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Abstract

Solar flare forecasting is limited by the current understanding of mechanisms

that govern magnetic reconnection, the main physical phenomenon associated with

these events. As a result, forecasting relies mainly on climatological correlations to

historical events rather than the underlying physics principles. Solar physics models

place the neutral point of the reconnection event in the solar corona. Correspond-

ingly, studies of photospheric magnetic fields indicate changes during solar flares—

particularly in relation to the field helicity—on the solar surface as a result of the

associated magnetic reconnection. This study utilizes data from the Solar Dynam-

ics Observatory (SDO) Helioseismic and Magnetic Imager (HMI) and SpaceWeather

HMI Active Region Patches (SHARPs) to analyze full vector-field component data of

the photospheric magnetic field during solar flares within a large HMI dataset (May

2010 through September 2019). This analysis is then used to identify and compare

trends in the different categories of flare strengths and determine indications of the

physical phenomena taking place.
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I. Introduction

Solar flares cause disruptions to the electric and magnetic fields incident on the

Earth from the Sun. In particular, this poses a danger to personnel and equipment,

including Department of Defense (DoD) operations, in the space environment. Solar

flares can cause disturbances within the Earth’s atmosphere that can impact both

natural and anthropogenic resources. Energetic particles from flares heat the atmo-

sphere, causing it to expand and increase drag on satellites, which then forces them to

expend more fuel in their orbit. Atmospheric changes as well as intensified emissions

from flares can further result in degredation of satellite operations (Goddard Space

Flight Center, 2020). In the ionosphere, solar flares cause Sudden Ionospheric Distur-

bances (SIDs), which lead to changes in electronic composition and to anomalies in

signals from navigation systems and satellite communications (Liu et al., 2004; Qian

et al., 2012). A study by Eastwood et al. (2017) estimates that a storm of similar

level to the Carrington Event of 1859 could have an economic cost on the order of

trillions of dollars in the United States alone.

Protection from these effects comes in the form of improved forecasting abilities

to allow for a better reactive capability before the flare reaches the Earth or its

spacecraft. Current forecasting techniques rely on climatological indications of the

likelihood that a solar active region (AR) will produce a flare of a given strength.

Improvements in flare forecasting can be made with greater understanding of the

phenomena on the Sun that drive flare events, particularly magnetic reconnection.

Simply put, magnetic reconnection is the rejoining of magnetic field lines that have

been turbulently torn apart, as is done during a solar flare.

In plasma physics, the induction equation (Equation 1) describes the change in

magnetic field lines through advection—the first term on the right hand side—and

diffusion—the second term (Gurnett and Bhattacharjee, 2017; Priest, 2014):
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∂ ~B

∂t
= ∇× (~u× ~B) +

1

µ0σ
∇2 ~B (1)

According to Alfvén’s theorem, the magnetic field lines are frozen into and move

with the bulk plasma motion, such that the advection term dominates the induction

equation and diffusion can be ignored. This requires that magnetic topologies are

conserved, given that magnetic field lines cannot move with respect to the bulk plasma

flow (Gurnett and Bhattacharjee, 2017).

Conversely, magnetic reconnection occurs in a diffusion-dominated region that

violates Alfvén’s theorem. Thus, the diffusion term in the induction equation must be

considered. The violent flare process bursts open magnetic field lines and results in

a configuration such as that in Figure 1 in which the opposing magnetic field regions

are separated by a magnetically neutral surface. In this configuration, particles are

rapidly accelerated out of the solar atmosphere and may be directed toward the Earth.

After the event, decreased pressure at low solar altitudes causes field lines to drift

toward the neutral point, where they reconnect. In doing so, plasma is transported

across the magnetically neutral surface (Figure 1). The reconnection point moves up

in altitude until equilibrium is reached. This results in a change in the flux in a closed

loop, contradicting the flux conservation requirement of Alfvén’s theorem (Gurnett

and Bhattacharjee, 2017; Kopp and Pneuman, 1976; Priest, 2014).

Current magnetic reconnection models do not successfully predict the speeds

at which the reconnections occur. The main model, the Sweet-Parker model, uses a

steady diffusion layer over the entire boundary in which magnetic field lines enter at

the same rate it diffuses outward. However, this produces a much slower speed than

expected. For fast reconnection, adjustments are made to this model (Priest, 2014).

The Petschek model considers a diffusion region that is only a segment of the

boundary and takes into account the flow external to the diffusion region (Priest,

2



Figure 1. Magnetic field topology following a solar flare. Regions of opposing magnetic
field are separated by a magnetically neutral surface, depicted by the thick black line.

2014). Resulting speeds are faster than the Sweet-Parker model and can even be

used to accurately describe chromospheric reconnection (Chae et al., 2002). Fast

reconnection has also been described using a flux pile-up method in which magnetic

field lines get closer approaching the diffusion region. This type of reconnection

produces a slow-mode expansion of the plasma and the central diffusion regions can

be much larger than with the Petschek model (Priest, 2014). This type of model

could account for discrepancies between photospheric reconnection signatures and

the Sweet-Parker model, but should be used with caution, due to the length scales of

turbulent diffusion and of magnetogram resolution in verification (Chae et al., 2008).

The actual reconnection event occurs higher in the solar atmosphere. How-

ever, the use of photospheric data can still help improve understanding of the upper

solar atmosphere. Slow photospheric—and subphotospheric—motions drive the en-

ergy supply to an AR, both through the twisting and shearing of coronal magnetic

structures and through the emergence of new current-carrying magnetic flux in the

photosphere (Wheatland, 2008). Furthermore, photospheric observations have previ-

ously been used to create coronal magnetic field models (Scherrer et al., 2012).

3



II. Background

2.1 Previous Research

As the first decade of the Helioseismic and Magnetic Imager (HMI)—onboard

the Solar Dynamics Observatory (SDO)—is only just concluding, studies analyzing

the entirety of the dataset or a dataset of this size are relatively uncommon. This

work serves to establish an analysis of this scale.

Furthermore, given that the main reconnection event associated with solar flares

occurs higher in the solar atmosphere, studies using the magnetogram data for the

investigation into magnetic reconnection are similarly uncommon. The idea for this

study originated from a case study of Labor Day 2017 storms by Loper (2018). In this

case study, three of the large flares that occurred between 4 and 10 September were

combined into an epoch analysis. This epoch setup serves as the foundation for the

epoch analyses created in this work (see Methodology). Magnetic field parameters

studied include:

• Line-of-sight (LoS) area of active pixels

• Total unsigned flux

• Mean inclination angle

• Mean shear angle

• Mean photospheric excess magnetic energy density

• Mean current helicity.

Kazachenko et al. (2017) created a database of flare ribbons, which are en-

hancements in Hα and 1600 Å emissions and correspond to footprints of the newly

4



reconnected flux tubes. With this database, they analyzed flare ribbons associated

with C1.0 and stronger flares that occurred within 45◦ of solar meridian between April

2010 and April 2016. When compared with flare peak x-ray flux, the reconnection

flux (calculated as the unsigned magnetic flux spanned by the flare ribbon) has a

much stronger correlation than the unsigned AR flux. This result suggests that there

are magnetic properties that relate to the strength of a solar flare, but they are more

easily seen when isolating the magnetic flux that is associated with the reconnection

rather than the flux of the entire AR.

Bobra and Couvidat (2015) applied a machine-learning algorithm to M- and

X-Class flares in order to forecast these events using HMI vector magnetic field data.

They look at 303 ARs in which a flare occurred within 24 hours after a sample time

and 5000 randomly selected ARs in which a flare did not occur within 48 hours

after a sample time, positive and negative samples respectively. The inclusion of

negative samples is necessary in training a machine learning algorithm to predict

whether or not an AR will flare. Events range from May 2010 to May 2014 and

are characterized by the same magnetic field parameters used in this study, with the

addition of parameters characterizing the Lorentz force. Using performance metrics

regarding the forecasting algorithm, this study determined that using four parameters

with the highest feature score provides roughly the same true skill statistic as the top

13 parameters combined. These four parameters are:

• Total unsigned current helicity

• Total magnitude of the Lorentz force

• Total photospheric magnetic free energy density

• Total unsigned vertical current.

A study by Mason and Hoeksema (2010) performed a similar analysis to this

5



study but the data used were from the Michelson Doppler Imager (MDI), the prede-

cessor to the HMI. In their study, the data taken were full-disk LoS magnetograms

on a 96-minute cadence for 1075 ARs between 15 April 1996 and 31 December 2008

with B-Class and greater flares. For these events, four parameters were chosen based

on previous studies:

• Total unsigned magnetic flux

• Primary inversion line length

• Effective separation (of the two bipolar regions of an AR)

• Gradient-weighted inversion-line length.

Calculation of the primary polarity inversion line, similarly done in Bobra and Cou-

vidat (2015), identifies the region in which the polarity changes in the AR, where

shearing and magnetic complexity are greatest. This study found that the gradient-

weighted inversion-line length has the strongest association with flaring, but cannot

produce real-time flare forecasts well. They did determine, however, that a super-

posed epoch analysis does have the ability to identify weak systematic responses in

the data.

While these studies all focus on varying sets of parameters, their findings do

indicate that there are relationships between photospheric magnetic fields and solar

flares. Further, many of the results focus on stronger flares and either do not include

or do not find significant results for smaller events. Although the larger flares usually

have greater geo-effective conditions, expanding the study to a larger database can

help to better determine the underlying physics taking place during solar flares and

the associated photospheric magnetic fields.

6



2.2 HMI Data

The HMI has been operational onboard National Aeronautics and Space Ad-

ministration (NASA)’s SDO since 1 May 2010. It is a joint project between Stan-

ford University’s Hansen Experimental Physics Laboratory, the Lockheed Martin So-

lar and Astrophysics Laboratory (LMSAL), the High Altitude Observatory (HAO),

and an additional 21 institutions to better understand and predict geo-effective solar

events (Scherrer et al., 2012). Data from the HMI can be obtained from the Joint

Science Operations Center (JSOC) at Stanford University (JSOC, 2019b). For this

study, SpaceWeather HMI Active Region Patch (SHARP) data are acquired using

the Python notebook created by Glogowski and Bobra (2016). Instrument descrip-

tion and calibration as well as data handling and scientific analysis can be found in

Schou et al. (2012).

As an enhancement to the MDI instrument on the Solar and Heliospheric Obser-

vatory (SOHO), the HMI provides full-disk vector-field data at a high cadence. The

instrument’s science goals include the observation of dynamics in the convective zone

as well as the solar dynamo, the origin and evolution of solar activity features, the

sources and drivers of magnetic features, links in the corona and heliosphere between

internal processes and dynamics, and precursors of disturbances for the improvement

of space-weather forecasts (Scherrer et al., 2012). It is the first instrument that con-

tinuously maps vector magnetic fields from space on the full solar disk (Bobra and

Couvidat, 2015). This study will focus on the photospheric observations of ARs,

providing analysis of magnetic parameter changes during flare events.

2.2.1 HARPs

The HMI produces photospheric full-disk LoS magnetogram images. Using

these and intensity images on the same cadence, HMI Active Region Patches (HARPs)
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are automatically identified and tracked as the region moves across the solar disk on

a 720-second (12-minute) cadence. The dataset serves to track enduring, coherent

magnetic structures as they traverse the Earth-facing hemisphere of the Sun (Hoek-

sema et al., 2014; JSOC, 2019a). The ARs are given HARP numbers as identifica-

tion. HARP numbers differ from National Oceanic and Atmospheric Administration

(NOAA) AR numbers and may even be associated with multiple NOAA ARs, but

each HARP file contains both types of identification. HARPs are identified by (Hoek-

sema et al., 2014):

• Identifying magnetically active pixels, those with an absolute LoS field greater

than 100 Gauss

• Grouping active pixels into instantaneous activity patches, taking into account

spherical geometry

– These patches generally have smooth contours but may consist of several

regions separated by quiet Sun

• Stringing together image-to-image associations with a latitude-dependent mo-

tion model to combine the instantaneous patches into a temporal track

– Gaps exceeding 2 days result in separate HARPs.

Each HARP contains the time index of all associated instantaneous patches

as well as geometric metadata and selected summary statistics of the active region.

The instantaneous patches are coded as bitmaps of the rectangular bounding box in

the charge-coupled device (CCD) plane. These bitmaps identify pixels as one of four

types (JSOC, 2019c):

• Quiet pixels outside of the active region

• Active pixels outside of the active region
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• Quiet pixels inside the active region

• Active pixels inside the active region.

2.2.2 SHARPs

In addition to the HARP data series, the JSOC produces a data series called

SHARP that includes summary parameters of the HARPs (JSOC, 2019a). Each

SHARP includes 31 maps of the active patch for every time step (again, a 12-minute

cadence) with disambiguated field and thermodynamic parameters as well as un-

certainties and errors thereof. These parameters are determined in the spectral line

inversion that is used to interpret the spectro-polarimetric data. There is additionally

a series of cylindrical equal area (CEA) data that includes 11 maps that are remapped

to CEA heliographic coordinates centered on the HARP center point (Hoeksema et al.,

2014). For the purposes of this study, the CEA data series was not used in favor of

the greater breadth of information provided in the standard SHARP data series.

SHARP parameters are calculated for pixels that are within the active region

and have a high confidence in the disambiguation. The disambiguation serves to

resolve the 180◦ ambiguity that results from the inversion of the Zeeman splitting

caused by the magnetic field lines (Hoeksema et al., 2014). The SHARP parameters,

descriptions, and formulas are identified in Table 1.

2.3 Solar Flare Data

The Space Weather Prediction Center (SWPC) at NOAA maintains an archive

of solar events (SWPC, 2019). These are automatically identified by Geostationary

Operational Environmental Satellite (GOES) spacecraft using a detection algorithm

and supplemented by forecaster input as needed. The algorithm compares current

data to previous observations, up to three minutes prior, to determine the slope of
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Table 1. SHARP parameters, descriptions, and calculations (Adapted from Bobra
et al., 2014; Hoeksema et al., 2014; JSOC, 2019a, 2019c)

Keyword Description Unit Formula

AREA ACR
De-projected area

of active pixels
µH Atotal =

∑
dA

USFLUX
Total unsigned

flux
Maxwells φ =

∑
|Bz|dA

MEANGAM
Mean inclination

angle
Degrees γ̄ = 1

N

∑
tan−1

(
Bh

Bz

)
MEANGBT

Mean value of
the total field

gradient
G/Mm |∇Btot| = 1

N

∑√(
∂B
∂x

)2
+
(

∂B
∂y

)2
MEANGBZ

Mean value of
the vertical field

gradient
G/Mm |∇Bz| = 1

N

∑√(
∂Bz

∂x

)2
+
(

∂Bz

∂y

)2
MEANGBH

Mean value of
the horizontal
field gradient

G/Mm |∇Bh| = 1
N

∑√(
∂Bh

∂x

)2
+
(

∂Bh

∂y

)2
MEANJZD

Mean vertical
current density

mA/m2 Jz ∝ 1
N

∑(
∂By

∂x
− ∂Bx

∂y

)
TOTUSJZ

Total unsigned
vertical current

A Jztotal =
∑
|Jz|dA

MEANALP
Characteristic

twist parameter,
α

1/Mm αtotal ∝
∑

JzBz∑
B2

z

MEANJZH
Mean current

helicity
G2/m H̄c ∝ 1

N

∑
BzJz

TOTUSJH
Total unsigned
current helicity

G2/m Hctotal ∝
∑
|BzJz|

ABSNJZH
Absolute value of
the net current

helicity
G2/m Hcabs ∝ |

∑
BzJz|

SAVNCPP
Sum of the absolute

value of the net
currents per polarity

A Jzsum ∝ |
∑B+

Z JzdA|+ |
∑B−

z JzdA|

MEANPOT
Mean photospheric

excess magnetic
energy density

erg/cm3 ρ̄ ∝ 1
N

∑
( ~BObs − ~BPot)2

TOTPOT
Total photospheric
magnetic energy

density
erg/cm ρtotal ∝

∑
( ~BObs − ~BPot)2dA

MEANSHR Mean shear angle Degrees Γ̄ = 1
N

∑
cos−1

(
~BObs· ~BPot

BObsBPot

)
SHRGT45

Percentage of pixels
with a mean shear

angle greater than 45◦
Percent area with shear>45◦

HARP area
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the x-ray flux and changes therein. From there, the algorithm determines whether

the event is at the beginning, maximum, or end and notes the times and maximum

x-ray flux in addition to various other parameters not used in this study (SWPC,

2009). Event ends are considered to be when the flux level reaches its half-max

height, respective to the pre-flare background level (SWPC, 2009, 2019). Associated

NOAA AR numbers are assigned by the observatory or SWPC staff, depending on

the event type (SWPC, 2019).

Among the solar events identified using SWPC’s algorithm are solar flares.

Available to the public from SWPC (2019), these archives can be downloaded in the

form of yearly compressed and zipped (*.tar.gz) files that contain daily summaries.

Flare dates and times are all given in Coordinated Universal Time (UTC). This time

scale differs from that of the SHARP data, which are in International Atomic Time

(TAI). However, UTC is derived from TAI and only differs by 37 seconds (Interna-

tional Bureau of Weights and Measures, 2019a, 2019b), which is about 5% of the

HMI observation frequency. Therefore, the difference in time scales is ignored for the

purposes of this study.

Once all the files were acquired for 2010 through September 2019, a simple code

interpreted the data. With the individual files as an input, the code sifted through the

information to isolate only the events classified as x-ray flares. The associated start

time, flare strength, and NOAA AR were output into a *.csv file to be easily accessed

by the analysis code (see Methodology). Start times were used preferentially over

maximum times as the imagery would have been impacted at the maximum time

with the flare already in progress. Furthermore, the time between beginning and

maximum of a flare varies for each event. As a result, the data leading up to flare

maximum cannot be accurately categorized as part of the flare itself or as part of the

lead-up for a dataset of this size (Gibson et al., 2019).
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2.3.1 Flare Statistics

The first entry in the HARP dataset is dated 1 May 2010. Data were collected

through September 2019, but the last HARP recorded in this time ends on 4 Septem-

ber 2019. In this dataset, there were 13,508 flares recorded. Of these flares, 5,493

were B-Class, 7,210 were C-Class, 697 were M-Class, and 46 were X-Class. The re-

mainder were A-Class and unused in this study. The distribution of flare strengths

peaks strongly at C1.2, of which there are 519 flares, as seen in Figure 2. As in the

study by Wheatland (2008), there is a power-law distribution of flare strengths.

Due to the logarithmic scale of flare classes, the bin size increases for each

successive category. B-Class flares have strengths ranging from 1× 10−7 W/m2 to

1× 10−6W/m2, C-Class flares have strengths of 1× 10−6− 1× 10−5W/m2, M-Class

flares have strengths 1× 10−5 − 1× 10−4 W/m2, and X-Class flares have strengths

1× 10−4 W/m2 and greater. These ranges are further separated into sub-classes by

magnitude of the x-ray flux. Each stronger class has a larger bin size (e.g. the change

in flux from B1 to B2 compared to the change in flux from C1 to C2) by a factor of

ten and thus has a wider range of flares counted. As a result, there is a discontinuity

between each class in the distribution of flare strengths, seen in Figure 2.

The B-Class flares do not appear to follow the same distribution. B-Class flares

are more easily washed out by stronger or a high frequency of flares (Gibson et al.,

2019) or by the background x-ray flux during solar max. For example, in a HARP

in March 2019 (HARP 7350), there were so many flares that the background flux

levels were never able to return to normal (Figure 3). Similarly, this phenomenon

is commonly observed in ARs that produce strong flares, such as in HARP 7115 in

Figure 4. For events such as these, any B-Class flares would not be identified by the

SWPC detection algorithm. As a result, especially near solar maximum, the B-Class

flares that are recorded do not represent the greater number that actually occur.
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Figure 2. Distribution of flare strength in the dataset spanning May 2010 – September
2019. The top plot is a semi-logarithmic plot in the x-axis to match the scale for flare
classification. The bottom four plots show individual distributions of each flare class.
The strength distribution peaks at C1.2 with 519 flares. Flare strengths are identified
by SWPC (2019).
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Figure 3. X-ray flux for the series of flares beginning on 20 March 2019. The active
region had multiple C-Class flares in quick succession, preventing the background x-ray
flux from returning to normal levels between flares. Image courtesy of NOAA SWPC
(NOAA, 2019).

Figure 4. X-ray flux for the Labor Day storms of 2017, including the X9.3 flare on 6
September 2017. The extreme nature of the flares during this storming event raised the
overall x-ray flux levels for multiple days before and after. Image courtesy of NOAA
SWPC (NOAA, 2019).
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III. Methodology

3.1 Small Flare Case Study

Initially, a subset of flares was considered as a case study of small flares. Four

flares were selected to compare six summary SHARP parameters in an epoch analysis.

These parameters were:

• Area of active pixels

• Total unsigned flux

• Mean inclination angle

• Mean shear angle

• Mean photospheric excess magnetic energy density

• Mean current helicity.

Descriptions of SHARP parameters can be found in Table 1. The initial case study

was modeled after that of Loper (2018), using one of the same X-Class flares as

a comparison to three smaller flares. Data for two hours prior to and four hours

following flares were combined into epoch analyses in order to assess any trends that

could aid in the forecasting of solar flares.

Four events were chosen that were the beginning of or isolated storming events.

Furthermore, three of the events were specifically chosen to be smaller flares as a

means of comparing the smaller events to each other as well as to a stronger flare.

As stronger flares tend to be of greater emphasis in studies, little is yet known about

the trends associated with smaller, more frequent flares.
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3.1.1 6 September 2017

Despite its proximity to the minimum of solar cycle 24, the active region of

28 August - 10 September 2017 produced multiple strong solar flares. The strongest

of these was an X9.3 flare—the strongest flare of the solar cycle—that occurred on

6 September at 12:02 UTC and will be used in this study (Figures 4 and 5). A

precursory X2.2 flare appears to have provided the necessary set-up for the larger

X9.3 flare that occurred approximately three hours after (Verma, 2018). These flares

were part of HARP 7115 and NOAA AR 12673, for which HARP data covers 28

August at 09:00 UTC through 10 September at 11:12 UTC. The active region crossed

the meridian on 3 September at 20:12 UTC (JSOC, 2019b). The flare occurred

shortly after the active region had crossed the meridian, which means that the data

will not be greatly skewed by the difference between the LoS from HMI and the radial

direction on the Sun.

Figure 5. SDO magnetogram (upper left), continuum intensity (upper right), magnetic
field strength (bottom left), and Dopplergram (bottom right) images of HARP 7115
(NOAA 12673) from 2 minutes prior to the X9.3 flare on 6 September 2017. Figure
generated with data from JSOC (2019b) acquired using the Python notebook created
by Glogowski and Bobra (2016).
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3.1.2 20 March 2019

While the active region of 15 - 25 March 2019 only produced a maximum C5.3

flare, its background x-ray flux level was raised into the B-class flare level (Figure 3).

From this active region, the initial flare at 07:14 UTC, with a strength of B6.1 (Figure

6), and the first C-Class flare at 11:18 UTC, with a strength of C4.8 (Figure 7), will

be considered. As with the X-Class flares of 2017, the initial weaker flare appears

to be a triggering mechanism for the subsequent storming events. These flares come

from HARP 7350—NOAA AR 12736—which has HARP data from 15 March at 21:24

UTC through 25 March at 04:36 UTC. The active region crossed the meridian on 18

March at 16:48 UTC (JSOC, 2019b). Similar to the 6 September 2017 storms, both

flares occurred shortly after the active region crossed the meridian.

3.1.3 30 March 2018

The active region of 29 March - 7 April 2018 produced one C-class flare followed

by a few smaller flares. In contrast to the 20 March 2019 solar flares, the background

x-ray flux levels are not elevated (Figure 8). On 30 March 2018, this active region

produced a C4.6 flare at 08:04 UTC (Figure 9), which will be considered for this study.

Similar to the other HARPs, the flare has a small preceding flare that occurred less

than three hours before. However, this flare is more isolated following the event than

the others considered. This flare is part of HARP 7246 and NOAA AR 12703. HARP

data begins on 29 March at 13:12 UTC and ends on 7 April 03:00 UTC, crossing the

meridian on 4 April at 21:00 UTC (JSOC, 2019b). Unlike the two previous active

regions, this flare occurred shortly after the active region appeared on the eastern

limb, affecting the sunspot geometry given the large deviation of HMI’s LoS from

radial.
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Figure 6. SDO magnetogram (upper left), continuum intensity (upper right), magnetic
field strength (bottom left), and Dopplergram (bottom right) images of HARP 7350
(NOAA 12736) from 2 minutes prior to the B6.1 flare on 20 March 2019. Figure
generated with data from JSOC (2019b) acquired using the Python notebook created
by Glogowski and Bobra (2016).

Figure 7. SDO magnetogram (upper left), continuum intensity (upper right), magnetic
field strength (bottom left), and Dopplergram (bottom right) images of HARP 7350
(NOAA 12736) from 6 minutes prior to the C4.8 flare on 20 March 2019. Figure
generated with data from JSOC (2019b) acquired using the Python notebook created
by Glogowski and Bobra (2016).
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Figure 8. X-ray flux for the C4.6 flare on 30 March 2018. Image courtesy of NOAA
SWPC (NOAA, 2019).

Figure 9. SDO magnetogram (upper left), continuum intensity (upper right), magnetic
field strength (bottom left), and Dopplergram (bottom right) images of HARP 7246
(NOAA 12703) from 4 minutes prior to the C4.6 flare on 30 March 2018. Figure
generated with data from JSOC (2019b) acquired using the Python notebook created
by Glogowski and Bobra (2016).
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3.1.4 Case Study Results

In the epoch analysis, data are normalized to the value at the flare time and all

times were adjusted to set the flare times to 12:00. This time was chosen arbitrarily

to align all the flares when plotting. The flare times were considered the observation

made closest to the maximum of the flare. This is adjusted for the expanded study to

consider flare times as the observation closest to the start of the flare, as discussed in

the Background section. Results can be found in Figure 10. Because the two flares on

20 March 2019 are approximately four hours apart, the final two hours of the B-Class

flare will overlap with the initial two hours of the C-Class flare.

For this small collection of events, the trends found among the smaller flares

often differ from the trends seen in the stronger flare. This study did only compare

a single X-Class flare and may not represent the characteristics of all X-Class flares.

However, among the smaller flares, there do appear to be similarities prior to the

event:

• Increasing size of the activity within the HARP within the hour before

• Increasing unsigned flux in the entire two hours considered

• Local minima in current helicity, indicating untwisting of the magnetic field

lines, a trend shared by the X-Class flare.

There are additionally similar trends among the smaller flares following the

events, such as increases in area of active pixels and total unsigned flux, a spike in

inclination angle within an hour, overall decrease in mean shear angle, and perhaps

increases in both mean photospheric excess magnetic energy density and mean current

helicity. After these smaller flares, the HARPs continue to grow and increase their

magnetic complexity.
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Figure 10. Area of active pixels, total unsigned flux, mean inclination angle, mean shear
angle, mean photospheric excess magnetic energy density, and mean current helicity
for four solar flares between 2017 and 2019. All data are normalized to the value at the
flare time and times were adjusted to set all flare times to 1200. Plots generated with
data from JSOC (2019b) acquired using the Python notebook created by Glogowski
and Bobra (2016).
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3.2 HMI Dataset

After completion of the initial case study, the same idea was applied to anal-

ysis of nearly a decade of HMI data, collected at the end of September 2019. The

goal of this expanded study was to assess statistically more significant trends, rather

than a few events to represent this larger dataset. In addition to a greater sample

size of events, the study was also extended to include all of the available SHARP

parameters—listed in Table 1. This dataset, spanning the time between May 2010

and September 2019, includes nearly the entirety of solar cycle 24. It begins shortly

after the minimum of solar cycle 24 and includes its maximum and initial transition

to solar cycle 25.

The increased size of the dataset calls for automation of the entire process. For

both the flare database (SWPC, 2019) and the HARP information (JSOC, 2019b),

data through the end of September 2019 were downloaded into *.csv files. This pro-

vided easier access to the data than downloading the same information each time the

code ran. HARP data for the entirety of the time period was downladed, regardless

of whether or not there was a flare associated with each HARP. The archive con-

tains data for multiple types of solar events (SWPC, 2019). Thus, the process of

downloading data also included a step to retrieve only the solar flare data.

With both sets of data, the times were converted to datetime format and flare

start times were associated with the nearest HARP time. In addition, a time array

was created with necessary entries for the epoch analysis (10:00 to 16:00 so that the

flares would all be plotted to start at 12:00). Next, the data for two hours prior to

and four hours following a flare were extracted and normalized to the value at the

flare start time for all SHARP parameters. Finally, the isolated epoch flare data was

parsed to eliminate outlier events. This was done separately for all flares as well as

for subsets of each flare class.
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3.3 Statistical Analysis

3.3.1 Eliminating Outliers

For plotting the epoch analyses of the dataset, two masks were applied to remove

outliers. Masks were applied separately for each compilation of epoch data—for the

full dataset as well as the flare class subsets. The first mask was to eliminate flares

outside of three standard deviations from the average value. Flares were discarded

if any parameter at any time step in the six-hour epoch window was outside of the

standard deviation limits. When included, these flares dominated the dataset, falsely

skewing the results. Standard deviation limits applied for each parameter, normalized

to the flare time values, can be found in Figure 11.

Next, flares outside of 70◦ longitude were eliminated. Longitudinal masks serve

to eliminate data in which the LoS magnetic fields measured by the HMI are falsely

dominated by horizontal rather than radial magnetic fields as well as data impacted

by apparent solar limb effects. Limb darkening results from the variation of the depth

surveyed in an image due to the optical depth of the plasma and the geometry of the

LoS, affecting all pixels at a given radius. Foreshortening affects only the sunspots,

but results in a distortion of the spot near the limb as the LoS looks across the sunspot

rather than directly onto it.

Studies of solar events, such as Kazachenko et al. (2017) and Bobra and Cou-

vidat (2015), include similar limits to their data. In the study by Kazachenko et al.

(2017), a limit of 45◦ longitude was applied. This was to exclude magnetic field data

that were more transverse than radial, with respect to LoS. Meanwhile, Bobra and

Couvidat (2015) apply a mask of 70◦ from central meridian as the signal-to-noise

ratio in the SHARP parameters significantly increases beyond this longitude (Bobra

et al., 2014). In a study by Criscuoli et al. (2017) regarding network and faculae from

23



0.5

1.0

1.5

No
rm

al
ize

d 
to
 F
la
re

LoS Area of Active Pixels

−50

0

50

No
−m

al
i5e

d 
to
 F
la
−e

Total Unsigned Fl0x

0.8

1.0

1.2

No
rm

al
ize

d 
to
 F
la
re

Mean Inclination Angle

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d 
to
 F
la
re

Mean Value of the Total Field Gradient

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d 
to
 F
la
re

Mean Value of the Vertical Field Gradient

0.8

1.0

1.2

No
rm

al
ize

d 
to
 F
la
re

Mean Value of the Horizontal Field Gradient

−200

0

200

No
−m

al
ize

d 
to
 F
la
−e

Mean Ve−tical C0−−ent Density

−20

0

20

No
−m

al
ize

d 
to
 F
la
−e

Total Unsigned Ve−tical C0−−ent

−100

0

100

No
−m

al
ize

d 
to
 F
la
−e

Cha−acte−istic T2ist Pa−amete−

−100

0

100

No
−m

al
ize

d 
to
 F
la
−e

Mean Ve−tical C0−−ent Helicity

−100

0

100

No
−m

al
ize

d 
to
 F
la
−e

Total Unsigned Ve−tical C0−−ent Helicity

−100

0

100

No
−m

al
ize

d 
to
 F
la
−e

A sol0te Val0e of the Net Ve−tical C0−−ent Helicity

−10

0

10

20

No
−m

al
ize

d 
to
 F
la
−e

S0m of the A sol0te Val0e of the Net Ve−tical C0−−ents Pe− Pola−ity

−2

0

2

4

No
rm

al
ize

d 
to
 F
la
re

Mean Photospheric Excess Magnetic Energy Density

−200

−100

0

100

200

No
−m

al
ize

d 
to
 F
la
−e

Total Photosphe−ic Magnetic Ene−gy Density

10:0
0

11:0
0

12:0
0

13:0
0

14:0
0

15:0
0

Time

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d 
to
 F
la
re

Mean Shear Angle

10:0
0

11:0
0

12:0
0

13:0
0

14:0
0

15:0
0

Time

−1

0

1

2

3

No
−m

al
ize

d 
to
 F
la
−e

Pe−centage of Pi3els 2ith a Mean Shea− Angle G−eate− than 45∘

B-Class∘Fla-es

C-Class∘Fla-es

M-Class∘Fla-es

X-Class∘Fla-es

Standa-d∘Deviation∘Ranges

Figure 11. Standard deviation limits applied to the dataset and subsets for this study.
Data outside these limits are disregarded for this study. Plotted lines represent three
standard deviations from the average values of a given subset. Each color represents
a different subset: all flares in black, B-Class flares in blue, C-Class flares in orange,
M-Class flares in green, and X-Class flares in red. Values are normalized to flare start
times, denoted by the vertical dashed line. SHARP data are acquired from JSOC
using the Python notebook created by Glogowski and Bobra (2016) and flare times are
identified by SWPC (2019).
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the same dataset, observations are included as far out as 78◦ but a deconvolution

is performed to compensate for the scattered light effects near the solar limb. The

remainder of the solar limb is disregarded only due to uncertainties in this region.

To determine the longitude mask best suited for this study, sets of plots were

created with 45◦ and 70◦ masks as well as no mask. Comparison of these plots showed

no significant differences between the masks, with fluctuations within a few percent.

This indicates that the SHARP calculations do make corrections for longitude in the

Stokes parameters. This correction is necessary in the HARP dataset as it tracks

ARs to the limbs in order to maintain HARP history across the Earth-facing solar

hemisphere (JSOC, 2019a). The dataset considered in this study represents this

property of the HARP tracking algorithm as the greatest AR longitude included

was 90.37◦. The greatest longitude of of a flare included was 89.76◦. However, flares

along the limb can still be missed, as was the case with an X8.2 flare on 10 September

2017 (Loper, 2018). The 70◦ mask was used for this study in order to avoid lost or

incomplete patches as they rotate onto and off the solar disk as well as to avoid some

of the more extreme limb effects to the data.

Plots of all flares included in the analysis can be found in Appendix A. Distri-

butions of flare classes that meet these considerations and are used in this study are

found in Table 2. Again, the dataset is dominated significantly by weak C-Class flares,

so much so that the C1 and C2 flares comprise 40% of the events considered. Further,

despite the undersampling of B-Class flares, they still make up a larger portion of

the dataset than either the M- or X-Class flares. Moreover, flares with a strength of

X4 and greater are outside the limits of the applied masks. Prior to the masks, there

were only four flares in this range: an X5.4, an X6.9, an X8.2, and an X9.3. The

X6.9 and X8.2 flares were too close to the solar limb and the other two were beyond

standard deviation limits, overpowering the general X-Class flare behavior.
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Table 2. Distribution of flare strengths after removal of outlier events

Flare Class
Number of Flares

Considered
Comparison to

Unmasked Subset
Comparison to Total

Considered

B 2063 37.6% 37.2%

B1 164 20.6% 2.9%

B2 225 29.6% 4.1%

B3 228 33.3% 4.1%

B4 258 39.7% 4.6%

B5 240 42.0% 4.3%

B6 266 49.4% 4.8%

B7 226 44.7% 4.1%

B8 246 47.5% 4.4%

B9 210 45.2% 3.8%

C 3181 44.1% 57.3%

C1 1528 42.0% 27.5%

C2 695 46.7% 12.5%

C3 348 47.5% 6.3%

C4 192 44.7% 3.5%

C5 139 45.4% 2.5%

C6 91 41.6% 1.6%

C7 83 50.0% 1.5%

C8 54 41.2% 1.0%

C9 51 53.1% 0.9%

M 292 41.9% 5.3%

M1 172 40.9% 3.1%

M2 49 42.2% 0.9%

M3 24 43.6% 0.4%

M4 17 56.7% 0.3%

M5 12 38.7% 0.2%

M6 7 36.8% 0.1%

M7 6 46.2% 0.1%

M8 3 50.0% 0.05%

M9 2 33.3% 0.04%

X 15 32.6% 0.3%

X1 11 37.9% 0.2%

X2 3 30.0% 0.05%

X3 1 33.3% 0.02%

X4 0 0% 0%

X5 0 0% 0%

X6 0 0% 0%

X7 0 0% 0%

X8 0 0% 0%

X9 0 0% 0%

Total 5551 41.1% 100%
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3.3.2 Displaying Data

In order to compare the events, all parameters were normalized to the value of

each flare at its start time. This allows all the events to be displayed on the same

scale and shows the changes relative to the flare onset. While the flare maximum

time is used to determine flare strength and is typically the time associated with the

event, the start time was used instead to avoid contamination of the data from the

ongoing flare (see Background).

Due to the substantial quantity of flares in the dataset, displaying them all

on a single plot, as in Appendix A, gives a crowded plot on which it is difficult to

determine any trends. To summarize the dataset, averages and medians of the data

for each point in time across all flares of a given strength were plotted. Median plots

are used in this study and can be found in the Analysis and Results section. Average

plots were not used but are included in Appendix B for comparison. Medians were

chosen over averages since the data follow a power law distribution in which averages

are more susceptible to outliers and may not provide an adequate representation.

3.4 Limitations

This study only considers flares that have an associated NOAA AR. The as-

sociation is performed during the SHARP analysis and can be accessed through the

header of the data file in the same manner as the SHARP parameters used in this

study. Of the 13,508 flares that occurred between May 2010 and September 2019,

2,890 did not have an associated NOAA AR; this is approximately 21% of the dataset.

In the SWPC archive of solar events, there are seven occasions when the max-

imum time of the flare was missing, denoted as ”////.” For all of these events, the

begin times were around or after 23:40 and the end times were around or before 00:05

the next day. In these instances, the maximum times were set to 00:00.
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As previously mentioned, magnetic reconnection occurs in the solar atmosphere

while the observations analyzed here are of the photosphere. In order to get a fuller

picture of reconnection events, chromospheric and coronal observations must also be

considered. Furthermore, solar flares can change the opacity of the solar atmosphere,

impacting the accuracy of the photospheric observations and potentially contaminat-

ing the data for times during and immediately following a flare.

While the HMI is the first instrument to continuously measure full-disk obser-

vations of the solar magnetic field in all orientations (Stanford University, 2019)—an

immeasurable value to the advancement of scientific understanding of the Sun—the

SHARP catalog is limited to a 12-minute cadence between observations (JSOC, 2019c,

2020). This is because the magnetograms are created using multiple sequences of

registered filtergrams, combined using circularly polarized exposures (JSOC, 2020).

There are multiple limitations as a result:

• Motions and changes in the magnetic field that occur on time scales less than

12 minutes will be lost

• Observations may be partly or fully affected by the occurrence of a flare during

the time between measurements

• For flares that occur between measurements, the times were attributed to the

nearest observation time

– Flare times may be incorrect by as many as six minutes

– The nearest observation time may be after the start time of the flare,

thus resulting in the aforementioned contamination of the data due to the

ongoing flare.
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IV. Analysis and Results

4.1 Analysis of All Flares

Results for all flares considered in the study can be found in Figure 12. The plots

are all in the same time scale, beginning two hours before each flare and concluding

four hours after. Arbitrarily, this time window is set as 10:00 to 16:00. The flare time,

denoted on the x-axis as 12:00, is represented by the vertical dashed line. The plot

of median values of all flares considered is the thick, dashed line. Each of the colored

lines represents the median values of the subsets of data that are separated by flare

class: blue for B-Class flares, orange for C-Class flares, green for M-Class flares, and

red for X-Class flares.

Given that the variability of the X-Class flares prohibits the ability to see trends

in smaller flares that are concentrated around the overall median values, the same

plots can be see in Figure 13 without the X-Class flares. The scale of the y-axis is

set to adjust based on the data displayed, so it shows a much smaller range without

the large flares.

Another means of visualizing the data is given in Figure 14. This scatter plot

gives the differences from start to end of the epoch time on the y-axis and flare

strength along the x-axis. Each of the colors corresponds to flare class, as in Figure

12. Similarly, Figure 15 shows the differences in parameters from start to end time

of the flare on the y-axis. This method shows the variability across flare strengths

that is lacking in Figures 12 and 13 as all flares studied are shown. Correspondingly,

Figures 16 and 17 compare the flare duration to the parameter differences and flare

strength, respectively. Parameter values are normalized to flare start time.

The area of active pixels, or size of the active region, increases steadily through-

out the six-hour window for B-, C-, and M-Class flares. The ARs of X-Class flares,
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however, decrease in size throughout the time. There is a slight leveling trend fol-

lowing the flare for about two hours for these strong flares. A similar trend could be

assessed in M-Class flares for a smaller period of time.

Similarly, the total unsigned flux increases more significantly for B- and C-Class

flares than it does for M- and X-Class flares. While the B- and C-Class flares range

from a half percent lower to a full percent higher from the beginning to end of the

epoch analysis, the M-Class flare unsigned flux remains fairly steady and the X-Class

unsigned flux has large oscillations around the normalized flare value with an increase

beginning 2-3 hours after the flare.

The mean inclination angle, or deviation of the magnetic field lines from radial,

decreases slightly among B- and M-Class flares with the strongest signature seen

in the B-Class flares. For the C-Class flares, the inclination angle remains steady

throughout the duration of the epoch analysis. For the X-Class flares, there is a

small spike then a significant decrease in the inclination angle following the flare.

The mean value of the total, vertical, and horizontal field gradients do not have

much of a signature in either the B- or C-Class flares. For all three parameters, these

smaller flares decrease slightly, but have an overall change of around half a percent.

However, both the M- and X-Class flares have similar trends, but at differing scales.

Both classes have a strong increase around the flare time with steady elevated levels

for a few hours following the flare before returning to normal.

Trends in the mean vertical current density are unlike any of the other parameter

trends. For the B-, C-, and M-Class flares, there is a sharp peak at the start of the

flare, though it is best defined for the B- and C-Class flares. Meanwhile, for the

X-Class flares, there is a decrease to a minimum during the time of the flare. For

both of these respective changes, the extrema are significant compared to the values

at the beginning and end of the epoch analysis.
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The total unsigned vertical current trends are again small. The B- and C-Class

flares show an increased unsigned vertical current leading into the flare followed by

steady levels. The larger flares, however, show greater variability about the normal-

ized flare value throughout the time period with an overall decrease about one hour

following the flare.

The characteristic twist parameter, helicity parameters, and the sum of the

absolute value of the net vertical currents per polarity exhibit similar trends, especially

for M- and X-Class flares. For all but the sum of the absolute value of the net

vertical currents per polarity, the B- and C-Class flares have a slight increase leading

up to the flare followed by a steadier decline. Meanwhile, the M- and X-Class flares

have sudden increases immediately following the commencement of the flare. In the

characteristic twist parameter, absolute value of the net vertical current helicity, and

sum of the absolute value of the net vertical currents per polarity, these increases are

particularly large for the M-Class flares (the increases are large for X-Class flares for

all these parameters).

Mean photospheric excess magnetic energy density decreases slightly for small

flares about three hours following the flare. This signal is strongest in B-Class flares.

For M-Class flares, there is a slight increase prior to and immediately following the

flare and then a slight decrease about one hour afterwards. For X-Class flares, there is

a sudden increase in mean photospheric excess magnetic energy density immediately

following the flare, continuing for about three hours before beginning to decrease.

Total photospheric magnetic energy density has a similar decreasing trend

among all flare classes beginning 2-3 hours following the flare. However, the B-,

C-, and M-Class flares all exhibit a slight increase in total photospheric magnetic

energy density leading into the flare and X-Class flares have a sharp decrease an hour

prior followed by steady levels nearing the flare time.

31



Both the mean shear angle and the percentage of pixels with a mean shear angle

greater than 45◦ have similar results, which is to be expected given their relationship

with each other. The B-, C-, and M-Class flares have a slight decrease during this

time with the C- and M-Class flare percentages of pixels with a mean shear angle

greater than 45◦ leveling off following the flare. For the X-Class flares, there is a

significant decrease in both parameters beginning about one time step following the

start of the flare.

For all parameters, the X-Class flare trends differ from the smaller flare trends.

Furthermore, the M-Class flare trends for some parameters or part of the epoch

timeline differ from the smaller flares. In these instances, the overall trends are

similar to the X-Class flares but to a smaller extent. A similar result was found in

Mason and Hoeksema (2010) in which the percent changes in calculated parameters

were greater for X-Class flares while the M-Class flares and lower had similar changes.

This indicates that the large flares are outliers among solar flares. Interestingly, the

changes from the start to end of the epoch analysis and of the flare duration show

greater variation among smaller flares than larger for all parameters (Figures 14, 15,

and 16).

The greatest change over the duration of the flare (Figures 15 and 16) manifests

in the mean vertical current density, with multiple instances of changes up to 40 times

greater or less than the value at the flare start. The majority of the events are within

20 times the start value, which still provides the greatest change in parameter value.

The next closest are the characteristic twist parameter, mean vertical current helicity,

and absolute value of the net vertical current helicity, whose changes are concentrated

within 10 times the initial value.

Figure 17 shows that the majority of flares last for less than 100 minutes. The

longest flares seem to be the upper-B-Class and lower-C-Class flares, which is also
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where the strength distribution peaks (Figure 2). Moreover, the shortest flares change

the most over the duration of the flare (Figure 16). Given that these shortest flares

comprise a majority of the dataset, they are likely to best represent flare magnetic

field properties.

4.2 Analysis of B-Class Flares

Results for B-Class flares can be found in Figure 18. The axes are set up

in the same manner as the plots for all flares. For these plots, the thick, dashed

line denotes the median values for the subset of B-Class flares. Each colored line

shows the median values for each further subset of flare strengths: red for flares with

strengths B1.0-B1.9, orange for flares with strengths B2.0-B2.9, yellow for flares with

strengths B3.0-B3.9, green for flares with strengths B4.0-B4.9, blue for flares with

strengths B5.0-B5.9, purple for flares with strengths B6.0-B6.9, pink for flares with

strengths B7.0-B7.9, brown for flares with strengths B8.0-B8.9, and gray for flares

with strengths B9.0-B9.9.

In addition to trends discussed in the previous section, a few patterns can be

found when looking at a breakdown of B-Class flare strengths. For both the area

of active pixels and total unsigned flux, all B-Class flares increase significantly over

the time period. However, some of the larger B-Class flares have smaller changes

after the flare occurs. The changes for active pixel area range from −1% before the

flare to 1% after the flare, with the greatest changes seen in the B3 and B5 flares.

Gradient parameters as well as some of the vertical current parameters and energy

density parameters, which have little change for all B-Class flares considered, seem to

have an increased variability among sub-classes particularly beginning one hour after

the flare begins. Finally, the unique trend in mean vertical current density seen for

B-, C-, and M-Class flares is found particularly in the low- to mid-B-Class flares.
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4.3 Analysis of C-Class Flares

Results for C-Class flares can be found in Figure 19. The axes are set up in the

same manner as before. For these plots, the thick, dashed line denotes the median

values for the subset of C-Class flares. Each colored line shows the median values for

each further subset of flare strengths: red for flares with strengths C1.0-C1.9, orange

for flares with strengths C2.0-C2.9, yellow for flares with strengths C3.0-C3.9, green

for flares with strengths C4.0-C4.9, blue for flares with strengths C5.0-C5.9, purple

for flares with strengths C6.0-C6.9, pink for flares with strengths C7.0-C7.9, brown

for flares with strengths C8.0-C8.9, and gray for flares with strengths C9.0-C9.9.

Similar to the B-Class flares, there are a few trends that can be expanded upon

from this closer look into sub-class analysis. For the strongest C-Class flares, there

are unique decreasing trends in the gradient parameters following a flare. The C8

flare gradients increase leading into and immediately following the flare (similar to

the M- and X-Class flares, previously discussed) but begin to decline about one hour

following. Meanwhile, the C9 flare gradients decrease into and immediately following

the flare before leveling out in the period 1-2 hours after the flare. Again, the C8

flares differ in the mean vertical current density in which the trend actually resembles

closer to that of the X-Class flares than the particular trend of the B-, C-, and M-

Class flares. The remainder of the parameters have fairly neutral overall changes

during the time period considered for all C-Class flares with variabilities among the

sub-classes, particularly the mid- and high-C-Class flares.

4.4 Analysis of M-Class Flares

Results for M-Class flares can be found in Figure 20. The axes are set up in the

same manner as before. For these plots, the thick, dashed line denotes the median

values for the subset of M-Class flares. Each colored line shows the median values for
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each further subset of flare strengths: red for flares with strengths M1.0-M1.9, orange

for flares with strengths M2.0-M2.9, yellow for flares with strengths M3.0-M3.9, green

for flares with strengths M4.0-M4.9, blue for flares with strengths M5.0-M5.9, purple

for flares with strengths M6.0-M6.9, pink for flares with strengths M7.0-M7.9, brown

for flares with strengths M8.0-M8.9, and gray for flares with strengths M9.0-M9.9.

Again, closer inspection into sub-M-Class flares reveals a few trends that are

unseen in the overall analysis. Unlike the smaller flares, there is significant variation

in the AR size and amount of unsigned flux, particularly in M4 flares and larger. Area

variations range from −2% to 4% from the flare time values and the trends themselves

do not follow the same increasing tendency throughout the entire window. For the

unsigned flux, most of these larger M-Class flares actually decrease leading into the

flare. In the gradient parameters, the M8 flares increase into and following the flare,

just as the X-Class flares do. For the mean vertical current density, the previously

discussed peak at flare time is harder to see due to the variation among high-M-Class

flares throughout the entire window. Looking closely at the flare time, the smaller

M-Class flares seem to follow closer to the overall M-Class median values. Notably,

however, the larger M-Class flares do not seem to follow the same trends seen in the

X-Class flares, nor is there much of a conceivable trend at all.

For the remainder of the parameters, particularly the helicity and twist param-

eters, there is great variation among the M9 flares relative to the overall M-Class

medians. A possible explanation for this volatility in the stronger flares could be the

small sample size (see Table 2). This poses difficulty in deducing trends for these

larger flare sub-classes as well as the entirety of the X-Class flare subset.
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4.5 Analysis of X-Class Flares

Results for X-Class flares can be found in Figure 21. The axes are set up in the

same manner as before. For these plots, the thick, dashed line denotes the median

values for the subset of X-Class flares. Each colored line shows the median values for

each further subset of flare strengths: red for flares with strengths X1.0-X1.9, orange

for flares with strengths X2.0-X2.9, yellow for flares with strengths X3.0-X3.9, green

for flares with strengths X4.0-X4.9, blue for flares with strengths X5.0-X5.9, purple

for flares with strengths X6.0-X6.9, pink for flares with strengths X7.0-X7.9, brown

for flares with strengths X8.0-X8.9, and gray for flares with strengths X9.0-X9.9. As

discussed in the Methodology section, flares of strength X4 and greater are discarded

as outliers using the applied masks.

Once more, trends deduced from sub-class analysis may give greater insight into

the trends already discussed for the analysis of all flares. As with the M-Class flares,

the small sample size of strong flares leads to difficulty in assessing trends. Related,

the X-Class medians are dominated significantly by the X1 flares, which make up 73%

of this class. The twist and helicity parameters again prove to be of significant note

in this subset. Particularly, the sudden increase in these parameter values following

the flare increases in slope for increasing flare strength, to as much as two times the

flare value.

4.6 Results

Similar to the small flare case study (see Methodology), the B-, C-, and M-

Class flares increase in size and unsigned flux throughout the entire epoch analysis,

indicating that the ARs are growing while the X-Class flare ARs might have reached

a maximum in size and strength. Additional trends suggest that there are differences

in the underlying physics associated with small and large flares. The behavior of the
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X-Class and, to a lesser extent, the M-Class flares differs from that of the B- and

C-Class flares. Within the sub-classes of M-Class flares, there appears to be a change

from behaviors of smaller flares to those of larger flares.

Notably, the twist and helicity parameters have a significant increase after the

onset of a strong flare. This indicates greater twisting of the magnetic field lines

following the flare, perhaps a reaction to untwisting during the flare. There is also

an intensifying throughout these flare processes, seen by the increase in gradient

parameters.

Consistent with Bobra and Couvidat (2015), parameters focusing on total un-

signed vertical current are among those with the strongest visible trends. From this

study, the helicity parameters as well as the twist parameter, in particular, exhibit

similar trends. Of note, however, Bobra and Couvidat (2015) find these parameters

to be beneficial for flare forecasting, while this study indicates that the trends are

better seen following the flare.

For the purposes of flare forecasting, few of the parameters give an overwhelming

signature associated with an imminent flare, with the exception of the mean vertical

current density. The strong increase leading into the flare start may give an early

indication of an AR that is soon to flare, increasing as much as a full percent within

the hour prior to the flare. For the M-Class flares, there are other spikes in the data

for this parameter that may provide false-positive forecasts. However, this parameter

may be of significant use for forecasting of B- and C-Class flares.
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Figure 12. Epoch analysis for all flares between May 2010 and September 2019. All
data are normalized to the values at the time of the flare, which is identified as the
dashed vertical line. Strengths of flares are separated by corresponding colors. The
plots display medians for all events in the associated flare class. Flares outside of
three standard deviations from the average and outside of 70◦ heliographic longitude
are excluded as outliers. SHARP data are acquired from JSOC using the Python
notebook created by Glogowski and Bobra (2016) and flare times are identified by
SWPC (2019).
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Figure 13. Epoch analysis for all but X-Class flares between May 2010 and September
2019. All data are normalized to the values at the time of the flare, which is identified
as the dashed vertical line. Strengths of flares are separated by corresponding colors.
The plots display medians for all events in the associated flare class. Flares outside of
three standard deviations from the average and outside of 70◦ heliographic longitude are
excluded as outliers. SHARP data are acquired from JSOC using the Python notebook
created by Glogowski and Bobra (2016) and flare times are identified by SWPC (2019).
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Figure 14. Differences in normalized parameter values from two hours prior to four
hours after the start time of a flare. Strengths of flares are along the semilogarithmic
x-axis and separated by flare class with corresponding colors. Flares outside of three
standard deviations from the average and outside of 70◦ heliographic longitude are
excluded as outliers. SHARP data are acquired from JSOC using the Python notebook
created by Glogowski and Bobra (2016) and flare times are identified by SWPC (2019).
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Figure 15. Differences in normalized parameter values from the start to end time of a
flare. Strengths of flares are along the semilogarithmic x-axis and separated by flare
class with corresponding colors. Flares outside of three standard deviations from the
average and outside of 70◦ heliographic longitude are excluded as outliers. SHARP
data are acquired from JSOC using the Python notebook created by Glogowski and
Bobra (2016) and flare times are identified by SWPC (2019).
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Figure 16. Differences in normalized parameter values from start to end time of a flare
compared to the duration of the flare. Durations of flares are along the x-axis in minutes
and separated by flare class with corresponding colors. Flares outside of three standard
deviations from the average and outside of 70◦ heliographic longitude are excluded as
outliers. SHARP data are acquired from JSOC using the Python notebook created by
Glogowski and Bobra (2016) and flare times are identified by SWPC (2019).
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Figure 17. Duration of flares compared to their strengths. Strengths of flares are
along the semilogarithmic x-axis and separated by flare class with corresponding col-
ors. Flares outside of three standard deviations from the average and outside of 70◦

heliographic longitude are excluded as outliers. SHARP data are acquired from JSOC
using the Python notebook created by Glogowski and Bobra (2016) and flare times are
identified by SWPC (2019).
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Figure 18. Epoch analysis for B-Class flares between May 2010 and September 2019.
All data are normalized to the values at the time of the flare, which is identified as
the dashed vertical line. Strengths of flares are separated by corresponding colors.
The plots display medians for all events in the associated flare class. Flares outside of
three standard deviations from the average and outside of 70◦ heliographic longitude are
excluded as outliers. SHARP data are acquired from JSOC using the Python notebook
created by Glogowski and Bobra (2016) and flare times are identified by SWPC (2019).
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Figure 19. Epoch analysis for C-Class flares between May 2010 and September 2019.
All data are normalized to the values at the time of the flare, which is identified as
the dashed vertical line. Strengths of flares are separated by corresponding colors.
The plots display medians for all events in the associated flare class. Flares outside of
three standard deviations from the average and outside of 70◦ heliographic longitude are
excluded as outliers. SHARP data are acquired from JSOC using the Python notebook
created by Glogowski and Bobra (2016) and flare times are identified by SWPC (2019).
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Figure 20. Epoch analysis for M-Class flares between May 2010 and September 2019.
All data are normalized to the values at the time of the flare, which is identified as
the dashed vertical line. Strengths of flares are separated by corresponding colors.
The plots display medians for all events in the associated flare class. Flares outside of
three standard deviations from the average and outside of 70◦ heliographic longitude are
excluded as outliers. SHARP data are acquired from JSOC using the Python notebook
created by Glogowski and Bobra (2016) and flare times are identified by SWPC (2019).
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Figure 21. Epoch analysis for X-Class flares between May 2010 and September 2019.
All data are normalized to the values at the time of the flare, which is identified as
the dashed vertical line. Strengths of flares are separated by corresponding colors.
The plots display medians for all events in the associated flare class. Flares outside of
three standard deviations from the average and outside of 70◦ heliographic longitude are
excluded as outliers. SHARP data are acquired from JSOC using the Python notebook
created by Glogowski and Bobra (2016) and flare times are identified by SWPC (2019).
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V. Conclusions

5.1 Summary

For the purposes of understanding the underlying physics, certain trends can be

identified. The rise in both size and flux levels of small and moderate flares indicates

that these ARs may still be growing in size and strength while producing flares. The

X-Class flares, however, seem to be doing the opposite, perhaps suggesting that they

have reached a maximum size or strength. Trends in the field gradients for M- and

X-Class flares demonstrate the intensifying of the magnetic structures during the flare

process. Similarly, the sudden increase in helicity parameters and characteristic twist

parameter following M- and X-Class flares implies an increase in the complexity of

the magnetic field configuration. Extreme responses of X-Class flare ARs suggests

that they get obliterated by the flares.

Coupled with the changes noted in Figures 14 and 15, in which helicity and twist

parameters show greatest variability throughout the flare duration, these parameters

provide a strong signal for investigation into the physics of flares. Of note, these

all rely on the vertical current density, but the mean vertical current density and

total unsigned vertical current parameters do not exhibit similar patterns in the

epoch analysis (Figures 12 and 13). The mean vertical current density does show the

greatest variability in the change over the course of the flare (Figures 15 and 16).

As previously stated, Figure 12 suggests that X-Class flares are outliers among

the dataset. Furthermore, the shorter events, particularly of the B-, C-, and M-Class

flares, exhibit the greatest variability and makeup the majority of the dataset (Figures

16 and 17). Given that the B-Class flares are harder to sample and often left out

of databases (Figure 2) and that M-Class flares follow similar trends to the X-Class

flares, both with small sample sizes (Figure 13), the C-Class flares prove to be a

48



significant subset of the overall dataset. Moving forward, studies focused specifically

on C-Class flares may be more indicative of basic flare physics.

For the purposes of forecasting flares, however, few of these parameters show

strong patterns. The most significant trend leading into a flare seems to be the mean

vertical current density, particularly for B-, C-, and M-Class flares. This could be

helpful as these flares are often harder to predict. Anecdotally, large flares can be

expected from extremely complex ARs with only a question of timing whereas smaller

and less complex ARs have a higher chance of not producing a flare. However, the

signature manifests within the hour leading into the flare, which does not give much

of a lead time for the flare forecast.

5.2 Future Work

5.2.1 Flare Classification

The current flare classification separates events based solely on their maximum

x-ray flux. Apart from general trends, this classification does not adequately separate

flares by common behavior. Furthermore, due to the high volume of flares in the

HMI dataset, it is difficult to determine overall trends. Separating the flares based on

commonalities between the events or ARs would serve to better classify flare types

and trends and could benefit flare forecasting. For example, a flare classification based

on AR properties could be used by forecasters to identify possible events produced

from similar observations in real time. Some of the ways that the flare database could

be further broken down in order to assess trends include:

• Comparing flares that occur as the AR is near solar meridian to those that

occur when the AR is near solar limbs

• Correlating flares with geo-effective events such as coronal mass ejections (CMEs)
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and compare to flares without these events

• Determining whether the occurrence of a precursor flare, as in Verma (2018),

impacts the resulting parameters

• Studying the differences in flare properties throughout the evolution of the AR

lifetime.

5.2.2 Statistical Analysis

The statistical analysis performed in this study is limited to basic statistics,

namely means, medians, and standard deviations. However, further research into the

distribution of the parameters for a given time across flare strengths—and appropriate

analysis—could better provide a characterization of the parameters in question.

Another improvement to statistical analysis of these flares could be to further

mask the imagery to isolate the parts of the AR that most impact the magnetic recon-

nection. One option would be to use the flare ribbon database created by Kazachenko

et al. (2017) to then calculate magnetic parameters for the footprints of the recon-

nection flux tubes. A similar option would be to identify the polarity inversion line

and calculate the parameters for pixels identified along that line in order to eliminate

pixels in the AR that contain weak magnetic fields, as in Bobra and Couvidat (2015)

and Mason and Hoeksema (2010).

In a similar matter, improving the spatial scope of the events considered would

include more events. To be able to accurately use data with greater deviations from

disk center, a deconvolution algorithm to compensate for limb darkening effects such

as that in Criscuoli et al. (2017) could be applied. Improving flare statistics and

categorizations can provide greater trend analysis for both improved physics under-

standing and forecasting abilities of solar flares of all strengths.
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Appendix A

Flares Included in Analysis

Figure 22. Epoch analysis for all flares between May 2010 and September 2019. All
data are normalized to the values at the time of the flare, which is identified as the
dashed vertical line. Strengths of flares are separated by corresponding colors. Flares
outside of three standard deviations from the average and outside of 70◦ heliographic
longitude are excluded as outliers. SHARP data are acquired from JSOC using the
Python notebook created by Glogowski and Bobra (2016) and flare times are identified
by SWPC (2019).
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Figure 23. Epoch analysis for B-Class flares between May 2010 and September 2019.
All data are normalized to the values at the time of the flare, which is identified as the
dashed vertical line. Strengths of flares are separated by corresponding colors. Flares
outside of three standard deviations from the average and outside of 70◦ heliographic
longitude are excluded as outliers. SHARP data are acquired from JSOC using the
Python notebook created by Glogowski and Bobra (2016) and flare times are identified
by SWPC (2019).
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Figure 24. Epoch analysis for C-Class flares between May 2010 and September 2019.
All data are normalized to the values at the time of the flare, which is identified as the
dashed vertical line. Strengths of flares are separated by corresponding colors. Flares
outside of three standard deviations from the average and outside of 70◦ heliographic
longitude are excluded as outliers. SHARP data are acquired from JSOC using the
Python notebook created by Glogowski and Bobra (2016) and flare times are identified
by SWPC (2019).
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Figure 25. Epoch analysis for M-Class flares between May 2010 and September 2019.
All data are normalized to the values at the time of the flare, which is identified as the
dashed vertical line. Strengths of flares are separated by corresponding colors. Flares
outside of three standard deviations from the average and outside of 70◦ heliographic
longitude are excluded as outliers. SHARP data are acquired from JSOC using the
Python notebook created by Glogowski and Bobra (2016) and flare times are identified
by SWPC (2019).
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Figure 26. Epoch analysis for X-Class flares between May 2010 and September 2019.
All data are normalized to the values at the time of the flare, which is identified as the
dashed vertical line. Strengths of flares are separated by corresponding colors. Flares
outside of three standard deviations from the average and outside of 70◦ heliographic
longitude are excluded as outliers. SHARP data are acquired from JSOC using the
Python notebook created by Glogowski and Bobra (2016) and flare times are identified
by SWPC (2019).
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Appendix B

Flare Average Plots
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Figure 27. Epoch analysis for all flares between May 2010 and September 2019. All data
are normalized to the values at the time of the flare, which is identified as the dashed
vertical line. Strengths of flares are separated by corresponding colors. The data are
averaged for all events in the associated flare class. Flares outside of three standard
deviations from the average and outside of 70◦ heliographic longitude are excluded as
outliers. SHARP data are acquired from JSOC using the Python notebook created by
Glogowski and Bobra (2016) and flare times are identified by SWPC (2019).
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Figure 28. Epoch analysis for B-Class flares between May 2010 and September 2019.
All data are normalized to the values at the time of the flare, which is identified as the
dashed vertical line. Strengths of flares are separated by corresponding colors. The data
are averaged for all events in the associated flare class. Flares outside of three standard
deviations from the average and outside of 70◦ heliographic longitude are excluded as
outliers. SHARP data are acquired from JSOC using the Python notebook created by
Glogowski and Bobra (2016) and flare times are identified by SWPC (2019).
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Figure 29. Epoch analysis for C-Class flares between May 2010 and September 2019.
All data are normalized to the values at the time of the flare, which is identified as the
dashed vertical line. Strengths of flares are separated by corresponding colors. The data
are averaged for all events in the associated flare class. Flares outside of three standard
deviations from the average and outside of 70◦ heliographic longitude are excluded as
outliers. SHARP data are acquired from JSOC using the Python notebook created by
Glogowski and Bobra (2016) and flare times are identified by SWPC (2019).
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Figure 30. Epoch analysis for M-Class flares between May 2010 and September 2019.
All data are normalized to the values at the time of the flare, which is identified as the
dashed vertical line. Strengths of flares are separated by corresponding colors. The data
are averaged for all events in the associated flare class. Flares outside of three standard
deviations from the average and outside of 70◦ heliographic longitude are excluded as
outliers. SHARP data are acquired from JSOC using the Python notebook created by
Glogowski and Bobra (2016) and flare times are identified by SWPC (2019).
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Figure 31. Epoch analysis for X-Class flares between May 2010 and September 2019.
All data are normalized to the values at the time of the flare, which is identified as the
dashed vertical line. Strengths of flares are separated by corresponding colors. The data
are averaged for all events in the associated flare class. Flares outside of three standard
deviations from the average and outside of 70◦ heliographic longitude are excluded as
outliers. SHARP data are acquired from JSOC using the Python notebook created by
Glogowski and Bobra (2016) and flare times are identified by SWPC (2019).
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