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ABSTRACT

The AI Software Architectures & Algorithms Group at MIT Lincoln Labora-
tory has used Bayes factors (or Bayes t-tests) to measure the similarity between pairs
of datasets that can be modelled as draws from Poisson, binomial, or multinomial
distributions. More recently, similar Bayes factors or t-tests have been obtained to
determine whether a group has merged with or split from another group. It is again
assumed that the available data samples can be modeled with Poisson, binomial,
or multinomial distributions. A motivation for this report is that it has often been
difficult to find desired Bayes factors in the academic literature. This report is in-
tended to provide a repository of the analytical derivations that lead to the Bayes
factors for similarity, merger, or splits for Poisson, binomial, and multinomial dis-
tributions. Simulation results are presented to clarify the strengths and weaknesses
of the derived Bayes factors. Analysis results from the Reddit social networking
site are used to demonstrate the utility of the Poisson similarity and merger Bayes
factors for real-world applications.
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1. INTRODUCTION

This technical report is part of a larger study to detect changes in online social group dy-
namics. The primary question associated with the content of this report is “If a group disbands,
what is the likelihood that group members have reconstituted as a new group or have merged with
another group?” This report describes the derivation and application of likelihood ratios that can
be used to determine that a group has disbanded and merged with a second group by evaluating
the activity levels of the members in the groups before and after a potential merger. Other studies
in the larger project examined the communication content of the members of the groups to detect
changes. The Reddit social networking site was used as the principal real-world data source for
this analysis.

The intent of this report is to document the derivation of the likelihood ratios (Bayes factors
or Bayesian t-tests) for detecting changes in online social groups based upon communication rates
(posting and commenting). This report derives Bayes factors or Bayesian t-tests for three common
probability distribution functions: the Poisson, binomial, and multinomial functions. The Poisson
function is the class of function most applicable to the interests of the overall study: the detection
of merging or splitting of groups based upon the activity levels of the members of the group.
Equations based upon the binomial and multinomial distribution functions were derived in case
future applications are identified for these functions. The equations are generic in that Bayes
factors can be determined for any process that can be modeled with these probabilistic functions
and where the process may undergo mergers or splits.

In addition to the Bayes factors for mergers and splits, Bayes factors have been used to
mesure the similarity between data samples. Derivations are provided for the Poisson, binomial and
multinomial probability density functions. The Bayes factor equations for the similarity measures
can be found in the literature with great difficulty, but the derivations are extremely challenging to
find. This document provides details of the derivations for these Bayes factors to serve as a guide
for researchers that are new to Bayes factors. It should be noted that other equations that may be
found in the literature can differ slightly from the derivations within this report. These differences
are due to different assumptions adopted for likelihood functions and prior probability distributions.
Researchers should evaluate the derivations that they require for their specific applications. The
derivations in this report should simplify the process of deriving new Bayes factors for their specific
assumptions.

The document is structured to provide the equations for different Bayes factors, followed
by a discussion of the implications of the factors. The appendix contains detailed derivations for
each factor. The structure of the appendices is to hierarchically describe the derivation of different
component integrals is a way intended to clarify the overall derivations as much as possible. In
many cases, the integrals are convoluted and care is required to follow the mathematics. The
majority of the derivations are been placed in appendices to spare the casual reader from the
grueling mathematics when their only interest is in the results and not the process.

1
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2. STATE OF THE ART

The history of Bayesian t-tests or Bayes factors is relatively sparse. The traditional frequentist
statistical approach to t-tests as well as other named tests dominates the literature. A challenge
with the literature is that although the test functions are often described, the detailed derivations
are extremely difficult to find. There seems to be an assumption within the research community
that any researcher of reasonable skill should be able to easily reproduce the derivation. This report
provides the details so that other researchers will not have to repeatedly waste their time deriving
Bayes factors and, if unfamiliar with integration, should be able to extend the provided derivations
to new applications with some reasonable amount of effort.

Przyborowski and Wilenski are credited with deriving the first frequentist test for whether
two samples are drawn from the same Poisson distribution [1]. Their approach followed a traditional
frequentist approach to hypothesis testing, whereas in this paper, a Bayesian approach has been
adopted. Their approach involved estimating the probability that the two measurements were
obtained from a Poisson function for the case where an unknown and equivalent mean falls below
a threshold value. In the Bayesian approach, the second hypothesis is that the two samples are
drawn from two different Poisson distributions and that a ratio of the two probabilities can be used
to estimate the likelihood that the samples come from the same distribution.

Harold Jeffreys is generally credited with first defining a Bayesian test statistic for one sample
that was eventually given the name “Bayes factor” [2]. I. J. Good looked at a Bayesian signifi-
cance test for multinomial distributions. The goal was to identify if a multinomial sample was
better described by a non-uniform multinomial distribution or by the null hypothesis of a uniform
distribution across the elements of the multinomial distribution [3]. The task of interest in this
technical report is to determine whether two samples are from the same or different probability
distributions where the distributions are members of the same probability family. It is assumed
that the distribution parameters are unknown and are not of interest, subject to the constraints
that prior probability distributions place on those parameters.

Extensions from a one-sample to a two-sample Bayesian t-test are credited to Gönen et al. [4]
and Rouder et al. [5]. The Bayes factor generally quantifies the relative likelihood of two hypotheses:
H0, which is called the null hypothesis and, for two-sample comparisons, is associated with the
likelihood that both samples are drawn from the same distribution, and H1, which is associated
with the likelihood that the two samples are drawn from different distributions. Bayes factors and
other test statistics are used to determine whether a treatment applied to a given population results
in a change in the characteristics of the treated population. Examples include drug trials, sociology
experiments, and disease studies. The ratio is selected to be p (H1) /p (H0) because the interest is
in the change. Gronau, et al. call for more adoption of Bayes factors or Bayesian two-sample t-tests
for data analysis [6]. In this report, the interest is in determining whether two samples are from
the same distribution or two different distributions, so the inverse ratio p (H0) /p (H1) is adopted.
The multiplicative inverse of Bayes factors may be required to compare with the equations in other
papers.

3



A number of different papers on either Bayes factors or two-sample Bayesian t-tests can be
found in the literature. Gronau et al. provide a good overview of the two-sample Bayesian t-test
papers [6]. Gönen et al. [4] primarily focus on t-tests for normally distributed samples. Sides et
al. provide the Bayes factor for two samples drawn from Poisson distributions [7]. Zhao and Tang
provide the Bayes factor equations for two samples drawn from binomial distributions [8]. This
report does not provide any details on the Bayes factors for normally distributed data, but does
provide details on the extension from binomial to multinomial distributions. Other papers related
to Bayes factors and two-sample Bayesian t-tests include Jeffreys [9], Etz and Wagenmakers [10],
and Rouder et al. [5], among others. Zhao et al. focus on determining required sample sizes to
obtain a selected level of confidence with binomial experiments [8]. Sides [11] and Sides et al. [7]
similarly focus on determining required sample sizes for both Poisson and binomial experiments.

A point to note is that some of the prior literature describes equations that rely on derived
statistics, like various t statistics that are obtained from data samples, along with the number of
counts N , and the number of degrees of freedom ν, to estimate Bayes factors or t-test values. The
methods that are derived here directly use the counts to estimate Bayes factors instead of secondary
t statistics.

A second point to note is that different choices for prior probability distributions for the
statistical parameters in the likelihood density functions will result in different Bayes factors. This
analysis selects conjugate priors for the likelihood functions. There are discussions in the literature
as to which prior probabilities are appropriate for different situations and possible problems with
various choices for prior probability. These discussions are not considered in this report. It is
possible that in the future, these arguments may be considered as part of a follow-on evaluation of
the validity of different prior probability distribution functions for estimating Bayes factors.

Section 5 compares some of the derived Bayes factors with other similarity and distance
measures. There is a vast literature dedicated to different similarity and distance measures that
cannot be covered here. Sung-Hyuk Cha provides a comprehensive survey of distance/similarity
measures between probability density functions [12]. Cha defines a hierarchy of distance/similarity
functions grouped into nine families. The first eight families are the Lp Minkowski family, the
L1 family, the intersection family, the inner product family, the fidelity or squared-chord family,
the squared L2 or χ2 family, the Shannon entropy family, and the combinations family. The
combinations family are measures that are combinations from the first seven families. Cha proposes
a ninth family, the vicissitude family, with a list of six additional measures that do not previously
appear in the literature and are extensions of measures from the other families based upon syntactic
relationships between measures. Overall, Cha lists 62 different measures distributed across the nine
families. The analysis of the relationships between the different measures is somewhat limited. The
probabilistic log likelihood scores proposed in this report do not fit neatly into any of the families
that Cha defines. An additional tenth family may be required for these probabilistic measures.

The similarity/distance measures adopted for the analysis in this report include the dot
product (inner product family), Euclidean distance (Minkowski family), Manhattan or city block
distance (Minkowski family), Canberra distance (L1 family), Jaccard similarity (inner product
family), and Bray-Curtis dissimilarity which is directly related to the Sorensen similarity measure

4



(L1 family), and cosine similarity (inner product family). A comprehensive comparison between the
probabilistic similarity scores and the 48 measures would be interesting, but beyond the resources
that are available for this project.

5
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3. BAYES FACTORS FOR GROUP SIMILARITY

The equations for Bayes factors or two-sample Bayesian t-tests for the similarity of pairs of
samples has been determined by others for the Poisson, binomial, and multinomial distributions.
These results are repeated here because they can be difficult to find in the statistics literature. This
is usually because they are often of secondary interest to the main research theme of these papers.
If found, the results of the derivations are usually provided without a detailed description of how
the equations were obtained.

3.1 THE BAYES FACTOR FOR A POISSON SIMILARITY TEST

An overview of the derivation of the Bayes factor for two sample counts, nA and nB, that are
either drawn from the same Poisson distributions or two different Poisson distributions is provided
here. The Poisson distribution function is

p (n|λ) =
λne−λ

Γ (n+ 1)
, (1)

where n is the sample count and λ is the Poisson function parameter that is both the mean and
standard deviation. The conjugate prior distribution for the Poisson distribution is the gamma
distribution function,

p (λ|α, β) =
βαλα−1e−βλ

Γ (α)
, (2)

which is different from the gamma function, notated as Γ (x). The parameters for the conjugate
prior distribution are α, which is the shape parameter, and β, which is the rate parameter.

The posterior probability for two samples of counts, nA and nB, being generated by the same
Poisson generator is

p (H0|nA, nB) =
1

Z

∫ ∞
0

p (nA|λ) p (nB|λ) p (λ|α, β) dλ. (3)

It is assumed here that the time periods for collecting the counts are the same. The posterior
probability that the two samples are generated by different Poisson generators is

p (H1|nA, nB) =
1

Z

∫ ∞
0

p (nA|λA) p (λA|α, β) dλA

∫ ∞
0

p (nB|λB) p (λB|α, β) dλB. (4)

Appendix A.1 provides the detailed derivation of the Poisson likelihood ratio function, which leads
to

R =
p (H0|nA, nB)

p (H1|nA, nB)
=

ρS (1 + β)(nA+nB+2α) Γ (nA + nB + α) Γ (α)

ρS̄β
α (2 + β)(nA+nB+α) Γ (nA + α) Γ (nB + α)

. (5)

The numerator is the hypothesis that the two samples are drawn from the same Poisson distribution,
and the denominator is the hypothesis that the two distributions are drawn from two different
Poisson distributions. The prior probabilities for similar or different generators are ρS and ρS̄ . For
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this derivation, a common conjugate prior distribution has been assumed for all Poisson generators.
It is possible that the hypothesis that different generators produce the two samples could also
assume different prior knowledge about the likely values for the Poisson rates, λ. This extension
has not been derived.

If the two samples are collected for different durations, then corrections are required to the
ratio to account for the relative collection times. The ratio is now given as

R =
ρS (rA + β)(nA+α) (rB + β)(nB+α) Γ (nA + nB + α) Γ (α)

ρS̄β
α (rA + rB + β)(nA+nB+α) Γ (nA + α) Γ (nB + α)

. (6)

This function assumes that the conjugate prior rate variable, λ, is valid for a standard collection
period. The collection period for sample nA is scaled by rA with respect to the standard time
period. A similar scale factor, rB, is adopted for sample nB. Appendix A.1.1 provides the detailed
derivation for the Poisson likelihood ratio function, scaled for different sample durations. The rate
variable, λ, is a variable of integration and does not appear in the likelihood ratio test, but the
relative scales between the sample periods and the default prior period still appear in the Bayes
factor.

3.2 BAYES FACTORS FOR MULTINOMIAL AND BINOMIAL SIMILARITY

The Bayes factor for two vectors of counts for a canonical set, dddA and dddB, can be obtained in
a similar manner to the Bayes factors for Poisson distributions. The binomial distribution can be
treated as a multinomial distribution with two dimensions. The multinomial distribution is

p (ddd|qqq) =
Γ
((∑k

i=1 dddi

)
+ 1
)

∏k
i=1 Γ (dddi + 1)

k∏
i=1

qqqdddii , (7)

where dddi are the sample counts and qqqi the probabilities for the i categories.

The conjugate prior probability distribution for the multinomial distribution is the Dirichlet
distribution,

p (qqq|ααα) =
Γ
(∑k

i=1αααi

)
∏k
i=1 Γ (αααi)

k∏
i=1

qqqαααi−1
i , (8)

where αααi are the prior parameters for the i categories.

Appendix A.2 provides the detailed derivation for both the multinomial and binomial simi-
larity likelihood ratio function. The derivation results in

R =
p (H0|dddA, dddB)

p (H1|dddA, dddB)
=
ρSB′ (dddA + dddB +ααα) B′ (ααα)

ρS̄B′ (dddA +ααα) B′ (dddB +ααα)
, (9)

where a generalized beta function is defined as

B′ (µµµ) =

∏k
i=1 Γ (µµµi)

Γ
(∑k

i=1µµµi

) . (10)
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Unlike the ratio test for the Poisson distributions, the duration of sample collection does not have
to be the same because the ratio test is not sensitive to differences in total counts, but only to how
the counts are distributed across the different elements of the categorical set. It is still the case
that increases in the total counts improve the sensitivity of the likelihood ratio test.

The binomial Bayes factor can be directly obtained from Equation 9 by using two-dimensional
vectors for the counts dddA and dddB.
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4. BAYES FACTORS FOR GROUP MERGERS AND SPLITS

Although Bayes factors for similarity tests can be found in the statistics literature (with
some difficulty), no similar functions have been found for determining if two groups have merged
or an initial group has split into two independent subgroups. It is possible that this document is
the first description of functions for detecting group mergers or splits through Bayes factors. The
motivation for this work is that social media sites, like Reddit, contain groups that may occasionally
be removed or disperse for a variety of reasons. Statistical measures would be useful to determine
whether a group has dispersed or has simply combined with another group to continue the same
activities. If a removed group simply forms a new group, the previously described Bayes factor
similarity functions can be used to detect this case.

Because the merge-split Bayes factors are independent of time, the same factors apply to
both mergers and splits. Three samples are required for the merge-split Bayes factors presented
in this paper: two samples from the independent groups and one sample that is possibly from a
combined group or one of the two independent groups. As was the case with the Bayes factors used
to measure two-sample similarity, the merge-split Bayes factors samples are assumed to consist of
measures of activity levels of the members in the groups.

This paper describes two models that have been used to derive Bayes factors. Both models
assume that there are two time periods. For mergers, two independent group are assumed to exist
at the first time period. One of the groups no longer exists at the end of this time period and the
identity of the terminated group is known. The members of the terminated group are assumed to 1)
have merged en masse with the other group or 2) dispersed across other groups. The derived Bayes
factors only evaluate whether the terminated group has or has not combined with the potential
destination group.

The first and simpler model assumes that there are generators that produce activity statistics
for the two groups at the first time period. This model assumed that the generator parameters
of the two initial groups do not change between the two time periods. The model for the merger
hypothesis assumes that the generator for the group activity statistics at the second time period is
a combination of the generators for the two individual groups prior to the merger. The hypothesis
of no merger assumes that the generator for the potential destination group at the second time
period is unchanged from the first time period. It is assumed that the terminated group and the
potential destination group are distinguishable. In this second hypothesis, there is no generator for
the terminated group during the second time period.

The second and more complex model assumes that there is a probability that the generator
parameters for the users in the potential destination group may have changed between the two
time periods. This second model has four hypotheses, whereas the first model only has two:
hypothesis 1) the terminated group has merged with the destination group, which has not changed
behavior; hypothesis 2) the terminated group has merged with the destination group, which has
changed behavior; hypothesis 3) the terminated group has disbanded and the destination group has
not changed behavior; and hypothesis 4) the terminated group has disappeared and the destination
group has changed behavior. All hypotheses assume that the generator parameters for the members
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of the terminated group have not changed; otherwise mergers and splits would not be detectable.
This Bayes factor requires prior probabilities for the four hypotheses so that a merger test function
can be derived. These prior probabilities are set based upon the likelihood that the potential
destination group may have changed behavior. The Bayes factor for this model uses a numerator
constructed from the sum of hypotheses 1) and 2) and a denominator constructed from the sum
of hypotheses 3) and 4). The Bayes factor for the first model can be produced from the second
model by only using hypotheses 1) and 3) for the merger test. This second model was created
because the analysis of Reddit data showed that subreddits change activity levels over time and
that explicitly accounting for possible activity changes could lead to better detection of mergers.
Results will show that although the more complex model appears to operate correctly, the results
as applied to Reddit data were not fully satisfactory.

One may note that an assumption associated with the derivations is that all time periods are
of identical duration for both models. No work has been performed to handle the more general case
where the before and after time periods are different, or even the extreme case where the sampling
periods are all different. There may be some applications of the Poisson process models where this
could be relevant. The binomial and multinomial process models are insensitive to different time
periods, as stated previously. This extension for the Poisson process model could be produced if a
need ever arises.

4.1 THE BAYES FACTOR FOR POISSON MERGERS

The first merger scenario examined is one where the generators for the number of events are
Poisson distributions. For the scenarios of interest, the assumption is that the counts of member
activities follow a Poisson distribution. This assumption makes it possible to obtain analytical
solutions for the likelihood ratio functions.

With regard to community activity levels, the derivations presented here are for the case
where the activity level samples are from a single individual. It is further assumed that the Bayes
factor can be calculated for each individual and the individual factors combined to get an overall
Bayes factor for group merger. This requires an assumption that the activity of each individual is
statistically independent of all the other users, even though this assumption would not be expected
to hold for social activities, especially given that users’ social activities trigger additional social
activity from other users, which then spur other users to participate. Because this is new research,
the independence assumption will be adopted, with the anticipation that the overall Bayes factors
for merger can still give a reasonable indication of the likelihood of a merger or split.

It is common practice to estimate the log of Bayes factors. This provides better numerical
precision in comparison to straight probability ratios. Many mathematics packages, like MATLAB,
contain specific log probability functions, like gammaln() in MATLAB. The product of Bayes
factors then becomes a sum of log Bayes factors. The derivations in this report will neglect the
use of logarithms, although it is anticipated that actual implementations will take advantage of the
numerical stability that this provides.
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4.1.1 Poisson Mergers with Consistent Generators

The Bayes factor for the model where the potential destination group remains unchanged
before and after a potential merger is of the form

RP2 =
p (dB, dS , dR|GB, GS , GB & GS) p (GB, GS , GB & GS)

p (dB, dS , dR|GB, GS , GS) p (GB, GS , GS)
, (11)

where dB, dS , and dR, are the counts for a user in the terminated, potential destination, and the
resultant groups. The variables GB and GS represent the Poisson generators for the terminated
group and the potential destination group. At this stage, it is assumed that the destination group
members do not change behaviors after the merger. The hypothesis for the numerator is for
merger and the hypothesis for the denominator is against merger. The numerator indicates that
the resultant group is a combination of the generators of the original terminated group and the
potential destination group. The combination of Poisson distributions is simple in that the new
rate λ is a sum of the constituent rates.

The notation can be compressed with the following replacements:

ρMS =p (GB, GS , GB & GS) ,

ρM̄S =p (GB, GS , GS) ,

pMS =p (dB, dS , dR|GB, GS , GB & GS) ,

pM̄S =p (dB, dS , dR|GB, GS , GS) .

(12)

Then
RP2 =

ρMS pMS

ρM̄S pM̄S

. (13)

Appendix B.1 contains the detailed derivation that eventually produced the likelihood ratio
equation for Poisson distributions with consistent generators:

RP2 =
ρMS

ρM̄S

Γ (dS + αS) Γ (dB + dS + dR + αB + αS)

Γ (dB + dS + αB + αS) Γ (dS + dR + αS)

(
1 + βB
2 + βB

)dB+αB

×

2F1

(
dB + αB,−dR; dB + dS + αB + αS ;

(
βB − βS
2 + βB

))
.

(14)

The parameters αB and αS are the prior distribution shape parameters for the terminated (banned)
group and the potential destination group both before and after the potential merger. The param-
eters βB and βS are the prior distribution rate parameters for the same groups. The function 2F1

is the Gaussian (or ordinary) hypergeometric function.

If the prior rate parameters βB and βS are equal, the hypergeometric function 2F1 drops out
of the equation because 2F1 (a, b; c; 0) = 1,

RP2,β =
ρMS

ρM̄S

Γ (dS + αS) Γ (dB + dS + dR + αB + αS)

Γ (dB + dS + αB + αS) Γ (dS + dR + αS)

(
1 + β

2 + β

)dB+αB

. (15)
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4.1.2 Poisson Mergers with the Potential for Changes in Generators

While analyzing the behavior of Equation 14, there was a desire to be able to handle the more
general case where the users in the destination group may have changed their behavior between time
periods, regardless of the influence of new members from a terminated group. Although additional
prior information is required in terms of the likelihood that groups will change behavior over time,
the Bayes factor for this second model could be useful in certain environments. For the case where
the potential destination group may change behavior, two additional hypotheses are required. The
two additional prior probabilities are ρMS̄ and ρM̄S̄ ; the prior probability that there has been a
merger and the potential destination group has changed behavior and the prior probability of no
merger and a change in the potential destination group’s behavior.

Additional notations can be defined for the cases where the generator changes for the potential
destination group after the potential merger point,

pMS̄ =p
(
dB, dS , dR|GB, GS , GB & G′S

)
,

pM̄S̄ =p
(
dB, dS , dR|GB, GS , G′S

)
,

(16)

where the prime superscript indicates the changed generator. The generator for the banned user
is assumed to remain the same. The ratio for merged versus not merged with the four different
hypotheses is

RP4 =
ρMS pMS + ρMS̄ pMS̄

ρM̄S pM̄S + ρM̄S̄ pM̄S̄

. (17)

Because the generator may change between the two time periods, two additional prior pa-
rameters are added for the changed generator. The scale parameter for the post-possible merger
generator is αR and the rate parameter is βR.

The detailed derivations are found in Appendix B.1, and especially Appendix B.1.2. The
likelihood ratio for the model where the potential destination group may have changed behavior
after a potential merger is much more complicated. It is easier to list the equations for the contri-
butions to RP4 instead of the full equation. The first term for merger with a consistent destination
generator is given by

pMS = (2 + βB)−(dB+αB) (2 + βS)−(dS+dR+αS)×
Γ (dS + αS) Γ (dB + dS + dR + αB + αS)

Γ (dB + dS + αB + αS)
×

2F1

(
dB + αB,−dR; dB + dS + αB + αS ;

(
βB − βS
2 + βB

))
.

(18)

The second term for merger with a changed destination generator is

pMS̄ = (2 + βB)−(dB+αB) (1 + βS)−(dS+αS) βαRR (1 + βR)−(dR+αR)×
Γ (dS + αS) Γ (dB + dR + αB + αR)

Γ (dB + αB + αR)
×

2F1

(
dB + αB,−dR; dB + αB + αR;

(
βB − βR + 1

2 + βB

))
.

(19)
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The third term for no merger with a consistent destination generator is

pM̄S = (1 + βB)−(dB+αB) (2 + βS)−(dS+dR+αS) Γ (dS + dR + αS) . (20)

The fourth term for no merger with a changed destination generator is

pM̄S̄ = (1 + βB)−(dB+αB) (1 + βS)−(dS+αS) βαRR (1 + βR)−(dR+αR)×
Γ (dS + αS) Γ (dR + αR)

Γ (αR)
.

(21)

Terms that are common to all four equations have been removed from the equivalent equations in
the appendix. It may be noted that although the consistent model had the 2F1 term in pMS equal
to 1 when βB = βS , the same simplification does not occur for the probability of merger with a
different generator, pMS̄ .

4.2 BAYES FACTOR FOR BINOMIAL MERGERS

Although the Poisson distributions were of the most interest for the research team’s applica-
tions, the Bayes factors for binomial and multinomial distributions of categorical count data were
also derived. Examples of where this might be useful would be when user activity volumes can be
placed into different categories, such as different discussion topics. An example from Reddit might
a subreddit that connects buyers and sellers. The items under sale can be placed into different
categories and the volume of sales measured across the categories on a day-by-day or week-by-week
basis. For group mergers and splits, this could indicate that the same types of sales are being
conducted before and after a merger, irrespective of overall volume of sales.

Although the derivation for the similarity between sample counts for binomial and multino-
mial distributions was previously combined into one derivation, the derivations in this section are
significantly more challenging and complex. The derivations are kept separate in an attempt to
improve clarity of exposition.

The binomial and multinomial functions estimate the probability of obtaining vectors of
counts over a set of elements, given a probability vector that describes their distribution over a set
of categories. For these equations, the variables dddB, dddS , and dddR are vectors of counts across a set of
elements. The total number of counts are nB, nS , and nR. The subscript B is for the terminated
(or banned) group, S is for the potential destination group before the possible merger, and R for
the potential destination group after the possible merger.

4.2.1 Binomial Merger Bayes Factor with Consistent Generators

For the binomial functions, the d• symbols represent the integer counts for first element of
the two-element vectors, ddd•. The n variables contain the sums over the two-element sets. The
second terms of the two-element sets appear as n− d• in the following equations.

Appendix B.3 provides the detailed derivation of the binomial merger Bayes factor for both
models. The likelihood ratio function for binomial mergers with a consistent generator for the
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potential destination group both before and after the potential merger is of the general form of
Equation 13. The two likelihood terms are

p′MS =

dR∑
t=0

1

Γ (dR − t+ 1)
×

nR−dR∑
u=0

(−1)uB (nS − dS + βS , dS + αS + t+ u)×

nR−dR−u∑
v=0

(−1)vB (nB − dB + βB, dB + αB + dR − t+ v)×

B (dR − t+ v + αγ , t+ u+ βγ)

Γ (v + 1) Γ (nR − dR − u− v + 1)B (αγ , βγ)
,

p′M̄S =
B (dS + dR + αS , nS − dS + nR − dR + βS)B (dB + αB, nB − dB + βB)

Γ (dR + 1) Γ (nR − dR + 1)
.

(22)

The two terms are primarily composed of gamma functions and binomial functions. The likelihood
of merger p′MS is a triply nested sum, with summation indices t, u, and v. The sums involve
various combinations of the counts for the resulting destination group: dR and nR. When these
numbers are large, there will be many terms for p′MS and numerical precision may become difficult
to maintain. The αγ and βγ variables are the prior probability mixing parameters for the merged
distribution. For the case where these prior parameter values are 1, the prior distribution on the
mixing between the combined distributions is equivalent to a uniform distribution.

The Bayes factor is constructed from these terms with an equation in the form of Equation 13.

4.2.2 Binomial Merger Bayes Factor with the Potential Changes in Generators

For the cases where the generator for the potential destination group may change, the Bayes
factor is of the general form of Equation 17. The additional likelihood terms for the cases where
the destination generator may change are

p′MS̄ =
B (dS + αS , nS − dS + βS)

B (αR, βR)

dR∑
t=0

1

Γ (dR − t+ 1)

nR−dR∑
u=0

(−1)uB (βR, αR + t+ u)×

nR−dR−u∑
v=0

(−1)vB (nB − dB + βB, dB + αB + dR − t+ v)×

B (dR − t+ v + αγ , t+ u+ βγ)

Γ (v + 1) Γ (nR − dR − u− v + 1)B (αγ , βγ)
,

p′M̄S̄ =
B (dS + αS , nS − dS + βS)B (dB + αB, nB − dB + βB)

B (αR, βR) Γ (dR + 1) Γ (nR − dR + 1)
×

B (dR + αR, nR − dR + βR) .

(23)
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Again, the merger term contains a triply nested sum involving the counts for the resultant group,
dR and nR. A common term, Γ (nR + 1), appears in all four terms for the binomial likelihood ratio
and cancels. It has been removed from these four equations.

4.3 MULTINOMIAL MERGER BAYES FACTOR

The multinomial merger Bayes factor is even more complex than the binomial merger Bayes
factor. As was described previously, the counts are now over a set of k categorical variables.
Although the binomial Bayes factor contains terms that are triply nested sums over the count of
occurrences for one of two categories, the multinomial ratio function will have a set of k − 1 triply
nested sums, for a total of 3k− 3 nested sums. These sums are over the resultant vector of counts,
with the counts for the last category mingled across the other nested sums.

As for the Poisson and binomial Bayes factors, two models have been derived: one with two
terms and consistent generators, and one with four terms and the possibility that the destination
group sample was generated with a different generator after the potential merger. Equations 13
and 17 are the general equations for the two models.

Instead of presenting pairs of terms, as was done for the Poisson and binomial derivations, all
four terms will be presented for the multinomial derivation. The appropriate terms can be selected
to produce the Bayes factor for the desired model.

Appendix B.4 provides the detailed derivations of the multinomial merger Bayes factor terms.
The first term is

pMS =

dddRk−1∑
tk−1=0

dddRk∑
uk−1=0

dddRk−uk−1∑
vk−1=0

( dddRk−2∑
tk−2=0

dddRk−uk−1−vk−1∑
uk−2=0

dddRk−uk−1−vk−1−uk−2∑
vk−2=0

(
×

· · ·
( dddR1∑
t1=0

dddRk−(
∑k−1
r=2 ur+vr)∑
u1=0

dddRk−(
∑k−1
r=2 ur+vr)−u1∑
v1=0

×

([
(−1)

∑k−1
r=1 ur+vr

] B (∑k−1
r=1 dddRr − tr + vr + αγ1 ,

∑k−1
r=1 tr + ur + αγ2

)
B (αγ1 , αγ2)

×

Γ (dddBk +αααBk)
∏k−1
q=1 Γ

(
dddBq +αααBq + dddRq − tq + vq

)
Γ
(
dddBk +αααBk +

(∑k−1
q=1 dddBq +αααBq + dddRq − tq + vq

))×
Γ (dddSk +αααSk)

∏k−1
r=1 Γ (dddSr +αααSr + tr + ur)

Γ
(
dddSk +αααSk +

∑k−1
r=1 dddSr +αααSr + tr + ur

)×
[
k−1∏
r=1

Γ (dddRr + 1)

Γ (dddRr − tr + 1)

]
Γ (dddRk + 1)

Γ
(
dddRk −

(∑k−1
q=1 uq + vq

)
+ 1
)∏k−1

r=1 Γ (vr + 1)

))
· · ·
))

.

(24)
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The second term is

pMS =

∏k
i=1 Γ (dddBi +αααBi)

Γ
(∑k

j=1 dddBi +αααBi

) ∏k
i=1 Γ (dddSi + dddRi +αααSi)

Γ
(∑k

j=1 dddSi + dddRi +αααSi

) . (25)

The third term is

pMS =
Γ
(∑k

i=1αααRi

)
∏k
i=1 Γ (αααRi)

∏k
i=1 Γ (dddSi +αααSi)

Γ
(∑k

j=1 dddSj +αααSj

)
dddRk−1∑
tk−1=0

dddRk∑
uk−1=0

dddRk−uk−1∑
vk−1=0

( dddRk−2∑
tk−2=0

dddRk−uk−1−vk−1∑
uk−2=0

dddRk−uk−1−vk−1−uk−2∑
vk−2=0

(
×

· · ·
( dddR1∑
t1=0

dddRk−(
∑k−1
r=2 ur+vr)∑
u1=0

dddRk−(
∑k−1
r=2 ur+vr)−u1∑
v1=0

×

([
(−1)

∑k−1
r=1 ur+vr

] B (∑k−1
r=1 dddRr −mr + vr + αγ1 ,

∑k−1
r=1 tr + ur + αγ2

)
B (αγ1 , αγ2)

×

Γ (dddBk +αααBk)
∏k−1
q=1 Γ

(
dddBq +αααBq + dddRq −mq + vq

)
Γ
(
dddBk +αααBk +

(∑k−1
q=1 dddBq +αααBq + dddRq − tq + vq

)) Γ (αααRk)
∏k−1
r=1 Γ (αααRr + tr + ur)

Γ
(
αααRk +

∑k−1
r=1 αααRr + tr + ur

)×
[
k−1∏
r=1

Γ (dddRr + 1)

Γ (dddRr − tr + 1)

]
Γ (dddRk + 1)

Γ
(
dddRk −

(∑k−1
q=1 uq + vq

)
+ 1
)∏k−1

r=1 Γ (vr + 1)

))
· · ·
))

.

(26)

The fourth term is

pMS =
Γ
(∑k

i=1αααRi

)
∏k
i=1 Γ (αααRi)

∏k
i=1 Γ (dddBi +αααBi)

Γ
(∑k

j=1 dddBi +αααBi

) ∏k
i=1 Γ (dddSi +αααSi)

Γ
(∑k

j=1 dddSi +αααSi

) ∏k
i=1 Γ (dddRi +αααRi)

Γ
(∑k

j=1 dddRi +αααRi

) . (27)

The nested summation can become quite deep as the number of categories k becomes large.
Note the “· · · ” ellipses in Equations 24 and 26 indicate the general depth of nesting. These func-
tions are likely to prove extremely difficult to numerically calculate, especially because the (−1)
terms cause a summation where additional terms partially cancel during evaluation. There may
be specific cases where these functions can be calculated with reasonable accuracy. These could be
useful for evaluating numerical integration results for those applications that try to avoid analytical
integration.

The Bayes factor would be constructed from these terms with an equation in the form of
Equation 17.
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5. RESULTS FROM SIMULATIONS

5.1 SIMULATIONS TO TEST SIMILARITY METRICS

5.1.1 Simulations of Poisson Similarity Tests

Figure 1 shows the simulation results where two samples are drawn from the same Poisson
generator function for a range of mean values, as indicated on the x-axis. A set of 10, 000 pairs
of samples was drawn and tested with the Poisson log likelihood ratio test of Equation 6. The
probability of a correct decision is ≈ 99% by the point that the mean is 10 counts.

Figure 2 shows simulation results where samples are drawn from different Poisson generators
over a range of mean values. The 3D plot shows the two mean values with the x- and y-axes, and
the approximate probability that two samples will be declared to be from the same generator with
the z-axis. The x- and y-axis data are plotted with log units. As before, 10, 000 pairs of samples
were drawn for each pair of means to estimate the probability of declaring that two samples are
from the same generator. It can be seen that there is a ridge of high probability for the cases
where the two means are close to each other. For example, for means of ≈ 100 and ≈ 500, the
probability of declaring the two samples as being from different generators is ≈ 0.001. In the
absence of additional information, there are ranges in the pairs of sample counts where the Poisson
log likelihood ratio test will have a high probability for selecting the decision that the samples are
from the same generator. Although simulations provide useful information on what models are
doing, care has to be exercised in interpreting simulations in those cases where the analyst has
more information than the models—such as the true values for the means.

5.1.2 Comparison of Poisson Similarity to Euclidean Distances

To illustrate the accuracy of the Poisson similarity measure of Equation 6, a comparison was
made to Euclidean distance measures. For the simulated data, Manhattan and Chebyshev distances
are equivalent, because the data are of a single dimension. Other set-based distance measures are
not appropriate for this analysis.

The simulated data were generated by selecting mean distribution values for Poisson dis-
tribution draws from a gamma distribution with a selected set of shape parameters, α, and rate
parameters, β. MATLAB gamma probability distributions use a scale parameter instead of a rate
parameter, and the two are inverses of each other. If using MATLAB, the inverse must be accounted
for. For the simulation, two sets of data were generated with 10,000 sample pairs drawn for each
set. The first set was generated with pairs drawn from the same Poisson distribution, a different
mean was selected for each pair and was drawn from a gamma distribution prior. This composed
the set where the correct decision is that the samples are from the same distribution. A second set
of 10,000 pairs of samples was also generated. This set was composed of pairs where each element
was drawn from a different Poisson distribution function; a different Poisson mean was used for
each measurement with each mean drawn from the same gamma distribution prior. This composed
the set where the correct decision was that the pair were not from the same Poisson distribution.
The two datasets can be used to plot Receiver Operating Characteristics (ROC) curves of the prob-
ability of correct detection versus the probability of false alarm for different decision thresholds.
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ROC curves were drawn for the Poisson similarity measure and the Euclidean distance between
measurement sample counts.

The Poisson similarity measure function was implemented in MATLAB and takes, as input,
the two sample counts, an optional prior probability for similarity, defaulting to 0.5, two optional
gamma prior values for the scale and rate, defaulting to 0.1 for both, and two time duration
scale factors for each sample, measured with respect to the time duration assumed for the prior
distribution. These default to 1.0.

Figure 3 shows the ROC curve where the actual parameters for the gamma distribution
function used to generate Poisson mean values are shape = 1.0 and rate = 10.0, and the presumed
shape and rate parameters are the same for the Poisson similarity measure. The ROC curve for
the Poisson similarity measure dominates the Euclidean distance curve for all possible choices for
probability of false alarm PFA.

Figure 4 shows the case where the Poisson similarity measure uses the prior gamma distribu-
tion parameters, shape = 0.1 and rate = 0.1. In this case, the Poisson similarity measure slightly
underperforms the Euclidean distance in the mid-range of the x-axis while performing slightly
better in the range of low probability of false alarm.

Figure 5 shows the case where the Poisson similarity measure uses the prior gamma distribu-
tion parameters, shape = 1.0 and rate = 1.0. This prior distribution indicates greater confidence
on the likely values for the Poisson means than that plotted in Figure 4. In this case, the Poisson
similarity measure underperforms the Euclidean distance to a much greater degree in the mid-range
of the x-axis, although performing slightly better in the range of low probability of false alarm.
This demonstrates that the selection of parameters for the prior distribution can have a significant
impact on the performance of the Poisson similarity measure. If prior information on likely mean
values are available, then taking advantage of that information will improve performance. If the
priors are overconfident, it will hurt performance.

5.1.3 Simulations of Binomial Similarity Tests

Similar simulations as done for the Poisson similarity measure can be done for the multinomial
similarity measure. Only the binomial case is considered so that the plots are simpler to produce
and analyze. Figure 6 shows the empirical probability of correctly classifying two samples drawn
from the same binomial distribution as a function of total sample size. For this evaluation, 10, 000
draws were made to estimate the probability that pairs of samples were from the same distribution.
The binomial probability distribution vector was set to (0.5, 0.5). The prior probability for the two
samples being from the same distribution was set to 0.5. The Dirichlet prior parameter vector for
the multinomial measure function was set to α = (1, 1). The general trend is that the probability
of correctly determining that two samples are from the same binomial distribution increases with
increasing sample counts, as expected. It can also be seen that there is a saw-tooth structure
to the curve, caused by the quantization of possible counts, which must be integer values. For a
sample size of 1, there is an even chance that the correct decision will be made. More disturbing
is that for samples with a total of two counts, the probability is about 0.37 for making the correct
decision. It is apparently the case that random guessing would produce a better chance of guessing
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correctly. This interpretation is incorrect because the similarity measure does not have access to the
information on the correct binomial probability distribution. This a flaw of this form of analysis,
which will be shortly addressed.

A more appropriate evaluation is to draw the binomial probability distribution from a Dirich-
let prior distribution and evaluate the probability of making the correct decision that the two
samples of binomial counts are drawn from the same generator. Again, 10, 000 draws of sample
pairs were made, but each pair was drawn from a binomial distribution where the probability dis-
tribution was drawn from a Dirichlet distribution. For this specific analysis, the draw was from a
uniform distribution, which was α = (0.5, 0.5). In this case, the probability of making the correct
decision (when the total sample count was 1) was better than random chance. More encouraging
was that the probability of correctly determining that the two-count samples were from the same
binomial distribution was 0.53, which is better than randomly guessing. The saw-tooth pattern due
to quantization of the counts to integer values is still visible. Clearly, better decisions can be made
with larger sample counts. It may be noted that the total counts can be different between the two
sample vectors. The multinomial similarity measure naturally accounts for this. This additional
analysis does not appear in this paper.

A surface plot of the probability for classifying two samples as being drawn from the same
binomial distribution is shown in Figure 8. Again, 10, 000 pairs of samples were drawn to estimate
the empirical probability that two samples were from the same generator. The prior probability
for the decision that the samples were the same was 0.5 and the Dirichlet prior parameter was
α = (0.5, 0.5). The plot shows the probabilities for the first two dimensions of the binomial
probability vectors associated with two different generators, pA (1) and pB (1). The values for pA (2)
and pB (2) are, of course, one minus the plotted values for the corresponding element. As with the
Poisson surface plot in Figure 2, there is a ridge of high probability when the two distributions are
similar.

Figure 9 shows ROC performance curves for the Euclidean distance, cosine distance, and the
multinomial similarity measure. The simulated data were an equal split of sample count vectors
generated from either identical or different binomial distribution functions with 10, 000 samples in
each set. Each sample was generated from a unique binomial distribution drawn from a Dirichlet
prior distribution with the parameter α = (1, 1). The matching set had count vectors drawn from
the same generator. The Manhattan, Chebyshev, and Bray-Curtis distances were also examined.
Although the distance values differed between these three measures, there is a linear relation be-
tween these measures such that these three measures and the Euclidean distance measure produced
the same ROC curves. Only the Euclidean distance ROC curve has been plotted. Note that this
equivalence is due to how the simulated data were generated. Other datasets may not have the
same equivalence between these measures. The figure shows that the binomial similarity measure
and the Euclidean distance measure slightly outperform the cosine distance measure. The binomial
similarity measure slightly outperforms the Euclidean distance measure for high PD.

Figure 10 shows similar ROC performance curves to Figure 9, but with the presumed prior
Dirichlet distribution parameter set to α = (0.1, 0.1). There is some performance loss for the bino-
mial similarity measure, with slightly worse performance than the Euclidean and cosine distance
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curves, although not severe. Figure 11 shows the case where the presumed prior Dirichlet distribu-
tion parameter was set to α = (10, 10). The performance loss is much more significant for this case
than for the other two cases. This is a case where the estimate on the prior distribution is more
confident about the binomial probability distribution than is warranted, demonstrating that it is
better to err on the side of being overly uncertain as opposed to overly confident.

5.2 SIMULATIONS TO TEST MERGER BAYES FACTORS FOR POISSON DIS-
TRIBUTIONS

A selected number of simulations have been executed to examine how the merger measures
perform under a few different cases. Simulations have not been executed for binomial and multi-
nomial merger measures. This is primarily because the main focus of the research was on mergers
for datasets that were best modelled with Poisson distributions instead of binomial and multino-
mial distributions. Whereas the binomial merger measures are not overly complicated to convert
to computer software, the multinomial measure, with nested triple summations, would require a
major effort to convert to computer software and achieve reasonable numerical precision for the
range of possible parameters. This effort will be pursued when a need arises.

A curve for the Poisson merger Bayes factor is shown in Figure 12. This curve was calculated
for the case where the data generator was the same before and after the possible merger. The
prior probability for merger was set at 0.5. The parameters for the gamma distribution prior were
α = 0.01 and β = 0.01. The counts for the two groups before the potential merger was fixed at
10. The counts for the group after the potential merger ranged from 0 to 100 with a step size of 1.
For low values, the probability is that the two groups did not merge, as given by negative values
for the log Bayes factor on the y-axis. The transition occurs at 15 counts and the log Bayes factor
continues to become more positive as the counts for the resultant group continue to increase.

The continual increase in the probability for merger with the consistent generator model can
be problematic for real situations. It is more likely that the destination group has changed behavior
rather than merged with the other group if the activity counts are dramatically larger than the
sum of the counts for the two original groups. The merger measures of Section B.1 were derived to
account for possible changes in the generator before and after the merger event. Figure 13 shows
a curve for a simulation run where there is some probability that the destination group activity
changed after the possible merger event. The prior probabilities for the four cases are 10% for
merger with no generator change, 20% for merger with a generator change, 30% for no merger
with no generator change, and 40% for no merger with a generator change. The parameters for
the gamma distribution prior were α = 0.01 and β = 0.01. The counts for the two groups before
the potential merger was fixed at 10. The counts for the group after potential merger ranged from
0 to 100 with a step size of 1. The log Bayes factor is seen to dramatically increase between the
step from 0 to 1 count, indicating that the probability of merger significantly increases for a single
step, although still very unlikely. This dramatic rise looks to be accurate for the derived equations,
although possibly not representative of real systems. The preferred decision is for no merger until
the destination group has 15 counts, when the probability for merger becomes more likely. The
probability for merger is most likely for a count of 29, where it begins to trend to a lower probability
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for merger. The preferred decision switches toward no merger at a count of 46. The shape of the
curve is influenced by the counts, the prior probability distribution and the parameters of the prior
gamma distribution function. This may be more desirable performance for a scoring function to
detect mergers between groups. However, it requires that the prior parameters be determined from
a meta-analysis or selected to produce the desired behaviors.

The Poisson merger Bayes factor in Section 4.1 contains gamma functions and hypergeometric
functions. The MATLAB implementation of these simulations was plagued by numerical precision
errors for large values. These were quite severe for counts greater than an order of 100 for the
hypergeometric functions. The simulation software was written to use logarithms of the equations
in Section 4.1 to increase numerical precision for the gamma functions. The applicable function in
MATLAB is the gammaln function. The python scipy package appeared to be less susceptible to
precision errors, but would require more study to evaluate its sensitivity. Production software for
these merge-split measures will have to be carefully written and validated to avoid these potential
numerical precision problems.

Figure 14 shows ROC curves for a simulation of the possible merger of two groups containing
randomly selected groups of members from a pool of 100 members. The members were drawn
from the pool using a Dirichlet distribution with the parameter vector α = (6, 50) to randomly
determine if a member belonged to a group. It was possible for a member to belong to both
groups. Activity levels for each member of a group were drawn from a Poisson distribution where
the mean parameter λ for the member was drawn from a gamma distribution function with α = 0.1
and β = 0.01. These parameters result in a mean of 10 counts and a standard deviation of 32 counts
for the Poisson distribution. The simulation generated 1000 runs each for merger and non-merger
datasets. For a merger, the counts for the merged group were generated from the two λ values
used to generate counts for the two initial groups. If a member belonged to both groups, both
λ values were added to generate that member’s activity level. If a member belonged to a single
group, that member’s λ value as used to generate the activity level for the merged group. For the
case of no merger, the λ values of the potential destination group members were used to generate
the counts. The parameters for the Poisson merger measure were set to the following values for
the simulation: the prior probability for merger was set to 0.5, and the prior parameters for all of
the prior gamma distributions for the three groups were set to α = 0.001 and β = 0.001. This was
a more conservative selection than the actual parameters that were selected to generate the count
data, which were α = 0.1 and β = 0.01.

A number of different distance measures were selected to compare with the Bayes factors.
Most of these functions could be invoked with the MATLAB pdist function. These included the
Euclidean, Manhattan, Chebyshev, cosine, and Spearman distances. These distances were calcu-
lated by adding the two prior potential merger groups’ counts and comparing to the post potential
merger group’s counts. The pdist function also provides distance measures for the Jaccard and
Hamming distances. In this case, the counts were converted to binary vectors that indicated which
members were active or inactive. MATLAB functions were also written to calculate the Bray-Curtis
dissimilarity measure and the Canberra distance. The cosine and Spearman distances were prob-
lematic to calculate when all the counts were zero for a group because the measure is undefined for
this case. These cases were eliminated from the estimation of the ROC curves.
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Although many of these measures were undefined for zero counts for a member across all
groups, the Poisson merger Bayes factor provides a slight preference toward indicating merger for
those members of the pool with all zero counts. The Poisson merger measures only included those
members assigned to one or both of the two groups, instead of including all 100 members in the
calculation.

The ROC curves in Figure 14 show that the Poisson merger measure significantly dominates
all the other distance measures examined. The Jaccard and Spearman measures are the next best,
but do not come close to the performance of the Poisson merger measure. Although this is only one
simulation with a given structure for group membership and activity levels, the Poisson equations
are able to apply significantly more available information to detect mergers than the other measures.
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Figure 1. Empirical probability estimates for correctly declaring that two samples are drawn from the same
distribution over a range of Poisson means.
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Figure 2. Empirical probability estimates of similarity for two samples drawn from different Poisson gener-
ators over a range of means.
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Figure 3. The ROC curves compare the performance of the Poisson similarity Bayes factor to the Euclidean
distance measure where Poisson means are drawn from a gamma distribution with shape = 10.0 and rate
= 1.0. The Poisson similarity measure uses a prior gamma distribution shape = 10.0 and a rate = 1.0.
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Figure 4. The ROC curves compare the performance of the Poisson similarity Bayes factor to the Euclidean
distance measure where Poisson means are drawn from a gamma distribution with shape = 10.0 and rate
= 1.0. The Poisson similarity measure uses a prior gamma distribution shape = 0.1 and a rate = 0.1.
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Figure 5. The ROC curves compare the performance of the Poisson similarity Bayes factor to the Euclidean
distance measure where Poisson means are drawn from a gamma distribution with shape = 10.0 and rate
= 1.0. The Poisson similarity measure uses a prior gamma distribution shape = 1.0 and a rate = 0.1.
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Figure 6. The empirical probability of successfully detecting that two sample vectors are drawn from the same
binomial distribution, which was fixed at (0.5, 0.5). The total number of counts for each vector is plotted on
the x-axis.

30



Figure 7. The empirical probability of successfully detecting that two samples are drawn from the same
binomial distribution. The categorical probability distribution for each sample pair was drawn from a Dirichlet
prior with the parameter vector (1, 1). The total number of counts for each vector is plotted on the x-axis.
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Figure 8. The empirical probability estimates for two samples being declared to be drawn from the same
distribution over a range of means for different binomial generators.
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Figure 9. The ROC curves compare the Euclidean, cosine distance, and binomial similarity Bayes factor
for samples drawn equally from the same and different generators. The draws for the binomial probability
distributions were drawn from a Dirichlet distribution with a parameter vector of (1, 1). The prior distribution
vector for the binomial similarity measure was also (1, 1).
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Figure 10. The ROC curves compare the Euclidean, cosine distance, and binomial similarity Bayes factor
for samples drawn equally from the same and different generators. The draws for the binomial probability
distributions were drawn from a Dirichlet distribution with a parameter vector of (1, 1). The presumed prior
Dirichlet distribution vector was (0.1, 0.1).
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Figure 11. The ROC curves compare the Euclidean, cosine distance, and binomial similarity Bayes factor
for samples drawn equally from the same and different generators. The draws for the binomial probability
distributions were drawn from a Dirichlet distribution with a parameter vector of (1, 1). The presumed prior
Dirichlet distribution vector was (10, 10).
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Figure 12. The log Bayes factor curve for Poisson distributions plotted as a function of the counts for the
potential destination group of one member’s activity. The generator function for the potential destination
group is presumed to be the same before and after the possible merger event.
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Figure 13. The log Bayes factor curve for Poisson distributions plotted as a function of the counts for the
potential destination group of one member’s activity. The generator function for the potential destination
group is presumed to potentially change after the possible merger event.
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Figure 14. The ROC curves compare the performance of the Poisson merger Bayes factor and a number of
other commonly used distance measures.
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6. ANALYSIS OF REDDIT DATA

Although the simulation results in Section 5.2 are highly encouraging, application of the
Poisson merger measure to real datasets can provide a much stronger indication of the utility of
this measure. The Reddit social media platform can be used to extract real-world data to search
for changes in posting and commenting behaviors and for mergers between groups (or subreddits).
Although the Reddit administrators are very liberal in regard to what activities are permitted in
subreddits, there are certain activities that can cause subreddits to be banned, such as engaging
in or promoting illegal activities, involuntary pornography, sexual or suggestive content involving
minors, encouraging or inciting violence, and harassment.

The data used in this report include more than 118 million posts created by more than
8 million unique users on Reddit between March 2016 and September 2017, collected from the
archive of Reddit made publicly available on Google BigQuery, omitting known bots and default
subreddits. Bots are computer programs that automatically generate posts and comments; 988 bots
(190 active) were identified by manually inspecting abnormally active users (> 3000 comments per
month) and by scraping /r/botWatcher for recently mentioned bots. Default subreddits (those to
which all users are automatically subscribed upon account creation) are linked at the top of every
Reddit page and are typically among the most active subreddits; 49 default subreddits (as of March
2016) were omitted from this analysis.

6.1 CHANGE DETECTION IN SUBREDDITS

Equation 5 or 6 in Section 3.2 can be used to measure the week-to-week similarity in Reddit
post and comment rates for subreddit members. Equation 5 is appropriate when the time durations
are the same, whereas Equation 6 is required when the time durations are different. These equations
are appropriate for cases where the activity levels can be modelled with Poisson distributions.

Figure 15 shows the results of an analysis of user comment volumes. The subreddits CFB
(focused on college football), nfl (focused on the National Football League), and Patriots (focused
on the NFL Patriots team) were selected for the analysis. The top plot is the overall log Bayes
factor for changes in user comment activity levels from week to week. The log Bayes factors for each
user’s change in posting volumes are calculated individually and then summed to obtain the overall
log Bayes factors. The values for the Patriots log Bayes factors have been scaled by a factor of five
so that the peaks are more noticable. The magnitude of the Patriots log Bayes factors are smaller
because the number of active users is significantly less than that of the other two subreddits.

The second plot is the Euclidean distance between vectors where the elements are user com-
ment volume. Users not actively commenting in a given week are coded as a zero count. The
Euclidean distance between pairs of vectors from week to week is plotted. The third plot uses the
same user activity vectors to plot the cosine distance, 1− cos (θ), between vector pairs. Larger val-
ues indicate a greater difference between the weeks. The fourth plot is the count of the number of
active dataset commented during any given week. The fifth plot is the overall number of comments
for a given week.
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Figure 15. The figure shows the results from an analysis of football associated subreddits: CFB, nfl, and
Patriots. Week-to-week differences are plotted for the overall log Bayes factor, the Euclidean distance, and
the cosine distance as determined from user comment activity levels. Also plotted are the number of active
users and the number of comments posted for each week. The bottom box displays significant events related
to the three subreddits that can be observed in the results.

The last and lowest plot shows the dates of significant events realted to the three highlighted
subreddits that may have influenced activity levels. Most of the significant events can be seen in
the three metrics. The NFL Draft dates are easy to detect for the nfl and Patriots subreddits; the
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NFL draft is irrelevant to college football and is not evident in the CFB subreddit. The seasons are
easy to detect in all measures in the respective subreddits associated with either college football
or NFL football. Significant games can also be seen in the plots, such as the Patriots–Seahawks
and Patriots–Ravens games. Activity changes around the time of Super Bowl LI are seen in both
nfl and Patriots. The Patriots played in the Super Bowl in 2016 and thus caused the significant
activity change in the Patriots subreddit during this event.

The peaks in the cosine distance plots are difficult to discern due to a sensitivity to random
fluctuations. The Euclidean distance scales are different for the three subreddits, making it chal-
lenging to determine what distance would be appropriate for a change detection threshold. The log
Bayes factor plot is much easier to select a threshold for substantial change detection, and it would
be quite possible to select a consistent threshold for the three subreddits, even with the factor of
five scaling for the Patriots Bayes factors.

Any timescale could have been chosen for similarity analysis, from periods of minutes and
hours to weeks, months, and years. As expected, shorter time periods have fewer counts and contain
greater variation due to increased sensitivity to small sample size fluctuations. Longer durations
provide greater sample support and higher accuracy, but will be less sensitive to high frequency,
short duration changes. An advantage that the log Bayes factor provides is that values are closer
to zero when sample support is low. Figure 16 shows day-to-day results over the 2016 college and
NFL football season, similar to the week-to-week analysis in Figure 15. With the higher resolution,
the increased activity during game days can be seen in all three subreddits. It may be noted that
the bye weeks in the Patriots schedule can be seen, both during the regular season and during the
playoffs, although the playoff byes are not noted. It can also be seen that the Super Bowl generates
a significantly greater change in activity levels than the other games. The log Bayes factors for the
Patriots subreddit are again scaled by a factor of five for observability.

The football focused subreddits are fairly well behaved with the log Bayes factors in that
a threshold of zero is reasonable for detecting activity changes. This is not generally true for all
subreddits. There are a population of subreddits involved in trading and selling items. Their user
activity patterns change dramatically from week to week, such that it is rare for two consecutive
weeks to be similar. For example, Figure 17 shows the week-to-week log Bayes factors for activity
changes for the pokemontrades subreddit. The ratio is consistently high across the entire time
period, indicating that user activities are always changing in an extreme fashion. This is primarily
because a user’s interest in trading Pokémon paraphernalia changes dramatically from week to
week. It can be seen that there are two spikes in dissimilarity for the weeks of 1 August 2016
and 21 November 2016. Pokémon Go was released in the summer of 2016, and Pokémon Sun and
Moon were released in November. There was also a special Pokémon Go Thanksgiving event on
23 November 2016 that may have contributed to the dramatic change in activity. Further analysis
has not been conducted.
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Figure 16. Shown are similar results to Figure 15, but for daily differences over the 2016 college and NFL
football season for the subreddits CFB, nfl, and Patriots. Day-to-day differences are plotted for the overall
log Bayes factor, the Euclidean distance, and the cosine distance based upon user comment activity volumes.
Also plotted are the number of active users and number of comments posted for each week. The bottom box
displays significant events related to the three subreddits that can be observed in the results.
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Figure 17. The week-to-week log Bayes factor measures for the subreddit pokemontrades. The dissimilarity is
relatively high because the subreddit functions as a marketplace for trading and selling Pokémon-related items.
This causes a dramatic change in user activities as their interests wax and wane for various Pokémon-related
items.

6.2 DETECTION OF BANNED SUBREDDITS RECONSTITUTING IN OTHER
SUBREDDITS

The merger Bayes factors of Section 4.1 for Poisson distribution functions can be used to
determine whether members of a banned subreddit have either migrated to another subreddit or
created a new subreddit in which to continue their banned activities. For this exercise, it was
assumed that users did not re-register with new accounts in order to obscure their identify. The
dataset consisted of 13 subreddits that were banned between 1 October 2016 and 31 January 2017.
Table 1 lists the banned subreddits and the dates of their banning. Preliminary processing was
used to eliminate all potential destination subreddits for the banned members by requiring that at
least one member from the banned account had commented in the potential destination subreddit
in the week after the banning. The numbers of potential destination subreddits are shown in the
‘Possible Subreddits’ column. The rightmost two columns show the number of subreddits with
log Bayes factor scores above a zero threshold for two cases: the first is where the activities of all
members of the potential destination subreddit are used in the calculations and the second is where
only the activities of members of the banned subreddit are used in the calculations.

The Google BigQuery database was used to extract the daily user activity levels across the
relevant subreddits. Both the post rates and comment rates were studied, but this report only
presents the results for the comment rates, which were more informative than the results from post
rate data. Using the banning date for a subreddit in Table 1, the last recorded comment date for
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the banned subreddit was determined with a database query. The total number of comments were
extracted for each user for the week before the last comment date. The last comment date was
often a few weeks before the banning date because the BigQuery repository only scrapes Reddit
posts and comments every few weeks. This causes the database to often miss the final weeks of
activity for banned or deleted subreddits. This characteristic of the repository made the analysis
somewhat problematic.

After extracting the total comment counts for individual users over the last week of available
data, the viable destination subreddits were processed to extract similar one-week user comment
counts. Two sets were extracted for each of these subreddits: the activity levels for the same
week where comments for the banned subreddit data were available, and the activity levels of the
members of the potential destination subreddit for one week after the banning. These three vectors
were used to estimate the likelihood of merger as well as to calculate differences with other distance
or similarity measures.

The merger log Bayes factors were calculated for all pairs of banned subreddits and poten-
tial destination subreddits using the equations of Section 4.1. The Bayes factors were calculated
individually for each user, based upon their activity counts in the three datasets. If a user was
not active in a subreddit for a given time period, the activity count was set to zero. The overall
merger Bayes factor score was the sum of the merger Bayes factor scores for all users. This assumed
that user activities were not correlated. Clearly, this is unlikely to be true for social networks, but
the hope is that any biases on the overall scores would be small enough so that the most likely
subreddits involved in possible mergers with banned subreddits could still be identified.

The prior probability values for the log Bayes factor functions were set to α = 0.001 and
β = 0.001 for the gamma distribution function. A uniform distribution was chosen for the prior
probability for merger. A threshold of zero was selected as the threshold for consideration as a
possible destination for the banned members.

Two different analyses were run. The first analysis constructed activity vectors from all the
users who were active in a potential destination subreddit. The Bayes factor tests were found to be
sensitive to the inclusion of large numbers of users in very active subreddits with high fluctuations
in activity levels. A second analysis was performed that constructed the activity vectors using
only the members of the banned subreddit in the banned subbreddit and in a potential destination
subreddit.

Table 1 shows the number of subreddits with merger Bayes factors above the zero threshold
for both types of user activity vectors. When all members of a potential destination subreddit were
used, a larger fraction of the merger scores were above the zero threshold. It is possible to raise the
threshold to reduce the number of subreddits that were selected as possible merger targets and that
an analyst would be required to review, if desired. The second analysis, where only banned users
are included, resulted in a significantly higher rejection of subreddits when using a zero threshold.
In most cases, no matches were found for a threshold of zero on the merger Bayes factor. Only
top10gifts and whathappensonsnapchat had scores above threshold for this reduced dataset. It is
very likely that shifts in the activity patterns of the members in the potential destination subreddit
caused the higher acceptance fraction in the first analysis.
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TABLE 1

A Selection of Banned Subreddits from October 2016 Through January 2017 with
Counts of Possible Destination Subreddits Based Upon Two Different Threshold

Limits

Subreddit Name Date Banned Possible Above Above
Subreddits Threshold Threshold

(All) (Banned)

candid 15 Dec 2016 128 113 0
hotwife cuckold 01 Jan 2017 215 123 0
houstonr4r 07 Oct 2016 49 48 0
idg0d 30 Sep 2016 25 19 0
idgod 01 Oct 2016 50 32 0
leftwithsharpedge 15 Dec 2016 431 302 0
nsfwshoops 07 Dec 2016 37 32 0
pedofriends 20 Dec 2016 929 201 0
pharmacyreviews 11 Jan 2017 217 139 0
publichealthwatch 06 Nov 2016 490 236 0
rawcelebs 01 Jan 2016 377 253 0
top10gifts 21 Jan 2017 80 76 35
whathappensonsnapchat 15 Jan 2017 101 79 1

The top10gifts subreddit had a sizable number of potential subreddits above threshold. Ta-
ble 2 shows the comment activity of the users from the banned subreddit top10gifts and a list of
the top five possible subreddit destinations. Only Abdul Marx and DianeBcurious were active in
these five subreddits, and the log Bayes factors correlate with the number of comments. None of
the users from the banned subreddits were active at all in the top five possible subreddits during
the last week of available data for the banned subreddit. Given this more in-depth look, as well
a more detailed look at whathappensonshapchat, it is highly unlikely that any of the 13 banned
subreddits reconstituted in another subreddit.

6.2.1 Comparison of the Poisson Merger Bayes Factor to Other Measures

A comparison can be made between the Poisson Bayes factor merger score results and a
number of other distance measures to get a better sense of how well the Bayes factor scores perform
with respect to other common similarity and distance measures. The user activity levels were
represented as vectors, as in the previous subsection. This means that other similarity and distance
measures such as the dot product, Euclidean distance, Manhattan distance, Canberra distance,
and cosine distance can also be used to detect mergers. Two different methods were developed for
detecting mergers with these measures. For generalization purposes, it can be assumed that the
function S (−→x ,−→y ) is a general representation function for similarity (distance) measures between
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TABLE 2

The Number of Comments and Overall Log Bayes Factors for the Five Most Likely
Destination Subreddits for top10gifts After Banning
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Abdul Marx 1 7 0 0 3 2
DianeBcurious 1 0 5 4 0 0
Tommybundy6745 1 0 0 0 0 0
cmg232 1 0 0 0 0 0

Scores - 6.08 5.75 5.52 5.24 4.83

vectors. If the similarity (distance) between a banned subreddit vector and the ‘after’ subreddit
vector is greater (less) than the similarity (distance) between a banned subreddit vector and the
‘before’ subreddit vector, then there is a possibility of a merger. The notation used in the following
descriptions are that b represents the banned subreddit, B represents the potential destination
subreddit before banning, and A represents the potential destination subreddit after banning.

The second comparison of similarity (distance) vectors is performed with a combined vector
that is composed of the banned subreddit vector and the ‘before’ subreddit vector. The notation to
represent this combined vector is ‘C’. This second comparison looks to see if the similarity (distance)
between the C vector and the A vector is greater (less) than the similarity (distance) between the
B vector and the A vector. If so, then it is possible that a merger may have occurred.

The first merger detection metric is defined to be

SMa

(−→
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−→
A
)

= S
(−→
b ,
−→
A
)
− S

(−→
b ,
−→
B
)
, (28)

where SMa is a similarity (distance) measure. The second merger detection metric is similar to the
first. The equation is

SMb
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A second class of similarity measures consists of set measures. The activity vectors can
be converted to sets of active users. These measures include Jaccard similarity and Bray-Curtis
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TABLE 3

Selected Measures of Distance and Similarity

Vector Distances

Euclidean Distance dE

(−→a ,−→b ) =
(∑

i (ai − bi)2
)1/2

Manhattan Distance dM

(−→a ,−→b ) =
∑

i (ai − bi)

Canberra Distance dC

(−→a ,−→b ) =
∑

i

∣∣∣−→a i−−→b i∣∣∣
|−→a i|+

∣∣∣−→b i∣∣∣
Dot Product Similarity sD

(−→a ,−→b ) =
∑

i aibi

Cosine Similarity sC

(−→a ,−→b ) =
sD

(−→a ,−→b )
dE(−→a ,−→a )dE

(−→
b ,
−→
b
)

Set Similarities

Jaccard Similarity sJ ({a} , {b}) = |{a}|∩|{b}|
|{a}|∪|{b}|

Bray-Curtis Dissimilarity dBC ({a} , {b}) = 1− |{a}|∩|{b}||{a}|+|{b}|

dissimilarity. The activity levels do not factor into the calculation of these measures and only take
into account membership.

Table 3 provides a general outline of the formulas used to estimate the selected measures for
the comparison to the merger Bayes factor scores. Because differences are used to detect mergers,
a zero threshold can be used with the difference calculations, as with Bayes factors.

Figures 18 through 32 show the histograms of differences between pairs of similarities or
distances for the top10gifts banned subreddit. Figures 18 through 24 show the results for the case
that all users’ activity levels are used to construct the activity vectors. Figures 26 through 32 show
the results where the activity vectors are constructed from only the activities of the users who
are active in the banned subreddit during the last week of stored data within the database. The
histograms on the left side of the figures show the differences between the banned vector and the
‘after’ vector versus the banned vector and the ‘before’ vector. The histograms on the right side
of the figures show the differences between the combined vector and the ‘after’ vector versus the
‘before’ and ‘after’ vector.

Figures 18 through 24 have been included for completeness. Although the dot product dis-
tance measures are similar between the use of the full activity vectors versus the vectors including
only users from the banned subreddits, the other common distance and similarity measures show
greater differences and generally better results with the vectors that only use the banned subreddit
members’ activity levels. The merger Bayes factor score histograms are also different between the
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two analyses, which are plotted in Figures 25 and 33. Most of the following discussion focuses on
the figures where the activity vectors only include the banned subreddit members.

Figures 26 and 27 show the histograms for the Euclidean and Manhattan distance measures.
The distribution shows that there are a few subreddits with high difference values, and these are
presumed to be the most likely subreddits out of the 80 subreddits to have merged with top10gifts.

Figure 28 has peaks in the histograms at the ends of the range for the banned vector com-
parison. The Canberra distance is relatively insensitive to activity level differences between many
of the subreddits. The expectation is that the Canberra distance decreased if there was a merger.
The comparison involving the combined vector shows that the Canberra distance always increased,
so no mergers would be indicated for this case.

Figure 29 shows the histograms for the dot product similarity measure. There is a nice range
of distributions, with a few having large positive similarity differences. It is also insensitive to the
inclusion of other user activities in the vectors for the potential destination subreddit.

Figure 30 shows the histograms for the cosine similarity measure. There are only a few peaks
in the histogram. This is because the number of members in the banned subreddit are so low that
there is little to distinguish the similarities between potential destination subreddits. In many cases,
the magnitude of some vectors is zero, which precludes the calculation of a cosine. The algorithm
was written to return a value of −1 in these instances. These values have not been excluded from
the histograms and are the cause of large negative values. This measure performs poorly when
the number of users is low. The same problem can be seen with the Jaccard similarity difference
histograms in Figure 31. The Bray-Curtis dissimilarity difference histograms in Figure 32 has the
same problem, although there are more small peaks across the histogram, but the end peaks are
still dominant. Although results look somewhat better for the same measures with the activity
vectors for all users, the cosine, Jaccard, and Bray-Curtis measures still show some of the same
problems (see Figures 22, 23, and 24).

Table 4 summarizes the counts of potential destination subreddits with similarity differences
above a zero threshold for top10gifts. Although this report does not contain figures that show
results for the similarity analysis where all subreddit user activities were included in the activity
vectors, Table 4 contains a summary of this analysis in the second and third columns. The fourth
and fifth columns summarize the results of a similarity analysis restricted to the activity of the
members of the banned subreddit. Columns two and four show the counts for the comparison of
measures between the banned and the ‘after’ vectors versus the banned and the ‘before’ vectors.
Columns three and five show the counts for the comparison of measures between the combined and
the ‘after’ vector versus the ‘before’ and the ‘after’ vector. The acceptance rates for the merger log
Bayes factors are shown at the bottom of the table. The merger Bayes factor appears to be sensitive
to the inclusion of all subreddit user activity, most likely due to fluctuations in the potential group
members’ activity levels. With the restriction to consider only banned user activity, its performance
is similar to many of the other measures.

Tables 5 and 6 show the top five possible destination subreddits for the different distance
and similarity measures for both versions of calculating scores for merger, as given by Equations 28
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Figure 18. Histograms of the Euclidean distance differences for the subreddits potentially merged with
top10gifts. The activity vectors include all subreddit members. Plot (a) is the difference between the 1)
distance between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is the
difference between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the
distance between the ‘before’ and ‘after’ vector.
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Figure 19. Histograms of the Manhattan distance differences for the subreddits potentially merged with
top10gifts. The activity vectors include all subreddit members. Plot (a) is the difference between the 1)
distance between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is the
difference between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the
distance between the ‘before’ and ‘after’ vector.
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Figure 20. Histograms of the Canberra distance differences for the subreddits potentially merged with
top10gifts. The activity vectors include all subreddit members. Plot (a) is the difference between the 1)
distance between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is the
difference between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the
distance between the ‘before’ and ‘after’ vector.
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Figure 21. Histograms of the dot product similarity differences for the subreddits potentially merged with
top10gifts. The activity vectors include all subreddit members. Plot (a) is the difference between the 1)
distance between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is the
difference between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the
distance between the ‘before’ and ‘after’ vector.
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Figure 22. Histograms of the cosine similarity differences for the subreddits potentially merged with top10gifts.
The activity vectors include all subreddit members. Plot (a) is the difference between the 1) distance between
the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is the difference between
3) the distance between the combined activity vector and the ‘after’ vector and 4) the distance between the
‘before’ and ‘after’ vector.
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Figure 23. Histograms of the Jaccard similarity differences for the subreddits potentially merged with
top10gifts. The activity vectors include all subreddit members. Plot (a) is the difference between the 1)
distance between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is the
difference between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the
distance between the ‘before’ and ‘after’ vector.
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Figure 24. Histograms of the Bray-Curtis dissimilarity differences for the subreddits potentially merged with
top10gifts. The activity vectors include all subreddit members. Plot (a) is the difference between the 1)
distance between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is the
difference between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the
distance between the ‘before’ and ‘after’ vector.
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Figure 25. A histogram of the merger log Bayes factors for the subreddits that potentially merged with
top10gifts. The activity vectors include all subreddit members.
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Figure 26. Histograms of the Euclidean distance differences for the subreddits potentially merged with
top10gifts. The activity vectors only include banned subreddit members. Plot (a) is the difference between
the 1) distance between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is
the difference between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the
distance between the ‘before’ and ‘after’ vector.
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Figure 27. Histograms of the Manhattan distance differences for the subreddits potentially merged with
top10gifts. The activity vectors only include banned subreddit members. Plot (a) is the difference between
the 1) distance between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is
the difference between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the
distance between the ‘before’ and ‘after’ vector.
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Figure 28. Histograms of the Canberra distance differences for the subreddits potentially merged with
top10gifts. The activity vectors only include banned subreddit members. Plot (a) is the difference between
the 1) distance between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is
the difference between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the
distance between the ‘before’ and ‘after’ vector.
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Figure 29. Histograms of the dot product similarity differences for the subreddits potentially merged with
top10gifts. The activity vectors only include banned subreddit members. Plot (a) is the difference between
the 1) distance between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is
the difference between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the
distance between the ‘before’ and ‘after’ vector.
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Figure 30. Histograms of the cosine similarity differences for the subreddits potentially merged with top10gifts.
The activity vectors only include banned subreddit members. Plot (a) is the difference between the 1) distance
between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is the difference
between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the distance between
the ‘before’ and ‘after’ vector.
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Figure 31. Histograms of the Jaccard similarity differences for the subreddits potentially merged with
top10gifts. The activity vectors only include banned subreddit members. Plot (a) is the difference between
the 1) distance between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is
the difference between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the
distance between the ‘before’ and ‘after’ vector.
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Figure 32. Histograms of the Bray-Curtis dissimilarity differences for the subreddits potentially merged with
top10gifts. The activity vectors only include banned subreddit members. Plot (a) is the difference between
the 1) distance between the ‘banned’ and ‘before’ vectors and 2) the ‘banned’ and ‘after’ vectors. Plot (b) is
the difference between 3) the distance between the combined activity vector and the ‘after’ vector and 4) the
distance between the ‘before’ and ‘after’ vector.
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Figure 33. A histogram of the merger log Bayes factors for the subreddits that potentially merged with
top10gifts. The activity vectors only include banned subreddit members.
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TABLE 4

The Number of Subreddits with Similarity (Distance) Metric Differences Above
(Below) a Threshold of Zero for top10gifts

Measure Counts (out of 80)
All SR users Banned SR users

BA - bB cA - BA BA - bB cA - BA

Euclidean Distance 40 6 36 6
Manhattan Distance 30 0 36 0
Canberra Distance 36 0 38 0
Dot Product 37 44 37 44
Cosine Similarity 38 33 35 35
Jaccard Similarity 37 35 35 35
Bray-Curtis Dissimilarity 36 36 38 36

bBA bBA

Merger Bayes Factor Score 76 35

and 29. Table 5 shows the list for the case where all user activity data were included in the potential
destination subreddit vectors, and Table 6 shows the results where only the activity data for the
banned user list are extracted for the potential destination subreddit vectors.

A comparison between the two tables shows that both dot product calculations produced
the same top-five list, although the lists from the banned to before and after evaluation and the
combined evaluation are different. These measures are relatively immune to changes in activity
levels for other members. The other measures are much more sensitive to the destination subreddit
activity for other users. There is also some sensitivity to subreddits with large volumes of user
activity, like nba, nfl, and The Donald.

If it is assumed that the top-five lists in Table 6 (where only the users from the banned
subreddit are considered) are more meaningful than the lists in Table 5, then examination of
Table 6 shows that the Canberra distance lists, the Jaccard similarity lists, and the Bray-Curtis
dissimilarity lists are very similar. The subreddits asstastic, BarronBro, and boston rank in similar
order for all six lists. The Canberra distance lists and the Bray-Curtis lists are identical, even
though one measure relies on activity levels and the other only considers memberships. Only the
Canberra distance, the Jaccard distance, and the Bray-Curtis dissimilarity top-five lists are the
same between the similarity measure for the banned activity to the before and after activities and
the similarity measure for the combined activity and the before activity to the after activity. The
other measures have different top-five lists between the two calculations. It should be noted that
differences can be found in rank ordering further down the lists beyond what is shown in Table 6,
meaning that the tables do not prove that different measures are equivalent.
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The top-five lists for the cosine and Jaccard similarity measures that are determined from
the activity vectors that include only the banned subbreddit members are not very meaningful. As
can be seen in Figures 30 and 23, there are large peaks for the maximum values. The top-five list
has many ties, and the top five are primarily determined by alphabetical order.

An examination of the top-five lists for the merger Bayes factor score show that the measure
is sensitive to the activity levels of users who are not from the banned subreddit. Better results
might have been obtained if data were available for the banned subreddits up to the date of the
banning. It might also be possible to obtain better results by drawing the ‘before’ activity data from
potential destination subreddits for the week before the banning, with the hope that the subreddit
will not have evolved as dramatically in its activity levels. One benefit from the merger Bayes factor
score is that it is less sensitive to fluctuations in counts between low user activity levels and high
user activity levels, unlike the dot product, cosine similarity, Euclidean distance, and Manhattan
distances. In examining Table 6, facepalm, magicTCG, and Aquariums should be examined to see
whether users from the banned subreddit have moved their activities to these subreddits.

A more in-depth evaluation of the Reddit merger data has been conducted, but is not pre-
sented in this report. The results are that the subreddits that were banned during the period from
1 October 2016 to 31 January 2017 do not appear to have moved their activities to other subreddits.
For the most part, it looks like those members that remained active after the banning indepen-
dently moved to other subreddits to conduct different activities. These more detailed analyses are
not presented here because the main purpose of the analysis was to determine whether Bayes factors
could be used to detect subreddit mergers, and the length of the report is close to excessive. The
results are not conclusive because of the missing weeks of activity data for the banned subreddits.
Results might be more encouraging if these data were available. However, it does look like the
Bayes factors can find and rank subreddits that may have mergers, as can be seen with Table 2. A
consideration for the use of Bayes factors should be whether the system to be evaluated matches
the generative merger models in this paper, which include Poisson, binomial, and multinomial dis-
tributions. It may be noted that only the Poisson model has been fully developed. Further work
would be required to complete software development and validate computational stability for the
binomial and multinomial Bayes factors.
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7. SUMMARY

In summary, this report documents the analytical derivation of Bayes factors for a number of
different models associated with detecting similarity, mergers, and splits between groups. Although
some of the equations for probabilistic similarity measures are available in the literature, the detailed
derivations that describe those equations are often extremely difficult to find. This technical report
attempts to document these derivations so that in the future researchers will not have to take the
equations on faith or spend valuable time figuring out how to derive the equations for themselves.
In addition, this technical report derives Bayes factors for detecting mergers and splits between
datasets. No descriptions of these factors have been found in the open literature and the derivations
are believed to be original. The detailed derivations are again provided so that researchers do not
have to repeat the work. In the unfortunate case where errors may have occurred in the derivations
or typesetting, researchers will have an easier time identifying and correcting those errors.
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APPENDIX A: DERIVATION OF BAYES FACTORS TO TEST THE
SIMILARITY OF DISTRIBUTIONS

This section contains the detailed derivations of Bayes factors that test if two samples are
drawn from the same or different probability distribution functions.

A.1 POISSON SIMILARITIES

The posterior probability for two samples of counts, nA and nB, being generated by the same
Poisson generator is

p (H0|nA, nB) =
1

Z

∫ ∞
0

p (nA|λ) p (nB|λ) p (λ|α, β) dλ. (A.1)

It is assumed that the time periods for collecting the counts are the same. The posterior probability
for the case where two samples are generated by different Poisson generators is

p (H1|nA, nB) =
1

Z

∫ ∞
0

p (nA|λA) p (λA|α, β) dλA

∫ ∞
0

p (nB|λB) p (λB|α, β) dλB. (A.2)

The parameter Z is a normalization term that can be neglected for the Bayes factor because it will
cancel. The Bayes factor is

R =

∫∞
0 p (nA|λ) p (nB|λ) p (λ|α, β) dλ∫∞

0 p (nA|λA) p (λA|α, β) dλA
∫∞

0 p (nB|λB) p (λB|α, β) dλB
. (A.3)

The integral in the numerator expands to

p (H0|nA, nB) =
1

Z

∫ ∞
0

λnAe−λ

Γ (nA + 1)

λnBe−λ

Γ (nB + 1)

βαλα−1e−βλ

Γ (α)
dλ, (A.4)

where the Poisson distribution functions and the gamma distribution function have been inserted.

Terms are collected together to give

p (H0|nA, nB) =
βα

ZΓ (nA + 1)Γ (nB + 1) Γ (α)

∫ ∞
0

λnA+nB+α−1e−(2+β)λdλ. (A.5)

Use Gradshteyn and Ryzhik integral 3.381.4 [13]∫ ∞
0

xν−1e−µxdx = µ−νΓ (ν) , (A.6)

to get

p (H0|nA, nB) =
βα (2 + β)−(nA+nB+α) Γ (nA + nB + α)

ZΓ (nA + 1)Γ (nB + 1) Γ (α)
. (A.7)

The probability for two samples being generated from two different Poisson distributions is

p (H1|nA, nB) =
1

Z

∫ ∞
0

p (nA|λA) p (λA|α, β) dλA

∫ ∞
0

p (nB|λB) p (λB|α, β) dλB. (A.8)
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It is possible to keep the prior probability distribution parameters unique, but most applications
of the equation will adopt the assumption that the prior knowledge about the two distributions is
the same. Inserting the probability density functions results in

p (H1|nA, nB) =
1

Z

∫ ∞
0

λnAA e−λA

Γ (nA + 1)

βαλα−1
A e−βλA

Γ (α)
dλA

∫ ∞
0

λnBB e−λB

Γ (nB + 1)

βαλα−1
B e−βλB

Γ (α)
dλB. (A.9)

Collecting terms leads to

p (H1|nA, nB) =
β2α

ZΓ (nA + 1) Γ (nB + 1) (Γ (α))2

∫ ∞
0

λnA+α−1
A e−(1+β)λAdλA×∫ ∞

0
λnB+α−1
B e−(1+β)λBdλB.

(A.10)

Again, use Gradshteyn and Ryzhik integral 3.381.4 [13] to get

p (H1|nA, nB) =
β2α (1 + β)−(nA+α) Γ (nA + α) (1 + β)−(nB+α) Γ (nB + α)

ZΓ (nA + 1) Γ (nB + 1) (Γ (α))2 . (A.11)

Collect terms to get

p (H1|nA, nB) =
β2α (1 + β)−(nA+nB+2α) Γ (nA + α) Γ (nB + α)

ZΓ (nA + 1) Γ (nB + 1) (Γ (α))2 . (A.12)

The ratio function of Equation A.3 is then

R =

βα(2+β)−(nA+nB+α)Γ(nA+nB+α)
ZΓ(nA+1)Γ(nB+1)Γ(α)

β2α(1+β)−(nA+nB+2α)Γ(nA+α)Γ(nB+α)

ZΓ(nA+1)Γ(nB+1)(Γ(α))2

. (A.13)

Cancel common terms in numerators and denominators to get

R =
(2 + β)−(nA+nB+α) Γ (nA + nB + α) Γ (α)

βα (1 + β)−(nA+nB+2α) Γ (nA + α) Γ (nB + α)
. (A.14)

Invert negative exponents to get the final equation,

R =
(1 + β)(nA+nB+2α) Γ (nA + nB + α) Γ (α)

βα (2 + β)(nA+nB+α) Γ (nA + α) Γ (nB + α)
. (A.15)

A.1.1 Poisson Likelihood Ratios for Different Time Periods

If the time periods are different for collecting the samples, the mathematics becomes just
slightly more complicated. The rate λ can be defined as the expected number of counts in a given
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time period. The nature of the Poisson distribution means that the variable λ can be scaled by the
ratio between the time span of the collected sample and a reference time span.

p (n|rλ) =
(rλ)n e−rλ

Γ (n+ 1)
. (A.16)

The conjugate prior parameters α and β are defined with respect to the reference time period. The
integrals in Section A.1 can be repeated with a scale factor r for the time periods. The integral
from Equation A.1 is revised to

p (H0|nA, nB) =
βα (rA + rB + β)−(nA+nB+α) Γ (nA + nB + α)

ZΓ (nA + 1)Γ (nB + 1) Γ (α)
(A.17)

and the integral in Equation A.12 to

p (H1|nA, nB) =
β2α (rA + β)−(nA+α) (rB + β)−(nB+α) Γ (nA + α) Γ (nB + α)

ZΓ (nA + 1) Γ (nB + 1) (Γ (α))2 . (A.18)

The ratio in Equation A.15 is revised to

R =
(rA + β)(nA+α) (rB + β)(nB+α) Γ (nA + nB + α) Γ (α)

βα (rA + rB + β)(nA+nB+α) Γ (nA + α) Γ (nB + α)
. (A.19)

A.2 BINOMIAL AND MULTINOMIAL SIMILARITIES

The derivation for both the binomial and multinomial simiilarity measures are related, so
that derivation for the multinomial distribution naturally produces an equation for the binomial
distribution. As before, the two hypotheses are that the two data samples are from the same
generator or from two different generators. The probability for a single generator producing two
samples is given by the integral

p (H0|dddA, dddB) =
1

Z

∫
p (dddA|qqq) p (dddB|qqq) p (qqq|ααα) dΘ, (A.20)

where ddd are the vectors of counts for the two samples, Z is a normalization term for the integrals
for the two hypotheses, and Θ is the probability simplex for the probability vector qqq. The vector ααα
is the parameter vector for the prior probability function.

The integral for the second hypothesis with two generators is

p (H1|dddA, dddB) =
1

Z

∫
p (dddA|qqqA) p (qqqA|ααα) dΘA

∫
p (dddB|qqqB) p (qqqB|ααα) dΘB. (A.21)

The normalization term can be neglected because we will be interested in a ratio test and the term
will cancel. The Bayes factor can then be written as

R =

∫
p (dddA|qqq) p (dddB|qqq) p (qqq|ααα) dΘ∫

p (dddA|qqqA) p (qqqA|ααα) dΘA

∫
p (dddB|qqqB) p (qqqB|ααα) dΘB

. (A.22)
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As noted previously, the equation can be enhanced to include unique prior probabilities for the two
hypotheses, but this extension will not be derived.

The integral for the numerator will be derived in detail. The solutions to the two integrals in
the denominator follow directly from the first integral.

I0 =

∫ Γ
((∑k

i=1 dddAi

)
+ 1
)

∏k
i=1 Γ (dddAi + 1)

k∏
i=1

qqqdddAii

Γ
((∑k

i=1 dddBi

)
+ 1
)

∏k
i=1 Γ (dddBi + 1)

k∏
i=1

qqqdddBii

×
Γ
(∑k

i=1αααi

)
∏k
i=1 Γ (αααi)

k∏
i=1

qqqαααi−1
i

 dΘ.

(A.23)

The Γ functions can be moved outside the integral and the exponents collected. Details on the
simplex integral limits Θ can be expanded now.

I0 =
Γ
((∑k

i=1 dddAi

)
+ 1
)

∏k
i=1 Γ (dddAi + 1)

Γ
((∑k

i=1 dddBi

)
+ 1
)

∏k
i=1 Γ (dddBi + 1)

Γ
(∑k

i=1αααi

)
∏k−1
i=1 Γ (αααi)

×

∫ 1

0

∫ 1−qqq1

0
· · ·
∫ 1−

∑k−2
i=1 qqqi

0

k−1∏
i=1

qqqdddAi+dddBi+αααi−1
i qqqdddAk+dddBk+αααk−1

k dqqq1dqqq2 · · · dqqqk−1.

(A.24)

The sum of qqqi must equal 1, so the final dimension qqqk has a single fixed value equal to 1−
∑k−1

i=1 qqqi
and is effectively a delta function at this value. The Γ functions will be ignored for now as we work
through the integrals. Integration over the probability simplex space Θ is then a series of upper
limits on each term that is one minus the values of the previously listed simplex dimensions.

I0.1 =

∫ 1

0

∫ 1−qqq1

0
· · ·
∫ 1−

∑k−3
i=1 qqqi

0

k−2∏
i=1

qqqdddAi+dddBi+αααi−1
i ×

∫ 1−
∑k−2
i=1 qqqi

0
qqq
dddA,k−1+dddB,k−1+αααk−1−1
k−1

(
1−

k−2∑
i=1

qqqi − qqqk−1

)dddA,k+dddB,k+αααk−1

dqqq1dqqq2 · · · dqqqk−2dqqqk−1.

(A.25)

The analytic solution to the innermost integral is 3.191.1 in Gradshteyn and Ryzhik [13]:∫ u

0
xν−1 (u− x)µ−1 dx = uµ+ν−1B (µ, ν) ; [Reµ > 0,Reν > 0] , (A.26)

where B is the beta function,

B (µ, ν) =
Γ (µ) Γ (ν)

Γ (µ+ ν)
. (A.27)

The solution to the innermost integral results in

I0.1 =

∫ 1

0

∫ 1−qqq1

0
· · ·
∫ 1−

∑k−3
i=1 qqqi

0

k−2∏
i=1

qqqdddAi+dddBi+αααi−1
i

(
1−

k−2∑
i=1

qqqi

)(
∑k
i=k−1 dddAi+dddBi+αααi)−1

×

B (dddA,k + dddB,k +αααk, dddA,k−1 + dddB,k−1 +αααk−1) dqqq1dqqq2 · · · dqqqk−2.

(A.28)
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The qqqk−2 terms can be explicitly extracted from the summations to perform the next integral,
which is of a similar form to the integral in A.25,

I0.1 =B (dddA,k + dddB,k +αααk, dddA,k−1 + dddB,k−1 +αααk−1)

∫ 1

0

∫ 1−qqq1

0
· · ·
∫ 1−

∑k−3
i=1 qqqi

0

k−3∏
i=1

qqqdddAi+dddBi+αααi−1
i ×

qqq
dddA,k−2+dddB,k−2+αααk−2−1
k−2

(
1−

k−3∑
i=1

qqqi − qqqk−2

)(
∑k
i=k−1 dddA,i+dddB,i+αααi)−1

dqqq1dqqq2 · · · dqqqk−2.

(A.29)

This integral produces another beta function with the first term being a summation over the counts
and prior parameters from the probability dimensions that have already been integrated and the
second term being the sum of the count and prior parameter for the most recently integrated
dimension.

I0.1 =B (dddA,k + dddB,k +αααk, dddA,k−1 + dddB,k−1 +αααk−1)×

B

((
k∑

i=k−1

dddA,i + dddB,i +αααi

)
, dddA,k−2 + dddB,k−2 +αααk−2

)
∫ 1

0

∫ 1−qqq1

0
· · ·
∫ 1−

∑k−4
i=1 qqqi

0

k−4∏
i=1

qqqdddAi+dddBi+αααi−1
i × qqqdddA,k−3+dddB,k−3+αααk−3−1

k−3

(
1−

k−4∑
i=1

qqqi − qqqk−3

)(
∑k
i=k−2 dddA,i+dddB,i+αααi)−1

dqqq1dqqq2 · · · dqqqk−3.

. (A.30)

The remaining integrals produce additional beta functions with the same general form so that full
integral results in

I0.1 =
k−1∏
i=1

B

 k∑
j=i+1

(dA,j + dddB,j +αααj) , dddA,i + dddB,i +αααi

 . (A.31)

Various pairs of Γ functions cancel when the product of beta functions are expanded into Γ functions,
resulting in

I0.1 =

∏k
i=1 Γ (dddA,i + dddB,i +αααi)

Γ
(∑k

i=1 dddA,i + dddB,i +αααi

) . (A.32)

The integrals for the other hypothesis of separate generators produce similar equations, except
that it is a product of two independent terms, one for each dataset. It is possible to have different
prior parameters ααα for each integral, but it has been assumed here that the same prior parameters

67



are used for each integral. The ratio then becomes

R =

Γ((
∑k
i=1 dddAi)+1)∏k

i=1 Γ(dddAi+1)

Γ((
∑k
i=1 dddBi)+1)∏k

i=1 Γ(dddBi+1)

Γ(
∑k
i=1αααi)∏k

i=1 Γ(αααi)

∏k
i=1 Γ(dddAi+dddBi+αααi)

Γ(
∑k
i=1 dddAi+dddBi+αααi)

Γ((
∑k
i=1 dddAi)+1)∏k

i=1 Γ(dddA,i+1)
Γ(
∑k
i=1αααi)∏k

i=1 Γ(αααi)

∏k
i=1 Γ(dddAi+αααi)

Γ(
∑k
i=1 dddA,i+αααi)

× Γ((
∑k
i=1 dddBi)+1)∏k

i=1 Γ(dddBi+1)

Γ(
∑k
i=1αααi)∏k

i=1 Γ(αααi)

∏k
i=1 Γ(dddBi+αααi)

Γ(
∑k
i=1 dddBi+αααi)

. (A.33)

Cancel common terms in numerators and denominators to get

R =

∏k
i=1 Γ(dddAi+dddBi+αααi)

Γ(
∑k
i=1 dddAi+dddBi+αααi)∏k

i=1 Γ(dddAi+αααi)

Γ(
∑k
i=1 dddAi+αααi)

∏k
i=1 Γ(dddBi+αααi)

Γ(
∑k
i=1 dddBi+αααi)

Γ(
∑k
i=1αααi)∏k

i=1 Γ(αααi)

. (A.34)

Reduce to a single division to get

R =

∏k
i=1 Γ (dddAi + dddBi +αααi)Γ

(∑k
i=1 dddAi +αααi

)
Γ
(∑k

i=1 dddBi +αααi

)∏k
i=1 Γ (αααi)

Γ
(∑k

i=1 dddAi + dddBi +αααi

)∏k
i=1 Γ (dddAi +αααi)

∏k
i=1 Γ (dddBi +αααi)Γ

(∑k
i=1αααi

) . (A.35)

If the beta function can be generalized to the function

B′ (µµµ) =

∏k
i=1 Γ (µµµi)

Γ
(∑k

i=1µµµi

) , (A.36)

then the Bayes factor can be written as

R =
B′ (dddA + dddB +ααα) B′ (ααα)

B′ (dddA +ααα) B′ (dddB +ααα)
, (A.37)

where the variables within the beta functions are assumed to be similarly sized vectors. The Bayes
factor for the binomial distribution is the specific case where the number of categories k is 2.
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APPENDIX B: SPLIT/MERGER BAYES FACTORS DERIVATIONS

This section contains detailed derivations for the Bayes factors that can be used to determine
whether samples may be drawn from merged or split distribution functions.

The specific problem that is examined is the case that there are two groups with activity levels
that can be interpreted as having been generated by combined or individual generative models.
The scenario is that at a moment in time, one of the groups ceases to exist, as indicated by the
subscript B for ‘banned.’ The second group that the banned group may have potentially merged
with is indicated by the subscript S. After the potential merger, the second group is represented
by the subscript R. The samples for the post-ban group are either drawn from a generator for the
original group S, or are drawn from a combination of the generators for B and S. The specific form
of the resultant generator depends on the statistical functions selected to represent the distribution
of measurements.

The main question is whether the activity of the first group has moved to another group.
The measurements for the banned group, potential source group, and the resultant group are dB,
dS , and dR. The generators for the banned and potential source groups are represented by GB and
GS , where the actual parameters depend upon the nature of the generative model. The resultant
generator is represented as GB & GS if the groups have merged, and by GS if the banned group no
longer exists. Note that the & sign does not indicate a specific mathematical operation, but any
general operation that combines the two generators into one. The nature of this operation depends
on the statistical functions selected to model the generators.

The simplest model for detecting a merger is the following case: If the groups have merged,
then the generative model should be a combination of the two generators before the two mergers.
If not, the generator should be unchanged from the previous sample period. As a statistical test,
we’re looking for the Bayes factor,

R =
p (dB, dS , dR|GB, GS , GB & GS) p (GB, GS , GB & GS)

p (dB, dS , dR|GB, GS , GS) p (GB, GS , GS)
, (B.1)

where prior probabilities for the two hypotheses are included in the factor. A merger is more likely
if R > 1.0.

The use of Equation B.1 for the cases where there are no measurements can result in what
may be interpreted as undesirable decisions, although the prior probabilities can result in a tie
decision if no data are available. A more complicated model was developed to provide a way to
obtain more reasonable results for the limit of no collected measurements. This model is one where
the generators can either remain the same or change over time. There are then four probabilities
to calculate: two that contribute to the numerator and two that contribute to the denominator of
the Bayes factor. These two models are described in more detail in Section 4. For both models, it
is assumed that the generator of the banned group does not change. Otherwise this group cannot
be detected based on its activity patterns. The probability that the other group’s activity pattern
has changed must not be equal to 1 because the merger or split would then be impossible to detect.
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The more complex model contains four possible hypotheses: 1) there is a merger and the
destination generator has not changed, 2) there is a merger and the destination generator has
changed, 3) there is no merger and the destination generator is unchanged, and 4) there is no merger
and the destination generator has changed. It is easiest to define the numerator and denominator
terms for the Bayes factor as

RN = p (dB, dS , dR|GB, GS , GB & GS) p (GB, GS , GB & GS)

+p
(
GB, GS , GB & G′S |dB, dS , dR

)
p
(
GB, GS , GB & G′S

)
(B.2)

RD = p (dB, dS , dR|GB, GS , GS) p (GB, GS , GS)

+p
(
dB, dS , dR|GB, GS , G′S

)
p
(
GB, GS , G

′
S

)
. (B.3)

The prime on the generator G′S indicates that the generator has changed after the potential merger.
The Bayes factor for merged or not merged with the four different hypotheses is

R =
RN
RD

. (B.4)

The specific nature of the probability terms is dependent upon the probability density func-
tions chosen for the generators. The ratio is also sensitive to the prior probabilities for the four
hypotheses. The following sections derive Bayes factors for the Poisson, binomial, and multinomial
distributions. The binomial distribution can be considered a special case of the multinomial dis-
tribution. In some cases, we provide independent derivations for the two and in other cases, we
derive the multinomial case and then obtain the binomial Bayes factor from the multinomial Bayes
factor.

B.1 POISSON MERGERS AND SPLITS

The Poisson distribution function is given by Equation 1. The conjugate prior distribution for
the Poisson function is the Dirichlet distribution function (Equation 2). The Poisson distribution
function has the useful property that a merger of two Poisson functions is a Poisson function with
a parameter that is the sum of the parameters from the individual functions,

λM = λB + λS . (B.5)

The probability for a merger when the generators are constant through time is given by the formula

pMS =
1

Z

∫ ∞
0

P (dB|λB)P (dS |λS)P (dR|λB + λS)P (λB|αB, βB)P (λS |αS , βS) dλBdλS . (B.6)

The probability of no merger is

pM̄S =
1

Z

∫ ∞
0

P (dB|λB)P (dS |λS)P (dR|λS)P (λB|αB, βB)P (λS |αS , βS) dλBdλS . (B.7)

For the case with the possibility of the destination generator changing, the probability of merger
with a changed generator is

pMS̄ =
1

Z

∫ ∞
0

P (dB|λB)P (dS |λS)P (dR|λB + λR)×

P (λB|αB, βB)P (λS |αS , βS)P (λR|αR, βR) dλBdλSdλR.

(B.8)
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The probability of no merger with a changed generator is

pM̄S̄ =
1

Z

∫ ∞
0

P (dB|λB)P (dS |λS)P (dR|λR)×

P (λB|αB, βB)P (λS |αS , βS)P (λR|αR, βR) dλBdλSdλR.

(B.9)

B.1.1 The Probability of Merger with Consistent Generators

The probability for merger with consistent generators is given by Equation B.6. The insertion
of the Poisson probabilities and conjugate prior functions produces

pMS =
1

Z

∫ ∞
0

λdBB e−λB

Γ (dB + 1)

λdSS e
−λS

Γ (dS + 1)

(λB + λS)dR e−(λB+λS)

Γ (dR + 1)
×

βαBB λαB−1
B e−βBλB

Γ (αB)

βαSS λαS−1
S e−βSλS

Γ (αS)
dλBdλS .

(B.10)

Collecting terms and rearranging the equation results in

pMS =
1

Z

βαBB βαSS
Γ (dB + 1) Γ (dS + 1) Γ (dR + 1) Γ (αB) Γ (αS)

×∫ ∞
0

λdB+αB−1
B λdS+αS−1

S (λB + λS)dR e−(2+βB)λBe−(2+βS)λSdλBdλS .

(B.11)

It may be noted that this equation is symmetric under the interchange of variables in B and S.
The order of integration should not affect the result, although the two approaches may provide
results that do not look symmetric under this interchange. As an aside, this is a way to discover
equalities between different functional forms of the same equation.

For ease of notation, define a constant K1,

K1 =
1

Z

βαBB βαSS
Γ (dB + 1) Γ (dS + 1) Γ (dR + 1) Γ (αB) Γ (αS)

. (B.12)

Break the integral into an inner and outer integral,

pMS = K1

∫ ∞
0

λdS+αS−1
S e−(2+βS)λS

∫ ∞
0

λdB+αB−1
B (λB + λS)dR e−(2+βB)λBdλBdλS . (B.13)

Use Gradshteyn and Ryzhik 3.383.4 [13] to get∫ ∞
u

xν−1 (x− u)µ−1 e−γxdx =γ−
µ+ν

2 u
µ+ν−2

2 Γ (µ) exp
(
−γu

2

)
×

W ν−µ
2
, 1−µ−ν

2
(γu) , [Re µ > 0,Re γu > 0] .

(B.14)

71



The function W(a,b) (x) is a Whittaker function, a special function. Assign the match between terms
in Equation B.13 and Equation B.14 to be

x = λB + λS , (B.15)

u = λS , (B.16)

ν = (dR + 1) , (B.17)

µ = (dB + αB) , (B.18)

γ = (2 + βB) . (B.19)

Because we’re only working on integrating the inner integral at this point,

dx = dλB. (B.20)

Convert terms to match the Gradshteyn and Ryzhik integral,

pMS = K1

∫ ∞
0

λdS+αS−1
S e−(2+βS)λS

∫ ∞
u

(x− u)µ−1 (x)ν−1 e−γ(x−u)dxdu. (B.21)

We end up with a factor of exp (γu) inside the inner integral because of how we’ve had to reformat
the integral to match Gradshteyn and Ryzhik’s formula. The expansion results in exp ((2 + βB)λS).
This term can be combined with the exp (− (2 + βS)λS) in the outer integral to give the term
exp (βB − βS)λS .

Insert the solution and convert from Gradshteyn and Ryzhik terms to the previous terms to
get

pMS =K1 (2 + βB)−
(dB+αB)+(dR+1)

2 ×∫ ∞
0

λdS+αS−1
S λ

(dB+αB)+(dR+1)−2

2
S e(βB−βS)λSΓ (dB + αB) e−

(2+βB)λS
2 ×

W (dR+1)−(dB+αB)
2

,
1−(dB+αB)−(dR+1)

2

((2 + βS)λS) dλS .

(B.22)

Move constant terms outside the integral and cancel where possible to get

pMS =K1 (2 + βB)−
(dB+αB)+(dR+1)

2 Γ (dB + αB)

∫ ∞
0

λ
dB+2dS+dR+αB+2αS−3

2
S e−

(2βS−βB+2)
2

λS×

W (dR+1)−(dB+αB)
2

,
−(dB+dR+αB)

2

((2 + βB)λS) dλS .
(B.23)

A suitable integral formula can be found in a more recent edition of Gradshteyn and Ryzhik
with formula 7.621.3 [14] to get∫ ∞

0
tαwe−swtWλw,µw (qt) dt =

Γ
(
αw + µw + 3

2

)
Γ
(
αw − µw + 3

2

)
Γ (αw − λw + 2)

qµw+ 1
2

(
sw +

q

2

)−(αw+µw+ 3
2)
×

F

(
αw + µw +

3

2
, µw − λw +

1

2
;αw − λw + 2;

2sw − q
2sw + q

)
,[

Re

(
αw ± µw +

3

2

)
> 0,Re sw > −

q

2
, q > 0

]
,

(B.24)
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where F is a hypergeometric function, in this case, specifically 2F1.

The Whittaker function Wλ,µ (z) is symmetric under replacement of µ with −µ, which is why
the first limit condition allows for either a plus or minus sign on µ. Another symmetry in the
double integral is the interchange of λB with λS simultaneously with the interchange of dB and dS .
These symmetries can be used to obtain four different functions for the double integral. There will
be an opportunity for fortuitous cancellation of terms in the eventual Bayes factor calculation with
the right selection of the integration order.

The first two of four assignments of terms between Equation B.23 and B.24 is

αw =
dB + 2dS + dR + αB + 2αS − 3

2
, (B.25)

sw =
(2βS − βB + 2)

2
, (B.26)

λw =
dR + 1− (dB + αB)

2
, (B.27)

µw = ±dB + dR + αB
2

, (B.28)

q = 2 + βB. (B.29)

Calculations to check the constraint in Equation B.24 result in

αw + µw +
3

2
= dB + dS + dR + αB + αS , (B.30)

αw − µw +
3

2
= dS + αS , (B.31)

sw +
q

2
= 2 + βS . (B.32)

Either sign on µw will work if the prior αs > 0. The needed terms in Equation B.24 where µ is
positive are

αw + µw +
3

2
= dB + dS + dR + αB + αS , (B.33)

αw − µw +
3

2
= dS + αS , (B.34)

sw +
q

2
= 2 + βS , (B.35)

sw −
q

2
= βS − βB, (B.36)

µw − λw +
1

2
= dB + αB, (B.37)

αw − λw + 2 = dB + dS + αB + αS . (B.38)
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The integral is then

pMS =K1 (2 + βB)−
dB+dR+αB+1

2
Γ (dB + αB) Γ (dB + dS + dR + αB + αS) Γ (dS + αS)

Γ (dB + dS + αS + αB)
×

(2 + βB)
dB+dR+αB+1

2 (2 + βS)−(dS+dB+dR+αS+αB)×

F

(
dB + dS + dR + αB + αS , dB + αB; dB + dS + αB + αS ;

(
βS − βB
2 + βS

))
.

(B.39)

Cancel some terms to get

pMS,1 =K1
Γ (dB + αB) Γ (dS + αS) Γ (dB + dS + dR + αB + αS)

Γ (dB + dS + αS + αB)
×

(2 + βS)−(dB+dS+dR+αB+αS)×

F

(
dB + dS + dR + αB + αS , dB + αB; dB + dS + αB + αS ;

(
βS − βB
2 + βS

))
.

(B.40)

If the negative value of µ is used,

αw + µw +
3

2
= dS + αS , (B.41)

αw − µw +
3

2
= dB + dS + dR + αB + αS , (B.42)

sw +
q

2
= 2 + βS , (B.43)

sw −
q

2
= βS − βB, (B.44)

µw − λw +
1

2
= −dR, (B.45)

αw − λw + 2 = dB + dS + αB + αS . (B.46)

The integral is then

pMS,2 =K1
Γ (dB + αB) Γ (dS + αS) Γ (dB + dS + dR + αB + αS)

Γ (dB + dS + αB + αS)
×

(2 + βB)−(dB+dR+αB) (2 + βS)−(dS+αS)×

F

(
dS + αS ,−dR; dB + dS + αS + αB;

(
βS − βB
2 + βS

))
.

(B.47)

If the order of integration is reversed, the result is the same as the exchange of subscript
labels, S and B, in Equations B.40 and B.47:

pMS,3 =K1
Γ (dS + αS) Γ (dB + αB) Γ (dB + dS + dR + αB + αS)

Γ (dB + dS + αB + αS)
×

(2 + βB)−(dB+dS+dR+αB+αS)×

F

(
dB + dS + dR + αB + αS , dS + αS ; dB + dS + αB + αS ;

(
βB − βS
2 + βB

))
,

(B.48)

74



and

pMS,4 =K1
Γ (dS + αS) Γ (dB + αB) Γ (dB + dS + dR + αB + αS)

Γ (dB + dS + αB + αS)
×

(2 + βS)−(dS+dR+αS) (2 + βB)−(dB+αB)×

F

(
dB + αB,−dR; dB + dS + αB + αS ;

(
βB − βS
2 + βB

))
.

(B.49)

Six identities for hypergeometric functions can be obtained, displayed here as a chain of
equalities:

(2 + βS)−(dB+dS+dR+αB+αS)×

F

(
dB + dS + dR + αB + αS , dB + αB; dB + dS + αB + αS ;

(
βS − βB
2 + βS

))
= (2 + βB)−(dB+dR+αB) (2 + βS)−(dS+αS)×

F

(
dS + αS ,−dR; dB + dS + αB + αS ;

(
βS − βB
2 + βS

))
= (2 + βB)−(dB+dS+dR+αB+αS)×

F

(
dB + dS + dR + αB + αS , dS + αS ; dB + dS + αB + αS ;

(
βB − βS
2 + βB

))
= (2 + βS)−(dS+dR+αS) (2 + βB)−(dB+αB)×

F

(
dB + αB,−dR; dB + dS + αB + αS ;

(
βB − βS
2 + βB

))
.

(B.50)

B.1.2 The Probability of No Merger with Consistent Generators

The probability of no merger with consistent generators through time is given by Equation B.7.
The insertion of the Poisson probabilities and conjugate prior functions produces

pM̄S =
1

Z

∫ ∞
0

λdBB e−λB

Γ (dB + 1)

λdSS e
−λS

Γ (dS + 1)

λdRS e−λS

Γ (dR + 1)

βαBB λαB−1
B e−βBλB

Γ (αB)

βαSS λαS−1
S e−βSλS

Γ (αS)
dλBdλS .

(B.51)
Collecting and rearranging terms results in

pM̄S =
1

Z

βαBB βαSS
Γ (dB + 1) Γ (dS + 1) Γ (dR + 1) Γ (αB) Γ (αS)

×∫ ∞
0

λdB+αB−1
B e−(1+βB)λBdλB

∫ ∞
0

λdS+dR+αS−1
S e−(2+βS)λSdλS .

(B.52)

Using the constant K1, defined in Equation B.12, gives

pM̄S = K1

∫ ∞
0

λdB+αB−1
B e−(1+βB)λBdλB

∫ ∞
0

λdS+dR+αS−1
S e−(2+βS)λSdλS . (B.53)
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The two equations are solved with Gradshteyn and Ryzhik 3.381.4 [13] (see Equation A.6) to
produce

pM̄S = K1 (1 + βB)−(dB+αB) Γ (dB + αB) (2 + βS)−(dS+dR+αS) Γ (dS + dR + αS) . (B.54)

Collecting like terms reduces the equation to

pM̄S = K1Γ (dB + αB) Γ (dS + dR + αS) (1 + βB)−(dB+αB) (2 + βS)−(dS+dR+αS) . (B.55)

B.1.3 The Bayes Factor for Two Hypotheses with Consistent Generators

If the prior probabilities for the two hypotheses, merged and not merged, are represented by
ρMS and ρM̄S then the Bayes factor is

R2 =
ρMS pMS

ρM̄S pM̄S

. (B.56)

The probability PMS has four different forms that can be selected from the ratio function (Equa-
tions B.40, B.47, B.48, and B.49). A comparison with the final results for pM̄S with the four
variants shows that pMS,4 (Equation B.49) will provide for the most cancellation of terms;

R2 =K1
ρMS

ρM̄S

Γ (dS + αS) Γ (dB + αB) Γ (dB + dS + dR + αB + αS)

K1Γ (dB + dS + αB + αS) Γ (dB + αB) Γ (dS + dR + αS)
×

(2 + βS)−(dS+dR+αS) (2 + βB)−(dB+αB)

(1 + βB)−(dB+αB) (2 + βS)−(dS+dR+αS)
×

F

(
dB + αB,−dR; dB + dS + αB + αS ;

(
βB − βS
2 + βB

))
.

(B.57)

The next step is to cancel a few more terms and invert the form of the β term to get

R2 =
ρMS

ρM̄S

Γ (dS + αS) Γ (dB + dS + dR + αB + αS)

Γ (dB + dS + αB + αS) Γ (dS + dR + αS)

(
1 + βB
2 + βB

)dB+αB

×

F

(
dB + αB,−dR; dB + dS + αB + αS ;

(
βB − βS
2 + βB

))
.

(B.58)

If the prior parameters βB and βS are equal, the hypergeometric function F drops out of the
equation because F (a, b; c; 0) = 1.

R2,β =
ρMS

ρM̄S

Γ (dS + αS) Γ (dB + dS + dR + αB + αS)

Γ (dB + dS + αB + αS) Γ (dS + dR + αS)

(
1 + β

2 + β

)dB+αB

. (B.59)

B.2 POISSON BAYES FACTORS INCLUDING CHANGES IN GENERATORS
OVER TIME

The Bayes factors that result from the assumption that the generative models do not vary
through time may not be valid for many real situations. It is no surprising to see activity patterns
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change over time in social networks, which is part of the attraction for members. This section
extends the Bayes factor calculations to assume that there is some probability that parameters in
the generative model for the potential host may change with time. For this derivation, it is assumed
that the members of the banned subreddit do not change their behavior because otherwise they
would be undetectable.

B.2.1 Merger with Generator Changes

The probability for merger where the host activity pattern changes is given in Equation B.8,
and expands to

pMS̄ =
1

Z

∫ ∞
0

λdBB e−λB

Γ (dB + 1)

λdSS e
−λS

Γ (dS + 1)

(λR + λB)dR e−(λR+λB)

Γ (dR + 1)

βαBB λαB−1
B e−βBλB

Γ (αB)

βαSS λαS−1
S e−βSλS

Γ (αS)

βαRR λαR−1
R e−βRλR

Γ (αR)
dλBdλSdλR.

(B.60)

Extract constant terms from the integral and collect terms. Use the constant term K1 defined in
Equation B.12 to get

pMS̄ = K1
βαRR

Γ (αR)
×∫ ∞

0
λdB+αB−1
B e−(2+βB)λBλdS+αS−1

S e−(1+βS)λS (λR + λB)dR e−(1+βR)λRλαR−1
R dλBdλSdλR.

(B.61)

The λS terms separate into an independent integral, while the λB and λR terms are coupled. This
results in

pMS̄ = K1
βαRR

Γ (αR)

∫ ∞
0

λdS+αS−1
S e−(1+βS)λSdλS∫ ∞

0
λdB+αB−1
B e−(2+βB)λB (λR + λB)dR e−(1+βR)λRλαR−1

R dλBdλR.

(B.62)

The first integral is again solved with Gradshteyn and Ryzhik 3.381.4 [13] (see Equation A.6) to
get

pMS̄ = K1
βαRR

Γ (αR)
(1 + βS)−(dS+αS) Γ (dS + αS)∫ ∞

0
λdB+αB−1
B e−(2+βB)λB (λR + λB)dR e−(1+βR)λRλαR−1

R dλBdλR.

(B.63)

The double integral is of a similar form to Equation B.11, with λR replacing λS , dS = 0, αR
replacing αS , and βR − 1 replacing βS . Equation B.49 is selected as the version to use because of
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its selection for the previous Bayes factor calculation. After replacement, the result is

pMS̄ =K1
βαRR

Γ (αR)
(1 + βS)−(dS+αS) Γ (dS + αS)

Γ (αR) Γ (dB + αB) Γ (dB + dR + αB + αR)

Γ (dB + αB + αR)
×

(1 + βR)−(dR+αR) (2 + βB)−(dB+αB)×

F

(
dB + αB,−dR; dB + αB + αR;

(
βB − βR + 1

2 + βB

))
.

(B.64)

A few terms cancel and others can be collected to give

pMS̄ =K1β
αR
R (2 + βB)−(dB+αB) (1 + βS)−(dS+αS) (1 + βR)−(dR+αR)

Γ (dB + αB) Γ (dS + αS) Γ (dB + dR + αB + αR)

Γ (dB + αB + αR)
×

F

(
dB + αB,−dR; dB + αB + αR;

(
βB − βR + 1

2 + βB

))
.

(B.65)

It is not possible to neglect the hypergeometric function in this case because the last term in the
parentheses is not zero when βB and βR are equal.

B.2.2 No Merger with Poisson Probability Generator Changes

The probability for no merger for the case where the generative model parameters may change
is given by Equation B.9. All integral terms are separable into three different integrals, all solved
with Gradshteyn and Ryzhik 3.381.4 [13] (see Equation A.6). Terms in Equation B.62 can be
carried over to give

pM̄S̄ = K1
βαRR

Γ (αR)
(1 + βB)−(dB+αB) Γ (dB + αB) (1 + βS)−(dS+αS) Γ (dS + αS)

(1 + βR)−(dR+αR) Γ (dR + αR) .

(B.66)

Collecting common terms gives

pM̄S̄ = K1
βαRR Γ (dB + αB) Γ (dS + αS) Γ (dR + αR)

Γ (αR)

(1 + βB)−(dB+αB) (1 + βS)−(dS+αS) (1 + βR)−(dR+αR) .

(B.67)

B.2.3 Likelihood Ratio for Poisson Probability Generator Changes

There are now four terms, so the prior probabilities are represented with ρMS , ρM̄S , ρMS̄ ,
and ρM̄S̄ . The Bayes factor between the two sets of merged and not-merged hypotheses is

R4 =
ρMS pMS + ρMS̄ pMS̄

ρM̄S pM̄S + ρM̄S̄ pM̄S̄

. (B.68)

The K1 constant and the Γ (dB + αB) is common to all four terms and cancel in the Bayes factor.
No other terms are common across all four probabilities.
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B.3 BINOMIAL MERGERS AND SPLITS

Although the Bayes factors for the similarity between samples from both the binomial and
multinomial probability functions could be derived from a single description, the derivations for
mergers is significantly more complicated for these distribution functions. This complexity arises
from the model of how binomial and multinomial functions merge. The Poisson function is easily
modeled because the distribution parameters simply add. The merger of parameters for binomial
and multinomial functions do not obey such a simple combination rule. A merged distribution
is dependent on the relative strengths of the contributions of two distributions to the merged
distribution.

The binomial distribution is

P (d; p, n) =

(
n

d

)
pd (1− p)n−d , (B.69)

where n is the total number of samples, and d is the number of observed events in the first of two
categories in the n samples. The variable p is the probability for observing an event of category
one. The conjugate prior for the binomial distribution is a beta distribution,

P (p) =
pα−1 (1− p)β−1

B (α, β)
, (B.70)

where α and β are prior shape parameters. The merged probability pR is chosen to be a mixture
of the two initial probabilities, pB and pS .

pR = γpB + (1− γ) pS ; 0 ≤ γ ≤ 1, (B.71)

where γ is the mixing parameter for the two different probabilities. This parameter defines the
relative proportion of the two combined distributions in the merged distribution. If information
were available on sample durations, then this information could also be incorporated into the value
of γ. For this derivation, a beta distribution will eventually be assumed for the prior probability
p (γ). A uniform prior can be obtained from a beta distribution by defining the α and β terms
associated with the function to be equal to 1.

B.3.1 Binomial Probability of Merger with the Same Generator

The posterior probability for merger with consistent distribution function parameters for the
potential host group, before and after merger, is

pMS =
1

Z

∫ 1

0

∫ 1

0

∫ 1

0

(
nB
dB

)
pdBB (1− pB)nB−dB

(
nS
dS

)
pdSS (1− pS)nS−dS(

nR
dR

)
(γpB + (1− γ) pS)dR (1− (γpB + (1− γ) pS))nR−dR

pαB−1
B (1− pB)βB−1

B (αB, βB)

pαS−1
S (1− pS)βS−1

B (αS , βS)
p (γ) dpBdpSdγ.

(B.72)
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Rearrange terms to get

pMS =
1

ZB (αB, βB)B (αS , βS)

(
nB
dB

)(
nS
dS

)(
nR
dR

)
∫ 1

0

∫ 1

0
pdB+αB−1
B (1− pB)nB−dB+βB−1

∫ 1

0
pdS+αS−1
S (1− pS)nS−dS+βS−1

(γpB + (1− γ) pS)dR (1− γpB − (1− γ) pS)nR−dR p (γ) dpBdpSdγ.

(B.73)

The general double integral that is needed is of the form of

gII (a, b, c, d, e, f, ux, uy) =

∫ ux

0
xd−1 (ux − x)a−1×∫ uy

0
ye−1 (uy − y)b−1 (γx+ (1− γ) y)f (γ (ux − x) + (1− γ) (uy − y))c dydx,

(B.74)

which is derived in Appendix B.5.3. The substitutions are

x = pB,

y = pS ,

a = nB − dB + βB,

b = nS − dS + βS ,

c = nR − dR,
d = dB + αB,

e = dS + αS ,

f = dR,

ux = 1,

uy = 1,

(B.75)

which gives

pMS =
1

ZB (αB, βB)B (αS , βS)

(
nB
dB

)(
nS
dS

)(
nR
dR

) dR∑
t=0

Γ (dR + 1)

Γ (dR − t+ 1)
×

nR−dR∑
u=0

(−1)uB (nS − dS + βS , dS + αS + t+ u)×

nR−dR−u∑
v=0

(−1)pB (nB − dB + βB, dB + αB + dR − t+ v)×

Γ (nR − dR + 1)

Γ (p+ 1) Γ (nR − dR − u− v + 1)

∫ 1

0
(1− γ)t+u γdR−t+vp (γ) dγ.

(B.76)

The relationship between the binomial coefficient and gamma functions,(
n

k

)
=

Γ (u+ 1)

Γ (k + 1) Γ (u− k + 1)
, (B.77)
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can be applied to get

pMS =
Γ (nR + 1)

ZB (αB, βB)B (αS , βS)

(
nB
dB

)(
nS
dS

) dR∑
t=0

1

Γ (dR − t+ 1)
×

nR−dR∑
u=0

(−1)uB (nS − dS + βS , dS + αS + t+ u)×

nR−dR−u∑
v=0

(−1)vB (nB − dB + βB, dB + αB + dR − t+ v)×

1

Γ (v + 1) Γ (nR − dR − u− v + 1)

∫ 1

0
(1− γ)t+u γdR−t+vp (γ) dγ.

(B.78)

The integral over γ remains to be solved. Inserting the Dirichlet prior for p (γ) gives the
integral

Iγ =

∫ 1

0
(1− γ)t+u γdR−t+vp (γ) dγ =

∫ 1

0
(1− γ)t+u γdR−t+v

γαγ−1 (1− γ)βγ−1

B (αγ , βγ)
dγ. (B.79)

Extracting and combining terms leads to

Iγ =
1

B (αγ , βγ)

∫ 1

0
(1− γ)t+u+βγ−1 γdR−t+v+αγ−1dγ. (B.80)

The solution is given by Equation B.120.

Iγ =
B (dR − t+ v + αγ , t+ u+ βγ)

B (αγ , βγ)
. (B.81)

The integral for mixing parameter γ can be inserted into the full integral.

pMS =
Γ (nR + 1)

ZB (αB, βB)B (αS , βS)

(
nB
dB

)(
nS
dS

) dR∑
t=0

1

Γ (dR − t+ 1)
×

nR−dR∑
u=0

(−1)uB (nS − dS + βS , dS + αS + t+ u)×

nR−dR−u∑
v=0

(−1)vB (nB − dB + βB, dB + αB + dR − t+ v)×

B (dR − t+ v + αγ , t+ u+ βγ)

Γ (v + 1) Γ (nR − dR − u− v + 1)B (αγ , βγ)
.

(B.82)

81



B.3.2 Binomial Probability of No Merger with the Same Generator

The probability of no merger, for the case where the generative model parameters for the
potential host do not change, is

pM̄S =
1

Z

∫ 1

0

∫ 1

0

(
nB
dB

)
pdBB (1− pB)nB−dB

(
nS
dS

)
pdSS (1− pS)nS−dS(

nR
dR

)
pdRS (1− pS)nR−dR

pαB−1
B (1− pB)βB−1

B (αB, βB)

pαS−1
S (1− pS)βS−1

B (αS , βS)
dpBdpS .

(B.83)

Extract constant terms and combine common terms to get

pM̄S =

(
nB
dB

)(
nS
dS

)(
nR
dR

)
1

ZB (αB, βB)B (αS , βS)
×∫ 1

0
pdB+αB−1
B (1− pB)nB−dB+βB−1 dpB×∫ 1

0
pdS+dR+αS−1
S (1− pS)nS−dS+nR−dR+βS−1 dpS .

(B.84)

The probability terms separate into independent integrals that are solved with Gradshteyn and
Ryzhik 3.191.1 [13].

pM̄S =

(
nB
dB

)(
nS
dS

)(
nR
dR

)
1

ZB (αB, βB)B (αS , βS)
×

B (dB + αB, nB − dB + βB)B (dS + dR + αS , nS − dS + nR − dR + βS) .

(B.85)

B.3.3 Binomial Probability of Merger with a Different Generator

The probability of a merger where the generative model parameters for the potential desti-
nation group have changed is

pMS̄ =
1

Z

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(
nB
dB

)
pdBB (1− pB)nB−dB

(
nS
dS

)
pdSS (1− pS)nS−dS ×(

nR
dR

)
(γpB + (1− γ) pR)dR (1− (γpB + (1− γ) pR))nR−dR ×

pαB−1
B (1− pB)βB−1

B (αB, βB)

pαS−1
S (1− pS)βS−1

B (αS , βS)

pαR−1
R (1− pR)βR−1

B (αR, βR)
p (γ) dpBdpSdpRdγ.

(B.86)

Extract constant terms, combine common terms, and extract an independent integral in pS to get

pMS̄ =
1

ZB (αB, βB)B (αS , βS)B (αR, βR)

(
nB
dB

)(
nS
dS

)(
nR
dR

)
×∫ 1

0
pdS+αS−1
S (1− pS)nS−dS+βS−1 dpS

∫ 1

0

∫ 1

0

∫ 1

0
pdB+αB−1
B (1− pB)nB−dB+βB−1×

(γpB + (1− γ) pR)dR (1− (γpB + (1− γ) pR))nR−dR ×
pαR−1
R (1− pR)βR−1 p (γ) dpBdpRdγ.

(B.87)
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The independent integral is again solved with Gradshteyn and Ryzhik 3.191.1 [13] to get

pMS̄ =
1

ZB (αB, βB)B (αS , βS)B (αR, βR)

(
nB
dB

)(
nS
dS

)(
nR
dR

)
×

B (dS + αS , nS − dS + βS)

∫ 1

0

∫ 1

0
pdB+αB−1
B (1− pB)nB−dB+βB−1×∫ 1

0
(γpB + (1− γ) pR)dR (1− (γpB + (1− γ) pR))nR−dR ×

pαR−1
R (1− pR)βR−1 p (γ) dpRdpBdγ.

(B.88)

The next integral can be solved with gII in Appendix B.5.3. The substitutions are

x = pB,

y = pR,

a = nB − dB + βB,

b = βR,

c = nR − dR,
d = dB + αB,

e = αR,

f = dR,

ux = 1,

uy = 1.

(B.89)

This results in

pMS̄ =
1

ZB (αB, βB)B (αS , βS)B (αR, βR)

(
nB
dB

)(
nS
dS

)(
nR
dR

)
×

B (dS + αS , nS − dS + βS)

∫ 1

0

dR∑
t=0

Γ (dR + 1)

Γ (dR − t+ 1)
×

nR−dR∑
u=0

(−1)uB (βR, αR + t+ u) (1− γ)t+u×

nR−dR−u∑
v=0

(−1)vB (nB − dB + βB, dB + αB + dR − t+ v)×

Γ (nR − dR + 1)

Γ (v + 1) Γ (nR − dR − u− v + 1)
γdR−t+vp (γ) dγ.

(B.90)
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Apply the relationship between binomial coefficients and gamma functions in Equation B.77 and
collect terms in the mixing parameter, γ, to get

pMS̄ =
Γ (nR + 1)

ZB (αB, βB)B (αS , βS)B (αR, βR)

(
nB
dB

)(
nS
dS

)
×

B (dS + αS , nS − dS + βS)

dR∑
t=0

1

Γ (dR − t+ 1)
×

nR−dR∑
u=0

(−1)uB (βR, αR + t+ u)×

nR−dR−u∑
v=0

(−1)vB (nB − dB + βB, dB + αB + dR − t+ v)×

1

Γ (v + 1) Γ (nR − dR − u− v + 1)

∫ 1

0
γdR−t+v (1− γ)t+u p (γ) dγ.

(B.91)

The final step is to insert the prior beta distribution for γ and integrate over the mixing parameter γ,
which produces a beta function term, as in Equations B.80 and B.80. This results in

pMS̄ =
Γ (nR + 1)

ZB (αB, βB)B (αS , βS)B (αR, βR)

(
nB
dB

)(
nS
dS

)
B (dS + αS , nS − dS + βS)×

dR∑
t=0

1

Γ (dR − t+ 1)

nR−dR∑
u=0

(−1)uB (βR, αR + t+ u)×

nR−dR−u∑
v=0

(−1)vB (nB − dB + βB, dB + αB + dR − t+ v)×

B (dR − t+ v + αγ , t+ u+ βγ)

Γ (v + 1) Γ (nR − dR − u− v + 1)B (αγ , βγ)
.

(B.92)

B.3.4 Binomial Probability of No Merger with a Different Generator

The probability of no merger where the destination group has changed generators is given by

pM̄S̄ =
1

Z

∫ 1

0

∫ 1

0

∫ 1

0

(
nB
dB

)
pdBB (1− pB)nB−dB

(
nS
dS

)
pdSS (1− pS)nS−dS

(
nR
dR

)
pdRR (1− pR)nR−dR

pαB−1
B (1− pB)βB−1

B (αB, βB)

pαS−1
S (1− pS)βS−1

B (αS , βS)

pαR−1
R (1− pR)βR−1

B (αR, βR)
dpBdpSdpR.

(B.93)
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Extract constant terms and combine common terms. Separate out the independent integrals to get

pM̄S̄ =
1

ZB (αB, βB)B (αS , βS)B (αR, βR)

(
nB
dB

)(
nS
dS

)(
nR
dR

)
×∫ 1

0
pdB+αB−1
B (1− pB)nB−dB+βB−1 dpB

∫ 1

0
pdS+αS−1
S (1− pS)nS−dS+βS−1 dpS∫ 1

0
pdR+αR−1
R (1− pR)nR−dR+βR−1 dpR.

(B.94)

All three integrals are solved with Gradshteyn and Ryzhik 3.191.1 [13], resulting in

pM̄S̄ =
1

ZB (αB, βB)B (αS , βS)B (αR, βR)

(
nB
dB

)(
nS
dS

)(
nR
dR

)
×

B (dB + αB, nB − dB + βB)B (dS + αS , nS − dS + βS)B (dR + αR, nR − dR + βR) .

(B.95)

B.3.5 Common Terms in the Binomial Probabilities

The common terms in the four probabilities are

Cp =
1

ZB (αB, βB)B (αS , βS)

(
nB
dB

)(
nS
dS

)
. (B.96)
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These cancel in the Bayes factor. The four terms can be then be defined as

p′MS = Γ (nR + 1)

dR∑
t=0

1

Γ (dR − t+ 1)
×

nR−dR∑
u=0

(−1)uB (nS − dS + βS , dS + αS + t+ u)×

nR−dR−u∑
v=0

(−1)vB (nB − dB + βB, dB + αB + dR − t+ v)×

B (dR − t+ v + 1, t+ u+ 1)

Γ (v + 1) Γ (nR − dR − u− v + 1)
,

p′M̄S =

(
nR
dR

)
B (dS + dR + αS , nS − dS + nR − dR + βS)B (dB + αB, nB − dB + βB) ,

p′MS̄ =
Γ (nR + 1)

B (αR, βR)
B (dS + αS , nS − dS + βS)

dR∑
t=0

1

Γ (dR − t+ 1)

nR−dR∑
u=0

(−1)uB (βR, αR + t+ u)×

nR−dR−u∑
v=0

(−1)vB (nB − dB + βB, dB + αB + dR − t+ v)

B (dR − t+ v + 1, t+ u+ 1)

Γ (v + 1) Γ (nR − dR − u− v + 1)
,

p′M̄S̄ =

(
nR
dR

)
1

B (αR, βR)
B (dS + αS , nS − dS + βS)B (dB + αB, nB − dB + βB)

B (dR + αR, nR − dR + βR) .

(B.97)

B.4 MULTINOMIAL MERGERS AND SPLITS

Although the similarity measures between samples from both the binomial and multinomial
probability functions could be derived from a single description, the derivations for mergers is sig-
nificantly more complicated. This complexity arises from modeling how binomial and multinomial
functions merge. The Poisson function is easily modeled because the distribution parameters are
simply added together for the merged parameter. Because the binomial and multinomial functions
model distributions of occurrences across two or more categories, the merged distributions are de-
pendent upon the relative contribution of two distributions to the merged distribution. In general,
this would be unknown for combinations of multinomial samples. In specific cases, the means used
to select the samples can provide information to restrict the possible combinations of the merged
samples. This derivation will assume that the mixture of generative distributions is unknown.
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The multinomial probability density function is

P (ddd;ppp) =
Γ
((∑k

i=1 dddi

)
+ 1
)

∏k
i=1 Γ (dddi + 1)

k∏
i=1

pppdddii ;

k∑
i=1

pppi = 1. (B.98)

The conjugate prior for the multinomial density function is a Dirichet distribution

P (ααα;ppp) =
Γ
(∑k

i=1αααi

)
∏k
i=1 Γ (αααi)

k∏
i=1

pppαααi−1
i ;

k∑
i=1

pppi = 1. (B.99)

The merger operation selected for this derivation is a mixing between the multinomial probability
vectors for the two separate samples,

pppR = γpppB + (1− γ)pppS ; 0 ≤ γ ≤ 1. (B.100)

The mixing parameter γ is used to combine the two generators. This is equivalent to the relative
likelihood of choosing one generator over another for the creation of the next sample.

B.4.1 Multinomial Probability of Merger with the Same Generator

The posterior probability for a merger where the generator of the destination group does not
change is

pMS =
1

ZMS

∫
ΘB

∫
ΘS

k∏
i=1

pppdddBi+αααBi−1
Bi pppdddSi+αααSi−1

Si (γpppBi + (1− γ)pppSi)
dddRi dΘBdΘS , (B.101)

where ZMS is a normalization term,

1

ZMS
=

Γ
(

1 +
∑k

i=1 dddBi

)
∏k
i=1 Γ (dddBi + 1)

Γ
(

1 +
∑k

i=1 dddSi

)
∏k
i=1 Γ (dddSi + 1)

Γ
(

1 +
∑k

i=1 dddRi

)
∏k
i=1 Γ (dddRi + 1)

Γ
(∑k

i=1αααBi

)
∏k
i=1 Γ (αααBi)

Γ
(∑k

i=1αααSi

)
∏k
i=1 Γ (αααSi)

.

(B.102)

The derivation of the integral over the probability simplex is given in Appendices B.5.3
and B.5.4 for Equation B.101. The result of the derivation is given in Equation B.228 and with
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appropriate replacement of variables is

pMS =
1

ZMS

dddRk−1∑
tk−1=0

dddRk∑
uk−1=0

dddRk−uk−1∑
vk−1=0

( dddRk−2∑
tk−2=0

dddRk−uk−1−vk−1∑
uk−2=0

dddRk−uk−1−vk−1−uk−2∑
vk−2=0

(
×

· · ·
( dddR1∑
t1=0

dddRk−(
∑k−1
r=2 ur+vr)∑
u1=0

dddRk−(
∑k−1
r=2 ur+vr)−u1∑
v1=0

×([
(−1)

∑k−1
r=1 ur+vr

]
γ
∑k−1
r=1 dddRr−tr+vr (1− γ)

∑k−1
r=1 tr+ur ×

Γ (dddBk +αααBk)
∏k−1
q=1 Γ

(
dddBq +αααBq + dddRq − tq + vq

)
Γ
(
dddBk +αααBk +

(∑k−1
q=1 dddBq +αααBq + dddRq − tq + vq

))×
Γ (dddSk +αααSk)

∏k−1
r=1 Γ (dddSr +αααSr + tr + ur)

Γ
(
dddSk +αααSk +

∑k−1
r=1 dddSr +αααSr + tr + ur

)×
[
k−1∏
r=1

Γ (dddRr + 1)

Γ (dddRr − tr + 1)

]
Γ (dddRk + 1)

Γ
(
dddRk −

(∑k−1
q=1 uq + vq

)
+ 1
)∏k−1

r=1 Γ (vr + 1)

))
· · ·
))

.

(B.103)

There are k− 1 sets of triple sums that involve the values in the merged matrix of counts, dddR. The
result is a bit intimidating and numerical solutions for the equation are likely to be fraught with
problems from round-off errors. This is especially true when dddR has very large counts within it.
The dominant variable in the triple sums is dddRk and it may be possible to select the smallest value
from the matrix dddR. This would significantly reduce the number of sums.

Integration to eliminate γ can now be performed. Assuming that the prior for γ is a two-term
Dirichlet distribution, the prior parameters for γ are αγ1 and αγ2 and using the integral for γ in
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Equation B.233, the result is

pMS =
1

ZMS

dddRk−1∑
tk−1=0

dddRk∑
uk−1=0

dddRk−uk−1∑
vk−1=0

( dddRk−2∑
tk−2=0

dddRk−uk−1−vk−1∑
uk−2=0

dddRk−uk−1−vk−1−uk−2∑
vk−2=0

(
×

· · ·
( dddR1∑
t1=0

dddRk−(
∑k−1
r=2 ur+vr)∑
u1=0

dddRk−(
∑k−1
r=2 ur+vr)−u1∑
v1=0

×

([
(−1)

∑k−1
r=1 ur+vr

] B (∑k−1
r=1 dddRr − tr + vr + αγ1 ,

∑k−1
r=1 tr + ur + αγ2

)
B (αγ1 , αγ2)

×

Γ (dddBk +αααBk)
∏k−1
q=1 Γ

(
dddBq +αααBq + dddRq − tq + vq

)
Γ
(
dddBk +αααBk +

(∑k−1
q=1 dddBq +αααBq + dddRq − tq + vq

))×
Γ (dddSk +αααSk)

∏k−1
r=1 Γ (dddSr +αααSr + tr + ur)

Γ
(
dddSk +αααSk +

∑k−1
r=1 dddSr +αααSr + tr + ur

)×
[
k−1∏
r=1

Γ (dddRr + 1)

Γ (dddRr − tr + 1)

]
Γ (dddRk + 1)

Γ
(
dddRk −

(∑k−1
q=1 uq + vq

)
+ 1
)∏k−1

r=1 Γ (vr + 1)

))
· · ·
))

.

(B.104)

B.4.2 Multinomial Probability of No Merger with the Same Generator

This integral is simpler:

pM̄S =
1

ZM̄S

∫
ΘB

∫
ΘS

k∏
i=1

pppdddBi+αααBi−1
Bi pppdddSi+αααSi−1

Si pppdddRiSi dΘBdΘS , (B.105)

where
ZM̄S = ZMS . (B.106)

This can be rewritten as

pM̄S =
1

ZM̄S

∫
ΘB

∫
ΘS

k∏
i=1

pppdddBi+αααBi−1
Bi pppdddSi+dddRi+αααSi−1

Si dΘBdΘS . (B.107)

This is separable into two independent integrals,

pM̄S =
1

ZM̄S

∫
ΘB

k∏
i=1

pppdddBi+αααBi−1
Bi dΘB

∫
ΘS

pppdddSi+dddRi+αααSi−1
Si dΘS . (B.108)

These are both solved with the general integral of the probability simplex with Equation B.133,

pM̄S =
1

ZM̄S

GI (dddBi +αααBi)GI (dddSi + dddRi +αααSi) . (B.109)
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The probability of no merger where the generative model for the potential destination group
remains the same across the two time periods is

pM̄S =
1

ZM̄S

∏k
i=1 Γ (dddBi +αααBi)

Γ
(∑k

j=1 dddBi +αααBi

) ∏k
i=1 Γ (dddSi + dddRi +αααSi)

Γ
(∑k

j=1 dddSi + dddRi +αααSi

) . (B.110)

B.4.3 Probability of Merger with a Different Generator

It is assumed for this integral that the destination dataset is drawn from a different multino-
mial generative model for the merged pair. This results in

pMS̄ =
1

ZMS̄

∫
ΘB

∫
ΘS

∫
ΘR

k∏
i=1

pppdddBi+αααBi−1
Bi pppdddSi+αααSi−1

Si (γpppBi + (1− γ)pppRi)
dddRi pppαααRi−1

Ri dΘBdΘSdΘR,

(B.111)
where ZMS̄ is a normalization term,

1

ZMS̄

=
Γ
(

1 +
∑k

i=1 dddBi

)
∏k
i=1 Γ (dddBi + 1)

Γ
(

1 +
∑k

i=1 dddSi

)
∏k
i=1 Γ (dddSi + 1)

Γ
(

1 +
∑k

i=1 dddRi

)
∏k
i=1 Γ (dddRi + 1)

×

Γ
(∑k

i=1αααBi

)
∏k
i=1 Γ (αααBi)

Γ
(∑k

i=1αααSi

)
∏k
i=1 Γ (αααSi)

Γ
(∑k

i=1αααRi

)
∏k
i=1 Γ (αααRi)

.

(B.112)

This normalization term ZMS̄ is related to ZMS by

1

ZMS̄

=
1

ZMS

Γ
(∑k

i=1αααRi

)
∏k
i=1 Γ (αααRi)

. (B.113)

The triple integral separates into a product of two independent integrals that are a single
integral and a double integral. Both integrals are in the forms of previously derived integrals and
only require the insertion of the correct terms:

pMS̄ =
1

ZMS̄

∫
ΘS

k∏
i=1

pppdddSi+αααSi−1
Si dΘS×

∫
ΘB

∫
ΘR

k∏
i=1

pppdddBi+αααBi−1
Bi (γpppBi + (1− γ)pppRi)

dddRi pppαααRi−1
Ri dΘBdΘR.

(B.114)

The first integral is solved with GI , Equation B.133. The second integral is solved with GII ,
Equation B.228:

pMS̄ =
1

ZMS̄

GI (dddS +αααS)GII (dddB +αααB,αααR, dddR) . (B.115)

90



This expands to

pMS̄ =
1

ZMS̄

∏k
i=1 Γ (dddSi +αααSi)

Γ
(∑k

j=1 dddSj +αααSj

)
dddRk−1∑
tk−1=0

dddRk∑
uk−1=0

dddRk−uk−1∑
vk−1=0

( dddRk−2∑
tk−2=0

dddRk−uk−1−vk−1∑
uk−2=0

dddRk−uk−1−vk−1−uk−2∑
vk−2=0

(
×

· · ·
( dddR1∑
t1=0

dddRk−(
∑k−1
r=2 ur+vr)∑
u1=0

dddRk−(
∑k−1
r=2 ur+vr)−u1∑
v1=0

×([
(−1)

∑k−1
r=1 ur+vr

]
γ
∑k−1
r=1 dddRr−tr+vr (1− γ)

∑k−1
r=1 tr+ur ×

Γ (dddBk +αααBk)
∏k−1
q=1 Γ

(
dddBq +αααBq + dddRq − tq + vq

)
Γ
(
dddBk +αααBk +

(∑k−1
q=1 dddBq +αααBq + dddRq − tq + vq

)) Γ (αααRk)
∏k−1
r=1 Γ (αααRr + tr + ur)

Γ
(
αααRk +

∑k−1
r=1 αααRr + tr + ur

)×
[
k−1∏
r=1

Γ (dddRr + 1)

Γ (dddRr − tr + 1)

]
Γ (dddRk + 1)

Γ
(
dddRk −

(∑k−1
q=1 uq + vq

)
+ 1
)∏k−1

r=1 Γ (vr + 1)

))
· · ·
))

.

(B.116)

It is assumed that the prior distribution function for the γ term is a two-parameter Dirichlet
distribution, the prior parameters for γ are represented with αγ1 and αγ2 . Inserting the prior
distribution function and using the integral for γ in Equations B.233, the result is

pMS̄ =
1

ZMS̄

∏k
i=1 Γ (dddSi +αααSi)

Γ
(∑k

j=1 dddSj +αααSj

)
dddRk−1∑
tk−1=0

dddRk∑
uk−1=0

dddRk−uk−1∑
vk−1=0

( dddRk−2∑
tk−2=0

dddRk−uk−1−vk−1∑
uk−2=0

dddRk−uk−1−vk−1−uk−2∑
vk−2=0

(
×

· · ·
( dddR1∑
t1=0

dddRk−(
∑k−1
r=2 ur+vr)∑
u1=0

dddRk−(
∑k−1
r=2 ur+vr)−u1∑
v1=0

×

([
(−1)

∑k−1
r=1 ur+vr

] B (∑k−1
r=1 dddRr − tr + vr + αγ1 ,

∑k−1
r=1 tr + ur + αγ2

)
B (αγ1 , αγ2)

×

Γ (dddBk +αααBk)
∏k−1
q=1 Γ

(
dddBq +αααBq + dddRq − tq + vq

)
Γ
(
dddBk +αααBk +

(∑k−1
q=1 dddBq +αααBq + dddRq − tq + vq

)) Γ (αααRk)
∏k−1
r=1 Γ (αααRr + tr + ur)

Γ
(
αααRk +

∑k−1
r=1 αααRr + tr + ur

)×
[
k−1∏
r=1

Γ (dddRr + 1)

Γ (dddRr − tr + 1)

]
Γ (dddRk + 1)

Γ
(
dddRk −

(∑k−1
q=1 uq + vq

)
+ 1
)∏k−1

r=1 Γ (vr + 1)

))
· · ·
))

.

(B.117)
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B.4.4 Probability of No Merger with a Different Generator

This integral is straightforward because all terms separate into three independent integrals:

pMS̄ =
1

ZM̄S̄

∫
ΘB

∫
ΘS

∫
ΘR

k∏
i=1

pppdddBi+αααBi−1
Bi pppdddSi+αααSi−1

Si pppdddRi+αααRi−1
Ri dΘBdΘSdΘR, (B.118)

where ZM̄S̄ is equal to ZMS̄ .

The probability of no merger when the generative model for the destination distribution
changes across the two time periods is

pM̄S =
1

ZM̄S̄

∏k
i=1 Γ (dddBi +αααBi)

Γ
(∑k

j=1 dddBi +αααBi

) ∏k
i=1 Γ (dddSi +αααSi)

Γ
(∑k

j=1 dddSi +αααSi

) ∏k
i=1 Γ (dddRi +αααRi)

Γ
(∑k

j=1 dddRi +αααRi

) . (B.119)

The four terms are combined to form the Bayes factor using the form of Equation 17, which
are summarized in Section 4.3.

B.5 GENERAL FORMULAS FOR DOUBLE INTEGRALS

This appendix section includes general integrals required for the merge/split integrals.

B.5.1 General Integral I

The first general integral that is required is Gradshteyn and Ryzhik 3.191.1 [13]:

gI (µ, ν) =

∫ u

0
xν−1 (u− x)µ−1 dx = uµ+ν−1B (µ, ν) . (B.120)

B.5.2 General Integral I Expanded Over a Probability Simplex

The integrals of interest in the main body of the paper are of the form of Equation B.120,
but performed over a probability simplex Θ. The typical equation to solve is

GI (ddd) =

∫
Θ

k∏
i=1

xxxdddi−1
i dΘ. (B.121)

Here, d is a k-dimensional vector of counts or counts with prior terms (reals). The variable xxx is
also a k-dimensional vector and is used here to represent a categorical probability distribution that
must satisfy the equation

k∑
i=1

xxxi = 1. (B.122)

The probability simplex then requires that the integrals over individual terms satisfy this condition,
and the integral expands out to

GI =

∫ 1

0

∫ 1−xxx1

0

∫ 1−
∑2
i=1 xxxi

0
· · ·
∫ 1−

∑k−1
i=1 xxxi

0

k−1∏
i=1

xxxdddi−1
i

1−
k−1∑
j=1

xxxi

dddk−1

dxxx1dxxx2 · · · dxxxk−1 (B.123)
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over the probability simplex. For simplification, define

uuuj = 1−
j−1∑
i=1

xxxi, (B.124)

which has the relationships

uuu1 = 1; [j = 1] , (B.125)

uuuj = uuuj−1 − xxxj ; [1 < j < k] . (B.126)

Substitution of these definitions into the integral results in

GI =

∫ uuu1

0

∫ uuu2

0

∫ uuu3

0
· · ·

[
k−2∏
i=1

xxxdddi−1
i

]∫ uuuk−1

0
xxx
dddk−1−1
k−1 (uuuk−1 − xxxk−1)dddk−1 dxxx1dxxx2 · · · dxxxk−1. (B.127)

Note that the k-th integral is fully constrained because the value xxxk = 1 −
∑k−1

i=1 xxxi is equivalent
to integration of a delta function. The integral for xxxk−1 is solved with Gradshteyn and Ryzhik
3.191.1 [13] to get

GI =

∫ uuu1

0

∫ uuu2

0

∫ uuu3

0
· · ·
∫ uuuk−2

0

[
k−2∏
i=1

xxxdddi−1
i

]
uuu
dddk+dddk−1−1
k−1 B (dddk−1, dddk) dxxx1dxxx2 · · · dxxxk−2. (B.128)

Expansion of uuuk−1 results in the next integral,

GI = B (dddk−1, dddk)

∫ uuu1

0

∫ uuu2

0

∫ uuu3

0
· · ·

[
k−3∏
i=1

xxxdddi−1
i

]
∫ uuuk−2

0
xxx
dddk−2−1
k−2 (uuuk−2 − xxxk−2)dddk+dddk−1−1 dxxx1dxxx2 · · · dxxxk−2,

(B.129)

which is solved with the same formula to get

GI = B (dddk−1, dddk)

∫ uuu1

0

∫ uuu2

0

∫ uuu3

0
· · ·

[
k−3∏
i=1

xxxdddi−1
i

]
uuu
dddk+dddk−1+dddk−2−1
k−2 B (dddk−2, dddk + dddk−1) dxxx1dxxx2 · · · dxxxk−3.

(B.130)

Continuation of the process to complete the remaining integrals results in

GI =
k−1∏
i=1

B

dddi, k∑
j=i+1

dddj

 . (B.131)

The beta function can be expanded into terms of Γ functions,

GI =

k−1∏
i=1

Γ (dddi) Γ
(∑k

j=i+1 dddj

)
Γ
(∑k

j=i dddj

) . (B.132)
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Pairs of the Γ functions that contain sums cancel across the product of fractions so that the result
is

GI (ddd) =

∏k
i=1 Γ (dddi)

Γ
(∑k

j=1 dddj

) . (B.133)

B.5.3 General Double Integral II

The following general double integral is useful in the derivation of merging and splitting
probability estimates:

gII (a, b, c, d, e, f, ux, uy) =

∫ ux

0
xd−1 (ux − x)a−1×∫ uy

0
ye−1 (uy − y)b−1 (γx+ (1− γ) y)f (γ (ux − x) + (1− γ) (uy − y))c dydx.

(B.134)

Terms f and c are defined to be integers.

The y integral solution is available using Gradshteyn and Ryzhik, 3.211 [13],∫ 1

0
xλ−1 (1− x)µ−1 (1− ux)−ρ (1− vx)−σ dx = B (µ, λ)F1 (λ, ρ, σ, λ+ µ;u, v) ;

[Re λ > 0,Re µ > 0] ,

(B.135)

where B (µ, λ)) is the beta function, and F1 (λ, ρ, σ, λ+ µ;u, v) is a hypergeometric function in two
parameters. This function is defined in Gradshteyn and Ryzhik 9.180.1 [13] to be

F1

(
α, β, β′, γ;x, y

)
=
∞∑
m=0

∞∑
n=0

(α)m+n (β)m (β′)n
(γ)m+n

xmyn. (B.136)

Pochhammer notation is used in the formula, where

(a)n =
Γ (a+ n)

Γ (a)
. (B.137)

Define

gII,y =

∫ uy

0
ye−1 (uy − y)b−1 (γx+ (1− γ) y)f (γ (ux − x) + (1− γ) (uy − y))c dy (B.138)

and
y = uyz. (B.139)

Then

gII,y = (uy)
e+b−1

∫ 1

0
ze−1 (1− z)b−1 (γx+ (1− γ)uyz)

f (γ (ux − x) + (1− γ)uy (1− z))c dz.

(B.140)
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Continuing the transformation leads to

gII,y = (uy)
e+b−1 (γx)f

∫ 1

0
ze−1 (1− z)b−1

(
1 +

(1− γ)uy
γx

z

)f
×

(γ (ux − x) + (1− γ)uy − (1− γ)uyz)
c dz

(B.141)

and

gII,y = (uy)
e+b−1 (γx)f (γ (ux − x) + (1− γ)uy)

c∫ 1

0
ze−1 (1− z)b−1

(
1 +

(1− γ)uy
γx

z

)f (
1− (1− γ)uy

γ (ux − x) + (1− γ)uy
z

)c
dz.

(B.142)

Comparing this equation with Equation B.135, the following correspondences can be made:

λ = e, (B.143)

µ = b, (B.144)

ρ = −f, (B.145)

σ = −c, (B.146)

u = −(1− γ)uy
γx

, (B.147)

v =
(1− γ)uy

γ (ux − x) + (1− γ)uy
, (B.148)

which means that

gII,y = (uy)
e+b−1 (γx)f (γ (ux − x) + (1− γ)uy)

c

B (b, e)F1

(
e,−f,−c, e+ b;−(1− γ)uy

γx
,

(1− γ)uy
γ (ux − x) + (1− γ)uy

)
.

(B.149)

This result can be inserted into the equation for gII to get

gII = (uy)
e+b−1B (b, e) (γ)f

∫ ux

0
xd−1 (ux − x)a−1 (x)f (γ (ux − x) + (1− γ)uy)

c

F1

(
e,−f,−c, e+ b;−(1− γ)uy

γx
,

(1− γ)uy
γ (ux − x) + (1− γ)uy

)
dx.

(B.150)

After a little more clean up,

gII = ue+b−1
y B (b, e) γf

∫ ux

0
xd+f−1 (ux − x)a−1 (γ (ux − x) + (1− γ)uy)

c

F1

(
e,−f,−c, e+ b;−(1− γ)uy

γx
,

(1− γ)uy
γ (ux − x) + (1− γ)uy

)
dx.

(B.151)

It is the case that when f and c are negative integers, the F1 function is a finite sum of
polynomials with Pochhammer symbols. From Wolfram [15],

(a)n =
(−1)n (−a)!

(−a− n)!
; a ≤ 0, n ≤ −a, (B.152)
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or with replacement of the negative a with a positive s,

(−s)n =
(−1)n (s)!

(s− n)!
=

(−1)n Γ (s+ 1)

Γ (s− n+ 1)
; s ≥ 0, n ≤ s. (B.153)

When n > s, the result is zero, which terminates the summation. This leads to F1 being a finite
sum of polynomials. For the specific case here,

F1 (e,−f,−c, e+ b;−x, y) =

f∑
m=0

c∑
n=0

(e)m+n Γ (f + 1) Γ (c+ 1)

(e+ b)m+n Γ (f −m+ 1) Γ (c− n+ 1)
xm (−y)n . (B.154)

The integral gII is now

gII = (uy)
e+b−1B (b, e) γf

∫ ux

0
xd+f−1 (ux − x)a−1 (γ (ux − x) + (1− γ)uy)

c×

f∑
m=0

c∑
n=0

(e)m+n Γ (f + 1) Γ (c+ 1)

(e+ b)m+n Γ (f −m+ 1) Γ (c− n+ 1)
×(

(1− γ)uy
γx

)m(
− (1− γ)uy
γ (ux − x) + (1− γ)uy

)n
dx.

(B.155)

The summations can be moved outside the integral and terms rearranged to move a number of
them outside the integral,

gII = (uy)
e+b−1B (b, e) γf

f∑
m=0

c∑
n=0

(e)m+n Γ (f + 1) Γ (c+ 1)

(e+ b)m+n Γ (f −m+ 1) Γ (c− n+ 1)
×

(−1)n ((1− γ)uy)
m+n γ−m

∫ ux

0
xd+f−m−1 (ux − x)a−1 (γ (ux − x) + (1− γ)uy)

c−n dx.

(B.156)

The remaining integral can be represented with

gII,x = (−γ)c−n
∫ ux

0
xd+f−m−1 (ux − x)a−1

(
x−

(
ux +

1− γ
γ

uy

))c−n
dx. (B.157)

This integral can be reformulated using the replacement

x = uxz. (B.158)

The integral is then

gII,z = (−γ)c−n
∫ 1

0
ud+f−m−1
x zd+f−m−1ua−1

x (1− z)a−1

(
uxz −

(
ux +

1− γ
γ

uy

))c−n
uxdz.

(B.159)
Extract the ux terms to get

gII,z = (−γ)c−n ud+f+a+c−m−n−1
x

∫ 1

0
zd+f−m−1 (1− z)a−1

(
z −

(
1 +

1− γ
γux

uy

))c−n
dz. (B.160)
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Reformat and pull out a multiplicative constant from the last term to get

gII,z = (−γ)c−n ud+f+a+c−m−n−1
x

(
−
(
γux + (1− γ)uy

γux

))c−n
×∫ 1

0
zd+f−m−1 (1− z)a−1

(
1−

(
γux

γux + (1− γ)uy

)
z

)c−n
dz.

(B.161)

Cancel some terms to get

gII,z = ud+f+a−m−1
x (γux + (1− γ)uy)

c−n×∫ 1

0
zd+f−m−1 (1− z)a−1

(
1−

(
γux

γux + (1− γ)uy

)
z

)c−n
dz.

(B.162)

The integral can now be solved with Gradshteyn and Ryzhik 3.197.3 [13] to get∫ 1

0
xλ−1 (1− x)µ−1 (1− β′x)−νdx = B (λ, µ) 2F1

(
ν, λ;λ+ µ;β′

)
[
Re λ > 0,Re µ > 0,

∣∣β′∣∣ < 1
]
.

(B.163)

The mapping is

λ = d+ f −m, (B.164)

µ = a, (B.165)

ν = − (c− n) , (B.166)

β′ =

(
γux

γux + (1− γ)uy

)
, (B.167)

so

gII,z = ud+f+a−m−1
x (γux + (1− γ)uy)

c−n×

B (d+ f −m, a) 2F1

(
− (c− n) , d+ f −m; d+ f −m+ a;

(
γux

γux + (1− γ)uy

))
.

(B.168)

The result of the integration can be inserted back into the larger equation to give

gII = ue+b−1
y B (b, e) γf

f∑
m=0

c∑
n=0

(e)m+n Γ (f + 1) Γ (c+ 1)

(e+ b)m+n Γ (f −m+ 1) Γ (c− n+ 1)
×

(−1)n ((1− γ)uy)
m+n γ−m (γux + (1− γ)uy)

c−n ua+d+f−m−1
x B (a, d+ f −m)×

2F1

(
− (c− n) , d+ f −m; a+ d+ f −m;

γux
γux + (1− γ)uy

)
.

(B.169)

The series expansion of 2F1 is

2F1 (a, b; c; z) =

∞∑
p=0

(a)p (b)p
(c)p

xp

p!
. (B.170)

97



When a is a negative integer,

2F1 (a, b; c; z) =

|a|∑
p=0

(−1)p
(
|a|
p

)
(b)p
(c)p

xp. (B.171)

Insert this function into Equation B.169 to get

gII = ue+b−1
y B (b, e) γf

f∑
m=0

c∑
n=0

(e)m+n Γ (f + 1) Γ (c+ 1)

(e+ b)m+n Γ (f −m+ 1) Γ (c− n+ 1)
×

(−1)n ((1− γ)uy)
m+n γ−m (γux + (1− γ)uy)

c−n ua+d+f−m−1
x B (a, d+ f −m)×

c−n∑
p=0

(−1)p
(
c− n
p

)
(d+ f −m)p

(a+ d+ f −m)p

(
γux

γux + (1− γ)uy

)p
.

(B.172)

Collect terms and reorganize to get

gII (a, b, c, d, e, f, γ, ux, uy) = B (b, e)

f∑
m=0

B (a, d+ f −m)
Γ (f + 1)

Γ (f −m+ 1)
×

c∑
n=0

(−1)n
(e)m+n Γ (c+ 1)

(e+ b)m+n Γ (c− n+ 1)
(1− γ)m+n×

c−n∑
p=0

(−1)p
(
c− n
p

)
(d+ f −m)p

(a+ d+ f −m)p
γf−m+p×

ua+d+f−m+p−1
x ub+e+m+n−1

y (γux + (1− γ)uy)
c−n−p .

(B.173)

In this arrangement, there are three terms in ux and uy, similar to the starting equa-
tion (B.134) for the general integral for gII , but with different exponents.

Expand everything into gamma functions:

gII (a, b, c, d, e, f, γ, ux, uy) =
Γ (b) Γ (e)

Γ (b+ e)

f∑
m=0

Γ (a) Γ (d+ f −m)

Γ (a+ d+ f −m)

Γ (f + 1)

Γ (f −m+ 1)
×

c∑
n=0

(−1)n
Γ (e+m+ n) Γ (b+ e) Γ (c+ 1)

Γ (e) Γ (b+ e+m+ n) Γ (c− n+ 1)
(1− γ)m+n×

c−n∑
p=0

(−1)p
Γ (c− n+ 1)

Γ (p+ 1) Γ (c− n− p+ 1)
×

Γ (d+ f −m+ p) Γ (a+ d+ f −m)

Γ (d+ f −m) Γ (a+ d+ f −m+ p)
×

γf−m+pua+d+f−m+p−1
x ub+e+m+n−1

y (γux + (1− γ)uy)
c−n−p .

(B.174)
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Delete common terms to get

gII (a, b, c, d, e, f, γ, ux, uy) =

f∑
m=0

Γ (f + 1)

Γ (f −m+ 1)
×

c∑
n=0

(−1)n
Γ (b) Γ (e+m+ n) Γ (c+ 1)

Γ (b+ e+m+ n)
(1− γ)m+n×

c−n∑
p=0

(−1)p
1

Γ (p+ 1) Γ (c− n− p+ 1)

Γ (a) Γ (d+ f −m+ p)

Γ (a+ d+ f −m+ p)
γf−m+p×

ua+d+f−m+p−1
x ub+e+m+n−1

y (γux + (1− γ)uy)
c−n−p .

(B.175)

Replace some terms with beta functions:

gII (a, b, c, d, e, f, γ, ux, uy) =

f∑
m=0

Γ (f + 1)

Γ (f −m+ 1)
×

c∑
n=0

(−1)nB (b, e+m+ n) (1− γ)m+n×

c−n∑
p=0

(−1)pB (a, d+ f −m+ p)
Γ (c+ 1)

Γ (p+ 1) Γ (c− n− p+ 1)
γf−m+p×

ua+d+f−m+p−1
x ub+e+m+n−1

y (γux + (1− γ)uy)
c−n−p .

(B.176)

B.5.4 Reversed Order of Integration

The order of integration for gII could be reversed, with integration over x performed be-
fore integration over y. The result can be determined from Equation B.174 with the following
substitutions:

a ↔ b, (B.177)

d ↔ e, (B.178)

ux ↔ uy, (B.179)

γ ↔ 1− γ, (B.180)

which means that gII can also be written as

gII (a, b, c, d, e, f, γ, ux, uy) =

f∑
m=0

Γ (f + 1)

Γ (f −m+ 1)
×

c∑
n=0

(−1)nB (a, d+m+ n) (γ)m+n×

c−n∑
p=0

(−1)pB (b, e+ f −m+ p)
Γ (c+ 1)

Γ (p+ 1) Γ (c− n− p+ 1)
(1− γ)f−m+p×

ub+e+f−m+p−1
y ua+d+m+n−1

x (γux + (1− γ)uy)
c−n−p .

(B.181)
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B.5.5 General Integral II Expanded Over a Probability Simplex

As with general integral GI , general integral GII can be expanded to an integration over a
probability simplex. The general integral is of the form of

GII (aaa,bbb, ccc) =

∫
Θx

∫
Θy

k∏
i=1

xxxaaai−1
i yyybbbi−1

i (γxxxi + (1− γ)yyyi)
ccci dΘxdΘy, (B.182)

with the same conditions as for general integral I in Equations B.122, which means that both

xxxk = 1−
k−1∑
i=1

xxxi, (B.183)

yyyk = 1−
k−1∑
i=1

yyyi. (B.184)

As in Equations B.124 through B.126, the following variables can be defined:

uuuxxxj = 1−
j−1∑
i=1

xxxj ; j ∈ {1, 2, 3, · · · , k}, (B.185)

uuuyyyj = 1−
j−1∑
i=1

yyyj ; j ∈ {1, 2, 3, · · · , k}, (B.186)

which both have the relationships

uuuxxx1 = 1; [j = 1] , (B.187)

uuuxxxj = uuuxxxj−1 − xxxj ; [j ∈ {2, 3, 4, · · · , k}] , (B.188)

uuuyyy1 = 1; [j = 1] , (B.189)

uuuyyyj = uuuyyyj−1 − yyyj ; [j ∈ {2, 3, 4, · · · , k}] . (B.190)

The integral can now be written as

GII =

∫
Θxxxk−2

∫
Θyyyk−2

k−2∏
i=1

xxxaaai−1
i yyybbbi−1

i (γxxxi + (1− γ)yyyi)
ccci ×∫ uuuxxxk−1

0

∫ uuuyyyk−1

0
xxx
aaak−1−1
k−1 yyy

bbbk−1−1
k−1 (γxxxk−1 + (1− γ)yyyk−1)ccck−1 ×(

uuuxxxk−1
− xxxk−1

)aaak−1 (
uuuyyyk−1

− yyyk−1

)bbbk−1×(
γ
(
uuuxxxk−1

− xxxk−1

)
+ (1− γ)

(
uuuyyyk−1

− yyyk−1

))ccck dxxxk−1dyyyk−1dΘxxxk−2
dΘyyyk−2

,

(B.191)

where the integrals over xxxk and yyyk are integrals of delta functions with values that are represented
as uuuxxxk−1

−xxxk−1 and uuuyyyk−1
−yyyk−1, which follows from Equations B.185 through B.190. This means
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that

GII =

∫
Θxxxk−2

∫
Θyyyk−2

k−2∏
i=1

xxxaaai−1
i pbbbi−1

yyyi (γxxxi + (1− γ)yyyi)
ccci ×

gII
(
aaak, bbbk, ccck, aaak−1, bbbk−1, ccck−1,uuuxxxk−1

,uuuyyyk−1

)
dΘxxxk−2

dΘyyyk−2
,

(B.192)

where gII is defined in Equation B.174, provided in Appendix B.5.3.

Equation B.174 can be used to expand out the gII term

GII =

ccck−1∑
mk−1=0

Γ (ccck−1 + 1)

Γ (ccck−1 −mk−1 + 1)
×

ccck∑
nk−1=0

(−1)nk−1 B (bbbk, bbbk−1 +mk−1 + nk−1) (1− γ)mk−1+nk−1 ×

ccck−nk−1∑
pk−1=0

(−1)pk−1B (aaak, aaak−1 + aaak−1 −mk−1 + pk−1)×

Γ (ccck + 1)

Γ (pk−1 + 1) Γ (ccck − nk−1 − pk−1 + 1)
γccck−1−mk−1+pk−1×∫

Θxxxk−2

∫
Θyyyk−2

k−2∏
i=1

xxxaaaii yyy
bbbi
i (γxxxi + (1− γ)yyyi)

ccci ×

uuu
aaak+aaak−1+ccck−1−mk−1+pk−1−1
xxxk−1

uuu
bbbk+bbbk−1+mk−1+nk−1−1
yyyk−1

×(
γuuuxxxk−1

+ (1− γ)uuuyyyk−1

)ccck−nk−1−pk−1 dΘxxxk−2
dΘyyyk−2

.

(B.193)

A double integral in xxxk−2 and yyyk−2 can be completed with the expansions in Equations B.188
and B.190. The general form of the result is similar to that of gII , but with different values for a′,
b′, c′, d′, e′, and f ′, where the prime symbol indicates parameters in gII . The next double integral
has become more complex with the accumulation of terms from k:

a′k−2 = aaak + aaak−1 + ccck−1 −mk−1 + pk−1, (B.194)

b′k−2 = bbbk + bbbk−1 +mk−1 + nk−1, (B.195)

c′k−2 = ccck − nk−1 − pk−1, (B.196)

d′k−2 = aaak−2, (B.197)

e′k−2 = bbbk−2, (B.198)

f ′k−2 = ccck−2. (B.199)

For later compactness of notation, it is convenient to define the following variables,

mk = 0, (B.200)

nk = 0, (B.201)

pk = 0. (B.202)
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As the series of nested double integral progresses, the terms for each level of gIIk−l are, in general,
for 1 ≤ l ≤ k − 1:

a′k−l =

 k∑
q=k−l+1

aaaq

+

 k−1∑
q=k−l+1

cccq −mq + pq

 , (B.203)

b′k−l =
k∑

q=k−l+1

bbbq +mq + nq, (B.204)

c′k−l = ccck −

 k∑
q=k−l+1

nq + pq

 , (B.205)

d′k−l = aaak−l, (B.206)

e′k−l = bbbk−l, (B.207)

f ′k−l = ccck−l. (B.208)

Another definition for the recursive components for the condition 2 ≤ l ≤ k − 1 is

a′k−l = a′k−l+1 + d′k−l+1 + f ′k−l+1 −mk−l+1 + pk−l+1, (B.209)

b′k−l = b′k−l+1 + e′k−l+1 +mk−l+1 + nk−l+1, (B.210)

c′k−l = c′k−l+1 − nk−l+1 − pk−l+1. (B.211)

These are used later to simplify the result of the integration.

When l = k − 1, uuuxxx1 = 1 and uuuyyy1 = 1, the full integral can be cast into a series of nested
triple sums containing the product of terms collected from the nested double integrals,

GII =

f ′k−1∑
mk−1=0

c′k−1∑
nk−1=0

c′k−1−nk−1∑
pk−1=0

· · ·
f ′1∑

m1=0

c′1∑
n1=0

c′1−n1∑
p1=0

×

k−1∏
r=1

Γ (f ′r + 1)

Γ (f ′r −mr + 1)
×

(−1)nr B
(
b′r, e

′
r +mr + nr

)
(1− γ)mr+nr ×

(−1)prB
(
a′r, d

′
r + f ′r −mr + pr

) Γ (c′r + 1)

Γ (pr + 1) Γ (c′r − nr − pr + 1)
γf
′
r−mr+pr .

(B.212)
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Products of constants raised to powers involving r can be converted to constants raised to
powers that are sums of terms involving r,

GII =

f ′k−1∑
mk−1=0

c′k−1∑
nk−1=0

c′k−1−nk−1∑
pk−1=0

· · ·
f ′1∑

m1=0

c′1∑
n1=0

c′1−n1∑
p1=0

×

(−1)
∑k−1
r=1 nr+pr γ

∑k−1
r=1 f

′
r−mr+pr (1− γ)

∑k−1
r=1 mr+nr ×

k−1∏
r=1

Γ (f ′r + 1)

Γ (f ′r −mr + 1)
B
(
b′r, e

′
r +mr + nr

)
×

B
(
a′r, d

′
r + f ′r −mr + pr

) Γ (c′r + 1)

Γ (pr + 1) Γ (c′r − nr − pr + 1)
.

(B.213)

There is an opportunity to cancel some of the Γ terms in the beta functions and in the
Γ functions associated with cccr across different values of r. The product is then

k−1∏
r=1

B
(
b′r, e

′
r +mr + nr

)
=

Γ (b′1) Γ (e′1 +m1 + n1)

Γ (b′1 + e′1 +m1 + n1)

Γ (b′2) Γ (e′2 +m2 + n2)

Γ (b′2 + e′2 +m2 + n2)
· · ·

Γ
(
b′k−2

)
Γ
(
e′k−2 +mk−2 + nk−2

)
Γ
(
b′k−2 + e′k−2 +mk−2 + nk−2

) Γ
(
b′k−1

)
Γ
(
e′k−1 +mk−1 + nk−1

)
Γ
(
b′k−1 + e′k−1 +mk−1 + nk−1

) .
(B.214)

Equation B.210 can be used to expand terms so that pairs of Γ functions will cancel down the chain
of expanded terms,

k−1∏
r=1

B
(
b′r, e

′
r +mr + nr

)
=

Γ (b′2 + e′2 +m2 + n2) Γ (e′1 +m1 + n1)

Γ (b′1 + e′1 +m1 + n1)

Γ (b′3 + e′3 +m3 + n3) Γ (e′2 +m2 + n2)

Γ (b′2 + e′2 +m2 + n2)
· · ·

Γ
(
b′k−1 + e′k−1 +mk−1 + nk−1

)
Γ
(
e′k−2 +mk−2 + nk−2

)
Γ
(
b′k−2 + e′k−2 +mk−2 + nk−2

)
Γ
(
b′k−1

)
Γ
(
e′k−1 +mk−1 + nk−1

)
Γ
(
b′k−1 + e′k−1 +mk−1 + nk−1

) .

(B.215)

Cancel the common terms between numerators and denominators to get

k−1∏
r=1

B
(
b′r, e

′
r +mr + nr

)
=

Γ (e′1 +m1 + n1)

Γ (b′1 + e′1 +m1 + n1)

Γ
(
e′2 +m2 + n2

)
· · ·

Γ
(
e′k−2 +mk−2 + nk−2

)
Γ
(
b′k−1

)
Γ
(
e′k−1 +mk−1 + nk−1

)
.

(B.216)
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Use Equations B.204 and B.207 to get b′1 as a sum of the counts bbbr and summation terms mr and
nr to get

k−1∏
r=1

B
(
b′r, e

′
r +mr + nr

)
=

∏k
r=1 Γ (bbbr +mr + nr)

Γ
(∑k

r=1 bbbr +mr + nr

) . (B.217)

A similar result holds for the product of B (a′r, d
′
r + f ′r −mr + pr):

k−1∏
r=1

B
(
a′r, d

′
r + f ′r −mr + pr

)
=

Γ (a′1) Γ (d′1 + f ′1 −m1 + p1)

Γ (a′1 + d′1 + f ′1 −m1 + p1)

Γ (a′2) Γ (d′2 + f ′2 −m2 + p2)

Γ (a′2 + d′2 + f ′2 −m2 + p2)
· · ·

Γ
(
a′k−2

)
Γ
(
d′k−2 + f ′k−2 −mk−2 + pk−2

)
Γ
(
a′k−2 + d′k−2 + f ′k−2 −mk−2 + pk−2

)
Γ
(
a′k−1

)
Γ
(
d′k−1 + f ′k−1 −mk−1 + pk−1

)
Γ
(
a′k−1 + d′k−1 + f ′k−1 −mk−1 + pk−1

) .
(B.218)

Equation B.209 is used to repeat a similar cancellation for the product of beta functions involving
a′, d′, and f ′, which results in

k−1∏
r=1

B
(
a′r, d

′
r + f ′r −mr + pr

)
=

Γ (d′1 + f ′1 −m1 + p1)

Γ (a′1 + d′1 + f ′1 −m1 + p1)
Γ
(
d′2 + f ′2 −m2 + p2

)
· · ·

Γ
(
d′k−2 + f ′k−2 −mk−2 + pk−2

)
Γ
(
a′k−1

)
Γ
(
d′k−1 + f ′k−1 −mk−1 + pk−1

)
.

(B.219)

Replace the ellipsis-implied product with an explicit product representation to get

k−1∏
r=1

B
(
a′r, d

′
r + f ′r −mr + pr

)
=

Γ
(
a′k−1

)∏k−1
q=1 Γ

(
d′q + f ′q −mq + pq

)
Γ (a′1 + d′1 + f ′1 −m1 + p1)

. (B.220)

Replace the prime variables with their unprimed equivalences to get

k−1∏
r=1

B
(
a′r, d

′
r + f ′r −mr + pr

)
=

Γ (aaak)
∏k−1
q=1 Γ (aaaq + cccq −mq + pq)

Γ
((∑k

q=1 aaaq

)
+
(∑k−1

q=1 cccq −mq + pq

)) , (B.221)

which is also

k−1∏
r=1

B
(
a′r, d

′
r + f ′r −mr + pr

)
=

Γ (aaak)
∏k−1
q=1 Γ (aaaq + cccq −mq + pq)

Γ
(
aaak +

(∑k−1
q=1 aaaq + cccq −mq + pq

)) . (B.222)

104



The ratio of Γ terms involving c′ can be cancelled in a similar manner to get

k−1∏
r=1

Γ (c′r + 1)

Γ (pr + 1) Γ (c′r − nr − pr + 1)
=

Γ (c′1 + 1)

Γ (p1 + 1) Γ (c′1 − n1 − p1 + 1)

Γ (c′2 + 1)

Γ (p2 + 1) Γ (c′2 − n2 − p2 + 1)

· · ·
Γ
(
c′k−2 + 1

)
Γ (pk−2 + 1) Γ

(
c′k−2 − nk−2 − pk−2 + 1

)
Γ
(
c′k−1 + 1

)
Γ (pk−1 + 1) Γ

(
c′k−1 − nk−1 − pk−1 + 1

) .
(B.223)

Equation B.211 is used to cancel terms to get

k−1∏
r=1

Γ (c′r + 1)

Γ (pr + 1) Γ (c′r − nr − pr + 1)
=

1

Γ (p1 + 1) Γ (c′1 − n1 − p1 + 1)

1

Γ (p2 + 1)

· · · 1

Γ (pk−2 + 1)

Γ
(
c′k−1 + 1

)
Γ (pk−1 + 1)

.

(B.224)

Replace the ellipsis-implied product with an explicit product symbol to get

k−1∏
r=1

Γ (c′r + 1)

Γ (pr + 1) Γ (c′r − nr − pr + 1)
=

Γ
(
c′k−1 + 1

)
Γ (c′1 − n1 − p1 + 1)

∏k−1
r=1 Γ (pr + 1)

. (B.225)

Replace the primed variables with their unprimed equivalences and use Equation B.205 to convert
ccc1 and related terms to a summation to get

k−1∏
r=1

Γ (c′r + 1)

Γ (pr + 1) Γ (c′r − nr − pr + 1)
=

Γ (ccck + 1)

Γ
(
ccck −

(∑k
q=1 nq + pq

)
+ 1
)∏k−1

r=1 Γ (pr + 1)
. (B.226)

The remaining Γ function ratio does not have cancellations, but can be converted to

k−1∏
r=1

Γ (f ′r + 1)

Γ (f ′r −mr + 1)
=

k−1∏
r=1

Γ (cccr + 1)

Γ (cccr −mr + 1)
, (B.227)

which has terms that match the ccck term in Equation B.226.
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Inserting all the revised terms results in

GII (aaa,bbb, ccc) =

ccck−1∑
mk−1=0

ccck∑
nk−1=0

ccck−nk−1∑
pk−1=0

( ccck−2∑
mk−2=0

ccck−nk−1−pk−1∑
nk−2=0

ccck−nk−1−pk−1−nk−2∑
pk−2=0

(
×

· · ·
( ccc1∑
m1=0

ccck−(
∑k−1
r=2 nr+pr)∑
n1=0

ccck−(
∑k−1
r=2 nr+pr)−n1∑
p1=0

×([
(−1)

∑k−1
r=1 nr+pr

]
γ
∑k−1
r=1 cccr−mr+pr (1− γ)

∑k−1
r=1 mr+nr ×

Γ (aaak)
∏k−1
q=1 Γ (aaaq + cccq −mq + pq)

Γ
(
aaak +

(∑k−1
q=1 aaaq + cccq −mq + pq

)) Γ (bbbk)
∏k−1
r=1 Γ (bbbr +mr + nr)

Γ
(
bbbk +

∑k−1
r=1 bbbr +mr + nr

)×
[
k−1∏
r=1

Γ (cccr + 1)

Γ (cccr −mr + 1)

]
Γ (ccck + 1)

Γ
(
ccck −

(∑k−1
q=1 nq + pq

)
+ 1
)∏k−1

r=1 Γ (pr + 1)

))
· · ·
))

.

(B.228)

B.5.6 General Integral III

This general integral is associated with the integration of mixing parameters for the multino-
mial merger and splitting probability estimates. In most cases, the mixing parameter γ has to be
treated as a nuisance parameter and eliminated by integration with a prior probability distribution
function, for example,

gIII =

∫ 1

0
γa (1− γ)b p (γ) dγ. (B.229)

An option is to use a Dirichlet distribution function for the prior distribution of γ, with parameters,
α1 and α2, which define the shape of the prior distribution. The function can be defined as

pγ =
γα1−1 (1− γ)α2−1

B (α1, α2)
. (B.230)

With the selection of a Dirichlet distribution function for the prior, gIII,D can be written as

gIII,D =

∫ 1

0

γa+α1−1 (1− γ)b+α2−1

B (α1, α2)
dγ. (B.231)

This is the integral equation that represents the beta function (Gradshteyn and Ryzhik 3.191.3 [13]):∫ 1

0
γa (1− γ)b dγ = B (a+ 1, b+ 1) . (B.232)

The result is then

gIII,D (a, b, α1, α2) =
B (a+ α1, b+ α2)

B (α1, α2)
. (B.233)

106



if α1 = 1 and α2 = 1, then the Dirichlet distribution function is a uniform distribution, and

gIII,U = B (a+ 1, b+ 1) , (B.234)

because B (1, 1) = 1.
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GLOSSARY

LL Lincoln Laboratory

CFB College Football

LI fifty-one

MIT Massachusetts Institute of Technology

NFL National Football League

ROC Receiver Operating Characteristics

109



This page intentionally left blank.



REFERENCES

[1] J. Przyborowski and H. Wilenski, “Homogeneity of results in testing samples from Poisson
series: With an application to testing clover seed for dodder,” Biometrika 31(3/4), 313–323
(1940).

[2] H. Jeffreys, Theory of Probability, Oxford University Press, 2nd ed. (1948).

[3] I.J. Good, “A Bayesian significance test for multinomial distributions,” Journal of the Royal
Statistical Society. Series B (Methodological) pp. 399–431 (1967).

[4] M. Gönen, W.O. Johnson, Y. Lu, and P.H. Westfall, “The Bayesian two-sample t test,” The
American Statistician 59(3), 252–257 (2005).

[5] J.N. Rouder, P.L. Speckman, D. Sun, R.D. Morey, and G. Iverson, “Bayesian t tests for
accepting and rejecting the null hypothesis,” Psychonomic Bulletin & Review 16(2), 225–237
(2009).

[6] Q.F. Gronau, A. Ly, and E.J. Wagenmakers, “Informed Bayesian t-tests,” arXiv preprint
arXiv:1704.02479 (2017).

[7] R. Sides, D. Kahle, and J. Stamey, “Bayesian sample size determination in two-sample Poisson
models,” Biometrics & Biostatistics International Journal 2(1), 00023 (2015).

[8] Z. Zhao, N. Tang, and Y. Li, “Sample-size determination for two independent binomial exper-
iments,” Journal of Systems Science and Complexity 24(5), 981 (2011).

[9] H. Jeffreys, Theory of Probability, Oxford University Press (1961).

[10] A. Etz, E.J. Wagenmakers, et al., “JBS Haldane’s contribution to the Bayes factor hypothesis
test,” Statistical Science 32(2), 313–329 (2017).

[11] R.A. Sides, Sample size determination for two sample binomial and Poisson data models based
on Bayesian decision theory., Ph.D. thesis, Baylor University (2013).

[12] S.H. Cha, “Comprehensive survey on distance/similarity measures between probability density
functions,” International Journal of Mathematical Models and Methods in Applied Sciences
1(4), 300–307 (2007).

[13] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, London: Academic
Press (1980).

[14] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Translated from the
Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Revised
from the seventh edition, Elsevier/Academic Press, Amsterdam (2015).

[15] E.W. Weisstein, “Pochhammer symbol, from Mathworld–A Wolfram Web Resource.” Wol-
fram.com (2016), URL http://mathworld.wolfram.com/PochhammerSymbol.html, [Online;
accessed 14 December 2018].

111

http://mathworld.wolfram.com/PochhammerSymbol.html


This page intentionally left blank.



This page intentionally left blank.


	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	 Introduction 
	 State of the Art
	 Bayes Factors for Group Similarity
	The Bayes Factor for a Poisson Similarity Test
	Bayes factors for Multinomial and Binomial Similarity 

	 Bayes Factors for Group Mergers and Splits
	The Bayes factor for Poisson Mergers
	Bayes Factor for Binomial Mergers 
	Multinomial Merger Bayes Factor

	 Results from Simulations
	Simulations to Test Similarity Metrics
	Simulations to Test Merger Bayes Factors for Poisson Distributions

	 Analysis of Reddit Data
	Change Detection in Subreddits
	Detection of Banned Subreddits Reconstituting in Other Subreddits

	 Summary
	Appendix A:  Derivation of Bayes Factors to Test the Similarity of Distributions
	Poisson Similarities
	Binomial and Multinomial Similarities

	Appendix B: Split/Merger Bayes Factors Derivations
	Poisson Mergers and Splits
	Poisson Bayes Factors including Changes in Generators Over Time
	Binomial Mergers and Splits
	Multinomial Mergers and Splits
	General Formulas for Double Integrals

	Glossary
	References



