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Abstract 

 Traditional learning curve theory assumes a constant learning rate regardless of the number of 

units produced; however, a collection of theoretical and empirical evidence indicates that learning rates 

decrease as more units are produced in some cases. These diminishing learning rates cause traditional 

learning curves to underestimate required resources, potentially resulting in cost overruns. A 

diminishing learning rate model, Boone’s Learning Curve (2018), was recently developed to model this 

phenomenon. This research confirmed that Boone’s Learning Curve is more accurate in modeling 

observed learning curves using production data of 169 Department of Defense end-items. However, 

further empirical analysis revealed deficiencies in the theoretical justifications of why and under what 

conditions Boone’s Learning Curve more accurately models observations. This research also discovered 

that diminishing learning rates are present but not pervasive in the sampled observations. Additionally, 

this research explored the theoretical and empirical evidence that may cause learning curves to exhibit 

diminishing learning rates and be more accurately modeled by Boone’s Learning Curve. Only a limited 

number of theory-based variables were useful in explaining these phenomena. This research further 

justifies the necessity of a diminishing learning rate model and proposes a framework to investigate 

learning curves that exhibit diminishing learning rates. 
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I. Introduction 

Background 

 The U.S. Government Accountability Office (GAO) critiqued the cost and schedule performance 

of the Department of Defense’s $1.7 trillion portfolio of 86 major weapons systems in their 2018 

“Weapons System Annual Assessment.” The GAO cited realistic cost estimates as a reason for the 

relatively low cost growth of the portfolio in comparison to earlier portfolios (GAO, 2018, p. 1). Congress 

and its oversight committees maintain a watchful eye on the Department of Defense’s complex and 

expensive weapons system portfolio. Inefficient programs are scrutinized and may be terminated if 

inefficiencies persist. Funding of inefficient programs will also lead to the underfunding of other 

programs. These terminated and underfunded programs may result in capabilities gaps that negatively 

impact our nation’s defense.  

 A key to the efficient use of resources is accurately estimating the resources required to 

produce an end-item. A popular method of forecasting required resources is using learning curves. 

Learning curves predict the unit cost of an end-item using the item’s sequential unit number in the 

production line with other fixed parameters. Learning curves are especially useful when estimating the 

required resources for complex products. The most popular learning curve models used in the 

Department of Defense are over 80 years old and may be outdated in today’s technology-rich 

production environment. Additionally, several researchers to include founders of the theory have 

identified a specific shortfall of these traditional learning curve models to include Wright (1936), Asher 

(1956), and Badiru (2012), among others. These researchers have demonstrated both theoretically and 

empirically that the effects of learning do not continue in perpetuity: the effects of learning slow or 

cease over time.  

 A new model, Boone’s Learning Curve constructed by Boone (2018) has been proposed to 

account for diminishing rates of learning as more units are produced. The purpose of this research is to 
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examine Boone’s Learning Curve and assess if it is more accurate in explaining the required resources in 

comparison to the traditional learning curve theories. This research will compare each learning curve 

theory using a large number of programs with a wide range of attributes. 

Research Objectives, Questions, & Hypotheses 

 The two learning curve models cited by the GAO Cost Estimating and Assessment Guide (2009) 

are Wright’s Cumulative Average Learning Curve theory developed in 1936 and Crawford’s Unit Learning 

Curve theory developed in 1947. Although both learning curve theories use the same general equation, 

the theories have different methodologies to estimate parameters and contrasting interpretations of 

outcomes. Wright’s Learning Curve is shown in Equation 1. 

 

                                                                                  𝑌ത = 𝐴𝑥௕                                                                                       (1) 
 
  Where: 
                𝑌ത  = cumulative average cost of x units 
                A = theoretical cost to produce the first unit (T1) 
                x = cumulative number of units produced 
                b = ୪୬ ௅௘௔௥௡௜௡௚ ஼௨௥௩௘ ௌ௟௢௣௘

୪୬ ଶ
 

 

 Wright’s Learning Curve yields a cumulative average cost per unit given the cumulative number 

of units produced, a learning curve slope, and a theoretical first unit cost. For example, with a learning 

curve slope of 80% and a first unit cost of 100 labor hours, the average cost of the first two units would 

be 80 labor hours or 60 labor hours for the second unit. Regardless of the number of units produced, 

there is a constant decrease in labor costs due to the rate of learning. 

 Boone’s Learning Curve diverges from the assumption of constant learning by including a decay 

term in the exponent that decreases the coefficient “b” as the number of units produced increases. This 

transformation has the effect of attenuating cost efficiencies gained from learning as more units are 

produced. Boone’s Learning Curve is shown in Equation 2. 
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                                                                                  𝑌ത = 𝐴𝑥௕/(ଵା
ೣ

೎
)                                                         (2) 

 
Where: 

                     𝑌ത = cumulative average cost of x units 
                     A = theoretical cost of the first unit (T1) 
                     x = cumulative number of units produced 
                     b = ୪୬ ௅௘௔௥௡௜௡௚ ஼௨௥௩௘ ௌ௟௢௣௘

୪୬ ଶ
              

                     c = decay value (positive constant) 
 

 Boone’s Learning Curve is written in the original form in which it was proposed using Cumulative 

Average Learning Curve Theory. This research will examine whether Boone’s Learning Curve can be used 

with both Cumulative Average and Unit Learning Curve Theories. With a learning curve slope of 80%, 

first unit cost of 100 labor hours, and decay value of 100, Boone’s Learning Curve yields a cumulative 

average cost at the second unit of 80.35 labor hours or 60.70 labor hours for the second unit. In 

comparison to Wright’s Learning Curve using the same parameters, the effect of learning has decreased 

slightly in the production of unit two. What began as an 80% learning curve has decayed to an 80.35% 

learning curve for the second unit. The inclusion of the decay value increases the learning curve slope 

and hence decreases the rate of learning as more units are produced. 

 Boone (2018) demonstrated his learning curve using Unit theory1 to be more accurate to a 

statistically significant degree in comparison to Crawford’s Learning Curve. Given these promising 

results, analysis of Boone’s Learning Curve should be expanded to provide a more robust examination. 

For instance, Boone (2018) analyzed cost improvement curve data for prime mission equipment (PME) 

elements in units of total dollars only. Boone (2018) did not investigate how his curve performed with 

Cumulative Average Theory. Boone (2018) did not compare the accuracy of his learning curve to the 

 
1 Boone (2018) cites Wright’s Cumulative Average Theory extensively and forms his model using Cumulative 
Average Theory. However, Boone performs analysis using Unit Theory that may not be evident without reviewing 
his results outside of his thesis. 
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traditional Unit Learning Curve theory in sections of the production cycle but only at an aggregate level. 

This research will investigate each of these topics to analyze Boone’s Learning Curve further. 

 The primary goal for this research is to determine how accurate Boone’s Learning Curve is in 

comparison to both Wright’s and Crawford’s learning curve theories. In order to determine how 

generalizable Boone’s Learning Curve is, Cumulative Average Learning Curve Theory and Unit Learning 

Curve Theory will be examined using cost data in units of total dollars and labor hours. Also, system, 

engine, sub-system, and sub-component data will be analyzed along with historical and contemporary 

program data with a variety of attributes. These objectives will be the goal of the first phase of research 

and will seek to answer the following questions: 

1. Does Boone’s Learning Curve improve upon the traditional learning curve theories provided a 

wide variety of program attributes? 

2. If Boone’s Learning Curve improves upon the traditional models, how many observed learning 

curves are more accurately modeled by Boone’s Learning Curve? 

3. If Boone’s Learning Curve improves upon the traditional models, what is the average amount of 

error reduction from the use of Boone’s Learning Curve in comparison to the traditional learning 

curve theories? 

 A second phase will also be implemented to explore further diminishing rates of learning and 

how this phenomenon interacts with Boone’s Learning Curve. This second phase will first seek to 

determine how common instances of diminishing rates of learning are when using the traditional 

learning curve theories. Investigating the presence of empirical instances of diminishing rates of learning 

will delineate opportunities where Boone’s Learning Curve can significantly improve upon the traditional 

learning curve theories. Additionally, specific hypothesized program learning curve attributes will be 

investigated to determine how they affect the degree which Boone’s Learning Curve improves upon the 
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traditional learning curve theories. These attributes will also be investigated to understand their effects 

on the presence of diminishing rates of learning when modeled using traditional learning curve theories. 

These objectives will be addressed through the following research questions: 

4. Do program learning curves exhibit diminishing rates of learning when modeled using the 

traditional learning curve theories? 

5. Does Boone’s Learning Curve more accurately model program learning curves with diminishing 

rates of learning? 

6. If Boone’s Learning Curve improves upon the traditional models, in what segments of the 

learning curve does Boone’s Learning Curve more accurately model observed learning curves? 

7. If Boone’s Learning Curve improves upon the traditional models, what program attributes affect 

the degree to which Boone’s Learning Curve will more accurately model observed learning 

curves? 

8. If observed learning curves exhibit diminishing rates of learning, what program attributes affect 

the degree to which diminishing rates of learning will occur as modeled by the traditional 

learning curves? 

Methodology 

 In order to test the generalizability of Boone’s Learning Curve in the first phase, a diverse set of 

DoD program data will be gathered from the DoD’s Cost Assessment Data Enterprise (CADE) using 

Contractor Cost Data Reports 1921-1 and 1921-2. First, Cumulative Average Learning Curve Theory and 

Unit Learning Curve Theory will be used to calculate predicted learning curves. Following, Boone’s 

Learning Curve will be used to calculate predicted learning curves using both the Cumulative Average 

Learning Curve and Unit Learning Curve methodologies. Non-linear solver optimization will be used to 

estimate learning curves parameters to form these predicted learning curves. The model error will be 

calculated using the predicted and observed learning curves in the form of root mean squared error 
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(RMSE) percentage difference and mean absolute percent error (MAPE) percentage difference for 

Boone’s Learning Curve and the traditional learning curves. Statistical difference tests will then be used 

to compare Boone’s Learning Curve and the traditional learning curves using these measures of error. 

When Boone’s Learning Curve utilizes Cumulative Average Theory, Boone’s Learning Curve will be 

compared to Wright’s Cumulative Average Theory Learning Curve. When Boone’s Learning Curve utilizes 

Unit Theory, Boone’s Learning Curve will be compared to Crawford’s Unit Theory Learning Curve. 

 In order to explore the presence of diminishing rates of learning and its interaction with how 

Boone’s Learning Curve more accurately models observed learning curves, the amount of error in 

different segments of the learning curve will be investigated. The amount of error between Boone’s 

Learning Curve and Crawford’s Learning Curve as well as between Crawford’s Learning Curve and 

observed learning curves will provide the data for these statistical tests. The learning curve segment on 

which these tests will focus is the fourth quarter because instances of diminishing rates of learning are 

common in this segment. Statistical tests will be utilized to compare error in the fourth quarter to 

determine if observed learning curves exhibit diminishing rates of learning. Additionally, these tests will 

provide evidence as to where in the learning curve Boone’s Learning Curve more accurately models 

observed learning curves. Following, a confusion matrix will be utilized to determine if Boone’s Learning 

Curve more accurately models programs with diminishing rates of learning. Lastly, regression analysis 

will be used to determine the effects, if any, hypothesized variables have on the degree to which 

Boone’s Learning Curve will more accurately explain the observed learning curve. Regression analysis 

will be used once more to determine the effects, if any, hypothesized variables have on the degree to 

which diminishing rates of learning will occur in observed learning curves. 

Implications 

 This research will examine whether Boone’s Learning Curve is the solution to model learning 

curves with diminishing rates of learning. This research will also study if diminishing rates of learning are 
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systematically present in Department of Defense programs as well as what program attributes give rise 

to this phenomenon. Additionally, this research will investigate how Boone’s Learning Curve more 

accurately models observed learning curves while exploring attributes that substantiate its use. In the 

end, Boone’s Learning Curve may improve cost estimation accuracy in comparison to the traditional 

theories while promoting new research into learning decay. 
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II. Literature Review 

Learning Curve Phenomenon 

 The concepts of learning and learning curves are intuitive: as a worker repetitively performs 

tasks to assemble a product, the worker will gain efficiencies. These efficiencies should decrease the 

time the worker spends on each unit as more units are produced. These efficiencies translate to a 

continuous reduction in labor hours and cost savings over time. The GAO Cost Estimating and 

Assessment Guide lists four reasons for these gains in efficiency that broaden the scope of learning. 

First, as more units are produced, workers tend to become “more physically and mentally adept” at 

performing tasks, and supervisors become more efficient at utilizing workers (GAO, 2009, p. 119). This 

aspect of learning is considered to be learning-by-doing at the laborer level and is termed autonomous 

learning (Levy, 1965). Second, the work environment is improved to include the “climate, lighting, and 

general working conditions” (GAO, 2009, p. 119). Third, the production process is changed to “optimize 

the placement of tools and material and simplify tasks” (GAO, 2009, p. 119). Lastly, market forces in the 

competitive business environment will require suppliers to improve efficiency to survive (GAO, 2009, p. 

119). These last three aspects of learning are considered to be organizational learning by continuous 

improvement efforts termed induced learning (Levy, 1965; Dutton and Thomas, 1984). 

 Several terms are used to describe learning curves that include cost improvement curve, 

cost/quantity relationship, manufacturing process function, experience curve, and product 

improvement function (ICEAA Module 7, 2014, p. 7). The original and most generalized term “learning 

curve” will be used in this research. Although learning curves are used most popularly in aircraft 

manufacturing, the concept can be applied to “relatively large and complex products that require 

various types of fabrication and assembly skills” (Asher, 1956, p. 5). The Air Force Cost Analysis 

Handbook includes several specific situations in which learning curves apply that include “the 

manufacture of a complex end-item, limited changes to product characteristics or technology, 
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continuous manufacturing process, constant management pressure to improve, and consistent 

production rates” (Department of the Air Force, 2007, pp. 8-1 – 8-2). The Handbook also includes other 

criteria to include “a high proportion of manual labor, labor efficiency/job familiarization, 

standardization, specialization, and methods improvements, improved materiel flow and reduced scrap, 

improved production procedures, tools, and equipment, improved workflow and engineering support, 

and product redesign improvements” (Department of the Air Force, 2007, pp. 8-1 – 8-2). These 

situations describe aspects of the manufacturing process that enable organizational learning and allow 

for labor efficiencies, although learning can occur without all criteria being present. 

Cumulative Average Learning Curve Theory 

 The concept of a learning curve was first formally recorded by Theodore Paul Wright in 1936 in 

his work “Factors Affecting the Cost of Airplanes.” Wright identified the learning curve concept in a pre-

World War II production environment of a small two-seater aircraft (ICEAA Module 7, 2014, p. 16). He 

observed that as a worker repeatedly performs the same task, the time required to complete that task 

will decrease at a constant rate. More specifically, Wright formulized that as the number of aircraft 

produced doubles, the cumulative average labor cost would decrease at a constant rate (Wright, 1936). 

This relationship is described in Equation 1 and is the Cumulative Average Theory widely in use. When 

learning curves utilize this Cumulative Average Theory, they are frequently called “Wright Curves” 

(ICEAA Module 7, 2014, p. 16).  

 The learning curve slope in the learning curve exponent “b” of Equation 1 defines how each 

doubling of produced units reduces cumulative average costs. For example, Wright used his empirical 

data to calculate a learning curve slope of 80%. Therefore, as the cumulative number of units doubles, 

the cumulative labor cost of the doubled units would be 80% of the original undoubled amount resulting 

in a 20% cumulative average reduction in labor cost (Wright, 1936). This 20% cumulative average 

reduction can also be called the rate of learning. Higher rates of learning lead to greater reductions in 
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labor costs. Although Wright’s model cited 80% as a universal learning curve slope, learning curve theory 

evolved to realize that other slopes are possible based on an end item's unique manufacturing 

characteristics (Jaber, 2006). 

 Wright’s Cumulative Average Learning Curve is cumbersome to use because cumulative average 

costs are calculated in place of the unit cost. Figure 1 depicts Wright’s Learning Curve with an 80% 

learning curve slope based on a first unit cost of 100. Figure 1 shows that as the cumulative number of 

units produced doubles, the cumulative average cost decreases by 20%. The corresponding unit cost is 

also displayed to highlight how the cumulative average cost differs from the unit cost. The unit cost is 

calculated by summing the cumulative costs up to but not including the unit number and subtracting it 

from the total cost. In Figure 1, the first unit cost for both cumulative average cost and unit cost is 100. 

For unit two, the cumulative average cost of the first two units is 80; this is a 20% reduction due to an 

80% learning curve slope. The total cost of the first two units is 160. Because the first unit cost is known 

to be 100, the second unit cost can be calculated from the difference to be 60. These same calculations 

can be used to obtain the unit costs for the remaining units. 

 

 

Figure 1: Wright’s Cumulative Average Theory at an 80% learning curve slope 
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 Wright illustrated Equation 1 using a graph with vertical and horizontal axes displayed in 

logarithmic rather than linear scale. Wright illustrated his equation on this logarithmic graph in order to 

highlight the straight line representing a constant rate of learning (Wright, 1936). The same function can 

be graphed in linear scale by transforming Equation 1 into a log-linear form by taking the natural 

logarithm of both sides. This log-linear transformed equation is shown in Equation 3. The parameter 

definitions for Equations 1 and 3 are the same. 

 

      ln 𝑌ത =  ln 𝐴 + 𝑏 ln 𝑥                                                                         (3) 

 

 Equation 3 also allows analysts to apply linear regression analysis in order to estimate the 

parameters A and b from a set of cumulative average cost data (Mislick & Nussbaum, 2015, p. 185). 

Figure 2 displays Wright’s Cumulative Average Theory at an 80% learning curve slope transformed into a 

log-linear form. The parameters are identical to the parameters of Figure 1 with a first unit cost of 100. 

The constant learning curve slope indicated by the linear slope in Figure 2 is a crucial concept of this 

traditional learning curve theory. 
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Figure 2: Wright’s Cumulative Average Theory at an 80% learning curve slope in log-linear form 

 

Unit Learning Curve Theory 

 Several years following Wright’s Cumulative Average learning curve theory, J.R. Crawford 

formulated the Unit Learning Curve Theory, formally written in 1944. Together, these theories form the 

basis of the traditional learning curve theory. Crawford proposed his Unit Theory first in an undated 

manual prepared for Lockheed Aircraft Company personnel after realizing the difficulty of calculating 

unit costs from Cumulative Average Learning Curve Theory equations (Asher, 1956, pp. 21-22). As shown 

in Equation 4, Crawford’s Learning Curve yields an estimated unit cost given the unit’s sequential unit 

number within the production line, a learning curve slope, and a theoretical first unit cost. Crawford’s 

Unit Theory is the same as Wright’s aside from these differences in variable interpretation. Learning 

curves are often called “Crawford Curves” when they utilize Crawford’s Unit Theory (ICEAA Module 7, 

2014, p. 31). 
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                                                                                          𝑌 = 𝐴𝑥௕                                                                               (4) 

 
  Where: 
                      𝑌 = cost of the xth unit 
                      A = theoretical cost of the first unit (T1) 
                      x = sequential unit number of the unit being calculated 
                      b = ୪୬ ௅௘௔௥௡௜௡௚ ஼௨௥௩௘ ௌ௟௢௣௘

୪୬ ଶ
 

 

 Using Crawford’s Unit Theory with a learning curve slope of 80% and a first unit cost of 100 labor 

hours, the cost of the second unit is 80 labor hours. This 20% reduction in labor hours or rate of learning 

is due to the 80% learning curve slope. Figure 3 illustrates Crawford’s Unit Theory using the same 

parameters from Wright’s Cumulative Average Theory shown in Figures 1 and 2. The cumulative average 

costs are not shown in Figure 3 because these ate not germane to Unit Theory. 

 

 

Figure 3: Crawford’s Unit Theory at an 80% learning curve slope 
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                                                                           ln 𝑌 =  ln 𝐴 + 𝑏 ln 𝑥                                                                       (5) 

 

Crawford’s Unit Theory Learning Curve is shown in logarithmic scale in Figure 4. Similar to 

Cumulative Average Theory, the constant learning indicated by the linear slope in Figure 4 is a vital 

concept of this theory: the rate of learning remains constant as the units double regardless of the 

number of units produced. 

 

 

Figure 4: Crawford’s Unit Theory at an 80% learning curve slope in log-linear form 
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midpoint is used in the Unit Theory learning curve formula as the sequential unit number or 

independent variable “x” in Equations 4 and 5. The lot midpoint supplants using sequential unit numbers 

because sequential unit numbers are unavailable when using lot cost data. When the lot midpoint is the 

independent variable in Equation 4, the dependent variable will yield the average lot cost. The average 

lot cost results because this x-coordinate is the most representative point for the lot (ICEAA Module 7, 

2014, p. 40). 

 Lot midpoints are calculated in a two-step approach due to the lack of a closed-form solution. A 

closed-form solution does not exist because the lot cost is a function of the learning curve exponent “b” 

from Equations 4 and 5 used to estimate the lot midpoint. However, the lot midpoint is also used to 

estimate the learning curve exponent “b.” The first step in calculating a lot midpoint utilizes a 

parameter-free approximation formula to estimate the lot midpoint. These lot midpoint estimates are 

then used to estimate the learning curve exponent “b.” The second step is to use a lot midpoint formula 

that includes an estimate of the learning curve exponent “b” and iterate until successive values of the 

estimated lot midpoints and “b” are sufficiently small (Mislick & Nussbaum, 2015, pp. 200-201). The 

parameter-free lot midpoint approximation is shown in Equations 6 (Mislick & Nussbaum, 2015, p. 193).  

 

                                                                    Lot Midpoint = ிା௅ାଶ√ி௅

ସ
                                                      (6) 

   Where: 
              F = the first unit number in a lot 
              L = the last unit number in a lot 
 

 Several parameter lot midpoint approximations exist, but a simple and popular lot midpoint 

approximation is Asher’s Approximation shown in Equation 7. The same parameter definitions 

presented in Equation 6 also apply to Equation 7, and the learning curve exponent “b” is the same as 

shown previously in Equations 1-5 (Mislick & Nussbaum, 2015, p. 201) 
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Comparison of Cumulative Average and Unit Theory 

 Cumulative Average Theory and Unit Theory will produce different predicted costs provided the 

same set of data despite all predicted costs being normalized to unit costs. Figure 5 demonstrates this 

point where Unit Theory was used to generate data using a first unit cost of 100 and a learning curve 

slope of 90%. The original Unit Theory data was converted to cumulative averages in order to estimate 

Cumulative Average Theory Learning Curve parameters. Cumulative Average Theory estimated a 

learning curve slope of 93% and a first unit cost of 101.24. These Cumulative Average Theory 

parameters were then used to predict cumulative average costs. These predicted costs were then 

converted to unit costs. This conversion allows for the Cumulative Average predictions to be directly 

compared to the original Unit Theory generated data. 
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Figure 5: Cumulative Average & Unit Learning Curve Theory Comparison 

 

 As shown in Figure 5, the Cumulative Average Learning Curve predictions first overestimate, 

then underestimate, and ultimately overestimate the generated Unit Theory data for all remaining units. 

A similar case would occur if Cumulative Average Theory were used to generate data and Unit Theory 

learning curve parameters were estimated from this data. Figure 5 highlights that these two theories are 

inherently different due to differences that occur when estimating learning curves parameters using unit 

costs or cumulative average costs. Several factors can assist an analyst in deciding which theory to apply; 

however, solely relying on goodness-of-fit statistics will likely bias the decision toward Cumulative 

Average Theory (Mislick & Nussbaum, 2015, p. 215; Cullis, Coleman, & Braxton, 2008). 

 Frequently goodness-of-fit statistics to include the coefficient of determination (R2) and 

standard error are used to determine which model best explains variation in a dataset. The coefficient of 

determination is the total variation of the dependent variable explained by the independent variable 

(Hilmer, 2014, p. 90). The standard error is the measure of how far on average the data tend to fall from 

the predicted learning curve (Hilmer, 2014, p. 91). These goodness-of-fit statistics can be used when 
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comparing models of the same units, which is not the case when comparing Cumulative Average and 

Unit Theory learning curves. 

 Researchers investigated this Cumulative Average Theory goodness-of-fit statistic bias and 

presented at a Society of Cost Estimating and Analysis (SCEA) conference (2008). The researchers used a 

methodology similar to that used to produce the example illustrated in Figure 5. Cumulative Average 

data were first generated, and a Unit Theory learning curve was fit to this data. Unit Theory data were 

then generated, and a Cumulative Average learning curve was fit to this data. The goodness-of-fit 

statistics reliably indicated the correct learning curve theory to model these perfect data. Next, artificial 

variation was injecting into the generated data, and the researchers repeated the process. When the 

researchers injected variation or error in the data, the goodness-of-fit statistics overwhelmingly favored 

selecting Cumulative Average Theory over Unit Theory even with small amounts of variation in the data 

(Cullis et al., 2008). In other words, Cumulative Average Theory Learning Curves will tend to have a 

higher coefficient of determination and lower standard error when compared to Unit Theory learning 

curves. This bias in the goodness-of-fit statistics is because Cumulative Average Theory is a cumulative 

running average, so the curves are generally smoother and closer to the data points (Mislick & 

Nussbaum, 2015, p. 215). Therefore, bias exists in favor of Cumulative Average Theory, so more 

subjective judgments are warranted to determine which learning curve theory to utilize. 

 The GAO Cost Estimating and Assessment Guide (2009) provides factors to consider when 

choosing which learning curve theory to model data. Analysts should review which theories were 

applied to analogous systems that are similar in form, fit, or function to the current system being 

considered (GAO, 2009, p. 369). Next, some industries have standards that prefer one theory over the 

other (GAO, 2009, p. 369). Experience should also be considered by reviewing which theory has been 

applied to the contractor in the past (GAO, 2009, p. 369). Lastly, some aspects of the production 

environment can indicate which theory is best to apply (GAO, 2009, p. 369). For example, Cumulative 
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Average theory is best when “the contractor is starting production with prototype tooling, has an 

inadequate supplier base, expects early design changes, is subject to short lead times,” or where there is 

a risk of concurrency between development and production phases (GAO, 2009, p. 369). In contrast, 

Unit Theory is more suited for contractors that are well-prepared to begin production (GAO, 2009, p. 

369). 

 Other factors must be considered when deciding which learning curve theory to use. Cumulative 

Average learning curve theory will provide more conservative estimates and is less responsive to trends 

than the Unit learning curve theory (Mislick & Nussbaum, 2015, p. 215). For these reasons, Unit Learning 

Curve theory is frequently favored by government negotiators when negotiating contracts (Mislick & 

Nussbaum, 2015, p. 215). Cumulative Average Learning Curve theory also relies on continuous data and 

is unable to be calculated with missing prior data using traditional estimation techniques. 

 Lastly, when ordinary least squares (OLS) regression is used to estimate Cumulative Average 

learning curve parameters, the cumulative averaging technique violates the OLS regression assumption 

of independence. For OLS regression to provide an unbiased estimator, the data must be obtained 

through independent random sampling (Hilmer, 2014, pp. 111-112). In other words, the unit labor cost 

and its associated unit number cannot be statistically related to other observations of unit labor cost 

and their associated unit numbers. This assumption is violated due to the costs of earlier observations 

being a function of the costs of later observations from cumulative averaging calculations. This violation 

biases the learning curve parameters to produce expected values that are not equal to the population 

parameter being estimated (Hilmer, 2014, p. 109). Despite this violation, Cumulative Average Learning 

Curves estimated using OLS regression are widely used and remain a valid method for estimating 

learning curves. 
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Cost Accounting for Learning Curves 

 The fundamental aspects of traditional learning curve theory apply only to a subset of total 

program costs. Hence appropriate costs must be considered when applying the theory to yield viable 

parameter estimates and predictions. In a complex program, costs can be presented in units of hours or 

dollars and organized as recurring and non-recurring for various cost elements of the end-item or the 

program as a whole. For each cost element, labor costs are also categorized into further groups. The 

analyst must select the applicable subset of costs and consider their units when utilizing learning curve 

theory. 

 Costs are generally categorized as recurring and non-recurring costs. Non-recurring costs are 

one-time costs that are not directly attributable to the number of end-items being produced (Mislick & 

Nussbaum, 2015, p. 26). Recurring costs are costs that are incurred repeatedly for each unit produced 

(Mislick & Nussbaum, 2015, p. 26). At the basis of learning curve theory is the idea that costs vary as 

more units of an end-item are produced. Therefore, non-recurring costs are excluded from learning 

curve analysis due to the inability to relate these costs with the number of units produced (Mislick & 

Nussbaum, 2015, p. 180). Traditional research also has limited insight into how learning applies to non-

recurring costs. For these reasons, learning curve analysis focuses solely on recurring costs in estimating 

learning curve parameters and predicting recurring costs (Mislick & Nussbaum, 2015, p. 180). 

 Manufacturing program costs are also organized broadly as labor, material, and overhead. T.P. 

Wright initially claimed that all these categories vary with the number of units produced, although he 

specifically focused on labor hour costs when forming his seminal theory (Wright, 1936). Due to this 

focus and the intuitive idea of learning at the laborer level, researchers have since focused solely on 

labor costs to include J.R. Crawford. Crawford exclusively studied labor learning and elaborated at length 

on how learning occurs from the laborer’s perspective (Asher, 1956, p. 24). Both fundamental theorists 

also focused on the laborers who manufactured the aircraft by considering touch labor (Asher, 1956, pp. 
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16, 21). Additionally, cost estimating standard practice and guidance concerning learning curves also 

provides the basis for considering touch labor costs only (ICEAA Module 7, 2014, p. 7; Department of the 

Air Force, 2007, p. 8-1). 

 Defense contractors are often contractually required to submit costs incurred when producing 

large, complex end-items for the United States Government. These costs have historically been 

submitted on the Defense Department (DD) Form 1921 report series to include the Functional Cost-

Hours Report DD Form 1921-1 and Progress Curve Report DD Form 1921-2. The Department of Defense 

transitioned to using the Cost and Hour Report "FlexFile" and Quantity Data reports on 15 May 2019 

(Burke, 2019). However, historical program data will likely remain in the legacy 1921 series forms, and 

"FlexFile" and Quantity Data reports can easily be manipulated to legacy 1921 forms. The 1921-1 form is 

organized by work breakdown structure (WBS) elements that include various functional cost categories 

both in units of hours and dollars. Three broad functional cost categories: labor, material, and other 

costs are included in both forms of recurring and non-recurring costs. This form also has four functional 

labor categories that include manufacturing, tooling, engineering, and quality control labor. These four 

labor category costs, when summed with the material costs and other costs, comprise the total cost for 

each WBS element for recurring and non-recurring costs. This total cost is provided in units of dollars 

due to the underlying units of material and other costs. A document accompanies the 1921-1 to 

describe the elements of the form called a 1921-1 Data Item Description (DID). The 1921-1 DID defines 

these various functional cost categories to include the four labor categories whose definitions are useful 

in determining which categories pertain to learning curve analysis. 

 The definition for the manufacturing labor cost category most clearly aligns with the extant 

literature to be the focus as the pertinent labor cost category for learning curve research. According to 

the 1921-1 DID, the manufacturing labor category “includes the effort and costs expended in the 

fabrication, assembly, integration, and functional testing of a product or end item. It involves all the 
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processes necessary to convert raw materials into finished items” (1921-1 Data Item Description, p. 12). 

This manufacturing labor category aligns with the categories examined by Wright, which he called 

“assembly operations” (1936, p. 124), along with those cost categories Crawford studied, which he 

called “airframe-manufacturing processes” (Asher, 1956, p. 21). A RAND learning curve study also 

defined the direct labor used in the study as “those expended to manufacture the airframe and install 

the equipment required to transform the airframe into a complete, flyable airplane” (Asher, 1956, p. 

49). Therefore, the manufacturing labor cost category as defined by the 1921-1 DID is associated with 

the types of labor costs studied by traditional learning curve theorists and succeeding research. 

However, data availability can prompt analysts and researchers to use total costs instead. Although 

these curves remain valid according to Wright (1936), they are composite learning curves with caveats 

to be discussed later. 

 The 1921-1 is organized into WBS elements defined for each program. A WBS element is a 

method to display, define, and organize the overall end-item into sub-products while maintaining their 

relationship with the end-item and other sub-products (Department of Defense, 2018, p. 4). For 

example, WBS elements for an aircraft program could include the airframe, wings, and engines, among 

other elements. These WBS elements are comprised of lower-level elements as well. For example, the 

airframe element may include elements such as the forward, middle, and aft airframe. WBS elements 

can also comprise activities instead of physical components such as testing the aircraft. Although some 

of these activities may experience efficiencies over time, traditional learning curve theory focuses 

exclusively on the production of physical components. WBS elements are frequently organized into 

various cost categories that can comprise elements suitable and unsuitable for learning curve analysis. 

 WBS elements are organized into various cost categories to include procurement costs, 

weapons system costs, and flyaway/rollaway/sailaway costs among others. Not all WBS elements and 

their respective cost categories are pertinent for learning curve analysis. The group of WBS elements in 
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which learning is relevant is prime mission equipment and its sub-elements. Prime mission equipment is 

all hardware and software WBS elements installed on the weapon system such as “propulsion 

equipment, electronics, armament, etc.” (Flyaway Costs, n.d.). The prime mission equipment WBS aligns 

with those elements which experience learning according to the traditional learning curve theorists. The 

prime mission equipment WBS group excludes elements such as systems engineering and program 

management (SE/PM) and system test and evaluation (STE); these costs are instead included in flyaway 

costs (Flyaway Costs, n.d.). These latter elements are activities tangentially related costs that may not 

experience learning as theorized by the traditional learning curve literature. Recent learning curves 

research has considered equivalent WBS elements. Moore, Elshaw, Badiru, & Ritschel (2015) scoped 

their research to consider airframe costs, which is a sub-element of prime mission equipment due to the 

homogeneity of the programs they analyzed. Honious, Johnson, Elshaw, & Badiru (2016) also used 

airframe costs. Boone used prime mission equipment WBS elements to perform analysis due to the wide 

variety of programs researched (Boone, 2018, pp. 22-23). 

 Another cost accounting item to consider is whether to use hours or dollars as the units for 

labor cost. The total cost for each WBS element is provided in dollars due to material and other costs 

not having associated labor hours. Therefore, if the total WBS cost is used for analysis, units of dollars 

will be used. In contrast, the four labor categories to include manufacturing labor has both dollars and 

hours associated with each. Ideally, labor hours would be analyzed for a variety of reasons as discussed 

by the Air Force Cost Analysis Handbook (2007). First, labor dollars must be normalized to remove the 

effects of escalation (Department of the Air Force, 2007, p. 8-65). Escalation effects comprise economy-

wide price changes as well as industry-specific price changes. Normalization removes these price 

variations that allow for labor costs to be compared costs across different fiscal years. The escalation 

indices used to normalize data are estimates of the escalation that the industry experienced that year. 
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Therefore, the use of escalation indices can inject error into the data. In contrast, if labor hour data were 

used, labor costs between years could easily be compared without normalization. 

 Furthermore, changes in labor rates can also bias the labor cost learning curve. Senior personnel 

are brought on to a program initially due to the initial complexity (Department of the Air Force, 2007, p. 

8-65). Once the program stabilizes and production increases, the program usually transitions to more 

junior labor (Department of the Air Force, 2007, p. 8-65). This labor rate effect, when combined with the 

effect of normal learning, artificially steepens the learning curve (Department of the Air Force, 2007, p. 

8-65). Therefore, the slopes of learning curves utilizing labor dollars will likely be steeper due to the 

influence of declining average labor rates as the workforce builds towards full-rate production 

(Department of the Air Force, 2007, p. 8-65). Although using labor cost data in dollars does not 

invalidate analysis and is frequently utilized due to data availability, labor hour data would ideally be 

used for these reasons. 

 In summary, the literature indicates using direct, recurring, manufacturing labor costs in the 

form of hours. These costs should be considered only for the WBS elements that include prime mission 

equipment and its lower-level elements. Using these specific WBS costs in the form of hours ensures 

alignment with the original costs and elements considered to be affected by learning in the traditional 

models. Although this review exclusively examined the DD 1921-1 form, the 1921-2 form reports the 

same cost data albeit in a different format for specific use in learning curve analysis. The methodology 

on which WBS elements and costs to consider is translatable between the two legacy forms along with 

the current Cost and Hour Report "FlexFile" and Quantity Data reports. 

Variations to Traditional Learning Curve Theory 

 The traditional learning curve models assume a constant learning environment comprised of a 

stable production line and invariable end-item design. Due to the realities of changing production 

environments and modifications to the end-item configuration, many researchers have investigated 
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non-stable learning environments. These areas include production rate changes, changes to the end-

item design during production, and breaks in production among other topics. 

 Production rates of end-items can vary as the program proceeds through the production 

lifecycle. Researchers in a 1974 RAND report first formally proposed that production rate effects can 

alter unit costs (Large, Hoffmayer, & Kontrovich). The researchers hypothesized that as more units are 

produced, fewer costs would be allocated to each unit due to fixed costs within the manufacturing 

process (Large et al., 1974). When fixed costs are allocated over more units, each unit will be less 

expensive. The researchers also hypothesized that as more units are produced, the contractor may be 

able to take advantage of volume discounts resulting in lower material costs per unit (Large et al., 1974). 

This modified learning curve equation, termed Unit Theory with Rate Adjustment, is shown in Equation 8 

(Large et al., 1974). 

 

                          𝑌 = 𝐴𝑥௕𝑅௖                                                                                  (8) 

       Where: 
                         𝑌 = cost of the xth unit 
                         A = theoretical cost to produce the first unit (T1) 
                         x = sequential unit number of the unit being calculated 
                         b = ୪୬ ௅௘௔௥௡௜௡௚ ஼௨௥௩௘ ௌ௟௢௣௘

୪୬ ଶ
 

                         R = Annual production rate 
                         c = ୪୬ ோ௔௧௘ ௌ௟௢௣௘

୪୬ ଶ
 

 

 Despite these logical hypotheses, the researchers rarely found the rate term to be statistically 

significant. Several factors can cause the rate term to be not statistically significant such as how the 

contractor responds to the production rate changes. There are also statistical challenges when 

investigating rate effects due to the likely presence of multicollinearity. The independent variables “x” 

and “R” in Equation 8 do not make independent contributions to describe the dependent variable 

because there is no means to hold “x” constant while changing “R.” For these reasons, statistical analysis 
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is unable to discern the effects that either variable has on the dependent variable. The presence of 

multicollinearity tends to cause one or both independent variables to be not statistically significant 

when using linear regression analysis (Department of the Air Force, 2007, pp. 8-31 – 8-32). 

 Also, researchers have studied how production breaks alter the learning curve. Production 

breaks occur when the manufacturer of the end-item stops production for a period. During the time-

lapse between the completion of a unit and the start of another unit, a loss of learning can occur. This 

learning loss results in an increased cost for the first unit following a production break and all 

subsequent units (Honious et al., 2016). One popular method to assess the loss of learning and 

subsequent unit costs is the Anderlohr Method (1969). This method identifies five factors that when 

weighted appropriately account for the amount of learning lost during the production break. The 

amount of lost learning is used to regress up the original learning curve before production resumes. 

Once production resumes, the manufacturing process resets to the cost of a previously produced unit 

and progresses back down the revised learning curve at the original learning rate for all units produced 

after the production break (Anderlohr, 1969). 

 The final area in which research has focused is changes to the end-item during production. 

These changes include additions, deletions, and substitutions of components of the end-item. These 

modifications can occur due to conventional engineering change orders to the configuration of the end-

item or due to concurrency between development testing and production that reveals necessary design 

changes. The addition, deletion, and substitutions of components of an end-item during production can 

cause the following units’ costs to differ significantly than what is predicted using traditional learning 

curve theory (Department of the Air Force, 2007, pp. 8-50 – 8-56). Additionally, configuration changes 

can also affect the rate at which the manufacturing process learns, which alters and often steepens the 

original learning curve slope (Honious et al., 2016). The learning curve slope is especially affected during 
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concurrency between development testing and production due to the continual flow of design changes, 

which tend to flatten the learning curve slope. (Department of the Air Force, 2007, p. 8-50 – 8-56).  

This research into production rates, production breaks, and changes to end-items demonstrates 

the importance of a stable production environment with a constant end-item configuration. Without 

these tenets, traditional learning curve analysis becomes challenging due to confounding variables. The 

influence of confounding variables obscures how unit costs are related to the number of units produced. 

Forgetting & Plateauing Phenomena 

 An implicit assumption in the traditional learning curve theories is that knowledge obtained 

through learning does not depreciate (Epple, Argote, & Devadas, 1991). However, empirical evidence 

demonstrates that knowledge depreciates in organizations (Argote, Beckman, & Epple, 1990; Argote, 

1993). Argote et al. (1990) have shown that knowledge depreciation occurs at both the laborer level and 

the organizational level. Many variations of the traditional models make use of a concept of 

performance decay and forgetting to model non-constant rates of learning. Forgetting and its effects on 

lost learning can take many forms and is essential to consider in contemporary learning curve analysis. 

 Forgetting is the concept that laborers and the organization as a whole will experience a decline 

in performance over time resulting in non-constant rates of learning. Badiru (2012) theorizes that 

forgetting and resulting performance decay is a result of factors “including lack of training, reduced 

retention of skills, lapse in performance, extended breaks in practice, and natural forgetting” (p. 287). 

According to Badiru (2012), these factors may be caused by internal processes to include training policy 

or external factors to include breaks in production. Badiru (2012) lists three cases in which forgetting 

arises. First, forgetting may occur continuously as a worker or organization progresses down the learning 

curve due in part to natural forgetting (Badiru, 2012). In other words, the impact of forgetting may not 

wholly eclipse the impact of learning but will hamper the rate of learning while performance continues 

to increase at a slower rate. Second, forgetting may occur at distinct and bounded intervals such as 
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during a scheduled production break (Badiru, 2012). Third, forgetting may intermittently occur at 

random times and for stochastic intervals such as during times of employee turnover (Badiru, 2012). 

Figure 6 illustrates this third case where intermittent periods of forgetting degrade the regular learning 

curve path to result in a degraded performance curve. In this illustration, the learning curve is shown as 

an increase in performance rather than a decrease in time or cost (Badiru, 2012). Others have expanded 

on the causes of forgetting and have drawn similar conclusions to Badiru (2012) (Jaber, 2006; Glock, 

Grosse, Jaber, & Smunt, 2019; Jaber & Bonney, 1997). 

 

 

Figure 6: Effects of Forgetting on the Traditional Learning Curve (Adapted from Badiru, 2012) 

 

 This decline in performance decays the rate of learning that causes longer manufacturing times 

and higher costs than would be forecasted using traditional learning curve theory. Although forgetting is 

common when production breaks occur as previously discussed, forgetting can occur without 

interruptions to the production line as discussed by Argote et al. (1990) and Badiru (2012). Many 

contemporary learning curve models attempt to incorporate the concept of forgetting. Learning curves 
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that model Badiru’s (2012) first case of forgetting will be discussed later in the Literature Review. 

Models that incorporate variations to traditional learning curves to include rates of production, breaks 

in production, configuration changes to end-items attempt to model Badiru’s (2012) second case of 

forgetting. Badiru’s (2012) third case is challenging to model due to the stochastic nature of when and 

for how long forgetting will occur. 

 The concept of forgetting and its impact on decaying and non-constant rates of learning has 

proven relevant in contemporary learning curve research. Several forgetting models have been 

developed to include the learn-forget curve model (LFCM) (Jaber & Bonney, 1996), the recency model 

(RCM) (Nembhard & Uzumeri, 2000), the power integration and diffusion (PID) model (Sikström & Jaber, 

2002), and the Depletion-Power-Integration-Latency (DPIL) model (Sikström & Jaber, 2012) among 

others (Glock et al., 2019). However, these forgetting models focus solely on the phenomenon of 

forgetting due to interruptions of the production process and most directly model Badiru’s (2012) 

second case of forgetting (Glock et al., 2019; Anzanello & Fogliatto, 2011; Jaber, 2006). Jaber (2006) 

states that “there has been no model developed for industrial settings that considers forgetting as a 

result of factors other than production breaks” (p. 30-13) and mentions this as a potential area of future 

research. Although forgetting models have emerged after Jaber (2006), a review of the popular 

forgetting models cited confirms Jaber’s statement. Therefore, Badiru’s (2012) first case of forgetting 

along the learning curve and its effect on the curve should be investigated. 

 A related concept to the forgetting phenomenon is the plateauing phenomenon. According to 

Jaber (2006), plateauing occurs when the learning process ceases. This ceasing of learning results in a 

flattening or partial flattening of the learning curve corresponding to rates of learning at or near zero. 

These near-zero rates of learning are in contrast to forgetting curves where rates of learning may 

become negative resulting in inverted learning curves. There remains debate as to when plateauing 

occurs in the production process or if learning ever ceases completely (Crossman, 1959; Asher, 1956; 
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Moore et al., 2015; Honious et al., 2016). Jaber (2006) provides several explanations to explain the 

plateauing phenomenon that include concepts related to forgetting. Baloff (1966, 1970) recognized that 

plateauing is more likely to occur when capital is used in the production process as opposed to labor. 

According to some researchers, plateauing can be explained by either having to process the efficiencies 

learned before making additional improvements along the learning curve or to forgetting altogether 

(Corlett & Morcombe, 1970). According to other researchers, plateauing can be caused by labor ceasing 

to learn or management’s unwillingness to invest in capital to foster induced learning (Yelle, 1980). 

Related to this underinvestment to foster induced learning, management’s doubt as to whether learning 

efficiencies related to learning can occur is cited as another hindrance to constant rates of learning 

(Hirschmann, 1964).  

 Li and Rajagopalan (1998) investigated these explanations and concluded that no empirical 

evidence supports or contradicts them while ascribing plateauing to depreciation in knowledge or 

forgetting. Jaber (2006) concludes that “there is no tangible consensus among researchers as to what 

causes learning curves to plateau” and alludes that this is a topic for future research (p. 30-9). 

Empirical Evidence of the Forgetting & Plateauing Phenomena 

 Despite the controversy in the research surrounding forgetting and plateauing effects, empirical 

studies have shown learning curves to exhibit diminishing rates of learning. For instance, the plateauing 

phenomenon at the tail end of production was investigated by Harold Asher in a 1956 RAND study. The 

U.S. Air Force contracted RAND after the service realized traditional learning curves were 

underestimating labor costs at the tail end of production (Asher, 1956, p. 13). Asher intended to study if 

the traditional log-linear learning curves, as shown in Equations 3 and 5 were indeed a straight line as 

shown in Figure 2 and 4. The alternative hypothesis for these log-log transformed curves was a convex 

curve indicating diminishing rates of learning as the number of units doubled (Asher, 1956, p. 13). An 

example of a learning curve with a diminishing rate of learning is shown in Figure 7 in linear scale and 
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Figure 8 in logarithmic scale. The data for both curves were generated using Unit Theory. The first unit 

cost is 100 with an initial learning curve slope of 80% decaying at a rate of 0.25% with each additional 

unit; for example, the second unit’s learning curve slope is 80.25%. As shown, this flattening effect is 

difficult to detect in linear scale but evident in logarithmic scale. 

 

 

Figure 7: Unit Theory Learning Curve with a Decaying Learning Curve Slope in Unit Scale 

 

 

Figure 8: Unit Theory learning curve with a Decaying Learning Curve Slope in Logarithmic Scale 

 

 Asher established the basis for his hypothesis of convex log-linear transformed learning curves 

by first studying Wright’s (1936) seminal work. Asher discovered that Wright realized his traditional 

curve will have various and increasing learning curve slopes when the total airplane cost is modeled by 
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summing the “labor, raw material, purchased material, and overhead” component curves (Wright, 1936, 

pp. 125-126). In other words, when the component cost curves for each cost category are aggregated 

and transformed to logarithmic scale, the composite curve will be convex with increasing learning curve 

slopes. Asher concludes the discussion of aircraft component cost curves stating that “if the component 

cost curves are different in slope, then the curve that represents the summation is convex” (Asher, 

1956, p. 74). This explanation of plateauing due to composite curves is different from those offered by 

contemporary researchers. 

 Many researchers have neglected to research composite learning curves, possibly due to the 

traditional learning curve theories being unable to model the data using a constant learning curve slope. 

The Air Force Cost Analysis Handbook discusses performing analysis on composite curves stating that 

they are usually utilized “for high-level estimates and what-ifs, not for detailed analysis” (Department of 

the Air Force, 2007, p. 8-63). However, due to data availability, total WBS element cost data is often 

utilized for learning curve analysis. This total WBS element cost data is a composite curve due to the 

curve embodying all labor cost categories along with material and other costs. Asher advances this 

concept of overall composite curves to explain the plateauing effect further. 

 Asher investigated the alternate hypothesis of convex log-linear transformed learning curves by 

analyzing the learning curves of the various shops within a manufacturing department producing an 

aircraft. Asher utilized airframe cost data with the appropriate amount of detail to perform a learning 

curve analysis on the lower level job shops within the manufacturing department. He focused on using 

the direct labor cost category, which is equivalent to the manufacturing labor cost category used for 

modern learning curve analysis. According to Asher, the direct labor cost category includes “man-hours 

expended in each of the manufacturing operations, such as materials processing, sheet metal work, 

subassembly work, etc.” (Asher, 1956, p. 90). Asher divided the eleven major kinds of manufacturing 

operations into four shop groups each with direct labor cost data (Asher, 1956, pp. 90-91).  
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 Asher hypothesized that these shop group curves would differ and may themselves be convex in 

logarithmic scale because “airframe manufacturing consists of a large number of dissimilar labor 

operations, each requiring different amounts and kinds of equipment, skill, and training, and on which 

the workmen seem to experience different rates of learning” (Asher, 1956, p. 89). In other words, Asher 

investigated constituent direct labor cost curves in order to determine if they have different learning 

curve slopes or are themselves convex. If so, the manufacturing cost learning curve will be convex in 

logarithmic scale. Because this manufacturing cost learning curve is the level at which most learning 

curve analysis is performed due to data availability, this result would provide evidence for a convex 

learning curve in logarithmic scale and diminishing rates of learning. 

 Asher’s results indicated that the manufacturing shop group learning curves had different 

learning curve slopes and were even convex in logarithmic scale. Asher claims the apparent convexity 

within the manufacturing shop group learning curves is due to the disparate operations within the job 

shops and stated that each had their unique learning curve (Asher, 1957, p. 94). Some of these shop 

group curves differed in where convexities occurred with some shop groups reaching an asymptote later 

in the production cycle at 1,000 units. However, other shop groups reached an asymptote relatively 

early in the production cycle at 100 units. Asher claims that a linear approximation is reasonable for a 

relatively small quantity of airframes produced; however, Asher claims that “it is unmistakable…that the 

shop-group curves for a particular model exhibit different slops over these linear segments.” Asher 

concludes this part of his analysis by stating the convexities within job shop learning curves “cast doubt 

upon the validity of the hypothesis that the sum of the four shop group curves is linear” (Asher, 1956, 

pp. 97-98).  

 In summary, Asher empirically demonstrated convexity in the logarithmically transformed 

manufacturing cost curve by revealing that the constituent cost curves have different learning curve 

slopes and are themselves convex in logarithmic space. Because the manufacturing cost curve is usually 
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the lowest level of detail on which learning curve analysis is performed, the manufacturing cost curve 

will have diminishing rates of learning as cumulative output increases. Although the linear hypothesis 

may be appropriate for some amount of aircraft produced, it becomes less appropriate as more units 

are produced and higher-level composite curves are used for learning curve analysis. These conclusions 

demonstrate a demand for a learning curve formula with a non-constant, decaying learning curve slope. 

 In a more recent study, Bongers (2017) investigated if the Department of Defense’s strategy in 

producing the F-35 Lightning II resulted in negative impacts on the learning curve during production due 

to its various models. While investigating this topic, Bongers (2017) also studied the F/A-18E/F Super 

Hornet and F-22A Raptor for comparison to the F-35 Lightning II. In order to investigate the learning 

curves of these aircraft, Bongers (2017) considers the impact of organizational forgetting and 

depreciation of knowledge by incorporating a coefficient for the depreciation of experience within the 

traditional learning curve model. This depreciation of experience formula is shown in Equation 9.  

 

                                                                            𝐸௧ = 𝜆𝐸௧ିଵ + 𝑞௧                                        (9) 

  Where: 
       𝐸௧ = the cumulated experience 
       𝜆   = measure of persistence in the stock of experience   
                             transmitted to the next period 
       𝑞௧ = experience gained between 𝑡 and 𝑡 − 1, equivalent to the  
               of units produced in that period 
       𝑡   =  time period 
 

 Equation 9 was then nested into the traditional unit theory learning curve equation shown in 

Equation 5 in order to estimate parameters using OLS regression. Specifically, Equation 9 supplants the 

independent variable “x” in Equation 5. The final model resulted in Equation 10. Bongers (2017) original 

equation has been adapted to align with equation parameters stated prior. A time component was also 

included in a separate regression analysis by Bongers (2017). 
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                                                                 ln 𝑌 =  ln 𝐴 + 𝑏 ln(𝜆𝐸௧ିଵ + 𝑞௧)                                                          (10)  

 

 In Equation 10, the parameters “A,”, “b,” and “𝜆” are empirically estimated. If the coefficient 

estimate “𝜆” is zero, no transmission of experiences occurs between periods. If the coefficient estimate 

“𝜆” is one, all experience is transmitted between periods as theorized by the traditional learning curves. 

In Bongers (2017) results, the coefficient estimate “𝜆” was statistically significant to a level of 0.05 for 

only the F/A-18E/F Super Hornet. The coefficient estimate “𝜆” for the F/A-18E/F Super Hornet was 7.2% 

for the regression model, excluding the time component. This result indicates that on average merely 

7.2% of experience in the form of produced units is transmitted from one period to the next. The 

coefficient estimate “𝜆” was 6.4% for the regression model including the time component. Bongers 

(2017) cites Darr, Argote, and Epple (1995) along with David and Brachet (2011) to demonstrate these 

results are consistent with previous research. These researchers showed a rapid depreciation of 

knowledge between production periods despite the absence of breaks in production (Darr et al., 1995; 

David & Brachet, 2011). 

 Both Asher (1956) and Bongers (2017) provide empirical evidence of forgetting and plateauing 

in Air Force aircraft production programs. Although contemporary researchers may provide various 

explanations for the causes of forgetting and plateauing, it is evident that some production programs do 

experience diminishing rates of learning as modeled by the traditional learning curve theories. 

Therefore, a learning curve model that incorporates non-constant rates of learning may be necessary to 

model some production program costs more accurately. 

Forgetting & Plateauing Learning Curve Models 

 Wright’s and Crawford’s Learning Curve Theories provided the basis of the traditional approach 

that learning occurs at a constant rate as the number of units produced increases. Since this initial 
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discovery, several log-linear learning curve models were founded in attempts to more accurately model 

data from manufacturing processes. These contemporary models diverge from constant rates of 

learning by including adjustments in various forms. The six most popular models to include the 

traditional model are shown in Figure 9 in logarithmic scale. These illustrated models include the 

traditional log-linear model or Wright/Crawford Curves, the Plateau Model (Baloff, 1970), the Stanford-B 

Model (Chalmers & DeCarteret, 1949), the De Jong Model (De Jong, 1957), the S-Curve Model (Yelle, 

1979), and Knecht’s Upturn Model (Knecht, 1974). Each of these alternative learning curve models will 

be discussed briefly. Other notable univariate models such as Glover’s Learning Formula, Pegel’s 

Exponential Function, Yelle’s Product Model, and the Multiplicative Power Model (Badiru, 1992) will not 

be discussed due to lack of relevance to the current topic. 
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Figure 9: Comparison of Learning Curve Model on Logarithmic Scale (Adapted from Badiru, 1992) 

 

 N. Baloff proposed his Plateau Model in 1965 after recognizing that the traditional model’s rate 

of learning remains constant over the number of units produced (Baloff, 1970). Baloff theorized this 

constant rate of learning is impractical due to production rates leveling off along with factors that may 

influence learning. To incorporate this theorized learning rate plateau, Baloff included a constant to 

flatten the learning curve for large numbers of produced units. After the plateau, the learning curve 

slope increases to 100%, where learning ceases or turns upward (Badiru, 1992). 

 G.R. Knecht proposed his Upturn Model in 1974 after investigating learning curves during long 

production runs (Knecht 1974; Anzanello and Fogliatto, 2011). Knecht’s model behaves similarly to the 

traditional log-linear learning curves when few units are produced; however, his model decreases the 

learning rate as more units are produced (Glock et al., 2019). This deviation is due to the incorporation 
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of Euler’s number (e) raised to the product of a positive constant and the number of units produced. 

This transformation results in the convexity of the learning curve. Knecht’s positive constant affects the 

speed and degree of deviation from the traditional learning curve. The shape of Knecht’s Upturn Model 

visually approximates the shape of empirical data that exhibit forgetting and plateauing; however, 

contemporary research efforts have not investigated its utility for modeling forgetting and plateauing 

effects. 

 The Stanford-B Model was founded in 1949 after a study commissioned by the Department of 

Defense at the Stanford Research Institute (Chalmers & DeCarteret, 1949). The decision to pursue the 

study was due to visual inspection of World War II aircraft production data (Asher, 1956). The Stanford-B 

Model incorporates a constant parameter “B” that varies from one to ten to adjust the unit being 

estimated. This constant equals the equivalent units of prior experience by the manufacturer at the start 

of the production process. When “B” is equal to zero, the Stanford-B Model reduces to the traditional 

Log-Linear Model. The effects of this constant allow the Stanford-B learning curve to progress from a 

previous unit rather than starting the learning process at zero. This Stanford-B Learning Curve was found 

to more accurately model World War II aircraft production data (Badiru, 1992). 

 The De Jong Learning Formula was proposed in 1957 and incorporates a factor to account for 

the proportion of manual activity as opposed to machine activity in a manufacturing process (De Jong, 

1957). This factor was termed the “incompressibility factor,” represented as “M.” The idea behind the 

incorporation of incompressibility is that capital equipment does not learn like human labor: the time to 

complete a task will remain constant or incompressible (Baloff, 1966; Baloff, 1970). When “M” is equal 

to zero, the De Jong Learning Formula reduces to the traditional Log-Linear Model representing a 

manufacturing process with exclusively human labor. When “M” is equal to one, the model reduces to 

the first unit cost; this simplification indicates that cost improvements do not occur because the 

manufacturing process comprises machine labor solely (Badiru, 1992). Therefore, the incompressibility 
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factor reduces the effects of learning and plateaus the learning curve. The learning curve becomes 

flatter as the process transitions from labor-intensive to capital-intensive. This relationship coincides 

with other models such as the Baloff’s Plateau Model (Baloff, 1966; Baloff, 1970). Consequently, the De 

Jong Learning Formula is convex later in the production cycle in comparison to the constant sloped Log-

Linear Model when graphed on logarithmic scales (Moore et al., 2015). This convexity in the De Jong 

Learning Formula indicates decreases in the rate of learning and decreases in cost efficiencies gained 

from learning. 

 In 1946, G.W. Carr proposed the S-Curve Model that combined the equivalent units factor of the 

Stanford-B Model and the incompressibility factor of the De Jong Learning Formula into a single model 

(Carr, 1946). The S-Curve models a gradual build-up at the early stages of production due to the 

inefficient state of production that is unfavorable for significant learning to occur. This stage is similar to 

the early stage of the Stanford-B model. This gradual build-up is followed by a period of peak 

performance where learning occurs at approximately a constant rate due to the stable, efficient 

manufacturing process. This stage is similar to the traditional Log-Linear Model. Following this region is a 

period of plateauing where learning is still occurring but at a diminishing rate. This diminishing rate is 

due to the effects of forgetting and inefficiencies in the manufacturing process late in production. This 

region is similar to the end of the De Jong Learning Formula (Moore et al., 2015). 

 These contemporary learning curves incorporate unique aspects of the manufacturing process 

to more accurately model the learning environment. Each contemporary learning curve adapts the 

traditional Log-Linear Model from a constant learning curve slope to learning curve slopes that can 

adjust to the manufacturing environment and the number of units produced. A potential drawback of 

these models is the requirement of additional parameters needed to adjust the learning curve slopes as 

more units are produced. 
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Research on Forgetting & Plateauing Learning Curve Models 

 Recent research has investigated whether the Stanford-B, De Jong, and S-Curve learning curve 

models more accurately predict program costs. Although these research efforts’ findings were 

inconclusive considering their initial hypotheses, the findings provide insight into where in the 

production cycle and under what conditions the traditional learning curve models were less accurate 

than the plateauing and forgetting learning curve models. 

 Moore et al. (2015) used the Cumulative Average learning curve theory to compare how 

accurately the De Jong, Stanford-B, and S-Curve models predicted program cost data in comparison to 

the traditional Cumulative Average theory model. Moore et al. utilized the F-15 fighter aircraft variants 

A through E airframe cost data totaling 1,156 units to perform his research. Moore et al. used a 

Stanford-B prior experience constant of 10 when estimating the first and all other variants due to the 

presence of prototyping and previous variant production. Moore et al. varied the De Jong 

incompressibility factor from 0.00 to 0.20 in increments of 0.05 referencing sources to justify airframe 

manufacturing as being labor-intensive. The same Stanford-B prior experience constant and 

incompressibility factors were also used in the S-Curve model (Moore et al., 2015). 

 To obtain estimates for each contemporary model, Moore et al. (2015) began by estimating a 

Cumulative Average Theory learning curve for the F-15 variant A/B. He then maintained that learning 

curve slope, applied the respective factor(s) for each contemporary model, and estimated a new 

learning curve for the remaining F-15 variants C through E. Goodness-of-fit statistics were generated 

from each model, and the models were compared after considering statistical assumptions. This 

research indicated that the De Jong and S-Curve models were more accurate than Wright’s Cumulative 

Average learning curve at an incompressibility factor of 0.05. However, as the incompressibility factor 

increases, the De Jong and S-Curve models were less accurate. As the incompressibility factor decreases, 

the contemporary models simplify to the traditional Cumulative Average learning curve model. 
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Therefore, the researchers found that the accuracy of the De Jong and S-Curve models in comparison to 

the traditional model was sensitive to the incompressibility factor; however, his research was 

inconclusive at determining a more accurate model for use in the Department of Defense (Moore et al., 

2015). 

 Honious et al. (2016) also utilized the Cumulative Average learning curve theory to compare 

how well the De Jong and S-Curve formulas modeled program cost data in comparison to the traditional 

model. Honious et al. utilized an undisclosed Air Force program’s airframe cost data with 95 units. 

Honious et al. focused on both total airframe cost and a subset of these costs: airframe integration, 

testing, and checkout (IA&CO). This subset of airframe costs was studied to justify low incompressibility 

values when using the De Jong and S-Curve models because integration, testing, and checkout are 

notoriously human labor-intensive processes. Honious et al. (2016) used a Stanford-B prior experience 

constant of 2 due to the equivalent units of experience from prototypes of the Air Force program before 

the first unit’s production. Lastly, the researchers used an incompressibility factor from 0.05 (Honious et 

al., 2016). 

 To obtain their estimates for each contemporary model, Honious et al. (2016) first estimated a 

Cumulative Average Theory learning curve for the first early-fielded units. The researchers then 

maintained this learning curve slope, applied the respective factor(s) for each contemporary model, and 

estimated a new learning curve for the remaining units. Both the contemporary and traditional models 

were used to estimate the remaining units given the early-fielded unit’s estimated parameters. 

Goodness-of-fit statistics were generated from each model, and the models were compared after 

considering statistical assumptions. Honious et al. (2016) then performed a sensitivity analysis by 

altering the incompressibility factor from 0.05 to 0.10. This research was performed for the total 

airframe cost and the airframe integration, testing, and checkout airframe cost. Honious et al. (2016) 

found that the De Jong and S-Curve models were more accurate than Wright’s Cumulative Average 
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learning curve at low incompressibility factors of 0 to 0.10. However, similar to Moore et al. (2015), as 

the incompressibility factor increases, the De Jong and S-Curve models become less accurate. Although 

this research was inconclusive at determining an overall more accurate model, the research provides 

insights that Wright’s Cumulative Average learning curve becomes less accurate at the tail-end of 

production when incompressibility values are low. Honious et al. (2016) explicitly reference a plateauing 

effect at the end of production runs. In other words, the airframe cost data these researchers analyzed 

tends to exhibit rates of learning less than the traditional rates of learning at the end of the production 

cycle. This plateauing of the learning curve slope results in a hypothesized slope below the actual 

learning curve data resulting in underestimated labor costs (Honious et al., 2016). 

 Both Moore et al. (2015) and Honious et al. (2016) illustrate that Wright’s Cumulative Average 

Learning Curve is less accurate at low incompressibility factors where the proportion of human touch 

labor is high in the manufacturing process for their sets of data. Both researchers reference sources to 

suggest that the aircraft manufacturing industry tends to have a higher proportion of human touch 

labor. For example, Kronemer & Henneberger (1993) state that the aircraft manufacturing process is 

“fairly labor-intensive” despite the assembly of high-tech products. Kronemer & Henneberger (1993) 

provide three main reasons for this to include aircraft manufacturers building multiple models of the 

same aircraft that result in different configurations with each model requiring various tooling and 

assembly processes. Also, aircraft manufacturers produce relatively low quantities in comparison to 

other industries. These low quantities disincentivize investment in capital equipment due to the 

relatively high costs on a per-unit basis (Kronemer & Henneberger, 1993). Lastly, aircraft are complex 

and must be built to stringent standards, so manufacturers opt for skilled touch labor in place of 

advanced, costly machinery (Kronemer & Henneberger, 1993).  

 Although much has changed in the industry since 1993, the aircraft manufacturing process 

remains “quite a manual job, especially for low production parts and in what assembly is concerned,” 
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according to Vieira (2013, pp. 10, 14). Vieira cites the same reasons as Kronemer and Henneberger 

(1993) to explain the labor intensity of the sector despite these original observations being 20 years old. 

Viera (2013) and Kronemer & Henneberger (1993) provide evidence that the aircraft manufacturing 

industry is and will likely remain relatively labor-intensive in the near future. However, other researchers 

to include Sakinç (2016, p. 192) and Vértesy (2011, p. 239) provide evidence against the claim that the 

aircraft manufacturing industry is labor-intensive. 

 Another potential reason for this underinvestment in capital equipment is a lack of long-term 

commitment by the Department of Defense to procure end-items. Congressional fiscal policy and, in 

particular, the Department of Defense’s Full Funding Policy requires the purchase of fully usable end-

items (Department of Defense, 2017, p. 13). In other words, the Department of Defense cannot 

piecemeal fund an end-item in a fiscal year to procure the rest of that end-item in the following fiscal 

year. In order to implement this funding policy, aircraft production contracts and other complex end-

item contracts are often awarded to contractors on a per-lot basis usually with several lots comprising 

the production phase of the program. Regulations also state that each lot of end-items must be 

delivered within 12 months by the contractor; therefore, the number of end-items that can be awarded 

is constrained (Department of Defense, 2017, p. 57). Although deviations occur to these policies due to 

long lead time components and multi-year procurements, these are exceptions to the policy. Due to this 

lot-based contracting strategy, the Department of Defense is not obligated nor able to award more than 

the current fiscal year’s lot to the contractor to manufacture. This annual lot-based contracting structure 

creates a risk to the contractor of not recouping costs for specialized capital investments that require 

large numbers of produced units to justify. Therefore, government contractors are disincentivized from 

investing in specialized capital equipment due to the lack of long-term commitment by the Department 

of Defense as a result of funding policy (Baye, 2010, pp. 208-209). However, as the Department of 

Defense becomes increasingly committed to procuring a certain end-item, the contractor may begin to 
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invest in specialized capital equipment. This shift from labor to capital could lead to a high proportion of 

labor at the beginning of production and then to a high proportion of capital later. This transition from 

labor-intensive to capital-intensive production could lead to a steep learning curve at the beginning of 

production along with a flattening of the learning curve later in the production due to the inability of 

capital to learn and produce cost efficiencies related to learning (Baloff, 1966; Baloff, 1970). 

 Therefore, Moore et al. (2015) and Honious et al. (2016) conclude that there is potential for a 

more accurate learning curve model when the proportion of human labor is relatively high. The capital 

equipment dynamic in aircraft manufacturing processes will continue to evolve. However, this and other 

research provides evidence that the government-contracted aircraft manufacturing sector will likely lag 

in adopting machine labor when compared to other industries. This lag will result in a relatively high 

proportion of human labor. These insights provide further justification for investigating a more accurate 

learning curve model that diminishes its rate of learning. 

Boone’s Learning Curve: A Contemporary Forgetting & Plateauing Model 

 In an answer to these researchers findings, Boone (2018) developed a learning curve model with 

a rate of learning that diminishes as more units are produced. The traditional learning curve theories 

diminish the rate of cost reductions as more units are produced because costs will decrease at a 

constant rate only when the number of units produced doubles. Because the rate at which units double 

decreases as more units are produced, the rate of cost reductions will also decrease as more units are 

produced. However, the Literature Review cited various theoretical and empirical evidence indicating 

that the cost reductions that occur with each doubling of units may not be constant as the number of 

units produced increases. Therefore, Boone (2018) sought to attenuate the cost reductions that occur 

with each doubling of produced units by reducing the amount that each doubled unit’s cost decreases as 

the number of units increases. This attenuation of cost reductions was accomplished by decreasing the 

rate of learning as the number of units increases.  
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 Boone (2018) began by formulating a model where the exponent of the traditional learning 

curve equation is a function of the number of units produced. This amendment was intended to vary the 

learning curve exponent with the independent variable “x” in order to alter the degree of cost 

efficiencies experienced as the number of units produced changes. This fundamental model is presented 

in Equation 11. 

 

                              𝑌ത = 𝐴𝑥௙(௫)                                                                            (11) 

 
  Where: 
                      𝑌ത= cumulative average cost of x units 
                      A = theoretical cost to produce the first unit (T1) 
                      x = cumulative number of units produced 
 

Following, Boone (2018) devised a series of specific models that decreased the learning curve exponent 

“b” as the number of units produced “x” increased. Boone (2018) first created a model without an 

additional parameter, as shown in Equation 12, that aimed to reduce the learning curve exponent “b” 

directly by the unit number. However, Boone (2018) claimed that Equation 12 resulted in too drastic of 

changes to the exponent value and did not model data appropriately (Boone, 2018, p. 20). 

 

                              𝑌ത = 𝐴𝑥
್

ೣ                                                                                 (12) 

 
  Where: 
                      𝑌ത= cumulative average cost of x units 
                      A = theoretical cost to produce the first unit (T1) 
                      x = cumulative number of units produced 
                      b = ୪୬ ௅௘௔௥௡௜௡௚ ஼௨௥௩௘ ௌ௟௢௣௘

୪୬ ଶ
 

 

 To temper the effect each additional unit has on the parameter “b,” a qualifier was added. This 

qualifier “c” was named Boone’s Decay Value with an initially studied value ranging from zero to 5,000 
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(Boone, 2018, p. 21). The resulting Boone’s Learning Curve is shown in Equation 2. Boone found this 

curve was not only flatter near the end of production but was also steeper in the early stages in 

comparison to the traditional theory learning curve (Boone, 2018, p. 21). Holding the cumulative 

number of units produced “x” constant, as Boone’s Decay Value approaches zero, the parameter “b” 

approaches zero representing a learning curve slope approaching 100%. As Boone’s Decay Values 

approaches infinity, the parameter “b” remains unchanged, and Boone’s Learning Curve simplifies to the 

traditional learning curve (Boone, 2018, p. 23). 

 Boone (2018) proceeded to test his model using Cumulative Average Theory against Wright’s 

model. Boone (2018) utilized prime mission equipment cost data in units of total dollars for fighter, 

bomber, and cargo aircraft programs along with missile and munition programs (p. 21). He constrained 

his data to require at least five lots per program to prevent overfitting the data (Boone, 2018, p. 22). In 

total, 46 weapon system platforms were tested (Boone, 2018, p. 23). The OLS regression method is 

unable to estimate the parameters for Boone’s Learning Curve because of the non-constant rate of 

learning; Boone’s Learning Curve is convex in logarithmic scale. Instead, Boone utilized Microsoft Excel’s 

Solver package to minimize the sum of squares errors (SSE) by iteratively adjusting the theoretical first 

unit cost “T1”, the learning curve slope “b”, and Boone’s Decay Value “c” (Boone, 2018, p. 24). The 

conventional OLS methodology was maintained to estimate the parameters for Wright’s Cumulative 

Average learning curve because this model remains linear in logarithmic scale (Boone, 2018, p. 24).  

 Microsoft Excel’s Solver requires bounds for each parameter when solving for the combination 

of parameter values that minimize the SSE. Wright’s Learning Curve parameters informed these bounds 

to assist in estimating Boone’s Learning Curve parameters (Boone, 2018, pp. 24-25). Boone’s theoretical 

first unit cost parameter minimum bound was equal to half of Wright’s theoretical first unit cost and 

twice the value of Wright’s first unit cost for the maximum bound (Boone, 2018, pp. 24-25). Boone’s “b” 

parameter bounds were set between -3 and 3 times Wright’s “b” specific to each estimated learning 
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curve (Boone, 2018, pp. 24-25). These two bounds’ values varied for each learning curve estimated due 

to their dependence on Wright’s Learning Curve parameters. Lastly, Boone’s Decay Value was bound 

from zero to 5,000 for all estimated learning curves (Boone, 2018, pp. 24-25). The only limits that were 

found to be binding when solving for optimal values were the upper limit of Boone’s Decay Value 

(Boone, 2018, p. 25). 

 Boone then estimated the parameters for his curve and Wright’s curve for each of the 46 

programs using Cumulative Average Learning Curve theory. He obtained goodness-of-fit statistics in the 

form of the SSE and MAPE for each estimate in order to compare the accuracy of both curves (Boone, 

2018, pp. 25-26). Boone then performed a paired difference t-test for both SSE and MAPE statistics 

(Boone, 2018, pp. 25-26). Both the SSE and MAPE paired difference t-tests rejected the null hypothesis 

that the means were equal to zero (Boone, 2018, pp. 29-30). These tests indicate that Boone’s Learning 

Curve more accurately explains the cost data in comparison to Wright’s Learning Curve at a significance 

level (α) of 0.05. Therefore, Boone demonstrated his learning curve to be more accurate to a statistically 

significant degree in comparison to Wright’s Learning Curve (Boone, 2018, pp. 30-31). 

 Boone did not assess the predictive capacity of his model in comparison to Wright’s by 

estimating parameters for a subset of early units and then extrapolating to future lots using the same 

estimated parameters. This approach departs from previous research to include Moore et al. (2015) and 

Honious et al. (2016); however, this may be due to data availability as several lots are required for 

predictive analysis. Additionally, Boone did not hold constant the traditional learning curve parameters 

and estimate his new parameter, Boone’s Decay Value, with these values fixed. Instead, Boone allowed 

all three of his parameters to change from Wright’s estimated parameter values. Boone’s methodology 

is also a departure from the previous methodology where Moore et al. (2015) and Honious et al. (2016) 

estimated the traditional learning curve, held the estimated parameters constant, and then added 

additional parameters. Boone’s methodology may also be justified because Boone’s Decay Value is a 
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result of estimating learning curves and requires a different learning curve slope and first unit cost be 

considered. This Decay Value is unlike the parameters Stanford-B parameter and incompressibility 

parameter “M” which are measurable values that describe the manufacturing process itself. 
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III. Phase 1 

Methodology 

Population and Sample  

 In order to test Boone’s Learning Curve against the traditional learning curve theories, 

quantitative data from a diverse set of Department of Defense programs was gathered. The population 

studied is Department of Defense programs that have produced several complex end-items over time. 

These complex units can include but are not limited to aircraft, land vehicles, and missiles along with 

their complex sub-systems and sub-components. The data sample consists of programs with the 

necessary information required for learning curve analysis. This required program data included direct 

recurring labor costs in units of labor hours or total dollars per production lot along with the number of 

units per lot. 

 The direct recurring manufacturing labor cost category for each applicable WBS element was 

used to obtain labor hour data for each program. If this labor hour data were unavailable, the total 

recurring cost for each applicable WBS element was utilized instead. The total recurring dollar cost 

comprises the costs of all functional categories of labor along with materials costs and other costs for 

each WBS element. Unlike labor hours, costs in units of dollars must be normalized to be compared over 

time; therefore, all costs in units of dollars were normalized using escalation rates based on Producer 

Price Index (PPI) 3364 Aerospace Products and Parts. Removing the effects of escalation using PPI 3364 

is common practice when normalizing costs in the aerospace industry. Additionally, total costs in units of 

dollars were provided and maintained in units of thousands of dollars. These labor cost data included 

costs at the prime mission equipment. WBS level prime mission equipment costs are directly related to 

touch labor and experience learning. Depending on data availability, additional elements below the 

prime mission equipment WBS elements were also analyzed to include engines and wings among other 
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sub-systems and sub-components. Therefore, one program may contribute several unique components 

for learning curve analysis. 

 This final sample included direct recurring cost data from bomber, cargo, and fighter aircraft 

along with missiles and munitions. The programs in this dataset are both historical and contemporary 

spanning 1957 to 2018 and include a variety of defense contractors. This diverse dataset tested the 

generalizability of Boone’s Learning Curve due to the varying levels of analysis along with the multitude 

of platforms, contractors, and production periods that foster various learning environments. In total, 

data from 123 weapon system programs were gathered with 258 unique components. Learning curve 

analysis will be performed on these unique components. 

Data Collection  

 This dataset was created using DD Form 1921-1 “Functional Cost-Hour Report” and DD Form 

1921-2 “Progress Curve Report” data obtained from the CADE Defense Automated Cost Information 

Management System (DACIMS). CADE DACIMS is a repository of DoD weapons system program cost 

data available to DoD analysts. Some historical data was also extracted from the AFLCMC Cost Research 

Library. 

 Business rules were created to avoid overfitting the data and to ensure learning curve analysis 

was appropriate to model each component’s cost. The first business rule omitted programs with 

production lots of four or fewer. This business rule is consistent with Boone (2018, p. 22) and limited the 

sample from 258 to 169 unique components. A second business rule was also necessary when 

performing Cumulative Average Theory analysis. Cumulative Average Theory relies on continuous data 

because each lot’s cumulative average cost and cumulative quantity is a function of all previous lots’ 

costs and quantities. Therefore, if a program’s production lot was missing cost or quantity data, all lots 

after that missing lot were removed for that program; however, all lots before the missing lot were 
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retained2. These lot removals decreased the number of lots in the total program. This reduced number 

of lots warranted the complete removal of some programs by applying the first business rule. This 

second business rule limited the dataset to 140 unique components for Cumulative Average Theory 

analysis. Despite these business rules, there was not a systematic elimination of any characteristic of the 

program labor cost data; a diverse dataset remained with the previously stated attributes. 

Data Analysis  

Overview 

 This analysis will examine whether Boone’s Learning Curve more accurately explains variability 

in program labor cost data than the traditional theories. Both Cumulative Average Theory and Unit 

Theory will be used to make these comparisons. In order to test these hypotheses, learning curve 

parameters were estimated using each program’s labor cost data for Boone’s Learning Curve and the 

traditional learning curve models. Next, parameters from Boone’s Learning Curve and the respective 

traditional theory were used to predict a learning curve. These predicted learning curves were then 

compared to the observed data. In order to utilize Unit Learning Curve Theory, Boone’s Learning Curve 

was adapted from its original Cumulative Average Theory form to Unit Learning Curve Theory form as 

shown in Equation 13. 

 

 
2 The researchers utilized the direct Cumulative Average Theory method instead of the iterative Cumulative 
Average Theory method. Although the iterative method can estimate learning curve parameters with missing lots, 
the direct method was utilized to align analysis with the original Cumulative Average Theory. 
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                                                                                 𝑌 = 𝐴𝑥௕/(ଵା
ೣ

೎
)                                                         (13) 

 
Where: 

                      Y = cost of the xth unit 
                      A = theoretical cost of the first unit (T1) 
                      x = sequential unit number of the unit being calculated 
                      b = ୪୬ ௅௘௔௥௡௜௡௚ ஼௨௥௩௘ ௌ௟௢௣௘

୪୬ ଶ
              

                      c = decay value (positive constant) 
 

When Boone’s Learning Curve utilized Cumulative Average Theory, Boone’s Learning Curve was 

compared to Wright’s Learning Curve. When Boone’s Learning Curve utilized Unit Theory, Boone’s 

Learning Curve was compared to Crawford’s Learning Curve. 

 Parameters for each learning curve were estimated using non-linear optimization techniques in 

Microsoft Excel. The traditional learning curve theories could be estimated using OLS regression. 

However, non-linear optimization was utilized to estimate the traditional curves for equitable 

comparison with Boone’s Learning Curve. In contrast, Boone’s Learning Curve required the use of non-

linear optimization techniques. This requirement spawns from the fact that Boone’s Learning Curve is 

not linear when logarithmically transformed due to the decaying learning curve slope. This non-linearity 

of Boone’s Learning Curve precludes the parameters from being estimated using OLS regression. 

 The learning curve parameters for Boone’s Learning Curve (i.e., “A”, “b”, and “c” from Equations 

2 & 13) and the traditional theories (i.e., “A” and “b” from Equations 1 & 4) were estimated by 

minimizing the SSE using Excel’s Generalized Reduced Gradient (GRG) Nonlinear Solver and Excel’s 

Evolutionary Solver engines. The SSE is calculated by squaring the vertical difference of the observed 

data and predicted data for each lot and summing these squared differences across all lots. The SSE is 

calculated separately for Boone’s Learning Curve and the traditional learning curves. For each model, 

Excel Solver is set to minimize the objective cell that is set as the SSE. The changing variable cells are the 

learning curve parameters specific to each learning curve model. These parameters are iteratively solved 
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for using optimization techniques specific to each engine for each learning curve model. When using 

Evolutionary Solver, it is also necessary to bound the changing variable cells and choose a set of values 

from which to begin the optimization process. Due to the inherent differences in both Cumulative 

Average Theory and Unit Learning Curve Theory, different specific processes were used to estimate 

parameters for each. 

Cumulative Average Learning Curve Theory  

 The following process was implemented to estimate parameters for Wright’s Learning Curve and 

Boone’s Learning Curve using Cumulative Average Theory for each program. 

1. Wright’s Learning Curve parameters “A” and “b” were initially estimated using OLS 

regression. 

a. Cumulative Average Cost was the dependent variable, while Cumulative Number of 

Units Produced was the independent variable. 

2. These initial learning curve parameter estimates were used as starting values to more 

precisely estimate Wright’s Learning Curve parameters using GRG Non-Linear Solver. This 

process generated final estimates for Wright’s Learning Curve parameters. 

3. Boone’s Learning Curve parameters “A,” “b,” and “c” were estimated using Excel’s 

Evolutionary Solver. This process generated initial estimates for Boone’s Learning Curve 

parameters. 

a. Final estimates for Wright’s Learning Curve parameters were used to calculate the 

upper and lower bounds of Evolutionary Solver. 

b. The starting values were calculated from the upper and lower bounds. 

4. The Evolutionary Solver learning curve parameter estimates for Boone’s Learning Curve 

were used as starting values to more precisely estimate parameters using GRG Non-Linear 

Solver. This process produced final estimates for Boone’s Learning Curve parameters. 
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 When estimating Wright’s Learning Curve parameters, the GRG Nonlinear Solver technique 

should produce SSE at least equal to the SSE using OLS regression. The GRG Nonlinear Solver technique 

was appropriate to estimate Wright’s Learning Curve parameters because this technique is used to find 

locally optimal solutions of smooth and non-linear functions (Solver Technology – Smooth Nonlinear 

Optimization, 2012). Because OLS regression was used to provide starting values for GRG Nonlinear 

Solver, it was reasonable to assume that the global minimum is within this local region approximated 

using OLS regression. However, GRG Nonlinear Solver cannot guarantee that a global minimum is found. 

The GRG Nonlinear Solver Multistart method was also utilized to ensure this technique yielded a global 

minimum. However, the Multistart method failed to provide consistent, reliable parameter estimates, 

unlike GRG Nonlinear Solver. 

 When estimating Boone’s Learning Curve, the GRG Nonlinear Solver optimized values for 

Wright’s Learning Curve parameters were used to calculate bounds for Boone’s Learning Curve. For the 

“A” parameter, the lower bound was half of Wright’s “A” parameter, and the upper bound was twice 

that of Wright’s “A” parameter. For bounds on Boone’s Learning Curve “b” parameter, the absolute 

value of Wright’s Learning Curve “b” parameter was multiplied by 3 to yield upper (positive) and lower 

(negative) bounds. Lastly, for Boone’s Decay Value “c,” bounds were set between 0 and 500,000 in 

contrast to Boone’s original bounds of 0 and 5,000. This bound was increased in comparison to Boone 

(2018) due to the upper bound being binding in Boone’s analyses. Except for Boone’s Decay Value, these 

bounds are consistent with Boone (2018) and provide the optimization model with a restricted range to 

decrease the search time for an optimal solution but a broad enough range to not constrain the model. 

Similar to Boone (2018), none of these constraints were binding except for the Decay Value “c” upper 

bound despite relaxing this constraint in comparison to Boone (2018). Further relaxing this constraint 

would not have led to substantive changes to Boone’s Learning Curve; as Boone’s Decay Value “c” 

approaches infinity, Boone’s Learning Curve transforms into Wright’s Learning Curve. 
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 In order to estimate Boone’s Learning Curve, the starting values were set as the midpoint of the 

negative values of the slope parameter “b” because negative values are those that represent learning 

curve slopes below 100%. This starting point is reasonable because most programs in this analysis will 

experience cost efficiencies from learning. Thus, these programs will have learning curve slopes at or 

below 100% that translate to a negative learning curve exponent “b” parameter. The starting values for 

Boone’s Learning Curve first unit cost “A” parameter were the midpoint of the upper and lower bounds. 

These two starting values and bounds depend on the parameters estimated by Wright’s Learning Curve. 

The last starting value was set as the midpoint between the upper and lower bounds of the Boone’s 

Decay Value “c,” which was static at 250,000 due to the static bounds.  

 Once these starting values and bounds were set, Evolutionary Solver was used to estimate a 

globally optimal solution. The Evolutionary Solver technique was appropriate to estimate Boone’s 

Learning Curve parameters because this technique is used to find a globally optimal solution of smooth 

and non-smooth functions (Solver Technology – Global Optimization, 2016). In contrast to estimating 

Wright’s Learning Curve, a local region with the global minimum cannot be reliably approximated before 

using this optimization technique. This local region cannot be reliably approximated because OLS 

regression cannot be used to provide starting values for Boone’s Learning Curve. Similar to GRG 

Nonlinear Solver, Evolutionary Solver cannot guarantee the parameter estimates produce a global 

minimum. However, using the Evolutionary Solver solution as starting values, the GRG Nonlinear Solver 

was then used to ensure the solution is locally optimal. 

Unit Learning Curve Theory  

 Unit Learning Curve Theory parameter estimation maintained the Cumulative Average Learning 

Curve Theory parameter estimation methodology for calculating various bounds and starting values. 

Additionally, the justification for utilizing both Excel Solver engines also remains the same. However, the 

inclusion of lot midpoint calculations required different analysis techniques. The following process was 
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implemented to estimate parameters for Crawford’s Learning Curve and Boone’s Learning Curve using 

Unit Theory for each program. 

1. Parameter-free lot midpoint approximations (Equation 6) were calculated for each production 

lot. 

2. Crawford’s Learning Curve parameters “A” and “b” were initially estimated using OLS regression.  

a. Average Unit Cost was the dependent variable while Lot Midpoint, calculated in Step 1, 

was the independent variable. 

3. These initial learning curve parameter estimates were used as starting values to more precisely 

estimate Crawford’s Learning Curve parameters using GRG Non-Linear Solver. This process 

generated intermediate estimates of Crawford’s Learning Curve parameters. 

4. The intermediate estimate of Crawford’s Learning Curve “b” parameter was used to calculate a 

more precise set of lot midpoints using Asher’s Approximation (Equation 7).  

5. Applying these more precise lot midpoint approximations, Crawford’s Learning Curve 

parameters “A” and “b” were more accurately estimated using GRG Nonlinear Solver. 

a. Steps 4 and 5 were repeated until the iterative process converged on a solution to 

produce final estimates of Crawford’s Learning Curve parameters and lot midpoint 

approximations. 

6. Parameter-free lot midpoint approximations (Equation 6) were used to estimate Boone’s 

Learning Curve parameters “A,” “b,” and “c” using Excel’s Evolutionary Solver. This process 

generated intermediate estimates of Boone’s Learning Curve parameters. 

a. The final estimates for Crawford’s Learning Curve parameters were used to calculate 

upper and lower bounds. 

b. The starting values were calculated from the upper and lower bounds. 
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7. The intermediate estimates of Boone’s Learning Curve parameters “b” and “c” were used to 

approximate a more precise set of lot midpoints using Asher’s Approximation adapted for 

Boone’s Learning Curve (Equation 14).  

8. Applying these more precise lot midpoint approximations, Boone’s Learning Curve parameters 

were more accurately estimated using Evolutionary Solver. This process generated Evolutionary 

Solver parameter estimates of Boone’s Learning Curve. 

9. These Evolutionary Solver parameter estimates were used as starting values to improve further 

the accuracy of Boone’s Learning Curve parameters estimates “A,” “b,” and “c” using GRG Non-

Linear Solver. 

a. Steps 7, 8, & 9 were repeated until the iterative process converged on a solution to 

produce a final estimate of Boone’s Learning Curve parameters and lot midpoint 

approximations. 

 For both Crawford’s and Boone’s Learning Curves, an iterative process is used to calculate 

precise parameter estimates and lot midpoint approximations. This iterative process was repeated until 

a solution converged. A solution converged when small changes (1 × 10ିହ଴) in the learning curve 

exponent “b” parameter were calculated between iterations. This process of iterative solving was 

adapted from Hu and Smith’s “Accuracy matters” (2013). For Boone’s Learning Curve, a limit of 10 

iterations was placed on the iterative process. This limit of 10 iterations was reached a limited number 

of times and still produced relatively small differences of Boone’s Learning Curve exponent “b” between 

iterations. 

 In order to estimate lot midpoints and Boone’s Learning Curve parameters, Asher’s 

Approximation from Equation 7 was adapted to incorporate Boone’s decaying learning curve slope. 

Asher’s Approximation adapted for Boone’s Learning Curve is shown in Equation 14. Equation 14 is 

undefined when Boone’s Learning Curve “b” parameter is equal to zero, similar to Equation 7. Equation 
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14 uses previously calculated lot midpoints that are predicated from previously estimated Boone’s 

Learning Curve parameters. 

 

                                                          𝐿𝑜𝑡 𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡௜ ≈ ቈ
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                       Where: 
                F = the first unit number in a lot 
                L = the last unit number in a lot 
                𝑏ᇱ =
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                𝑖 = the iteration number 
 

Statistical Significance Testing  

 The estimated parameters for Boone’s Learning Curve and the traditional learning curves were 

used to create predicted learning curves. These predicted curves were then compared to observed data. 

Total model error was calculated by comparing the difference between observations and predicted 

values to determine which learning curve theory more accurately explained variability in the data. Two 

measures were used to determine the overall model error. The first error measure was RMSE. RMSE is 

calculated by dividing the total SSE by the number of observations, in our case, the number of lots in 

that program (McClave, Benson, & Sincich, 2014, p. 14-25). RMSE is a scale-dependent measure. 

Additionally, RMSE is not robust to outliers; therefore, the greater the magnitude of an outlier from the 

average error values, the more influence this outlier will have on RMSE. RMSE was used instead of total 

SSE because RMSE transforms units from squared units to original units. This transformation eases 

interpretation. RMSE can be interpreted as the average amount of error of the model in the model’s 

original units. 
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 The second measure used to determine the overall model error was MAPE. MAPE is calculated 

by subtracting the predicted value from the observed value, dividing this difference by the observed 

value, taking the absolute value, and multiplying by 100%; these absolute percent errors are then 

summed over all observations and divided by the total number of observations (McClave et al., 2014, p. 

14-25). MAPE provides a unitless measure of accuracy and can be interpreted as the average percentage 

the model is inaccurate. MAPE is robust to outliers, so the effects of outliers do not unduly influence this 

measure. 

 After calculating these measures of overall model error, a series of paired difference t-tests will 

be conducted to determine if reductions in error from Boone’s Learning Curve are significantly different 

than zero or due to random chance. In order to conduct the first paired difference t-test, Boone’s 

Learning Curve RMSE using Cumulative Average Theory will be subtracted from Wright’s Learning Curve 

RMSE, and the difference will be divided by Wright’s Learning Curve RMSE by observation. This 

calculation will yield a percentage difference rather than raw difference to compare programs of varying 

differences in magnitude equitably. Only programs with errors reported in total dollars will be examined 

first to examine the results of the different unit measures. The null hypothesis for this test is that the 

percentage difference in RMSE is equal to or less than zero. This null hypothesis represents that Boone’s 

Learning Curve results in an equal amount of or more error in predicting observed values in comparison 

to Wright’s Learning Curve. The alternative hypothesis is that the percentage difference is greater than 

zero. The alternative hypothesis represents that Boone’s Learning Curve results in less error in 

predicting observed values than Wright’s Learning Curve. This same methodology will be repeated five 

more times to examine both learning curve theories each with two measures of model error for 

programs examined using labor hours and total dollars. The attributes that warranted six paired 

difference t-tests be conducted are shown in Table 1. A significance value of 0.05 will be used to 



60 
 

determine if the results are statistically significant. JMP Pro Version 13 will be used to perform this and 

all the following statistical analyses. 

 

Table 1: Set of Paired Difference Hypothesis Tests to be Conducted 

 
 

 An assumption to utilize the paired difference t-test is that the data are approximately normally 

distributed (McClave et al., 2014, p. 441-442). For hypothesis tests with a sample size greater than or 

equal to 30, the Central Limit Theorem guarantees this assumption is met due to the large sample 

(McClave et al., 2014, p. 441). For hypothesis tests with a sample size of less than 30, the distribution 

will be tested for normality using a Shapiro Wilk Test. If the Shapiro Wilk test rejects the null hypothesis 

of normality, the paired difference t-test cannot be used. Instead, a Wilcoxon Rank Sum test will be used 

because the assumptions for this test do not depend on the shape of the distribution (McClave et al., 

2014, pp. 15-10 – 15-11). 

Learning Curve Theory Error Measure Units of Measure Hypothesis Test

Total Dollars (K) 1

Labor Hours 2

Mean Absolute 
Percent Error 

Percentage Difference

Total Dollars (K) & 
Labor Hours Combined

3

Total Dollars (K) 4

Labor Hours 5

Mean Absolute 
Percent Error 

Percentage Difference

Total Dollars (K) & 
Labor Hours Combined

6

Cumulative Average 
Theory

Unit Theory

Root Mean Squared 
Error Percentage 

Difference

Root Mean Squared 
Error Percentage 

Difference
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Analysis & Results 

Cumulative Average Theory Comparison 

 Wright’s Learning Curve and Boone’s Learning Curve using Cumulative Average Theory are 

compared in Table 2 for a random sample of 30 of the 140 total components tested. The full list of 

components is included in Appendix A. This Cumulative Average Theory sample included 118 

components analyzed in units of total dollars and 22 components analyzed in units of labor hours. Each 

entry lists the program number, the number of production lots, the number of production units, the 

component estimated, and the units in which the program was analyzed. Additionally, each entry lists 

both error measures and their respective percentage differences between Wright’s Learning Curve and 

Boone’s Learning Curve. Positive percentage differences in either error measure indicate Boone’s 

Learning Curve had less error than Wright’s Learning Curve in explaining program costs. Negative 

percentage differences indicate that Boone’s Learning Curve had more error than Wright’s Learning 

Curve in explaining program costs. 
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Table 2: Sample of Comparisons using Cumulative Average Theory 

 
 

 Boone’s Learning Curve incorporates an additional parameter into the traditional learning curve 

equation. This additional parameter should be able to theoretically increase to such a degree to 

transform Boone’s Learning Curve into Wright’s Learning Curve. Therefore, Boone’s Learning Curve 

should be able to explain program component learning curve costs to at least the same degree of 

accuracy as the traditional learning curve theories. Greater amounts of accuracy could also be explained 

by Boone’s Learning Curve if its functional form allowed it to more accurately model learning curves in 

comparison to the traditional theory. Despite these theoretical explanations, Boone’s Learning Curve 

had more error than Wright’s Learning Curve for some observations in explaining program costs as 

indicated by negative percentage differences. These negative percentage differences occur because an 

upper bound was placed on Boone’s Decay value that restricted Boone’s Learning Curve from 

transforming into Wright’s Learning Curve3. Therefore, some observations’ percentage error differences 

 
3 The researchers tested this claim by selecting programs from the dataset, increasing the upper bound of Boone’s 
Decay value to 500,000,000, and re-estimating the parameters. The error of the programs with an increased upper 

Program
Number of 

Lots
Number of 

Units Component Estimated Units
Traditional 

RMSE Boone RMSE

RMSE 
Percentage 
Difference

Traditional 
MAPE Boone MAPE

MAPE 
Percentage 
Difference

Program 1 6 483 Airframe Dollars 411.22 114.07 72.3% 2.8% 0.7% 74.7%

Program 7 7 110 Electronic Warfare (2) Dollars 140.32 107.21 23.6% 1.2% 0.8% 27.5%

Program 10 10 3803 PME - Air Vehicle Hours 24.45 14.01 42.7% 4.3% 2.0% 54.0%

Program 12 10 20 PME - Air Vehicle Dollars 699.20 694.08 0.7% 5.8% 5.7% 1.0%

Program 16 9 76 PME - Air Vehicle Dollars 436.29 144.41 66.9% 2.6% 1.0% 62.9%

Program 20 11 84 PME - Air Vehicle Dollars 1568.74 1121.89 28.5% 1.7% 1.5% 7.8%

Program 21 6 326 PME - Air Vehicle Dollars 5267.10 2408.78 54.3% 8.0% 4.2% 47.4%

Program 21 7 344 Airframe Dollars 4819.45 2544.26 47.2% 9.1% 5.4% 40.4%

Program 21 14 453 PME - Air Vehicle Hours 3493.62 3495.94 -0.1% 4.8% 4.8% 0.1%

Program 21 14 453 Airframe Hours 4338.35 4339.68 0.0% 6.2% 6.2% 0.1%

Program 27 18 631 PME - Air Vehicle Dollars 1669.56 913.34 45.3% 3.6% 1.9% 46.2%

Program 33 10 178 Airframe Dollars 1906.94 1910.76 -0.2% 1.7% 1.7% -0.2%

Program 33 10 178 Electronic Warfare (3) Dollars 62.5 62.4 0.2% 5.7% 5.7% 0.1%

Program 34 6 67 PME - Air Vehicle Hours 9058.6 9061.7 0.0% 4.4% 4.4% 0.0%

Program 34 6 201 Body Dollars 1924.5 828.9 56.9% 19.0% 8.7% 54.0%

Program 34 6 67 Electrical Dollars 50.7 50.7 -0.1% 1.9% 1.9% -0.1%

Program 34 5 49 Empennage Dollars 202.2 202.2 0.0% 4.1% 4.1% 0.0%

Program 34 6 67 EO/IR Dollars 45.6 36.6 19.7% 1.2% 1.1% 13.1%

Program 35 5 50 Electronic Warfare (1) Dollars 259.6 259.7 0.0% 3.2% 3.2% 0.0%

Program 35 5 50 Hydraulic Dollars 58.2 58.2 0.0% 3.1% 3.1% 0.0%

Program 35 5 50 Radar Dollars 256.8 256.9 0.0% 3.2% 3.2% 0.0%

Program 35 5 50 Surface Controls Dollars 121.5 121.5 0.0% 2.6% 2.6% 0.0%

Program 36 13 1285 PME - Air Vehicle Dollars 28.8 29.4 -2.1% 0.6% 0.6% -2.2%

Program 38 6 52 PME - Air Vehicle Dollars 253.6 154.9 38.9% 1.2% 0.7% 41.6%

Program 46 6 68 Airframe Dollars 539.1 527.6 2.1% 2.3% 2.1% 10.9%

Program 46 6 68 Electronic Warfare (1) Dollars 221.8 221.9 0.0% 5.4% 5.4% 0.0%

Program 46 6 68 EO/IR Dollars 120.7 120.8 0.0% 15.7% 15.7% 0.0%

Program 47 9 36 Data Link (1) Dollars 170.2 170.2 0.0% 17.7% 17.7% 0.0%

Program 55 9 677 PME - Air Vehicle Dollars 74.8 74.8 0.0% 1.6% 1.6% 0.0%

Program 56 5 590 PME - Air Vehicle Dollars 6.6 6.6 0.5% 0.2% 0.2% 6.3%
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are approximately equal to but not exactly zero. Bounds were set to determine if an observation’s 

percentage error difference is approximately equal to zero to account for these insignificant percentage 

error differences. The data were visualized to set bounds in order to identify observations with 

percentage error differences of approximately zero. Observations with percentage error differences of 

approximately zero were defined as those within the bounds (-0.25%, 0.25%). These bounds were used 

by the researchers to distinguish between observations with approximately zero and non-zero 

percentage error differences in order to better inform the descriptive statistics. 

 Boone’s Learning Curve had less error for approximately 41% of observations across all 

percentage difference error measures. Boone’s Learning Curve error was approximately equal to 

Wright’s Learning Curve for approximately 50% of observations across all error measures. Lastly, 

Boone’s Learning Curve had more error for approximately 9% of observations. Appendix B provides 

descriptive statistics by group for each percentage difference error measure. The relative similarity of 

the percentage of observations within the approximately zero group among the three error measures 

provides further justification for these bounds. 

 The mean and median amounts of percentage error reduction and the accompanying standard 

deviations for the three error measures are shown in Table 3. Because Boone’s Learning Curve is an 

improvement on Wright’s for a limited number of observations, many instances of approximately zero 

percentage differences are included in the positively skewed distribution. These inclusions of 

approximately zero also have a substantial influence on the descriptive statistics. For this reason, Table 4 

displays descriptive statistics given Boone’s Learning Curve was an improvement on Wright’s Learning 

Curve. The mean for the RMSE percentage difference from Table 4 for program components analyzed in 

 
bound for Boone’s Decay value were compared to the error of programs with the original upper bound of 500,000. 
Error decreased for programs with increased upper bounds for Boone’s Decay value. These results indicate that 
Boone’s Learning Curve error will converge to Wright’s Learning Curve error as Boone’s Decay value approaches 
infinity as predicted. 
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units of thousands of dollars [Dollars (K)] can be interpreted as Boone’s Learning Curve was on average 

44% more accurate than Wright’s Learning Curve for the set of program components in which Boone’s 

Learning Curve was an improvement on Wright’s. However, the relatively high standard deviation of all 

error measures indicate that Boone’s Learning Curve causes widely variable reductions in error in 

comparison to Wright’s Learning Curve. 

 

Table 3: Cumulative Average Theory Descriptive Statistics for All Programs 

 

 

Table 4: Cumulative Average Theory Descriptive Statistics Given Boone’s Learning Curve Improved Upon 
Wright’s 

 

 

Cumulative Average Theory: Statistical Difference Testing 

 The results of the paired difference t-tests for Cumulative Average Theory are shown in Figures 

10, 11, & 12. Figure 10 displays the results for program components analyzed in underlying units of total 

dollars for the RMSE percentage difference measure. Figure 11 displays the results for program 

components analyzed in underlying units of labor hours for the RMSE percentage difference measure. 

Error Measure Program Units
Number of 

Observations
Mean Median

Standard 
Deviation

Total Dollars (K) 118 19.3% 0.0% 28.9%
Labor Hours 22 15.2% 0.0% 31.2%

Mean Absolute Percent 
Error Percentage 

Difference

Total Dollars (K) 
& Labor Hours 

Combined
140 18.6% 0.0% 29.5%

Root Mean Squared Error 
Percentage Difference

Error Measure Program Units
Number of 

Observations
Mean Median

Standard 
Deviation

Total Dollars (K) 52 43.9% 44.5% 28.5%
Labor Hours 8 45.4% 34.4% 34.4%

Mean Absolute Percent 
Error Percentage 

Difference

Total Dollars (K) 
& Labor Hours 

Combined
60 44.1% 44.3% 29.6%

Root Mean Squared Error 
Percentage Difference
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Lastly, Figure 12 displays the results for all program components for the MAPE percentage difference 

measure. Paired difference tests were used to determine if reductions in error from Boone’s Learning 

Curve are statistically significant from zero or due to random chance. The applicable p-values within 

these figures were the Prob > t row because the rejection region is the positive side of the distribution; 

however, additional p-values are also provided for full disclosure. No outliers were present in any of the 

paired difference t-tests. An observation was identified as an outlier if the observation’s value fell more 

than three interquartile ranges from the upper 90% and lower 10% quantiles. 

 For the RMSE percentage difference measure in underlying units of total dollars shown in Figure 

10, the paired difference t-test resulted in a test statistic of 7.23 with a p-value of <0.001. At a 

significance level of 0.05, this test rejects the null hypothesis because the p-value is less than the 

significance level. This result indicates that Boone’s Learning Curve reduces the amount of error in 

comparison to Wright’s for the RMSE percentage difference measure in underlying units of total dollars 

to a statistically significant degree. 

 

 

Figure 10: Cumulative Average Theory Percentage Difference in RMSE in Units of Dollars 

 

 For the RMSE percentage difference measure in underlying units of hours hypothesis test shown 

in Figure 11, the sample size is fewer than 30 observations. Due to this small sample size, the Central 
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Limit Theorem cannot be invoked, and the data cannot be assumed to be normally distributed (McClave 

et al., 2014, p. 441). The paired difference t-test assumes that the data are approximately normally 

distributed (McClave et al., 2014, p. 441-442). To statistically test if the data approximately fit a normal 

distribution, the Shapiro Wilk test was utilized. The Shapiro Wilk test statistic was 0.721 with a p-value 

of <0.001. This test rejects the null hypothesis that the data are normally distributed because the p-

value is less than the significance level of 0.05. For these reasons, the Wilcoxon Signed Rank Test was 

used because it does not rely on normally distributed data. All assumptions of the Wilcoxon Signed Rank 

were met (McClave et al., 2014, p. 15-11). The Wilcoxon Signed Rank test resulted in a test statistic of 

18.5 that corresponds to a p-value of 0.280. Because this p-value is greater than the significance level of 

0.05, this test fails to reject the null hypothesis. This result indicates that Boone’s Learning Curve does 

not reduce the amount of error in comparison to Wright’s for the RMSE percentage difference measure 

in underlying units of hours to a statistically significant degree. However, small sample sizes can cause 

paired difference tests to have low power (Cohen, 1938). Hypothesis tests with low power can result in 

incorrectly failing to reject the null hypothesis (Cohen, 1938). 

 

 

Figure 11: Cumulative Average Theory Percentage Difference in RMSE in Units of Hours 

 

 For the MAPE percentage difference measure shown in Figure 12, the paired difference t-test 

statistic was 7.45. This test statistic corresponded to a p-value of <0.0001. Because this p-value is less 

than the significance level of 0.05, this test rejects the null hypothesis. This result indicates that Boone’s 
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Learning Curve reduces the amount of error in comparison to Wright’s for the MAPE percentage 

difference measure to a statistically significant degree. 

 

 

Figure 12: Cumulative Average Theory Percentage Difference in MAPE 

 

Unit Theory Comparison 

 Crawford’s Learning Curve and Boone’s Learning Curve using Unit Theory are compared in Table 

5 for a random sample of 30 of the 169 total program components tested. The full list of components is 

included in Appendix A. This Unit Theory sample included 141 components analyzed in units of total 

dollars and 28 components analyzed in units of labor hours. Each entry and all interpretations match 

that of the Cumulative Average Theory Comparison section. 
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Table 5: Sample of Comparisons using Unit Theory 

 
 

 Similar to Cumulative Average Theory, Boone’s upper limit of the Decay value precluded 

Boone’s Learning Curve from converging to Crawford’s Learning Curve. This bound resulted in 

insignificant percentage error differences between Boone’s Learning Curve and Crawford’s Learning 

Curve. Therefore, observations with percentage error differences of approximately zero were defined as 

those within the bounds (-0.25%, 0.25%). These bounds are the same as those used for Cumulative 

Average Theory. In order to ensure these bounds were justified, the distribution of the data around zero 

was reviewed. Boone’s Learning Curve had less error for approximately 43% of observations across all 

percentage difference error measures in comparison to Crawford’s Learning Curve. Boone’s Learning 

Curve error was approximately equal to Crawford’s Learning Curve for approximately 52% of 

observations across all error measures. Lastly, Boone’s Learning Curve had more error for approximately 

5% of observations. Appendix B provides descriptive statistics by group for each measure of percentage 

difference error. 

Program
Number of 

Lots
Number of 

Units Component Estimated Units
Traditional 

RMSE Boone RMSE

RMSE 
Percentage 
Difference

Traditional 
MAPE Boone MAPE

MAPE 
Percentage 
Difference

Program 1 7 503 Airframe Dollars 2383.2 857.9 64.0% 14.6% 4.9% 66.4%

Program 6 7 459 Electronic Warfare (1) Dollars 20.9 20.9 0.0% 30.8% 30.8% 0.0%

Program 7 5 321 PME - Air Vehicle Dollars 37.9 33.3 12.2% 3.8% 3.8% 1.1%

Program 8 6 98 Electronic Warfare (3) Dollars 5.2 4.9 6.1% 4.8% 4.8% 1.4%

Program 8 6 98 Electronic Warfare (1) Dollars 27.5 18.7 31.9% 10.2% 5.9% 42.5%

Program 10 9 1586 PME - Air Vehicle Dollars 115.5 115.6 -0.2% 12.5% 12.5% -0.2%

Program 13 10 3803 PME - Air Vehicle Dollars 33.6 24.8 26.1% 10.3% 7.5% 27.1%

Program 15 7 11 Mission Computer (1) Dollars 213.9 213.9 0.0% 11.6% 11.5% 0.6%

Program 18 11 83 PME - Air Vehicle Dollars 82138.6 82143.3 0.0% 23.2% 23.2% 0.0%

Program 25 7 59 Electronic Warfare (1) Dollars 1259.1 653.3 48.1% 16.1% 7.1% 55.6%

Program 27 14 453 PME - Air Vehicle Hours 54142.9 53766.4 0.7% 59.9% 63.1% -5.4%

Program 29 11 433 Electronic Warfare (1) Dollars 57.5 57.5 0.0% 13.5% 13.5% -0.1%

Program 30 5 469 PME - Air Vehicle Dollars 1283.8 891.8 30.5% 13.5% 8.3% 38.3%

Program 31 10 59 PME - Air Vehicle Dollars 11978.9 11979.3 0.0% 8.6% 8.6% 0.0%

Program 33 5 109 PME - Air Vehicle Dollars 6824.7 6824.8 0.0% 28.2% 28.2% 0.0%

Program 34 18 631 PME - Air Vehicle Dollars 6926.7 2799.9 59.6% 17.0% 6.6% 61.0%

Program 35 7 522 PME - Air Vehicle Hours 4615.3 4458.5 3.4% 6.3% 6.1% 3.1%

Program 35 7 522 Airframe Hours 6757.0 6280.7 7.0% 5.7% 5.4% 4.8%

Program 37 5 204 PME - Air Vehicle Dollars 1468.7 921.0 37.3% 2.9% 1.9% 36.4%

Program 40 10 178 Electronic Warfare (1) Dollars 1642.3 1643.0 0.0% 20.7% 20.7% 0.0%

Program 41 6 67 Mission Computer (1) Dollars 1698.1 1542.4 9.2% 4.6% 3.7% 19.5%

Program 42 5 50 Alighting Gear Dollars 78.6 77.4 1.5% 3.6% 3.5% 2.3%

Program 46 6 44 PME - Air Vehicle Hours 7736.9 7255.3 6.2% 17.6% 16.7% 4.8%

Program 46 10 113 PME - Air Vehicle Dollars 797.9 627.0 21.4% 3.8% 2.9% 22.7%

Program 54 9 134 PME - Air Vehicle Dollars 1907.3 970.0 49.1% 11.8% 6.5% 44.9%

Program 57 6 68 Electronic Warfare (1) Dollars 998.8 998.9 0.0% 58.9% 58.9% 0.0%

Program 57 6 68 Airframe Dollars 1443.2 1285.1 11.0% 6.7% 5.4% 18.5%

Program 62 9 110 PME - Air Vehicle Dollars 13027.5 13028.9 0.0% 24.0% 24.0% 0.0%

Program 67 9 677 PME - Air Vehicle Dollars 273.5 273.5 0.0% 5.1% 5.1% 0.0%

Program 68 5 590 PME - Air Vehicle Dollars 87.1 87.2 0.0% 2.8% 2.8% 0.0%
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 The mean and median amounts of percentage error reduction and the accompanying standard 

deviations for the three error measures are shown in Table 6. Similar to Cumulative Average Theory 

analysis, many inclusions of approximately zero also have a strong influence on the descriptive statistics. 

For this reason, Table 7 displays descriptive statistics given that Boone’s Learning Curve was an 

improvement on Crawford’s Learning Curve. Similar to Cumulative Average Learning Curve analysis, the 

relatively high standard deviation of all error measures indicate that Boone’s Learning Curve causes 

variable reductions in error in comparison to Crawford’s Learning Curve. 

 

Table 6: Unit Theory Descriptive Statistics for All Programs 

 
 

Table 7: Unit Theory Descriptive Statistics Given Boone’s Learning Curve Improved Upon Crawford’s 

 
 

Unit Theory: Statistical Difference Testing 

 The results of the paired difference testing for Unit Theory are shown in Figures 13, 14, & 15. 

These figures follow the same order as those provided in the Cumulative Average Theory analysis 

section. No outliers were present in any of the paired difference t-tests using the same methodology of 

Error Measure Program Units
Number of 

Observations
Mean Median

Standard 
Deviation

Total Dollars (K) 141 13.8% 0.0% 22.7%
Labor Hours 28 6.0% 0.0% 14.8%

Mean Absolute Percent 
Error Percentage 

Difference

Dollars (K) & 
Labor Hours 
Combined

169 11.3% 0.0% 23.1%

Root Mean Squared Error 
Percentage Difference

Error Measure Program Units
Number of 

Observations
Mean Median

Standard 
Deviation

Total Dollars (K) 66 29.6% 26.7% 25.3%
Labor Hours 12 14.1% 6.6% 20.3%

Mean Absolute Percent 
Error Percentage 

Difference

Dollars (K) & 
Labor Hours 
Combined

67 30.3% 24.5% 26.2%

Root Mean Squared Error 
Percentage Difference
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outlier identification used in the Cumulative Average Theory: Statistical Difference Testing sub-section. 

For the RMSE percentage difference measure in underlying units of total dollars shown in Figure 13, the 

standard paired difference t-test resulted in a test statistic of 7.23 with a p-value of <0.001. At a 

significance level of 0.05, this test rejects the null hypothesis because the p-value is smaller than the 

significance level. This result indicates that Boone’s Learning Curve reduces the amount of error in 

comparison to Crawford’s for the RMSE percentage difference measure in underlying units of total 

dollars to a statistically significant degree. 

 

 

Figure 13: Unit Theory Percentage Difference in RMSE in Units of Dollars 

 

 For the RMSE percentage difference measure in underlying units of hours hypothesis test shown 

in Figure 14, the sample size is fewer than 30 programs. Similar to the Cumulative Average Theory 

analysis, a Shapiro Wilk test was utilized to test statistically if the data approximately fit a normal 

distribution. The Shapiro Wilk test statistic is 0.48 with a p-value of <0.001. This test rejects the null 

hypothesis that the data are normally distributed because the p-value is less than the significance level 

of 0.05. For these reasons, the Wilcoxon Signed Rank Test was used instead. All assumptions of the 

Wilcoxon Signed Rank were met (McClave et al., 2014, p. 15-11). The Wilcoxon Signed Rank test resulted 

in a test statistic of 74.00 that corresponds to a p-value of 0.0461. Because this p-value is less than the 

significance level of 0.05, this test rejects the null hypothesis. However, the two-tailed test statistic has a 
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p-value above the significance level and is provided for full disclosure. This result indicates that Boone’s 

Learning Curve reduces the amount of error in comparison to Wright’s for the RMSE percentage 

difference measure in underlying units of hours to a statistically significant degree. 

 

 

Figure 14: Unit Theory Percentage Difference in RMSE in Units of Hours 

 

 For the MAPE percentage difference measure shown in Figure 15, the paired different test 

statistic was 6.36. This test statistic corresponds to a p-value of <0.001. Because this p-value is less than 

the significance level of 0.05, this test rejects the null hypothesis. This result indicates that Boone’s 

Learning Curve reduces the amount of error in comparison to Crawford’s for the MAPE percentage 

difference measure to a statistically significant degree. 

 

 

Figure 15: Unit Theory Percentage Difference in MAPE 
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Conclusions & Recommendations 

Research Conclusions 

 A large, diverse dataset of Air Force production programs was used to test if Boone’s Learning 

Curve more accurately explained error in comparison to the traditional learning curve theories. The 

direct recurring cost data from bomber, cargo, and fighter aircraft along with missiles and munitions 

programs in units of total dollars and labor hours were analyzed using Cumulative Average and Unit 

Learning Curve theories. Various components of these programs were analyzed from wings and data link 

systems to the airframes and air vehicles. Boone’s Learning Curve was tested against both Cumulative 

Average and Unit Learning Curve theories using two different measures of model error that resulted in 

six paired difference tests. This methodology resulted in 998 total observations across all measures and 

ensured the generalizability of Boone’s Learning Curve was tested. 

 Boone’s Learning Curve improved upon the traditional learning curve theories for approximately 

42% of the sampled program components while approximately equaling the traditional learning curve 

theory error for approximately 51% of program components. When Boone’s Learning Curve improved 

upon the traditional learning curve theories, Boone’s Learning Curve resulted in a range of mean 

percentage difference reductions of 14% to 45% across all measures. The standard deviations of these 

improvements were relatively high with coefficients of variation (௦௧௔௡ௗ௔௥ௗ ௗ௘௩௜௔௧௜௢௡

௠௘௔௡
) ranging from 65% to 

144% across all measures. Absent additional analysis, these high amounts of variability make it 

challenging to conclude the degree to which Boone’s Learning Curve will improve the accuracy of 

explaining program component costs in comparison to the traditional theories. 

 The paired difference tests between Boone’s Learning Curve and the traditional theories 

indicate that Boone’s Learning Curve reduces error to a statistically significant degree across a wide 

range of measures for a diverse set of Air Force and Navy programs. Table 8 summarizes the results for 

the six paired difference tests. Five of the six paired difference tests resulted in rejecting the null 
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hypothesis that Boone’s Learning Curve had an equal amount or more error than the traditional theories 

at a significance level of 0.05. The subset of programs analyzed in units of hours for Cumulative Average 

Theory was a small sample; therefore, a failure to reject the null hypothesis may stem from the test’s 

lack of power. The subset of programs analyzed in units of hours for Unit Theory was also a small 

sample; however, the test rejected the null hypothesis using a non-parametric test. 

 

Table 8: Summary of Hypothesis Test Results 

 
 

 In summary, Boone’s Learning Curve more accurately explained program cost data using both 

Cumulative Average Theory and Unit Theory in comparison to the traditional learning curves. Boone’s 

Learning Curve modeled program component cost data more accurately than the traditional theories; 

however, it remains unclear which programs are more accurately modeled using Boone’s Learning Curve 

and to what degree Boone’s Learning Curve will more accurately model program component costs. 

Research Limitations 

 Limitations of this research should be reviewed to draw appropriate conclusions and make 

suitable recommendations. This research sought to test the generalizability of Boone’s Learning Curve 

using a variety of programs and their components. To achieve this goal, a large sample of Air Force and 

Learning Curve Theory Error Measure Units of Measure Hypothesis Test Results
Boone's Learning 
Curve Significatly 

Reduced Error

Total Dollars (K) 1
Reject Null Hypothesis 

(p-value < 0.001)
Yes

Labor Hours 2
Fail to Reject Null Hypothesis

(p-value = 0.280)
Yes

Mean Absolute 
Percent Error 

Percentage Difference

Total Dollars (K) & 
Labor Hours Combined

3
Reject Null Hypothesis 

(p-value < 0.001)
No

Total Dollars (K) 4
Reject Null Hypothesis 

(p-value < 0.001)
Yes

Labor Hours 5
Reject Null Hypothesis 

(p-value = 0.046)
Yes

Mean Absolute 
Percent Error 

Percentage Difference

Total Dollars (K) & 
Labor Hours Combined

6
Reject Null Hypothesis 

(p-value < 0.001)
Yes

Cumulative Average 
Theory

Unit Theory

Root Mean Squared 
Error Percentage 

Difference

Root Mean Squared 
Error Percentage 

Difference
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Navy programs were utilized with a variety of attributes; however, small samples for components 

analyzed in units of labor hours precluded gaining compelling conclusions from all hypothesis tests. 

Additionally, program lot data was used instead of unitary data due to data availability. Although 

Boone’s Learning Curve should perform just as well using either type of data, this research cannot 

conclusively state that Boone’s Learning Curve will more accurately explain programs in unitary data. 

Lastly, the majority of data utilized were end-item components in units of total dollars. The total dollar 

cost includes all cost categories rather than solely labor costs. These data are not ideal when applying 

learning curve theory and may bias learning curves to display diminishing rates of learning. Despite 

these potential issues, total dollar cost data are regularly utilized by cost estimators in the field due to 

data availability. Therefore, the practical applications of this analysis remain valid despite the limitations 

of using imperfect total dollar cost data in learning curve analysis. 

Recommendations for Future Research 

 Boone’s Learning Curve was tested on programs whose lot costs were already known and whose 

parameters can be directly estimated. In other words, Boone’s Learning Curve was tested against the 

traditional theories on how well it explained rather than predicted program costs. In practical use within 

the cost estimating community, Boone’s Learning Curve should also be tested on how well it predicts 

rather than explains costs in comparison to the traditional theories. In order to utilize Boone’s Learning 

Curve to predict costs, future research should investigate if Boone’s Decay Value can be predicted using 

various attributes of a program. Tests should be performed on how well Boone’s Learning Curve predicts 

costs for a program using prior lots of the same program or prior analogous programs in comparison to 

the traditional theories. Depending on how these prediction tests are implemented, these tests can 

indirectly examine if Boone’s Learning Curve parameters quickly converge on stable values and if 

overfitting of the analogous learning curve data occurs among other topics. Lastly, additional labor hour 
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data should be collected and analyzed in order to dispel the potential bias of learning curves displaying 

diminishing rates of learning when analyzed in units of total dollars. 

Summary 

 This research tested the generalizability of Boone’s Learning Curve in explaining costs for up to 

69 weapons system programs comprising 169 unique components. Among all analysis techniques, 998 

observations were investigated. These programs had a variety of attributes to include programs 

analyzed in units of labor hours and total dollars. The programs spanned from 1957 to 2018 and were 

analyzed at various WBS elements that applied to learning curve theory analysis. Programs were 

analyzed using both Cumulative Average Theory and Unit Theory. Boone’s Learning Curve was compared 

to the respective traditional theory using RMSE in units of total dollars and labor hours as well as in units 

of MAPE. This variety of attributes and tests allowed Boone’s Learning Curve to be rigorously compared 

to the traditional learning curve theories. The researchers found that Boone’s Learning Curve reduced 

error for RMSE and MAPE to a statistically significant degree although the amount of error reduction 

varied considerably. Further research should investigate the ability of Boone’s Learning Curve to predict 

rather than explain program costs for applicability in the cost estimating community as well as which 

programs are better explained by Boone’s Learning Curve. 
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IV. Phase 2 

Methodology 

Population and Sample 

 In order to further validate and understand Boone’s Learning Curve, a subset of data from Phase 

1 was utilized. The population remains all Department of Defense programs that have produced multiple 

complex end-items over time. The set of data sourced from Phase 1 consists of all program component 

learning curves analyzed using Unit Theory. This subset of data will be used to perform several statistical 

tests that would have been significantly compounded by the use of the two units of measures and two 

different learning curve theories. The justification for using this subset of data is Unit Theory is widely 

used and favored in the government (Mislick & Nussbaum, 2015, p. 215). Additionally, this dataset was 

the largest of the two learning curve theory datasets due to the additional assumptions of Cumulative 

Average Theory. This larger dataset provides more power for statistical tests (Cohen, 1938).  

 The dataset consists of several elements that were initially supplied with the data along with 

elements that were generated from the analysis in Phase 1. The elements that were initially provided 

with the dataset include each program component’s observed lot costs, units produced per lot, and total 

quantified units among other attributes displayed in Table 9. In addition to these data, the predicted lot 

costs and empirically estimated learning curve parameter estimates for Boone’s Learning Curve and 

Crawford’s Learning Curve will also be utilized. These data were generated using the analysis techniques 

of Phase 1. 

 



77 
 

Table 9: Dataset Attributes and Values 

 
  

 In addition to this original dataset, 118 additional programs were added, each with a unique 

component. These additional programs comprise costs at the flyaway cost WBS level. The flyaway cost 

WBS level is the level directly above the prime mission equipment cost WBS level. The prime mission 

equipment cost WBS level was the highest level of analysis used in Phase 1 because traditional learning 

curve analysis cannot be directly applied to all constituent elements of the flyaway cost WBS level. 

However, learning curve analysis may be performed on program components at the flyaway cost WBS 

level due to data availability. Thus, the inclusion of program components at the flyaway cost WBS level 

will augment the research by providing a higher level of analysis above the prime mission equipment 

cost WBS level. This higher level of analysis will provide insight into how composite curves relate to 

diminishing rates of learning. These program component learning curves estimated at the flyaway cost 

WBS level will be included and excluded during different statistical tests to examine the sensitivity of 

results. 

Attribute Values

Commodity
Aircraft, Aircraft subsystem, Engine, Helicopter, Missile, Unmanned 
Aerial Vehicle (UAV)

Component Estimated

Airframe, Alighting Gear, Auxiliary Power Plant, Avionics, Body, Data 
Link, Electrical, Electronic Warfare, Electro-Optical (EO), Electro-
Optical Targeting System (EOTS), Electro-optical/Infrared (EO/IR), 
Empennage, Flyaway, Hydraulic, Mission Computer, Prime Mission 
Equipment, Radar, Surface Controls, Wing

Defense Contractor 26 defense contractors
First Year of Production Various years spanning 1957 - 2018
Last Year of Production Various years spanning 1957 - 2018
Number of Lots Various numbers of lots spanning 1 to 21

Platform Type

Anti-submarine; Attack; Bomber; Command, Control, Information, 
Surveillance, & Reconnaissance (C2ISR); Combat Search & Rescue 
(CSAR); Electronic Warfare; Engine; Fighter; Missile; Multi-mission 
Maritime; Tanker; Trainer; Transport; UAV

Quantified Units Various quantities spanning 11 to 10,035 units
Service Air Force, Joint Air Force-Navy, Navy
Units of Measure Dollars, Hours
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Data Collection 

 The dataset to include the 118 additional programs was extracted from the same source as 

Phase 1: CADE DACIMS and the Cost Research Library. The additional programs predicted lot costs and 

empirically estimated learning curve parameter estimates were generated from the analysis techniques 

in Phase 1.  

 The additional 118 program components increased the number of potential observations from 

258 to 376. A business rule was implemented to exclude program components with lot numbers fewer 

than four. This business rule was necessary because programs lots will be divided into quarters; 

programs with less than four lots cannot be divided into quarters. This rule limited the number of 

observations to 185 when excluding program components estimated at the flyaway cost WBS level. The 

observations are limited to 261 when including program components estimated at the flyaway cost WBS 

level.  

 When performing statistical tests using Boone’s Learning Curve, program components with lot 

numbers fewer than five will be excluded to prevent overfitting of Boone’s Learning Curve and remain 

consistent with Phase 1. In these instances, the number of observations will be reduced to 169 when 

excluding program components estimated at the flyaway cost WBS level. The observations will be 

limited to 234 when including program components estimated at the flyaway cost WBS level. 

Data Analysis 

Analysis of Empirical Forgetting & Plateauing 

 This portion of the analysis will investigate if program components experience diminishing rates 

of learning towards the end of their production cycles using various methodologies. Boone’s Learning 

Curve is predicated on the idea that observed learning curves experience a plateau towards the end of 

the production cycle when modeled using the traditional learning curves theories. In other words, 
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Boone’s Learning Curve more accurately models observed learning curves in comparison to Crawford’s 

Learning Curve due to the ability of Boone’s Learning Curve to diminish its rate of learning as more units 

are produced. It is hypothesized that Crawford’s Learning Curve fails to capture observed learning 

curves’ diminishing rates of learning due to its assumption of constant rates of learning.  

 For example, a program from the dataset that displays diminishing rates of learning is illustrated 

in Figure 16. Crawford’s Learning Curve imperfectly fits this observed learning curve as shown. 

Specifically, Crawford’s Learning Curve underestimates the observed learning curve towards the end of 

production because this model is predicated on a constant rate of learning rate while the observed rate 

of learning diminishes. This constant rate of learning causes Crawford’s Learning Curve predicted values 

to be lower than observed values in lots five and six. Although the difference in actual and predicted 

costs may seem insignificant in Figure 16, $2 million are underestimated in total that equates to 10% of 

the program’s total costs across all six production lots. This example illustrates how small improvements 

in error can significantly improve a program’s predicted costs and reduce cost overruns. 

 

 

Figure 16: Example of a Program Displaying Plateauing Near the End of Production 
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 In order to empirically investigate the claim that observed learning curves plateau in comparison 

to Crawford’s Learning Curve, the observed unit cost per lot will be compared to Crawford’s Learning 

Curve predicted unit cost per lot. Using these observed and predicted values per lot per program 

component, a percentage error will be calculated by subtracting the predicted value from the observed 

value and dividing by the observed value. These calculations will yield a series of percentage errors 

across all lots for each observed learning curve. Positive percentage errors will indicate that Crawford’s 

Learning Curve underestimates, or is below, observed values. In contrast, negative percentage errors 

will indicate that Crawford’s Learning Curve overestimates, or is above, observed values. 

 Next, each observed learning curve will be divided into quarters. This division will isolate the last 

quarter of each learning curve that is hypothesized to plateau. The methodology to divide an observed 

learning curve into quarters was employed because the number of lots for an observed learning curve 

varies. If instead a set number of lots were defined to capture the end of an observed learning curve 

production cycle, the various number of lots per observed learning curve would make comparisons 

incongruent. Therefore, the end of the production cycle is defined as the last quarter of the observed 

learning curve. The specific number of lots in the last quarter differs based on the observed learning 

curve’s total number of lots. After these quarter divisions are accomplished, the mean percentage errors 

for all lots within each quarter will be calculated to yield a mean percentage error per quarter. Unlike 

the first and last quarters, the second and third quarters’ lots will be combined into a single mean. This 

combination of the middle two quarters was necessary due to the inability to divide lots evenly for 

programs with an odd number of lots4. An example of this process is shown in Table 10 using an 

 
4 The total number of lots for each observation was divided by four, and the number of lots for the first and last 
quarter was calculated by rounding this quotient down. Therefore, the number of lots in the first and last quarter 
were equal, but the number of lots in the middle quarters may not be equal to the sum of the first and last quarter 
lots depending on the number of lots in the program. 
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observation from the dataset. In Table 10, Crawford’s Learning Curve overestimates the actual data on 

average in the first and middle quarters while underestimating actual data in the fourth quarter. 

 

Table 10: Example Calculation of Quarterly Mean Percentage Error 

 
 

 Using these data, a t-test of the sample mean will be conducted to determine if using Crawford’s 

Learning Curve systematically underestimates, or falls below, the observed learning curve in the last 

quarter. If Crawford’s Learning Curve is systematically below the observed learning curve in the last 

quarter, this indicates that observed learning curves systematically plateau or experience diminishing 

rates of learning in comparison to Crawford’s Learning Curve. If Crawford’s Learning Curve fails to model 

observed learning curve plateaus accurately, Boone’s Learning Curve has the potential to improve upon 

Crawford’s Learning Curve for modeling plateaus. 

 These t-tests of the sample mean will be accomplished by comparing the mean percentage 

errors in the last quarter of all programs to zero. The null hypothesis for this test is Crawford’s Learning 

Curve neither underestimates nor overestimates observed data in the last quarter. The alternative 

hypothesis is Crawford’s Learning Curve systematically underestimates observed data in the last 

quarter. This alternative hypothesis would be supported if the global mean of the mean percentage 

errors in the last quarter were greater than zero to a statistically significant degree. Although there is a 

Lot 
Number

Percentage Error of Crawford's Learning 
Curve Prediction & Observed Data

Quarter
Mean 

Percentage 
Error

1 7.7%
2 -15.2%
3 -17.2%
4 -18.4%
5 7.8%
6 8.1%
7 9.2%
8 9.0%

-3.8%

9.1%

-4.9%

1

2

3

4
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focus on the plateauing phenomenon in the last quarter, the first and middle quarters will also be tested 

to gain additional insight on how Crawford’s Learning Curve predictions compare to observed learning 

curves. A significance value of 0.05 will be used to determine if these results are statistically significant 

for this test and all following statistical tests. JMP Pro Version 13 will be used to perform this and all the 

following statistical analyses. 

 These same data will be converted to proportions to investigate further if plateauing occurs 

near the end of the production cycle. Specifically, the mean percentage error for each quarter will be 

converted to a dichotomous variable: if the mean percentage error is positive, the quarter will be 

labeled with a one and zero otherwise. For example, in Table 10 the first and middle quarters would be 

labeled with zeroes while the last quarter would be labeled with a one. Using these data, a hypothesis 

test of the sample proportions will be compared to a null hypothesis proportion of 0.5. The null 

hypothesis proportion of 0.5 assumes Crawford’s Learning Curve predictions will randomly 

underestimate and overestimate observed learning curves. The alternative hypothesis is that Crawford’s 

Learning Curve systematically underestimates observed data in the last quarter of programs. This 

alternative hypothesis would be indicated if the sample proportion was greater than 0.5 to a statistically 

significant degree. The first and middle quarters will also be assessed to gain additional insight. 

 Next, Boone’s Learning Curve will also more accurately model program components costs that 

initially have high rates of learning that eventually diminish to low rates of learning at the end of the 

production cycle. If the observed data followed this pattern, Crawford’s Learning Curve would 

underestimate observed data in both the first and last quarters of the program. Therefore, to test if 

observed data exhibit these characteristics, a dichotomous variable will be created and statistically 

tested. If Crawford’s Learning Curve underestimates observed data in both the first and last quarters, 

the program component will be labeled with a one and zero otherwise. Investigating this proportion can 
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indicate how often Boone’s Learning Curve can more accurately explain costs while further garnering an 

understanding of how Crawford’s Learning Curve predictions compare to observed data.  

Analysis of the Performance of Boone’s Learning Curve 

 A further set of tests will be conducted to determine if Boone’s Learning Curve improves upon 

Crawford’s by more accurately modeling the plateauing phenomenon of observed learning curves. An 

alternative explanation is that Boone’s Learning Curve improves upon Crawford’s Learning Curve due to 

its additional empirically-estimated parameter. Because Boone’s Learning Curve contains an additional 

parameter, it is expected to improve upon Crawford’s Learning Curve at an aggregate level. However, if 

Boone’s Learning Curve more accurately models observed learning curves that plateau and remains 

approximately equal to Crawford’s Learning Curve in terms of error for observed learning curves that do 

not plateau, then Boone’s Learning Curve provides inherent value in modeling the plateauing 

phenomenon. These tests will limit the number of observations to program components with lots 

greater than or equal to five to prevent overfitting of Boone’s Learning Curve and remain consistent 

with Phase 1. Program component learning curves analyzed at the flyaway cost WBS level will be 

included in part of this analysis. 

 In order to test this hypothesis, a confusion matrix will be used first. A confusion matrix provides 

the number of observed learning curves that are predicted to be more accurately explained by Boone’s 

Learning Curve and those that are not to the actual number of observed learning curves that are more 

accurately explained by Boone’s Learning Curve and those that are not. An observed learning curve is 

predicted to be more accurately explained by Boone’s Learning Curve if its learning curve plateaus in 

comparison to Crawford’s Learning Curve. A learning curve plateaus in comparison to Crawford’s 

Learning Curve if its last quarter mean percentage error is greater than zero as defined in the Analysis of 

Empirical Forgetting & Plateauing sub-section. The observed learning curves that were more accurately 

modeled by Boone’s Learning Curve are defined as those with percentage error improvements 
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above 0.25% in comparison to Crawford’s Learning Curve. This cutoff is consistent with the groupings 

used in Phase 1 and was created from reviewing the data. Four categories exist within the confusion 

matrix to determine how the predicted counts and more accurately explained counts interact.  

 If an observed learning curve plateaus and is more accurately explained by Boone’s Learning 

Curve, this represents a true positive. If an observed learning curve does not plateau and was not more 

accurately explained by Boone’s Learning Curve, this represents a true negative. High counts in either 

true positive or true negative categories represent Boone’s Learning Curve modeling observed learning 

curves as hypothesized. The matrix also includes counts of observed learning curves that were more 

accurately explained by Boone’s Learning Curve but did not plateau. These counts are instances where 

Boone’s Learning Curve more accurately explained observed learning curves but for an unknown reason. 

A possible reason could be due to the additional parameter of Boone’s Learning Curve. These instances 

represent false positives. Lastly, the confusion matrix includes counts of observed learning curves that 

did plateau but were not more accurately explained by Boone’s Learning Curve. These counts represent 

false negatives. Low counts in either false positive or false negatives categories represent Boone’s 

Learning Curve modeling observed learning curves as hypothesized. An example of the confusion matrix 

format that will be utilized is shown in Table 11. 

 

Table 11: Confusion Matrix Format 

 

 

No Yes

No
True 

Negative
False 

Negative

Yes
False 

Positive
True     

Positive

Observed 
Learning 

Curve 
Plateaus

Boone's Learning Curve 
More Accurately Explains
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 Another analysis technique will be used to investigate further where improvement in the 

learning curve occurs. Boone’s Learning Curve error per lot will be compared to Crawford’s Learning 

Curve error per lot to determine where in the production cycle Boone’s Learning Curve improves upon 

Crawford’s Learning Curve. If Boone’s Learning Curve improves upon Crawford’s Learning Curve in the 

last quarter only, then Boone’s Learning Curve provides inherent value in explaining observed learning 

curves that plateau. However, if Boone’s Learning Curve improves upon Crawford’s Learning Curve 

across the entire production cycle, Boone’s Learning Curve may fit better due to its additional, 

empirically-estimated parameter. 

 These comparisons will be accomplished using a similar methodology to that used in the 

Analysis of Empirical Forgetting & Plateauing sub-section. First, each theory’s percentage errors per lot 

will be separately calculated by subtracting the predicted values from the observed values then dividing 

by the observed values. Next, Crawford’s Learning Curve percentage error per lot will be compared to 

Boone’s Learning Curve percentage error per lot for each observed learning curve. Using these 

percentage errors per lot by theory, a percentage error difference will be calculated by subtracting 

Boone’s percentage error from Crawford’s percentage error and dividing by Crawford’s percentage 

error. These calculations will yield a series of percentage error differences across all lots for each 

observed learning curve. Positive percentage error differences will indicate that Boone’s Learning Curve 

more accurately explains observed learning curves better than Crawford’s Learning Curve. In contrast, 

negative percentage differences will indicate that Crawford’s Learning Curve more accurately explains 

observed learning curves better than Boone’s Learning Curve. 

 Next, each observed learning curve will be divided into quarters. This division will isolate each 

observed learning curve’s last quarter that is hypothesized to plateau. This last quarter is the segment 

that Boone’s Learning Curve is hypothesized to improve upon Crawford’s Learning Curve significantly. 

The process of dividing the learning curves into quarters is consistent with that used in the Analysis of 
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Empirical Forgetting & Plateauing sub-section. After these divisions are completed, the mean 

percentage error differences for all lots within each quarter will be calculated to yield a mean 

percentage error difference per quarter. The second and third quarters’ lots will be combined into a 

single average. 

 Statistical tests will then be used to determine where Boone’s Learning Curve improves upon 

Crawford’s Learning Curve to a statistically significant degree. A t-test of the sample mean will be 

conducted to determine if reductions in error from Boone’s Learning Curve are different than zero to a 

statistically significant degree or due to random chance in the last quarter. The null hypothesis for this 

test is that the mean percentage error difference is equal to or less than zero in the fourth quarter. This 

null hypothesis represents that Boone’s Learning Curve results in an equal amount of or more error in 

predicting observed values in comparison to Crawford’s Learning Curve in the fourth quarter. The 

alternative hypothesis is that the mean percentage error difference is greater than zero. The alternative 

hypothesis represents that Boone’s Learning Curve results in less error in predicting observed values 

than Crawford’s Learning Curve in the last quarter. Each of these hypothesis tests will be conducted for 

the first, middle, and last quarters.  

 The dataset will be limited from the complete dataset and will consist of observed learning 

curves that were more accurately explained by Boone’s Learning Curve to a significant degree on the 

aggregate level. Improvement to a significant degree is defined as Boone’s Learning Curve resulting in a 

percentage error improvement above 0.25% in comparison to Crawford’s Learning Curve as previously 

specified. The exclusion of observations that are not more accurately explained by Boone’s Learning 

Curve is necessary due to the nature of the research question that asks how Boone’s Learning Curve 

improves upon Crawford’s Learning Curve. If Boone’s Learning Curve did not improve upon Crawford’s 

Learning Curve for an observation, it would be inappropriate to include this observations in the analysis. 
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 The results of all three hypothesis tests per quarter will be used to perform a more aggregated 

hypothesis test. The null hypothesis is Boone’s Learning Curve more accurately explains observed 

learning curves in comparison to Crawford’s Learning Curve across all quarters. This null hypothesis 

represents Boone’s Learning Curve more accurately explaining observed learning curves due to its 

additional parameter. The alternative hypothesis is Boone’s Learning Curve more accurately explains 

observed learning curves in comparison to Crawford’s Learning Curve in the fourth quarter only. This 

alternative hypothesis represents Boone’s Learning Curve more accurately explaining the plateau effect 

in observed learning curves. The alternative hypothesis would indicate that Boone’s Learning Curve 

provides inherent value in more accurately explaining the plateauing phenomenon in observed learning 

curves. Other alternative hypotheses are also possible if another section of the learning curve other than 

the last section or two of the three sections of the learning curve show improvement to a statistically 

significant degree; however, theoretical explanations are limited in these instances. 

Regression Analysis of Forgetting & Plateauing 

 In the next part of this research, an OLS regression analysis will be used to determine what 

program characteristics, if any, can be used to determine the degree to which Boone’s Learning Curve 

will more accurately explain the observed learning curve. Also, OLS regression analysis will be used to 

determine what program attributes, if any, affect the degree to which plateauing occurs as modeled by 

the Crawford’s Learning Curve. 

 The percentage difference between Boone’s Learning Curve MAPE and Crawford’s Learning 

Curve MAPE, Boone/Crawford MAPE Percentage Difference, will be the first dependent variable for this 

OLS regression analysis. This dependent variable will address the seventh research question about 

explaining instances when Boone’s Learning Curve will more accurately explain the observed learning 

curve. This dependent variable represents the amount of error that Boone’s Learning Curve more 

accurately explained in comparison to Crawford’s Learning Curve. Higher magnitudes of this measure 
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represent more accurate explanations of the observed learning curve by Boone’s Learning Curve. By 

investigating the independent variables that explain this dependent variable, program characteristics 

will be explored that are related to Boone’s Learning Curve more accurately explaining observed 

learning curves. The values of Boone/Crawford MAPE Percentage Difference comprise the same values 

as those calculated and examined in Phase 1. 

 The mean percentage error between Crawford’s Learning Curve and observed data in the fourth 

quarter of each program, Crawford MPE4Q, will serve as the second dependent variable to investigate 

the eighth research question pertaining to investigating attributes that affect the degree to which 

plateauing occurs. The mean percentage error differences that comprise Crawford MPE4Q is the same 

as that calculated and examined in the Analysis of Empirical Forgetting & Plateauing and Analysis of the 

Performance of Boone’s Learning Curve sub-sections. Greater values of this dependent variable indicate 

a plateauing of the learning curve in comparison to the traditional theory. This dependent variable 

provides a measure of plateauing indifferent to how Boone’s Learning Curve models observed data. 

Several independent variables along with their hypothesized signs will be specified using the Literature 

Review. 

 References in the Literature Review discussed several program characteristics that can lead to or 

are responsible for plateauing of the learning curve as more units are produced. The characteristics that 

have been hypothesized to be positivity related to plateauing of the learning curve include 1) a higher 

proportion of capital to labor in the manufacturing process (Baloff, 1966, 1970; Department of the Air 

Force, 2007, pp. 8-68 – 8-69), 2) units of measure in total dollars rather than hours (Asher, 1956, pp. 97-

98; Department of the Air Force, 2007, p. 8-63; Wright, 1936), 3) a higher level of aggregation of costs 

(Asher, 1956, pp. 97-98; Department of the Air Force, 2007, p. 8-63; Wright, 1936), and 4) the general 

presence of forgetting. The first hypothesized characteristic cannot be operationalized due to a lack of 

data. This lack of data is a commonly recognized problem when investigating this characteristic, as 
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discussed by Jaber (2006) and Dar-El (2000, p. 38). The latter three hypothesized characteristics can be 

operationalized directly or decomposed further. 

 The second hypothesized characteristic can be operationalized directly because the original data 

provided units of measure in either total dollars or labor hours. This variable will be annotated as 

UnitsofMeasure. A small number of programs were analyzed in units of hours that may complicate 

analysis. Additionally, other variables were not included with programs that were analyzed in units of 

hours to include the first and last years of production. This characteristic of the data limits the number 

of independent variables that can be regressed in the model simultaneously. The researchers have 

hypothesized and found evidence that learning curves in the form of total dollars will lead to greater 

plateauing of the learning curve because these learning curves are composed of constituent learning 

curves that likely vary in their rates of learning (Asher, 1956, pp. 97-98; Department of the Air Force, 

2007, p. 8-63; Wright, 1936). 

 The third hypothesized characteristic was operationalized based on how aggregated each 

program component was in relation to other components. Four levels of aggregation were created 

based on a review of the data. The four levels of aggregation and their respective components were:     

1) flyaway cost at the highest level of aggregation, 2) prime mission equipment at a lower level of 

aggregation, 3) major subcomponents such as the airframe, engine, body, and wing at another lower 

level of aggregation, and 4) subcomponents and subsystems such as alighting gear, avionics, and radars 

at the lowest level of aggregation. The list numbers for each level of aggregation correspond to the 

value placed in the LevelofAggregation independent variable for each observation. Converting the levels 

of aggregation from qualitative descriptions to categorical values that represent these descriptions is 

necessary for OLS regression analysis. The levels of aggregation are related to each component’s WBS 

level; however, strict WBS level categorization was avoided due to the inability to match some WBS 

levels across programs along with a lack of data. Sources in the Literature Review hypothesize that as 
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the levels of aggregation increase from the least aggregated levels to the most aggregated levels, 

plateauing of the learning curve will be more prevalent (Asher, 1956, pp. 97-98; Department of the Air 

Force, 2007, p. 8-63; Wright, 1936). This independent variable was annotated as LevelofAggregation. A 

Tukey Test will determine if these groupings are different to a statistically significant degree. A set of 

dichotomous variables will be created using the output of this test to be utilized later in OLS regressions. 

 The fourth hypothesized characteristic, the presence of forgetting, will be decomposed in order 

to be operationalized. The Literature Review provided insight into which program characteristics 

contribute to forgetting (Argote et al., 1990, Badiru, 2012; Jaber, 2006). The most prominent causes of 

forgetting include significant breaks in production and design changes (Anderlohr, 1969; Argote et al., 

1990). The data were reviewed to ensure programs with considerable perturbations to a stable 

production line or end-item did not enter the dataset. Learning curves with breaks in production would 

be inappropriate to estimate using traditional learning curve analysis; however, extensive records did 

not exist for all programs, and programs were not removed from the analysis without cause. Therefore, 

some programs may be included in the analysis that have breaks in production or design changes 

because records were unavailable to identify all these programs, so this aspect of forgetting cannot be 

operationalized with the present data. 

 The Literature Review also cited that as more units are produced or more time passes during 

production, forgetting is more likely to occur that may result in a plateauing of the learning curve 

(Badiru, 2012; Jaber 2006). The original data included variables to operationalize these concepts. The 

independent variable UnitsProduced will represent the number of units produced in a program 

components production cycle. The timespan of production was calculated by subtracting the last year of 

production by the first year of production to create the independent variable TimeSpanned.  

 An independent variable was also created from the original data to measure the compression of 

the production environment. As discussed in the Literature Review, laborers and the organization as a 
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whole must be provided the opportunity to process efficiencies gained from learning before making 

improvements (Badiru, 2012; Corlett & Morcombe, 1970; Jaber, 2006; Yelle, 1980). If units are produced 

too quickly, neither the laborers nor the organization can learn and implement processes to gain 

efficiencies; however, if units are produced too slowly, forgetting along the learning curve may occur. To 

capture this rate of production and its effect on forgetting, an independent variable, 

UnitsProducedperLot, was created by dividing UnitsProduced by the number of lots per program. The 

number of lots per program was used for this measure instead of dividing UnitsProduced by 

TimeSpanned due to the fewer number of observations that include the independent variable 

TimeSpanned. 

 Lastly, the number of units produced per lot and its effect on forgetting is likely related to the 

complexity of the end-item produced. For example, a program that produces 1,000 air vehicles in one 

lot is likely to experience forgetting differently than a program that produced 1,000 hydraulic 

components in one lot. The complete air vehicle is more complex than the hydraulic component and 

several hydraulic components comprise the air vehicle. A previously created variable will be utilized as a 

proxy variable for complexity, LevelofAggregation; therefore, a variable to measure the interaction of 

UnitsProducedperLot and LevelofAggregation will also be created. This interaction variable will be 

annotated as UnitsProducedperLot*LevelofAggregation.  

 All hypothesized independent variables will enter the OLS regression model simultaneously 

except for UnitsofMeasure and TimeSpanned. Some independent variables may not be statistically 

significant in the OLS regression model to a preferred degree; therefore, a methodology will be 

employed to remove independent variables that lack statistical significance. All independent variable 

coefficient estimate p-values must be below a significance level of 0.05. If any coefficient estimate p-

values are above the significance level of 0.05, the independent variable with the greatest p-value will 

be singly removed from the analysis, and the regression will be reperformed until all coefficient estimate 
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p-values are below 0.05. Once all coefficient estimate p-values are below the significance level of 0.05, a 

comparison-wise error rate (𝛼஼) will be calculated to ensure that the experiment-wise error rate (𝛼ா) is 

below the significance level of 0.05. The comparison-wise error rate will be calculated using the 

Bonferroni correction by dividing the experiment-wise error rate of 0.05 by the number of independent 

variables in the OLS regression model (McClave et al., 2014). If coefficient estimate p-values remain 

above this comparison-wise error rate, the independent variable with the greatest p-value will be singly 

removed from the analysis, and the regression will be reperformed until all coefficient estimate p-values 

are below the comparison-wise error rate. 

 The models that will be created with the previously discussed independent variables rooted in 

the Literature Review use a theory-based approach to OLS regression modeling. Another methodology, 

a data-mining approach, will also be employed in order to utilize additional program attributes. These 

attributes may not have been cited as relevant to plateauing and forgetting phenomena in the Literature 

Review; however, they may control for additional variation in either dependent variable. By controlling 

for additional variability, the previously discussed theory-based independent variables may exhibit 

differing levels of significance or coefficient estimates. Therefore, the program attributes such as those 

discussed in Table 9 will be utilized in a separate OLS regression analysis. These additional independent 

variables include the categorical independent variables Commodity, ComponentEstimated, 

DefenseContractor, FirstYearofProduction, PlatformType, and Service.  

 The additional data-mining independent variables in addition to the theory-based independent 

variables will result in a total of 12 possible independent variables for the OLS regression model. In order 

to thoroughly test if these potential independent variables are significant for both dependent variables, 

a mixed stepwise regression analysis will be conducted using JMP Pro Version 13. The mixed stepwise 

regression will test the statistical significance of various combinations of independent variables and 

various groups of levels within each categorical variable for each dependent variable. A significance level 
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of 0.05 will be used initially as a threshold for independent variables to enter or exit the OLS regression 

model. After the stepwise regression calculates the statistically significant independent variables, a 

further test of the comparison-wise error rate will be used to ensure the experiment-wise error rate is 

below 0.05. 

 Most of the additional data-mining independent variables are categorical variables with a 

multitude of levels per variable. For example, DefenseContractor has 26 different levels. In order to 

utilize these categorical variables for OLS regression analysis, the stepwise function will test all 

combinations of levels for each independent categorical variable for their statistical significance to the 

overall OLS regression model. Each partitioned group will be represented using a dichotomous (dummy) 

variable. This dummy variable will be set to one if an observation falls into the partitioned group and 

zero otherwise. This mixed stepwise approach will allow the statistical significance of all possible groups 

of data-mining categorical variables to be tested alongside the theory-based independent variables 

within the OLS regression model. 

 Once these final models are created, statistical tests will be used to determine the validity of the 

regression model results. First, the assumption of normality will be assessed using the Shapiro-Wilk test 

along with a plot of the studentized residuals. These tests will ensure that the statistical inferences 

generated from the OLS regression are valid (Wooldridge, 2016, p. 149). The assumption of constant 

variance of the residuals (homoskedasticity) will also be tested using a Breusch-Pagan test and residual 

by predicted plot (Hilmer & Hilmer, pp. 262-265). These tests will ensure that the OLS regression model 

has minimum variance and estimated standard errors along with all measures of precision are correct 

(Hilmer & Hilmer, p. 258). All statistical tests will be conducted at a 0.05 significance level. 

Multicollinearity will also be assessed using the variance inflation factor (VIF) scores for multiple linear 

regression models (Gujarati & Porter, 2010, pp. 256-258). VIF scores above 10 indicate a strong linear 

relationship between independent variables. This linear relationship leads to multicollinearity that 
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results in coefficient estimate standard errors that are artificially large (Gujarati & Porter, 2010, pp. 256-

258).  Artificially large coefficient estimate standard errors result in coefficient estimates with wider 

confidence intervals, lower test statistics, and greater p-values (Gujarati & Porter, 2010, pp. 256-258). 

Influential data points will be investigated using Cook’s Distance values. Influential data points with 

Cook’s Distance values above 0.5 may skew the results of the OLS regression model. Lastly, studentized 

residuals will be reviewed to investigate if outliers are present that may bias results (Hilmer & Hilmer, p. 

238). An outlier will be defined as any value falling three interquartile ranges below the 10% quantile 

and above the 90% quantile. Observations with suspect Cook’s Distance values and studentized residual 

outliers will be investigated. These overall model tests will be conducted using JMP Pro Version 13 and 

RStudio. 

 In summary, several OLS regressions will be used to determine what program attributes, if any, 

are associated with better modeling from the use of Boone’s Learning Curve as well as determine the 

degree to which plateauing is present in comparison to Crawford’s Learning Curve. To investigate the 

seventh research question, Boone/Crawford MAPE Percentage Difference will be used as the dependent 

variable while the theory-based independent variables UnitsofMeasure, LevelofAggregation, 

UnitsProduced, TimeSpanned, UnitsProducedperLot, and UnitsProducedperLot*LevelofAggregation will 

be used. Another dependent variable, Crawford MPE4Q, will also be utilized to investigate the eighth 

research question. Next, additional data-mining independent variables will be tested in addition to these 

theory-based independent variables for each dependent variable. The additional data-mining 

independent variables Commodity, ComponentEstimated, DefenseContractor, FirstYearofProduction, 

PlatformType, and Service will be utilized with the theory-based independent variables using mixed 

stepwise OLS regression analysis. 
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Analysis & Results 

Analysis of Empirical Forgetting & Plateauing 

 The t-tests of the sample mean for the mean percentage error differences in the first, middle, 

and last quarters of the program are shown in Table 12. The JMP Pro Version 13 output for these 

hypothesis tests are included in Appendix D. The tested dataset included all program components with 

four lots or more and initially excluded program components estimated at the flyaway cost WBS level. 

For these tests, if the mean percentage error differences in the first, middle, or last quarters of the 

program are greater than zero, Crawford’s Learning Curve underestimates the observed learning curve. 

In contrast, if the mean percentage error differences in the first, middle, or last quarters of the program 

are less than zero, Crawford’s Learning Curve overestimates the observed data. If Crawford’s Learning 

Curve underestimates the observed learning curve in the last quarter, this indicates that observed 

learning curves systematically plateau towards the end of production in comparison to Crawford’s 

Learning Curve. This systematic plateauing would provide support for the use of Boone’s Learning Curve. 

 

Table 12: Combined T-Tests of Sample Mean for Mean Percentage Error 

 
 

 Each of the t-tests of the sample mean fails to reject the null hypothesis that Crawford’s 

Learning Curve systematically underestimates data in all quarters. These rejections of the null 

hypothesis are indicated by p-values that are greater than a significance level of 0.05. Each of these 

hypothesis tests indicates the opposite of the alternative hypothesis: Crawford’s Learning Curve 

Learning Curve 
Section

Sample 
Mean (   )

Standard 
Deviation (s )

Number of 
Observations

Test Statistic P-Value Result
Crawford's Learning Curve 

Systematically Underestimates
First Quarter -3.4% 25.7% 185 -1.808 0.964 Fail to Reject H0 No

Middle Quarters -13.0% 102.7% 185 -1.727 0.957 Fail to Reject H0 No

Last Quarter -26.1% 193.4% 185 -1.837 0.966 Fail to Reject H0 No

Hypothesis Test: H0: µ ≤ 0        HA: µ > 0

𝑥̅
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systematically overestimates observed data in all quarters. This conclusion is indicated by the 

complement of the p-values (1 –  p-value) that are all less than a significance level of 0.05.  

 Several outliers were present in each of the t-tests of the sample mean. Although these outliers 

were valid for inclusion in the analysis, they were removed to determine their effects, if any, on the 

results. An observation was identified as an outlier if the observation’s value fell more than three 

interquartile ranges from the upper 90% and lower 10% quantiles. When the six outliers were removed, 

the results of the t-tests of the sample mean did not change: Crawford’s Learning Curve systematically 

overestimates data in all quarters to a statistically significant degree. 

 To further test the sensitivity of the results, program components estimated at the flyaway cost 

WBS level were added to the original dataset, and the t-tests of the sample mean were reevaluated. The 

results for each test remained unchanged. This expanded dataset also included outliers identified using 

the same outlier identification methodology. When the nine outliers were excluded, the t-test of the 

sample mean results in the first and middle quarters remained unchanged. However, the t-test of the 

sample mean in the fourth quarter became not statistically significant from zero with a test statistic of 

−1.2926 and a p-value of 0.0987. This latter test indicates that Crawford’s Learning Curve mean 

percentage error is not different from zero to a statistically significant degree. In other words, 

Crawford’s Learning Curve does not systematically overestimate or underestimate data in the fourth 

quarter of a program component’s production when a higher aggregated program component is 

included. These nine additional t-tests of the sample mean are also included in Appendix D. 

 The addition of program components estimated at the flyaway cost WBS level did not 

significantly alter the results of various t-tests of the sample mean except in one instance. This result 

indicates that the influence of program components estimated at higher levels of aggregation may not 

have as pronounced of an effect on plateauing of the learning curve than initially hypothesized. 

Although these results indicate that Crawford’s Learning Curve overestimates data in all quarters on 
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average, the variability for each measure remains high with coefficients of variation above 100%. Much 

like Boone’s Learning Curve, these high amounts of variability make it challenging to conclude the 

degree to which Crawford’s Learning Curve will overestimate or underestimate program component 

costs. These results highlight the importance of investigating if program characteristics exist to 

determine if a program component’s learning curve is likely to plateau. However, these tests indicate 

that Crawford’s Learning Curve does not systematically underestimate data in the last quarter to a 

statistically significant degree. 

 Next, these mean percentage error of Crawford’s Learning Curve in the fourth quarter were 

analyzed using dichotomous values. The combined sample proportion hypothesis tests for the first, 

middle, and last quarters of the program are shown in Table 13. The JMP Pro Version 13 output for 

these hypothesis tests are included in Appendix E. The tested dataset included all program components 

with four lots or more and initially excluded program components estimated at the flyaway cost WBS 

level. For these tests, if the mean percentage error differences in the first, middle, or last quarters of the 

program are greater than zero, Crawford’s Learning Curve underestimates the observed data. In these 

instances, the observation was coded with a one. If the mean percentage error differences in the first, 

middle, or last quarters of the program were less than zero, Crawford’s Learning Curve overestimated 

the observed data. In these instances, the observation was code with a zero. Each of these hypothesis 

tests for the different sections of the learning curve compares the sample proportion of “success” or 

observations coded with a one to that of the null hypothesis of 0.5. 
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Table 13: Combined Sample Proportion Hypothesis Tests 

 
 

 The sample proportion hypothesis tests failed to reject the null hypothesis that the proportion 

of programs that Crawford’s Learning Curve underestimates is greater than 0.5 in any quarter. These 

rejections of the null hypothesis are indicated by p-values that are greater than a significance level of 

0.05. These results confirm the results for the t-tests of the sample mean for the mean percentage error 

differences. For the middle quarters' sample proportion hypothesis test, the test indicates the opposite 

of the alternative hypothesis. This test indicates that the proportion of programs that Crawford’s 

Learning Curve overestimates is different from random chance to a statistically significant degree when 

isolated to the middle quarters. This conclusion is indicated by the p-value’s complement (1 - 0.9994 = 

0.0003) that is less than a significance level of 0.05. To further test the sensitivity of the results, program 

components estimated at the flyaway cost WBS level were added to the original dataset and sample 

proportion hypothesis tests were reevaluated. The results for each test remained unchanged, and all 

three additional sample proportion hypothesis tests are also included in Appendix E. Despite these 

results, Crawford’s Learning Curve underestimates observed learning curves in approximately half of all 

observed learning curves tested. This proportion emphasizes the opportunity for Boone’s Learning 

Curve to improve upon Crawford’s Learning Curve. 

 Lastly, the sample proportion of observed learning curves that experience high rates of learning 

in the first quarter that eventually diminish to low rates of learning in the last quarter are shown in 

Figure 17. These phenomena are indicated when Crawford’s Learning Curve underestimates the 

observed learning curve in the first and last quarter. At first glance, the proportion of observed learning 

Learning Curve 
Section

Sample 
proportion (   )

Standard 
Deviation (      )

Number of 
Observations

Test Statistic P-Value Result
Crawford's Learning Curve 

Systematically Underestimates
First Quarter 0.503 0.037 185 0.073 0.471 Fail to Reject H0 No

Middle Quarters 0.378 0.037 185 -3.308 0.999 Fail to Reject H0 No

Last Quarter 0.476 0.037 185 -0.662 0.745 Fail to Reject H0 No

Hypothesis Test: H0: p  ≤ 0.5        HA: p  > 0.5

𝑝̂ 𝜎௣బ
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curves that experience high rates of learning and the proportion of observed learning curves that 

diminish to low rates of learning can be treated as two independent events. The proportion of both 

these independent events coinciding can be calculated using the multiplicative law of probability; 

therefore, the multiplicative law of probability would calculate a null proportion of 0.25 because each 

independent event has a probability of 0.5 (McClave et al., pp. 158-160). 

However, this calculation assumes that the two events are independent. OLS regression and 

GRG Nonlinear Solver were used to calculate Crawford’s Learning Curve along with its errors or 

residuals. In OLS regression, the sum of residuals is equal to zero (Hilmer & Hilmer, p. 80). This 

calculation causes the two events to be dependent rather than independent. Because independent 

events are an assumption of the multiplicative law of probability, this law cannot be used to determine a 

null hypothesis and perform a formal hypothesis test (McClave et al., pp. 158-160). Therefore, we are 

unable to calculate the expected proportion of programs that are underestimated in the first and last 

quarter due features of the tool, OLS regression, used to model learning curves. However, benefit exists 

in understanding how the dependence of these two events results in proportions that are different than 

what could be expected from independent events. In other words, an instance of a high rate of learning 

in the first quarter may positively or negatively affect the probability of a diminishing rate of learning in 

the last quarter. If an instance of a high rate of learning in the first quarter increases the probability of a 

diminishing rate of learning in the last quarter, Crawford’s Learning Curve would systematically 

underestimate the observed learning curve in both quarters. This systematic underestimation would 

provide support for Boone’s Learning Curve. 
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Figure 17: Proportion of Programs with High Rates of Learning then Diminishing Rates of Learning 

 

 The sample proportion hypothesis test indicated that approximately 35% of programs 

experience instances of high rates of learning in the first quarter that eventually diminishes to low rates 

of learning in the last quarter. The dependence of these two events coinciding is positive because this 

proportion is greater than a proportion of 0.25 that would apply to independent events. This sample 

proportion is also greater than 0.25 to a statistically significant degree because the p-value of the 

hypothesis test is less than a significance level of 0.05. These results indicate that Crawford’s Learning 

Curve systematically underestimates the observed learning curve in the first and last quarters more than 

can be expected from independent events. Although this systematic underestimation in both quarters 

may solely be due to the tool used to model learning curves, this inference along with the relatively high 

proportion of observed learning curves that are underestimated in both quarters highlights 

opportunities for Boone’s Learning Curve to improve upon Crawford’s Learning Curve. 

Analysis of the Performance of Boone’s Learning Curve 

 The confusion matrix shown in Table 14 investigates if Boone’s Learning Curve improves upon 

Crawford’s by more accurately modeling the plateauing phenomenon of observed learning curves. The 

confusion matrix can investigate if instances of plateauing are associated with instances of improvement 

in Boone’s Learning Curve using counts of when an observed learning curve plateaus and counts of 

when Boone’s Learning Curve significantly improves the observed learning curve. Table 14 excludes 

program components estimated at the flyaway cost WBS level. An additional confusion matrix including 
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program components estimated at the flyaway cost WBS level is displayed in Appendix F although the 

results are similar. 

 

Table 14: Confusion Matrix of Counts & Percentages excluding Flyaway Components 

 
 

 This table indicates that Boone’s Learning Curve more accurately explains observed learning 

curves when the observed learning curve plateaus for 31% observed learning curves. Additionally, 

Boone’s Learning Curve does not more accurately explain observed learning curves when the observed 

learning curve does not plateau for 46% observed learning curves. Therefore, Boone’s Learning Curve 

more accurately modeled observed learning curves based on if those observed learning curves 

plateaued for 77% of observations. 

 In contrast, Boone’s Learning Curve fails to more accurately explain observed learning curves 

when the observed learning curve plateaus for 15% observed learning curves. These instances may 

represent Crawford’s Learning Curve explaining the observed learning curves to a significant degree of 

accuracy, and Boone’s Learning Curve not improving upon Crawford’s Learning Curve to a significant 

enough degree. Lastly, Boone’s Learning Curve more accurately explained observed learning curves 

when the observed learning curve did not plateau for 8% observed learning curves. These instances 

represent when Boone’s Learning Curve more accurately explained the observed learning curve for an 

unknown reason. Most likely, Boone’s Learning Curve more accurately explained the observed learning 

No Yes

No
77

46%
14
8%

Yes
25

15%
53

31%

Boone's Learning Curve 
More Accurately Explains

Observed 
Learning 

Curve 
Plateaus
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curve due to its additional empirically-estimated parameter. Therefore, Boone’s Learning Curve did not 

perform as hypothesized for 23% of observed learning curves. 

 These results indicate that Boone’s Learning Curve improves upon observed learning curves 

based in part on if the observed learning curve plateaus as predicted. However, approximately a quarter 

of the observations indicate Boone’s Learning Curve did not perform as predicted by failing to improve 

upon the observed learning curves that plateau or more accurately explaining observed learning curves 

when the observed learning curve does not plateau. These results provide mixed conclusions as to if 

Boone’s Learning Curve improves upon Crawford’s Learning Curve by more accurately modeling the 

plateauing phenomenon of observed learning curves. To further investigate, a series of hypothesis tests 

will be conducted to determine where in the learning curve Boone’s Learning Curve improves upon 

Crawford’s Learning Curve. 

 The following hypothesis tests indicate wherein the program Boone’s Learning Curve 

significantly improves upon Crawford’s Learning Curve. The hypothesis tests of the mean percentage 

error differences between Boone’s and Crawford’s Learning Curves for the first, middle, and last 

quarters of the program are shown in Table 15. The JMP Pro Version 13 output for these hypothesis 

tests are included in Appendix G. For these tests, if the mean percentage error difference is greater than 

zero, Boone’s Learning Curve more accurately explains the observed learning curve in comparison to 

Crawford’s Learning Curve. If the mean percentage error difference is less than zero, Boone’s Learning 

Curve fails to more accurately explain the observed learning curve in comparison to Crawford’s Learning 

Curve.  
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Table 15: Combined Percentage Error Difference Hypothesis Tests between Boone’s & Crawford’s 
Learning Curves Given Boone’s Learning Curve Significantly Improved 

 
 

 Each of the t-tests of the sample mean fails to reject the null hypothesis that Boone’s Learning 

Curve improves upon Crawford’s Learning Curve in any quarter. This is in stark contrast to the results 

included in Phase 1. These rejections of the null hypothesis are indicated by p-values that are greater 

than a significance level of 0.05. The hypothesis tests for the middle quarters and last quarter indicate 

the opposite of the alternative hypothesis: Boone’s Learning Curve performs systematically worse than 

Crawford’s Learning Curve in the middle and last quarters to a statistically significant degree. This 

conclusion is indicated by the complement of the p-values (1 –  p-value) for these quarters that are less 

than a significance level of 0.05.  

 However, these contrasting results may be caused by the presence of outliers in the hypothesis 

tests. Outliers were removed to determine their effects on the results. As previously defined, an 

observation was identified as an outlier if the observation’s value fell more than three interquartile 

ranges from the upper 90% and lower 10% quantiles. When the 11 outliers were removed, the results of 

the t-tests of the sample mean changed significantly for the three tests. These hypothesis tests of the 

mean percentage error differences between Boone’s and Crawford’s Learning Curves for the first, 

middle, and last quarters of the program excluding outliers are shown in Table 16. The JMP Pro Version 

13 output for these hypothesis tests is also included in Appendix G. 

 

Learning Curve 
Section

Sample 
Mean (   )

Standard 
Deviation (s )

Number of 
Observations

Test Statistic P-Value Result
Boone's Learning Curve 
Systematically Improves

First Quarter -20.4% 367.4% 169 -0.721 0.764 Fail to Reject H0 No

Middle Quarters -22.5% 125.9% 169 -2.320 0.989 Fail to Reject H0 No

Last Quarter -40.1% 295.5% 169 -1.762 0.960 Fail to Reject H0 No

Hypothesis Test: H0: µ ≤ 0        HA: µ > 0

𝑥̅
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Table 16: Combined Percentage Error Difference Hypothesis Tests between Boone’s & Crawford’s 
Learning Curves Given Boone’s Learning Curve Significantly Improved, Excluding Outliers 

 

 

 The t-test of the sample mean in the first quarter rejects the null hypothesis that Boone’s 

Learning Curve does not improve upon Crawford’s Learning Curve. This result indicates that Boone’s 

Learning Curve systematically improves upon Crawford’s Learning Curve in the first quarter to a 

statistically significant degree. This rejection of the null hypothesis is indicated by p-values that are less 

than a significance level of 0.05. In contrast, the t-tests of the sample mean fails to reject the null 

hypothesis that Boone’s Learning Curve improves upon Crawford’s Learning Curve in the middle 

quarters and last quarter. These failures to reject the null hypothesis are indicated by p-values that are 

greater than a significance level of 0.05. The middle quarters' p-value results in rejecting the opposite of 

the alternative hypothesis because the complement of this p-value (1 − 0.9899 = 0.0101) is less than 

a significance level of 0.05. This result indicates that Boone’s Learning Curve is systematically worse at 

explaining observed data in comparison to Crawford’s Learning Curve in the middle quarters to a 

statistically significant degree. 

 Using these results, an aggregated hypothesis test will be conducted. For this aggregated 

hypothesis test the null hypothesis is that Boone’s Learning Curve more accurately explains observed 

learning curves in comparison to Crawford’s Learning Curve across all quarters due to its additional 

empirically-estimated parameter. The main alternative hypothesis is Boone’s Learning Curve more 

accurately explains observed learning curves in comparison to Crawford’s Learning Curve in the fourth 

quarter only. These latter hypothesis test results indicate that Boone’s Learning Curve does not improve 

upon Crawford’s Learning Curve to a statistically significant degree in all quarters; therefore, this null 

Learning Curve 
Section

Sample 
Mean (   )

Standard 
Deviation (s )

Number of 
Observations

Test Statistic P-Value Result
Boone's Learning Curve 
Systematically Improves

First Quarter 13.4% 49.3% 158 3.425 <0.001 Reject H0 Yes

Middle Quarters -10.1% 54.1% 158 -2.347 0.990 Fail to Reject H0 No

Last Quarter 3.6% 58.2% 158 0.778 0.219 Fail to Reject H0 No

Hypothesis Test: H0: µ ≤ 0        HA: µ > 0

𝑥̅
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hypothesis is rejected. However, the main alternative hypothesis is also rejected because Boone’s 

Learning Curve does not improve upon Crawford’s Learning Curve in the last quarter to a statistically 

significant degree. Surprisingly, Boone’s Learning Curve more accurately explains observed learning 

curves in comparison to Crawford’s Learning Curve only in the first quarter to a statistically significant 

degree.  

 These results suggest that Boone’s Learning Curve improves upon Crawford’s Learning Curve 

more than it simply having an additional empirically-estimated parameter. However, Boone’s Learning 

Curve was not shown to model the plateau effect in the last quarter to a statistically significant degree in 

contrast to the main alternative hypothesis. Therefore, an alternative hypothesis to explain these results 

is Boone’s Learning Curve may more accurately explain the first quarter of a learning curve to a 

statistically significant degree due to its ability to model observed data with high rates of learning at the 

beginning of the learning curve. Further, a competing alternative hypothesis is that observed learning 

curves were improved in different sections of the learning curves while performing worse in others in 

comparison to Crawford’s Learning Curve. These error improvement tradeoffs resulted in significant 

improvement in the use of Boone’s Learning Curve on the aggregate; however, these improvements in 

different sections of the learning curve would have caused large variations of error improvement in each 

section. These large variations of error improvement within each section could significantly obscure the 

statistical results due to the high standard deviations and coefficients of variation included in each 

hypothesis test. Further, these high standard deviations and coefficients of variation are present despite 

limiting the dataset that further strengthens this alternative hypothesis. 

Regression Analysis of Forgetting & Plateauing 

 Before performing OLS regression analysis, additional independent variables were created. First, 

the categorical independent variable LevelofAggregation was converted to a series of dummy variables. 

For example, a dummy variable was created to represent when LevelofAggregation was equal to the 
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highest level: flyaway costs. When LevelofAggregation is equal to the flyaway cost level of aggregation, 

this dummy variable was coded one and zero otherwise. This dummy variable was named 

LevelofAggregation = 1. This process was repeated for the second and third levels of aggregation. The 

fourth level of aggregation was not converted to a dummy variable to serve as the omitted or base 

group. Next, another dummy variable was created to convert the categorical variable UnitsofMeasure to 

dichotomous values. For example, if UnitsofMeasure is equal to Total Dollars, this dummy variable, 

UnitsofMeasure = Dollars, was coded one and zero otherwise. The independent variable 

UnitsProducedperLot*LevelofAggregation was also created by multiplying the individual independent 

variables to create an interaction term. 

 Next, a statistical test was used to determine if the means of the levels of aggregation within the 

categorical independent variable LevelofAggregation are different from one another to a statistically 

significant degree. Tukey’s HSD Test was used to conduct this analysis. The results of this test foretold if 

the LevelofAggregation dummy variables will be statistically significant in the OLS regression model. 

Additionally, Tukey’s HSD Test was used to indicate if two or more levels of aggregation should be 

grouped within one dummy variable. The main dependent variable, Boone/Crawford MAPE Percentage 

Difference, served as the response variable for this test.  

 The results of Tukey’s HSD Test are shown in Table 17. The mean of level one was different from 

the mean of level four to a statistically significant degree. This result is indicated by the lack of a letter 

connecting the two levels of aggregation and the non-overlapping 95% confidence intervals. However, 

the means of all other levels were not different from one another to a statistically significant degree. 

These conclusions indicate that the OLS regression results may not be statistically significant for some of 

these dummy variables. Despite these results, the means of the highest level of aggregation and the 

lowest level of aggregation decrease and are different to a statistically significant degree. These results 

also indicate that Boone’s Learning Curve more accurately models highly aggregated learning curves in 
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comparison to Crawford’s Learning Curve as hypothesized. Each of the previously created 

LevelofAggregation dummy variables still entered the OLS regression model simultaneously with other 

independent variables as previously planned. This methodology allowed for other independent variables 

to control for effects within the LevelofAggregation dummy variables that may result in at least one of 

the dummy variables being statistically significant. 

  

Table 17: Tukey’s HSD Test of LevelofAggregation 

 

 

 The results of the first set of OLS regressions are shown in Table 18. Regressions one and two 

used Boone/Crawford MAPE Percentage Difference as the dependent variable while using the 

LevelofAggregation dummy variables, UnitsProduced, TimeSpanned, UnitsProducedperLot, and 

UnitsProducedperLot*LevelofAggregation as independent variables. UnitsofMeasure = Dollars and 

TimeSpanned cannot enter into the OLS regression together due to data limitations; therefore, 

TimeSpanned was used as an independent variable in regressions one and two instead of 

UnitsofMeasure = Dollars. Regressions three through six used Boone/Crawford MAPE Percentage 

Difference as the dependent variable while using the LevelofAggregation dummy variables, 

UnitsofMeasure=Dollars, UnitsProduced, UnitsProducedperLot, and 

UnitsProducedperLot*LevelofAggregation as independent variables. Therefore, TimeSpanned was 

excluded from regressions three through six while UnitsofMeasure=Dollars was included. 
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Table 18: Boone/Crawford MAPE Percentage Difference Regression Results 

 

 

 Each row below the header shows various OLS regression statistics by each independent 

variable. Each column represents a different OLS regression run with some independent variables 

entering or leaving among the different regression runs. Within each cell, the coefficient estimate is 

listed on top, the standard error in the middle in parentheses, and the p-value at the bottom. If a cell is 

left blank, that independent variable was not included in that OLS regression number. Only regression 

runs with statistically significant independent variables were reported with some exceptions. The 

adjusted coefficient of determination (Adjusted R2) is shown as a goodness-of-fit statistic to compare 

models with different numbers of independent variables (Hilmer & Hilmer, pp. 161-162). The Adjusted 

R2 penalizes the standard R2 according to the number of independent variables within the OLS regression 

model (Hilmer & Hilmer, pp. 161-162). Lastly, the number of observations is shown that differs when 

1 2 3 4 2 3
0.152 0.155 -0.041 0.026 0.026 -0.046

(0.036) (0.036) (0.053) (0.044) (0.045) (0.051)
<0.001 <0.001 0.432 0.560 0.562 0.366

0.133 0.104 0.123 0.138
(0.050) (0.049) (0.047) (0.047)
0.008 0.033 0.010 0.004

0.112 0.098 0.059
(0.039) (0.039) (0.035)
0.005 0.012 0.096
0.105 0.086

(0.040) (0.037)
0.009 0.021

0.108 0.091
(0.033) (0.032)
0.001 0.005

-0.011 -0.011
(0.004) (0.004)
0.005 0.005

Adjusted R2 0.067 0.071 0.049 0.031 0.024 0.053
Number of observations 203 203 234 234 234 234

Regression Number

LevelofAggregation = 2

LevelofAggregation = 1 or 2

TimeSpanned

Dependent Variable: Boone/Crawford 
MAPE Percentage Difference 

Intercept

UnitsofMeasure = Dollars

LevelofAggregation = 1
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TimeSpanned is included in the model. This same format will be used for the remainder of the OLS 

regression analysis. 

 The OLS regression results in Table 18 demonstrate that few hypothesized independent 

variables were statistically significant in the OLS regression model. Concentrating on regression number 

one, the two dummy variables for LevelofAggregation that represent the highest and second-highest 

levels of aggregation were statistically significant. TimeSpanned is also statistically significant. These 

variables are statistically significant because their p-values are less than the comparison-wise error rate 

of 0.016. The coefficient estimates on the two dummy variables for LevelofAggregation indicate that 

Boone’s Learning Curve is associated with a decrease of 26.4% and a 25.7% MAPE when modeling 

learning curves at the highest and second-highest levels of aggregation, respectively, in comparison to 

Crawford’s Learning Curve. These values account for the intercept and are valid while holding all else 

constant. The sign and magnitude of these error reductions are as hypothesized. The coefficient 

estimates on TimeSpanned indicate that with each additional year, Boone’s Learning Curve is associated 

with an increase of 1.1% in terms of MAPE in comparison to Crawford’s Learning Curve holding all else 

constant. This result is in contrast to the hypothesized sign that proposed a longer timespan would lead 

to more instances of forgetting and hence more plateauing of the observed learning curve. This 

plateauing was hypothesized to lead to Boone’s Learning Curve more accurately explaining observed 

learning curves; however, these results do not support this hypothesis. 

 Despite these significant independent variables, the Adjusted R2 for regression number one 

remains relatively low at 0.067. This adjusted R2 can be interpreted as 6.7% of the variation in 

Boone/Crawford MAPE Percentage Difference is explained by the independent variables while penalizing 

for the number of independent variables in the OLS regression. This relatively low adjusted R2 signifies 

that a large amount of variability remains to be explained in the data. This high amount of variability 

illustrates that there remains limited insight into the instances where Boone’s Learning Curve more 
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accurately models observed learning curves. This high amount of variability of the response variable is 

consistent with other statistical tests performed prior to OLS regression analysis. 

 Using the results of Table 18 regression number one, an additional independent variable was 

created to investigate the effects of combining the two significant dummy variables for 

LevelofAggregation. This dummy variable, LevelofAggregation = 1 or 2, is coded one if 

LevelofAggregation was equal to the highest or second-highest level of aggregation and zero otherwise. 

This new dummy variable supplanted the two previously significant dummy variables for 

LevelofAggregation in regression number two. This new dummy variable was statistically significant in 

the OLS regression model. The OLS regression results remained similar although the Adjusted R2 

increased slightly. This increased Adjusted R2 is likely due to the decrease of an independent variable in 

the OLS regression model. 

 Several statistical tests were conducted to validate the OLS regression results and statistical 

inferences in Table 18 regressions one and two. First, regression number one will be reviewed. 

Regression number one had a Shapiro-Wilk test statistic of 0.829 and a p-value of <0.001. Because the p-

value is below the significance level of 0.05, this OLS regression model failed the Shapiro Wilk test of 

normality. A plot of the studentized residuals confirmed this conclusion. Despite these results, 

asymptotic properties of large samples can render statistical inferences to be valid despite the 

distribution of the residuals (Wooldridge, 2016, p. 149-150). The asymptotic properties of large samples 

are valid contingent on the constant variance of the residuals and theoretical assumptions (Wooldridge, 

2016, p. 152). The Breusch-Pagan test of constant variance of the residuals resulted in a test statistic of 

7.264 and a p-value of 0.064. Because this p-value is above the significance level of 0.05, the Breusch-

Pagan indicated constant variance of the residuals. A plot of the residuals by predicted values confirmed 

this conclusion. This statistical test validates the use of asymptotic properties of large samples. 

Multicollinearity was not present as indicated by VIF scores for all independent variables that were less 
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than 1.3. Cook’s Distance values indicated that no observations had a disproportionate effect on the 

results of the model because all values were less than 0.1. Lastly, outliers were not present in the 

studentized residuals. These various tests in conjunction with the theoretical underpinnings of these 

models indicated that the OLS regression results for regressions one and two along with their statistics 

inferences were valid. 

 In Table 18, regression two has near-identical conclusions for the OLS regression one model 

tests except for the Breusch-Pagan test. The Breusch-Pagan test of constant variance of the residuals 

resulted in a test statistic of 7.007 and a p-value of 0.03. Because this p-value is below the significance 

level of 0.05, the Breusch-Pagan indicated non-constant variance (heteroskedasticity) of the residuals. A 

plot of the residuals by predicted values confirmed this conclusion. Failure of this statistical test 

invalidated the use of asymptotic properties of large samples. Therefore, these tests indicated that the 

statistical inferences generated from regression two may have been invalid, and the model may not 

have minimum variance among all unbiased estimators. 

 The results of the second set of OLS regressions are shown in Table 18 regressions three through 

six. This set of OLS regressions used Boone/Crawford MAPE Percentage Difference as the dependent 

variable while using LevelofAggregation dummy variables, UnitsofMeasure=Dollars, UnitsProduced, 

UnitsProducedperLot, and UnitsProducedperLot*LevelofAggregation as independent variables. 

TimeSpanned was excluded in order to include UnitsofMeasure = Dollars. Concentrating on regression 

number three, the p-value for LevelofAggregation = 2 was greater than the comparison-wise error rate 

of 0.016; therefore, this dummy variable was removed from the OLS regression model. Following in 

regression number four, the previously statistically significant dummy variable LevelofAggregation = 1 

became not statistically significant and was removed from the OLS regression model. In regression 

number five, UnitsofMeasure = Dollars was the sole statistically significant independent variable from 

the original pool of independent variables. The coefficient estimate on this independent variable 
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suggests that Boone’s Learning Curve is associated with a 14.9% decrease in MAPE when modeling 

observed learning curves with units of measure in total dollars rather than labor hours in comparison to 

Crawford’s Learning Curve. This value accounts for the intercept and is valid while holding all else 

constant. The coefficient estimate on the intercept indicates that Boone’s Learning Curve is associated 

with a 2.6% decrease in MAPE in comparison to Crawford’s Learning Curve for observed learning curves 

with units of measure in hours holding all else constant. The relatively low adjusted R2 signifies that 

merely 2.4% of the variation in Boone/Crawford MAPE Percentage Difference is explained by 

UnitsofMeasure = Dollars. 

 In Table 18, the additional dummy variable, LevelofAggregation = 1 or 2, was entered into the 

model in regression number six. This dummy variable was statistically significant to a comparison-wise 

error rate of 0.025 with UnitsofMeasure = Dollars. The coefficient estimate and statistical significance of 

UnitsofMeasure = Dollars remained relatively stable with the introduction of this dummy variable. The 

coefficient estimate on LevelofAggregation = 1 or 2 indicates a 4.5% decrease in MAPE on average when 

modeling observed learning curves with the two highest levels of aggregation with units of measure in 

hours in comparison to Crawford’s Learning Curve. This value accounts for the intercept and is valid 

while holding all else constant. In another interpretation, the coefficient estimate on LevelofAggregation 

= 1 or 2 indicates an 18.3% decrease in MAPE on average when modeling observed learning curves with 

the two highest levels of aggregation in comparison to Crawford’s Learning Curve for learning curves 

with units of measure in total dollars, accounting for the intercept and holding all else constant. These 

findings are relatively consistent with the hypothesized sign and are similar to the results in regressions 

one and two. The coefficient estimate on the intercept indicates that Boone’s Learning Curve is 

associated with a 4.6% increase in MAPE in comparison to Crawford’s Learning Curve for observed 

learning curves with units of measure in hours and in the lowest two levels of aggregation, holding all 



113 
 

else constant. This finding is also consistent with hypothesized signs. Lastly, In regression number six, 

the adjusted R2 doubled to 5.3% although this amount of explained variability remains relatively low. 

 Statistical tests were conducted to validate the OLS regression results and statistical inferences 

in Table 18 regressions five and six. First, regression number five will be reviewed. Regression number 

five had a Shapiro-Wilk test statistic of 0.764 and a p-value of <0.001. Because the p-value is below the 

significance level of 0.05, this OLS regression model failed the Shapiro Wilk test of normality. The 

Breusch-Pagan test of constant variance of the residuals resulted in a test statistic of 0.875 and a p-value 

of 0.350. Because this p-value is greater than the significance level of 0.05, the Breusch-Pagan indicated 

constant variance of the residuals. A plot of the residuals by predicted values is inconclusive of this 

finding. This statistical test validated the use of asymptotic properties of large samples. Multicollinearity 

could not be present with a single independent variable. Cook’s Distance values indicated that no 

observations had undue effects on the results of the model because all values fell below 0.2. Lastly, no 

outliers were present in the studentized residuals. Table 18 regression six has identical conclusions for 

these tests, and multicollinearity was not present because all VIF scores below 1.5. These various tests in 

conjunction with the theoretical underpinnings of these models indicated that the OLS regression results 

for regressions one and two along with their statistics inferences were valid. 

 Next, these prior theory-based independent variables were combined with the data-mining 

independent variables, and a stepwise regression was used with Boone/Crawford MAPE Percentage 

Difference as the dependent variable. The independent variables for this stepwise regression are 

UnitsofMeasure, LevelofAggregation, UnitsProduced, TimeSpanned, UnitsProducedperLot, 

UnitsProducedperLot*LevelofAggregation, Commodity, ComponentEstimated, DefenseContractor, 
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FirstYearofProduction, PlatformType, and Service. The results for this stepwise regression are displayed 

in Table 19. 

 

Table 19: Boone/Crawford MAPE Percentage Difference Stepwise Regression Results 

 

 

 The results of the stepwise regression in Table 19 indicate that the theory-based hypothesized 

variable TimeSpanned is statistically significant when controlled for using the data-mining hypothesized 

variables. The stepwise regression found that three groups of contractors were statistically significant 

along with two groups of platform types. Each of the five statistically significant groups are represented 

using a dummy variable that is coded one if the observed learning curve has an attribute in the 

partitioned level shown in Table 19 column two and zero otherwise. The three Contractor Groups share 

some contractors; therefore, an omitted group is still present in the OLS regression.  Each of the 

coefficient estimates can be interpreted similarly to prior regressions. Unfortunately, using the data-

mining hypothesized variables did not reveal any additional statistically significant theory-based 

1.034
N/A (0.121)

<0.001
-0.011

N/A (0.003)
0.003
-0.146

6 defense contractors (0.031)
<0.001
-0.457

15 defense contractors (0.102)
<0.001
-0.355

5 defense contractors (0.099)
<0.001
-0.323
(0.079)
<0.001
-0.296
(0.088)
0.001
0.390
205Number of observations

Regression 
Statistics

Partioned Levels

C2ISR, CSAR, Electronic Warfare, Engine, 
Fighter, Missile, Multi-mission Maritime , 

Tanker, Transport, Trainer, UAV

Attack, Anti-submarine, Bomber

Adjusted R2

PlatformType Group 2

Dependent Variable: 
Boone/Crawford MAPE Percentage 

Intercept

TimeSpanned

Contractor Group 1

Contractor Group 2

Contractor Group 3

PlatformType Group 1



115 
 

independent variables. However, more variability was explained from the introduction of data-mining 

independent variables: the adjusted R2 did increase significantly to 39%. Lastly, the coefficient estimate 

on TimeSpanned is similar to that in Table 18 regression number two. This similarity indicates that 

TimeSpanned is consistently estimated across multiple independent variables and further justifies its 

coefficient estimate and value in explaining variability in Boone/Crawford MAPE Percentage Difference. 

 Statistical tests were conducted to validate the OLS regression results and statistical inferences 

in Table 19. The stepwise regression had a Shapiro-Wilk test statistic of 0.895 and a p-value of <0.001. 

Because the p-value is below the significance level of 0.05, this OLS regression model failed the Shapiro 

Wilk test of normality. The Breusch-Pagan test of constant variance of the residuals resulted in a test 

statistic of 25.676 and a p-value of <0.001. Because this p-value is less than the significance level of 0.05, 

the Breusch-Pagan indicated non-constant variance of the residuals. A plot of the residuals by predicted 

values confirmed this finding. This statistical test failed to validate the use of asymptotic properties of 

large samples. Multicollinearity was suspect in two independent variables: Contractor Group 2 and 

Contractor Group 3 because the VIF scores were 8.121 and 6.702. Multicollinearity was likely because 

both independent variables shared some of the same defense contractors. Because these VIF scores 

remain below 10, the Contractor Group 2 and Contractor Group 3 remained in the OLS regression model.  

All other VIF scores were below 4.2. Cook’s Distance values indicate that no observations had undue 

effects on the results of the model because all values fell below 0.160. Lastly, no outliers were present in 

the studentized residuals. Therefore, these tests indicated that the statistical inferences generated from 

the OLS regression may have been invalid, and the model may not have minimum variance among all 

unbiased estimators. 

 The following two sets of regressions investigate aspects of observed learning curves that are 

associated with their plateau in comparison to Crawford’s Learning Curve. The dependent variable for 

these tests is Crawford’s mean percentage error in the fourth quarter, Crawford MPEQ4. This variable 
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provides a measure of plateauing indifferent to how Boone’s Learning Curve models observed data. 

Greater values of this dependent variable indicate greater plateauing of the observed learning curve in 

comparison to Crawford’s Learning Curve.  

 The results of the third set of OLS regressions are shown in Table 20. This set of OLS regressions 

excluded UnitsofMeasure = Dollars in order to include TimeSpanned. Regression number one indicates 

that the three LevelofAggregation dummy variables are individually statistically significant to a level of 

0.05; however, LevelofAggregation = 3 fails to be significant at a comparison-wise error rate of 0.166. 

Once LevelofAggregation = 3 is removed, the remaining LevelofAggregation dummy variables become 

not statistically significant over regressions two and three. This results in none of the original 

independent variables being statistically significant in the model to an experiment-wise error rate of 

0.05. 

 

Table 20: Crawford MPEQ4 Regression Results excluding UnitsofMeasure 

 

 

1 2 3 4 5
-0.767 -0.545 -0.283 -0.545 -0.110
(0.229) (0.188) (0.133) (0.188) (0.043)
0.001 0.004 0.034 0.004 0.012
0.777 0.555 0.293

(0.312) (0.284) (0.252)
0.013 0.052 0.247
0.736 0.514

(0.294) (0.264)
0.013 0.053

0.532 0.097
(0.234) (0.054)
0.024 0.072

0.683
(0.401)
0.090

Adjusted R2 0.021 0.013 0.002 0.018 0.010
Number of observations 234 234 234 234 232

LevelofAggregation = 2

LevelofAggregation = 1 or 2

LevelofAggregation = 3

Dependent Variable: Crawford MPEQ4

Intercept

LevelofAggregation = 1

Regression Number



117 
 

 When the additional dummy variable, LevelofAggregation = 1 or 2, was entered into the model 

in regression number four, this variable was statistically significant to a level of 0.05. The coefficient 

estimate on this dummy variable suggests that on average Crawford’s Learning Curve models observed 

learning curves at the two highest levels of aggregation with -1.3% mean percentage error in the fourth 

quarter holding all else constant. This negative coefficient estimate indicates Crawford’s Learning Curve 

overestimates rather than underestimates observed learning curves in the fourth quarter when 

hypothesized aspects of plateauing are present. This finding is in contrast to hypotheses and previous 

OLS regression results because Crawford’s Learning Curve is hypothesized to underestimate observed 

learning curves when aspects of plateauing are present. In regression number four, the adjusted R2 

remains low at 1.8% indicating that the sole independent variable explains minimal variability in the 

plateauing of observed learning curves. 

 Statistical tests were conducted to validate the OLS regression results and statistical inferences 

of Table 20 regression number four. Regression number four had a Shapiro-Wilk test statistic of 0.222 

and a p-value of <0.001. Because the p-value is below the significance level of 0.05, this OLS regression 

model fails the Shapiro Wilk test of normality. The Breusch-Pagan test of constant variance of the 

residuals resulted in a test statistic of 3.655 and a p-value of 0.056. Because this p-value is greater than 

the significance level of 0.05, the Breusch-Pagan indicates constant variance of the residuals. A plot of 

the residuals by predicted values supports this conclusion. The Breusch-Pagan test validated the use of 

asymptotic properties of large samples. Multicollinearity cannot be present with a single independent 

variable. Cook’s Distance values indicate that one observations had undue influence on the results of the 

model while another was suspect because their values were 0.84 and 0.48. These same observations 

were also outliers when analyzed using studentized residuals. 

 The two influential and outlier observations were investigated along with their influence on the 

OLS regression coefficient estimates. Both observations were valid for inclusion in the dataset but had 
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significantly negative MAPE values over 900 times the standard deviation from the mean. When both 

observations were removed from the model, the OLS regression results changed drastically as shown in 

Table 20 regression number five. Moreover, the p-value on LevelofAggregation = 1 or 2 became not 

statistically significant.  

 With these alterations to the dataset, there were no hypothesized independent variables that 

explained any variation of Crawford MPEQ4 to a statistically significant degree. The removal of these 

influential and outlier observations did not result in changes to final regression results using any other 

combination of independent variables. The final set of OLS regressions that excluded TimeSpanned in 

order to include UnitsofMeasure = Dollars converged to the results in Table 20; therefore, both 

regressions share the same final results that no independent variables were statistically significant. 

 Lastly, the theory-based independent variables were combined with the data-mining 

independent variables, and a stepwise regression used Crawford MPEQ4 as the dependent variable. The 

independent variables for this stepwise regression are UnitsofMeasure, LevelofAggregation, 

UnitsProduced, TimeSpanned, UnitsProducedperLot, UnitsProducedperLot*LevelofAggregation, 

Commodity, ComponentEstimated, DefenseContractor, FirstYearofProduction, PlatformType, and Service. 

The stepwise regression initially displayed statistically significant results for a single level of the data-

mining variable PlatformType. However, OLS regression model tests indicated that one observation had 

a high amount of influence with a Cook’s Distance value of approximately 2.9. Once this observation was 

removed, the dummy variable representing PlatformType became not statistically significant. The 

stepwise regression was reperformed with this excluded observation. After several stepwise regression 

runs, four observations were excluded due to their Cook’s Distance values being above 0.5. Eventually, a 

model with statistically significant variables was created as shown in Table 21. 
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Table 21: Crawford MPEQ4 Stepwise Regression Results 

 

 

 The results of the stepwise regression in Table 21 indicate that no theory-based independent 

variables were statistically significant when additional variation was explained using the data-mining 

independent variables. The stepwise regression found that two groups of PlatformType were statistically 

significant along with one group of ComponentEstimated. Each of the coefficient estimates can be 

interpreted similarly to prior regressions. Despite the lack of presence of statistically significant theory-

based independent variables, the introduction of data-mining independent variables increased the 

amount of variability explained to 12.3% as indicated by the Adjusted R2. 

 Statistical tests were conducted to validate the OLS regression results and statistical inferences 

in Table 21. The stepwise regression had a Shapiro-Wilk test statistic of 0.723 and a p-value of <0.001. 

Because the p-value is below the significance level of 0.05, this OLS regression model failed the Shapiro 

Wilk test of normality. The Breusch-Pagan test of constant variance of the residuals resulted in a test 

statistic of 3.112 and a p-value of 0.375. Because this p-value is greater than the significance level of 

0.05, the Breusch-Pagan indicated constant variance of the residuals. A plot of the residuals by predicted 

values confirmed this finding. This statistical test validated the use of asymptotic properties of large 

samples. Multicollinearity was not present as indicated by all VIF scores being below 1.6. Cook’s 

0.245
N/A (0.061)

<0.001
0.483

Trainer, Transport (0.093)
<0.001
-0.269
(0.065)
<0.001
-0.155
(0.069)
0.016

0.123
230

Regression Statistics

PlatformType Group 1

PlatformType Group 2

Dependent Variable: Crawford MPEQ4

Intercept

Partioned Levels

Adjusted R2

Number of observations

C2ISR, CSAR, Electronic Warfare, Engine, 
Fighter, Missile, Multi-mission Maritime, 

Tanker, UAV

Auxiliary Power Plant, Mission Computer, 
Wing, Airframe, Surface Controls

Component Estimated Group
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Distance values indicate that no observations had undue effects on the results of the model because all 

values fell below 0.37. Lastly, no outliers were present in the studentized residuals. Therefore, these 

tests indicated that the statistical inferences generated from the OLS regression are valid. Despite these 

statistically significant and valid results, four observations were excluded from the stepwise regression 

before any statistically significant variables could be found. Additionally, these results provide little 

value in uncovering statistically significant theory-based independent variables. 
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Conclusions & Recommendations 

Research Conclusions 

 The diverse dataset utilized in Phase 1 was augmented with observed learning curves estimated 

at the flyaway cost level to form the basis of the dataset used in Phase 2. Phase 2 utilized Unit Theory 

learning curve predictions generated from analyses in Phase 1. Observed learning curve data, Crawford’s 

Learning Curve data, and Boone’s Learning Curve data were used to answer a variety of research 

questions. In summary, these analyses sought to determine 1) if the plateauing and forgetting 

phenomena occur using traditional learning curve theory, 2) how Boone’s Learning Curve models 

observed learning curve data in comparison to traditional learning curve theory, and 3) which program 

attributes, if any, can explain the programs that are best modeled by Boone’s Learning Curve as well as 

explain the prevalence of plateauing and forgetting phenomena.  

 In order to understand if the plateauing and forgetting phenomena occur using the traditional 

learning curve theory, the mean percentage error of Crawford’s Learning Curve in the fourth quarter 

was isolated. These fourth quarter mean percentage errors indicated that Crawford’s Learning Curve did 

not systematically underestimate observed learning curves. In fact, the statistical tests across all 

quarters indicated Crawford’s Learning Curve systematically overestimated observed learning curves 

with a high amount of variability. These findings suggest that the plateauing and forgetting phenomena 

are not systematically present in observed data when modeled with Crawford’s Learning Curve. This 

conclusion limits instances where Boone’s Learning Curve can more accurately model observed learning 

curve data in comparison to Crawford’s Learning Curve. 

 These mean percentage error of Crawford’s Learning Curve in the fourth quarter were then 

analyzed using proportions. Crawford’s Learning Curve underestimated 47.6% of the observed learning 

curves tested. Therefore, these hypothesis tests of proportions also failed to indicate that Crawford’s 

Learning Curve systematically underestimates observed learning curve data in the fourth quarter. Lastly, 
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for the proportion analysis, the proportion of learning curves that Crawford’s Learning Curve 

underestimated in both the first and last quarter was investigated. These instances represent learning 

curves with high rates of learning decaying to low rates of learning; Boone’s Learning Curve models 

these observed learning curves exceptionally well. The proportion of learning curves that experienced 

high rates of learning decaying to low rates of learning was 35% when modeled using Crawford’s 

Learning Curve. This proportion highlights that if an observed learning curve is experiencing high rates of 

learning in the first quarter, it is also more likely to experience low rates of learning in the last quarter 

when modeled with the Crawford’s Learning Curve. Although these results failed to show a systematic 

presence of plateauing, they emphasize opportunities for Boone’s Learning Curve to improve upon 

Crawford’s Learning Curve. 

 Next, Boone’s Learning Curve was analyzed to determine how it models observed learning curve 

data in comparison to the traditional learning curve theory. Because Boone’s Learning Curve contains an 

additional, empirically-estimated parameter, it is expected to improve upon Crawford’s Learning Curve 

at an aggregate level. However, if Boone’s Learning Curve more accurately models observed learning 

curves that plateau and remains approximately equal to Crawford’s Learning Curve in terms of error for 

observed learning curves that do not plateau, then Boone’s Learning Curve provides inherent value in 

modeling the plateauing phenomenon. To investigate this, a confusion matrix was used to determine 

how learning curves that plateau interact with learning curves that are more accurately explained by 

Boone’s Learning Curve. The confusion matrix indicated that Boone’s Learning Curve more accurately 

modeled observed learning curves based on if those observed learning curves plateaued for 77% of 

observations. These results provide mixed conclusions as to if Boone’s Learning Curve improves upon 

Crawford’s Learning Curve by more accurately modeling the plateauing phenomenon of observed 

learning curves or because of its an additional, empirically-estimated parameter. 
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 To further investigate how Boone’s Learning Curve models observed learning curves, the MAPE 

percentage differences between Boone’s Learning Curve and Crawford’s Learning Curve in the first, 

middle, and last quarters were investigated. Hypothesis tests were conducted to determine in which 

quarter Boone’s Learning Curve improved upon Crawford’s Learning Curve to a statistically significant 

degree. Outliers were excluded, and the dataset was limited to observations in which Boone’s Learning 

Curve was a significant improvement in error. The hypothesis tests indicated that Boone’s Learning 

Curve improved upon Crawford’s Learning Curve to a statistically significant degree in the first quarter 

only. Furthermore, the tests indicated that the error improvements in the last quarter were not 

statistically different from zero. The middle quarters' hypothesis test indicated that Boone’s Learning 

Curve was systematically worse at explaining observed data in comparison to Crawford’s Learning 

Curve. Each of these tests had a high amount of variability. These results suggest that Boone’s Learning 

Curve improves upon Crawford’s Learning Curve more than it merely having an additional empirically-

estimated parameter. However, Boone’s Learning Curve was not shown to model the plateau effect in 

the last quarter to a statistically significant degree. There is a possibility observed learning curves 

improved in different sections of the learning curves while performing worse in others in comparison to 

Crawford’s Learning Curve. These error improvements in different sections of the learning curve would 

have caused substantial variations of error in each section. These substantial variations of error 

improvement within each section could significantly obscure the statistical results due to the variability 

included in each hypothesis test.  

 Regression analysis was also used to investigate which program attributes, if any, can explain 

the programs that are best modeled by Boone’s Learning Curve as well as explain the plateauing and 

forgetting phenomena. For the first part of this regression analysis, the percentage difference between 

Boone’s Learning Curve MAPE and Crawford’s Learning Curve MAPE was used as a dependent variable. 

A variety of independent variables were created using the Literature Review and operationalized using 
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available data. The independent variables representing the level of aggregation of the learning curve 

was significant in the model. The regression analysis indicated that Boone’s Learning Curve MAPE would 

decrease 26% on average when modeling learning curves at the highest (flyaway cost) and second 

highest (air vehicle cost) levels of aggregation, respectively, in comparison to Crawford’s Learning Curve. 

This finding is consistent with the research hypotheses. The independent variable that measured the 

amount of time that spanned between the first and last years of production was also statistically 

significant although the coefficient estimate’s sign was opposite of the hypothesized sign. In a separate 

regression, the independent variable representing the learning curve units of measure in total dollars 

was also statistically significant. This independent variable indicated that Boone’s Learning Curve is 

associated with a 14.9% decrease in error on average when modeling observed learning curves with 

units of measure in total dollars rather than hours in comparison to Crawford’s Learning Curve. Despite 

these pool of significant variables, several hypothesized were not significant in the model. Additionally, 

the Adjusted R2 for these models was relatively low at 6.7% and 5.3%, respectively. These Adjusted R2 

values highlight that a large amount of variability remains to be explained in the dependent variable. 

These theory-based independent variables were also tested using data-mining independent variables 

using a mixed stepwise regression. This methodology was employed to potentially expose statistically 

significant theory-based independent. Some groups of data-mining independent variables were 

statistically significant and able to explain more variability in the dependent variable; however, no 

additional statistically significant theory-based independent variables were revealed. Furthermore, the 

stepwise regression model results and statistical inferences may have been invalid due to not passing 

overall model tests. 

 For the second part of this regression analysis, the percentage error between Crawford’s 

Learning Curve and observed data in the fourth quarter of the observed learning curve served as a 

dependent variable. This variable provided a measure of plateauing indifferent to how Boone’s Learning 
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Curve models observed data. After testing various independent variables and validating the model with 

statistical tests, no hypothesized independent variables were significant in the model. This finding 

suggests that either the operationalization of plateauing was inappropriate, there exists too much 

variability in the data to explain instances of plateauing, or the hypothesized independent variables are 

unsuitable or were not appropriately operationalized. These theory-based independent variables were 

also tested using a mixed stepwise regression in order to potentially expose other statistically significant 

theory-based independent. Some groups of data-mining independent variables were statistically 

significant and able to explain more variability in the dependent variable; however, no statistically 

significant theory-based independent variables were revealed. Furthermore, the second set of stepwise 

regression model results and statistical inferences may have also been invalid due to not passing overall 

model tests. 

Research Limitations 

 Limitations of Phase 2 should be reviewed to determine the bearing of results and suitability of 

conclusions. Throughout this analysis, Unit Theory using Crawford’s Learning Curve was used solely to 

compare to observed learning curves and Boone’s Learning Curve. This limitation was necessary to 

conduct a wide variety of tests; however, these results cannot be extended to Cumulative Average 

Theory using Wright’s Learning Curve. Furthermore, program lot data was used instead of unitary data 

due to data availability. This use of program lot data may have caused data to be aggregated at too high 

of a level for forgetting and plateauing effects within observed learning curves to be apparent. Lastly, 

several methods exist to operationalize forgetting and plateauing effects of observed learning curves; 

however, only one method, percent error in the fourth quarter of Crawford’s Learning Curve, was 

utilized in this research. Various methods also exist to operationalize hypothesized variables to explain 

the forgetting and plateauing effects. Therefore, other methods of operationalizing these variables 
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should be explored before claiming the forgetting and plateauing phenomena are not related to the 

theoretically-based hypothesized variables. 

Recommendations for Future Research 

 In addition to the Recommendations for Future Research from Phase 1, future research should 

focus on attempting to explain when forgetting and plateauing phenomena occur. Several theory-based 

and data-mining independent variables were tested using OLS regression; however, very little of the 

variability in either dependent variable was explained. Other variables not included in this research 

should be operationalized and tested in order to gain a better understanding of the forgetting and 

plateauing phenomena. Additionally, there may be a benefit in performing case studies to understand 

further how Boone’s Learning Curve more accurately explains observed learning curves. When research 

was performed at the aggregate level with a large dataset, there remained too much variability in the 

data to gather meaningful conclusions.  

 Bongers (2017) utilized a learning curve equation with a nested forgetting term to test the 

presence of forgetting in a limited number of Department of Defense programs. This equation and its 

forgetting term should be tested on a larger number of Department of Defense programs to 

operationalize the effects of forgetting differently than used in this research. This initiative will provide 

further evidence as to if the effects of forgetting are present in Department of Defense programs. 

Related to analysis performed by Bongers (2017), there may be benefit in analyzing learning curves 

using a time-series analysis when modeling learning curves. A time-series analysis of learning curves 

could shift the paradigm to reveal new insights and avenues of research.  

 Lastly, Boone’s Learning Curve was a specific formulation of the general adapted learning curve 

model shown in Equation 11. This general model formulized that the learning curve exponent was some 

function of the independent variable. Other specific models created from this general model should be 

explored further to accurately model instances of diminishing rates of learning. 
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Summary 

 This research sought to determine 1) if the plateauing and forgetting phenomena occur using 

traditional learning curve theory, 2) how Boone’s Learning Curve models observed learning curve data in 

comparison to traditional learning curve theory, and 3) which program attributes, if any, can explain the 

programs that are best modeled by Boone’s Learning Curve as well as explain the plateauing and 

forgetting phenomena. The various statistical results indicate that the plateauing and forgetting 

phenomena do not systematically occur using the traditional Unit Learning Curve theory. Despite these 

results, there remain instances where plateauing and forgetting occur that provide opportunities for 

Boone’s Learning Curve to improve upon Crawford’s Learning Curve.  

 Additionally, results provide mixed conclusions as to if Boone’s Learning Curve improves upon 

Crawford’s Learning Curve by more accurately modeling the plateauing phenomenon of observed 

learning curves or because of its an additional, empirically-estimated parameter. Tests also did not show 

that Boone’s Learning Curve improved upon Crawford’s Learning Curve to a statistically significant 

degree in the last quarter but instead in the first quarter. This finding brings into question if Boone’s 

Learning Curve does in fact more accurately model the plateauing phenomenon.  

 Lastly, few hypothesized independent variables were significant in explaining when Boone’s 

Learning Curve more accurately models observed learning curves, and a significant amount of variability 

in the data remained. Despite these results, OLS regression analysis confirmed that the level of 

aggregation, the units of measure, and the time span of a program explain a small amount of variability 

of the degree to which Boone’s Learning Curve more accurately models observed learning curves. The 

OLS regression results for explaining plateauing independent of Boone’s Learning Curve indicated that 

no hypothesized independent variables were significant in the model even when non-theoretically 

based independent variables were included in the OLS regression model. 
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 These results indicate that Boone’s Learning Curve may provide value by more accurately 

explaining observed learning curves. However, the theoretical explanations as to where Boone’s 

Learning Curve improves upon the traditional learning curve theory and under what circumstances 

Boone’s Learning Curve is more appropriate to use than the traditional learning curve theory remains to 

be discovered. 
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Appendix A: Learning Curve Error Comparisons using Cumulative Average and Unit Theories  
 

Table A1: Error Comparison using Cumulative Average Theory for All Programs 

 

Program
Number of 

Lots
Number of 

Units
Component Estimated Units

Traditional 
RMSE

Boone 
RMSE

RMSE 
Percentage 
Difference

Traditional 
MAPE

Boone 
MAPE

MAPE 
Percentage 
Difference

Program 1 6 483 PME - Air Vehicle Dollars 557.89 111.69 80.0% 3.6% 0.7% 80.9%

Program 1 6 483 PME - Air Vehicle Hours 15.51 0.32 98.0% 27.2% 0.5% 98.2%

Program 1 6 483 Airframe Dollars 411.22 114.07 72.3% 2.8% 0.7% 74.7%

Program 1 6 483 Airframe Hours 21.66 1.51 93.0% 31.0% 1.7% 94.6%

Program 2 5 638 PME - Air Vehicle Dollars 129.77 6.47 95.0% 2.6% 0.1% 95.6%

Program 3 5 500 PME - Air Vehicle Dollars 1630.26 291.09 82.1% 20.8% 3.9% 81.5%

Program 4 19 205 PME - Air Vehicle Dollars 581.70 581.84 0.0% 3.1% 3.1% 0.0%

Program 4 19 205 Airframe Dollars 545.98 546.44 -0.1% 3.2% 3.2% -0.1%

Program 5 7 459 PME - Air Vehicle Dollars 400.84 44.72 88.8% 2.7% 0.3% 88.2%

Program 5 7 459 Electronic Warfare (1) Dollars 4.78 3.24 32.3% 7.2% 4.8% 33.7%

Program 6 6 98 PME - Air Vehicle Dollars 99.32 32.22 67.6% 1.1% 0.3% 69.4%

Program 6 6 98 Electronic Warfare (1) Dollars 12.74 1.68 86.8% 3.6% 0.6% 82.4%

Program 6 6 98 Electronic Warfare (2) Dollars 15.05 13.34 11.4% 2.3% 2.0% 12.9%

Program 6 6 98 Electronic Warfare (3) Dollars 1.77 1.06 40.3% 1.3% 0.8% 39.6%

Program 7 7 110 PME - Air Vehicle Dollars 144.98 98.31 32.2% 1.0% 0.7% 32.6%

Program 7 7 110 Electronic Warfare (1) Dollars 8.39 3.59 57.2% 2.7% 1.0% 61.3%

Program 7 7 110 Electronic Warfare (2) Dollars 140.32 107.21 23.6% 1.2% 0.8% 27.5%

Program 7 7 110 Electronic Warfare (3) Dollars 0.92 0.92 0.0% 0.5% 0.5% -0.1%

Program 7 7 110 Electronic Warfare (4) Dollars 140.74 111.32 20.9% 1.3% 1.0% 24.2%

Program 7 7 110 Electronic Warfare (5) Dollars 21.28 21.04 1.1% 2.2% 2.1% 5.2%

Program 8 8 3529 PME - Air Vehicle Dollars 27.72 23.62 14.8% 1.4% 1.3% 7.8%

Program 8 8 3529 PME - Air Vehicle Hours 0.10 0.13 -27.5% 1.1% 1.3% -27.9%

Program 9 9 3798 PME - Air Vehicle Dollars 166.55 170.74 -2.5% 8.4% 8.8% -3.7%

Program 10 10 3803 PME - Air Vehicle Dollars 8.00 4.83 39.6% 2.5% 1.2% 51.7%

Program 10 10 3803 PME - Air Vehicle Hours 24.45 14.01 42.7% 4.3% 2.0% 54.0%

Program 11 6 180 PME - Air Vehicle Dollars 514.03 508.41 1.1% 0.9% 0.8% 4.2%

Program 12 10 20 PME - Air Vehicle Dollars 699.20 694.08 0.7% 5.8% 5.7% 1.0%

Program 12 10 20 PME - Air Vehicle Hours 1042.53 906.48 13.1% 9.5% 8.4% 11.8%

Program 12 7 11 Mission Computer (1) Dollars 44.33 44.34 0.0% 2.5% 2.5% 0.0%

Program 13 5 100 PME - Air Vehicle Dollars 53386.73 21143.70 60.4% 12.8% 4.8% 62.1%

Program 13 5 100 Airframe Dollars 6569.73 6577.96 -0.1% 3.7% 3.7% 0.0%

Program 14 5 275 PME - Air Vehicle Dollars 3114.02 145.54 95.3% 3.8% 0.2% 95.5%

Program 15 10 77 PME - Air Vehicle Dollars 44385.98 44390.21 0.0% 9.5% 9.5% 0.0%

Program 15 12 83 PME - Air Vehicle Hours 79241.95 79247.53 0.0% 6.5% 6.5% 0.0%

Program 15 11 83 Airframe Dollars 39624.41 39628.03 0.0% 10.6% 10.6% 0.0%

Program 15 10 68 Mission Computer (1) Dollars 1959.32 1959.39 0.0% 17.0% 17.0% 0.0%

Program 16 9 76 PME - Air Vehicle Dollars 436.29 144.41 66.9% 2.6% 1.0% 62.9%

Program 17 5 50 PME - Air Vehicle Dollars 13023.63 13029.76 0.0% 2.8% 2.8% -0.1%

Program 18 9 31 PME - Air Vehicle Dollars 2942.49 2941.89 0.0% 1.0% 0.9% 0.0%

Program 19 6 98 PME - Air Vehicle Dollars 313.32 313.44 0.0% 0.5% 0.5% -0.1%

Program 20 11 84 PME - Air Vehicle Dollars 1568.74 1121.89 28.5% 1.7% 1.5% 7.8%

Program 20 7 59 Electronic Warfare (1) Dollars 452.77 142.98 68.4% 4.6% 1.3% 71.5%

Program 20 11 84 Electronic Warfare (2) Dollars 98.75 76.54 22.5% 3.4% 3.6% -6.3%

Program 20 7 59 Electronic Warfare (5) Dollars 562.52 517.37 8.0% 1.8% 1.8% 1.7%

Program 21 6 326 PME - Air Vehicle Dollars 5267.10 2408.78 54.3% 8.0% 4.2% 47.4%

Program 21 7 344 Airframe Dollars 4819.45 2544.26 47.2% 9.1% 5.4% 40.4%

Program 21 7 344 Avionics Dollars 763.21 429.87 43.7% 6.6% 3.9% 40.8%

Program 21 14 453 PME - Air Vehicle Hours 3493.62 3495.94 -0.1% 4.8% 4.8% 0.1%

Program 21 14 453 Airframe Hours 4338.35 4339.68 0.0% 6.2% 6.2% 0.1%

Program 22 8 538 PME - Air Vehicle Hours 856.69 857.66 -0.1% 2.5% 2.6% -0.1%

Program 22 8 538 Airframe Hours 5608.46 5609.69 0.0% 15.8% 15.9% -0.1%

Program 23 5 469 PME - Air Vehicle Dollars 637.47 339.27 46.8% 5.4% 2.9% 47.3%

Program 24 10 59 PME - Air Vehicle Dollars 3032.51 3033.05 0.0% 2.2% 2.2% 0.0%

Program 25 9 348 PME - Air Vehicle Dollars 117.82 118.06 -0.2% 0.9% 0.9% -0.2%

Program 26 5 109 PME - Air Vehicle Dollars 3247.44 1676.81 48.4% 11.0% 6.0% 45.7%

Program 26 5 109 PME - Air Vehicle Hours 607.07 453.47 25.3% 5.7% 4.2% 25.9%

Program 27 18 631 PME - Air Vehicle Dollars 1669.56 913.34 45.3% 3.6% 1.9% 46.2%

Program 28 6 425 PME - Air Vehicle Dollars 319.98 322.00 -0.6% 0.9% 0.9% -0.6%

Program 28 7 522 PME - Air Vehicle Hours 1776.09 1785.61 -0.5% 1.8% 1.8% -0.1%

Program 28 7 522 Airframe Hours 1389.91 1393.86 -0.3% 1.2% 1.2% -0.2%

Program 29 9 358 PME - Air Vehicle Hours 610.63 611.08 -0.1% 0.9% 0.9% 0.4%

Program 29 9 358 Airframe Hours 4804.76 2124.23 55.8% 7.3% 2.9% 60.1%

Program 30 5 204 PME - Air Vehicle Dollars 513.53 212.75 58.6% 1.2% 0.5% 56.1%

Program 31 5 605 PME - Air Vehicle Dollars 1482.62 629.10 57.6% 6.1% 2.9% 53.1%

Program 32 5 870 PME - Air Vehicle Dollars 61.31 61.60 -0.5% 0.4% 0.4% -0.3%

Program 33 10 178 PME - Air Vehicle Dollars 7093.55 7101.08 -0.1% 3.5% 3.5% -0.1%

Program 33 10 178 PME - Air Vehicle Hours 8131.11 8144.11 -0.2% 2.9% 2.9% -0.1%

Program 33 10 178 Airframe Dollars 1906.94 1910.76 -0.2% 1.7% 1.7% -0.2%

Program 33 10 712 Body Dollars 232.17 234.86 -1.2% 1.5% 1.6% -1.3%
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Appendix A (continued): Learning Curve Error Comparisons using Cumulative Average and Unit Theories 

 

Table A1(continued): Error Comparison using Cumulative Average Theory for All Programs 

 

Program
Number of 

Lots
Number of 

Units
Component Estimated Units

Traditional 
RMSE

Boone 
RMSE

RMSE 
Percentage 
Difference

Traditional 
MAPE

Boone 
MAPE

MAPE 
Percentage 
Difference

Program 33 10 178 Alighting Gear Dollars 76.6 76.6 0.0% 7.9% 7.9% 0.0%

Program 33 10 178 Auxiliary Power Plant Dollars 90.7 90.7 -0.1% 3.9% 3.9% -0.1%

Program 33 10 178 Electronic Warfare (1) Dollars 775.5 776.1 -0.1% 6.5% 6.5% -0.1%

Program 33 10 178 Electronic Warfare (2) Dollars 360.1 273.4 24.1% 58.3% 46.0% 21.2%

Program 33 10 178 Electronic Warfare (3) Dollars 62.5 62.4 0.2% 5.7% 5.7% 0.1%

Program 33 10 178 Empennage Dollars 352.2 352.3 0.0% 5.1% 5.1% -0.1%

Program 33 10 178 Hydraulic Dollars 22.7 22.7 -0.1% 2.2% 2.2% -0.1%

Program 33 10 178 Wing Dollars 296.5 296.9 -0.1% 2.3% 2.3% -0.1%

Program 34 6 67 PME - Air Vehicle Dollars 11059.1 11061.2 0.0% 6.6% 6.6% 0.0%

Program 34 6 67 PME - Air Vehicle Hours 9058.6 9061.7 0.0% 4.4% 4.4% 0.0%

Program 34 6 67 Airframe Dollars 2798.1 2004.6 28.4% 2.8% 1.7% 37.9%

Program 34 6 201 Body Dollars 1924.5 828.9 56.9% 19.0% 8.7% 54.0%

Program 34 6 67 Alighting Gear Dollars 316.5 166.9 47.3% 17.2% 8.3% 51.9%

Program 34 6 67 Electrical Dollars 50.7 50.7 -0.1% 1.9% 1.9% -0.1%

Program 34 6 67 Electronic Warfare (1) Dollars 428.3 428.4 0.0% 5.3% 5.3% 0.0%

Program 34 5 49 Empennage Dollars 202.2 202.2 0.0% 4.1% 4.1% 0.0%

Program 34 6 67 EO/IR Dollars 45.6 36.6 19.7% 1.2% 1.1% 13.1%

Program 34 6 67 EOTS Dollars 347.6 347.7 0.0% 6.5% 6.5% 0.0%

Program 34 6 67 Hydraulic Dollars 122.3 101.5 17.0% 8.4% 6.2% 26.8%

Program 34 6 67 Mission Computer (1) Dollars 484.8 484.9 0.0% 0.9% 0.9% -0.2%

Program 34 6 67 Surface Controls Dollars 196.0 196.0 0.0% 4.9% 4.9% 0.0%

Program 34 6 67 Wing Dollars 998.4 998.6 0.0% 3.3% 3.3% -0.1%

Program 35 5 41 PME - Air Vehicle Dollars 3578.6 3579.8 0.0% 1.5% 1.5% 0.0%

Program 35 5 41 PME - Air Vehicle Hours 2003.7 2004.7 0.0% 1.1% 1.1% 0.0%

Program 35 5 50 Airframe Dollars 609.3 610.4 -0.2% 0.6% 0.6% -0.3%

Program 35 5 150 Body Dollars 235.8 156.5 33.6% 1.9% 1.4% 28.0%

Program 35 5 50 Alighting Gear Dollars 13.2 13.2 -0.1% 0.5% 0.5% 0.0%

Program 35 5 50 Electronic Warfare (1) Dollars 259.6 259.7 0.0% 3.2% 3.2% 0.0%

Program 35 5 50 EO/IR Dollars 121.6 121.7 0.0% 1.3% 1.3% -0.1%

Program 35 5 50 EOTS Dollars 177.9 177.9 0.0% 2.8% 2.8% -0.1%

Program 35 5 50 Hydraulic Dollars 58.2 58.2 0.0% 3.1% 3.1% 0.0%

Program 35 5 50 Radar Dollars 256.8 256.9 0.0% 3.2% 3.2% 0.0%

Program 35 5 50 Surface Controls Dollars 121.5 121.5 0.0% 2.6% 2.6% 0.0%

Program 35 5 50 Wing Dollars 1213.5 1213.6 0.0% 3.8% 3.8% 0.0%

Program 36 13 1285 PME - Air Vehicle Dollars 28.8 29.4 -2.1% 0.6% 0.6% -2.2%

Program 37 6 432 PME - Air Vehicle Dollars 791.3 793.8 -0.3% 3.4% 3.4% -0.4%

Program 38 6 52 PME - Air Vehicle Dollars 253.6 154.9 38.9% 1.2% 0.7% 41.6%

Program 38 6 44 PME - Air Vehicle Hours 831.5 614.2 26.1% 1.3% 0.8% 42.8%

Program 39 19 1023 PME - Air Vehicle Dollars 19.3 19.3 -0.2% 0.7% 0.7% -0.2%

Program 40 5 1725 PME - Air Vehicle Dollars 19.2 0.6 96.7% 2.0% 0.1% 97.0%

Program 41 10 16 PME - Air Vehicle Dollars 14787.6 14787.8 0.0% 5.2% 5.2% 0.0%

Program 41 10 16 Data Link (1) Dollars 138.8 138.8 0.0% 3.7% 3.7% 0.0%

Program 42 11 203 PME - Air Vehicle Dollars 1000.0 1000.1 0.0% 7.0% 7.0% 0.0%

Program 42 11 899 Electronic Warfare (1) Dollars 67.5 67.7 -0.2% 13.9% 13.9% -0.5%

Program 43 11 203 PME - Air Vehicle Dollars 1121.7 1121.9 0.0% 5.5% 5.5% 0.0%

Program 43 13 251 PME - Air Vehicle Hours 1944.2 1762.2 9.4% 3.4% 3.2% 6.1%

Program 44 5 136 PME - Air Vehicle Dollars 57.1 16.3 71.4% 1.1% 0.3% 71.4%

Program 45 9 155 PME - Air Vehicle Dollars 149.6 149.7 -0.1% 0.3% 0.3% -0.1%

Program 46 6 68 PME - Air Vehicle Dollars 3435.9 3436.0 0.0% 1.7% 1.7% 0.1%

Program 46 6 68 PME - Air Vehicle Hours 2286.4 2286.6 0.0% 2.6% 2.6% 0.0%

Program 46 6 68 Airframe Dollars 539.1 527.6 2.1% 2.3% 2.1% 10.9%

Program 46 6 68 Data Link (1) Dollars 44.0 44.0 0.0% 3.0% 3.0% 0.0%

Program 46 6 68 Electronic Warfare (1) Dollars 221.8 221.9 0.0% 5.4% 5.4% 0.0%

Program 46 6 68 Electronic Warfare (2) Dollars 220.0 220.0 0.0% 6.5% 6.5% 0.0%

Program 46 6 68 Electronic Warfare (3) Dollars 17.7 8.8 50.4% 2.2% 1.0% 54.6%

Program 46 6 68 Electronic Warfare (4) Dollars 530.0 530.0 0.0% 5.2% 5.2% 0.0%

Program 46 6 68 EO/IR Dollars 120.7 120.8 0.0% 15.7% 15.7% 0.0%

Program 46 6 68 Mission Computer (1) Dollars 477.9 478.0 0.0% 4.3% 4.3% 0.0%

Program 47 9 36 PME - Air Vehicle Dollars 1039.4 1039.4 0.0% 2.5% 2.5% 0.0%

Program 47 9 36 PME - Air Vehicle Hours 8278.7 8278.6 0.0% 15.5% 15.5% 0.0%

Program 47 9 36 Data Link (1) Dollars 170.2 170.2 0.0% 17.7% 17.7% 0.0%

Program 48 5 179 PME - Air Vehicle Dollars 1858.3 391.3 78.9% 3.1% 0.6% 79.4%

Program 49 6 180 PME - Air Vehicle Dollars 435.3 99.8 77.1% 4.4% 1.0% 76.5%

Program 50 5 488 PME - Air Vehicle Dollars 349.3 350.7 -0.4% 3.3% 3.4% -0.8%

Program 51 6 663 PME - Air Vehicle Dollars 5.6 3.6 36.6% 0.6% 0.4% 24.8%

Program 52 5 380 PME - Air Vehicle Dollars 456.9 454.6 0.5% 9.0% 8.9% 0.3%

Program 53 6 749 PME - Air Vehicle Dollars 37.2 36.6 1.7% 0.5% 0.5% 4.3%

Program 54 8 194 PME - Air Vehicle Dollars 28.8 28.8 -0.1% 0.6% 0.6% -0.1%

Program 55 9 677 PME - Air Vehicle Dollars 74.8 74.8 0.0% 1.6% 1.6% 0.0%

Program 56 5 590 PME - Air Vehicle Dollars 6.6 6.6 0.5% 0.2% 0.2% 6.3%

Program 57 5 579 PME - Air Vehicle Dollars 22.8 22.8 -0.1% 0.8% 0.8% 0.0%
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Appendix A (continued): Learning Curve Error Comparisons using Cumulative Average and Unit Theories 

 

Table A2: Error Comparison using Unit Theory for All Programs 

 

Program
Number of 

Lots
Number 
of Units

Component Estimated Units
Traditional 

RMSE
Boone 
RMSE

RMSE 
Percentage 
Difference

Traditional 
MAPE

Boone 
MAPE

MAPE 
Percentage 
Difference

Program 1 7 503 Airframe Hours 4.6 3.5 23.4% 7.1% 5.0% 28.7%

Program 1 6 483 PME - Air Vehicle Hours 5.4 1.5 72.5% 11.3% 2.9% 74.0%
Program 1 7 503 PME - Air Vehicle Dollars 2260.6 517.0 77.1% 12.9% 3.2% 75.2%

Program 1 7 503 Airframe Dollars 2383.2 857.9 64.0% 14.6% 4.9% 66.4%
Program 2 5 638 PME - Air Vehicle Dollars 315.4 195.3 38.1% 5.8% 4.3% 26.3%

Program 3 5 500 PME - Air Vehicle Dollars 2984.5 1120.2 62.5% 49.4% 17.6% 64.4%
Program 4 7 357 Airframe Dollars 2662.2 2664.3 -0.1% 13.1% 13.2% -0.1%

Program 4 9 424 PME - Air Vehicle Dollars 9323.3 4999.8 46.4% 37.9% 14.1% 62.8%
Program 5 19 205 Airframe Dollars 2446.1 2445.8 0.0% 12.6% 12.6% -0.3%

Program 5 19 205 PME - Air Vehicle Dollars 3228.6 3228.9 0.0% 12.4% 12.4% 0.0%

Program 6 7 459 Electronic Warfare (1) Dollars 20.9 20.9 0.0% 30.8% 30.8% 0.0%
Program 6 7 459 PME - Air Vehicle Dollars 1439.9 738.1 48.7% 11.3% 5.9% 47.2%

Program 7 5 321 PME - Air Vehicle Dollars 37.9 33.3 12.2% 3.8% 3.8% 1.1%
Program 8 6 98 Electronic Warfare (3) Dollars 5.2 4.9 6.1% 4.8% 4.8% 1.4%

Program 8 6 98 Electronic Warfare (2) Dollars 84.2 70.3 16.5% 11.1% 10.6% 4.7%
Program 8 6 98 PME - Air Vehicle Dollars 375.2 339.5 9.5% 4.2% 3.7% 13.4%

Program 8 6 98 Electronic Warfare (1) Dollars 27.5 18.7 31.9% 10.2% 5.9% 42.5%
Program 9 7 110 Electronic Warfare (5) Dollars 102.9 99.2 3.5% 9.7% 10.4% -6.6%

Program 9 7 110 Electronic Warfare (3) Dollars 6.4 6.4 0.0% 4.7% 4.7% 0.0%
Program 9 7 110 Electronic Warfare (4) Dollars 653.6 653.6 0.0% 6.2% 6.2% 0.0%

Program 9 7 110 Electronic Warfare (2) Dollars 709.4 709.4 0.0% 6.1% 6.1% 0.0%
Program 9 7 110 PME - Air Vehicle Dollars 668.5 668.5 0.0% 5.1% 5.1% 0.0%

Program 9 7 110 Electronic Warfare (1) Dollars 31.6 29.1 8.0% 8.7% 8.0% 8.3%
Program 10 9 1586 PME - Air Vehicle Dollars 115.5 115.6 -0.2% 12.5% 12.5% -0.2%

Program 10 10 1796 PME - Air Vehicle Hours 150.8 150.9 0.0% 12.5% 12.5% -0.1%
Program 11 8 3529 PME - Air Vehicle Hours 0.9 0.7 21.2% 27.5% 44.9% -63.4%

Program 11 8 3529 PME - Air Vehicle Dollars 97.1 97.5 -0.4% 10.1% 10.4% -2.1%
Program 12 16 7891 PME - Air Vehicle Hours 520.1 525.6 -1.1% 86.2% 86.2% 0.0%

Program 12 21 10035 PME - Air Vehicle Dollars 243.8 239.2 1.9% 30.1% 28.8% 4.2%
Program 13 6 3385 EO Dollars 12.1 9.4 22.5% 10.7% 9.6% 10.0%

Program 13 10 3803 PME - Air Vehicle Dollars 33.6 24.8 26.1% 10.3% 7.5% 27.1%

Program 13 10 3803 PME - Air Vehicle Hours 130.1 100.5 22.7% 21.5% 17.1% 20.7%
Program 14 6 180 PME - Air Vehicle Dollars 2249.4 1008.9 55.2% 6.4% 2.3% 64.2%

Program 15 10 20 PME - Air Vehicle Hours 3430.3 3430.4 0.0% 41.5% 41.5% 0.0%
Program 15 10 20 PME - Air Vehicle Dollars 3013.9 3013.9 0.0% 17.4% 17.4% 0.0%

Program 15 7 11 Mission Computer (1) Dollars 213.9 213.9 0.0% 11.6% 11.5% 0.6%
Program 16 5 100 Airframe Dollars 10807.3 7455.4 31.0% 7.0% 4.1% 41.8%

Program 16 5 100 PME - Air Vehicle Dollars 137225.9 81884.9 40.3% 51.7% 26.9% 48.0%
Program 17 5 275 PME - Air Vehicle Dollars 8837.5 1396.3 84.2% 17.6% 3.3% 81.6%

Program 18 12 83 PME - Air Vehicle Hours 266012.8 266015.3 0.0% 39.3% 39.3% 0.0%
Program 18 11 83 Airframe Dollars 89956.0 89961.1 0.0% 39.1% 39.1% 0.0%

Program 18 10 68 Mission Computer (1) Dollars 4143.0 4143.2 0.0% 68.2% 68.2% 0.0%
Program 18 11 83 PME - Air Vehicle Dollars 82138.6 82143.3 0.0% 23.2% 23.2% 0.0%

Program 19 5 45 Airframe Dollars 501.2 501.2 0.0% 53.9% 53.9% 0.0%
Program 19 5 45 PME - Air Vehicle Dollars 649.0 649.0 0.0% 17.6% 17.6% 0.0%

Program 19 5 45 Mission Computer (1) Dollars 61.7 59.7 3.2% 9.8% 9.7% 1.2%
Program 20 9 76 PME - Air Vehicle Dollars 1108.7 522.5 52.9% 7.2% 3.6% 49.9%

Program 21 5 50 PME - Air Vehicle Dollars 24625.3 6362.0 74.2% 7.4% 2.3% 69.5%
Program 22 9 31 PME - Air Vehicle Dollars 16636.3 16636.4 0.0% 6.6% 6.6% 0.0%

Program 23 5 14 PME - Air Vehicle Dollars 14475.8 14476.0 0.0% 8.7% 8.7% 0.0%
Program 24 6 98 PME - Air Vehicle Dollars 2259.9 2260.1 0.0% 3.3% 3.3% 0.0%

Program 25 7 59 Electronic Warfare (5) Dollars 2808.4 2805.2 0.1% 14.8% 15.4% -4.0%
Program 25 11 84 PME - Air Vehicle Dollars 5083.2 4228.8 16.8% 8.7% 9.2% -5.2%

Program 25 11 84 Electronic Warfare (2) Dollars 248.9 248.6 0.1% 13.9% 14.3% -2.9%

Program 25 7 59 Electronic Warfare (1) Dollars 1259.1 653.3 48.1% 16.1% 7.1% 55.6%
Program 26 7 344 Airframe Dollars 11474.7 8294.9 27.7% 22.7% 21.5% 5.3%

Program 26 7 344 Avionics Dollars 2218.8 2102.8 5.2% 29.5% 26.9% 8.8%
Program 26 7 344 PME - Air Vehicle Dollars 12898.4 8742.1 32.2% 20.7% 16.9% 18.4%

Program 27 14 453 PME - Air Vehicle Hours 54142.9 53766.4 0.7% 59.9% 63.1% -5.4%
Program 27 14 453 Airframe Hours 70415.0 69426.8 1.4% 58.8% 59.1% -0.5%

Program 28 8 538 PME - Air Vehicle Hours 3828.8 3829.8 0.0% 9.8% 9.9% 0.0%
Program 28 8 538 Airframe Hours 3865.3 3866.2 0.0% 7.6% 7.6% 0.0%

Program 29 8 529 Hydraulic Dollars 156.9 156.4 0.3% 22.3% 22.9% -2.8%
Program 29 12 477 Airframe Dollars 6490.2 5974.2 7.9% 14.2% 14.4% -1.8%

Program 29 12 477 Wing Dollars 712.3 712.7 -0.1% 27.8% 27.8% -0.1%
Program 29 11 433 Electronic Warfare (1) Dollars 57.5 57.5 0.0% 13.5% 13.5% -0.1%

Program 29 8 309 Electrical Dollars 230.6 230.7 -0.1% 8.2% 8.2% 0.0%
Program 29 12 1045 Body Dollars 1922.2 1826.7 5.0% 26.0% 25.9% 0.7%

Program 29 5 177 Empennage Dollars 32.3 22.0 31.8% 6.1% 4.6% 24.5%
Program 29 12 477 PME - Air Vehicle Dollars 8218.5 5525.3 32.8% 15.0% 10.2% 32.0%

Program 29 8 309 Alighting Gear Dollars 205.7 42.2 79.5% 11.6% 2.0% 83.1%
Program 30 5 469 PME - Air Vehicle Dollars 1283.8 891.8 30.5% 13.5% 8.3% 38.3%

Program 31 10 59 PME - Air Vehicle Dollars 11978.9 11979.3 0.0% 8.6% 8.6% 0.0%
Program 32 9 348 PME - Air Vehicle Dollars 430.6 430.8 0.0% 3.5% 3.5% -0.1%

Program 33 5 109 PME - Air Vehicle Hours 993.9 994.0 0.0% 9.5% 9.5% 0.0%
Program 33 5 109 PME - Air Vehicle Dollars 6824.7 6824.8 0.0% 28.2% 28.2% 0.0%

Program 34 18 631 PME - Air Vehicle Dollars 6926.7 2799.9 59.6% 17.0% 6.6% 61.0%

Program 35 6 425 PME - Air Vehicle Dollars 1135.8 1137.5 -0.2% 3.5% 3.5% -0.2%
Program 35 7 522 PME - Air Vehicle Hours 4615.3 4458.5 3.4% 6.3% 6.1% 3.1%

Program 35 7 522 Airframe Hours 6757.0 6280.7 7.0% 5.7% 5.4% 4.8%
Program 36 9 358 PME - Air Vehicle Hours 5118.7 5120.1 0.0% 6.8% 6.8% 0.0%

Program 36 9 358 Airframe Hours 12155.2 11257.1 7.4% 15.5% 14.3% 7.6%
Program 37 5 204 PME - Air Vehicle Dollars 1468.7 921.0 37.3% 2.9% 1.9% 36.4%

Program 38 5 605 PME - Air Vehicle Dollars 2641.9 1527.7 42.2% 14.9% 8.1% 46.0%
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Appendix A (continued): Learning Curve Error Comparisons using Cumulative Average and Unit Theories 

 

Table A2 (continued): Error Comparison using Unit Theory for All Programs 

   

Program
Number of 

Lots
Number 
of Units

Component Estimated Units
Traditional 

RMSE
Boone 
RMSE

RMSE 
Percentage 
Difference

Traditional 
MAPE

Boone 
MAPE

MAPE 
Percentage 
Difference

Program 39 5 870 PME - Air Vehicle Dollars 310.9 311.5 -0.2% 2.3% 2.3% -0.2%

Program 40 10 178 Electronic Warfare (3) Dollars 751.2 551.9 26.5% 69.7% 74.7% -7.1%

Program 40 10 712 Body Dollars 617.6 577.6 6.5% 4.8% 5.1% -7.6%

Program 40 10 178 Airframe Dollars 4251.9 4226.4 0.6% 4.8% 4.9% -1.0%

Program 40 10 178 Electronic Warfare (2) Dollars 721.7 721.7 0.0% 393.4% 393.4% 0.0%
Program 40 10 178 Electronic Warfare (1) Dollars 1642.3 1643.0 0.0% 20.7% 20.7% 0.0%

Program 40 10 178 PME - Air Vehicle Hours 13454.5 13466.8 -0.1% 6.0% 6.0% -0.1%

Program 40 10 178 Auxil iary Power Plant Dollars 385.1 385.1 0.0% 24.9% 24.9% 0.0%

Program 40 10 178 PME - Air Vehicle Dollars 12231.7 12236.6 0.0% 7.9% 7.9% 0.0%

Program 40 10 178 Alighting Gear Dollars 233.6 233.6 0.0% 30.1% 30.1% 0.0%

Program 40 10 178 Wing Dollars 607.4 607.6 0.0% 6.2% 6.2% 0.0%
Program 40 10 178 Empennage Dollars 702.1 702.1 0.0% 17.4% 17.4% 0.0%

Program 40 10 178 Hydraulic Dollars 72.2 70.2 2.8% 9.0% 8.8% 2.2%

Program 41 6 67 PME - Air Vehicle Hours 12741.5 12743.8 0.0% 9.5% 9.5% 0.0%

Program 41 5 49 Empennage Dollars 242.2 242.2 0.0% 5.8% 5.9% 0.0%

Program 41 6 67 PME - Air Vehicle Dollars 16643.9 16645.6 0.0% 10.7% 10.7% 0.0%

Program 41 6 67 Surface Controls Dollars 281.7 281.7 0.0% 7.7% 7.7% 0.0%

Program 41 6 67 EOTS Dollars 442.3 442.4 0.0% 9.5% 9.5% 0.0%
Program 41 6 67 Wing Dollars 1927.0 1927.3 0.0% 7.4% 7.4% 0.0%

Program 41 6 67 Electrical Dollars 57.2 57.2 0.0% 2.1% 2.1% 0.0%

Program 41 6 67 Electronic Warfare (1) Dollars 547.3 547.3 0.0% 8.1% 8.1% 0.0%

Program 41 6 67 Hydraulic Dollars 281.5 274.6 2.4% 19.4% 19.0% 2.0%

Program 41 6 67 Mission Computer (1) Dollars 1698.1 1542.4 9.2% 4.6% 3.7% 19.5%

Program 41 6 67 Airframe Dollars 6877.8 5547.4 19.3% 8.7% 6.4% 26.8%
Program 41 6 67 Alighting Gear Dollars 582.3 521.1 10.5% 28.3% 25.0% 11.6%

Program 41 6 67 EO/IR Dollars 233.0 89.4 61.6% 9.3% 3.1% 66.8%

Program 41 6 201 Body Dollars 3431.8 2343.2 31.7% 42.6% 29.9% 29.7%

Program 42 5 41 PME - Air Vehicle Dollars 8498.6 8499.6 0.0% 6.2% 6.2% 0.0%

Program 42 5 41 PME - Air Vehicle Hours 15696.5 15696.9 0.0% 10.7% 10.7% 0.0%

Program 42 5 50 EOTS Dollars 593.3 593.3 0.0% 11.6% 11.6% 0.0%
Program 42 5 50 EO/IR Dollars 578.4 578.4 0.0% 7.5% 7.5% 0.0%

Program 42 5 50 Hydraulic Dollars 297.0 297.0 0.0% 15.4% 15.4% 0.0%

Program 42 5 50 Surface Controls Dollars 424.9 424.9 0.0% 11.0% 11.0% 0.0%

Program 42 5 50 Radar Dollars 733.8 733.8 0.0% 10.9% 10.9% 0.0%

Program 42 5 50 Airframe Dollars 5222.7 5222.8 0.0% 5.9% 5.9% 0.0%

Program 42 5 50 Electronic Warfare (1) Dollars 746.5 746.5 0.0% 10.7% 10.7% 0.0%
Program 42 5 50 Wing Dollars 3726.6 3726.7 0.0% 16.5% 16.5% 0.0%

Program 42 5 50 Alighting Gear Dollars 78.6 77.4 1.5% 3.6% 3.5% 2.3%

Program 42 5 150 Body Dollars 1588.5 892.1 43.8% 12.6% 8.7% 30.8%

Program 43 13 1285 PME - Air Vehicle Dollars 88.1 88.8 -0.8% 1.9% 1.9% -1.0%

Program 44 6 432 PME - Air Vehicle Dollars 1621.0 1623.3 -0.1% 10.0% 10.0% -0.2%

Program 45 9 63 PME - Air Vehicle Dollars 2152.3 1557.1 27.7% 9.5% 6.4% 33.2%
Program 46 6 44 PME - Air Vehicle Hours 7736.9 7255.3 6.2% 17.6% 16.7% 4.8%

Program 46 10 113 PME - Air Vehicle Dollars 797.9 627.0 21.4% 3.8% 2.9% 22.7%

Program 47 19 1023 PME - Air Vehicle Dollars 115.2 115.2 0.0% 4.3% 4.2% 0.2%

Program 48 5 1725 PME - Air Vehicle Dollars 59.8 3.1 94.9% 6.8% 0.3% 95.4%

Program 49 10 16 Data Link (1) Dollars 470.3 470.3 0.0% 20.4% 20.4% 0.0%

Program 49 10 16 PME - Air Vehicle Dollars 41008.9 41009.2 0.0% 14.1% 14.1% 0.0%
Program 50 7 577 PME - Air Vehicle Dollars 1674.7 1224.7 26.9% 5.5% 4.6% 15.7%

Program 51 12 244 PME - Air Vehicle Hours 625.6 612.8 2.0% 191.4% 191.8% -0.2%

Program 52 11 899 Electronic Warfare (1) Dollars 90.1 90.2 -0.1% 29.2% 29.3% -0.1%

Program 52 11 203 PME - Air Vehicle Dollars 2995.1 2992.0 0.1% 24.9% 23.6% 5.2%

Program 53 13 251 PME - Air Vehicle Hours 4585.2 4585.2 0.0% 6.7% 6.7% 0.0%

Program 53 11 203 PME - Air Vehicle Dollars 2459.9 2460.0 0.0% 9.6% 9.6% 0.0%
Program 54 11 184 PME - Air Vehicle Hours 7010.4 7010.7 0.0% 18.0% 18.0% 0.0%

Program 54 9 134 PME - Air Vehicle Dollars 1907.3 970.0 49.1% 11.8% 6.5% 44.9%

Program 55 5 136 PME - Air Vehicle Dollars 321.6 277.7 13.7% 5.5% 4.7% 14.8%

Program 56 9 155 PME - Air Vehicle Dollars 1356.5 1356.6 0.0% 3.9% 3.9% 0.0%

Program 57 6 68 EO/IR Dollars 326.0 326.0 0.0% 1261.8% 1261.8% 0.0%

Program 57 6 68 PME - Air Vehicle Dollars 8574.7 8470.9 1.2% 4.3% 4.3% -0.5%
Program 57 6 68 Electronic Warfare (1) Dollars 998.8 998.9 0.0% 58.9% 58.9% 0.0%

Program 57 6 68 Electronic Warfare (2) Dollars 750.2 750.2 0.0% 31.3% 31.3% 0.0%

Program 57 6 68 Data Link (1) Dollars 94.8 94.8 0.0% 7.2% 7.2% 0.0%

Program 57 6 68 Electronic Warfare (4) Dollars 1156.3 1156.3 0.0% 12.2% 12.2% 0.0%

Program 57 6 68 Mission Computer (1) Dollars 1030.6 1030.6 0.0% 13.0% 13.0% 0.0%

Program 57 6 68 PME - Air Vehicle Hours 6435.9 6435.0 0.0% 12.3% 12.3% 0.3%
Program 57 6 68 Airframe Dollars 1443.2 1285.1 11.0% 6.7% 5.4% 18.5%

Program 57 6 68 Electronic Warfare (3) Dollars 53.4 21.8 59.1% 7.2% 3.0% 58.5%

Program 58 9 36 PME - Air Vehicle Hours 60347.2 60347.3 0.0% 78.2% 78.2% 0.0%

Program 58 9 36 Data Link (1) Dollars 227.8 227.8 0.0% 29.3% 29.3% 0.0%

Program 58 9 36 PME - Air Vehicle Dollars 4570.2 4570.2 0.0% 10.9% 10.9% 0.0%

Program 58 5 18 EO/IR Dollars 3488.4 3469.8 0.5% 28.8% 28.7% 0.3%
Program 59 5 179 PME - Air Vehicle Dollars 4583.3 1334.5 70.9% 8.1% 2.8% 65.4%

Program 60 6 180 PME - Air Vehicle Dollars 1010.5 333.9 67.0% 12.4% 4.6% 63.1%

Program 61 5 488 PME - Air Vehicle Dollars 502.3 486.5 3.1% 9.2% 7.7% 16.3%

Program 62 6 78 PME - Air Vehicle Hours 6027.1 5952.3 1.2% 33.8% 34.3% -1.6%

Program 62 6 97 Airframe Hours 2648.5 2649.0 0.0% 20.5% 20.5% 0.0%

Program 62 9 110 PME - Air Vehicle Dollars 13027.5 13028.9 0.0% 24.0% 24.0% 0.0%
Program 63 6 663 PME - Air Vehicle Dollars 23.2 21.1 9.2% 2.9% 2.6% 11.6%

Program 64 5 380 PME - Air Vehicle Dollars 1520.9 1521.2 0.0% 57.4% 57.4% 0.0%

Program 65 6 749 PME - Air Vehicle Dollars 116.6 115.9 0.6% 1.7% 1.8% -5.1%

Program 66 8 194 PME - Air Vehicle Dollars 128.3 119.3 7.0% 2.6% 2.4% 8.6%

Program 67 9 677 PME - Air Vehicle Dollars 273.5 273.5 0.0% 5.1% 5.1% 0.0%

Program 68 5 590 PME - Air Vehicle Dollars 87.1 87.2 0.0% 2.8% 2.8% 0.0%
Program 69 5 579 PME - Air Vehicle Dollars 305.7 305.8 0.0% 9.5% 9.5% 0.0%
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Appendix B: Descriptive Statistics of Boone’s Learning Curve Using Cumulative Average Theory by Group 
 

Table B1: Cumulative Average Theory Percentage Error Differences for RMSE in Units of Dollars 

 
 

Table B2: Cumulative Average Theory Percentage Error Differences for RMSE in Units of Hours 

 
 

Table B3: Cumulative Average Theory Percentage Error Differences for MAPE 

 
 
 

Group
Below 

Approximately 
Zero

Approximately 
Zero

Above 
Approximately 

Zero
Number of Observations 7 59 52
Percent of Observations 5.9% 50.0% 44.1%
Mean -1.1% 0.0% 43.9%
Median -0.6% 0.0% 44.5%
Standard Deviation 0.9% 0.1% 28.5%

Group
Below 

Approximately 
Zero

Approximately 
Zero

Above 
Approximately 

Zero

Number of Observations 3 11 8
Percent of Observations 13.6% 50.0% 36.4%
Mean -9.4% -0.1% 45.4%
Median -0.5% 0.0% 34.4%
Standard Deviation 15.6% 0.0% 34.4%

Group
Below 

Approximately 
Zero

Approximately 
Zero

Above 
Approximately 

Zero

Number of Observations 11 69 60
Percent of Observations 7.9% 49.3% 42.9%
Mean -0.6% 0.0% 49.8%
Median -0.8% 0.0% 44.3%
Standard Deviation 8.1% 0.1% 29.6%
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Appendix C: Descriptive Statistics of Boone’s Learning Curve Using Unit Theory by Group 
 

Table C1: Unit Theory Percentage Error Differences for RMSE in Units of Dollars  

 
 

Table C2: Unit Theory Percentage Error Differences for RMSE in Units of Hours 

  

 

Table C3: Unit Theory Percentage Error Differences for MAPE 

 
 
 
 
 

Group
Below 

Approximately 
Zero

Approximately 
Zero

Above 
Approximately 

Zero
Number of Observations 2 73 66
Percent of Observations 1.4% 51.8% 46.8%
Mean -0.6% 0.0% 29.6%
Median -0.6% 0.0% 26.7%
Standard Deviation 0.3% 0.0% 25.3%

Group
Below 

Approximately 
Zero

Approximately 
Zero

Above 
Approximately 

Zero
Number of Observations 1 15 12
Percent of Observations 3.6% 53.6% 42.9%
Mean -1.1% 0.0% 14.1%
Median -1.1% 0.0% 6.6%
Standard Deviation N/A 0.0% 20.3%

Group
Below 

Approximately 
Zero

Approximately 
Zero

Above 
Approximately 

Zero
Number of Observations 18 84 67
Percent of Observations 10.7% 49.7% 39.6%
Mean -6.6% 0.0% 30.3%
Median -2.9% 0.0% 24.5%
Standard Deviation 14.4% 0.1% 26.2%
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Appendix D: Test Results of Sample Means of Crawford’s Learning Curve Error by Quarter 
 

 

Figure D1: T-Test of Sample Mean for First Quarter Mean Percentage Error  

 

 

Figure D2: T-Test of Sample Mean for Middle Quarters Mean Percentage Error  

 

 

Figure D3: T-Test of Sample Mean for Last Quarter Mean Percentage Error  
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Appendix D (continued): Test Results of Sample Means of Crawford’s Learning Curve by Quarter 

 

 

Figure D4: T-Test of Sample Mean for First Quarter Mean Error Percentage Excluding Outliers 

 

 

Figure D5: T-Test of Sample Mean for Middle Quarters Mean Error Percentage Excluding Outliers 

 

 

Figure D6: T-Test of Sample Mean for Last Quarter Mean Error Percentage Excluding Outliers 
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Appendix D (continued): Test Results of Sample Means of Crawford’s Learning Curve by Quarter 

 

 

Figure D7: T-Test of Sample Mean for First Quarter Mean Error Percentage Including Flyaway Program 
Components 

 

 

Figure D8: T-Test of Sample Mean for Middle Quarters Mean Error Percentage Including Flyaway 
Program Components 

 

 

Figure D9: T-Test of Sample Mean for Last Quarter Mean Error Percentage Including Flyaway Program 
Components 
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Appendix D (continued): Test Results of Sample Means of Crawford’s Learning Curve by Quarter 

 

 

Figure D10: T-Test of Sample Mean for First Quarter Mean Error Percentage Including Flyaway Program 
Components and Excluding Outliers 

 

 

Figure D11: T-Test of Sample Mean for Middle Quarters Mean Error Percentage Including Flyaway 
Program Components and Excluding Outliers 

 

 

Figure D12: T-Test of Sample Mean for Last Quarter Mean Error Percentage Including Flyaway Program 
Components and Excluding Outliers 
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Appendix E: Test Results of Sample Proportions of Crawford’s Learning Curve by Quarter 
 

 

Figure E1: First Quarter Sample Proportion Hypothesis Test 

 

 

Figure E2: Middle Quarters Sample Proportion Hypothesis Test 

 

 

Figure E3: Last Quarter Sample Proportion Hypothesis Test 
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Appendix E (continued): Test Results of Sample Proportions of Crawford’s Learning Curve by Quarter 

 

 

Figure E4: First Quarter Sample Proportion Hypothesis Test including Flyaway Program Components 

 

 

Figure E5: Middle Quarters Sample Proportion Hypothesis Test including Flyaway Program Components 

 

 

Figure E6: Last Quarter Sample Proportion Hypothesis Test including Flyaway Program Components 
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Appendix F: Confusion Matrix for Boone’s Learning Curve including Flyaway Components 
 

Table F1: Confusion Matrix of Counts & Percentages including Flyaway Components 

 

No Yes

No
99

42%
22
9%

Yes
30

13%
83

35%

Boone's Learning Curve 
More Accurately Explains

Observed 
Learning 

Curve 
Plateaus
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Appendix G: Test Results of Percentage Error Differences Between Boone’s and Crawford’s Learning 
Curves Error by Quarter 

 

 

Figure G1: First Quarter Percentage Error Difference between Boone’s & Crawford’s Learning Curves 
Given Boone’s Learning Curve Significantly Improved 

 

 

Figure G2: Middle Quarters Percentage Error Difference between Boone’s & Crawford’s Learning Curves 
Given Boone’s Learning Curve Significantly Improved 
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Appendix G (continued): Test Results of Percentage Error Differences Between Boone’s and Crawford’s 
Learning Curve Error by Quarter 

 

 

Figure G3: Last Quarter Percentage Error Difference between Boone’s & Crawford’s Learning Curves 
Given Boone’s Learning Curve Significantly Improved 

 

 

Figure G4: First Quarter Percentage Error Difference between Boone’s & Crawford’s Learning Curves 
Given Boone’s Learning Curve Significantly Improved, Excluding Outliers 
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Appendix G (continued): Test Results of Percentage Error Differences Between Boone’s and Crawford’s 

Learning Curve Error by Quarter 

 

 

Figure G5: Middle Quarters Percentage Error Difference between Boone’s & Crawford’s Learning Curves 
Given Boone’s Learning Curve Significantly Improved, Excluding Outliers 

 

 

Figure G6: Last Quarter Percentage Error Difference between Boone’s & Crawford’s Learning Curves 
Given Boone’s Learning Curve Significantly Improved, Excluding Outliers 
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