to predict the next-exercise event occurrences. However, a TCN uses the same

series of data to individually predict the occurrence of events rather than predicting

the set as a whole.

8.2.2 Sequential Set Generation Model

A model for sequential set generation would suggest more advanced machine learn-

ing techniques than a TCN model incorporating relationships between the recom-

mended events while still selecting events individually. A model for sequential set

generation may follow a similar design to automated text generation models that

use individual characters of the alphabet to predict the next characters. Individual

event generation provides the ability to build an even more personalized event set,

accounting for student progress as well as event pairings. IBM researchers proposed a

method for predicting set-valued outputs in the Proceedings of the AAAI Conference

on Artificial Intelligence that may apply directly to the PTN event planning task [19].
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8.3 Event Utility

Current event utilities are calculated independently. Including a component that

accounts for the probability of events occurring simultaneously with events in the

initial content-based recommendation may help provide more appropriate event swaps

from the collaborative-based model. Calculating expected probabilities using bayesian

statistics may be a feasible approach to this function.

8.4 Incorporation of Probability of Progress

The data shows that students are not guaranteed to receive a higher score each ad-

ditional time they are evaluated on an event. Therefore, is it an broad generalization

to assume that students will improve when predicting FPS for students performing

above the golden performance standard. Incorporating a component to account for a

student’s probability of advancing to the next highest letter grade may improve FPS

scores. The probability of advancing can be calculated as a collaborative statistic

from the global dataset. Accounting for the probability of advancing rather than

assuming advancement would result in a more accurate expected value for IEF in the

next training exercise and thus result in a more accurate FPS prediction for students

operating above the golden standard.

8.5 Additional Performance Standards for Tailored Recommendation

More tailored performance standards may provide more personalization for recom-

mendations and more specific training guidance than a single global golden standard.

Progressing toward a local standard is more logical for lower performing students

to avoid over extreme, or forced, acceleration through a program. If students are

only being pushed toward a global golden standard, lower performing students may
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continuously be introduced to more advanced events to catch up to the standard, de-

spite receiving lower scores on the events. This results in skewed recommendations.

Moving toward a local standard allows recommendations to gradually progress lower

performing students through training without creating gaps in the learning process.

The golden standard becomes less extreme the higher a students performance is.

Therefore, higher performing students may receive recommendations based on the

golden standard that progress them through training quicker and with less risk of

failure.

The proposed model does not apply multiple performance standards for recom-

mendation guidance in order to make recommendations that consistently challenge

student performance. Making recommendations towards a local standard of perfor-

mance encourages extreme personalization to an individual’s progress, which may

result in slower advancement through training. Therefore, tailoring recommenda-

tions to more personalized performance standards based on a student’s skill level at

any given point throughout training does not align with the PTN program goals.

However, incorporating this feature into the AutoGradebook could greatly benefit

the individual training effectiveness of students in a less time-relevant environment.

For example, moving towards more personalized performance standards may be an

effective way to avoid learning gaps for AutoGradebook users pre-pilot training at

service academies or universities.

Currently, the FPS score does not account for the possibility of student digres-

sion. The calculation incorporates all of a students training evaluations. However,

to improve upon the FPS, a number of previous training exercises for review may

be specified. Adding such a feature would update IEP scores and clarify if students

required further training in a specific event rather than determining proficiency by

the best overall evaluation score within their campaign.
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8.6 Reinforcement Learning Component

Adding a reinforcement learning component to the model can provide real-time

model updates based on real instructor pilot feedback of recommendations. Real feed-

back is the best way to test and update recommender system models because of the

inherent personalization of the recommendation process. However, this component

can only be applied once PTN has developed a standardized data collection strategy.
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Appendix A: Detailed Data Analysis Plots

(a) 4-Ship Fingertip Occurrence (b) 4-Ship Fingertip Evaluation Statistics

Figure 14. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for 4-Ship Fingertip
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(a) Advanced Handling Occurrence (b) Advanced Handling Statistics

Figure 15. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Advanced Handling

(a) Aileron Roll Occurrence (b) Aileron Roll Evaluation Statistics

Figure 16. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Aileron Roll
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(a) Airdrop Procedures Occurrence (b) Airdrop Procedures Evaluation Statistics

Figure 17. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Airdrop Procedures

(a) Air to Air Weapons Employ Occurrence (b) Air to Air Weapons Employ Evaluation
Statistics

Figure 18. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Air to Air Weapons Employ

(a) Air to Gnd 2-Ship Mutual Supt Occur-
rence

(b) Air to Gnd 2-Ship Mutual Supt Statistics

Figure 19. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Air to Gnd 2-Ship Mutual Supt
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(a) Air to Ground Error Analysis Occurrence (b) Air to Ground Error Analysis Statistics

Figure 20. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Air to Ground Error Analysis

(a) Altitude Control Occurrence (b) Altitude Control Statistics

Figure 21. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Altitude Control

(a) A/R Breakaway Occurrence (b) A/R Breakaway Evaluation Statistics

Figure 22. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for A/R Breakaway
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(a) A/R Overrun Occurrence (b) A/R Overrun Statistics

Figure 23. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for A/R Overrun

(a) Barrel Roll Occurrence (b) Barrel Roll Evaluation Statistics

Figure 24. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Barrel Roll

(a) Basic Aircraft Control Occurrence (b) Basic Aircraft Control Statistics

Figure 25. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Basic Aircraft Control
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(a) Battle Damage Check Occurrence (b) Battle Damage Check Statistics

Figure 26. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Battle Damage Check

(a) Box Formation Occurrence (b) Box Formation Statistics

Figure 27. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Box Formation

(a) Breakout (Wing) Occurrence (b) Breakout (Wing) Statistics

Figure 28. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Breakout (Wing)
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(a) Checkpoint ID Occurrence (b) Checkpoint ID Statistics

Figure 29. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Checkpoint ID

(a) Circling Approach Occurrence (b) Circling Approach Statistics

Figure 30. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Circling Approach

(a) Clearing/Visual Lookout Occurrence (b) Clearing/Visual Lookout Statistics

Figure 31. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Clearing/Visual Lookout

80



(a) Cloverleaf Occurrence (b) Cloverleaf Statistics

Figure 32. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Cloverleaf

(a) Communication Occurrence (b) Communication Statistics

Figure 33. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Communication

(a) Contact Recoveries Occurrence (b) Contact Recoveries Statistics

Figure 34. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Contact Recoveries
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(a) Course Entry Occurrence (b) Course Entry Statistics

Figure 35. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Course Entry

(a) Course Mx Occurrence (b) Course Mx Statistics

Figure 36. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Course Mx

(a) Crew Coordination Occurrence (b) Crew Coordination Statistics

Figure 37. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Crew Coordination
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(a) Cross-Check Occurrence (b) Cross-Check Statistics

Figure 38. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Cross-Check

(a) Cross Turn Occurrence (b) Cross Turn Statistics

Figure 39. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Cross Turn

(a) Cuban Eight Occurrence (b) Cuban Eight Statistics

Figure 40. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Cuban Eight
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(a) CZ Recognition Occurrence (b) CZ Recognition Statistics

Figure 41. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for CZ Recognition

(a) Defensive Fighter Mnvr Exec Occurrence (b) Defensive Fighter Mnvr Exec Statistics

Figure 42. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Defensive Fighter Mnvr Exec

(a) Delay 45 Occurrence (b) Delay 45 Statistics

Figure 43. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Delay 45
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(a) Delay 90 Occurrence (b) Delay 90 Statistics

Figure 44. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Delay 90

(a) Departure Occurrence (b) Departure Statistics

Figure 45. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Departure

(a) Echelon (Wing) Occurrence (b) Echelon (Wing) Statistics

Figure 46. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Echelon (Wing)
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(a) Emergency Landing Pattern Occurrence (b) Emergency Landing Pattern Statistics

Figure 47. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Emergency Landing Pattern

(a) Emergency Procedures Occurrence (b) Emergency Procedures Statistics

Figure 48. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Emergency Procedures

(a) Enroute Descent/Recovery Occurrence (b) Enroute Descent/Recovery Statistics

Figure 49. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Enroute Descent/Recovery
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(a) Extended Trail (Wing) Occurrence (b) Extended Trail (Wing) Statistics

Figure 50. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Extended Trail (Wing)

(a) FD/AP Operations Occurrence (b) FD/AP Operations Statistics

Figure 51. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for FD/AP Operations

(a) Fighting Wing (Wing) Occurrence (b) Fighting Wing (Wing) Statistics

Figure 52. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Fighting Wing (Wing)
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(a) Fingertip (Wing) Occurrence (b) Fingertip (Wing) Statistics

Figure 53. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Fingertip (Wing)

(a) Fix to Fix Occurrence (b) Fix to Fix Statistics

Figure 54. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Fix to Fix

(a) Flt Integrity/Wingman Consideration
Occurrence

(b) Flt Integrity/Wingman Consideration
Statistics

Figure 55. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Flt Integrity/Wingman Consideration
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(a) Fluid4 Occurrence (b) Fluid4 Statistics

Figure 56. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Fluid4

(a) Fluid Maneuvering Occurrence (b) Fluid Maneuvering Statistics

Figure 57. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Fluid Maneuvering

(a) Fluid Turn Occurrence (b) Fluid Turn Statistics

Figure 58. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Fluid Turn
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(a) FMS Operations Occurrence (b) FMS Operations Statistics

Figure 59. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for FMS Operations

(a) Formation Approach (Both) Occurrence (b) Formation Approach (Both) Statistics

Figure 60. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Formation Approach (Both)

(a) Formation Landing (Both) Occurrence (b) Formation Landing (Both) Statistics

Figure 61. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Formation Landing (Both)
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(a) Four Ship Admin Occurrence (b) Four Ship Admin Statistics

Figure 62. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Four Ship Admin

(a) Fuel Awareness/Management Occurrence (b) Fuel Awareness/Management Statistics

Figure 63. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Fuel Awareness/Management

(a) Full Procedure Approach Occurrence (b) Full Procedure Approach Statistics

Figure 64. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Full Procedure Approach
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(a) G-Awareness Occurrence (b) G-Awareness Statistics

Figure 65. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for G-Awareness

(a) G-Warmup/Awareness Occurrence (b) G-Warmup/Awareness Statistics

Figure 66. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for G-Warmup/Awareness

(a) General Knowledge Occurrence (b) General Knowledge Statistics

Figure 67. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for General Knowledge
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(a) Go-Around Occurrence (b) Go-Around Statistics

Figure 68. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Go-Around

(a) Ground Ops Occurrence (b) Ground Ops Statistics

Figure 69. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Ground Ops

(a) HA BFM Flt Analysis Occurrence (b) HA BFM Flt Analysis Statistics

Figure 70. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for HA BFM Flt Analysis
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(a) HA Butterfly Setups Occurrence (b) HA Butterfly Setups Statistics

Figure 71. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for HA Butterfly Setups

(a) HA Lead Turn Exercise Occurrence (b) HA Lead Turn Exercise Statistics

Figure 72. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for HA Lead Turn Exercise

(a) Heat to Guns Maneuvering Occurrence (b) Heat to Guns Maneuvering Statistics

Figure 73. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Heat to Guns Maneuvering
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(a) Heat to Guns Setup Occurrence (b) Heat to Guns Setup Statistics

Figure 74. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Heat to Guns Setup

(a) Holding Occurrence (b) Holding Statistics

Figure 75. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Holding

(a) Hook Turn Occurrence (b) Hook Turn Statistics

Figure 76. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Hook Turn
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(a) Immelmann Occurrence (b) Immelmann Statistics

Figure 77. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Immelmann

(a) Inflight Checks Occurrence (b) Inflight Checks Statistics

Figure 78. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Inflight Checks

(a) Inflight Planning Occurrence (b) Inflight Planning Statistics

Figure 79. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Inflight Planning
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(a) Instrument Trail Occurrence (b) Instrument Trail Statistics

Figure 80. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Instrument Trail

(a) Intercept/Maintain Arc Occurrence (b) Intercept/Maintain Arc Statistics

Figure 81. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Intercept/Maintain Arc

(a) Interval Takeoff Occurrence (b) Interval Takeoff Statistics

Figure 82. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Interval Takeoff
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(a) Landing Occurrence (b) Landing Statistics

Figure 83. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Landing

(a) Lazy Eight Occurrence (b) Lazy Eight Statistics

Figure 84. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Lazy Eight

(a) Lead Platform Occurrence (b) Lead Platform Statistics

Figure 85. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Lead Platform

98



(a) LL GPS Integration Occurrence (b) LL GPS Integration Statistics

Figure 86. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for LL GPS Integration

(a) LL Lead Change Occurrence (b) LL Lead Change Statistics

Figure 87. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for LL Lead Change

(a) Loop Occurrence (b) Loop Evaluation Statistics

Figure 88. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Loop
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(a) Lost Wingman (Both) Occurrence (b) Lost Wingman (Both) Statistics

Figure 89. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Lost Wingman (Both)

(a) Maneuver Selection Occurrence (b) Maneuver Selection Statistics

Figure 90. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Maneuver Selection

(a) Missed Approach Occurrence (b) Missed Approach Statistics

Figure 91. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Missed Approach
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(a) Mission Analysis/Products Occurrence (b) Mission Analysis/Products Statistics

Figure 92. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Mission Analysis/Products

(a) Mission Management Occurrence (b) Mission Management Statistics

Figure 93. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Mission Management

(a) Night Landing Occurrence (b) Night Landing Statistics

Figure 94. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Night Landing
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(a) No-Flap Landing Occurrence (b) No-Flap Landing Statistics

Figure 95. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for No-Flap Landing

(a) Non-Precision Final Occurrence (b) Non-Precision Final Statistics

Figure 96. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Non-PrecisionFinal

(a) Offensive Fighter Mnvr Exec Occurrence (b) Offensive Fighter Mnvr Exec Statistics

Figure 97. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Offensive Fighter Mnvr Exec
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(a) Offset Box Occurrence (b) Offset Box Statistics

Figure 98. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Offset Box

(a) Overhead/Closed Pattern Occurrence (b) Overhead/Closed Pattern Statistics

Figure 99. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Overhead Closed/Pattern

(a) Overshoot Occurrence (b) Overshoot Statistics

Figure 100. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Overshoot
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(a) Perch Setups Occurrence (b) Perch Setups Statistics

Figure 101. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Perch Setups

(a) Pitchback/Sliceback Occurrence (b) Pitchback/Sliceback Statistics

Figure 102. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Pitchback/Sliceback

(a) Pitchout (Both) Occurrence (b) Pitchout (Both) Statistics

Figure 103. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Pitchout (Both)
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(a) Position Change Occurrence (b) Position Change Statistics

Figure 104. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Position Change

(a) Power On Stalls Occurrence (b) Power On Stalls Statistics

Figure 105. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Power On Stalls
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(a) Precision Final Occurrence (b) Precision Final Statistics

Figure 106. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Precision Final

(a) Receiver Procedures Occurrence (b) Receiver Procedures Statistics

Figure 107. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Receiver Procedures

(a) Risk Mgmt/Decision Making Occurrence (b) Risk Mgmt/Decision Making Statistics

Figure 108. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Risk Mgmt/Decision Making
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(a) Route (Wing) Occurrence
S
(b)
Route
(Wing)

tatistics]

Figure 109. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Route (Wing)

(a) SA Conventional Range Occurrence (b) SA Conventional Range Statistics

Figure 110. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for SA Conventional Range

(a) SA Safe-Excape Maneuver Occurrence (b) SA Safe-Excape Maneuver Statistics

Figure 111. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for all SA Safe-Excape Maneuver
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(a) SA Tactical Range Proc Occurrence (b) SA Tactical Range Proc Statistics

Figure 112. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for SA Tactical Range Proc

(a) SA Threat Reaction Occurrence (b) SA Threat Reaction Statistics

Figure 113. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for SA Threat Reaction

(a) SA Weapons Employment Occurrence (b) SA Weapons Employment Statistics

Figure 114. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for SA Weapons Employment
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(a) Shackle Occurrence (b) Shackle Statistics

Figure 115. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Shackle

(a) Single Engine Approach Occurrence (b) Single Engine Approach Statistics

Figure 116. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Single Engine Approach

(a) Single Engine GA/Missed Appch Occur-
rence

(b) Single Engine GA/Missed Appch Statis-
tics

Figure 117. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Single Engine GA/Missed Appch
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(a) Situational Awareness Occurrence (b) Situational Awareness Statistics

Figure 118. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Situational Awareness

(a) Slow Flight Occurrence (b) Slow Flight Statistics

Figure 119. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Slow Flight

(a) Spin Recovery Occurrence (b) Spin Recovery Statistics

Figure 120. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Spin Recovery
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(a) Split S Occurrence (b) Split S Statistics

Figure 121. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Split S

(a) Steep turns Occurrence (b) Steep Turns Statistics

Figure 122. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Steep Turns

(a) Straight Ahead Rejoin Occurrence (b) Straight Ahead Rejoin Statistics

Figure 123. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Straight Ahead Rejoin
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(a) Tac Initial Occurrence (b) Tac Initial Statistics

Figure 124. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Tac Initial

(a) TACS/JFIRE Procedures Occurrence (b) TACS/JFIRE Procedures Statistics

Figure 125. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for TACS/JFIRE Procedures

(a) Tactical Maneuvering Occurrence (b) Tactical Maneuvering Statistics

Figure 126. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Tactical Maneuvering
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(a) Tactical Rejoins Occurrence (b) Tactical Rejoins Statistics

Figure 127. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Tactical Rejoins

(a) Takeoff Occurrence (b) Takeoff Statistics

Figure 128. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Takeoff

(a) Tanker Procedures Occurrence (b) Tanker Procedures Statistics

Figure 129. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Tanker Procedures
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(a) Task Management Occurrence (b) Task Management Statistics

Figure 130. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Task Management

(a) Time Control Occurrence (b) Time Control Statistics

Figure 131. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Time Control

(a) TP Stalls Occurrence (b) TP Stalls Statistics

Figure 132. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for TP Stalls
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(a) Turning Rejoin Occurrence (b) Turning Rejoin Statistics

Figure 133. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Turning Rejoin

(a) Unusual Attitudes Occurrence (b) Unusual Attitudes Statistics

Figure 134. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for all events

(a) Vertical S Occurrence (b) Vertical S Statistics

Figure 135. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Vertical S
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(a) VFR Arrival Occurrence (b) VFR Arrival Statistics

Figure 136. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for VFR Arrival

(a) Visual St-In Occurrence (b) Visual St-In Statistics

Figure 137. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Visual St-In

(a) Wall Occurrence (b) Wall Statistics

Figure 138. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Wall
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(a) Wing Takeoff Occurrence (b) Wing Takeoff Statistics

Figure 139. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Wing Takeoff

(a) 4-Ship Straight Ahead Rejoin Occurrence (b) 4-Ship Straight Ahead Rejoin Statistics

Figure 140. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for 4-Ship Straight Ahead Rejoin

(a) 4-Ship Turning Rejoin Occurrence (b) Turning Rejoin Statistics

Figure 141. Probability of event occurrence (a) alongside descriptive evaluation data
(b) given training exercise for Turning Rejoin
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Appendix B: Bullet Background Paper

BULLET BACKGROUND PAPER
ON

AUTOMATED FLIGHT PLAN RECOMMENDATION

PURPOSE
This paper provides key takeaways concerning novel research conducted to create the
first ever automated training flight plan development process for the Pilot Training
Next Program (PTN). The highlights include the network, process, and value provided
by this research.
NETWORK

• The network includes all involved in findings implementation: AETC, AFWERX-
Austin, Pilot Training Next, undergraduate pilot training Instructor Pilots
(IPs), and future students

PROCESS

• Current process: IPs spend hours each day planning which flight events should
be evaluated in a pilot training students next training exercise.

• Realized process: Applied industry leading Artificial Intelligence techniques to
automatically propose a set of flight events for IP approval or alteration. First
such system developed.

VALUE

• Flight planning time reduced to seconds, allowing IP time reallocation to person-
alized student development. Implementation projected to save 500+ IP hours
per PTN class.

• Development of new training progress metric allows for unambiguous perfor-
mance tracking and comparison between pilot training students.

• Guidance for establishing an effective data environment provides a foundation
for future data implementation.

• Applications of automated flight planning go beyond PTN, can provide compe-
tent and quality training guidance in other Formal Training Units, non-AETC
training environments such as USAFA or ROTC detachments, and operational
flight optimization.
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CONCLUSION
The research conducted on flight plan automation found that Artificial Intelligence
techniques can be implemented to quickly and effectively provide instructor pilots
with flight event recommendations for an upcoming flight. Insights gathered from
current operations motivated the proposal of a more effective data environment and
student performance measurement.
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flight events for evaluation in a students next training exercise to improve their progress toward fully qualified status.

Pilot Training NEXT, Recommender Systems, Flight Planning, Deep Learning, Applied Statistics, Neural Networks,
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