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Abstract 

Thermal Ionization Mass Spectrometry (TIMS) is an invaluable tool in nuclear 

forensics as it enables isotopic assays of actinides to be measured, permitting analysis to 

include special nuclear material isotopic assays, nuclear reactor monitoring, and treaty 

verification.  In one method of measurement for the TIMS system, samples are deposited 

in solution form on high-purity rhenium filaments.  The filaments are heated to evaporate 

the solvent, and then further heated to cause sample ionization, permitting the sample to be 

transmitted through a magnetic field which separates ions based on mass to charge ratio 

into detectors for counting.  Heavier ions will be deflected less by the magnetic field than 

lighter ions with equivalent charges.  

Critical to the function of TIMS is the rhenium filaments themselves; any 

variability that suppresses ionization of the samples can lead to reduction in the number of 

ions detected. This research examines twenty-four filaments utilized in TIMS that have 

already been used for actinide analysis, with varying degrees of ionization efficiency.  By 

examining the surface of the filaments using scanning electron microscopy (SEM), energy-

dispersive x-ray spectroscopy (EDS), optical microscopy and electrical conductivity 

analysis, this research determined that there was correlation between filament shape and 

reported filament efficiency.   
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ANALYSIS OF THE CORRELATION BETWEEN RE FILAMENT SURFACE 
FEATURES AND TIMS PERFORMANCE 

 
1.  Introduction 

1.1 Motivation 

 Nuclear forensics has come to the forefront of the geopolitical sphere in recent 

years as monitoring of emergent nuclear nations has become of greater emphasis in the 

2018 Nuclear Posture Review (NPR), whereas the previous NPR placed an emphasis on 

the use of improvised nuclear devices by violent extremist organizations (VEOs). [1] The 

ability to determine if nuclear reactors are being utilized for peaceful means, such as 

power generation and medical isotope production, as opposed to production of plutonium 

for weapons, is critical.  The International Atomic Energy Agency (IAEA) retains a 

central role in advancing the goals of the Treaty on the Non-Proliferation of Nuclear 

Weapons (NPT).  The IAEA does so by establishing and verifying safeguards against 

nuclear weapons proliferation while simultaneously furthering the safe, peaceful 

development of nuclear power. [2] The agency is tasked with monitoring sites in 

countries with nuclear capabilities, and is authorized to take samples from these sites to 

ensure that “each non-nuclear-weapon State Party to the Treaty undertakes not to . . . 

manufacture or otherwise acquire nuclear weapons or other nuclear explosive devices.” 

[3] 

A wide variety of nuclear forensics techniques exist, ranging from near-

instantaneous feedback mechanisms to laboratory techniques that can take several weeks, 

but provide much more in-depth data.  The IAEA has a suggested sequence for analysis 
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techniques and methods with the associated timeframe for each, demonstrated in Figure 1 

below: 

Techniques/Methods 24 hours One week Two months 
Radiological Estimated total 

activity 
Dose rate (α, β, γ, n) 
Surface 
Contamination 

  

Physical Visual Inspection 
Radiography 
Photography 
Weight 
Dimensions 
Optical Microscopy 
Density 

SEM/EDS 
XRD 

TEM (EDX) 

Traditional Forensic Fingerprints, fibres   
Isotope Analysis γ spectroscopy 

α spectroscopy 
Mass spectrometry 
(SIMS, TIMS, ICP-MS) 

Radiochemical 
separation 

Elemental/Chemical  ICP-MS 
XRF 
Assay (titration, IDMS) 

GC-MS 

SEM/EDS: Scanning electron microanalysis with energy dispersive sensor; TEM: transmission 
electron microscopy; SIMS: secondary ion mass spectrometry; TIMS: thermal ionization mass 
spectrometry; ICP-MS inductively coupled plasma mass spectrometry; XRF: x-ray fluorescence 
analysis; IDMS: isotope dilution mass spectrometry; GC-MS: gas chromatography-mass 
spectrometry. 

Figure 1. IAEA Suggested Sequence for Laboratory Techniques and Methods. [4]  

This research will specifically focus on Thermal Ionization Mass Spectrometry 

(TIMS), a technique used for isotopic analysis of nuclear forensics samples. TIMS 

permits isotopic ratios of long-lived (and some relatively short-lived, such as the 14-year 

half-life plutonium-241) radionuclides to be measured with a precision of better than 

0.01%, with sample sizes of as low as tens of femtograms. [5] TIMS with a multiple ion 

collector system yields the most precise isotope ratios, as low as to 0.001%. [6] [7] 

Samples are loaded into the TIMS system on, most commonly for uranium, filaments of 
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ultra-pure (99.7% or greater) rhenium.  The filaments being studied were utilized in the 

single-filament TIMS technique, where the sample is loaded on a single filament facing 

the extraction voltage and the magnet. As the filament current is increased, the ion beam 

intensity increases, together with the evaporation and ionization of the sample.  [8]  

Figure 2 provides an example schematic of a TIMS system. 

Figure 2. A schematic of a TIMS system [9] 
 

For a mixed sample containing unknown elements with unknown isotopic ratios, 

individual elements will ionize at different temperatures, and ions will subsequently be 

separated in the electromagnetic field by their mass to charge ratio, whereupon they will 

be collected separately for counting. 

For uranium and plutonium specifically, TIMS is extremely useful for its ability 

to provide accurate information on isotopic composition, which in turn aids in 

distinguishing between materials of different origins, as well as extrapolations on 
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intended use – e.g. power, weapons, etc. [10]  A non-exhaustive sample of some of the 

relevant isotopes of uranium and plutonium are in Figure 3, along with a general idea of 

the isotopic ratios expected for a sample of this particular type. 

 

Figure 3. A table showcasing some of the common U and Pu isotopes and relative amounts 
generated following operation of a typical U.S. power reactor. [11] 

 
Ensuring Re filaments are manufactured, prepared, and loaded correctly is 

paramount for efficient sample analysis in the TIMS system and, therefore, for proper 

isotopic measurements for forensics analysis.  Ensuring that the filaments utilized in 

TIMS are prepared properly, and thus ionize at maximum efficiency, is crucial to 

providing proper nuclear forensics analysis for isotopic composition. 
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1.2 Background 

Efficiency in TIMS is determined by the amount of sample detected versus 

amount of sample loaded, and the proportionality of positive ions to neutral ions is 

governed by the Saha-Langmuir equation: 

!"

!
∝ 	 𝑒𝑥𝑝(

)(+,-)
/0 1      (Equation 1) 

Where n+ is the number of evaporated ions, n is the number of evaporated neutral 

particles, e is the charge of an electron, 1.60 x 10-19 coulomb, W is the work function of 

the metal, I is the ionization potential, k is the Boltzmann constant, and T is the 

temperature. [12] 

Over the last 60 years, carburized rhenium filaments have been the utilized in 

TIMS measurements due to their relatively large work function and high melting point.  

The work function is the minimum amount of energy to remove an electron from the 

element; it is important for filaments to have high work functions to enable the ionization 

of samples.  A high melting point is important because of the temperatures necessary to 

ionize samples.   

Carburized rhenium filaments have been demonstrated to achieve ionization 

efficiencies of approximately 1% for sample analysis since the late 1950s. [13] [14]  

Rhenium has an experimentally determined work function of 5.0 eV. [15]  Rhenium is 

desirable for TIMS due to its high work function and high melting point, as well as the 

fact that carburized rhenium both acts as a reducing agent which decreases oxidation, and 

the fact that carburization increases rhenium’s work function by 0.25 V, which is 

desirable for ionizing actinides with high ionization potentials. [12] [14] While rhenium 



6 

 

is resistant to forming carbides [16], it can be effectively carburized with benzene for 

sample preparation. 

While rhenium is typically not used in high-temperature applications due to its 

propensity to form oxides, the high-vacuum (and subsequently low oxygen) environment 

produced in TIMS systems are what enable the successful use of rhenium as a thermal 

ionization filament for actinides. [17] While there are a wide variety of filaments 

currently used with TIMS, as seen in Table 1, for the purposes of this research only 

rhenium filaments will be examined, as they are most relevant to nuclear forensics 

missions.  In Table I, loading methods are broken down by either single or double 

filament loading methods, as well as either Positive Ionizing (PI) or Negative Ionizing 

(NI). 

Table 1. An overview of different elements and preferred loading methods in TIMS with preferred 
filament material. Note the single, rhenium filament preference for uranium. [9] 
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While rhenium is the most effective element for loading actinides for TIMS 

analysis, it is not without complications.  Rhenium filaments stored for 79 days or greater 

following carburization are subject to significant oxidation, forming numerous rhenium 

oxide compounds, which can then further degenerate into perrhenic acid. [17] [18] 

Rhenium filaments with oxidation coverage greater than 1% have been proven to lose 

efficiency, by up to a 20% loss when tested with plutonium. [19] Thus, the longer a 

filament is unused following preparation, the greater likelihood of performance 

degradation being introduced into the system. 

Rhenium has 10 oxidation states with +7 being the most common, and can form 

several different oxides, most commonly Re2O7, but also including ReO, Re2O, ReO2, 

ReO3, Re2O5, Re2O8, and Re2O10, among others. [20] [21] Most studies focus on the most 

common +7 oxidation state.  This is due to the fact that most rhenium cations very easily 

oxidize to +7. [21] 

Given the importance of the nuclear forensics mission, it is paramount to ensure 

the best possible data is available for analysis.  Low filament efficiency increases the 

sample size required to determine isotopic assay.  When sample sizes are very small, it is 

crucial to ensure the minimum amount of material is utilized to determine isotopic assay, 

and correspondingly, the higher ionization efficiency per filament analyzed, the better.  

Thus, any means by which the isotopic assay measurements can be shielded from 

uncertainty caused by filament variability is of extreme value. 
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1.3 Problem Statement 

 The Air Force Technical Applications Center (AFTAC) utilizes TIMS for 

uranium isotopic analysis.  An overview of filaments previously utilized in TIMS, 

however, noted a wide variety in efficiencies generated by these filaments, ranging from 

a low of 0.23% of uranium detected in the TIMS system to a high of 1.30%.  Filaments 

were arrayed in four boxes of six filaments each; filaments and their efficiencies are in 

Table 2.  For the purposes of this research, filaments will be defined by the following 

nomenclature: The first number signifies the box the filament originated from, and the 

second number is its place within the box.  Thus, 2-5 denotes the fifth filament from box 

2. 

Table 2. Filament Efficiencies and Organization 

 

 
 

Given the generally accepted mean of 1% efficiency for rhenium filaments, 

AFTAC seeks to proactively identify whether high-efficiency filaments can be predicted 

Filament Efficiency (%) Filament Efficiency (%)
Box 1 Box 3
1-1 1.08 3-1 0.78
1-2 1.04 3-2 0.36
1-3 1.3 3-3 0.36
1-4 0.45 3-4 0.23
1-5 0.66 3-5 0.87
1-6 0.93 3-6 0.86

Box 2 Box 4
2-1 0.9 4-1 0.79
2-2 0.94 4-2 0.88
2-3 1.1 4-3 0.31
2-4 1.26 4-4 0.53
2-5 1.13 4-5 1.13
2-6 0.99 4-6 0.91
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based on surface features visible through SEM analysis.  The broad research objective for 

this work is defined as the ability to detect differences in the rhenium filaments, of great 

enough significance, primarily through the utilization of an SEM system to correlate 

surface features to the reported low collection efficiencies, and potentially identify ways 

to increase the collection efficiency.  This research proposes to utilize a variety of means 

to examine the filaments, including SEM and its attached EDS system for both imaging 

analysis and elemental composition analysis, respectively.  Additional analyses included 

electroconductivity testing and optical microscopy. Data collected will undergo statistical 

analysis to correlate observed surface features with measured filament efficiency.  

Statistical analysis will also provide a confidence interval to determine if the sample of 

filaments provided is likely to be representative of the entire population of filaments used 

by AFTAC, and the probability of this subset of 24 filaments being an outlier for the 

population as a whole. 

1.4 Questions and Hypothesis 

The research questions and hypotheses associated with the problems outlined in 

Section 1.3 are detailed below. They are organized by the problem and capability 

that they support. 

1. SEM analysis – are there noticeable differences in appearance/grain 

orientation/morphology between efficient and inefficient filaments? Are there 

other identifiable structural trends in efficient or inefficient filaments? 
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2. EDS analysis – are there any elemental composition differences in efficient and 

inefficient filaments? What are these differences and how might they impact 

efficiency? 

3. Electroconductivity analysis – is there a difference in electrical conductivity 

between efficient and inefficient filaments?  Do these results line up with 

hypothesized differences in the previous SEM and EDS analysis? 

4. Optical microscopy analysis – are filament defects identified in the SEM imagery 

optically visible, or are they artifacts of SEM imaging – contrast due to 

differences in atomic number, orientation, etc? Are there holes through the entire 

depth of the filament that the SEM cannot detect? 

5. Statistical analysis – can identifiable surface features correlate with filament 

efficiency?  Is this sample representative of the overall rhenium filament 

population, or likely to be an outlier?  What statistical trends, if any, are in the 

data? 

Hypothesis: the filaments are representative of the filament population at AFTAC, 

and there are factors that are decreasing filament efficiency, due to sources external to the 

filaments themselves, but resultant from filament preparation or storage.  These factors 

manifest as identifiable surface features. 

1.5 Assumptions and Limitations 

There are numerous assumptions associated with this project.  The first is to 

assume that all of the filaments are manufactured and drawn from the same source.  A 

further assumption is that the filaments were carefully handled post-usage and placed 
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directly into a clean storage container; that there were no outside contaminants introduced 

between being taken out of the TIMS and being placed in the box.  Also, due to the 

extremely long half-life, this project assumes that rhenium decay into osmium is 

negligible.   

The primary limitation is the number of filaments available for study.  As with 

any statistical analysis, more data points are always better.  The exact process for 

preparing each individual filament for loading into TIMS, while known, has not been 

observed by the researcher and so cannot be completely verified for consistency.  There 

may be minor differences in what has been described versus reality in terms of the exact 

steps in the process and how much variance each step could possibly introduce in the 

filaments.   

1.6 Approach 

 This research proposes multiple means to determine if there is a correlation in 

identifiable surface features with disparity in filament efficiency.  The SEM will provide 

an accurate picture of the shape, grain orientation, and the number of surface material 

defects present per filament.  Further analysis utilizing ImageJ and Gwyddion will permit 

measuring the length of cracks and defects, percentage of the filament covered by foreign 

material, and accurate measuring of the shape and curve of the filament depressions 

where the actinide solution is deposited. 

 Concurrent to SEM imaging is the EDS analysis of filaments.  The EDS, which is 

attached to the SEM, will permit elemental composition analysis of filaments by 

measuring characteristic x-rays emitted by the sample.  This will generate a spectrum 
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which will give a measurement of the composition of the filament and any foreign 

material deposited or remaining on the filament.   

 Other techniques will confirm if the surface features noted via the SEM correlate 

to efficiency.  Electroconductivity analysis will demonstrate if filaments with excess 

material defects, opacity, or holes are poor conductors compared to clean filaments.  

Optical microscopy will provide better fidelity on surface features and if they are SEM 

artifacts or are visible.   
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2. Theory 

2.1 Characteristics of Rhenium 

Rhenium is one of the 35 elements critical to U.S. National Security outlined in 

the Department of the Interior Final List of Critical Minerals 2018, [22] with national 

supply estimated to last for approximately 40 years before exhaustion at current 

consumption levels. [23] Rhenium is a transition metal, atomic number 75, with most 

common isotopes being Re-185, which is stable, and Re-187, with a half-life of 4.12 x 

1010 years.  Unusually, Re-187 is more prevalent in nature than the stable Re-185 isotope, 

with natural rhenium consisting of 37.4% Re-185 and 62.6% Re-187.  Natural rhenium 

exists at a concentration of about 0.001 parts per million in the Earth’s crust. [24] 

2.1.1. Physical Characteristics of Rhenium 

 Rhenium does not have a ductile-to-brittle transition temperature, which means 

that it retains its ductility from low subzero temperatures to very high temperatures – 

useful in areas as varied as mass spectroscopy and space travel. [25] Its rarity, combined 

with myriad uses in jet turbine engines, nuclear forensics, and even lead-free gasoline, 

make efficient and effective use of rhenium supplies critical. [23] When heated, rhenium, 

like many other metals, emits positive ions of the alkali metals, with a work function of 

5.0 eV. [26] The thermal conductivity of rhenium is 71.2 W/m K at 20 °C. [27] [28]  

Rhenium metal typically has a close-packed hexagonal crystalline structure, 

although cubic structures have been hypothesized.  Rhenium oxide is a polytype, with 
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crystalline forms including cubic, hexagonal, tetragonal, rhombohedral, orthorhombic 

and monoclinic. [29] 

2.1.2. Rhenium Oxidation States and Oxides 

Rhenium has an extremely high melting point at 3,180 °C, the third highest of any 

element after carbon and tungsten, as well as a vaporization temperature of 5,597 °C 

making it ideal for TIMS analysis where vaporization temperatures for elemental 

uranium and plutonium are 3,818 °C and 3,228 °C, respectively (all temperatures at 

standard pressure, 1 atm).  However, Re2O7, the most common rhenium oxide, has a 

melting point of only 225 °C and, more importantly, sublimates at approximately 400 °C, 

making its presence undesirable in large amounts. [27] [29] The presence of rhenium 

oxide on the surface also causes changes in the structure of the rhenium underneath the 

rhenium oxide, as well as altering its oxidation state.  There has been little research into 

this due to the difficulties inherent in the analysis and the relative scarcity of rhenium. 

How rhenium is stored can affect oxidation rates of the material.  Rhenium 

filaments stored in humid conditions – simulated by a NaCl salt bath for experimental 

purposes – had 34 times more oxidation than filaments stored in dry conditions, and the 

oxidation crystallites were up to 12 times larger. [17] Regardless, lengthy storage periods 

following carburization can still lead to a significant buildup of oxidized rhenium, with 

grain orientation playing a predominant role in oxidation. 

With Re2O7 on the surface, buried layers of sub-oxides that contain Re4+, Re2+ 

and Re𝛿+ (𝛿∼1) occur at the interface between Re2O7 and pure Re. Re2O7 sublimes at a 

very low temperature (approximately 400 °C), while the Re4+, Re2+ and Re𝛿+ species 
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remain stable in oxidizing conditions up to at least 450 °C. [30] The presence of these 

various oxide species noticeably reduce the ability of rhenium to withstand temperature 

increases, which may reduce the ability of the rhenium filament to vaporize and ionize 

samples.  An example of how potential oxidation appears in an SEM image is given in 

Figure 4. 

 

Figure 4. A rhenium grain hypothesized to contain significant oxidation (denoted by black spots); some of 
the oxidation has begun to spread to the adjacent grain, bottom right. 

 

2.1.3. Rhenium Filament Fabrication 

Prior to use in TIMS, the rhenium filaments used in this research underwent two 

stages of carburization.  Carburization is the process of adding carbon to the rhenium 

filaments.  Carbon atoms intersperse within the metallic crystalline structure of rhenium; 

this has been shown to alter rhenium’s work function, [15] and, more importantly, to act 

as a reducing agent, which also has been shown to increase overall ionization efficiency 

by preventing the formation of uranium oxide compounds.  Pallmer et al. have 
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demonstrated that proper carburization will increase rhenium’s work function by 0.25V, 

and via Auger depth profiling showed that the surface carbon sits in solution in the 

rhenium. They also demonstrated that improper carburization will result in a graphitic 

carbon layer that sits on top of the rhenium, along with lowering the work function to as 

low as 4.1 eV, which is highly undesirable for ionization efficiency.  [15] Some research 

has shown that uranium carbides form more readily at the temperatures TIMS operates, 

but uranium carbides are not typically found in the TIMS system at all. [31] 

Carburization decreases oxide formation in rhenium metal and carburized rhenium thus 

has a higher ionization efficiency. [16] [32]  

Rhenium cannot be hot-worked (hardened at high temperature), but must be 

worked at room temperature with frequent annealing. [33] For AFTAC’s specific 

process, the rhenium filament must first be cut.  Re ribbon currently available to AFTAC 

was fabricated by the H-Cross Company but at an improper length for TIMS, and so the 

ribbon is cut to the appropriate length to fit into the filament posts.  The filaments are 

subsequently loaded into a stamping machine, which creates a depression in the filament 

for the sample solution to be deposited.  Following shaping, the filaments are spot-

welded onto tantalum posts and placed into a mounting shield.  After formation and 

mounting, the filaments are carburized for the first time. After the first carburization the 

sample is loaded.  In the case of the filaments for this research, the sample was CRM 

129-A, uranium oxide in the U3O8 form (see Appendix 1 for CRM 129-A specifications) 

dissolved in nitric acid.  The filament is then very gently heated to vaporize the solution 

while retaining the solute on the filament.  The filaments are then carburized a second 
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time.  Filaments are finally degassed, which cleans filaments and removes external 

contaminants, but can alter grain structure (due to recrystallization after exposure to high 

heat) and can volatize any existing rhenium oxide compounds. [34] The filaments are 

loaded into TIMS and are used only once before being discarded.   

2.1.4 Rhenium Filament Carburization 

 As referenced in Equation 1, the Saha-Langmuir equation states that the 

proportion of positively charged ions to neutral ions emitted from a heated filament is 

proportional to 𝑒𝑥𝑝(
)(+,-)
/0 1  where e is the charge of an electron, 1.60x10-19 coulomb,  W 

is the work function of the metal filament, I is the ionization potential of the sample – for 

uranium, the first ionization energy is 6.19405 eV [15] – k is the Boltzmann constant, 

1.3807x10-23 J·K-1, and T is the temperature in kelvin.  The ratio between positive and 

neutral ions is important, as TIMS detectors cannot detect neutral ions.  

Table 3 illustrates a number of potential metals for filament fabrication along with 

their work functions and melting points.  To promote the generation of positive ions, (W-

I) must be positive.  Therefore, the filament material chosen must have the highest 

possible work function.  Additionally, given the temperatures at which uranium begins to 

ionize, the filament material also must have a high melting point.  Note that the value for 

rhenium’s work function in Table 3 is slightly higher than has been experimentally 

determined; work function calculations have provided a range of work function values 

ranging from 4.96 to 5.4 for pure rhenium, though experimental results have yielded a 

value of 5.0.  [15] [35] [36] 
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Table 3. Work function and melting points of filament materials. [15] 

 

 Given that rhenium has both a high work function and a high melting point, it is 

the ideal candidate for ionizing uranium.  However, it should be noted that all of these 

work functions are lower than uranium’s first ionization potential, and thus there will be 

only a small ratio of positive to neutral ions.   

Pallmer et. al demonstrated that proper carburization increases rhenium’s work 

function by 0.25V, but carburization’s main benefit is to introduce carbon to act as a 

reducing agent to prevent the formation of uranium oxides in the sample, whose 

formation would negatively affect ionization collection efficiency.  It is preferable to do a 

uranium isotopic analysis on pure uranium ions rather than uranium oxide, to avoid 

complications from isotopes of oxygen. [37] Oxide reduction is also beneficial due to the 

fact that the oxide ReO3+ has an atomic mass of 235, the same as U-235, and thus may 

interfere with isotopic analysis. [38] Furthermore, as TIMS is tuned to detect certain 

mass/charge ratios, a TIMS system may not be calibrated for the extra weight of oxide 

species, and so those might also be lost in collection.  Thus, the more uranium oxide in a 
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sample, the lower the collection efficiency; to prevent this, a reducing agent can be 

added. 

Carburization’s role as a reducing agent was demonstrated by Studier et. al. by 

selectively controlling benzene vapors and an oxygen leak to the TIMS chamber. [37] 

When benzene vapors were directed at the rhenium filament, or carbon in the form of 

sucrose was added to the filament, the uranium sample was reduced, and only metal U+ 

ions were observed. When an oxygen leak was created, a combination of U+, UO2+, and 

UO3+ ions were observed. Studier et. al. also speculated that up to 90% of the sample 

may be lost before the filament reaches maximum temperatures for metal ion emission. 

Maintaining a reducing chemical environment for both the rhenium filament and the 

uranium sample will keep their sublimation and boiling point temperatures higher, 

helping reduce some of that initial loss while ramping the filament temperature to 

maximum ionization temperatures. [37] Carburization is the most effective means of 

maintaining a reducing chemical environment for rhenium filaments. 

2.2 Scanning Electron Microscopy (SEM) 

This research uses a Hitachi S-4700 Field Emission Scanning Electron 

Microscope, an example of which can be seen in Figure 5.  An SEM consists of an 

electron gun – in the case of this particular S-4700 utilized in the experiment, a LaB6 cold 

field-emission tip, with a radius of approximately 30-50 Å - which accelerates electrons 

down a column using multiple focal and converging lenses.  These lenses concentrate the 

electrons into a single point on a sample.  As the electrons interact with the sample, they 

scatter both elastically and inelastically, and can generate several relevant species of 
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electrons – secondary electrons (SEs) and backscattered electrons (BSEs), both of which 

can be collected by different types of detectors for analysis.  For BSEs, the S-4700 uses 

an Yttrium-Aluminum-Garnet detector, which must be separately connected to the 

system for operation; the default state for the S-4700 is to detect SEs only.   

 

Figure 5. The Hitachi S-4700 SEM utilized in this research, with major parts delineated. [39] 
 

 SEM images are typically greyscale, with color differences due to a variety of 

contrast factors, including topographic and compositional contrast.  Topographic contrast 

occurs due to different amounts of SEs and BSEs being emitted from different parts of 

the sample geometry; areas where more electrons are emitted, such as sharp corners, will 

appear significantly brighter on the image.  An example of topographic contrast is Figure 

6, where the edge of the filament is much lighter in tone than the rest of the filament as 

secondary electrons are emitted in many different directions and have more possible 
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means of escape than SEs generated in the center of the filament.  This is also partially 

due to the geometry of the sample, where the filament edge is directly facing the detector.   

 

Figure 6. An example of topographic contrast on filament 3-4.  
 

Compositional contrast is also determined by atomic makeup of the sample; areas 

of the sample dominated by higher-Z materials will be lighter-colored than low-Z 

materials, which will be significantly darker in tone.  Figure 7 demonstrates 

compositional contrast. 
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Figure 7. An example of compositional contrast. The rhenium filament in the center is lighter than 
the surrounding carbon tape, which appears almost black. 

 
To operate the SEM, first a potential difference is generated between the first 

anode and the lanthanum boride (LaB6) tip to generate an electric field, causing electron 

emission down the column towards the specimen.  Accelerating voltage (V0) is 

determined by the potential difference between the tip and the anode; the higher the V0, 

the faster the electrons travel down the column, and subsequently the greater the 

penetrating power.  Electrons pass through several apertures with staggered converging 

and focal lenses to minimize the size of the beam current.  A smaller beam provides 

greater resolution and focus; widely scattered electron beams produce poor imaging and 

are undesirable.  Higher beam energies improve the visibility of low-contrast objects, but 

may reduce visibility of surface topology, as the mean free path of the electrons becomes 

significantly longer, causing them to generate SEs below the surface of the sample rather 
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than on the surface itself. [40] Higher beam energies can also potentially damage a 

sample via excess charge build up. 

The distance an electron can travel through a medium is dictated by the number of 

times the electron undergoes inelastic scattering, and is dictated by the Bethe equation: 

56
57
8 9:
!;
< = 	−7.85 8CD

E6
< ln	(H.HII6

J
)   (Equation 2) 

where E is the beam energy in keV, Z is the atomic number of the target material, ρ is the 

target density in g/cm3, A is the atomic weight in g/mol and J is the mean ionization 

potential, given by: 

𝐽	(𝑘𝑒𝑉) = (9.76𝑍 + 58.5𝑍RS.HT)𝑥10RW  (Equation 3) 

For the Bethe equation, dE/ds gives the energy lost per nanometer of material for 

an electron transiting through a sample. [41] A plot of the Bethe equation for rhenium 

with electron energies varying from 5 to 30 keV is below in Figure 8; code associated 

with generating this graph is in Appendix 2: 
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Figure 8. Plot of the Bethe range of electrons in rhenium by energy 
 

This equation governs energy loss for electrons with >5 keV energy; below 5 keV 

there are a number of approximations for the function as it breaks down at that point, 

including Joy and Luo, Rao-Sahib and Wittry, and Tung, among other equations. [42] 

Integrating the expression gives the “Bethe range” of the electron in the medium.  It is 

important to note that electrons can also undergo elastic scattering, where no energy is 

lost with deflections of the incident electron up to 180 degrees occurring.  This can cause 

the electron to deviate out of the narrow angular range of incident trajectory.  Elastic 

scattering is governed by the following equation, which is heavily dependent on target Z: 
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𝑄9YZ7[\]	 =	= 1.62𝑋10R`S ∗ (C
b

6b
) ∗ 𝑐𝑜𝑡`(𝜙S)  (Equation 4) 

where 𝜙S is a threshold elastic scattering angle.  Some sample electron trajectories in 

different media are modelled in Section 3.1.2 of this document. 

The S-4700 is categorized as a cold field emission gun (FEG).  In cold FEGs, it is 

essential that the tip remain free of contaminants, and so Ultra High Vacuum conditions 

(10-10 to 10-11 Torr) are required. The electric field produced by the extraction voltage 

lowers the work function barrier and allows electrons to directly tunnel through it - thus 

facilitating emission. Cold FEGs must have their tip flashed, or briefly heated 

periodically to clean the tip for optimal function. [43] It is worthwhile to note that the 

incident electron beam is capable of charging nonconductive samples.  This charging 

results in decreased image resolution and a noticeable change in the color of the 

conductive sample; the sample will get substantially whiter the longer the electron beam 

is focused on it.  The only means by which to avoid charging of nonconductive samples 

is to coat them in some form of metal, such as a chromium mesh or gold foil, which was 

not done for this experiment.  Figure 9 demonstrates charging due to the electron beam 

interacting with a conductive material.  The material to the right of the image is low-Z 

and typically dark.  However, due to the presence of additional unknown material, it is 

highly non-conductive, and one can see it beginning to whiten significantly, particularly 

in the center.  This is evidence of the buildup of electrons which have no means of 

escape. 
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Figure 9. An example of the charging phenomenon.  

 
 

2.2.1 Secondary Electron Images  

SEs are created when inelastic scattering of the beam electrons eject weakly 

bound valence electrons or conduction band electrons with binding energies of 1-15 eV.  

By definition, SEs have an energy of less than 50 eV.  [43] SEs have extremely low 

kinetic energy, and thus only a small fraction can escape the sample to be collected by the 

detector.  The lower the beam energy, the greater the SE generation, as the lower mean 

free path of the electron means there are more SEs generated near the surface of the 

sample, and thus more can escape.  SE generation can be improved by specimen tilt, as 

this increases the surface area for SEs to escape the sample.   

There are three categories of SEs, SE1, SE2, and SE3. Electrons in category SE1 

are generated within the footprint of the incident electron beam from the SEM.  These 
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have a high lateral resolution signal due to proximity to the electron beam.  Electrons in 

category SE2 are generated by electrons traveling into the sample and backscattering out 

via inelastic scattering which ejects weakly-bound electrons from the sample.  Electrons 

in category SE3 are generated when BSEs or SE2s interact with the chamber walls of the 

SEM and eject an electron from the SEM itself.  The details of the SE image are 

dependent on the formation of these categories of SE. [41] For low Z materials, SE1 is 

dominant as there are very few BSEs produced in low Z materials. 

Secondary electron production is less dependent on Z than BSE production, and 

so provides greater contrast on the surface of materials. As SEs are primarily produced 

near the surface, they can provide much greater contrast in sample topography compared 

to BSEs. 

2.2.2 Backscattered Electron Images 

BSEs are generated by electrons scattering within the sample and then escaping.  

Due to the probabilistic nature of inelastic scattering, some BSEs will have energies 

almost equivalent to the incident electron beam energy and some will have the minimum 

BSE energy, which is defined as 50 eV.  However, most BSEs will have approximately 

50% of the incident beam energy. [43] BSE production is highly dependent on the atomic 

number of the sample material; higher Z elements produce significantly greater quantities 

of BSEs, as there are substantially more electrons in the material for beam electrons to 

interact with and eject.  Thus, BSE images are preferential for demonstrating elemental 

contrast in images.  Both BSEs and SEs have their uses in this experiment. 

 



28 

 

2.3 Energy-Dispersive X-ray Spectroscopy (EDS) 

 Energy-dispersive x-ray spectroscopy (EDS) utilizes a semiconductor detector 

which photoelectrically absorbs x-rays emitted by the sample material after interaction 

with the electron beam of the SEM.  The photon’s entire energy is transferred to a bound 

inner-shell electron of the lithium-drifted silicon detector, which is ejected with a kinetic 

energy equal to the photon minus the shell ionization energy. As the ejected electron 

inelastically scatters in the silicon crystal, it moves valence electrons into the conduction 

band of the semiconductor, leaving positively-charged holes.  Electrons collect in the 

anode; this charge generation requires 3.6 eV per electron hole pair.  The original photon 

energy is determined by the charge deposited in the detector via this mechanism. [43] 

EDS detectors can detect x-rays with energies ranging from 50 eV to 30 keV. 

EDS measures the characteristic x-rays emitted when beam electrons interact with 

the sample.  Characteristic x-rays are emitted when electrons transition between energy 

levels.  The most common and relevant characteristic x-rays for this experiment are 

below in Table 4:  
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Table 4: Characteristic X-ray energies for the three most commonly expected elements present on rhenium 
filament. [44] 

 

Note that Table 4 is not exhaustive and includes only the most commonly 

detected characteristic x-rays; NIST has a comprehensive list of all characteristic x-rays 

for all elements, which includes 53 total characteristic x-rays for rhenium. [45] 

It is important to note that, for EDS to effectively collect and produce spectra, that 

the SEM beam energy should be approximately twice the energy of the highest-energy x-

ray being detected.  This is to maximize the number of characteristic x-rays collected.  If 

the incident electron beam is at exactly the energy required to emit a characteristic x-ray, 

any inelastically scattered electrons will not have enough energy to produce a 

characteristic x-ray.  Doubling the beam energy allows greater depth of penetration into 

the material, thus more characteristic x-rays emitted, and subsequently a higher 

confidence in the EDS spectrum.   

Higher beam energy must be balanced against dead time, however.  Dead time 

occurs when an x-ray interacts with the detector while the detector is still processing the 

Energy (KeV) Emission Element
0.282 Kα-Wtd. Avg.C (Carbon) 6
0.282 Kα1 C (Carbon) 6
0.282 Kα2 C (Carbon) 6
0.283 Kab C (Carbon) 6
0.523 Kα-Wtd. Avg.O (Oxygen) 8
0.523 Kα1 O (Oxygen) 8
0.523 Kα2 O (Oxygen) 8
0.531 Kab O (Oxygen) 8
1.842 Mα1 Re (Rhenium) 75
8.586 Lα2 Re (Rhenium) 75
8.653 Lα1 Re (Rhenium) 75

10.010 Lβ1 Re (Rhenium) 75
10.275 Lβ2 Re (Rhenium) 75
11.685 Lγ1 Re (Rhenium) 75
59.718 Kα2 Re (Rhenium) 75
61.140 Kα1 Re (Rhenium) 75
69.310 Kβ1 Re (Rhenium) 75
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previous x-ray; the second x-ray is thus not counted.  Lower beam energies produce 

fewer x-rays and so dead time is often not a factor, but higher beam energies can produce 

x-ray fluxes that overwhelm the detector and lead to higher amounts of dead time.  [46] 

For this reason, double the beam energy is generally the best compromise between dead 

time and confidence.  Given the limitation that the SEM in use has a maximum beam 

energy of 30 keV, it is difficult to confidently analyze the data from the EDS to detect 

characteristic x-rays significantly above approximately 15 keV.   

 EDS requires some interpretation to maximize functionality, as many 

characteristic x-rays are extremely close in energy values.  The software which interprets 

EDS data is known as INCA.  While INCA generates most probable elements to match 

an x-ray spectrum, such estimates must be carefully analyzed by the user.  The EDS is 

also prone to several error-induced artifacts, including peak broadening, escape peaks, 

and coincidence peaks. 

 Peak broadening is due to natural statistical fluctuations and ever-present 

bremsstrahlung radiation, compounded by the resolution of the EDS.  EDS resolution can 

broaden x-ray peaks by a factor of 20 or more; this is particularly deleterious when x-ray 

peaks of different elements in the sample are close in energy range.  These are referred to 

as mutually interfering peaks and can lead to significant loss of fidelity if not accounted 

for.  Mutually interfering peaks are especially common for elements with atomic numbers 

above 20 due to their complex x-ray spectra. [41] 

 Escape peak artifacts are caused by the silicon in the detector generating its own 

x-ray after absorbing the sample x-ray and thus “robbing” incident photons of the energy 
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required to generate an x-ray. This additionally generated x-ray will cause a peak exactly 

1.74 keV less than the elemental characteristic x-ray peak expected from the sample. Si 

escape peaks are frequently mislabeled as trace elements. 

 The final EDS artifact to account for is a coincidence peak, also known as a sum 

peak.  Coincidence peaks occur when the detector is processing one photon and a second 

photon enters the detector during the measurement period.  While in other types of 

instruments the second photon would be lost due to dead time, in EDS the energy of the 

second photon is added to the energy of the first, causing a peak to appear at the sum of 

their energies.  For instance, if two Si x-rays entered the detector at approximately the 

same time, instead of 2 counts at 1.74 keV as expected, the EDS would generate one 

count at 3.48 keV. Most EDS software has some built-in functionality to account for and 

eliminate coincidence peaks, but they are a factor to be aware of.  

2.4 Statistical Analysis 
 
 In this experiment, statistical analysis will focus on determining if the surface 

features identified have any correlation with the ionization efficiency values given for the 

filaments.  This will primarily be accomplished using design of experiments models, 

including the factorial and response surface designs.  Both designs rely on the data being 

approximately normally distributed, and use linear algebraic models to estimate the 

effects of factors on the response. 

Design of Experiments (DoE) is a methodology by which data is made to fit linear 

or quadratic models to permit holistic analysis of the data.  DoE is most useful in that it 

allows multiple variables (known as factors) to be evaluated simultaneously rather than 
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one at a time.  DoE also permits one to observe the interplay between multiple factors 

and determine which factors, and which interplays of factors, directly affect the outcome 

of the model. 

 Design of experiments is typically done beforehand to maximize outputs – that is, 

to find a model that maximizes the response, and to thus perform an experiment that 

produces optimal results.  They are designed to maximize efficiency prior to use.  These 

models can also be used to evaluate data from an already-conducted experiment, which is 

what was done for this experiment.  Both designs will produce an equation which shows 

how the response relates to the variables. 

2.4.1 Factorial Design 

 Factorial designs are named because they evaluate a number of factors.  Generally 

speaking, factorial designs are the most efficient type of design of experiments models 

for a linear model of a multi-factor experiment. [47] For a factorial design, the variables 

being evaluated are known as factors, and the quantity being measured is known as the 

response.  Factorial designs are useful not just because they can simultaneously evaluate 

several factors, but they are also capable of evaluating the interaction between factors.  

Factors are ordered alphabetically, so a three-factor design would have factors A, B, and 

C, and interactions AB, AC, BC, and ABC, as an example. 

 Factorial designs calculate the average effect of a factor by evaluating the change 

in the response produced by a change in the factor.  Factorial designs also model the 

effect of interactions.  For example, interaction AB is the average difference of the effect 

of A at the high level of B and the average effect of B at the high level of A. 
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The model used for linear analysis is a resolution IV factorial design.  The design 

seeks to solve the equation found below, where E = efficiency: 

𝐸 = 	𝛽S + 𝛽H𝑋H + 𝛽`𝑋` + 𝛽W𝑋W + 𝛽i𝑋i + 𝛽H`𝑋H𝑋` +

𝛽HW𝑋H𝑋W	+	𝛽Hi𝑋H𝑋i+	𝛽`W𝑋`𝑋W+	𝛽`i𝑋`𝑋i+	𝛽Wi𝑋W𝑋i 

+	𝛽H`W𝑋H𝑋`𝑋W+	𝛽H`i𝑋H𝑋`𝑋i+𝛽HWi𝑋H𝑋W𝑋i + 𝛽`Wi𝑋`𝑋W𝑋i  +	𝛽H`Wi𝑋H𝑋`𝑋W𝑋i 

+𝜀         (Equation 5) 

where all of the β terms are the amount that the factors affect the model, all of the X 

terms are the factor data, and ε is the error, with Expected Value E(ε) = 0 and Standard 

Deviation V(ε) = σ2I, where I is the identity matrix. 

 Factorial designs are linear models.  If the data is not best modelled linearly, a 

factorial design will not adequately estimate or analyze the data.  In the event that a 

quadratic or polynomial model is required, a response surface design is instead a better 

model. 

2.4.2 Response Surface Design 

 The response surface design performs a least-squares fit of data to produce a 

“fitted surface” that approximates the data input.  The response surface analysis is then 

performed using the fitted surface.  If the fitted surface is an adequate representation of 

the true response function – the function that correlates the factors with the response – 

then analysis of the fitted surface is approximately equivalent to an analysis of the raw 

data.   

The response surface design can do first order – that is, linear – modelling, or 

higher order – quadratic and polynomial – modelling. [47] It is worthwhile to note that 
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quadratic models lose some of the fidelity of linear models as they adjust the curves, and 

also lose some degrees of freedom for error to model squared terms.  The equation the 

response surface design solves for is as follows: 

𝐸 = βS + βH𝑋H + β`𝑋`+ …+  βHH𝑋H
` +  β``𝑋`

` + 	. 	. 	. 	𝛽H`𝑋H𝑋`	+		. 	. 	. 

+𝜀      (Equation 6) 
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3.  Methodology 

3.1 Physical Set-Up of SEM 

 The SEM used for this research depicted in Figure 10 is a Hitachi Model S-4700, 

with the INCA Analyzer for EDS software.  Both systems are linked, and the Hitachi is 

capable of generating secondary electron (SE) images and backscattered electron (BSE) 

images. 

 

Figure 10. The SEM, EDS and accompanying computers used for the experiment. 
 

Samples are kept in designated sample holding areas, separated into four boxes of 

six filaments each.  Filaments were analyzed individually, mounted on circular mounting 

rings for loading into the SEM, as seen in Figure 11.  Images are taken at a variety of 

beam energies, working distances, and to varying degrees of tilt to get a comprehensive 

set of images for each of the 24 filaments.   
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Figure 11. Filament mounted for SEM analysis, with important features labelled. 

 

Liquid nitrogen is added to the SEM to cool the SE/BSE detectors as well as the 

EDS x-ray detector, enabling the highest resolution images and greatest fidelity in the 

EDS.  The liquid nitrogen increases measurement resolution by condensing particulate 

that impede observation onto a cold surface within the SEM, reducing electron beam 

scattering [32]. 

Samples are loaded.  The SEM chamber’s pressure is reduced to, at a minimum, 

1x10-7 Pa (7.5x10-11 torr), and then the sample is placed onto the SEM stage.  The stage 

permits full 360-degree rotation and sample tilt to just under 90 degrees. 

3.1.1 SEM Imagery 

 Initial images were taken for filaments at the low-range of efficiency; filaments 4-

3 and 4-4 were the first candidates, with efficiencies of 0.31% and 0.53%.  These initial 

images were utilized to ascertain optimal working distance, beam energy, and orientation.    
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All filaments were scanned at 1 kV beam energy and 15 µamps, with a working 

distance of 12 mm, as 12 mm is optimal for EDS analysis.  A low beam energy is 

desirable as the low beam energy reduces interaction volume, providing greater fidelity 

of surface features.  Primary objectives for the initial run of images were as follows: 

delineate between curved and v-shaped indentations in the filaments, measure size of 

filaments, observe defects, and observe level of opacity.  At approximately 250x 

magnification, filaments were raster-scanned, left to right, top to bottom, to get a 

complete picture of the filament.  All images are 256-color, greyscale images. 

The SEM utilized in this experiment offers a variety of image resolutions for 

outputs, essentially at a “range” of 1-6, with 6 being the highest resolution.  This range 

determines how quickly the SEM raster scans through the entire image; the greater the 

range, the slower the scan, which generates more pixels and consequently, larger image 

file size.  Lower resolutions take significantly shorter amounts of time to generate, but 

lack detail.  For this experiment, images were taken at range 4.  The difference in 

resolution from 4 to 6 is minimal, but the processing time for the machine to generate the 

image is drastically lengthened.  At range 4, each image took approximately 2 minutes to 

form, and was the best compromise between image utility and time. 

In the initial set of images, filaments were imaged every 400 µm at 250x 

magnification, with two rows of images, which generated between 22 and 28 images per 

filament.  Most of these image sets when stitched together utilizing FIJI did not provide 

adequate representations of the shape or surface features of the filament.  Two filaments, 

1-4 and 1-6, had so much opacity in the SEM that stitching was unnecessary, as no 
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surface features could be identified; these filaments were imaged at 30x magnification 

once each.  After many attempts to optimize the images for adequate analysis, filaments 

were re-loaded into the SEM several months later, and a new set of images were taken for 

all filaments whose stitched images were incapable of providing good data for analysis. 

In the second run of images, images were instead taken every 300 µm at 250 x 

magnification, with 3 rows of images per filament, with the exception of filaments 3-1 

and 3-2, which only required 2 rows each.  This provided a total of 51-57 images per 

filament (again, except for filaments 3-1 and 3-2, which had 36 images each) with much 

greater fidelity when stitched together.  Filament stitching utilized the FIJI Stitching 

Plugin and is described in detail in Section 4.2. [48] Certain filaments had imagery that 

could not adequately stitch for a variety of reasons using the plugin; these were manually 

stitched together using a combination of Adobe Photoshop and Microsoft Paint.  Tables 5 

and 6 contain all relevant imaging data used in this experiment: 
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Table 5. Settings for filament imaging. 
 

 
  

Filament

Beam 
current for 
images

Amperage 
for images Zoom

Working 
Distance

1-1 1 keV 15 μamps 250x 12.0 mm
1-2 1 keV 15 μamps 250x 12.0 mm
1-3 1 keV 15 μamps 250x 12.0 mm
1-4 1 keV 15 μamps 30x 12.0 mm
1-5 1 keV 15 μamps 250x 12.0 mm
1-6 1 keV 15 μamps 30x 12.0 mm
2-1 1 keV 15 μamps 250x 12.0 mm
2-2 1 keV 15 μamps 250x 12.0 mm
2-3 1 keV 15 μamps 250x 12.0 mm
2-4 1 keV 15 μamps 250x 12.0 mm
2-5 1 keV 15 μamps 250x 12.0 mm
2-6 1 keV 15 μamps 250x 12.0 mm
3-1 1 keV 15 μamps 250x 12.0 mm
3-2 1 keV 15 μamps 250x 12.0 mm
3-3 1 keV 15 μamps 250x 12.0 mm
3-4 1 keV 15 μamps 250x 12.0 mm
3-5 1 keV 15 μamps 250x 12.0 mm
3-6 1 keV 15 μamps 250x 12.0 mm
4-1 1 keV 15 μamps 250x 12.0 mm
4-2 1 keV 15 μamps 250x 12.0 mm
4-3 1 keV 15 μamps 250x 12.0 mm
4-4 1 keV 15 μamps 250x 12.0 mm
4-5 1 keV 15 μamps 250x 12.0 mm
4-6 1 keV 15 μamps 250x 12.0 mm

Common to All
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Table 6. Differences between first and second sets of images. 
 

 
 

Further images were taken of individual filaments with unique surface 

characteristics such as large opaque regions or significant gaps in grain structure.  

Stereoscopic images, which are multiple images of the same region using the same 

centerline but taken 1-4 degrees offset of one another, were taken to observe the 

curvature of depression and angle of depression for curved and v-shaped filaments, 

respectively. 

3.2 INCA and EDS 

INCA generates x-ray spectra to analyze the elemental composition of a sample, 

including providing a visual analysis of where elements occur in the selected image, 

Filament Photo Count
Image 
spacing

Rows of 
Images

Images per 
row Photo Count

Image 
Spacing

Rows of 
Images

Images 
per row

1-1 22 400 μm 2 11 57 300 μm 3 19
1-2 22 400 μm 2 11 54 300 μm 3 18
1-3 22 400 μm 2 11 - - - -
1-4 1 - 1 1 - - - -
1-5 22 400 μm 2 11 54 300 μm 3 18
1-6 1 - 1 1 - - - -
2-1 22 400 μm 2 11 57 300 μm 3 19
2-2 22 400 μm 2 11 54 300 μm 3 18
2-3 22 400 μm 2 11 57 300 μm 3 19
2-4 22 400 μm 2 11 54 300 μm 3 18
2-5 28 400 μm 2 14 - - - -
2-6 26 400 μm 2 13 54 300 μm 3 18
3-1 28 400 μm 2 14 36 300 μm 2 18
3-2 28 400 μm 2 14 36 300 μm 2 18
3-3 30 400 μm 2 15 54 300 μm 3 18
3-4 28 400 μm 2 14 54 300 μm 3 18
3-5 26 400 μm 2 13 - - - -
3-6 28 400 μm 2 14 57 300 μm 3 19
4-1 28 400 μm 2 14 54 300 μm 3 18
4-2 30 400 μm 2 15 - - - -
4-3 28 400 μm 2 14 54 300 μm 3 18
4-4 30 400 μm 2 15 51 300 μm 3 17
4-5 26 400 μm 2 13 - - - -
4-6 28 400 μm 2 14 54 300 μm 3 18

First Image Set Second Image Set



41 

 

atomic percentage of each element and weight percent of each element.  INCA provides 

the user a number of options for data output, including atomic percentage of elements, 

weight percentage of elements, and photo maps which display where in an image 

different elements occur.   

When analyzing using INCA, it is important to note the resolution the software is 

capable of obtaining, which is 10 eV per channel with 2000 channels from 0 to 20 keV.  

[49] Thus, any characteristic x-rays within 10 eV of one another could potentially 

interfere with one another.  Common elements with characteristic x-rays similar to 

rhenium are silicon (1.838 keV to rhenium’s 1.842 keV), zinc (8.639 keV to rhenium’s 

8.653), mercury (9.987 keV to rhenium’s 10.010 keV), and tantalum (11.676 keV to 

rhenium’s 11.685 keV).  Distinguishing which element is present in a sample based off of 

characteristic x-rays requires some interpretation of the data, and is discussed below. 

Figure 12 is one example of an image taken with accompanying EDS analysis.  

The sample included an image with both the filament and a section that appears opaque 

in the SEM imagery, pictured below:  
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Figure 12. SEM Image on filament 4-4 taken for subsequent EDS spectrum analysis. Rhenium 
grains can be seen. 

 
INCA Analyzer generated an EDS spectrum which showed rhenium, with 

significant concentrations of carbon, oxygen and silicon.  It is a possibility that the silicon 

peak is an artifact or mislabeled.  This spectrum was taken with a beam current of 20 

keV; as such, only characteristic x-rays with energy less than 20 keV are detected. 
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Figure 13. EDS spectrum of rhenium filament 4-4 with significant surface opacity. Note EDS cannot detect 

hydrogen. 
 

 In the EDS spectrum in Figure 13, the INCA analyzer software noted that all of 

the major peaks at 1.842 keV, 8.586 keV, 8.653 keV, 10.010 keV and 11.685 keV 

correspond with Re peaks given in Table 2, along with some other minor Re peaks at 

1.55 keV, 7.67 keV, and 12.1 keV, which correspond with the NIST database of 

rhenium’s characteristic x-rays.  The existence of all of these peaks simultaneously 

indicates the presence of rhenium; if one or more of the major peaks were not present, it 

would indicate the absence of that element.  All of an element’s major characteristic x-

ray peaks will be present in a sample containing that element.  Carbon’s sole peak at 

0.282 keV and oxygen’s sole peak at 0.523 keV are expected; the variations in x-rays 

from these two elements are too small to be resolved on the EDS (0.001 keV difference 

for carbon x-rays and 0.008 keV for oxygen), and so all x-rays appear as one peak. 

Following generation of the spectrum, INCA has a number of tools to further 

analyze the sample and provide visual outputs to better quantify the elemental 

composition.  INCA will provide an image map showing where each element occurs on 

each image and provide both weight and atomic percentages of the elements it registers.  
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INCA can provide multiple means of displaying data, such as the box plot in Figure 14, 

tables, or pictorial representations of where elements occur in the given image.   

 
 

 
Figure 14. Elemental analysis of filament 4-6 conducted with INCA software, showing elemental 

composition of selected region of rhenium filament. Unsurprisingly, rhenium is the majority of the weight 
percentage. 

 
 Due to issues with the EDS detector, spectra and elemental composition were not 

able to be taken for any of the rhenium filaments beyond the two taken for demonstration 

purposes above.  The detector registered insufficient counts for all elements – in the 

realm of single or double-digit counts over a period of 10 minutes – and was determined 

to be damaged and unable to be used for any further analysis. 

 
3.3 CASINO Modeling 

 Modeling electron transport through material was done using the “monte CArlo 

SImulation of electroN trajectory in sOlids” (CASINO) [50].  CASINO permits a visual 

estimation of the path that electrons will travel, giving an indication of the interaction 
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volume in the medium being viewed through the SEM.  Secondary electrons and 

backscattered electrons have vastly different trajectories and interaction volumes, and 

CASINO provides a good approximation of this.  The CASINO image modelled 10,000 

electron trajectories at 1 keV – the most common electron energy used for SEM imagery 

in this experiment.  As expected, low Z materials such as benzene have large interaction 

volumes, as there are fewer electrons for the electron beam to interact, while high Z 

materials such as pure rhenium have smaller interaction volumes.  In the model, yellow is 

the highest electron beam energy, 1 keV, decrementing to orange, red, green, and with 

blue the lowest energy, approximately 50 eV. Electrons that lose their energy prior to 

escaping are lost and not collected by the SEM for imaging. 

 

Figure 15. Modelling electron transport through pure rhenium from a 1 keV SEM electron gun. Note the 
scale, a total depth of approximately 100 nm and a width of approximately 120 nm. 
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 In Figure 15, the rhenium is in blue, with a 30-nm electron beam radius shown. 

The interaction volume is limited to less than 100 nm; this is because rhenium, with a 

relatively high Z of 75, has a large number of electrons for the electron beam to interact 

with, limiting the interaction volume relative to low-Z materials.  Note that Figure 15 is 

for pure rhenium; this particular model assumes no degree of carburization or oxidation. 

 
3.4 Imaging Analysis 

 FIJI, which stands for Fiji Is Just ImageJ, a play on the fact that Fiji is an 

expanded version of ImageJ, was the primary image processing software utilized in this 

experiment.  FIJI was utilized for contrast and sharpening adjustments, cropped images, 

quantified the percentage of opacity for each filament, performed measurements for 

filament shape, and provided 3-D images of filaments following stereoscopic imaging, 

such as Figure 16.   
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Figure 16. A 3-D surface mapping of filament connection to the mounting bracket generated by ImageJ. 
The post is in the center, and in the top rear is the beginning of the filament. 

 
Imaging software packets installed separately, known as plugins, stitched together 

filament images, allowing the raster-scanned images to be collated into one larger, 

complete filament image.  Finally, a FIJI macro was written and used to conduct radius of 

curvature measurements.  All FIJI functions, plugins and macros used for this research 

are in Table 7. 
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Table 7. All FIJI functions, plugins and macros used in this research. 

 

 
  

FIJI Functions FIJI Plugins FIJI Macros
Smooth Grid/Collection Stitching Radius of Curvature
Sharpen Pairwise Stitching
Enhance Contrast Two Shot Anaglyph
Crop
Rotate
Adjust Threshold
Stacks
Image Type 
(Color to 32-bit, 
32-bit to 8-bit)
3-D Surface Plot
Measure
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4. Experimental Results 

4.1 Initial Image Analysis 

 Raw SEM imagery must be processed for proper analysis.  Due to the nature of 

the SEM, the beam current has a tendency to “drift.”  This means that, while the SEM 

was set to 15 µamps for the duration of imaging, actual amperage varied between 11 and 

17.5 µamps while images were taken.  Given the amount of time an image takes to form 

(in this experiment, images took approximately 2 minutes to generate), the beam current 

could vary by as much as 3-4 µamps from the time the SEM began generating the image 

to the conclusion.  Thus, images that are directly adjacent to one another can have 

different amounts of contrast, and even within the same image filaments can have varied 

contrast in different regions.  Additionally, not all portions of the filaments are 

orthogonal to the beam current; this can cause some regions, particularly edges, of the 

filament to appear brighter as electrons have more surface area to escape from.   

 Figure 17 is a flowchart depicting the steps taken for image processing for 

filaments from raw SEM imagery to stitched filament images suitable for analysis. In 

Figure 17, orange rectangles are imagery that still require processing, a dark yellow 

rectangle is the final stitched image, green rectangles are stitched filament images that 

have undergone further data analysis, blue circles are FIJI functions or plugins that act 

upon imagery, and teal circles are Gwyddion functions that act upon imagery. 
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Figure 17. Flowchart of SEM imagery analysis in FIJI and Gwyddion. 

FIJI has a number of built-in functions to assist with post-processing.  FIJI also 

allows individual image processing or for a group of images to be added to a stack and all 

processed simultaneously.  FIJI characterizes greyscale images with a histogram ranging 

from 0 to 255, with 0 being completely black and 255 being completely white.  Figure 18 

consists of a raw SEM image with its accompanying image histogram; the red in the 

image are the highlighted regions of the histogram selected.  These histograms are 

essential for the opacity measurements conducted later. 
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Figure 18. An image histogram (top right) with its associated image (left). The height of the lines represents 
the percent of pixels of that particular color in the histogram. In this image, 110 pixel bins have been 

isolated in the red rectangular box, and make up 13.29% of the total image. 
 

All raw SEM images comprised dimensions of 1280x960 pixels, or 1,228,800 

pixels per image.  For this experiment, all images from a filament were added to a stack, 

underwent image sharpening – which increases pixilation in areas of extreme contrast 

difference, such as grain boundaries, providing for a better image for analysis – and then 

underwent a contrast adjustment using FIJI’s integral Enhance Contrast function.  For the 

stack contrast adjustment, the settings were as below in Figure 19.  The contrast was 

normalized across all images, and then the stack histogram was applied to each filament 

and adjusted the image accordingly.  In this instance, there are two images in the stack, 

hence the phrase “Process all 2 slices.” 
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Figure 19. Settings for contrast adjustment for a stack of images. 
 

However, by applying the stack histogram to all images and normalizing the histogram, 

images at either end of the dark/light spectrum have their issues exacerbated.  To remedy 

this, the images are all taken out of the stack, and each image undergoes an additional set 

of contrast adjustment, again done with FIJI’s Enhance Contrast function, which ensures 

all facets of the images are as visible as possible.  These adjustments provide much 

clearer imaging of the individual rhenium grains, grain boundaries, and surface opacity.  

The change in imagery from raw SEM image to processed image is illustrated in Figure 

20. 
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Figure 20. The image on the left is a raw SEM image; the right is the same image after going through the 
image sharpening and two contrast adjustments as outlined above. 

 

4.2 Image Stitching 

 Image stitching was primarily conducted using the Image Stitching plugin 

available in FIJI.  [48] The alternative method was to use Microsoft Paint and manually 

line up images, double-checking with Adobe Photoshop for alignment.  As the images 

were raster-scanned from left to right, top to bottom, in a snakelike pattern, the images 

were stitched the same way using the plugin.  Settings for image stitching are below in 

Figure 21. 
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Figure 21. Settings for image stitching with the FIJI Image Stitching plugin. 
 

 A few notes on the settings for stitching.  The fusion method utilized was linear 

blending.  Linear blending smooths contrast adjustments in stitched areas.  Even with the 

multiple contrast adjustments and image sharpening conducted in initial post-processing, 

there were still some areas where the contrast did not match.  The linear blending 

algorithm mitigates this by normalizing the greyscale histograms where the images 

overlap for stitching.  This “smooths” the color balance in the images.  This method was 
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chosen as it provided the best images.  Other methods, such as taking the average or 

median of the stack histograms where the images overlap, provided poorer overall 

images, as demonstrated in Figure 22. Note the cleaner image with linear blending and 

the fewer instances of lines making it evident where the images overlapped. The red 

circle delineates one of the areas where the difference between the two methods of 

stitching is more obvious; in the top image, lines where multiple images blended together 

is much more obvious than in the linear blending method used for the bottom image. 

 

Figure 22. Filament 2-4 with stitching where the image overlaps were averaged (top) or underwent linear 
blending (bottom).    

 

Initial images had a lower degree of overlap, and only two rows of images as 

opposed to three.  The images produced via the stitching algorithm did not adequately 

represent the geometry of the filaments; this was due to the low degree of overlap in the 

images.  As the stitching algorithm calculates image placement based on areas of the 

image that match up, the greater the percentage of overlap, the better the stitched image 

will be.  While the plugin permits very low values of overlap, the images produced using 

base images with a low percentage of overlap, such as Figure 23, are poor. 
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Figure 23. The initial stitching attempt for filament 2-2.  Note the voids in the bottom right and top left and 
how the top edge of the filament does not align. 

 
Figure 24 shows the same filament as Figure 23, but done with the new stitching 

technique using more images with greater overlap. 

 

Figure 24. Filament 2-2 utilizing the new imaging procedure. Note how much cleaner the image is and the 
lack of voids where the software algorithm could not correlate overlap. 

 

Some filaments were unable to be stitched utilizing the plugin – filaments 2-5, 3-

5, and 4-5.  These filaments had to be manually stitched by aligning areas of overlap by 

eye using Microsoft Paint and Adobe Photoshop.  Three filaments had images that 

produced adequate stitched images with the first run of images – filaments 1-3, 2-1 and 4-

2.  These filaments thus did not undergo a second set of imaging. 

Calculating uncertainty for stitched images requires calculations comparing 

predicted versus actual pixel counts for the final stitched image.  FIJI gives the pixel 

count for all source images and for the final stitched image.  By calculating the percent of 

pixels that should be “lost” due to overlap, and comparing the difference between 

calculated and actual pixel values, one has an approximation of the error associated with 

the stitching algorithmic process.  For instance, for a filament with 54 images with 
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dimensions of 1280x960 pixels, all 54 images together have a combined pixel count of 

66,355,200.  For 3 rows of 18 images each, stitched images with an approximate 30% 

horizontal and vertical overlap should produce an image with a length of 16,512 pixels 

and with a height of 2,064 pixels, for a total of 34,080,768 pixels.  A 19-image row 

filament would expect 35,930,112 pixels.  Comparing the actual numbers of pixels per 

image in FIJI to the predicted value gives an approximation of the percent error of the 

stitching algorithm.  The values for the various filaments and their percent errors are in 

Table 8 below; note that the majority of the error was due to an increase in pixels in the 

vertical direction primarily.  Output images had vertical pixel counts very high compared 

to the expected values.  Filaments that are highlighted in red were filaments that only 

underwent one set of imaging and did not undergo a second set of imaging; these 

filaments were stitched with 22-28 images.  Filaments in yellow were manually stitched 

due to the stitching algorithm providing incomplete or inaccurate stitches of the filament 

images.  Filaments with a dashed line were not stitched, as their percent opacity was so 

high as to make stitching unnecessary for evaluation. 
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Table 8. Predicted and actual pixel counts for stitched images and associated error. 

 
 
 
4.3 Filament measurements and classification  

 Aspects of the filaments critical to this research visible in the SEM are the length 

of cracks/defects in the filament, shape of the filament, percent of the surface that is 

opaque, and the area of holes in the centerline.  These factors were evaluated statistically 

to determine which of these factors related to the efficiency of the filaments, or if the 

interplay of any of these factors affected efficiency (e.g. if a filament had a particular 
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shape as well as large holes in the centerline).  Surface features were evaluated in the 

region of the filament depressions only. 

4.3.1 Gwyddion and Crack Measurement 

 For measuring total length of cracks on the filament surface, the Gwyddion 

software package was utilized.  Gwyddion is typically used for scanning probe 

microscopy images, but has a number of useful features applicable to SEM imagery as 

well.  When an image is loaded into Gwyddion, by providing measurements of the image 

being processed, Gwyddion can calculate the distance of any lines drawn on the image by 

doing a simple calculation of pixels to length.  This was used for accurately measuring 

cracks and defects in the filament image, as in Figure 25, below.  

 

Figure 25. Crack analysis in Gwyddion. Note both the rulers along the top and left axis, as well as the 
numbers most visible in the center-bottom; each number is an identified crack. 

 
 All cracks were identified by eye.  To delineate between a normal grain boundary 

and a crack requires some knowledge of how the SEM operates.  The edge of a material 

in the SEM will typically appear brighter due to electrons escaping not just orthogonal to 

the electron beam but also out the sides of the sample; the exception is if there is a 

nonconductive region on the edge, it will appear dark, as electrons cannot escape a 
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nonconductive region.  Thus, in areas were cracks/voids are present, the material adjacent 

to the void will appear significantly brighter, whereas a normal grain boundary will not 

have such a distinctive mark.  An example of a crack demonstrating this phenomenon is 

in Figure 26. The near-vertical line is the bright spot where a crack between grains has 

appeared; grain boundaries in SEM imagery are black unless they have expanded as in 

this image.  This type of brightness is distinct from the horizontal white lines on the 

bottom as they are not along a grain boundary; the brightness for the horizontal lines is 

due to surface topography.   

 
Figure 26. Note the bright whiteness between the grains along the center, compared to the normal grain 

boundary in the top right. 
 

 Three filaments, 1-1, 1-4, and 1-6, had so much of the surface opaque that crack 

measurements could not be conducted.  The remainder of the filament measurements are 

in Table 9.  The error values depicted in Table 9 are calculated by multiplying the Total 

Length of Cracks value in Table 9 by the percent error in the filament pixel count in 

Table 8 individually for each filament. Figure 27 is a scatter plot of filaments, separated 

by angular or curved filaments, and their associated crack lengths. 
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Table 9. Filament crack/defect total lengths 

 
 

Filament

Angular or 
Curved 
(A=1, C=0)

Total 
Length of 
Cracks (μm)

Cracks Error  
(μm) (±)

1-1 0 - -
1-2 1 600.19 92.50
1-3 0 774.07 119.30
1-4 0 - -
1-5 1 621.63 95.81
1-6 0 - -
2-1 1 1176.51 181.32
2-2 0 931.25 143.53
2-3 1 1793.81 276.46
2-4 1 3230.50 497.89
2-5 1 1623.53 250.22
2-6 1 281.88 43.44
3-1 0 376.64 58.05
3-2 0 1842.35 283.94
3-3 0 1583.99 244.13
3-4 0 2689.32 414.48
3-5 1 732.98 112.97
3-6 1 1663.41 256.37
4-1 1 280.13 43.17
4-2 1 2119.23 326.62
4-3 0 1576.69 243.00
4-4 0 1565.61 241.29
4-5 0 2748.13 423.54
4-6 1 1383.62 213.24
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Figure 27. Scatter plot of crack length vs. efficiency. Curved filaments are blue circles, while angular 

filaments are red. 
 

4.3.2 Shape of the Filament 

Determining the shape of the filament depression was done, initially, via visual 

inspection of the filaments, and subsequently confirmed with 3-D surface plots generated 

from stereoscopic imaging of the filaments.  Stereoscopic imaging is conducted by taking 

two images utilizing the same centerline, while adjusting the degree of tilt between 1 and 

4 degrees, and then compiling the image together in a 3-D surface plot.  Figure 28 shows 

the two images used to generate a surface plot of filament 1-5.  
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Figure 28. Composite images used to generate the stereoscopic image of filament 1-5. 

 Stereoscopic imaging confirmed that there were two distinct shapes of the 

filament depressions.  Half of the filaments provided had curved depressions, while the 

other half had depressions that were much more angular, as Figure 29 demonstrates.  This 

led to incorporating both filament shapes as a potential factor in filament efficiency, as 

well as utility for further analysis by measuring the radius of curvature of the filament 

depression region. 

 

Figure 29. An example of 3-D surface plots generated by stereoscopic imaging of filaments 1-3 and 1-5, 
respectively, showcasing the two shapes of filament depressions. The image on the left, filament 1-3, shows 

a curved depression, while the filament on the right, filament 1-5, shows an angular depression. 
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 Radii of curvature for filaments of both types were calculated using code 

contained in Appendix 3, referencing the 3-D surface plot images which are collected in 

Appendix 4.  The code binarized the image so that the filament material was white and 

everything else black; it then calculated the radius of curvature by triangulating three 

points, including one point at the center and bottom of the dark region, and then 

circumscribing a circle around those points and calculating the radius.  Note that three 

filaments were damaged in such a way that adequate imaging was impossible; these 

filaments twisted in upon themselves during removal from the tantalum posts, and so 

were unusable for these measurements.   

 These filament radius of curvature measurements have a low degree of 

confidence, as the macro used for measuring the radius does not take into account 

undulations or imperfections in the filament surface.  The macro works well for smooth 

filament surfaces, such as filament 1-5 in Figure 29 above, but cannot compensate for the 

bends and folds of filament 1-3 in the same figure.  Thus, some of these measurements 

appear to be non-physical, as the macro is calculating a curve which only is an artifact of 

the 3-D positioning of the filament surface.  In other words, the macro cannot distinguish 

between the foreground and the background of the filament surface, but calculates them 

the same, which can give non-physical values for the radius of curvature measurements.  

 One additional observation noted during the course of tabulating this data was that 

two of the filaments, filaments 1-1 and 3-5, had depressions that were off-center, as 

depicted below in Figure 30. Table 10 collects all radius of curvature measurements 
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conducted for this experiment. Figure 31 is a scatter plot of filaments, separated by 

angular or curved filaments, and their associated radius of curvature. 

 
Figure 30. Filament 1-1, with off-set depression. 
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Table 10. Filament shape and radius of curvature by both pixel count and calculated size. 

 

Filament

Angular or 
Curved (A=1, 
C=0)

Radius of 
Curvature 
(pixels)

Radius of 
Curvature 
(μm)

Radius of 
Curvature Error  
(μm) (±)

1-1 0 22.97 43.10 2.02
1-2 1 17.25 32.36 1.52
1-3 0 12.62 23.68 1.11
1-4 0 14.55 27.30 1.28
1-5 1 14.27 26.77 1.26
1-6 0 12.2 22.89 1.07
2-1 1 14.92 27.99 1.31
2-2 0 - - -
2-3 1 - - -
2-4 1 18.31 34.35 1.61
2-5 1 10.43 19.57 0.92
2-6 1 14.27 26.77 1.26
3-1 0 24.01 45.05 2.11
3-2 0 12.75 23.92 1.12
3-3 0 9.35 17.54 0.82
3-4 0 - - -
3-5 1 19.72 37.00 1.74
3-6 1 12.8 24.02 1.13
4-1 1 8.21 15.40 0.72
4-2 1 15.51 29.10 1.36
4-3 0 22.15 41.56 1.95
4-4 0 27.56 51.71 2.43
4-5 0 23.43 43.96 2.06
4-6 1 10.24 19.21 0.90
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Figure 31. Scatter plot of radius of curvature vs. efficiency.  Curved filaments are blue circles, while 

angular filaments are red. 
 
4.3.3 Filament Opacity 
 

Filaments measured had varying amounts of opacity, particularly in the 

depression in which samples are loaded.  Opacity in SEM imagery is generally due to 

non-conductivity of the region in question.  Electrons cannot conduct through the 

material, build up charge in the region in question, and are “lost” to the detector.  As 

rhenium metal is conductive, non-conductive regions of an SEM image could either be 

excessive oxidation or some other material.  While it is true that darker regions of an 

SEM image could also be related to surface topography or a change in Z, as lower Z 

elements appear darker, one method of checking is to observe the region for a short 

period of time.  If the darkness is due to non-conductivity, the image will continuously 

distort and occasionally display patches of brightness, which is evidence of charge build 

up.  The presence of this factor definitively shows that the darkness is due to non-

conductivity and not the more mundane explanations.  Identifying the exact composition 
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of the opaque regions is beyond the scope of this experiment, but may be analyzed in 

future work.  

The charging phenomenon has an additional side-effect for imaging.  Conductive 

regions adjacent to the opaque area become bright, as the excess electrical charge builds 

up with nowhere to go.  This is amply illustrated in the stitched image of filament 1-1, in 

Figure 32.  Filament 1-1 had a significant percent of the surface area opaque, and the few 

non-opaque regions, even with contrast adjustment, appear unusually bright. 

 
Figure 32.  The white areas of the image are rhenium grains, driven to excess brightness by charge 

build up from the adjacent non-conductive regions. The black regions are all non-conductive. 
 

 Excess opacity detrimentally affects certain research objectives, as the opacity 

conceals much information that can be gleaned from surface examination of the 

filaments, as in Figure 28.  These regions are completely opaque with the SEM even 

utilizing high energy (>20 kV) electrons, meaning that either the material is too thick to 

“shoot through” to examine the rhenium below, or is entirely nonconductive.  This 

obfuscates the grain orientation and level of oxidation, particularly in the severely-coated 

filaments, as in Figure 33. 
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Figure 33. Filament 1-4 with significant material deposition in the sample depression. 
 

 Filament material defects have a wide range of possibilities, but the most probable 

will be cracks in the rhenium metal. These cracks have the potential to be detrimental due 

to the increased possibility of rhenium oxide formation at the site of the cracks, as 

hypothesized in Figure 34. 
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Figure 34.  Filament 1-4 with significant potential oxidation along material defect.  
 

 Other defects may be due to mishandling of the filaments either prior to, or 

subsequent to, TIMS usage.  Improper cleanliness procedures can lead to deposition of 

foreign material onto the filament which may or may not be burned off, and mishandling 

afterwards can lead to deposition of material as well.  Discerning if the material was 

deposited before, during, or after TIMS operation is relatively straightforward in some 

sense; any organic material such as fibers must have been added after the fact as the 

extreme temperature of TIMS would have burned it off.  Other material, such as the dark 

material below in Figure 35, will require further analysis in future work.  Such defects 

may impede electrical conductivity, potentially degrading filament ionization efficiency. 
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Figure 35.  Filament 4-4 with significant cracking and opacity near where filament is spot-welded to the 
base.  

 

 As previously noted, oxidation of greater than 1% of rhenium grains in a filament 

can generally be associated with loss of efficiency [17]; something this research seeks to 

verify.  Future work will be focused on identifying which, if any, of the opaque areas of 

the filaments are due to excessive oxidation.  This can then potentially be used to 

backtrack through the filament preparation process to determine if the nonconductive 

regions were present on the filament prior to any preparation.  Analysis on several images 

like Figure 36 below in future work will aid in determining if the image below is due to 

oxidation or some other cause; current literature suggests this image is similar to known 

images of rhenium oxide, but this requires further study [17]. 
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Figure 36. Significant opacity on certain grains in filament 4-4, which was a low efficiency filament with 
efficiency of only 0.53%. Note beginnings of opaque regions occurring along material defects in top left as 

well. 
 

 Oxidation is typically confined to specific grains and slowly begins to expand 

along grain boundaries and subsequently into adjacent grains [19].  Material defects are 

prime locations for oxidation to occur, but even on clean, untreated rhenium filaments the 

sticking probability – the probability that molecules become trapped on the surface of the 

material and become chemically adsorbed - of oxygen on a clean rhenium filament was 

0.3 both at 298 and 1000 K. [51] 

 Determination of the percent of a filament’s image which is opaque was done 

exclusively with FIJI, using threshold analysis.  FIJI analyzes the greyscale image in a 

256-color scheme, producing an image histogram where 0 is completely black and 255 is 

completely white – refer back to Figure 18.  Threshold adjustments allow the user to slide 
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along the histogram values and highlight specific color combinations, typically in red, 

and FIJI provides the percent of the image within the given histogram value range.  Each 

stitched filament image had its own unique color histogram for analysis, such as filament 

4-5 in Figure 37.  For this experiment, analyzing what was opaque as opposed to simply 

darkened grains due to orientation required some degree of intuition as a microscopist.  

The red shading area consists of the areas being evaluated in the histogram; these are the 

opaque parts of the filament image.   

 
Figure 37. Image threshold for filament 4-5 with associated histogram 

 
 For some filaments, issues arose where certain areas that were not opaque were 

within the color range of the opaque area.  This required the areas not intended to be 

counted to be highlighted with the select tool, have their pixel area counted, and then 

subtracting the percentage of the image those pixels comprised from the pixel percentage 

produced from the histogram analysis, to ensure that the percent opacity of the image was 

accurate and not counting excess areas that were dark due to topography or grain 

orientation.  Table 11 has the range of filament opacity values.  Percent error was 

calculated as the percent difference in opacity for ten histogram bins to either side of the 

selected histogram value.  Figure 38 is a scatter plot of filaments, separated by angular or 

curved filaments, and their associated opacity. 
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Table 11. Filaments and associated percent opacity 
 

 

Filament

Angular or 
Curved 
(A=1, C=0)

% image 
opaque

Opacity Error 
(±)

1-1 0 75.48 2.65
1-2 1 28.74 3.23
1-3 0 4.30 0.96
1-4 0 100.00 1.00
1-5 1 29.48 3.12
1-6 0 75.83 4.11
2-1 1 11.56 1.72
2-2 0 36.12 5.13
2-3 1 4.92 0.44
2-4 1 3.62 0.28
2-5 1 1.65 0.13
2-6 1 72.97 3.42
3-1 0 3.55 0.58
3-2 0 17.02 2.03
3-3 0 15.22 1.77
3-4 0 4.94 0.86
3-5 1 0.66 0.09
3-6 1 0.20 0.02
4-1 1 45.26 4.26
4-2 1 3.68 0.66
4-3 0 28.26 1.60
4-4 0 3.30 2.00
4-5 0 6.05 0.56
4-6 1 26.70 2.20
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Figure 38. Scatter plot of efficiency vs. opacity. Curved filaments are in blue while angular filaments are in 

red. 
 

4.3.4 Holes in Centerline – Optical Microscopy 

 Occasionally, the act of pressing the depression into the filament appears to cause 

undue stress on the centerline, producing holes that transmit through the entire depth of 

the filament.  To analyze if there were holes that transmitted the entire depth of the 

filament was not possible with the SEM, and so a Zeiss Discovery V12 optical 

microscope, pictured in Figure 39, was used instead.   
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Figure 39. Zeiss V12 Discovery optical microscope with filament mounted on top of pink piece of paper. 
The filament is circled in red. 

 
All images were taken at 110x magnification.  A sheet of pink paper was placed 

below the filaments, which were placed under the optical microscope.  If the filaments 

had no holes through the entirety of the filament’s depth, the paper would not be visible.  
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There were two filaments that did have holes in them, however, and the pink paper was 

readily visible through the centerline of the filament, as demonstrated in Figure 40. 

 
Figure 40. Centerline hole in filament 3-2. The pink paper is visible just to the right of the center of the 

image. 
 

 To calculate the area of the holes, images were converted to greyscale and a 

threshold analysis was done in FIJI.  This gave the percent of the image that comprised 

the hole.  The image was then loaded into Gwyddion, where the total area of the image 

was calculated.  The total area was multiplied by the percentage of the image within the 

holes to give the area of just the holes. Gwyddion was then used to give approximate 

dimensions of the holes in terms of length and height. 

 Only two filaments had holes in the centerline.  Filament 1-1 had four holes with 

a total area of 860.33 µm2, while filament 3-2 had one hole with a total area of 933.96 

µm2. Table 11 collects all of the relevant data for holes in the filaments.  Error was 

calculated by using the given standard error of the optical microscope model – in this 

instance, 0.37 µm – taking the square root of the microscope’s standard error divided by 
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the length and height of the holes, summing those two values, then multiplying by the 

total area of the hole as given in Table 12 and the percent error from Table 7 for each 

respective filament. 

Table 12. Area of holes in filaments 

 

4.3.5 Electroconductivity Analysis 

As an addition to surface features, electroconductivity analysis was conducted.  

Given that the filaments are heated via an electric current for use in TIMS, values for 

Filament

Area of 
Holes  
(μm)

Holes 
Error  
(μm) (±)

1-1 860.33 22.88
1-2 0.00 0.00
1-3 0.00 0.00
1-4 0.00 0.00
1-5 0.00 0.00
1-6 0.00 0.00
2-1 0.00 0.00
2-2 0.00 0.00
2-3 0.00 0.00
2-4 0.00 0.00
2-5 0.00 0.00
2-6 0.00 0.00
3-1 0.00 0.00
3-2 933.96 16.74
3-3 0.00 0.00
3-4 0.00 0.00
3-5 0.00 0.00
3-6 0.00 0.00
4-1 0.00 0.00
4-2 0.00 0.00
4-3 0.00 0.00
4-4 0.00 0.00
4-5 0.00 0.00
4-6 0.00 0.00
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filament resistance and resistivity, particularly those with higher resistance and 

resistivity, could potentially provide an indicator for low filament efficiency.  Testing for 

these cannot be done via imaging like all of the other factors evaluated previously, but 

must be done using a probe station.  Filaments were mounted on a probe station as in 

Figure 41. and subjected to tests measuring the filament’s total resistance, and the 

resistivity of the filament.  The rhenium filament is delineated by the red circle at the 

center of the image. 

 
Figure 41. Filament mounted on probe station. The filament is circled in red. 

Resistivity measurements involved using electronic calipers and measuring 

resistance with a distance of one millimeter between the probes and two millimeters 

between the probes.  The slope of the line between these two data points was calculated 

as the resistivity.  Both resistance and resistivity measurements were conducted from -2 
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volts to 2 volts.  By the time the data was taken, several filaments had broken in such a 

manner that 2 straight millimeters of filament was not accessible, and so only 19 

filaments had these measurements done.  Results are below in Table 13.  Percent error 

calculations includes the factory-determined percent error of 0.0012% in voltage for the 

voltages utilized to test the filaments.  Figure 42 is a scatter plot of filaments, separated 

by angular or curved filaments, and their associated resistance, while Figure 43 is a 

scatter plot of resistivity for angular and curved filaments. 
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Table 13. Electrical resistance and resistivity measurements 
 

 

Filament

Angular or 
Curved 
(A=1, C=0)

Resistivity  
(Ω·m)

Resistivity 
Error (Ω·m)  
(±)

Resistance  
(Ω)

Resistance 
Error  (Ω) 
(±)

1-1 0 4.75E-03 5.70E-06 9.20E-02 1.10E-04
1-2 1 6.64E-02 7.96E-05 9.12E-02 1.09E-04
1-3 0 - - - -
1-4 0 4.60E-02 5.52E-05 1.03E-02 1.24E-05
1-5 1 7.29E-02 8.75E-05 7.63E-02 9.15E-05
1-6 0 3.24E-02 3.89E-05 1.34E-02 1.61E-05
2-1 1 6.63E-03 7.95E-06 3.86E-02 4.64E-05
2-2 0 2.09E-02 2.51E-05 8.83E-03 1.06E-05
2-3 1 5.23E-04 6.27E-07 2.05E-02 2.46E-05
2-4 1 7.54E-02 9.04E-05 8.52E-02 1.02E-04
2-5 1 - - - -
2-6 1 7.29E-02 8.75E-05 2.14E-02 2.56E-05
3-1 0 - - - -
3-2 0 7.61E-02 9.14E-05 4.16E-02 4.99E-05
3-3 0 4.10E-02 4.92E-05 8.17E-02 9.81E-05
3-4 0 3.26E-02 3.92E-05 5.91E-02 7.10E-05
3-5 1 7.47E-02 8.96E-05 8.57E-02 1.03E-04
3-6 1 7.53E-02 9.04E-05 8.45E-02 1.01E-04
4-1 1 6.92E-04 8.30E-07 3.67E-02 4.40E-05
4-2 1 3.95E-02 4.74E-05 3.27E-02 3.92E-05
4-3 0 2.75E-02 3.30E-05 4.07E-02 4.88E-05
4-4 0 - - - -
4-5 0 - - - -
4-6 1 6.51E-02 7.82E-05 1.45E-02 1.74E-05
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Figure 42. Scatter plot of efficiency vs. resistance. Curved filaments are in blue while angular filaments are 

in red. 
 

 
Figure 43. Scatter plot of efficiency vs. resistivity. Curved filaments are in blue while angular filaments are 

in red. 
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5.  Analysis 

5.1 General Statistical Analysis 

Statistical analysis has been done on the tabulated filament efficiency to find the 

sample mean, X	̅ and the sample variance, S2, which are displayed in Table 14.  The 

assumption is that the distribution for the efficiency of the filaments is approximately 

normally distributed: 

Table 14: Calculating X	̅ and S2 for all filaments. 

 

Filament Efficiency (%) xbar-eff Squared
1-1 1.08 -0.26 0.068
1-2 1.04 -0.22 0.048
1-3 1.3 -0.48 0.230
1-4 0.45 0.37 0.137
1-5 0.66 0.16 0.026
1-6 0.93 -0.11 0.012
2-1 0.9 -0.08 0.006
2-2 0.94 -0.12 0.014
2-3 1.1 -0.28 0.078
2-4 1.26 -0.44 0.194
2-5 1.13 -0.31 0.096
2-6 0.99 -0.17 0.029
3-1 0.78 0.04 0.002
3-2 0.36 0.46 0.212
3-3 0.36 0.46 0.212
3-4 0.23 0.59 0.348
3-5 0.87 -0.05 0.003
3-6 0.86 -0.04 0.002
4-1 0.79 0.03 0.001
4-2 0.88 -0.06 0.004
4-3 0.31 0.51 0.260
4-4 0.53 0.29 0.084
4-5 1.13 -0.31 0.096
4-6 0.91 -0.09 0.008

Mean 0.82 Variance 0.090
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This provides a baseline, and can also be used to conduct hypothesis testing.  For this 

research, the null hypothesis is that the population mean, µ, is equal to 1% efficiency.  

This is the common efficiency noted throughout the literature for rhenium filaments in 

TIMS.  For this research, the assumption is that the variance in the filament efficiency is 

unknown for the population. However, the sample variance, S2 is considered an unbiased 

estimator for the population variance, σ2, and thus the sample variance of 0.090 will be 

used in this research. [52] 

5.2 Studentized t-test  

The t-test can be used to determine if the sample of filaments in this experiment is 

statistically likely to be representative of the population of filaments.  This test is useful 

in this case as the t-test is designed to function with small sample sizes, as in this 

research. The t-test will determine if there is a significant difference in the means 

between the two groups (the sample of 24 filaments versus the total population of 

filaments) by producing a confidence interval for µ1 - µ2.  This experiment will use an α 

of 0.05 to achieve a 95% confidence interval.   

If the confidence interval of µ1 - µ2 includes 0, that is an indication that the mean 

efficiencies of the sample and the population are the same, and thus that the sample 

potentially falls within normal statistical deviation of the population.  If the interval does 

not contain zero, this rejects the null hypothesis and concludes that the means are 

dissimilar.  This result would lead one to conclude, since the mean of the sample is 

different than the population mean, that something must be affecting the sample to bring 

about this difference in means.  The t-value of the test will demonstrate how many 
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standard units the means of the two tests are apart. [52] Statistical analysis will further 

attempt to understand the signals in the data obscured by noise.   

Given a population mean of 1% efficiency for rhenium filaments and a sample mean 

of 0.82%, the studentized t-test was utilized to determine if the sample mean was 

statistically probable to occur in a random sampling of the population of rhenium 

filaments.  The null hypothesis is that the means are equal.  A boxplot, showing all 

filament efficiencies, the population mean, and a 95% confidence interval on the true 

sample mean, is below in Figure 44. 

 

 

Figure 44. Box plot and statistics for t-test 
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 In the above figure, the red circle is the population mean. The blue box is the 

interquartile range box, which represents 50% of the data.  The whiskers represent the top 

and bottom 25% of the data set.  The left whisker is slightly longer than the right because 

there are more filaments below the interquartile range than above it; that is, there were 

more filaments with efficiencies less than 0.6% than there were filaments with 

efficiencies greater than 1.1%. The vertical line in the box is the calculated sample mean.  

The confidence interval below the box is the calculated, 95% confidence interval for the 

sample mean.  

As shown above, the 95% confidence interval for the sample mean does not 

intersect with the population mean; in other words, µ1 - µ2 ≠ 0 anywhere within the 

confidence interval.  Thus, this rejects the null hypothesis and conclude that the sample 

mean is different from the population mean.  The most likely conclusion is that there 

must be some factors that are affecting the efficiency of these filaments that causes them 

to have a lower mean efficiency. 

5.3 Design of Experiments  

Design of Experiments (DoE) is a methodology by which data is made to fit linear or 

quadratic models to permit holistic analysis of the data.  DoE is most useful in that it 

allows multiple variables (known as factors) to be evaluated simultaneously rather than 

one at a time.  DoE also permits one to observe the interplay between multiple factors 

and determine which factors, and which interplays of factors, directly affect the outcome 

of the model.  Design of Experiments (DoE) techniques permit one to conduct an 
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Analysis of Variance (ANOVA) test to determine the relative effects of defects on 

filament efficiency. [53] 

In this instance, all of the aforementioned factors from the previous sections – 

filament shape, area of centerline holes, length of cracks, percent opacity, radius of 

curvature, resistance, and resistivity – can be evaluated in groups to determine which, if 

any, affect the efficiency values for the rhenium filaments.  Due to the small sample size, 

all seven factors cannot be evaluated concurrently as there are not enough degrees of 

freedom to model error, necessitating several designs with three to five factors each 

instead of one model with all seven factors.   

Two types of models were evaluated, using the Minitab software package: a linear 

model, which will be a Factorial Design, and a quadratic model, which is a Response 

Surface Design. For all statistical models, all factors had a predefined p < 0.05 

significance level, and used the following data in Table 15. 
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Table 15. Data for all runs of DoE analysis.  

 
 
Finally, the null hypothesis for all models was that each factor did not affect 

filament efficiency.  If any of the factors had a p < 0.05, this rejects the null hypothesis 

and concludes that that particular factor does in fact affect filament efficiency. 

  

Filament
Efficiency 
(%)

Angular or 
Curved 
(A=1, C=0)

Total 
Length of 
Cracks (μm)

% image 
opaque

Area of 
Holes  
(μm)

Resistivity  
(Ω·m)

Resistance  
(Ω)

Radius of 
Curvature 
(μm)

1-1 1.08 0 - 75.48 860.33 4.75E-03 9.20E-02 43.10
1-2 1.04 1 600.19 28.74 0.00 6.64E-02 9.12E-02 32.36
1-3 1.3 0 774.07 4.30 0.00 - - 23.68
1-4 0.45 0 - 100.00 0.00 4.60E-02 1.03E-02 27.30
1-5 0.66 1 621.63 29.48 0.00 7.29E-02 7.63E-02 26.77
1-6 0.93 0 - 75.83 0.00 3.24E-02 1.34E-02 22.89
2-1 0.9 1 1176.51 11.56 0.00 6.63E-03 3.86E-02 27.99
2-2 0.94 0 931.25 36.12 0.00 2.09E-02 8.83E-03 -
2-3 1.1 1 1793.81 4.92 0.00 5.23E-04 2.05E-02 -
2-4 1.26 1 3230.50 3.62 0.00 7.54E-02 8.52E-02 34.35
2-5 1.13 1 1623.53 1.65 0.00 - - 19.57
2-6 0.99 1 281.88 72.97 0.00 7.29E-02 2.14E-02 26.77
3-1 0.78 0 376.64 3.55 0.00 - - 45.05
3-2 0.36 0 1842.35 17.02 933.96 7.61E-02 4.16E-02 23.92
3-3 0.36 0 1583.99 15.22 0.00 4.10E-02 8.17E-02 17.54
3-4 0.23 0 2689.32 4.94 0.00 3.26E-02 5.91E-02 -
3-5 0.87 1 732.98 0.66 0.00 7.47E-02 8.57E-02 37.00
3-6 0.86 1 1663.41 0.20 0.00 7.53E-02 8.45E-02 24.02
4-1 0.79 1 280.13 45.26 0.00 6.92E-04 3.67E-02 15.40
4-2 0.88 1 2119.23 3.68 0.00 3.95E-02 3.27E-02 29.10
4-3 0.31 0 1576.69 28.26 0.00 2.75E-02 4.07E-02 41.56
4-4 0.53 0 1565.61 3.30 0.00 - - 51.71
4-5 1.13 0 2748.13 6.05 0.00 - - 43.96
4-6 0.91 1 1383.62 26.70 0.00 6.51E-02 1.45E-02 19.21
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5.3.1 Factorial Design 

 This research used a total of seven factorial models, outlined in Table 16 

below.  One complete model will be displayed below; data from the remaining six 

models is in Appendix 5. 

Table 16. All Factorial Design models evaluated.

 

The response for all models is efficiency.  Table 17 represent the Analysis of 

Variance (ANOVA) for Model 1.  Again, factors are only statistically significant with a 

p-value of p < 0.05.   

Table 17. ANOVA for factorial design Model 1. 

 

Model
Sample 
Size

# Factors 
Modelled

Angular or 
Curved

% 
opaque

Total Length 
of Cracks

Area of 
Holes Resistivity Resistance

Radius of 
Curvature

1 24 3 x x x
2 21 4 x x x x
3 21 4 x x x x
4 19 5 x x x x x
5 18 5 x x x x x
6 16 5 x x x x x
7 16 5 x x x x x

Factors Modelled
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 In Table 17, DF stands for degrees of freedom, Adj SS is the Adjusted Sum of 

Squares, Adj MS is the adjusted mean squares, the F-value relates to the F-test, and the p-

value determines if a factor is statistically significant. 

 The degrees of freedom are determined by the sample size and the DF term in the 

above table shows how much information that term uses in the model.  As this model has 

a sample size of N=24, there are 23 degrees of freedom available, as DF is always equal 

to N-1.  The greater number of DF in the error term, the better the model is able to fit the 

data to the model.   

 Adj SS are measures of variation for components of the model.  It quantifies the 

amount of variation in the response data that is explained by each factor or interplay of 

factors. Adj MS explains how much variation a term explains.  Unlike Adj SS, Adj MS 

considers degrees of freedom in its calculation.  Adj MS of the error term is the variance 

of the fitted values. 

 The F-value is the test statistic to determine if the factor is associated with the 

response.  F-value directly relates to the p-value.  A large F-value indicates a small p-

value; thus, the larger an F-value a factor has, the more likely it is to be significant. 

As can be seen from Table 17, none of the factors nor their interactions in Model 

1 are statistically significant in affecting filament efficiency – none of the p-values are 

less than 0.05.  This fails to reject the null hypothesis that no factors affect the efficiency 

of the filaments. 
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The Normal Probability Plot of the residuals is in Figure 45.  The Normal 

Probability Plot shows the standardized effects relative to a distribution fit line for the 

case when all the effects are 0. The standardized effects are t-statistics that test the null 

hypothesis that the effect is 0.  Positive effects increase the response when the settings 

change from the low value of the factor to the high value. Negative effects decrease the 

response when the settings change from the low value of the factor to the high value of 

the factor. Effects further from 0 on the x-axis have greater magnitude and are more 

statistically significant. [55] The data is approximately linear, though none of it in this 

instance is statistically significant.   

 
Figure 45. Residuals plot normalized for Model 1. The data is roughly linear. 

 
Figure 46 is a Pareto chart of the factors; the red dashed line is the cut-off line for 

a factor to be statistically significant.  For a factor to be considered significant, the 
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histogram bar must extend to the right of the dashed line.  None of the factors extend past 

the dashed line, as none are statistically significant.  X-axis values are the absolute value 

of the standardized effects, ranked from largest impact on the response (efficiency) to the 

smallest. 

 
Figure 46. Pareto chart of factors in Model 1, a Factorial Design. 

 

The equation for how efficiency related to the factors in this model is as follows: 

 

(Equation 7) 

 

  

   
Efficiency 
(%) 

= 0.659 + 0.351 Angular or Curved (A=1, C=0) 
+ 0.00038 % image opaque 
- 0.000555 Area of Holes  (μm) 
- 0.00285 Angular or Curved (A=1, C=0)*% image opaque 
+ 0.000013 % image opaque*Area of Holes  (μm) 

(Equa 
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5.3.2 Response Surface Design 

Four of the above models were also tested as a Response Surface Design.  Due to 

the quadratic nature of the response surface design, some degrees of freedom are lost 

modeling squared terms, and so the three models with the smallest sample size could not 

be replicated with a Response Surface Design.  The four Response Surface Design 

Models are displayed in Table 18, with the model numbering continuing from Table 16. 

Table 18. All Response Surface Design models evaluated. 

 

The resulting ANOVA table is below for the outputs from Model 8 using the 

same factors as in 5.3.1.  Given the nature of the data and the subsequent confirmation of 

the outputs, a linear model best serves this data, not a quadratic model, as the responses 

fit a linear data set, as can be seen in Figure 47.  This design used the same parameters as 

the factorial design – the same three factors, the same response, efficiency, and a p-value 

of < 0.05 to determine significance.  As demonstrated in Table 19, no factors were 

significant in this model. 

  

Model
Sample 
Size

# Factors 
Modelled

Angular or 
Curved

% 
opaque

Total Length 
of Cracks

Area of 
Holes Resistivity Resistance

Radius of 
Curvature

8 24 3 x x x
9 21 4 x x x x

10 21 4 x x x x
11 19 5 x x x x x

Factors Modelled
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Table 19. ANOVA for the response surface design. No factors are statistically significant. 

 
 

 
Figure 47. Data is approximately linear, and so a quadratic model is not appropriate. 
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Figure 48. Pareto chart of factors in Model 1, a Response Surface Design. 
  

Figure 47 shows that the residual plot is roughly linear, despite the model being 

quadratic.  Figure 48 is the Pareto chart which also demonstrates that no factors are 

statistically significant.  As in the linear model, no factors are statistically significant.   

 The equation for how efficiency related to the factors in this model is as follows: 

  

  

 
Efficiency 
(%) 

= 0.627 + 0.370 Angular or Curved (A=1, C=0) 
+ 0.00334 % image opaque 
+ 0.00946 Area of Holes  (μm) 
- 0.000030 % image opaque*% image opaque 
- 0.000010 Area of Holes  (μm)*Area of Holes  (μm) 
- 0.00376 Angular or Curved (A=1, C=0)*% image opaque 

 

  
(Equation 8) 
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5.3.3  Results from All Models 

 Of the eleven models evaluated, only one model, model 10, a Response Surface 

Design, showed any factors having any statistical significance.  Model 10 indicated that 

% opacity and the interplay between % opacity and radius of curvature were both 

statistically significant.  However, given discussion in section 4.3.2, the values for radius 

of curvature have a low confidence associated with them, and subsequently those results 

should be considered invalid.  Furthermore, as % opacity is common to all 11 models, the 

fact that it is only significant for one of the models signifies that model 10 is an outlier. 

5.4 Angular versus Curved Differences 

 When filaments were determined to have two distinct shapes in the filament 

depression, an analysis of the potential difference between these two sets of filaments 

followed.  Table 20 shows the different means and variances for the curved and angular 

filaments. 
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Table 20. Curved and Angular Filament Means and Variances 

 

 Curved filaments overall have a mean efficiency of 0.7 with a variance 

of 0.13, whereas angular filaments have a mean efficiency of 0.95 with a 

Filament
Efficiency 
(%)

Angular 
or 
Curved 
(A=1, 
C=0) xbar-eff Squared

1-1 1.08 0 -0.38 0.14
1-3 1.30 0 -0.6 0.36
1-4 0.45 0 0.25 0.06
1-6 0.93 0 -0.23 0.05
2-2 0.94 0 -0.24 0.06
3-1 0.78 0 -0.08 0.01
3-2 0.36 0 0.34 0.12
3-3 0.36 0 0.34 0.12
3-4 0.23 0 0.47 0.22
4-3 0.31 0 0.39 0.15
4-4 0.53 0 0.17 0.03
4-5 1.13 0 -0.43 0.18

Mean 0.70 Variance 0.13

Filament
Efficiency 
(%)

Angular 
or 
Curved 
(A=1, 
C=0) xbar-eff Squared

1-2 1.04 1 -0.0908 0.0083
1-5 0.66 1 0.28917 0.0836
2-1 0.90 1 0.04917 0.0024
2-3 1.10 1 -0.1508 0.0228
2-4 1.26 1 -0.3108 0.0966
2-5 1.13 1 -0.1808 0.0327
2-6 0.99 1 -0.0408 0.0017
3-5 0.87 1 0.07917 0.0063
3-6 0.86 1 0.08917 0.0080
4-1 0.79 1 0.15917 0.0253
4-2 0.88 1 0.06917 0.0048
4-6 0.91 1 0.03917 0.0015

Mean 0.95 Variance 0.024
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variance of .024.  Angular filaments have significantly less variance than 

curved.  To determine if these two means are statistically separate, a two-

sample t-test was conducted, with the results below in Figure 49.  As with all 

other statistical models, all statistics are at a 95% confidence interval. 

 

Figure 49. Boxplots of angular (right box) and curved (left box) filaments. 

 The t-test for these two values is below: 
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 Due to a p-value of 0.050, this rejects the null hypothesis and concludes that the 

means are different.  Angular and curved filaments have different means and different 

variances.  The angular filaments have a higher mean and lower variance than the curved 

filaments.  Efficiency in curved filaments is more unpredictable due to the increased 

variance.  For consistency, it is thus desirable for filaments used in TIMS measurements 

to be angular rather than curved. 

5.5 Other Findings 

 Due to the necessity of re-imaging filaments whose first run of images could not 

be stitched, an additional phenomenon was discovered.  The opacity of the filaments 

evolved in the intervening period between when the images were taken.  Figure 50 shows 

the difference in opacity for filament 1-5 after three months and then after an additional 

two months.  Red circles denote regions of difference between August and November, 

and yellow circles denote differences between November and January.  The top right in 

particular had an increase in opacity, along with the bottom of the canoe.  A number of 

factors could cause this change in opacity and is a possibility for future work.  Appendix 

6 contains all stitched images, along with the cropped image of the filament depression, 

that were used in this experiment. 
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Figure 50. Time evolution of filament opacity. The top image was taken in August 2019, the middle in 

November 2019, and the bottom in January 2020.   
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6.   Conclusions and Future Work 

 6.1 Reflections on Obtained Data 

 The results of the factorial and response surface design experiments demonstrate 

that none of the seven factors evaluated had an effect on the efficiency of the filaments.  

Model 10 was the only model to indicate that % opacity and radius of curvature were 

statistically significant, but due to the fact that there exists a low level of confidence in 

the values for radius of curvature, and the fact that % opacity occurs in all 11 models but 

was only significant in one of them, leads to the conclusion that Model 10 is an outlier.  

Furthermore, given that opacity has been demonstrated to change over time, it cannot be 

a reliable indicator of efficiency given its continually changing nature. 

The shape of the filament depression did affect the variance of the data; angular 

filaments had less variance in their efficiency values than curved filaments did, and 

angular filaments had a higher mean efficiency than curved filaments.  The shape of the 

data indicated that a linear model was the best model for this experiment.  The fact that 

none of the factors identified affected filament efficiency is interesting, particularly given 

the existence of literature that directly contradicts these findings. The shape of rhenium 

filaments has been demonstrated to have an impact on ionization efficiency and this has 

been known for decades.  [56] This experiment’s findings that filament shape affects 

efficiency is in line with previous experiments by McHugh and Dietz that the v-shaped 

filament was the most efficiency single filament methods for TIMS. [56] [57] Holes in 

the filament depression would also adversely affect electrical conductivity, and thus 

ionization of a sample, while excessive cracks would permit oxidation, also known to 



102 

 

impede filament efficiency [16].  As filaments are heated by passing an electric current 

through them, it follows rationally that electrical resistance and resistivity would have 

bearing on filament efficiency as well, but once again, the data directly contradicts this. 

 Although the data suggests that none of the factors could be statistically correlated 

to ionization efficiency, the disparity in variances between angular and curved filaments 

is evident.  Better process control to standardize the shape of the filament depressions in 

the angular form would be beneficial in reducing the disparity in calculated efficiencies. 

6.2 Sample Size Limitations 

 As is always the case in statistics, the greater the sample size, the better.  

Naturally optimal sample size must be balanced against time and resources, although it is 

important to note that smaller sample sizes will result in decreased accuracy.  A rule of 

thumb in linear regression analysis is that for each independent variable measured, at 

least 10 samples are optimal.  [58] Given that there were seven independent variables 

evaluated in this experiment, at least 70 filaments would have been an optimum sample 

size.  This may have been time-prohibitive, but the small sample size – particularly as all 

filaments could not be evaluated for all seven factors – means that the data is not as 

robust as it could be. 

 The small sample size limits how much can be extrapolated from the data, as well 

as limiting how representative of the total population of the rhenium filaments utilized by 

AFTAC the data produced actually is.  A better idea of the actual population size – such 

as how many filaments are used in a year at this particular laboratory – would greatly 
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increase the confidence level in how accurate this sample could be of the population that 

it is representing. 

6.3 Conclusions from the Data 

 Based on the data collected in this experiment, there exist three possibilities to 

conclude: 

1. There are no surface features identifiable from SEM imagery that affect 
filament efficiency. 

2. There are additional factors identifiable from other techniques besides 
SEM imagery that affect filament efficiency. 

3. There are additional, unknown factors that affected the original calculation 
of filament efficiency. 

 
Based on literary evidence, conclusion (1) is unlikely, as there have been 

numerous studies demonstrating factors that can be tied directly to filament efficiency.  

There is one set of surface features that this experiment did not analyze, and that pertains 

to grain size and orientation; this would be a fruitful path for further study.  Conclusion 

(2) is possible, and is a candidate for future work.  Recommendation is that most future 

work should focus on other analysis techniques to get a more complete picture of the 

structure and chemistry of the rhenium filaments.  Aside from grain orientation, there is 

little additional work that can be done with solely an SEM system, and even grain 

orientation requires other resources such as Electron Backscatter Diffraction (EBSD).   

Conclusion (3) bears further investigation.  Process improvement in the 

manufacture of rhenium filaments to ensure more uniformity in the filaments themselves 

would aid in standardization, and thus a likely reduction in filament efficiency variance.  

Furthermore, the method by which rhenium filament efficiency is calculated deserves a 

closer look to ensure the most accurate data is available.   
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6.4 Recommendations for Process Improvement 

 Some of the variance is likely be due to the process by which the filaments are 

created, and efficiencies will be suggested to be built into the process to ensure 

uniformity.  Recommendations could include applying the principles of Lean Six Sigma 

to the filament preparation process to reduce population variance, as the external factors 

that affect the filaments will be lessened.  Cracks in the material are ripe for oxidation, 

and so should be minimized in filament preparation.  The potential exists for Value 

Stream Mapping (VSM), Kaizen and Kanban implementation at AFTAC to improve 

process flow and filament uniformity. [59]  Kaizen refers to the continuous improvement 

of a process by all staff, while Kanban refers to improving process flow to speed up 

processing time while maintaining efficiency.   

 A method of standardizing solution deposition on the filaments is likely to be 

most beneficial.  Standardizing the means by which a filament’s depression is stamped 

will prevent filaments that are stamped off-centerline as well as regulate the shape of the 

filaments.  Angular filaments have less variance and a higher mean efficiency, and are 

thus more desirable for TIMS analysis.  Better controls over the stamping process will aid 

in producing filaments that are shaped most beneficially for ionization efficiency.  It is 

crucial that the ionization efficiency values are accurate, as if they are not, this could 

produce faulty data which incorrectly identifies the substances evaluated. 

The process of preparing filaments for TIMS utilization must be continually 

refined and standardized to prevent filament defects occurring from mishandling of 
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filaments, improper rhenium filament sizes requisitioned, and uniformity in sample 

distribution on the filaments. 

 6.5 Future Work 

 Future work should focus on identifying which of the three potential conclusions 

postulated in section 6.3 are accurate.  A simple way to determine if conclusion (1) or 

conclusion (3) are valid is to obtain a sample of rhenium filaments from a different 

laboratory and conducting the same experiment again, and see if there is a correlation 

between efficiency and surface features.  If the filaments from the second lab also do not 

show a correlation between surface features and efficiency, then conclusion (1) becomes 

more likely.  If the filaments from the second lab do, however, show a correlation, then 

conclusion (3) is more likely.  One surface feature not evaluated in this experiment is 

average grain size, and this could be incorporated into future work as a potential variable 

that could affect efficiency. 

 Conclusion (2) can be observed utilizing a variety of different techniques to 

examine depth of carburization of the filament, certain types of mass spectrometry or X-

ray fluorescence (XRF) to identify the composition of the opaque areas in the SEM 

imagery, and using an EBSD system to determine dominant grain orientation.  Finally, 

once a method has been determined to definitively identify oxidized grains, a ratio of 

oxidized grains to non-oxidized grains would be fruitful; however, if the time evolution 

of the rhenium filament surface is caused by additional oxidation, time becomes in a 

factor in this analysis, as the filaments may continue to oxidize the longer they are stored. 
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 Time evolution of rhenium filament, utilizing raw rhenium and carburized 

filaments and observing changes, specifically oxidation, over time, is another fruitful bit 

of experimentation worth exploring in the future.  As one hopes to identify defective 

filaments before use, analyzing unused filaments prior to loading in TIMS and seeing if 

surface or material composition defects exist that affect ionization efficiency is crucial.  

Perhaps the use of a different filament material, such as tungsten, and observing if 

similar surface features identified via an SEM system can correlate to efficiency would 

also be of use in broadening knowledge for actinide evaluation in TIMS. 
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Appendix 1: CRM-129 Specifications 
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Appendix 2: Bethe Equation MATLAB Code 

A=186.21; 

NA=6.022E23; 

p=21.02; 

z=75; 

i=1; 

for Ei=5:1:30 

    range(i,:)=(0.0276.*A.*Ei.^(1.67))./(z.^(0.89).*p); 

    energy(i)=Ei; 

    i=i+1; 

end 

 

d=-7.85*((z*p)/(A*Ei)*log((1.166*Ei/(9.76*z+58.5*z^(-0.19))*10^(-3)))) 

 

figure 

plot(energy,range); 

xlabel('Energy(keV)') 

ylabel('Range(um)') 

title('Bethe Eqn Range vs Energy') 

grid on 

grid minor 
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Appendix 3: Radius of Curvature Measurement FIJI Code 

//initial set-up, derived from imagej-macro "curvatureRadius" (Herbie G., 05. December 

2018) 

requires( "1.52i" ); 

setOption("BlackBackground", true); 

//designates size and crops 

w=getWidth(); 

h=getHeight()-20; 

makeRectangle(0,20,w,h); 

run("Crop"); 

//sets threshold for greyscale 

setAutoThreshold("Intermodes dark"); 

//converts image to binary black and white image 

run("Convert to Mask"); 

h*=0.5; 

//"clicks" on the pixel at the coordinates (0,h) 

doWand(0,h); 

run("Make Inverse"); 

run("Interpolate", "interval="+h); 

//sets coordinates for points of triangle 

x = newArray(3); 

y = newArray(3); 
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getSelectionCoordinates(xx, yy); 

rank = Array.rankPositions(xx); 

for ( i=0; i<3; i++) { 

    x[i] = xx[rank[i]]; 

    y[i] = yy[rank[i]]; 

} 

// the following calculates the perimeter of the triangle and then the circumcircle 

// which is the circle whose circumference passes through the three points  

// of the triangle, derived from code at  

// https://bitbucket.org/davemason/threepointcircumcircle/src/master/ 

d1=sqrt((x[0]-x[1])*(x[0]-x[1])+(y[0]-y[1])*(y[0]-y[1])); 

d2=sqrt((x[1]-x[2])*(x[1]-x[2])+(y[1]-y[2])*(y[1]-y[2])); 

d3=sqrt((x[2]-x[0])*(x[2]-x[0])+(y[2]-y[0])*(y[2]-y[0])); 

// calculate radius of curvature 

r=(d1*d2*d3)/sqrt((d1+d2+d3)*(d2+d3-d1)*(d3+d1-d2)*(d1+d2-d3)); 

print("Radius: "+d2s(r, 2)); 

exit(); 
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Appendix 4: Rhenium Filament 3-D Surface Plots  

Filament 1-1 3-D Surface Plot 
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Filament 1-2 3-D Surface Plot 
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Filament 1-3 3-D Surface Plot 
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Filament 1-4 3-D Surface Plot 
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Filament 1-5 3-D Surface Plot 
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Filament 1-6 3-D Surface Plot 
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Filament 2-1 3-D Surface Plot 
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Filament 2-2 3-D Surface Plot 
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Filament 2-3 3-D Surface Plot 

 

  



126 

 

Filament 2-4 3-D Surface Plot 
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Filament 2-5 3-D Surface Plot 
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Filament 2-6 3-D Surface Plot 
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Filament 3-1 3-D Surface Plot 
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Filament 3-2 3-D Surface Plot 
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Filament 3-3 3-D Surface Plot 
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Filament 3-4 3-D Surface Plot 
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Filament 3-5 3-D Surface Plot 
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Filament 3-6 3-D Surface Plot 
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Filament 4-1 3-D Surface Plot 
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Filament 4-2 3-D Surface Plot 
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Filament 4-3 3-D Surface Plot 
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Filament 4-4 3-D Surface Plot 
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Filament 4-5 3-D Surface Plot 
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Filament 4-6 3-D Surface Plot 
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Appendix 5: Design of Experiments Results all Models 

Model 1 
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Model 2 
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Model 3 

 



146 

 

 

 



147 

 

Model 4 
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Model 5 

 



150 

 

 

 



151 

 

Model 6 
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Model 7 
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Model 8 
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Model 9 
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Model 10 
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Model 11 
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Appendix 6: All Stitched Rhenium Filament Images and Cropped Images Used for 
Analysis 

 
Filament 1-1 
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