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Chapter 1

ENTANGLEMENT PRODUCTION

IN A CHAOTIC QUANTUM DOT
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Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Nether-

lands

C.M. Marcus, A. Yacoby∗

Department of Physics, Harvard University, Cambridge, MA 02138, USA

Abstract It has recently been shown theoretically that elastic scattering in the
Fermi sea produces quantum mechanically entangled states. The mech-
anism is similar to entanglement by a beam splitter in optics, but a key
distinction is that the electronic mechanism works even if the source
is in local thermal equilibrium. An experimental realization was pro-
posed using tunneling between two edge channels in a strong magnetic
field. Here we investigate a low-magnetic field alternative, using mul-
tiple scattering in a quantum dot. Two pairs of single-channel point
contacts define a pair of qubits. If the scattering is chaotic, a universal
statistical description of the entanglement production (quantified by the
concurrence) is possible. The mean concurrence turns out to be almost
independent on whether time-reversal symmetry is broken or not. We
show how the concurrence can be extracted from a Bell inequality us-
ing low-frequency noise measurements, without requiring the tunneling
assumption of earlier work.

To appear in: Fundamental Problems of Mesoscopic Physics: Interac-

tions and Decoherence, edited by I. V. Lerner et al. (Kluwer, Dordrecht,
2004).

Keywords: entanglement, Bell inequality, quantum chaos, quantum dot

∗Visiting from: Department of Condensed Matter Physics, Weizmann Institute of Science,
Rehovot 76100, Israel.

1



2

1. Introduction

The usual methods for entanglement production rely on interactions
between the particles and the resulting nonlinearities of their dynam-
ics. A text book example from optics is parametric down-conversion,
which produces a polarization-entangled Bell pair at frequency ω out of
a single photon at frequency 2ω [1]. In condensed matter the schemes
proposed to entangle electrons make use of the Coulomb interaction or
the superconducting pairing interaction [2].

Photons can be entangled by means of linear optics, using a beam
splitter, but not if the photon source is in a state of thermal equilibrium
[3, 4, 5]. Remarkably enough, this optical “no-go theorem” does not
carry over to electrons: It was discovered recently [6] that single-particle
elastic scattering can create entanglement in an electron reservoir even
if it is in local thermal equilibrium. The existence of a Fermi sea permits
for electrons what is disallowed for photons. The possibility to entangle
electrons without interactions opens up a range of applications in solid-
state quantum information processing [7, 8, 9, 10].

Any two-channel conductor containing a localized scatterer can be
used to entangle the outgoing states to the left and right of the scat-
terer. The particular implementation described in Ref. [6] uses tunnel-
ing between edge channels in the integer quantum Hall effect. In this
contribution we analyze an alternative implementation, using scattering
between point contacts in a quantum dot. We then need to go beyond
the tunneling assumption of Ref. [6], since the transmission eigenvalues
T1, T2 through the quantum dot need not be ≪ 1.

The multiple scattering in the quantum dot allows for a statistical
treatment of the entanglement production, using the methods of quan-
tum chaos and random-matrix theory [11, 12, 13]. The interplay of quan-
tum chaos and quantum entanglement has been studied extensively in
recent years [14, 15, 16, 17, 18, 19, 20], in the context of entanglement
production by interactions. The interaction-free mechanism studied here
is a new development.

The geometry considered is shown in Fig. 1.1. A quantum dot is
connected at the left and at the right to an electron reservoir. The
connection is via point contacts connected to single-channel leads. (Spin
degeneracy of the channels is disregarded for simplicity.) There are two
leads at the left (L1, L2) and two leads at the right (R1, R2). A current
is passed through the quantum dot in response to a voltage difference V
between the two reservoirs. We consider the entanglement between the
left and right channels in the energy range eV above the Fermi energy
EF .
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Figure 1.1. Sketch of the quantum dot entangler described in the text. An electron
leaving the quantum dot at the left or right represents a qubit, because it can be
in one of two states: it is either in the upper channel (L1,R1) or in the lower chan-
nel (L2,R2). An example of a maximally entangled Bell pair is the superposition
(|L1, R1〉 + |L2, R2〉)/

√
2.

The degree of entanglement is measured through the violation of a Bell
inequality [21] for correlators of current fluctuations [22, 23]. Violation
of the Bell inequality requires mixing of the two outgoing channels at
each end of the quantum dot (described by 2 × 2 unitary matrices UL
and UR). In order not to modify the degree of entanglement, this inter-
channel scattering should be local, meaning that it should not lead to
backscattering into the quantum dot.1 This might be done by making
the barrier that separates lead L1 from L2 (and R1 from R2) partially
transparent and tunable by a gate [23] (cf. Fig. 1.1, shaded rectangles).

2. Relation between entanglement and
transmission eigenvalues

The incoming state,

|Ψin〉 =
∏

EF<ε<EF +eV

a†L,1a
†
L,2|0〉, (1.1)

factorizes into two occupied channels at the left and two empty chan-

nels at the right, so it is not entangled. Here a†L,i(ε) is the creation
operator for an incoming excitation at energy ε in channel i at the left
and |0〉 represents the Fermi sea at zero temperature (all states below
EF filled, all states above EF empty). There is a corresponding set of

creation operators a†R,i at the right. We collect the creation operators

in a vector a† = (a†L,1, a
†
L,2, a

†
R,1, a

†
R,2). With this notation we can write
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the incoming state in the form

|Ψin〉 = a† · σ · a†|0〉, σ =

(

(i/2)σy 0
0 0

)

, (1.2)

where the product over energies is implicit.
Multiple scattering in the quantum dot entangles the outgoing state in

the two left channels with that in the two right channels. The vector of
creation operators b† for outgoing states is related to that of the incoming
states by a unitary 4 × 4 scattering matrix: b = S · a ⇔ b† · S = a†.
Therefore the outgoing state has the form

|Ψout〉 = b† · S · σ · ST · b†|0〉. (1.3)

There are two methods to quantity the degree of entanglement of the
outgoing state:

A. One can use the entanglement of formation F of the full state
|Ψout〉. The entanglement of formation of a pure state is defined
by [24]

F = −TrL ρL log ρL, ρL = TrR |Ψout〉〈Ψout|, (1.4)

with TrL or TrR the trace over the degrees of freedom at the left
or right. (The logarithm has base 2.) The entanglement of for-
mation of the outgoing state is given in terms of the transmission
eigenvalues by [6]

F = −(eV/h)[T1 log T1(1 − T2) + T2 log T2(1 − T1)

+ (1 − T1 − T2) log(1 − T1)(1 − T2)]. (1.5)

For T1 = T2 = 1/2 the rate of entanglement production is maximal,
equal to 2eV/h (bits per second).

B. Alternatively, one can project |Ψout〉 onto a state |Ψ′
out〉 with a

single excitation at the left and at the right, and use the concur-
rence C of this pair of qubits as the measure of entanglement. The
(normalized) projected state is

|Ψ′
out〉 =

(1 − nL,1nL,2)(1 − nR,1nR,2)|Ψout〉
〈Ψout|(1 − nL,1nL,2)(1 − nR,1nR,2)|Ψout〉1/2

, (1.6)

with number operator nX,i = b†X,ibX,i (for X = L,R). The concur-

rence [25] is a dimensionless number between 0 (no entanglement)
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and 1 (a fully entangled Bell pair).2 The transmission formula for
the concurrence is [6]

C =
2[T1(1 − T1)T2(1 − T2)]

1/2

T1 + T2 − 2T1T2
. (1.7)

Full entanglement is reached when T1 = T2, regardless of the value
of the transmission.

Notice that in both methods A and B the degree of entanglement de-
pends only on the transmission eigenvalues T1, T2, and not on the eigen-
vectors of the transmission matrix. Eqs. (1.6) and (1.7) hold irrespective
of whether time-reversal symmetry (TRS) is broken by a magnetic field
or not. In Ref. [6] the expressions were simplified by specializing to
the tunneling regime T1, T2 ≪ 1. Here we will not make this tunneling
assumption.

In what follows we will concentrate on the concurrence C of the pro-
jected state |Ψ′

out〉, since that is the quantity which is measured by cor-
relating current fluctuations. The entanglement of formation F of the
full state |Ψout〉 contains also contributions involving a different number
of excitations at the left and at the right. Such contributions are not
measurable with detectors that conserve particle number [26].

3. Statistics of the concurrence

The statistics of C is determined by the statistics of the transmission
eigenvalues. For chaotic scattering their distribution is given by random-
matrix theory [11],

P (T1, T2) = cβ|T1 − T2|β(T1T2)
−1+β/2, (1.8)

with normalization constants c1 = 3/4, c2 = 6. We obtain the following
values for the mean and variance of the concurrence in the case β = 1
(preserved TRS) and β = 2 (broken TRS):

〈C〉 =

{

0.3863 if β = 1,
0.3875 if β = 2,

(1.9)

〈C2〉 − 〈C〉2 =

{

0.0782 if β = 1,
0.0565 if β = 2.

(1.10)

The effect of broken TRS on the average concurrence is unusually
small, less than 1%. In contrast, the conductance G = (e2/h)Tr tt† ∝
T1+T2 increases by 25% upon breaking TRS. The main effect of breaking
TRS is to reduce the sample-to-sample fluctuations in the concurrence,
by about 15% in the root-mean-square value.
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4. Relation between Bell parameter and
concurrence

The Bell parameter E is defined by [22, 23]

E = max
[

E(UL, UR) + E(U ′
L, UR) + E(UL, U

′
R) − E(U ′

L, U
′
R)
]

, (1.11)

where the maximization is over the 2×2 unitary matrices UL, UR, U
′
L, U

′
R

that mix the channels at the left and right end of the system. For given
UL, UR the correlator E has the expression

E =
〈(δIL,1 − δIL,2)(δIR,1 − δIR,2)〉
〈(δIL,1 + δIL,2)(δIR,1 + δIR,2)〉

. (1.12)

Here δIL,i ≡ IL,i − 〈IL,i〉 is the low-frequency current fluctuation in the
outgoing channel i at the left3 and δIR,j is the same quantity for outgoing
channel j at the right. The average 〈· · ·〉 in this equation is over a long
detection time for a fixed sample. (We will consider ensemble averages
later.)

In the tunneling regime T1, T2 ≪ 1 there is a one-to-one relation
E = 2

√
1 + C2 between the Bell parameter E and the concurrence C.

Here we can not make the tunneling assumption. The Bell parameter
(1.11) can then be larger than expected from the concurrence. The
relation is [6]

E = 2
√

1 + κ2C2, (1.13)

κ = 1 +
(T1 − T2)

2

T1(1 − T1) + T2(1 − T2)
. (1.14)

The amplification factor κ ≥ 1 approaches unity if either T1 ≈ T2 or
T1, T2 ≪ 1.

Since E gives the amplified concurrence κC rather than the bare con-
currence C, it is of interest to compare the moments of κC with those of
C. By averaging with distribution (1.8) we find the mean and variance
in a chaotic quantum dot:

〈κC〉 =

{

0.7247 if β = 1,
0.8393 if β = 2,

(1.15)

〈κ2C2〉 − 〈κC〉2 =

{

0.0838 if β = 1,
0.0393 if β = 2.

(1.16)

The amplification by κ amounts to about a factor of two on average.
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5. Relation between noise correlator and
concurrence

For a different perspective on the relation between noise and entan-
glement, we write the correlator (1.12) of current fluctuations in a form
that exposes the contribution from the concurrence.

Low-frequency correlators can be calculated with the help of the for-
mula [27]

lim
ω,ω′→0

〈δIL,i(ω)δIR,j(ω
′)〉 = −(e3V/h)2πδ(ω + ω′)|(rt†)ij |2. (1.17)

The reflection and transmission matrices r, t are to be evaluated at the
Fermi energy. We decompose these matrices in eigenvectors and eigen-
values,

r = UL

(
√

1 − T1 0
0

√
1 − T2

)

U0, t = UR

(
√
T1 0
0

√
T2

)

U0, (1.18)

with 2 × 2 unitary matrices UL, UR, U0. The matrix r contains the re-
flection amplitudes from left to left and the matrix t contains the trans-
mission amplitudes from left to right.4

Substitution into Eq. (1.12) gives

E = (1−2|UL,11|2)(1−2|UR,11|2)+4κC ReUL,11U
∗
R,11U

∗
L,12UR,12. (1.19)

We see that the entire dependence of the correlator E on the transmission
eigenvalues is through the product κC of concurrence and amplification
factor. This is the same quantity that enters in the Bell parameter
(1.13). The correlator E is less useful for the detection of entanglement
than the Bell parameter E , because it depends also on the matrices of
eigenvectors UL, UR — which the Bell parameter does not.

In a chaotic quantum dot the two matrices UL and UR are indepen-
dently distributed in the circular unitary ensemble (a socalled “isotropic”
distribution [11]). Averages over these matrices can be done conveniently
in the parametrization

U = eiα
(

eiφ cos γ eiψ sin γ
−e−iψ sin γ e−iφ cos γ

)

, (1.20)

γ ∈ (0, π/2), α, φ, ψ ∈ (0, 2π). (1.21)

The isotropic distribution implies that all four angles γ, α, φ, ψ are inde-
pendent. The distribution of α, φ, ψ is uniform while the distribution of
γ is P (γ) ∝ sin 2γ.

With this parametrization Eq. (1.19) takes the form

E = cos 2γL cos 2γR+κC sin 2γL sin 2γR cos(φL−ψL−φR+ψR). (1.22)
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V

V

Figure 1.2. The quantum dot of Fig. 1.1 has been replaced by a disordered wire
(dotted rectangle). Although the distribution of transmission eigenvalues is different,
the relation (1.23) between noise correlator and concurrence still applies. This relation
only relies on the isotropy of the eigenvector distribution.

Upon averaging over the angles we find

〈E〉 = 0, 〈E2〉 =
1

9
+

2

9
〈κ2C2〉. (1.23)

The significance of this equation is that it applies generally to 2 × 2
transmission matrices with an isotropic distribution of eigenvectors, even
if the distribution of eigenvalues differs from Eq. (1.8). For example, it
applies to the disordered conductor shown in Fig. 1.2.

6. Bell inequality without tunneling assumption

The Bell parameter E is no longer directly related to the concurrence
C if the transmission probabilities are not small compared to unity [6]:
The relation (1.13) between E and C contains a spurious amplification
factor κ ≥ 1, which approaches unity in the tunneling regime. The same
amplification factor appears in the correlator (1.19). In this section we
show how one can avoid the amplification factor, by calculating the vio-
lation of the Bell inequality without making the tunneling assumption.
The same problem was studied, from a different perspective, in Ref. [9].

As described in Ref. [22], the Bell inequality is formulated in terms
of the correlator Kij of the number of outgoing electrons detected in a
time τ in channel i at the left and channel j at the right:

Kij = τ−2
∫ τ

0
dt

∫ τ

0
dt′ 〈IL,i(t)IR,j(t′)〉

= 〈IL,i〉〈IR,j〉 +

∫ ∞

−∞
dω

2 sin2(ωτ/2)

π(ωτ)2
Cij(ω). (1.24)
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Here Cij(ω) is the frequency dependent correlator of current fluctuations,

Cij(ω) =

∫ ∞

−∞
dt eiωt〈δIL,i(t)δIR,j(0)〉. (1.25)

In the tunneling limit it is possible to neglect the product of averages
〈IL,i〉〈IR,j〉 and retain only the second term in Eq. (1.24), proportional
to the current correlator Cij . Both terms are needed if one is not in the
tunneling limit.

We assume that V is small enough that the energy dependence of the
scattering matrix may be neglected in the range (EF , EF + eV ). (That
requires eV small compared to the mean level spacing of the quantum
dot.) Then the frequency dependence of Cij(ω) is given simply by5

Cij(ω) = Cij(0) ×
{

1 − |h̄ω/eV | if |h̄ω/eV | < 1,
0 if |h̄ω/eV | > 1.

(1.26)

For short detection times τ ≪ h/eV one may take the limit

lim
τ→0

∫ ∞

−∞
dω

2 sin2(ωτ/2)

π(ωτ)2
Cij(ω) =

∫ ∞

−∞

dω

2π
Cij(ω) =

eV

h
Cij(0). (1.27)

In view of Eq. (1.17), the zero-frequency limit of the current correlator
(1.25) is given by

Cij(0) = −(e3V/h)|(rt†)ij |2. (1.28)

The mean outgoing currents are given by 〈IL,i〉 = (e2V/h)(rr†)ii and
〈IR,j〉 = (e2V/h)(tt†)jj. Substitution into Eq. (1.24) gives the short-
detection-time limit

lim
τ→0

Kij = 〈IL,i〉〈IR,j〉 + (eV/h)Cij(0)

= (e2V/h)2
[

(rr†)ii(tt
†)jj − |(rt†)ij |2

]

. (1.29)

We now define the correlator Ẽ in terms of the short-time Kij,

Ẽ =
K11 +K22 −K12 −K21

K11 +K22 +K12 +K21
. (1.30)

Notice that this definition of Ẽ corresponds to definition (1.12) of E if
Kij is replaced by Cij(0). Substitution of Eq. (1.29) leads to

Ẽ = −(1−2|UL,11|2)(1−2|UR,11 |2)−4C ReUL,11U
∗
R,11U

∗
L,12UR,12, (1.31)
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where we have used the parametrization (1.18). Apart from an overall
minus sign, Eq. (1.31) is the same as Eq. (1.19) — but without the factor
κ multiplying the concurrence.

The maximal violation Ẽ of the Bell inequality is defined in the same
way as in Eq. (1.11), with E replaced by Ẽ. The result

Ẽ = 2
√

1 + C2 (1.32)

is the same as Eq. (1.13) — but now without the factor κ.
Since short-time detection experiments are very difficult in the solid

state, the usefulness of Eq. (1.32) is that it allows one to determine the
concurrence using only low-frequency measurements. It generalizes the
result of Ref. [23] to systems that are not in the tunneling regime and
solves a problem posed in Ref. [6] (footnote 24).

7. Conclusion

We have investigated theoretically the production and detection of
entanglement by single-electron chaotic scattering. Much is similar to
the tunneling regime studied earlier [6], but there are some interesting
new aspects:

The degree of entanglement, quantified by the concurrence C, is
sample specific. The sample-to-sample fluctuations become smaller
if time-reversal symmetry is broken, while the average concurrence
is almost unchanged.

The low-frequency current correlator Cij and the Bell parameter
E constructed from it give the concurrence times an amplification
factor κ. In the tunneling regime κ → 1. One also has κ = 1
if the two transmission eigenvalues T1, T2 are equal. The factor
κ can become arbitrarily large if T1 → 1 and T2 → 0 (or vice
versa). On average, the amplification factor in an ensemble of
chaotic quantum dots is about a factor of two.

The bare concurrence, without the amplification factor, is obtained
by adding to the low-frequency current correlator the product of
average currents times h/eV .

The concurrence gives the maximal violation of the Bell inequality
for detection times τ short compared to the coherence time h/eV .
In Ref. [22] the opposite limit τ ≫ h/eV was taken, which is
appropriate in the tunneling regime, but does not allow to violate
the Bell inequality outside of that regime. A similar conclusion
was reached in Ref. [9].
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From an experimental point of view, the missing building block in Fig.
1.1 is the local mixer at the left and right end of the quantum dot. These
mixers are needed to isolate the contribution to the noise correlator that
is due to the concurrence. In optics, a simple rotation of the polarizer
suffices. The electronic analogue is a major challenge.
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Notes

1. The mixers have no effect on the incoming state, because both incoming channels are
either filled or empty at any given energy.

2. The concurrence C of the qubit pair is related to the entanglement of formation F ′ of
the projected state |Ψ′

out
〉 by F ′ = −x logx− (1 − x) log(1 − x) with x = 1

2
+ 1

2

√
1 − C2.

3. The total current in channel i at the left (incoming minus outgoing) is e2V/h− IL,i.

4. In the presence of TRS one has U0 = UT
L

, but this constraint is irrelevant because

anyway U0 drops out of Eq. (1.17).

5. The cross-correlator Cij(ω) vanishes for |h̄ω| > eV because we are correlating only the
outgoing currents; the correlator of incoming plus outgoing currents contains also a voltage-
independent term ∝ |h̄ω|, cf. Ref. [28].
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mat/0307473.

[10] G. B. Lesovik, A. V. Lebedev, and G. Blatter, cond-mat/0310020.

[11] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).

[12] L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M.
Westervelt, and N. S. Wingreen, in Mesoscopic Electron Transport,
edited by L. L. Sohn, L. P. Kouwenhoven, and G. Schön, NATO
ASI Series E345 (Kluwer, Dordrecht, 1997).

[13] Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).

[14] K. Furuya, M. C. Nemes, and G. Q. Pellegrino, Phys. Rev. Lett.
80, 5524 (1998).

[15] P. A. Miller and S. Sarkar, Phys. Rev. E 60, 1542 (1999).

[16] K. Zyczkowski and H.-J. Sommers, J. Phys. A 34, 7111 (2001).

[17] J. N. Bandyopadhyay and A. Lakshminarayan, Phys. Rev. Lett. 89,
060402 (2002).
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