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1 Summary

The Trusted and Resilient Mission Operation (TRMO) effort developed, integrated, and evaluated
software techniques for the trusted, resilient operation of a diverse set of vehicular cyber physi-
cal systems (CPS). Activities focused on resilient approaches that apply to multiple off-the-shelf
architectures, allowing an uncrewed autonomous vehicle (UAV) to demonstrate robust defensive
measures against would-be software-based attackers.

TRMO uses a combination of best-in-breed static and dynamic methods to create such a trusted,
resilient system. Before deployment, TRMO employs hardening, diversifying and rewriting tech-
niques to create, select, and deploy defensive variants of existing control software. In addition,
TRMO analyzes and models the correct behavior of the system and its invariants, establishing a
formal notion of trusted execution. TRMO separates trust monitoring and resiliency actions from
payload software; this can be done by leveraging existing secure operating systems or via a dual
controller architecture. When a trust policy violation is detected, a software repair is constructed
with respect to learned invariants and software simulations of indicative missions. Automated
software repairs increase system resiliency, allowing missions to continue in the face of software
defects and adversarial exploitation. During deployment, including after any repairs, the system is
continuously monitored.

The activities carried out under this effort include the following:

1. Demonstrating resilience and technological maturity on a commercially-available Intel x86-

based ground rover as well as a commercially-available ARM-based quadcopter.

2. Validating TRMO’s capability to support during-mission repairs to control software, with

resiliency actions completed in a five- to ten-minute timeframe.

3. Assessing the effectiveness of TRMO via multiple live demonstrations against indicative

cyberattacks furnished by a government-provided Red Team.

The research and evaluation activities described in this report span multiple years of project effort
during the Trusted and Resilient Systems program. TRMO brings together successful academic
and industrial researchers and ideas. These include repair techniques explored as part of a MURI
project, software diversity approaches showcased under the Helix! and Cyber Fault-tolerant Attack
Recovery? (CFAR) programs, and defensive technologies demonstrated at the Cyber Grand Chal-
lenge (CGC), among others. Team expertise includes formal methods (Kestrel Institute), adaptive
systems (Arizona State), binary defense (Virginia), program analysis and repair (Carnegie Mellon
and Michigan), and trust and integration (BBN Raytheon).

Ultimately, this report describes the development and measurement of a defensive system in
which vehicular control software is diversified, analyzed, and modeled before deployment in a
multi-controller or off-the-shelf system. Hardening and learned safety envelopes admit the detec-
tion of certain classes of cyberattacks and anomalies at runtime. A resiliency subsystem constructs
repairs, which are verified against key invariants and deployed mid-mission. The proposed tech-
niques apply to both Intel-based and ARM-based rovers and quadcopters. Evaluation metrics and
success criteria are evaluated on indicative attack scenarios furnished by a Red Team. In the final
Red Team evaluation of these defenses applied to 21 attacks against an ARM quadcopter, TRMO
detected 90% of attacks. In addition, TRMO constructed a repair for 62% of attacks, allowing the
vehicle to fight through and complete the mission successfully.

'Results produced under government contract FA9550-07-1-0532 and publicly available.
ZResults produced under government contract FA8750-15-C-0118 and publicly available.

Approved for Public Release; Distribution Unlimited.
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2 Introduction

The growing ubiquity of uncrewed autonomous systems has resulted in a wealth of interest from
the defense and academic communities. The Secretary of Defense has provided a roadmap for the
development of these systems, which goes beyond vehicles to include a specific focus on ground-
based sensors, processing, and communication [61].

There is increasing demand for systems that are both trusted (e.g., [22]) and resilient (e.g., [64])
in the face of unanticipated challenges. In this context, a resilient system recovers from — or
avoids — errors, attacks, trust policy violations or environmental challenges to complete its orig-
inal mission or a variant thereof [31]. A trusted system is one in which human operators have
confidence in the correct operation of the system, even if the resiliency actions change its software
or configuration during deployment.

One approach to resiliency anticipates possible problems a system could encounter and devises
pre-programmed responses. The DARPA High Assurance Cyber Military Systems (HACMS) [22]
program, which synthesizes control software for various uncrewed platforms, exemplifies this ap-
proach. Formal methods can provide trust through correctness, safety, and security guarantees, but
may not provide adaptive resiliency.

A second approach to providing resiliency focuses on adaptability through automated program
repair, binary rewriting, or runtime monitoring. Such black-box-guided adaptations do not neces-
sarily guarantee correctness, but often allow systems to automatically overcome errors or attacks,
have demonstrated resiliency to unknown attacks [5,23,46] and defects [43], and may sometimes
be partially validated post hoc.

The current state of the art, even for cyber-physical systems (CPS), is manual debugging, veri-
fication and validation (e.g,. [ 76]). A detected defect must be localized (e.g., [27]), and developers
must understand both the implementation and specification to identify changes to bring the cur-
rent implementation closer in line with the desired behavior. This process is time-consuming and
expensive.

This report describes the Trusted Resilient Mission Operation (TRMO) system architecture,
which focuses on efficient, trusted, resilient techniques that allow autonomous vehicles to “fight
through” an attack and continue a mission, possibly in a degraded mode of operation. This work
integrates a set of static and dynamic protective technologies for Intel- and ARM-based rover and
quadcopter platforms. This report presents evaluations of the maturity and technical readiness
our of techniques by applying them to extensive simulations and live demonstrations against Red
Team-provided cyberattack scenarios.

Technical Summary. This effort developed, integrated and evaluated techniques to provide trusted
and resilient operation for autonomous vehicle missions via a combination of static defenses, mod-
els and proofs as well as dynamic monitoring and repair. In the final Red Team evaluation using
an ARM quadcopter, TRMO detected 90% of attacks and constructed a repair for 62%, allowing
the vehicle to fight through and complete those mission successfully.

2.1 Background

The relevance of uncrewed autonomous vehicle systems and the desire for simultaneous trust and
resilience in such systems are central to this effort. We validate our approaches using ground-based
rover and aerial quadcopter exemplar systems.

Approved for Public Release; Distribution Unlimited.
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3 Methods, Assumptions, Procedures

The Trusted and Resilient Mission Operation system combines modeling, formal proof and hard-
ening with dynamic detection and repair actions to provide trusted, resilient autonomous vehicle
operation. We focus on readily-available commercial off-the-shelf (COTS) autonomous vehicles,
including both ground-based rovers and aerial quadcopters, assuming access to locomotion con-
trol software and the capability to add additional COTS hardware or leverage a secure operating
system.

3.1 Technical Approach

Figure 1 presents a high-level overview of the TRMO system architecture.
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Figure 1: Trusted and Resilient Mission Operation system architecture. Activities shown on the
left (Diversification and Hardening, Analysis and Modeling) are carried out before the mission.
During the mission, activities on the right (Continuous Monitoring, Code Repair) are performed.
The result is a deployed system that provides resiliency against certain classes of cyberattacks
while admitting operator trust. Team expertise and enabling technologies are highlighted.
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In summary, the four primary components include:

e Diversification and Hardening. Given indicative missions, we analyze and harden the lo-
comotion control software. At the static binary level, we harden software to defeat certain
classes of attacks (Section 3.3). Dynamically, we learn trusted envelopes for critical teleme-
try and runtime values (Section 3.4). At the static source code level, we learn key program
invariants that encode partial aspects of correctness (Section 3.6).

e Continuous Monitoring. During deployment, a second trusted controller or secure operat-
ing system is included with supervisory access to sensors and actuators. It detects mission
anomalies and policy violations (Section 3.4), and keeps the vehicle in a safe state while
applying platform-agnostic repair actions to the main controller.

e Code Repair. When a trust policy violation is detected, we use program-level techniques to
synthesize an adaptive repair action (Section 3.5). This includes dynamic evidence that the
post-repair mission remains within acceptable parameters (Section 3.4).

e Analysis and Modeling. In addition to dynamic resilience and measurement-based trust, we
employ formal proof techniques to provide trust in aspects of our system (Section 3.6).

3.2 System Assumptions

TRMO makes a number of assumptions about available resources, the scope of the system to be
defended, and the threat model describing incoming attacks.

First, TRMO assumes that the source code for the locomotion control software to be defended
is available. Many TRMO components can lift this assumption and operate on binaries, including
Diversification and Hardening, Code Repair, and Continuous Monitoring. However, certain other
activities, such as learning formal invariants that describe correctness, require access to the source
code. If the source code is not not available the resiliency provided by TRMO remains unchanged
but the evidence presented in support of operator trusted is weakened.

Second, TRMO assumes a threat model limited to a remote attacker exploiting a software
vulnerability. Signal jamming, GPS spoofing, and physical attacks are out of scope. We explicitly
consider and defend against a sensor-based attack during the evaluation, but the root cause of the
vulnerability was in the software processing the sensor data, rather than the physical hardware.
TRMO does not assume any cryptography, and must defend the system even when the attacker has
all relevant cryptographic keys or to has otherwise bypassed encryption.

Third, TRMO assumes a secured subcomponent from which to conduct analysis, modeling and
repair. This can either take the form of additional hardware with a more limited connection to the
outside world (a “dual-controller” solution we investigate and evaluation) or it can take the form of
an existing secured operating system, such as sel.4 [66], from which monitoring and repair actions
can be carried out. This work considers the integrity of the monitoring and repair components to
be an orthogonal problem, and direct attacks against them are out of scope.

3.3 Diversification and Hardening Component

The TRMO system architecture provides hardening and diversification capabilities via the Helix
family of technologies. The purpose of hardening and diversification is twofold. First, hardening
can entirely defeat certain classes of attacks, such as those based on certain low-level security

Approved for Public Release; Distribution Unlimited.
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exploits. Second, diversification can present a shifting attack surface: necessary parameters or
details learned by an attacker can be invalidated, increasing the work required to mount the attack
to impractical levels.

Helix Composable Modules

Migsion Profile [defenzes, diversificstion, fight-through resiliency)

STARS Binary Analysis
Engine

e.g.: function recowvery,

exception handling, object Hardened, diversified,

hi-through resillent,
layout, control and data flow- Zipr binary Egsumd transformed
graphs FEWTIter binaries

Figure 2: Helix architecture for transforming UAV binaries. Given a mission profile and input
binary, Helix generales a diversified set of functionally-equivalent and hardened binaries.

The Helix toolchain (see Figure 2) takes as input a binary and outputs a diversified set of
functionally-equivalent and hardened binaries [ 18,20, 32, 60]. A key central element of the Helix
architecture is its Intermediate Representation Database (IRDB). The IRDB stores a representation
of a binary and allows modification of this representation via a standard structured query language
{SQL) database interface. It also supports a clone operation for creating new duplicate versions of
this representation; this operation is critical for efficient diversity.

The first stage in the Helix pipeline performs a reverse-engineering pass using STARS Binary
Analysis Engine, and inserts the initial representation of the input binary into the IRDB. Helix
modules can then effect their desired transformations by modifying the state representation of
binaries stored in the IRDB using a high-level application programming interface (API) that pro-
vides abstractions for instructions, functions, data and control-flow information. The last stage in
the Helix pipeline, Zipr, emits an executable binary.

Helix supports the following composable transformations:

» Block-level Instruction Location Randomization (BILR). BILR randomizes the location of
00%+ of the instructions in a binary program. Any attack that relies on knowing the exact
location of a code address will most likely be thwarted (< 5-10% overhead, x86, ARM).

* Selective Control-Flow Integrity (SCFI). Helix infers the control-flow specification by reverse-
engineering the binary and rewrites the binary to enforce the inferred specification at run-
time. SCFI thwarts arc-injection attacks, i.e., return-to-lib, return-oriented programming,
and blind return-oriented programming attacks (< 12% overhead. x86).

Approved for Public Release; Distribution Unlimited.
5



e Heap Layout Transformation (HLX). HLX thwarts heap-based attacks, including double-
free attacks and attacks that target the control block of the standard heap library or otherwise
target the predictable layout of heap-allocated memory (< 5% overhead, x86, ARM).

e Stack Layout Transformation (SLX). SLX uses stack canaries to detect stack-smashing at-
tacks and inserts random padding into the stack frame, thereby adding entropy to the stack
layout (< 10% overhead, x86).

e Global Layout Transformation (GLX). GLX adds randomness to the layout of global vari-
ables (< 1% overhead, x86).

e Binary Auto-Repair Templates (BinART). BinART provides forward-error recovery capa-
bilities for well-known vulnerability patterns (< 1% overhead, x86).

The strength of binary diversification and hardening techniques depends heavily on the accu-
racy and precision of analysis results. Helixs philosophy can be informally described as a Binary
Hippocratic Oath, “thou shall do no harm”. As an over-aggressive transformation may result in
broken functionality, Helix errs on the side of caution. Thus, in places where analysis must be
conservative, Helix will transform with caution (e.g., BILR leaves 1% of instructions in place). In
places where high-confidence can be obtained, Helix will be more aggressive (e.g., BILR relocates
99% of instructions).

Table 1: Helix attack class coverage. Composing transformations provides defense-in-depth

capabilities.
BILR SLX HLX SCFI GLX BinART Composed
Code Injection
Attacks . . o ‘

Arc Injection
Attacks
(ROP, Blind ROP)

o o

o o
o o
O @ O O O

Legend: O No coverage © Partial Coverage @ Strong Coverage

Attacks

Data attacks

o0 O O
0O 0 O O
0O 0 O O

o
Buffer Overflow o
(o)
O

® OO0 o

Double free, use-
after-free

To thwart a wide-range of attacks, Helix transformations may be composed arbitrarily, pro-
viding defense-in-depth. Successful attacks must often rely on several conjunctive assumptions,
e.g., knowledge of a vulnerability point and knowledge of a target address. Invalidating any one*
of these assumptions is sufficient to thwart the attack. Anticipated attack classes covered by Helix
are shown in Table 1.
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3.3.1 Helix Deployment Scenarios

One goal of this effort is to provide the government with a robust and easy-to-use platform. The
Helix component has matured to the point where composing defenses is a one-line command. To
illustrate Helix’s ease-of-use, the following command takes as input a binary, /usr/bin/bc, and
outputs a transformed binary, bc . hel1i x, that is augmented with a combination of both hardening
and diversity transformations:

SHELIX /usr/bin/bc bc.helix -s slx=on -s scfi=on --backend zipr

Here the —-s s1lx=on option turns on the SLX transformation, the -s scfi=on option turns
on the SCFI transformation, and the ——backend zipr specifies the use of static rewriting for
laying out a diversified binary. The output binary bc . he11ix can be used as a drop-in replacement
for /usr/bin/bc as they are functionally equivalent on benign inputs.

In evaluations of TRMO, including both simulations and live demonstration, a Helix-generated
flight control program (i.e., ArduPilot) binary replaced the original.

System operators may wish to support different combinations of Helix transformations for
different binaries. In the tradeoff between security and performance, operators may be willing
to emphasize security above all other consideration for highly-critical binaries such as network-
facing servers (e.g. ,sshd, bind, httpd). A simple scheme for implementing such a policy
would be to create different directories to denote different configurations and then modify the de-
fault search path to prioritize binaries in a high-security directory over those in a medium-security
directory.

The Helix hardening architecture provides additional time and flexibility in the face of certain
classes of security of security attacks. Operators may choose to patch on their desired timeline
and at their full discretion. Once patched, operators may then re-apply Helix to re-protect and
re-diversify patched binaries.

While the primary evaluations of TRMO focus on embedded systems, there is also significant
interest in protecting cloud-, container- or virtual-machine backed software assets. In such a set-
ting, the process outlined above could be fully automated (Figure 3). Moreover, by periodically
refreshing the production of Helix binaries (with different random seeds), the government gains the
capability of deploying a practical and effective moving target defense, in which the attack surface
of deployed systems is both reduced (Helix hardening transformations) and shifted in time (Helix
diversifying transformations).

Approved for Public Release; Distribution Unlimited.
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Figure 3: Possible cloud-based deployment scenario: Helix generates diversified and hardened
containers.

3.3.2 New Capabilities Enabled by the Helix Platform

Research and evaluation efforts associated with this project resulted in multiple scientific advances
associated with diversification and hardening. We briefly report on five: (1) static rewriting for
exception handling in languages like C++; (2) “breadcrumbs” that provide information to repair
algorithms; (3) binary-level repairs of certain classes of defects; (4) binary enforcement of control-
flow integrity; and (5) efficient binary fuzz testing.

Zipr++ [35]. Highly robust, late-stage manipulation of arbitrary binaries to apply systemic changes
is difficult due to complex implementation techniques and the corresponding software structures.
Indeed, many binary rewriters have limitations that constrain their use. To the best of our knowl-
edge, no static binary rewriters handle applications that use exception handlers or stack unwinding—
a feature integral to programming languages such as C++, Ada, Common Lisp, ML, to name a few.
Without such support, transformations such as SLX that modify the stack layout, are not reliable
and may result in broken programs.

Zipr++, an extension to the base Zipr static rewriter used in Helix, enables the manipulation of
applications with exception handlers and tables, which are required for unwinding the stack. Un-
winding the stack is necessary for handling exceptions, object-oriented programs (invoking neces-
sary destructors), multi-threading (when a thread exits, destructors on the stack must be invoked),
and to support debuggers such as gdb, dbx, and 11db. For example, C++ is the source language for
the controller (ArduPilot) used in the evaluations of the TRMO system.

Academic papers on binary rewriting often leave support for exception handling information
as “future work” and understate the difficulty of actually transforming binaries with exception
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handling. To support the community, we have released 1ibehp,’ an open-source library for
parsing exception handling tables, which we hope will aid the community in improving static
rewriting technology.*

Repair
Process

i

Attack input Crash report
— >

XELIX

Figure 4: Helix lightweight monitoring (breadcrumbs) to inform the TRMO repair process.

Lightweight Breadcrumbs. The notion of lightweight “breadcrumbs” is to augment binaries
with the ability to record information as a binary executes. In the event of an attack, such informa-
tion can be extracted to aid accurate fault identification and localization activities (Figure 4). Such
breadcrumbs should be both generic, to allow transformations to record arbitrary information, and
lightweight, so as to not overtly impact normal operation. In the event of an attack, the infor-
mation contained in these lightweight breadcrumbs can be inspected to guide the repair process

(Section 3.5).
Return address I Return address

Stack canary

buffer(]

Figure 5: Stack-Layout Transformation (SLX): Relocating stack canary using breadcrumb infor-
mation. Buffer overflows into padded region without overwriting the relocated canary.

Consider the Stack Layout Transformation (SLX) which pads stack frames and uses stack
canaries to detect buffer overflows. A breadcrumb that records (1) the exact location of the canary

Jhttps://git.zephyr-software.com/opensrc/libehp
4GrammaTech, Inc. is an example of a third-party that has used 1ibehp and contributed code
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with respect to the stack frame; and (2) the enclosing function, can guide the repair process towards
solutions that include a bounds check near the vulnerable function, or a solution where the location
of the canary can be moved higher up in the padded region of the stack frame. As a common
vulnerability pattern is for a bounds check to be off by a small number of bytes, the approach
of relocating a canary may result in an attack to overflow harmlessly into the padded region, and
more importantly, allow for continued execution of the binary to achieve fight-through capabilities
(Figure 5).

To implement breadcrumbs, Helix provides tool support for transformation writers to record
arbitrary information in named global variables. The baseline cost of recording a breadcrumb is
near zero, i.e., it is the same as assigning a value to a global variable. In the event of an attack,
extracting breadcrumb information simply consists of searching core dumps for the name of the
relevant global variables.

Binary Auto-Repair Templates (BinART). Developers often employ unsafe programming con-
structs when using libraries. Such mistakes are sufficiently common that compilers will often warn
about them (e.g., alarming on misused format string APIs or unbounded string manipulation rou-
tines). Modern compilers will often substitute unsafe API calls with their safer counterparts. For
example, when performing copy operations on buffers with known sizes, some compilers will
automatically use the bounded versions of a library call, such as st rncpy instead of strcpy.
Moreover, the substituted versions will abort execution when they detect an out-of-bounds viola-
tion.

However, aborting execution and fail-stop semantics may result in unwanted software crashes
or reduced availability. To enable fight-through capabilities, Helix uses library interposition tech-
niques to intercept and wrap such calls. Whenever possible, instead of aborting execution, BinART
attempts to perform forward error recovery techniques, based on the semantics of each API call.
For string and buffer operations, Helix will clip copy operations to the specified buffer sizes to pre-
vent out-of-bounds writes. For C-string operations, Helix can be configured to terminate strings
with the requisite null byte terminator.

Note that such forward error recovery is not fully semantics preserving. This is the intention: as
with all repair techniques (Section 3.5), we desire the protected system’s behavior to be different on
malicious inputs (in that it should not exhibit the attacker-desired behavior). When using BinART,
we rely on extensive regression testing to validate baseline functionality on benign inputs.

Control-Flow Integrity (CFI). Control-flow integrity is a powerful technique to enforce the
property that the execution of a program conforms to its intended control-flow graph (CFG) spec-
ification. Such enforcement thwarts sophisticated arc-injection attacks, including (blind) return-
oriented programming attacks [12].

The challenge for Helix and other binary-based approaches is recovering the CFG precisely
using only the binary as input, and then enforcing the inferred CFG without incurring onerous
performance overheads. During the DARPA Cyber Grand Challenge (CGC), our team employed a
lightweight version of CFI and achieved the best defensive score, while staying within an accept-
able performance envelope [32,60].

For TRMO x86 applications, we deployed an enhanced, optimized version of CFI that worked
on 64-bit architectures, and resulted in more effective security-performance tradeoffs. This new
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CFI achieves higher performance for the same level of security, or higher levels of security for a
slight decrease in performance (Section 4.1.5).

ZAFL [33]. Fuzz testing is an automated approach to probing for software vulnerabilities, par-
ticularly security flaws, by executing a program on random inputs and monitoring for undesired
behavior [28,29]. The robustness and efficiency of Helix and its binary rewriting technology has
enabled fast binary fuzzing capabilities. In a separately-funded project, we have developed a He-
lix plugin to insert fuzzing instrumentation that is compatible with the state-of-the-art American
Fuzzy Lop (AFL) fuzzer [1]. AFL is one of the best-known and most effective fuzzing plat-
forms. Its bug-hunting successes include a multitude of severe vulnerabilities uncovered in well-
known and widely deployed applications and libraries, including Firefox, LibreOffice, OpenSSL
and OpenSSH [1].

american fuzzy lop 2.52b (bc.zafl)

process timing overall results
run time : @ days, @ hrs, @ min, 19 sec cycles done :
last new path : @ days, @ hrs, @ min, @ sec total paths : 310
last uniq crash : none seen yet uniq crashes : 0
last uniq hang : none seen yet uniq hangs : 0

cycle progress map coverage
now processing : 6 (1.94%) map density : 0.60% / 1.79%
paths timed out : 0 (0.00%) count coverage : 3.38 bits/tuple
stage progress ——  — findings in depth
now trying : havoc favored paths : 45 (14.52%)
stage execs : 16.3k/32.8k (49.60%) new edges on : 85 (27.42%)
total execs : 51.9k total crashes : @ (@ unique)
exec speed : 2748/sec total tmouts : @ (@ unique)
fuzzing strategy yields path geometry
bit flips : 9/32, 6/30, 3/26 levels : 3
byte flips : 0/4, 1/2, 0/0 pending : 309
arithmetics : 8/224, 0/50, 0/0 pend fav : 45
known ints : 1/18, 3/56, 0/0 own finds : 309
dictionary : 0/0, 0/0, 0/0 imported : n/a
havoc : 255/32.8k, ©0/0 stability : 100.00%
trim : n/a, 0.00%
[cpu00d: 8%]

Figure 6: Novel Helix fuzz testing integration. An AFL standard dashboard shows ZAFL compat-
ibility.

The standard AFL workflow consists of modifying the build system to use a special version
of the compiler (e.g., clang or gcc), and thus requires source code availability. The modified
compiler inserts instrumentation to guide the fuzzing process. Our Zipr-supported binary fuzzing
framework, ZAFL, inserts the same instrumentation directly into binaries. The resulting binaries
are 100% AFL compatible (Figure 6). While AFL provides binary support using QEMU [4], it is
highly inefficient. To the best of our knowledge, ZAFL is the fastest binary fuzzer available for the
AFL ecosystem (Section 4.1.6).
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The current TRMO software stack provides proactive diversity and proactive hardening, but
reactive repair capabilities. Attackers already use fuzzing techniques to search for exploitable bugs.
The further development of ZAFL holds the promise for employing fuzzing towards defensive
purposes and enabling proactive repair capabilities. ZAFL enables a new paradigm where UAV
binaries are actively fuzzed to reveal latent security-critical bugs which can then be repaired by
TRMO automatically, prior to mission deployment.

3.3.3 Applying Helix to ARM Systems

Prior to TRMO, the Helix toolchain was supported on x86-32 and x86-64, and was primarily
targeted towards laptops, desktops, and servers. As part of the TRMO effort, Helix was expanded
to support vehicular, Internet of Things (IOT), and robotics platforms. In particular, we extended
the core Helix toolchain to support ARM-32 and ARM-64 platforms:

e ARM instructions are fixed length,

e ARM supports run-time mode switching between ARM and Thumb mode,

Unlike x86 where the program counter is not directly accessible, ARM provides direct read
and write access,

e ARM supports conditional instructions,
e ARM enforces strict code alignment, and

o ARM intermingles data in the code section.

To handle such issues, as well as new issues that will inevitably arise when incorporating a new
architecture (e.g., branch delay slots), we refactored the code base for Helix to isolate architectural
dependencies, as well as use the Capstone disassembly framework [3] as it supports a plethora
of architectures. Insights gained from the TRMO effort allowed the Helix toolchain to be subse-
quently ported to the Microprocessor without Interlocked Pipelined Stages (MIPS) architecture in
only a few days.

3.4 Analysis and Deployment Component

Having described our technical approach to proactive hardening and diversification, in this sub-
section we describe our technical approach to continuous monitoring and runtime verification. At
a high level, the goal is to build a model of trusted system behavior and immediately detect any
subsequent deviations from that trusted operating envelope.

We believe trusted mission operations, especially those involving UAVs, must have a strong
element of continuous monitoring and runtime verification. First, unlike traditional computer con-
trolled cyber-physical systems, these systems are mobile and typically operate outside the line of
sight of mission operators. The mission operators need to rely on telemetry and sensor data that
the systems report remotely, even though the operators may not be computer or systems experts.
Second, missions involving UAVs are usually conducted in contested spaces, where these systems
are highly likely to encounter adversarial activities. In this project, we considered sophisticated
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cyber attacks that attempt to take control of the system. Physical attacks and EM attacks such
as jamming were not considered (Section 3.2). Nevertheless, without a continuous signal during
the mission that the system is performing as expected, especially when under cyber attacks, it is
very hard to claim trusted mission operation. Third, even without cyber attacks, relying solely
on pre-mission and pre-deployment tests and analyses to establish that the system will perform
in a trustworthy manner is risky. Our ability to formally prove properties of software and create
software that is correct by construction, while promising (Section 3.6) is limited. Uncrewed sys-
tems involve multiple fairly complex subsystems (such as the flight controller, the payload sensors,
information dissemination and retrieval systems) that work in a collaborative manner reacting to
external and internal events. Not all components are tested equally, and some of these components
may have questionable origin and provenance. Therefore, there is considerable risk in entrusting
critical data and operations on these systems.

While mission operators may not understand the internal states and workflows of the various
computations which can be numerous as well as complex, they typically have a good idea about
the conditions or situations that should not happen in a successful mission. Consequently, trusted
mission operation with uncrewed systems requires a meaningful way to reinforce to the mission
operators not only the absence of such undesired conditions but also the integrity of such reports,
including faithfully reporting the true occurrence of such events. This serves as our final motivation
for continuous monitoring and runtime verification. In the context of a trusted and resilient system,
aviolation of trust — when continuous monitoring does report an event or a condition that indicates
something that is not expected to arise in a mission — can be used to trigger resiliency techniques
such as recovery and automated repair (Section 3.5).

We present the continuous monitoring and runtime verification component of the overall TRMO
integrated architecture. This component leverages the Continuous and Measurable Trust (CMT)
technology developed by BBN under AFRL sponsorship.

3.4.1 Opverall Approach and Design Goals

Monitoring and runtime verification comes with its own technical challenges. In particular, we
consider the overhead of monitoring, the determination of a baseline model, and the integrity of
monitoring.

First, depending on what is being monitored, where, and how, monitoring can slow down the
computation being monitored. For instance, if monitoring is performed by a scheduled task, that
very monitoring task will now compete for CPU time with other tasks. Monitoring a process’s state
may require pausing the process and copying the memory. If the probes that collect data from the
system are also responsible for analyzing or sending the probed data, the monitored computation
process or thread can be blocked non-deterministically. In the context of a flight controller or
other onboard computation, large or unpredictable delays introduced by monitoring can disrupt
the timing characteristics of the system’s operation. For the controller, where timely response
is crucial for maintaining a stable flight, this may lead the vehicle to erroneous paths. Delay in
disseminating a crucial sensed information may be the difference between mission success and
failure. Therefore, one of our key design goal was to minimize the delay introduced by monitoring
(i.e., on the monitored processes). We achieved this goal by monitoring only what is needed for
runtime verification, returning the control to the main computation as soon as the monitored data is
collected, reusing what the systems are already monitoring and reporting (such as telemetry data),
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and leveraging efficient support for instrumentation, snap-shotting and tracing that are available in
modern OSes such as Linux.

Second, runtime verification assumes that there is a baseline model of some sort, possibly
expressed as invariants, that can be checked at run time. These models, embodied as checkable
mission-specific constraints or thresholds, are described in CMT as the mission’s trust policy,
and correspond to a multi-dimensional operating envelope that the mission operators can trust.
While the operating envelope that the mission operators can describe, understand, and trust is at
a mission-level (e.g., a description of how the vehicle should travel in space or how it should
behave if the battery runs low) the constraints and thresholds checked by runtime verification
are defined in terms of measurements and observations that can be collected from the system.
These constraints and thresholds are learned from data collected from sample runs of the mission
(including real runs, when possible, and simulations with hardware and software in the loop) with
heavy instrumentation and large numbers of probes watching the ongoing mission operation and
supporting computation. For instance, data from the sample runs may result in learned constraints
such that “in successful missions the vehicle exits waypoint 1 at an altitude of approximately 5
meters, heading approximately d degrees north, with speed of approximately s meters/hr, and has
y percentage of battery left”. Policies might also describe source program properties, such as
“in successful missions, there is no control or data flow between two subsystems S1 and 527, or
“only process P may access the folder F' that contains mission critical data”. Such constraints
and invariants may be soft — sample runs used in training may not be sufficiently diverse and
the real mission environment may encounter unexpected situations that may impact flight (such
as high wind) or impact battery usage (such as cold temperatures). Therefore, the verification of
these constraints at runtime needs to compensate for such differences. We typically addressed this
tension by introducing a statistical range to check against instead of concrete values for constraints
on physical behavior such as flight paths. For constraints and invariants on system execution and
I/O behavior we take a more nuanced approach, and start with a threat model that the mission
operators care about. We then consider the software architecture of the system and its dataflow
model. Together this approach narrows the focus of what we collect during training runs to only
critical components and paths that are most susceptible to attacks that the mission operators worry
about and are critical to the success of the mission.

Finally, if monitoring mechanism and the monitored computation are not independent, a suc-
cessful attack on the monitored component may impact the monitoring mechanism as well. This
may cause loss of visibility at best, and may corrupt the monitored data and mislead the runtime
verification mechanism at worst. Therefore, keeping monitoring and verification capabilities suf-
ficiently separate and independent from the monitored computation was another key design goal.
We addressed this as follows. First, the absence of monitoring is treated as a policy violation,
raising an alarm that the system operation can no longer be trusted. Second, we situate the mon-
itoring mechanism in a lower layer in the software (e.g., using a kernel probe), making it harder
for an outside attacker to corrupt the monitoring mechanism. We also monitor key pathways for
a user-level process to interact with the privileged monitoring mechanism, giving the monitoring
mechanism a fighting chance to detect attempts to corrupt it. We also supported hardware-level
debugging mechanisms to make our monitoring probes independent of the monitored software. In
this case, the component that performs the runtime verification is an independent process separate
from the monitoring probes and is further isolated by execution on different hardware.
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3.4.2 Monitoring Summary

In summary, we want to minimize monitoring overhead and monitor what is most important to
the given mission. Monitoring should also be as independent as possible and must allow for soft
verification. As such, what we monitor depends what we want to verify at runtime. We determine
what we want to verify by first modeling the behavior in training mission using real flight data
and/or hardware/software in the loop simulations (HIL/SITL), and what the mission operators
are concerned about (i.e., the threat model). We then organize what we monitor into three main
categories: (1) flight behavior; (2) execution of the controller and on-board processes; and (3)
I/O behavior (sensor/information management). Collectively these cover a wide range of what
a mission operator may care about — including whether the vehicle is flying as planned, and
execution integrity of the controller and information management/sensor systems. Our modeling
process results in what we call mission-specific trust policies. These are constraints and thresholds
that can be checked at run time based on data from continuous monitoring. We use telemetry data
for the flight behavior, instrument probes in the flight stack and the kernel running the various on-
board computational processes to assert integrity of the flight stack’s command and control (C2)
and I/0O.

Over the course of this multi-year activity, CMT expanded beyond its initial support of Pixhawk
quadcopter hardware (STM32 M3 32-bit ARM), ArduPilot, and the MAVLink C2 and telemetry
protocol. By the end of the activity, CMT had been extended to support ArduPilot running on an
Intel Atom-based single-board computers (Intel Up boards using an IA-32 and x86-64 instruction
set) and ultimately to support ArduPilot on a Raspberry Pi 3 (which supports 64-bit, 32-bit, and
16-bit thumb-mode ARM). We also incorporated monitoring of a Robot Operating System (ROS)-
based network of applications to support inter-component coordination. While CMT’s telemetry
monitoring is agnostic to architecture, process and task instrumentation may be dependent on ar-
chitectural nuance (e.g., IA-32 versus 32-bit ARM). In the following subsections we provide details
describing monitoring and verification support for ArduPilot and general purpose Linux applica-
tions like the ROS-nodes considered in TRMO evaluations.

3.4.3 Monitoring and Verification Support for ArduPilot

ArduPilot is a popular and feature-rich open-source flight control system. To monitor the ArduPilot
flight controller on a Raspberry Pi (Pi3) or the Intel Up (Up) board, we applied and enhanced
concepts and artifacts developed under the CMT project. Unlike our earlier work, which focused
on the all-in-one light-weight Pixhawk hardware running the light-weight Nuttx OS, this effort
relied upon much more capable embedded platforms to support ArduPilot. Key advances over
our earlier work include the use of hardware with multi-core embedded processors and memory
management units that run real-time Linux, as well as external sensor boards to provide bus access
to essential flight sensors, such as inertial measurement units (IMUs), magnetometers, and GPS.
Collectively, the controller board plus the sensor board provide the inputs and outputs necessary to
support GPS-guided autonomous navigation.

Given these two new platforms, we focused our continuous monitoring and verification efforts
on the ArduPilot user-space process running on the Pi3 or Up processors. We assume that related
runtime verification techniques may be used to assess the trust of Linux, the plethora of supporting
software and services, and firmware that support these autopilot devices. Finally, the approaches
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outlined below are independent of instruction set architecture of the devices. In an effort to reduce
complexity, we aimed to keep CMT dependent only upon user-space APIs and instrumentation
strategies which are portable to a wide degree.

To monitor and verify trust, we leverage and apply three software artifacts. First, we developed
a Java-based modeling tool for performing ArduPilot and MAVLink protocol modeling tool for
defining mission flight (or locomotion) constraints. These constraints statistically describe what a
flight plan should look like for a provided mission. Second, we developed a Java-based runtime
process for verifying the correctness of autopilot telemetry in-mission. Building upon the modeled
constraints of the first tool, this component consumes live device telemetry and performs runtime
cross-checking to assess trust of mission tasking and locomotion. Third, we applied select process
instrumentation for verification of the correctness of critical aspects of the autopilot’s software
execution. This type of instrumentation applies a mix of user-space software changes, monitoring
points, and kernel-space probes to monitor the ArduPilot task execution for signs of desired and
undesired behaviors and states.

Having described CMT’s general approach for modeling and runtime monitoring in the previ-
ous section, we now provide specific details of the design and implementation, and compare and
contrast how the designs vary across autopilot devices (i.e., the Pixhawk, Intel Up, and Raspberry
Pi3).

Table 2: Monitoring points for three autopilot devices.
Raspberry Pi3 (A72) | Intel Up (Atom) Pixhawk (M3)
RT Linux OS RT Linux OS Nuttx OS

Locomqtlon MAVLink telemetry | MAVLink telemetry | MAVLink telemetry
Constraints

Autopilot - LR register hook

Process - Wait4 system call | - Wait4 system call | - Image snapshots

Constraints - Embedded temporal assertions

Table 2 summarizes the data points and sources that support verification of a small uncrewed
vehicle’s locomotion constraints (flight patterns or ground navigation) and the execution of the
software autopilot. The first row describes the data sources used for verifying flight constraints and
the second row lists data sources for verifying trust in the ArduPilot process. In the second and third
columns we highlight new work under the TRMO program. Prior work under the CMT project is
listed in the fourth column for comparison; we provide a brief description here for completeness of
this technical report. We now provide a summary of these data sources, methods, and developments
for modeling and verifying trusted operation.

3.4.4 Device Locomotion Monitoring and Verification

Across all platforms, we applied and enhanced a common codebase for modeling and verifying
flight constraints. In an effort to minimize runtime monitoring costs, we proposed to leverage the
MAVLIink telemetry as a viewpoint into the internal state of an ArduPilot device. The MAVLink
protocol is a lightweight and compact command and control and telemetry protocol where each
message fits in 263 bytes. It is also used by all of the ArduPilot sub-projects, including ground

Approved for Public Release; Distribution Unlimited.

16



rovers or quadcopters developed under this project, to provide a steady stream of internal device
states to a mission operator. This makes it an ideal starting point for developing verification strate-
gies and techniques.

We first developed a Java-based tool to support locomotion modeling using the telemetry pro-
duced by the AMPRover2 sub-project of ArduPilot. AMPRover2 is the codebase that powers all
ArduPilot ground rover devices. CMT’s modeling tool ingests a MAVLink stream from a pre-
planned mission from either simulations (software or hardware-based) or live mission flights on
real hardware, such as the Pixhawk. While the stream may contain many types of messages, the
modeling phase only considers five unique MAVLink messages types:

1. HEARTBEAT — for tracking aliveness and vehicle type.
MISSION_CURRENT — for defining sequenced mission elements (waypoints).
SYS_STATUS — for general status messages and battery levels.

VFR_HUD — for throttle and ground speed measurements.

nook w D

GLOBAL_POSITION_INT — for latitude, longitude, altitude, and heading.

We further extended the modeling tool to support the quadcopter under the ArduPilot project.

Using attributes and values from these five message types and telemetry data from multiple ex-
ecutions of a given mission as input, we have defined statistic procedures for deriving constraints
that define the navigation to each waypoint of an ArduPilot mission. A waypoint in ArduPilot/-
MAVLink is defined as a marker in Euclidean space. Navigation of an autonomous mission is
then defined as a traversal of a set of monotonically-increasing sequence numbers (waypoints) that
describe a desired path for driving or flight. Once the modeling process is completed, a set of eight
constraints can be cross-checked quickly at runtime against expected values to verify the flight
path or ground path is similar to the training set.

In Table 3 we further list each of the eight constraints produced by CMT. This table also details
what is measured for the constraint, and then gives the type of assertion that can be produced
if a constraint is broken and the potential implication for a given mission. While not all of the
constraints were used in the in support of the Red Team testing, the set shown in Table 3 covers
both location-based and non-location based checks. Both types of checks can aid verification in
the presence of cyber-attacks.

While the modeling portion of the this work is an offline process, the runtime verification of
locomotion constraints needed to be integrated into the overall TRMO architecture. As part of
our effort, we developed new adaptors and modifications of the CMT runtime constraint checker
to: (1) support Arducopter in addition to AMPRover2; (2) run in a headless without a graphical
user interface; (3) run locally on the embedded platform of the Up and Pi3; (4) support both TCP
and UDP MAVLIink streams; (5) generate signals and identifying information about failures for
the rest of the TRMO framework; and (6) to be embedded alongside a MAVROS-based navigation
control plane. The first five tasks were logical extensions of the pre-existing codebase. The sixth
task required redesigning how CMT’s runtime component received waypoint sequence informa-
tion. Unlike our prior work, where the information was fully encapsulated in a MAVLink telemetry
stream, in this new configuration a ROS node is responsible for publishing waypoint tasking di-
rectly to the ArduPilot binary. As a result, the ArduPilot telemetry stream would not contain the
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information necessary for locomotion verification and we were required to extend CMT to
encap-sulate and decode these MAVROS signals to ensure locomotion verification.

Table 3: Summary of waypoint window constraints.

“Mormal” Starting Position for Waypoint Window (is localization dependent)
Measured Starting position for window (position estimate and heading)

Assertion The MAV's starting position and orientation is different from the modeled case.
Implication | The MAV is approaching navigating to the next WP from a new initial position.
Implication | The supporting model might be off or incomplete for the real world.

Vehicle’s First Alignment to Next Waypoint (is localization dependent)

Measured Both the position and time taken to align the MAV to the next WP

Assertion The MAV having a hard time adjusting/aligning to the next WP.

Implication | Possibly due to environment, starting position, configuration or interference.
Implication If the MAV is off course, the supporting model might be off or incomplete.
Realignment Operations After First Alignment (is localization dependent)

Measured Once MAV is aligned, what does course adjustment look like (heading or CoG)
Assertion The MAV is oversteering.

Implication | Struggling to navigate, possibly due to environment, configuration, or interference.
Distance Traveled (may be localization dependent. depending on device telemetry)

Measured Average distanced traveled to reach the next WP (e.g., sum of GPS readings)
Assertion The MAV traveling farther or less than normal.

Implication | The MAV may not have resources to complete navigation; model might be off.
Implication | The MAV might get to the next WP sooner/later, thus missing a timed deadline.
Time Taken
Measured Average time to navigate to the next WP. (time for WP window traversal)
Assertion The WP traversal is taking longer than normal.

Implication | The MAY may not reach the next WP in a timely manner. Miss deadline.
Resources Remaining

Measured Battery usage for this WP window:. {i.e., battery voltage over cells)

Assertion The MAV using more power than normal. (less usage should not be an issue)
Implication | The MAV might not have enough resources to reach the next WP.
Implication | The MAY may not have enough resources to complete the mission.

Ground Speed
Measured Groundspeed for the MAY (e.g., VFR groundspeed)

Assertion The MAV is moving too fast or slow.

Implication | The MAVY might reach a destination sooner or later than required.
Implication | The MAW may miss a mission deadline.

Throttle
Measured Throttle for the MAV (VFR Throttle)
Assertion The MAV is at an undesired set point.

Implication | The MAY might reach a destination sooner or later than required.
Implication Could be a response to environmental conditions.

Approved for Public Release; Distribution Unlimited.

18



3.4.5 Autopilot Task Monitoring and Verification

For this evaluation, we focused on monitoring the Autopilot for liveliness. While there are many
approaches to asserting liveliness, we choose to use a fail-fast failure detection technique. For
ArduPilot, CMT’s constraint checker can partially assert this style of liveliness by detecting the
absence of telemetry. However, such an approach in itself is not sufficient, as it does not account
for network delays and other interprocess communication effects. To supplement that style of
detection, we developed a Python- and Linux-based watchdog parent process for managing the
ArduPilot task. On task creation, the user-space watchdog would enter a wait state for OS signals
regarding the child process. Upon child process exit, the watchdog would signal the TRMO system.
This approach is suitable for monitoring real-time processes, like ArduPilot, as it is light-weight,
blocking, and in-line with the task execution. As a result, it incurs little overhead and produces
failure notifications quickly.

While TRMO'’s requirements for verification of the ArduPilot task were straight forward, we
also examined both the task integrity and availability of the ArduPilot process on Pixhawk (see
Table 2 for the monitoring points). Unlike the Pi3 and Up boards, there are several differences
on the Pixhawk. First, the ARM Cortex M3 is a light-weight micro-controller and only has a
memory control unit to aid the Nuttx operation system. As such, it does not have a basis to enforce
fine-grained memory permissions. Furthermore, all tasks on the Pixhawk execute with the same
privileges. While these facts should be perceived as inherent risks, they are justified by the typical
use of the device — it is a specialized cyber-physical system for autonomous flight control only
and it only has a limited control channel.

Building on top of Pixhawk, ArduPilot, and Nuttx OS, we developed a set of specialized run-
time instrumentations including: a (1) Nuttx API monitor by sampling the LR register on the ARM
device; (2) task-, process-, and hardware debugger-based snapshot analysis techniques to perform
state integrity checking; and (3) embedded temporal logic assertions for the ArduPilot process to
guard access to sensitive states like waypoint tasking and device parameters. We applied similar
verification concepts to examine the integrity of general purpose Linux processes on the Raspberry
Pi3. We describe those methods in the next section.

3.4.6 Continuous Monitoring Support for Linux Processes

Unlike the dedicated Pixhawk autopilot device, TRMO also supports powerful embedded devices
and new applications for MAVROS-based flight control, such as an image server for exposing
camera sensor data to end-users (Section 4). At the outset, the addition of the Up and Pi3 boards
allowed us to use Linux, as opposed to the light-weight Nuttx OS, and to support additional appli-
cations. The first such rich end-user application provided a more systematic integration and control
plane over the ArduPilot software and allowed us to connect image sensors and tasks, such as an
OpenCV color-processing node. The second rich end-user application included new functionality
to support camera-based mission operations.
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Table 4: System call classes and examples for runtime monitoring

Class Examples Description
User or group ID | sys *[u—g]id To track user or group ID change for
changes process. Will alter the set of resources
that may be accessed.
Block storage access sys_mount, sys_fsopen, | Usually privileged instructions. Used
sys_fsmount to change the set of file system re-
sources available.
FS access and manip- | sys_openat, sys_open, | To track how file system objects are
ulation sys_dup, sys_*own accessed.
Process and capability | sys_*cap, sys_exit, sys_*kill, | To track how new and existing pro-
management sys_clone, sys_execve cesses are changed and related.
Memory image | sys_brk, sys_mmap*, | To track memory layout, loading/un-
changes sys_macl loaded, and permissions.
IPC and network com- | sys_splice, To track data flows to-and-from a pro-
munications sys_pipe2_sys_mgqopen, cess.
sys_shm_open, sys_connect,
sys_accept, sys_send*,
sys_recv*

Since these applications are user-space processes executing on Linux, we were able to explore
general-purpose monitoring support on Linux. As such, we experimented and developed capabil-
ities on top of the Linux kernel’s Audit and Extended Berkley Packet Filters (eBPF) trace APIs,
and using the inotify APIs of Linux. Using these APIs, we developed user-space monitoring
processes that registered a privilaged interset in a collection of low-level events, including opera-
tions such as creating new proccesses or accessing file system resources. In Table 4 we summarize
the class and collection of events that we were able to monitor using these APIs. These probes al-
low us to monitor and verify execution behaviors against training sets recorded while profiling the
applications, and then to signal violations of trust as low-level events and their attributes deviate
from expected profiles (e.g., white- and black-list violations of system call types or arguments).

3.47 Summary of Continuous Monitoring and Verification

Under the Trusted and Resilient Software-intenstive Systems (TRSYS) technical area of the Trusted
Computational Information Systems program, the CMT project, and the TRMO project, we have

developed methods and tool support to perform continuous monitoring and verification of trust in

an small unmanned vehicles. We have applied this approach to assess trusted mission operation

over three autonomous autopilot platforms and their supporting general purpose Linux processes,

such as image servers and ROS-controller nodes. Using this approach, operators can gain a degree

of trust in a mission support system’s locomotion characteristics and on-board task execution. As

a result, they can receive alerts when the device is not behaving as expected, thus signifying a

degraded trust level. We integrated and applied these monitoring and verification capabilities into

a joint system providing a degree of last resort fight-through cyber capability. In this integrated
system and subsequent evaluation, continuous monitoring and verification played a key role in
triggering resilient repair operators.
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Figure 7: A high-level overview of the search-based program repair used by Darjeeling. (Adapted
from [78].)

3.5 Repair Component

In response to an attack on the UAV controller, TRMO invokes a framework for search-based
program repair to automatically repair the associated vulnerability in the controller source code.
An automated program repair algorithm takes as input a buggy program and evidence of correct
and incorrect behavior and produces, automatically or with minimal guidance, a patch to address
the buggy behavior [43, 48, 50,51, 54,65, 81, 83]. To this end, we adapt Darjeeling,’ a language-
agnostic framework for search-based program repair, to operate effectively in the embedded system
context. This approach operates on unmodified source code, without a need for special coding
practices or annotation.

In the context of an autonomous vehicle, automated program repair must especially prioritize
safety and efficiency. Safety is required to ensure that the execution of arbitrary code introduced by
candidate patches does not interfere with the safe operation of the vehicle. Efficiency is required
to ensure that an acceptable repair is found in a timely manner, before battery is depleted or the
mission fails. Furthermore, the repair process must run on an embedded platform with minimal
resources and no internet connection.

Section 3.5.1 provides relevant background on search-based program repair. Subsequent sec-
tions elaborate on repair activities, including include key innovations required for successful, effi-
cient repair in the embedded context.

3.5.1 Search-based Program Repair

Search-based program repair transforms the problem of repairing software bugs, represented as
failing test cases, into a search for a patch to the program that leads it to pass the previously failing

Shttps://github.com/squaresLab/Darjeeling
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tests (i.e., fixes the bug) while preserving the correct functionality of the program, represented by
the passing test cases [52]. Patches typically take the form of source-level changes, but may also
be represented by binary-level modifications [71].

The majority of search-based repair techniques exhibit the same high-level structure, illustrated
in Figure 7. Broadly speaking, the repair process consists of three steps: fault localisation, patch
generation, and search.

Fault Localization. The first step of the repair process is to determine the likely location(s) of
the bug(s) via a process of fault localization. Fault localization assigns a suspiciousness values to
each modifiable unit within the program (e.g., a statement or source code line), measuring the like-
lihood that the unit is (partly) responsible for the bug [36]. Most search-based repair techniques
use a lightweight technique known as spectrum-based fault localisation (SBFL) to compute suspi-
ciousness values based on test suite coverage [62, 68]. SBFL first computes coverage information
for the faulty program to determine the set of components (e.g., lines or statements) that are exe-
cuted by each test. A suspicious value is then calculated for each component based on the number
of passing and failing tests that execute (or cover) it. In general, components that are more fre-
quently associated with test failure are assigned a higher suspiciousness value than those that are
not; components that are never executed by any of the failing tests are assigned a suspiciousness
value of 0, excluding them consideration altogether.

Suspiciousness values are used during the search to focus the generation of candidate patches
towards the areas of the program that are deemed most likely to be faulty.

Candidate Patch Generation. Given a set of suspicious program components, a program repair
technique then constructs a set of candidate transformations (or edits) for each component. Collec-
tively, the set of candidate program transformations across all of the suspicious components within
the program is known as the edit space or fix space [49].

Program transformations are generated using transformation schemas (also known as repair
operators or repair templates) and a pool of donor code snippets [44]. Each transformation schema
describes a template for a program transformation, and may contain a number of holes (i.e., free
variables) that are filled using snippets provided by the donor code pool. A number of different
repair operators have been proposed in the literature. For example, the GenProg, AE, and RSRepair
techniques share a common set of statement-level transformation schemas, intended to be generic
enough to fix arbitrary bugs: Statements may be deleted, swapped, replaced, or appended. Existing
statements from the same file are used as ingredients during statement replacement and appending;
this principle exploits the plastic surgery hypothesis [9], which states that many bug fixes can
be constructed using existing code from the buggy program (an idea that underlies many repair
techniques [43, 67, 82, 84]). Other approaches use templates of finer granularity admitting, e.g.,
sub-expression manipulation or other more complex repair templates intended to address specific
bug classes [40] (e.g., by adding a missing null check).

Search Algorithm. Given the above-defined search space, the final challenge concerns the ef-
ficient sampling or traversal of this space. This is commonly achieved using heuristic [82] or
meta-heuristic search. In most cases, candidate patches consist of a single edit [41,48, 67,82, 84],
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but a small number of techniques also permit multi-edit patches [46, 78]. For example, the Gen-
Prog technique [43] uses a genetic programming heuristic to search for patches, represented as a
sequence of edits, via a continual process of mutation, crossover, and selection (with fitness defined
by the number of test cases a patched program passes). RSRepair [67] and AE [82] operate using
the same edit space as GenProg, but employ different search algorithms: RSRepair uses random
search to sample the space of single-edit patches, while AE usies static analysis to weakly identify
and prune semantically equivalent patches and heuristically (but deterministically) evaluate them.

3.5.2 Embedded System Repair Overview

At a high level, Darjeeling accomplishes safe and efficient embedded repair. Figure 8 outlines this
automated repair process.

INFLIGHT

PREFLIGHT DETECTION DIAGNOSIS

Prepare container, compute
expensive analyses.

S

— 98

>

O

REPAIR ASSESSMENT

Figure 8: A high-level overview of the Darjeeling automatic repair process in TRMO, shown for
an aerial vehicle.

The automated repair process involves the following steps:

1. Pre-mission computation. Darjeeling uses a combined online/offline architecture, conduct-
ing significant pre-mission computation of expensive analyses to support efficiency. That is,
Darjeeling lifts key elements of the repair process, including expensive test suite coverage
analysis, system containerization, and set of static analyses [82], to an offline preprocessing
step. Only information directly related to the attack or vulnerability itself — which is un-
known pre-mission —is computed online. The offline stage occurs pre-mission (i.e., before
the vehicle leaves to complete its mission); it need only be (partially) repeated when the
vehicle source code or configuration are changed.
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2. Detection. The online stage of the repair process takes place onboard the vehicle and begins
when either the CMT or Zipr component of TRMO informs the Darjeeling repair component
of an attack.

3. Diagnosis. Darjeeling uses the information provided by the detection tools and then further
integrates with system monitoring, mission logs, and the previous sequence of commands
executed by the vehicle, to construct executable test cases that safely recreates the attack in
simulation.

4. Repair. The repair search process involves several fundamental innovations to support both
efficiency and safety. (1) Significant program analysis, leveraging precomputed coverage
and static information from the pre-flight phase, determines the source code lines exe-
cuted during the attack and computes suspiciousness and efficiently generate a set of candi-
date source-level patches. (2) Containerization, low-fidelity simulation, significant simula-
tion speedup, and careful test suite prioritization allow for efficient evaluation of candidate
patches, allowing Darjeeling to exhaustively search for a plausible repair that allows the
vehicle to pass both the pre-existing test suite and the recreated attack.

5. Additional assessment. In simulation, Darjeeling uses inexpensive behavioral indicators
(e.g., log messages) to determine whether the modified source code will lead the embedded
system to behavior correctly. Upon discovering a plausible repair using these inexpensive
oracles, Darjeeling forwards that repair to CMT for more extensive trust evaluation while it
continues to search for other plausible repairs.

The Repair/Assessment search continues until a resource limit is reached (e.g., wall-clock time)
or the CMT component instructs Darjeeling that a plausible patch has passed its trust evaluation.
We provide additional detail on these components subsequently.

3.5.3 Pre-mission Repair Computation

Pre-mission, the Ground Control System (GCS) prepares the system for the mission. This step
lifts expensive portions of the repair process to an offline preprocessing step. The GCS may be
computed on virtually any available hardware, including commodity, consumer-grade laptop or
desktop computers.

The precomputation phase addresses three concerns:

e Containerization. Darjeeling uses commodity containerization technology, and specifically
Docker,® to safely and efficiently evaluate candidate repairs (Section 3.5.4). During the
precomputation phase, TRMO builds a Docker image for the autopilot software system.

e Static analysis. We feed the constructed Docker image to Kaskara,” a language-agnostic
static analysis platform that we developed, to scan the source code and to identify the set of
all statements within the program via a static analysis. Specifically, Kaskara uses a language-
specific plugin to identify the statements within the program for a particular language, and

Shttp://www.docker.com
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to extract additional semantic information about those statements (e.g., variables in scope,
liveness, relevant types) that is later used during the online phase of the repair to reduce
the size of the search space by weakly identifying equivalent repairs. Kaskara uses the
well-established Clang static analyzer as its C++ plugin. Note that this static analysis step
is relatively expensive in terms of memory and compute resources (i.e., wall-clock time),
and either takes a prohibitively long time (approximately 15 minutes) to run on the em-
bedded device, or else exceeds the available memory. Running this step on the GCS takes
approximately 2-to-3 minutes on a consumer-grade laptop and avoids introducing a sizeable
overhead to the repair process.

e Coverage collection. Using the Docker image built during the precomputation phase, we
add lightweight instrumentation to the program and collect coverage information for a system-
level regression test suite, composed of simulated missions. The generated coverage infor-
mation is saved to disk on the embedded device and is later used to improve the accuracy of
the fault localization at the beginning of the online phase of the repair process.

3.5.4 In-mission Repair Computation

Fault Localization. As part of our efforts to reduce the expected cost of finding an acceptable
patch, we use spectrum-based fault localization to determine the most suspicious areas of the
program. During the repair process, we restrict the generation of candidate patches to those areas
of the program that are deemed most suspicious.

Repair Selection. We investigated methods for improving our ability to repair complex bugs,
such as those requiring two or more edits [70]. The most promising is the selection operator,
which chooses which candidate repairs to investigate. We integrated lexicase selection [34] into
our tools and compared its performance to the current selection method (tournament selection).

Lexicase selection emphasizes performance on individual test cases rather than aggregating fit-
ness across all available test cases. This encourages a population of candidate solutions to preserve
diversity and explore the search space more effectively. It is particularly effective for modality
problems, where a system must respond in different modes when given different inputs. For auto-
mated repair, the different modes correspond to the program’s execution on different inputs. While
the use of lexicase selection for automated program repair is not complete, our prototype imple-
mentation found repairs more frequently (higher success rates across multiple random restarts) than
seven other selection algorithms, including the state-of-the-art tournament selection approach.

In brief, the lexicase algorithm works as follows: (1) place test cases in random order; (2)
iterate through the tests according to (1) and on each iteration eliminate all individuals that fail
that test; retain the remaining individuals; repeat steps (1) and (2) until a fixed-sized population of
individuals have been generated.

The quality and orthogonality of the test suite affect the effectiveness of lexicase selection
compared to other methods. In particular, the uniqueness of statements executed by each test case
is positively correlated with the effectiveness of lexicase selection. The more diverse a test suite
is, the more likely it is that emphasizing performance on individual will improve performance.
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Repair Generation. For TRMO, Darjeeling used the Rooibos® library to support a rich and
customizable set of repair templates for arbitrary languages, including C++.

The templates used induce the space of program transformations from which candidate patches
should be composed. We first consider three “classical” statement-based transformation schemas
based on those introduced by GenProg [83]: delete-statement, replace-statement, and prepend-
statement. In addition, we make use of domain-specific repair templates (cf. [40]).

Search Space Optimizations. We consider a number of optimizations to reduce the search space
of candidate transformations considered. In general, assessing the correctness of a candidate patch
in simulation (i.e., running a simulated mission using modified flight control software) is the most
expensive aspect of automated program repair in TRMO. As a result, any precalculation, logical
filter, or effective heuristic that can rule out certain candidate edits as unlikely to lead to fruitful
repairs is critical. In TRMO, search space optimizations were crucial for conducting repairs in a
5—-10 minute live mission setting.

Optmizations used, developed and refined as part of TRMO to filter the space of repair trans-
formations include:

1. use-scope-checking: ensures that all variable and function references that occur in a given
transformation are visible from the scope into which they are being inserted.

2. use-syntax-scope-checking: ensures that any keywords introduced by a transformation
(e.g., break and continue) are permitted by their surrounding context.

3. ignore-dead-code: prevents the insertion of code that exclusively writes to dead variables.

4. ignore-equivalent-prepends: uses an approach inspired by instruction scheduling to pre-
vent equivalent insertions of code.

5. ignore-untyped-returns: prevents insertion of a return statement into a context where the
type of the retval is incompatible with the return type of the enclosing method or function.

6. ignore-string-equivalent-snippets: transforms donor code snippets into their canonical
form, thus preventing the insertion of string-equivalent snippets.

7. ignore-decls: prevents transformations that are either applied to declaration statements, or
else solely introduce a declaration statement.

8. only-insert-executed-code: prevents the insertion of code that has not been executed by at
least one test case.

3.5.5 In-mission Repair Evaluation

We desire repairs that retain required semantics while mitigating the bug or security vulnerability.
Operator trust in software systems is a complicated topic in general (e.g., [13]) and the factors
that influence operator trust in automated repairs in particular are still being studied (e.g., [69]).
Generally, independent of any concern related to how the repair is presented syntactically (e.g.,

$https://github.com/squaresLab/Rooibos
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proper indentation, use of comments [26], etc.) we desire that patches be held to the highest
available rigorous standard of automated testing.

This results in a natural tension: trustworthy repairs require significant testing which requires
long delays, but fighting through a mission to provide resiliency admits only small delays. We
address these concerns through two insights. First, we reduce the overhead associated with high-
fidelity software simulation of candidate repairs. Second, we make use of a two stage process for
repair evaluation.

Low-Overheard and High-Fidelity Repair Simulation. Repairs to control software for au-
tonomous vehicles cannot be tested directly via live locomotion. For example, a low-quality can-
didate repair, if deployed, might cause an uncrewed aerial vehicle to crash. As a result, we employ
high-fidelity simulation to evaluate repairs. In addition, we desire to evaluate multiple candidate
repairs in parallel whenever possible to minimize latency [82]. This requires minimize interference
between multiple candidate patches and a single set of vehicle hardware.

To prevent such interference with minimal compromise to efficiency, we use BugZoo [79], a
container-based platform, to safely evaluate each candidate patch within a sandboxed container.
Furthermore, the process of evaluating candidate patches in parallel is simplified by using a sepa-
rate container for each patch. Darjeeling uses Docker technologies to simplify the parallel evalua-
tion of candidate patches and to shield the host machine from the side effects of executing candidate
repair code.

Two-Stage Repair Evaluation. In software testing, the oracle formalism is used to describe a
correct answer or set of behaviors with respect to an input. We consider two separate oracles when
evaluating candidate repairs. First, the regression tests associated with the autonomous vehicle
control software typically include indicative missions and high-level notions of correctness. For
example, informally, a test might say “starting from this location, if we instruct the flight control
software to visit these three waypoints in sequence, it will visit them in sequence and return to the
start in a given amount of time”.

One advantage of such simple oracles is that they can be evaluated in software simulation using
an accelerated logical time. That 1s, a mission that would take ten minutes in the real world might
be simulated at a certain degree of fidelity and run to completion in one minute. A combination of
parallel, containerized execution and accelerated logical time allows TRMO to evaluate multiple
candidate patches and missions in much less real-world time than it would take to complete even a
single mission. In TRMO, this admits a 40 x simulation and assessment speedup.

However, these simple oracles may not be adequate in the face of security vulnerabilities or
bugs. For example, flight control software that can be subverted to visit an extra, enemy-controlled
location in addition to the specified waypoints may still pass a test that just checks to see if it
visited the specified waypoitns. Similarly, whether or not flight control software leaks sensitive
information may be checked by such a simple oracle.

In TRMO, the CMT analysis and deployment component is responsible for the runtime assess-
ment of trust (Section 3.4). CMT can determine if the vehicle is subverted to visit an extraneous
location or if sensitive files are accessed in an unplanned manner. However, because of its higher
standards for correctness, it also incurs a higher overhead. While the overhead is minimal when
running a single copy during a mission, it becomes a consideration when we desire to evaluate
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multiple candidate patches on multiple missions using an accelerated logical notion of time.

We thus investigated and implemented a two-stage solution in which candidate repairs are
initially evaluated in accelerated simulation. Only those candidate repairs that pass that stage are
subjected to the more thorough CMT-based assessment of trust. The first step acts as a sieve: the
majority of incorrect candidate patches are rejected rapidly.

3.5.6 Darjeeling Repair Summary

The primary goal of the repair component is to provide resiliency by changing control software in
the face of security attacks or latent defects. We desire to construct such repairs in a rapid manner
(to allow the mission to be continued) but also in a manner that operators can trust. Our Darjeeling
algorithm reduces the overhead of searching for a repair by splitting the process into distinct pre-
mission and in-mission phases, by offloading as much work as possible to the preflight phase (e.g.,
expensive static analysis), and by a careful two-stage evaluation of candidate repairs.

3.6 Formal Methods Component

One of the goals of TRMO is to produce trusted techniques that admit human operator confi-
dence in the correct deployment of the system. To that end, we developed and evaluated three
formal or algorithmic components. First, we created architectural proofs of an aspect of system
correctness: the interplay between the trust monitoring component and the protected software.
Second, we devised novel algorithms to reduce the verification and validation costs associated
with automatically-generated software repairs. Third, we proved certain properties of our binary
hardening and diversification system.

3.6.1 Architectural Proofs

TRMO included an analysis of the resilient systems developed, especially their architectures, and
the creation of formal and semi-formal models of them to help increase trust. One resilient archi-
tectural pattern is the dual-controller pattern, in which a simple, trusted controller monitors a more
complex locomotion controller, detects when it has been attacked, takes over control of the vehicle
temporarily while repairing the locomotion controller’s software, and hands back control after the
repair. This is one of the primary methods supported by TRMO’s analysis and design component
(Section 3.4).

We created a formal model of this dual controller architecture, represented in the language of
the ACL2 theorem prover [38]. In particular, we proved a key property of this model: that exactly
one controller is controlling the vehicle at any time. We also analyzed other aspects of the systems
team and provided explanatory documents, including sequence diagrams modeling the interactions
of various components in the systems, to support manual trust of unproved aspects of the system.

Formalization and Proof of Dual-Controller Hand-off. We created a formal model of the
dual-controller architecture in the ACL2 theorem prover. In TRMO’s dual-controller approach,
an untrusted locomotion controller runs flight control software and mission-level payloads while
a trusted controller is responsible for runtime monitoring, trust assessment, and repair. However,
sensors and actuators in the autonomous vehicle are not duplicated, so the trusted and locomotion
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controllers must share or multiplex access to them. Correctly switching between which controller
has access to the sensors and actuators is necessary for trust in the system: for example, once an
attack has been detected, the compromised locomotion controller must not be allowed to control

the vehicle.

Our approach was to model the locomotion controller and trusted controller as state machines
some of whose transitions are synchronized. The state of the system as a whole consists of a state
for the locomotion controller and a state for the trusted controller. A transition of the system con-
sists of a transition for each sub-machine, except that transitions that violate the synchronization
constraints are not allowed. We then formalized the key property — that exactly one controller is
controlling the system (operating the actuators) at any time — and produced a machine-checked

proof of the property using ACL2.

attack

locomotion
controller

flying,

e attack
compromised

uncompromised

,,,, resume

reflashing awaiting repair

sync

loitering, send loitering, ;
awaiting reflash repair creating repair
e release detect ___---- gl
control anomaly

trusted monitoring

controller

Figure 9: Hand-off protocol for dual-controller architecture. The correct operation of this protocol
was formally proved for TRMO.

The state machine is depicted in Figure 9. There are two interacting state machines: one
for the locomotion controller, in blue, which controls the vehicle under normal conditions; and
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one for the trusted controller, in green, which controls the vehicle under exceptional conditions.
The abstracted states of these state machines are indicated by rectangles (four for the locomotion
controller, three for the trusted controller); the transitions of these state machines are indicated by
solid arrows; the dashed lines link transitions between the two machines that are synchronized, i.e.,
happen at the same time.

During normal conditions, and in particular initially, the locomotion controller is in the ‘operat-
ing, uncompromised’ state, while the trusted controller is in the ‘monitoring’ state. When an attack
happens, the ‘attack’ transition moves the locomotion controller to the ‘operating, compromised’
state; further attacks (i.e., self-loop transition ‘attack’) keep the locomotion controller in that state.
When the trusted controller, as part of its monitoring activities, detects an anomaly (due to the
locomotion controller being compromised), it takes control of the UAV, via the ‘detect anomaly’
transition that takes the trusted controller to the ‘loitering, creating repair’ state; this transition is
synchronized with the ‘suspend’ transition of the locomotion controller (which in principle could
take place from an uncompromised state, if the detected anomaly is a false positive; this is why
there are two ‘suspend’ transitions), so the locomotion controller goes to the ‘awaiting repair’ state.
When the trusted controller (or some component communicating with it) has created a repair, the
‘send repair’ transition takes the trusted controller to the ‘loitering, awaiting reflash’ state, where
it is still in control of the UAYV; this transition is synchronized with the ‘reflash’ transition, which
takes the locomotion controller to the ‘reflashing’ state.” When the reflashing is complete, the
trusted controller releases control of the UAV via the ‘release control’ transition, which takes the
trusted controller back to the ‘monitoring’ state; this transition is synchronized with the ‘resume’
transition, which puts the locomotion controller back in control of the UAYV, in the ‘operating,
uncompromised’ state.

Given the state machine model of the system and the statement of the property discussed above
as an ACL2 theorem, the actual proof generation and proof checking were highly automatic.

Additional TRMO System Analyses. We also analyzed, in more detail, two versions of the
TRMO prototype systems used in the Red Team evaluations, focusing on architectural properties.
We created a variety of semi-formal models (e.g., sequence diagrams) of the systems.

For the ground rover demonstration system, we reviewed the TRMO software-in-the-loop har-
ness code. By a process of formal review, including independent questioning of programmers,
we identified weaknesses in early TRMO implementations that were fixed before deployment. In
addition, we clarified differences between the simulation and the expected hardware system. We
also produced three documents clarifying the TRMO system and approach to simulation:

1. atable of file handles and messages
2. a UML sequence diagram of processes involved in the simulation
3. a UML sequence diagram of control flow between modules in the simulation

For the aerial quadcopter demonstration, we again formally evaluated the architecture (the
system for aerial vehicles is not identical to the system for ground-based vehicles). We created a

°In many autonomous vehicles, such as the ground-based rovers considered by TRMO, locomotion control soft-
ware is maintained in special non-volatile storage and is updated through a process known as flashing. For autonomous
vehicles with standard hard drives, flashing corresponds to normal filesystem updates.
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Figure 10: Formal sequence diagram of communication between TRMO and aerial vehicle hard-

ware components.
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sequence diagram capturing communication between the TRMO framework and the autonomous
vehicle hardware components, shown in Figure 10.

3.6.2 Reducing repair verification and validation costs

Search-based software repair methods, such as Darjeeling and GenProg, propose patches that are
correct with respect to a test suite (Section 3.5). That is, a repair is defined to be a software patch
that passes both the bug-inducing test case(s) and also all other available tests [83]. However, test
suites may be incomplete, failing to test all required functionality, and the repair may inadvertently
break some of this untested functionality [42,73]. A second concern involves clever mutations
— repairs that technically pass a test but do so by evading the test’s intent (e.g., [80]). Consider
a patch for a buggy sorting program that modifies the program to always return an empty list. If
the test simply checks that the output is in sorted order, but does not verify that it contains all of
the input values, then the patch could be accepted as a repair even though it fails to actually repair
the bug. This is an example of a clever mutation that evades test intent; the test’s comparison
of the given answer against a gold-standard oracle does not match developer intent [10] and thus
does not provide operator trust. Addressing these concerns would improve the trustworthiness of
search-based repairs, and understanding the effect of a patch is a key element of that trust.

A different threat to patch trustworthiness arises because the patches proposed by search-based
repair methods often look quite different from the repair a human would have crafted and require
significant human effort to determine if they are correct [73, 77]. Further these methods often
generate a multitude of candidate patches that require manual inspection for validation. Since
there are often too many candidates which would require too much time to feasibly inspect, we
developed a solution to reduce the cost of evaluating automatically-generated patches as produced
by search-based methods.

Earlier research proposed highlighting syntactic differences between programs, for example,
by providing a diff file [43]. Although diff notation provides a compact representation of
syntactic changes, it can be difficult to infer the changes to program functionality which they rep-
resent. Further, programs can have the same functionality but different internal constructions, so it
is possible that a single defect could be repaired correctly in multiple ways. Therefore, we chose
to focus on semantic program invariants instead of syntactic diffs. An invariant is a logical
predicate over program state (e.g., program variables) that is true on every correct run of the pro-
gram. Formal invariants include loop invariants and assertions; they are useful for documenting
programs, detecting anomalies, localizing faults, and proving systems correct [8,25,55-58].

Our approach incorporates formal methods into the repair process, using them to show that
automatically-generated patches preserve certain aspects of required functionality and to highlight
the key semantic changes implied by a proposed patch. Conceptually, we achieve this by generating
and comparing relevant program invariants for the original program and the proposed repair. This
comparison determines if the patched program violates an important known property of the original
program, and it identifies invariants that describe the repair’s corrected functionality. We thus
avoid an impediment to using formal methods in search-based program repair — a buggy program
is incorrect in at least some of its behavior, and therefore does not (currently) represent a correct
specification.

In addition, we partition (or cluster) patches into semantically equivalent clusters, guiding and
reducing manual validation efforts, reducing verification and validation (V&V) costs. The key
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insight is that that two patches may have different syntax (e.g., different dif fs), but if they have
provably-equivalent semantics, then they will also have equivalent functional behavior on tests.
Developers need only inspect inspect one indicative candidate patch per partition: if that candi-
date patch is found to be inadequate, for example, then all other patches in that partition are also
inadequate.

We use dynamic invariant generation to create a set of invariants, one for the buggy program
and one for each proposed repair. Since most software bugs are revealed through a failing input,
we use the failing tests, together with the supplied test suite, to generate invariants that are most
relevant to the repair. For our autonomous vehicle evaluations, the failing test takes the form of the
captured attack input coupled.

If two patches have invariants that logically imply each other then those two patches are func-
tionally equivalent. However, determining logical implication can be expensive for complicated
invariants resulting from real-world software. As a result, we also consider approximation. We
group repairs into quasi-equivalence classes using one of two distance metrics, one based on logi-
cal implication and one based on syntactic comparison of the invariant sets. The syntactic distance
metric approximates full logical implication but is less expensive to compute. Each class is made
up of invariant sets that are distance zero from each other under the chosen metric. We use hierar-
chical clustering to highlight how the classes are related.

In addition, we explicitly compare the invariants of each patch to those of the original buggy
program. This approach highlights the key semantic differences between the original program and
each patch, and it allows a developer to quickly consider multiple possible patches by evaluating
only one element from each semantic class.

Our algorithm for reducing the V&V costs associated with automated program repair based on
partitioning patches into (quasi-equivalence) classes is called PatchPart. PatchPart is an algorithm
for understanding automatically-generated patches through symbolic invariant differences. It takes
as input a set of programs and computes the pairwise semantic distance between them (in invariant
space) and clusters the programs into semantically-similar classes based on those distances. Pro-
grams are evaluated using a dynamic invariant generator, a supplied regression test suite, and the
bug-inducing tests. This produces a set of inferred invariants for each program. Next, pairwise
distances between sets of invariants are computed. The distances are used to create a hierarchical
(partial) ordering of clusters, and each program is placed into a cluster based on its location in the
hierarchy.

More specifically, PatchPart constructs a set of pre-conditions and post-conditions for each
function in each considered program. TRMO uses the well-established Daikon [21] tool to pro-
duce dynamically-generated program invariants. PatchPart then calculates the invariant distance
between each program pair using one of two methods. We consider two methods for computing
the pairwise distance between sets of invariants: formal implication between logical formulae and
Levenshtein edit distance between their string representations. We call the formal implication dis-
tance (ID) and the latter Levenshtein distance (LD). Theorem proving, using an SMT solver [19],
determines whether one invariant is logically implied by another, while Levenshtein distance com-
pares two sets of invariants syntactically.

Finally, we use hierarchical clustering to group programs based on a distance calculation. We
use the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering algorithm
(e.g., [47]). UPGMA takes as input a distance matrix and identifies clusters that minimize the
average cluster diameter. Critically, since the UPGMA algorithm does not require the distance
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matrix to be symmetric, we can use either LD or ID measurements to group programs. A cluster of
identical patches can be inspected for a functional trust assessment by assessing any representative
of it. On the other hand, the distances between clusters and the invariants on which they differ can
communicate the effects of a patch to developers.

Program Repair V&V Reduction Results. We evaluated PatchPart on a set of 5 programs
from the ManyBugs [45] and 7 programs from the Defects4J [37] benchmarks. We used 50 Gen-
Prog [45] patches for each C defect and 20 ARJA [85] patches for each Java defect (repair tools
are often language-specific but our approach is agnostic).

For each program we studied, candidate patches were easily distinguished from the original
program and relatively few invariants differentiated the repairs from the original, supporting our
hypothesis that PatchPart can provide a concise assessment of the key semantic elements of a
proposed repair, allowing a developer to quickly check that a repair retains required functionality.

Surprisingly, we found that Levenshtein Distance performs almost as well as Implication Dis-
tance for our use case, which reduces computational cost significantly. It is worth noting that
we do not attribute a measure of importance to each invariant, and instead assume each invariant
is equally meaningful. Regardless, because LD is significantly less expensive to compute, it is
relevant in timed vehicular mission settings.

TRMO'’s PatchPart algorithm can successfully categorize patches based on their formal invari-
ants. For each group of patches we can determine a hierarchy relationships, with each layer of
the hierarchy containing more patches and representing a broader, more abstract set of features.
On average, our evaluations found [14] this to lead to a reduction of patch classification effort
by 50%: even when requiring distance-zero invariant sets of equivalent patches, the clusters were
large enough to save developer inspection effort.

Ultimately, we found that changes in invariants characterize patch differences, that Levenshtein
Distance reduces the cost of comparing invariant sets significantly, that clustering of semantically
similar patches reduces validation costs on average by 50%, and that hierarchical clustering reveals
how the clusters are related.

3.6.3 Proofs about Transformed Binaries

TRMO’s hardening and diversity component, Zipr, can produce new binaries that are more difficult
— or even impossible — to attack (Section 3.3). A key correctness condition for such tools is
that, except when under attack, each new binary should have the same user-visible behavior as its
corresponding original binary. We developed an initial capability for formally proving equivalence
of such transformed binaries and applied it to prove the equivalence of certain exemplar binaries
transformed by Zipr. This work was done on Intel x86 binaries, but a similar approach should work
for other architectures given suitable machine models, as described below.

To reason about x86 binaries, we use the formal model of the x86 processor in the language
of the ACL2 theorem prover [6] originally developed at the University of Texas at Austin and
recently extended by Kestrel personnel [15,30], as well as Kestrel’s Axe tool [74,75]. Our process
for equivalence checking has three steps:

e First, we apply the Axe x86 Lifter to “lift” the original binary’s functionality into a higher-
level logical representation.

e Second, we lift the transformed binary similarly.
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e Third, we apply a formal tool, such as the ACL2 prover or Axe equivalence checker, to prove
equivalence of the original and transformed binaries.

This process increases confidence that the changes to the binaries made by TRMO transforma-
tions do not introduce errors that break the binaries’ desired functionality. This is one approach for
giving operators trust in the continued correct deployment of a system after resiliency operations
(in this case, hardening transformations) have been applied.

Lifting Into Logic. To support reasoning about transformed binaries, we use the technique of
decompilation into logic [2,53,74,75], in which low-level code (binary or bytecode), is “lifted”
into a higher-level logical representation. The lifted representation clearly indicates how executing
the program affects the machine state (e.g., which memory writes are executed). This provides a
basis for performing a rigorous equivalence proof of the behavior of the original and transformed
binaries, showing that they are equivalent under normal (non-attack) conditions. The lifted rep-
resentation may also support proving that the transformation fixes a given vulnerability (e.g., that
unexpected malicious inputs no longer cause bad behaviors, or that undesirable information flows
are no longer possible).

Formal x86 Machine Model. The core Axe tools are machine-independent, with the semantics
of a particular processor or virtual machine being supplied by a formal model of that machine. The
formal machine model provides the semantics of program being lifted. Each model is written in
the language of the ACL2 theorem prover [6] and formalizes the state of the machine and the effect
of each instruction on that state. Axe has so far been used with models of the JVM (Java Virtual
Machine) [74] and the x86 processor [30]. The x86 model specifies the state of the x86 processor,
including registers, flags, and a byte-addressable memory. For each of the hundreds of supported
32-bit and 64-bit instructions, a “semantic function” specifies precisely how executing the instruc-
tion affects the state, including operand fetching, the computation performed on the operands, how
the result is written back, the various error checks performed, how much to advance the instruc-
tion pointer, and so on. Branches and subroutine calls and returns are modeled straightforwardly in
terms of how they affect the instruction pointer and call stack. The model defines a “step” function,
which fetches the next instruction and dispatches control to the appropriate semantic function, and
a “run” function, which executes a series of instructions until the specified program or subroutine
exits. The “run” function is the basis for Axe’s symbolic execution, described next.

A formal machine model is often executable, allowing it to be validated by execution, compar-
ing it against a hardware processor. In fact, the x86 model supports very efficient execution (up to
3MHz in one mode — note that this is a formal model running in a theorem prover). This allows
the model to be validated by co-simulation against a real x86 processor.

The Axe Lifter. The Axe Lifter uses symbolic execution (e.g., [11,39,63]), to capture the mean-
ing of a program in a higher-level logical form. Starting with a call of the model’s run function
that applies the target program to arbitrary inputs, rewrite rules are applied to repeatedly step (ex-
ecute the next instruction) and simplify the resulting state. The result is a large symbolic term that
represents the program’s effect on the machine state, as a function of its inputs. For example, a
program that adds two 32-bit numbers x and y and writes their sum to a given memory location,
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might have, in the lifted representation, a memory write of the symbolic sum (bvplus 32 x
y) at the given address.

The lifted representation abstracts away many details, such as instruction encodings, the suc-
cessive values of the instruction pointer and, often, the use of temporaries (cf. [16]). The values of
specific state components can be projected out of the final symbolic state if desired, or the entire
symbolic state can be returned.

The process above works well for code segments that do not include loops or recursion. In
particular, conditional branches are supported; the lifted result will then contain i f-then-else
operators, being careful to avoid path state space explosions when many conditional branches are
present.

Axe uses two techniques to handle loops. First, loops may be “unrolled” when their iteration
counts are fixed or can be bounded. This produces a large, loop-free term that captures the effect
of the loop. When loops cannot be unrolled, Axe can lift an entire loop into a recursive logical
function, a call of which is spliced into the ongoing symbolic execution. Contrast this with tradi-
tional symbolic execution, which would produce a separate path for each possible iteration count
of the loop, leading to path explosion. The result of lifting contains a new logical function for each
loop, including nested loops.

The unrolling technique has been used for a variety of programs, including the AES block
cipher, whose main loop has 10 iterations. For the AESLightEngine Java class, Axe produces a
term with 47,898,065,689,733,522 subexpressions, of which 3,646 are unique (Axe uses a compact
term representation in which each unique subterm is represented only once). The term represents
the ciphertext as a function of the plaintext and the key. Most details of the JVM'’s operation, in-
cluding the operand stack, are simplified or projected away, and all subroutine calls are effectively
inlined. The lifted representation includes calls to only 7 different functions, all of which operate
on bit-vectors or arrays of bit-vectors (e.g., it includes 1,696 calls to BVXOR). Axe lifts this AES
implementation in about 6 seconds.

The Axe technique of lifting loops into recursive functions has been applied to implementations
of the SHA-1 and MDS5 hash functions, since their loops cannot be unrolled, and to various other
programs in the DARPA MUSE project [17].

Proofs About Transformed Binaries We demonstrated our equivalence proof process on sev-
eral simple example x86 binaries. These evaluation programs include common features such as
arithmetic, introducing subroutines, conditional branches, temporaries, and so on. They were de-
signed to be indicative and show that our tools can handle a variety of program features. We
considered ten programs and subjected them to transformations that moved around code our sub-
routines, introduced stack canaries, and the like. In all ten cases we were able to prove that the
transformed programs were equivalent to the originals in terms of user-visible behavior.

Proofs After Changing the Stack Layout and Adding Canaries. To illustrate one concrete
example, we consider TRMO’s Zipr tool’s stack layout transformation (SLX). SLX produces bina-
ries that include special stack canaries — values on the stack which should not change and whose
modification indicates the presence of a stack-smashing attack.

The transformed binary is significantly different from the original, but our formal approach is
able to prove that those differences do not change normal execution. To provide some insight into
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how this approach plays out, we present the result of lifting a simple function, add1, into a logical
representation after applying the SLX transformation:

I (defun-nx addl-transformed (x86)

2 (set-eip

3 (read-from-segment 4 (esp x86) 2 x86)

4 (set—-eax

5 (bvplus 32

6 (read-from-segment 4 (+ 8 (esp x86)) 2 x86)
7 (read-from-segment 4 (+ 4 (esp x86)) 2 x86)
8 (set-edx

9 (read-from-segment 4 (+ 4 (esp x86)

10 2 x86)

11 (set-esp

12 (+ 4 (esp x86))

13 (set—ebp

14 (bvchop 32 (ebp x86)

15 (write-to-segment ; SLX transformation
16 4 (+ -232 (esp x86)) ; note write to ESP-232
17 2 (+ -4 (esp x86))

18 (write-to-segment

19 4 (+ -228 (esp x86)

20 2 172977

21 (write-to-segment

22 4 (+ -224 (esp x86)

23 2

24 (read-from-segment 4 (+ 4 (esp x86)

25 2 x86)

26 (write-to-segment

27 4 (+ -220 (esp x86)

28 20

29 (write-to-segment
30 4 (+ -4 (esp x86)
1 2 (bvchop 32 (ebp x86)

2 (set—-flag

33 raf 0

34 (set-flag

35 :cf O

36 (set-flag

37 :0f O

38 (set-flag

39 :pf 1

40 (set-flag

41 :sf

42 0 (set-flag :zf 1 x86)))))))))))))))))

This lifted logical formula captures a key aspect of the transformation: the introduction of a
write through the stack pointer (ESP) on lines 15-17. In addition, the transformation sets all the
x86 status flags to constant values. If we clear the flags and zero out the parts of the stack written
by both programs (i.e., the canary), we can prove equivalence:

| (defthm equivalence

2 (implies

3 (x86p x86)

4 (equal (clear-all-flags

5 (write-to-segment 12 (+ -16 (esp x86)) *ssx O

6 (write-to-segment 16 (+ -232 (esp x86)) *ssx 0
7 (addl x86))))

8 (clear-all-flags

9 (write-to-segment 12 (+ -16 (esp x86)) #*ss% O
10 (write-to-segment 16 (+ —-232 (esp x86)) xssx 0
11 (addl-transformed x86)))))))

This formally captures a particular notion of correctness: unless your execution depends on the
value of the canary, the binary procedures addl and addl-transformed are the same. Since
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only stack-smashing attacks should influence the canary value, this gives formal confidence that
normal mission operation should be unaffected by this transformation.

3.6.4 Formal Methods Summary

We used formal methods to provide additional evidence in support of the trusted operation of a
TRMO system. We applied three different approaches to three key TRMO components.

First, we supported the Continuous Monitoring component during deployment (Section 3.4)
via an architectural proof of our dual controller architecture. A critical correctness property of our
system is that an attack should not be able to subvert our detection and repair mechanisms. In par-
ticular, while attacks may compromise the feature-rich and outward-facing locomotion controller,
the trusted controller should control the autonomous vehicle’s sensors and actuators during attack
and recovery. We formally modeled our protocol and control handoffs, proving that exactly one
controller controls the sensors and actuators at a given time.

Second, we supported the Code Repair component (Section 3.5) by reducing the verification
and validation costs associated with automated program repair. Automated program repair can
produce many candidate patches for the same defect — and not all patches are of equivalent quality.
While a lower-quality patch that allows the vehicle to “fight through” the attack and complete the
mission may be acceptable in the short term, ultimately operators may wish to inspect candidate
patches and choose the best one to deploy or augment. We developed an approach based on
distance metrics in invariant spaces to characterize the functional behavior of patches. This allowed
us to cluster and partition them so that the number of patches that needed to be manually inspected
(i.e., the amount of code that needed to be read carefully for V&V) was reduced by 50%, on
average.

Third, we supported the Diversification and Hardening component (Section 3.3) via formal
proofs of transformation correctness. Our diversity and hardening transformations should be se-
mantics preserving in the sense that normal operations are the same with or without the transfor-
mation — they only differ in the presence of attacks (e.g., by detecting or shutting down the attack,
rather than being compromised by it). We demonstrated that it is possible to prove pre- and post-
transformation binary methods equivalent. We did so by lifting each method to a formal, logical
representation capturing its low-level x86 meaning and operations, and proving implications and
equivalences on those logical formulae.

4 Results and Discussion

We evaluated TRMO technologies in multiple ways. First, we assessed individual components,
such as Diversification and Hardening, or Analysis and Modeling, in isolation to assess their over-
heads and efficacies. Since these components are “always on”, in a sense (unlike Repair, which is
only invoked when an attack is detected), their performance profiles are critical to overall mission
deployment.

Second, we evaluated our system end-to-end, including the Repair component, on a series of
attack scenarios. This included both software simulations and live demonstrations of autonomous
vehicles, both x86 ground-based rovers and ARM quadcopters, in front of government personnel.
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Attack scenarios and evaluations were gathered and overseen by a government-provided Red Team,
Assured Information Security.
Key evaluation and discussion aspects include:

e An evaluation of TRMO’s Diversification and Diversification component (i.e., of Helix and
Zipr), in Section 4.1.

e An evaluation of TRMO’s Analysis and Modeling component (i.e., of CMT), in Section 4.2.

e An end-to-end evaluation of TRMO’s ability to detect, repair and fight through cyberat-
tacks for autonomous vehicles (i.e., of our system as a whole, including Darjeeling), in
Section 4.3.2.

e A discussion of the academic and industrial impact of the research developed under this
project, in Section 4.3.4.

4.1 Evaluation — Diversification and Hardening

Because the Helix and Zipr technologies used by TRMO for diversification and hardening could
also be used independently, we assess and evaluate their performance with respect to a number of
metrics.

4.1.1 Evaluation — Diversification and Hardening — Preprocessing Time

Table 5: Helix toolchain: time to transform the ArduPilot X86 binary (1.3MB).

Helix Toolchain Step Time to process Time to process

Helix-as-a-Service (3GHz) | Local laptop (2.9GHz, SSD)

Initial IR analysis 2 mns 1+ mn
SLX 55 sec 30 sec
SCFI 40 sec 16 sec
GLX 30 sec 24 sec
Zipr (emit binary) 45 sec 17 sec
Total ~5 mns 2 mn 40 sec

During the period of performance, we streamlined the time required for Helix to analyze and
transform binaries. Previously, each stage or transformation in the Helix pipeline would read
the current state representation of the binary from the Helix database into memory, perform the
transformations, and then write the state back out to the database. We observed that accessing
the database for reading and writing represented a significant amount of time in relation to the
overall processing time. To improve performance, we restructured the Helix toolchain to coalesce
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database accesses whenever possible. Thus, only the first and last transformations need to access
the database (the first transformation reads from the database, the last transformation writes the
final state to the database, while intervening transformations use in-memory data structures).

Table 5 shows final results from this restructuring for processing ardupilot, the binary
(1.3MB) used to control the X86-based ground rover used in the live demonstrations. Under the
configuration of “Helix-as-a-service”, representative of a cloud-based scenario, transforming the
binary took approximately five minutes. Under the configuration of “Local laptop with SSD”, rep-
resentative of a high-powered autonomous vehicle with a solid state drive, our toolchain required
only two minutes and forty seconds. Reducing database access time and using solid-state storage
(instead of spinning hard drives) has a dramatic impact on processing time.

Processing the equivalent TRMO ARM quadcopter ardupilot binary with only the initial
IR analysis and Zipr steps took 12 minutes on a Raspberry Pi 3+. Salient features of the Rasp-
berry include its limited main memory (1GB), slow CPU (1.4GHz), and I/O channels limited by
a USB 2.0 connection (300 MBits/s). This represents a worst-case scenario for our preprocessing
approach.

We note that the Helix toolchain supports cross-analysis and production of binaries. In op-
erational scenarios where fast transformations are desired, Helix can be deployed as a service in
a cloud environment with fast X86 CPUs and solid-state drives to transform both X86 and ARM
binaries. Furthermore, as each binary can be generated independently, it would be natural to scale
horizontally across a cloud environment to support the generation of tens-of-thousands of Helix
protected binaries to support multiple missions.

4.1.2 Evaluation — Diversification and Hardening — Runtime Overheard
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Figure 11: Runtime performance overhead of Zipr/BILR on ARMv8 SPEC2017 benchmarks.

In Figure 11, we show performance overhead for Zipr using the BILR transformation on the SPEC
2017 benchmark suite of indicative programs for 64-bit ARM code. On average, Zipr/BILR incurs
9% overhead. While most benchmarks showed modest overheads (15 or 18 benchmarks incurred
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less than 6% overhead). two benchmarks, pe rlbench and xalancbmk, clearly stand out with
775% and 62% overhead respectively.

In addition to Figure 11, which shows ARM performance, we also investigate x86 performance
in Figure 14. There, Zipr/BILR performance for X86 on SPEC 2006 is shown with blue bars, and
both perlbench (35% overhead) and xalancbmk (50% overhead) also stand out in terms of
overhead. While these performance numbers are not directly comparable (ARM vs. x86), we note
that both benchmarks make heavy use of indirect branches, and are known to be challenging for
binary rewriters.

The X 86 version of Helix has been heavily optimized throughout multiple Air Force and De-
partment of Defense Projects, including the original Air Force MURI that was the genesis for the
Helix toolchain, the DARPA Cyber Grand Challenge, and the DARPA Cyber Fault-tolerance At-
tack Recovery program. With further work in optimizing the ARM platform, we expect to achieve
similar performance gains as with the X86 platform.

4.1.3 Evaluation — Diversification and Hardening — Supporting Exceptions
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Figure 12: Exception handling information recovery enables safer and faster SLX transformations.
The dashed red box indicates what the geometric mean overhead of the default SLX approach
would be if 1t applied to the povray and omnetpp.

Work on static binary ewriting has traditionally ignored exception handling, a critical feature in
languages such as C++. As part of this effort, we showed that recovering and exploiting exception
handling information actually results in both safer and faster transformations [35].

Figure 12 shows the performance overhead of SLX, our stack transformation, without excep-
tion handling (blue bars) and with exception handling (green bars) for several C++ programs in the
SPEC CPU2006 benchmark suite. Note that neither povray nor omnetpp have grey bars. Both
benchmarks dynamically throw and catch exceptions as part of their normal operation, and thus,
stack-based transformations must take into account and update exception handling information as
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part of the rewriting process. In terms of performance, incorporating and supporting exception
handling information reduces the overhead of SLX from 26% down to 10%.

2.75

2.50

N
N
G

g
o
S

Normalized Execution Time
- -
w ~
o w

=
N
w

.

M Random Code Layout M Optimized Code Layout Random Code Layout with EH Frame Rewriting B Optimized Code Layout with EH Frame Rewriting

Figure 13: Performance overhead of Zipr with exception handling support of SPEC CPU2006
benchmarks.

To isolate and highlight performance improvements enabled by incorporating exception han-
dling information, Figure 13 compares various Zipr/BILR configurations with no additional trans-
formations. The green and purple bars highlight Zipr performance with exception handling support
for both a random Zipr code layout policy (favoring diversity) and an optimized code layout policy
(favoring performance), resulting in overall average overheads of 7% and 3% respectively.

These numbers echo a general Helix theme that more precise reverse engineering of binaries
results in safer, more secure, and faster rewritten binaries. Incorporating exception handling in
Helix resulted in the breakthrough capability of only incurring 3% as the baseline cost for rewriting
binaries.
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4.1.4 Evaluation — Diversification and Hardening — Third-Party ROP

Table 6: Third-party case study: Zipr high-entropy diversity engine significantly outperforms other
state-of-the-art tools in reducing ROP gadgets. Table reprinted from [7].

Reduction (%) of Turing-complete (TC) gadgets in 7 TC categories (MIN-FP | EX-FP)

Tools  Granularity 4 (%) ¥ (%) Memory Assignment  Arithmetic  Logical (ETxie LT S e
MIN-FP EX-FP Flow Call Call Preserved?
Applications
Zipr Inst. 80.91 88.45 100 | 93.5 619915 100|863 575|821 66.0|887 731|925 8333|0 X*
SR FB 40.28 36.53 3.6 |21.0 108|429 147|938 3550362 234|293 250|484 0|0 v
MCR FB & Reg. 37.19 34.81 -167 1256 44230 220|388 24|288 405|592 140|637 80.0|0 v
CCR BB 27.02 38.77 231|317 441412 122244 48264 560|712 309|614 000 v
Libraries
Zipr  Inst 91.63 85.42 944|914 672|891 968|881 835)|89.0 654|89.1 625|867 66.67]|0 X*
SR FB 23.54 37.91 235|293 19.2 404 315|431 489|432 47.7|56.1 366|399 22910 v
MCR FB & Reg. 6.34 37.77 24.1 1375 302|396 563|559 457|454 37.0|54.1 434|423 66.67 |0 v
CCR BB 10.89 33.66 9.7 | 265 11.1 | 464 226|359 219|398 259|456 232|446 500]|0 v

* For Zipr, TC is not preserved for minimum footprint gadgets, but TC is preserved for extended footprint gadgets.

A major defensive capability provided by Helix is the high-entropy diversification of binaries using
Zipr/BILR. The rationale for diversification is to make the attack surface of software unpredictable
and therefore raise the difficulty level for carrying out successful attacks.

During the period of performance, researchers at Virginia Tech accessed and evaluated the He-
lix toolchain. After we provided the code (with Helix on a Docker image), we had no further
interactions with them. Several months later, the Virginia Tech group sent us a link to their paper,
Measuring Attack Surface Reduction in the Presence of Code (Re-)Randomization, comparing var-
ious diversity tools and techniques for defeating return-oriented programming (ROP) attacks [7].

Table 6 is a table extracted from their paper. Of all the tools compared, Zipr is the only one that
can operate directly on stripped binaries. Other tools required symbol information, or access to
the source code and/or compiler toolchain, making them ill-suited for deployment scenarios where
only stripped binaries are available.

Practical deployment issues aside, the table highlights the percentage reduction in gadgets
available to attackers for carrying out a ROP attack. Zipr achieves significant attack surface re-
duction (the Zipr numbers are boldfaced in the authors’ paper) for application and library binary
code, both in absolute terms and compared to other tools. The last column in the table indicates
whether Turing Completeness (TC) is maintained from the perspective of the attacker. If TC is
maintained, then the set of available ROP gadgets post-diversification are theoretically sufficient
and powerful enough to carry out arbitrary attacks. Again, Zipr is explicitly highlighted as it was
the only tool able to break TC under one of the two gadget category evaluated in the case study.

4.1.5 Evaluation — Diversification and Hardening — Control-Flow Integrity

Control-flow Integrity (CFI) is a powerful technique for preventing arc-injection attacks. At a high-
level, CFI dynamically enforces the control-flow graph embodied in the source code of a program.
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If an attack results in a new edge in the control flow graph then CFI will halt program execution
thereby thwarting the attack.

CFI is most often implemented as a compiler option and thus requires source code. Helix
implements CFI for binaries and was deployed successfully during the Cyber Grand Challenge
(CGC) [60] where it achieved the best defensive score. To protect the X86-based ground rover in
TRMO, we made several enhancements:

e We extended our CFI implementation to X86-64 as CGC was based on a X86-32 bit plat-
form.

e We optimized performance by making heavy use of executable nonces for enforcing CFI.
Executable nonces enabled us to use CFI instrumentation that did not interfere with the
hardware-optimized call/return stack.

e We improved our switch table detection heuristics. When a switch table can be analyzed
to such an extent that indirect branch targets can only provably branch to well-known tar-
gets, then CFI instrumentation is not needed. Knowing when not to add instrumentation or
security checks improves performance without sacrificing safety.

o We implemented CFI coloring, a technique which uses different values (colors) for identify-
ing different indirect target branch sets. Coloring provides more security as indirect branches
are further restricted based on their potential targets.

Figure 14 shows the performance overhead of various CFI configurations. The blue bar denotes
baseline Zipr overhead (6% overhead). The dark orange bar denotes overhead for the original CFI
implementation (15% overhead). The grey bar denotes our improved CFI without any coloring
(11% overhead). Finally, the last orange bar denotes the performance of CFI with coloring (16%
overhead).

In terms of security and performance tradeoffs, our new CFI implementation achieves 4%
improvement in performance overhead for the same level of security as our original CFI (15% —
11%). For the multi-colored version, our new CFI achieves higher security at the cost of only an
additional 1% (15% — 16%).

To the best of our knowledge, Helix is the only toolchain with efficient multi-colored CFI
capabilities for stripped binaries.

4.1.6 Evaluation — Diversification and Hardening — Binary Fuzzing

Table 7: ZAFL outperforms other state-of-the-art binary fuzzers.

ZAFL performance +60% +228%
ZAFL test cases +48-78% +150-835%
ZAFL unique crashes +26-96% +42-151%
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TRMO incorporates proactive hardening and diversity combined with reactive automated program
repairs when an attack is detected. Fuzzing of autonomous vehicle binaries to uncover latent
vulnerabilities opens up the possibility of proactive repair of code, prior to mission deployment, in
a two step process: (1) find crashing inputs, and then (2), feed crashing inputs to a repair process.

In a separate Air Force SBIR project, we developed ZAFL, a binary fuzzer that leverages
Helix to insert fuzzing instrumentation for the American Fuzzy Lop (AFL) fuzzing platform. The
efficiency of Zipr combined with an easy-to-use SDK for writing transformations resulted in ZAFL
being the fastest binary fuzzer for AFL, as independently evaluated by another university [33].

All other things being equal, the effectiveness of fuzzing depends on raw performance (i.e., the
rate at which random inputs can be generated and assessed). ZAFL leverages Helix’s ability to
inline instrumentation and layout efficient binaries.

Table 7 summarizes results for ZAFL compared to two other state-of-the-art AFL-based binary
fuzzers, AFL-Dyninst and AFL-QEMU, on a set of real-world benchmarks comprising audio,
video, and XML parsing applications. In fuzzing sessions over a 24 hour time period, ZAFL out-
performed AFL-Dyninst by 60% and AFL-QEMU by 228% in terms of raw performance. ZAFL
is able to generate 48—78% more unique test cases than AFL-Dyninst, and 150-835% more than
AFL-QEMU. ZAFL also finds 26-96% more unique crashes than AFL-Dyninst, and 42-151%
more than AFL-QEMU.

As a testament to the robustness of Helix and ZAFL, a fuzzing startup reached out to us and
gave us a 143MB challenge binary to fuzz. The binary, catboost, is a well-known machine
learning package developed by Yandex, Russia’s equivalent of Google. We were able to download
and fuzz catboost, and then discover and confirm an unknown heap overflow vulnerability,
all before the startup was able to even build the binary with the standard AFL set of tools. This
episode depicts clearly the advantage of working at the binary level. When dealing with source
code for real-world software, hooking into the build system is non-trivial and its difficulty often
under-appreciated. By working with binaries directly, Helix and its tools sidestep the difficulties
inherent in dealing with source code.

4.2 Evaluation — Analysis and Modeling — CPU and Memory Overhead

Because the CMT technology used by TRMO for analysis and modeling could also be used in-
dependently for trust assessment and anomaly detection, we assess and evaluate its performance
overhead separately.

CMT’s monitoring and verification incur a runtime overhead. The overhead associated with
monitoring and verifying locomotion comes primarily from the CPU resources required. By con-
trast, network overhead is negligible. On the quadcopter live demonstration system, a Raspberry
Pi 3B+, CMT’s monitoring and verification process utilized on average 5% of a single processor
core. By contrast, the flight stack ArduPilot process utilized on average 17% of a single process
core. Memory utilization on average was less than 5% of the total system memory. The locomo-
tion component of CMT was well within overhead constraints to allow the flight stack room to use
more resources as necessary, and to prevent resource congestion or alter mission operation.

CMT also made use of the Extended Berkeley Packet Filter trace API (Section 3.4.6) to inspect
kernel traces. The chosen kernel traces are directly related to the model used to monitor and
verify system operations that may be vulnerable to attacks. Here, overhead was measured against
an Apache 2 server executing client HTTP requests, where the requests triggered execution, file
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system, and memory operations on the server system. The baseline utilization of Apache 2 without
monitoring used an average of 12.75% of a single processor core. Minimal critical traces, using
Auditd to generate the traces for kernel function calls, required an average of 50.57% of a single
processor core. This equates to an equivalent 12.64% of a four processor core Raspberry Pi 3B+
system. Memory utilization by the Auditd traces was also minimal, totaling less than 3% of the
available 926 MB of main memory.

4.3 Evaluation — End-to-End

The ability to deploy Helix-transformed binaries, detect attacks with CMT, construct repairs on
the fly, and ultimately enable fight-through capabilities for autonomous vehicles was demonstrated
live in front of government personnel at the University of Michigan M-AIR drone testing facili-
ties. In 2018, live demonstrations focused on ground-based x86-64 autonomous rovers. In 2019,
live demonstrations focused on aerial ARM-32 quadcopters. In both cases, attack scenarios (e.g.,
security exploits, software defects, etc.) were furnished by a government-provided Red Team.

Following the rules of engagement and system assumptions (Section 3.2), attacks took the form
of specially-crafted packets sent by a remote attacker. No cryptographic defenses were used (the
attacker was assumed to have bypassed them). While the vehicle was completing a simple multiple-
waypoint mission, attack packets were sent near particular locations, simulating an attacker with a
directional antenna.

Except when attacks occurred, no discernible behavioral differences were observed during
practice run and live demonstrations: the rover and quadcopter performed their missions without
observable differences in terms of safety, speed, height, or battery drainage, even though TRMO
components (such as Helix and Zipr provided hardening and diversity, or CMT providing analysis
and monitoring) were present.

4.3.1 Evaluation — End-to-End — x86 Rover Demonstration

Table 8 shows the results of the Red Team evaluation of TRMO defenses applied to a live x86
rover autonomous vehicle defending against attack scenarios without recourse to external servers.
The scenario identifiers (e.g., 1, 7, etc.) are as labeled during the Red Team engagement.' Beyond
buffer overflows, which were important enough to merit multiple variations, the scenarios were
unique.

100ther scenarios were made available for software simulation testing and assessment in preparation for the live
evaluation.
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Table 8: Red Team evaluation of TRMO defending a live x86 autonomous ground vehicle against
attack scenarios with no external servers.

Scenario Description Hardening Analysis Repair Time (m)

1 use-after-free Detect  Repair 11.3

7 stack-based buffer overflow Detect Detect  Repair 10.0

10 infinite loop Detect  Repair 9.8

12 segmentation fault Prevent - - -

15 integer overflow Detect  Repair 8.5

k arc-injection function pointer Detect Detect  Repair 17.0

g stack-based buffer overflow Detect Detect  Repair 16.0

de input sanitization and function pointers Detect  Repair 11.0

do double free Detect  Repair 10.0
heldoutl integer cast Detect  Repair 13.0
heldout2 overflow to exit Detect  Repair 9.0

A “Detect” indicates that a TRMO defensive technology detected the attack and alerted the
Repair component. For the Hardening column, this corresponds to a Helix/Zipr transformation
(Section 3.3) hardening the software such that the vulnerability yields a detectable event when
triggered instead of compromising the system. For the Analysis column, this corresponds to CMT
(Section 3.4) detecting a violation of the learned trust model.

The “Prevent” for scenario 12 indicates that Helix/Zipr transformations were powerful enough
to entirely mask the attack. The memory transformations employed rendered the attack packet
harmless. As a result, there were no behavioral changes in the operation of the vehicle at all (and
thus no trust policy violation for Analysis to detect and no invocation of the Repair component).

A “Repair” indicates that TRMO’s Darjeeling technique for automated program repair (Sec-
tion 3.5) was able to produce a patch. The Time column gives the time, in minutes, required to
produce the patch using only the rover embedded vehicle hardware. This represents a worst-case
evaluation in terms of repair latency. The average time required was 11.5 minutes.

We draw particular attention to the two “heldout” scenarios. While the TRMO team was given
information about the other scenarios for training purposes as part of the Red Team engagement,
the two held out scenarios were only made available after the TRMO defenses had been “locked
in”. In essence, they were evaluated live for the first time on the day of the demonstration. They
thus illuminate TRMO’s ability to successfully defend against entirely unknown or future-looking
threats.

Other evaluation metrics were collected during this demonstration. The space overhead re-
quired to store additional files (e.g., TRMO defensive techniques, libraries, etc.) was 14-66%
(or 1-4 GB). The executable overhead (i.e., for storing transformed and hardened binaries) was
4.6 MB (or 4.5x). Compared to the gigabytes required for the autonomous vehicle normally,
the additional megabytes for the hardened binary were minute. The network overhead was 0 (re-
pairs were conducted using the vehicle hardware). However, if remote hardware had been used,
the network overhead would have been 1.31 MB. The network overhead is low because only the
proof-of-concept attack packet and the patch (a small change to the executable) need be transmit-
ted. Finally, the times reported above are the times required to construct the first repair. As noted
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in Section 3.6.2, it is often desirable to produce multiple repairs (e.g., for diversity, to present to
developers, etc.). The time to produce each additional repair beyond the first was 45s, on average.

4.3.2 Evaluation — End-to-End — ARM Quadcopter Scenarios

Table 9: Red Team evaluation of TRMO defending an ARM autonomous quadcopter against
attack scenarios with no external servers.

Scenario Description Hardening Analysis Repair
1 use-after-free Detect Detect  Repair
3 format string — information leak =~ Detect
4 format string — crash Detect
5.1 stack-based buffer overflow Detect Detect  Repair
5.2 heap-based buffer overflow Detect Detect  Repair
9 ARM code injection Detect Detect
10 infinite loop Detect  Repair
12 segmentation fault Detect  Repair
13 mathematical logic bug Detect  Repair
14 denial of service Detect  Repair
15 integer overflow Detect  Repair
16 floating point exception Detect  Repair
heldoutl7 concurrency Detect
heldout18 deadlock Detect
heldout19 delimiter injection Detect  Repair
heldout20 double free Detect Detect  Repair
heldout21 function pointer overwrite Detect Detect  Repair
heldout22 memory leak
heldout23  off-by-one Detect Detect  Repair
heldout24 SQL validation Detect

heldout25 uninitialized memory

Table 9 shows the results of the Red Team evaluation of TRMO defenses applied to an ARM
autonomous quadcopter. The scenarios are similar to those used for the x86 rover demonstration
when possible, but adapted to the ARM architecture (e.g., x86 code injection attacks are replaced
with ARM code injection attacks). Certain x86 vehicle exploits (e.g., “heldoutl”, “k”, etc.) could
not be adapted to ARM and were not evaluated. The nine final scenarios (labeled 17-25) “held
out” were only made available after TRMO defenses had been “locked in”, following the Red
Team rules of engagement.

A “Detect” indicates that a TRMO defensive technology, such as Helix/Zipr (Hardening, Sec-
tion 3.3) or CMT (Analysis, Section 3.4) was able to detect the attack. Note that TRMO as a
whole detects the attack if either defensive layer detects the attack. TRMO thus detects 19 of the
21 (90%) of the attacks considered.
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A “Repair” indicates that TRMO was able to entirely repair the defect or vulnerability (Sec-
tion 3.5) and complete the mission. The end-to-end TRMO system thus provided “fight through”
resiliency capabilities for 13 out of 21 (62%) of the Red Team quadcopter attack scenarios.

4.3.3 Evaluation — End-to-End — ARM Quadcopter Demonstrations

Four scenarios were selected for live flight demonstration in front of government personnel and
Red Team members. Video recordings were made of live flights showcasing TRMO technologies:
edited, narrated presentations of them are available.

Information Leak Attack. In this scenario, a remote attacker exploits a weakness in an on-board
image server on the quadcopter, bypassing its session authorization routine to download sensitive
images. This type of weakness is commonly referred to as “improper authorization” (Common
Weakness Enumeration #285). By sending a carefully-crafted message, an attacker can bypass the
image server’s session authorization mechanism and exfiltrate sensitive data from the UAV.

TRMO successfully detected the attack before any files were exfiltrated. Helix/Zipr diversi-
fied the file server software used against memory-based attacks, and CMT’s inotify handlers
detected an unexpected file system access pattern. TRMO lands safely to construct a repair. The
repair is constructed by injecting an existing permission check from elsewhere in the source into
the section of faulty code; this prevents future exploits of the vulnerability. The mission is re-
sumed and completes successfully. The Red Team measured that constructing the repair took 1.60
minutes.

Repair in Progress - -> Attack Detected ->
setivg : -

——w e
o
[

Command Console Leaked Information

s
Defenzey)

Figure 15: Example frames from narrated videos, suitable for broad government audiences, show-
casing TRMO defenses applied live to attacks. Left: information leak attack. Right: segmentation
fault attack.

An edited video introducing and displaying this demonstration is available at ht tps: //www .
youtube.com/watch?v=nYWF-0Bd51w. See Figure 15 for an example.

Segmentation Fault Attack. In this scenario, a remote attacker exploits a weakness in the au-
topilot’s handling of command and control messages. This type of weakness is commonly-referred
to as “improper input validation” (Common Weakness Enumeration #20). By sending a carefully-
crafted C2 message, an attacker can cause a control-flow jump (i.e., an arc-injection) to modify the
autopilot’s tasking to trigger a segmentation fault.

Approved for Public Release; Distribution Unlimited.

50


https://www.youtube.com/watch?v=nYWF-OBd51w
https://www.youtube.com/watch?v=nYWF-OBd51w

TRMO successfully detected the attack: Zipr’s diversification prevents the arc-injection attack
from succeeding by relocating the target code. TRMO lands safely and constructs a repair by
disabling the errant run-time parameter handling logic and closing the attack vector. The mission
then resumes and completes successfully. The Red Team measured that constructing the repair
required 2.20 minutes.

An edited video introducing and displaying this demonstration is available at https: //www.
youtube.com/watch?v=Z2BSexhSHHcY.

Sensor Attack. In this scenario, a remote attacker exploits a weakness in the image analysis
routine’s handling of sensed imagery data. This weakness is commonly referred to as “improper
handling of unexpected data” (Common Weakness Enumeration #241). By exposing the image
sensor to concentrated red hues, the attacker can force the Robot Operating System- and ArduPilot-
based autonomous aerial vehicle controller architecture into inducing a fail-fast landing.

TRMO successfully detected the attack, landed safely to construct a repair, and then resumed
and completed the mission. The repair replaces the malicious function call with a safe function
call, repurposed from elsewhere in the program. The Red Team measured that constructing the
repair took 2.05 minutes.

An edited video introducing and displaying this demonstration is available at ht tps: //www.
youtube.com/watch?v=L3LP-0omccc.

Logic Bug. In this scenario, a remote attacker exploits an implementation of a weakness in the
autopilot’s handling of runtime device parameter settings. This type of weakness is commonly re-
ferred to as “assigning instead of comparing” (Common Weakness Enumeration #481). By sending
a carefully-crafted set-parameter message, an attacker causes a crash failure in the quad-
copter’s autopilot software (by triggering a floating-point exception which causes a segmentation
fault).

TRMO successfully detected the attack, landed safely to construct a repair, and then resumed
and completed the mission. The repair effectively disables the errant run-time parameter handling
logic and closes the attack vector. The Red Team measured that constructing the repair took 2.68
minutes.

An edited video introducing and displaying this demonstration is available at ht tps: //www.
youtube.com/watch?v=kRpQStJ4UdI.

4.3.4 Discussion — External Impact

Over the course of multiple years, the TRMO effort led to significant advances in the state of
the art. For example, automated program repair advances scaled the technique from constructing
repairs in 90 minutes to on the order of 5 minutes; static binary rewriting and hardening were
adapted to handle ARM and C++; and trust assessment was extended to handle autonomous vehicle
semantics.

Academically, techniques associated with the project have led to multiple publications. For
brevity, we highlight only the most influential, including six that received Distinguished Paper
Awards:

1. A Genetic Programming Approach to Automated Software Repair [24]
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2. Automatically Finding Patches Using Genetic Programming [83]
3. GenProg: A Generic Method for Automated Software Repair [46]

4. Repairing COTS Router Firmware without Access to Source Code or Test Suites: A Case
Study in Evolutionary Software Repair [72]

5. Using Dynamic Analysis to Discover Polynomial and Array Invariants [58]

6. Using Execution Paths to Evolve Software Patches [59]

In addition, two of those papers also received Ten-Year Most Influential Paper Awards [24,83],
highlighting their “test of time” importance and impact on the academic community.

The Helix/Zipr binary hardening, diversifying and rewriting techniques associated with TRMO
took second place overall in the DARPA Cyber Grand Challenge (CGC), and obtained the highest
defensive score overall [32, 60].

5 Conclusions

This report describes the Trusted Resilient Mission Operation (TRMO) system architecture, which
focuses on efficient, trusted, resilient techniques that allow autonomous vehicles to “fight through”
an attack and continue a mission. TRMO integrates a set of static and dynamic protective tech-
nologies for Intel- and ARM-based rover and quadcopter platforms. This report describes those
techniques and their evaluations.

TRMO'’s Diversification and Hardening components, Helix and Zipr, provide composable, low-
overhead transformation (Section 3.3) that detect and prevent many classes of attacks (Table 1),
and support critical languages like C++ (Section 3.3.2). These defenses incur only a 9% run-
time overhead on ARM (Figure 11) but detected 43% of Red Team-furnished attacks against an
autonomous quadcopter (Table 9).

TRMO’s Analysis and Modeling component, CMT, uses a combination of readily-available
telemetry information (Table 3) and operating system support (Section 3.4.6) to detect trust pol-
icy violations (anomalies and attacks). This defense incurred only a 5% runtime overhead on
ARM (Section 4.2), and after training detected 81% of Red Team-furnished attacks against an
autonomous quadcopter (Table 9).

TRMO also included efforts to support operator trust in the deployment of a resilient sys-
tem. We formally proved properties relating to the isolation between TRMO defenses (e.g., attack
detection, repair, etc.) and vulnerable payloads (Section 3.6.1). We introduced invariant-based ap-
proaches to reduce the manual verification and validation costs associated with inspecting multiple
patches by 50% (Section 3.6.2). We formally proved that certain hardening and diversification
transformations result in programs that are equivalent on benign inputs but differ when attacked
(Section 3.6.3).

Finally, TRMO’s Repair component, Darjeeling, used search-based techniques, in the style of
GenProg, to automatically construct patches for detected defects (Section 3.5). A combination of
pre-mission analyses (Section 3.5.3) and in-mission optimizations (Section 3.5.4) admit the effi-
cient generation of repairs. TRMO was able to produce repairs for 62% of Red Team-furnished
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attacks against an autonomous quadcopter (Table 9). Red Team measurements of repair construc-
tion were under three minutes (Section 4.3.3).

The TRMO effort developed, integrated and evaluated techniques to provide trusted and re-
silient operation for autonomous vehicle missions via a combination of static defenses, models
and proofs as well as dynamic monitoring and repair. In the final Red Team evaluation using an
ARM quadcopter, TRMO detected 90% of attacks and constructed a repair for 62%, allowing the
vehicle to fight through and complete those mission successfully.
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List of Symbols, Abbreviations and Acronyms

ACL2

AES
AFL
AFRL

API

ARJA

ARM

BILR

BinART

C2

CFAR

CFG
CF1
CGC

CMT

COTS

CPS
CPU
DARPA

A Computational Logic for Applicative Common Lisp — a theorem prover used by the
Kestrel team

Advanced Encryption Standard — a block cipher specification for encrypting electronic data
American Fuzzy Lop — a binary fuzz testing tool
Air Force Research Laboratories

Application Programming Interface — a set of functions and procedures for the creation of
applications that access the features or data of an operating system, application, or other
service

Automated Repair of Java Programs — an algorithm for repairing Java programs using
multi-objective genetic programming

Advanced RISC Machine — a family of reduced instruction set computing architectures
often used in embedded systems

Block-level Instruction Location Randomization — Helix transformation to diversify code
layout implemented using Zipr

Binary Auto-Repair Templates — Helix transformation for common vulnerability patterns

Command and Control — in this setting, a software system empowering designated person-
nel to exercise lawful authority and direction over an autonomous vehicle

Cyber Fault-tolerant Attack Recovery — DARPA program focusing on defensive cyber tech-
niques

Control-Flow Graph — a useful abstract representation of a program
Control-Flow Integrity — defeats certain classes of security attacks

Cyber Grand Challenge — a DARPA competition to create automatic defensive systems
capable of reasoning about flaws, formulating patches and deploying them on a network in
real time

Continuous Measurement of Trust — a defensive technology for software

Commercial off-the-shelf — generic packaged solutions which can be adapted to satisfy
specific needs

Cyber-physical system
Central Processing Unit
Defense Advanced Research Projects Agency
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eBPF
EM
GCS
GenProg
GLX
GPS

HACMS

Helix

HIL

HLX
I/0

IoT

IMU

IRDB

JVM

LR

M-AIR

MavLink

MAVROS

MD-5

Extended Berkeley Packet Filters — used by CMT to assess trust

Electromagnetic — electric-, magnetic-, radio- or radiation-based

Ground Control System

Generic Approach to Automated Program Repair — a defensive technology for software
Global-layout Transformation — Helix transformation to relocate global variables
Global Positioning System

High Assurance Cyber Military Systems — DARPA program to create technology for the
construction of high-assurance cyber-physical systems

Name of binary transformation platform

Hardware in the Loop — a simulation that includes electrical emulation of sensors and actu-
ators

Heap-layout Transformation — Helix transformation to modify heap layout
Input / Output — computer system communications with an outside environment

Internet of Things — a system of interrelated computing devices, mechanical and digital
machines and the ability to transfer data over a network without requiring human-to-human
or human-to-computer interaction

Inertial measurement units — an electronic device that measures and reports a body’s spe-
cific force, angular rate, and sometimes the orientation of the body, using a combination of
accelerometers, gyroscopes, and sometimes magnetometers

Intermediate Representation Database — Helix storage and abstraction for representing and
accessing information about binaries

Java Virtual Machine — a virtual machine that enables a computer to run Java programs

Link Register — a special-purpose register which holds the address to return to when a
function call completes

University of Michigan M-Air — an outdoor netted scientific facility for operating au-
tonomous vehicles

Micro Autonomous Vehicle Link Protocol — used by commodity autonomous vehicles

Micro Autonomous Vehicle Link Robot Operating System — a MAVLink extendable com-
munication node for ROS

Message Digest Algorithm 5 — a hashing, checksum and message digest algorithm often
considered in cryptographic settings
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MIPS

MURI

MUSE

0S
QEMU
ROP
ROS
SBFL

SBIR

SCFI
SDK

SHA-1

SiTL

SLX

SMT

SPEC

SQL
STARS

START

TC

TCP

Microprocessor without Interlocked Pipelined Stages — an influential reduced instruction
set computer architecture

Multidisciplinary University Research Initiative — a tri-service Department of Defense pro-
gram that supports research teams

Mining and Understanding System Enclaves — a DARPA program that seeks to make sig-
nificant advances in the way software is built, debugged, verified, maintained and understood

Operating System

Quick Emulator — free and open-source emulator that performs hardware virtualization
Return-oriented Programming — a security attack

Robot Operating System — middleware used by many autonomous vehicles
Spectrum-Based Fault Localization — localizes defects in programs

Small Business Innovation Research — a program coordinated by the Small Business Ad-
ministration intended to help certain small businesses conduct research and development

Selective Control-Flow Integrity — Helix transformation for enforcing control-flow integrity

Software Development Kit — collection of software development tools, often for interfacing
with a particular project or library

Secure Hash Algorithm 1 — a cryptographic hash function that produces message digests
associated with electronic data

Software in the Loop

Stack-layout Transformation — Helix transformation to add canary and random padding to
stack frames

Satisfiability Modulo Theories — constraints used in formal verification

Standard Performance Evaluation Corporation — a series of benchmarks used to evaluate
computer performance

Structured Query Language — a common interface for database systems and transactions

STARS Binary Analysis Engine — handles function recovery, exception handling, object
layout, control and dataflow graphs

Software Techniques for Automated Resilience and Trust

Turing Complete — a system that is computationally universal and can simulate any Turing
machine

Transmission Control Protocol — a reliable networking protocol associated with the Internet
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TRMO

TRSYS

UAV
UDP

UML

UPGMA

V&V

XML

ZAFL

Zipr

Trusted and Resilient Mission Operation — the overall software defensive framework de-
scribed in this report

Trusted and Resilient Software-intensive Systems — a technical area of the Air Force Foun-
dations of Trusted Computational Information Systems program, focusing on developing
techniques to guarantee trust and maintain this trust as self-healing/resilient techniques fight
through cyber-attacks

Unmanned Aerial Vehicle
User Datagram Protocol — a less-reliable networking protocol associated with the Internet

Unified Modeling Language — a general-purpose standard way to visualize the design of a
system

Unweighted Pair Group Method with Arithmetic Mean — an agglomerative (bottom-up)
hierarchical clustering method

Verification and Validation — procedures that are used together for checking that a prod-
uct, service, or system meets requirements and specifications and that it fulfills its intended

purpose

Extensible Markup Language — a markup language for encoding documents in a format
that is both human-readable and machine-readable

Zipr-based AFL — Fast binary fuzzer using Helix toolchain

Name of static rewriter used in the Helix toolchain. BILR is implemented as a Zipr plugin
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