
Report from Dagstuhl Seminar 19231

Empirical Evaluation of Secure Development Processes
Edited by
Adam Shostack1, Matthew Smith2, Sam Weber3, and Mary Ellen
Zurko4

1 Seattle, US, adam@shostack.org
2 Universität Bonn and Fraunhofer FKIE, DE, smith@cs.uni-bonn.de
3 Carnegie Mellon University - Pittsburgh, US, smweber@andrew.cmu.edu
4 MIT Lincoln Laboratory - Lexington, US, mez@alum.mit.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 19231 "Empirical
Evaluation of Secure Development Processes". It includes a discussion of the motivation and
overall organization, the abstracts of the talks, and a report of each working group.

Seminar June 2–7, 2019 – http://www.dagstuhl.de/19231
Digital Object Identifier 10.4230/DagRep.9.6.1
Edited in cooperation with Daniel Votipka

1 Executive Summary

Adam Shostack
Matthew Smith
Sam Weber
Mary Ellen Zurko

License Creative Commons BY 3.0 Unported license
© Adam Shostack, Matthew Smith, Weber, and Mary Ellen Zurko

The problem of how to design and build secure systems has been long-standing ? although
much progress has been made in software engineering, cybersecurity and industrial practices,
many of the fundamental scientific foundations have not been laid and there is little empirical
data to quantify the effects that our existing principles, architectures and methodologies
have on the resulting systems.

This situation leaves developers and industry in a rather undesirable situation. The
lack of data makes it difficult for organizations to choose practices that will cost-effectively
reduce security vulnerabilities in a given system and help development teams achieve their
security objectives. Without answers as to why proposed secure development practices are
beneficial, and by how much, it is extremely difficult for organizations to rationally improve
these processes, or to evaluate the cost-effectiveness of any specific technique.

The ultimate goal of this seminar is to create a community for empirical science in
software engineering for secure systems. Naturally, such community-building is a long-term
activity, which can be initiated during this seminar but will require continuous involvement.
Our more immediate goals are to develop a manifesto for the community elucidating the need
for research in this area, and to provide actionable and concrete guidance on how to overcome
the obstacles that have hindered progress. The emphasis on being actionable and concrete is
critical: the difficulties involved in empirically investigating security development processes,

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Empirical Evaluation of Secure Development Processes, Dagstuhl Reports, Vol. 9, Issue 06, pp. 1–21
Editors: Adam Shostack, Matthew Smith, Sam Weber, and Mary Ellen Zurko

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the United States Air Force under Air Force Contract No. FA8702-15-D-0001. Any
opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force. © 2019 Massachusetts Institute of
Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by
DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

http://www.dagstuhl.de/19231
http://dx.doi.org/10.4230/DagRep.9.6.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 19231 – Empirical Evaluation of Secure Development Processes

especially those in the early part of the development lifecycle, are already well-known, and
instead we wish to focus on making forward progress.

Such forward progress requires not only the skills and knowledge of cybersecurity experts,
but members of the empirical software engineering, usable security researchers and industrial
communities as well. This seminar will bring together people from all four spheres. The
majority of the seminar will be devoted to breakout groups, with each group focused
on tackling a challenging problem that would have a large potential impact on secure
development. Potential breakout topics include evaluating the effectiveness of different threat
modeling methodologies, the security impact of different API design choices, and the merits of
capabilities versus access-control-lists in real systems. Participants will be highly encouraged
to develop and explore other similar challenges ? the intent is that by focusing on more
specific issues we are more likely to be able to develop actionable results.

This seminar aimed to produce a manifesto to the community elucidating the need for
empirical research of secure development methodologies and a report detailing both general
guidance and advice on specific high-impact subtopics. However, the main outcome is an
active and growing research community tackling this new research field.

Adam Shostack, Matthew Smith, Sam Weber, and Mary Ellen Zurko 3

2 Table of Contents

Executive Summary
Adam Shostack, Matthew Smith, Weber, and Mary Ellen Zurko 1

Overview of Talks
Experience with the Microsoft Security Development Lifecycle
Steven B. Lipner . 4

Security in Modern Software Development
Olgierd Pieczul . 4

Software Engineers are People Too: Applying Human Centered Approaches to
Improve Software Development for Security
Brad A. Myers . 5

A Series of Experiments on Software Design Patterns
Walter Tichy . 5

Empiricism in Software Engineering and Secure Systems
Laurie Williams . 6

“Usable Security” approaches to Empiricism for Secure Software Development
Matthew Smith, Sascha Fahl, and Michelle L. Mazurek 7

How the usable security community does developer studies: Field-ish studies with
Build It, Break It, Fix It
Michelle L. Mazurek . 8

Working groups
Building Code Breakout
Adam Shostack and Carl Landwher . 8

Ecological validity and study design for empirical secure development studies
Michelle L. Mazurek and Daniel Votipka . 9

Clever Recruitment Techniques: How to Design Studies that get Enough of the
Right Kind of Participants
Tobias Fiebig, Michael Coblenz, and Fabio Massacci 14

API Usability Heuristics
Matthew Smith and Joseph Hallett . 17

Methods For Empirical Studies of SDLs
Sam Weber, Adam J. Aviv, Michael Coblenz, Tamara Denning, Shamal Faily, Mike
Lake, Steven B. Lipner, Michelle L. Mazurek, Xinming (Simon) Ou, Olgierd Pieczul,
and Charles Weir . 18

Publication or reviewing guidelines; Establishing a baseline for evidence of science
in security
Laurie Williams . 19

Participants

19231

4 19231 – Empirical Evaluation of Secure Development Processes

3 Overview of Talks

3.1 Experience with the Microsoft Security Development Lifecycle
Steven B. Lipner (SAFECode - Seattle, US)

License Creative Commons BY 3.0 Unported license
© Steven B. Lipner

Main reference Michael Howard and Steve Lipner, The Security Development Lifecycle, Microsoft Press, 2006
URL https://blogs.msdn.microsoft.com/microsoft_press/2016/04/19/free-ebook-the-security-

development-lifecycle/

Between 2002 and 2004, Microsoft made a major commitment to software security, first
executing a series of "security pushes" on major products and then introducing the Security
Development Lifecycle (SDL), a mandatory process for improving products’ resistance to
attack. After the introduction of the SDL in 2004, the process requirements were updated
periodically in response to new classes of attacks and new techniques for improving product
security. This presentation summarizes the philosophy and practicalities underlying the SDL
and the ways it has evolved, and outlines some of the ways that the effectiveness of the SDL
and similar processes can be measured.

3.2 Security in Modern Software Development
Olgierd Pieczul (IBM - Dublin, IE)

License Creative Commons BY 3.0 Unported license
© Olgierd Pieczul

Recent shifts in software engineering make the traditional view of the software security
obsolete. Secure development practices rely on several aspects of software engineering such
as development process, tools and languages, and developer skillset work environment which
all are rapidly changing. We observe security practices lagging behind and slowing down the
transformation while increasing cost and reducing overall security.

Today’s software delivery cycle can be as short as days or even hours. However, the
security quality and compliance processes, reviews, testing and sign offs have been designed
for long waterfall-style cycles. Similarly, while applications are being developed as small,
independent microservices, security practices operate at a scale of system as a whole. These
tasks tend to be labor intensive, managed, executed and reviewed manually and long to
perform. This results in slowing down the delivery and reducing security assurance to
rudimentary, checkbox-style level only.

This presentation covers the aspects of modern software development have the major
impact on security. We also identify and describe key areas of security that need to adopt,
or become much more significant today, in particular: development process, software stack,
team structure, developer skills and training and code reuse.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://blogs.msdn.microsoft.com/microsoft_press/2016/04/19/free-ebook-the-security-development-lifecycle/
https://blogs.msdn.microsoft.com/microsoft_press/2016/04/19/free-ebook-the-security-development-lifecycle/
https://blogs.msdn.microsoft.com/microsoft_press/2016/04/19/free-ebook-the-security-development-lifecycle/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Adam Shostack, Matthew Smith, Sam Weber, and Mary Ellen Zurko 5

3.3 Software Engineers are People Too: Applying Human Centered
Approaches to Improve Software Development for Security

Brad A. Myers (Carnegie Mellon University - Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Brad A. Myers

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7503516

Software engineers might think that human-computer interaction (HCI) is all about improving
the interfaces for their target users through user studies. However, software engineers are
people too, and they use a wide variety of technologies, from programming languages to search
engines to integrated development environments (IDEs). And the field of HCI has developed
a wide variety of human-centered methods, beyond lab user studies, which have been proven
effective for answering many different kinds of questions. In this talk, I will use examples from
my own and other’s research relevant to security to show how HCI methods can be successfully
used to improve the technologies used in the software development process. For example,
"Contextual Inquiry" (CI) is a field study method that identifies actual issues encountered
during work, which can guide research and development of tools that will address real
problems. We have used CIs to identify nearly 100 different questions that developers report
they find difficult to answer, which inspired novel tools for reverse-engineering unfamiliar
code and for debugging. We used the HCI techniques of Paper Prototyping and Iterative
Usability Evaluations to improve our programming tools. Through the techniques of Formal
User Studies, we have validated our designs, and quantified the potential improvements.
Current work is directed at improving the usability of APIs, using user-centered methods
to create a more secure Blockchain programming language, addressing the needs of data
analysts who do exploratory programming, helping programmers organize information found
on the web, and helping end-user programmers augment what intelligent agents can do on
smartphones.

References
1 Brad A. Myers, Andrew J. Ko, Thomas D. LaToza, and YoungSeok Yoon. Programmers Are

Users Too: Human-Centered Methods for Improving Programming Tools. IEEE Computer,
Special issue on UI Design, 49, issue 7, July, 2016, pp. 44-52

3.4 A Series of Experiments on Software Design Patterns
Walter Tichy

License Creative Commons BY 3.0 Unported license
© Walter Tichy

Main reference Lutz Prechelt, Barbara Unger-Lamprecht, Michael Philippsen, and Walter F. Tichy, "Two
Controlled Experiments Assessing the Usefulness of Design Pattern Documentation in Program
Maintenance," IEEE Trans. On Software Engineering, 28(6), June 2002, 595-606.

URL https://doi.org/10.1109/32.988711

Software Design Patterns are proven solutions for software design problems. They are claimed
to improve software quality, programmer productivity, and communication among developers,
among others. A series of three experiments tests these claims.

The first experiment checks whether the presence or absence of design pattern document-
ation makes a difference. Subjects received programs which contained design patterns and
were asked to perform maintenance tasks on them. The experiment group received a few

19231

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7503516
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1109/32.988711
https://doi.org/10.1109/32.988711
https://doi.org/10.1109/32.988711
https://doi.org/10.1109/32.988711

6 19231 – Empirical Evaluation of Secure Development Processes

lines (20-30) of extra documentation pointing out the design patterns. Results indicate that
documenting design patterns speeds up maintenance tasks that involve those patterns, or
reduces defects. This experiment has been repeated using a different programming language
with consistent results.

The second experiment compares maintenance tasks on programs with and without design
patterns. Four programs were implemented in two versions each: One with patterns and one
in a modular fashion without design patterns. The results show that not all patterns are
equally effective. Some speed up pattern-relevant maintenance tasks, some have no effect,
and some require extra time. The complexity of the patterns seems to play an important
role. This experiment has been replicated yielding similar results.

The third experiment tests whether programmers communicate more effectively with
shared knowledge of design patterns. Pairs of programmers were audio and video recorded
when discussing maintenance tasks. The recordings were analyzed and the contributions of
each participant were counted. The results clearly show that with shared pattern knowledge,
a more balanced communication results, where balanced means that team members contribute
equally to the discussion.

These three experiments (and their replications) support and complement each other and
confirm the hypothesized positive effects of design patterns.

(The experimental techniques employed might also be of interest. Double counter-
balancing helps neutralize sequencing effects. Communication lines as a measure of effective
communication might be interesting in other contexts.)

3.5 Empiricism in Software Engineering and Secure Systems
Laurie Williams (North Carolina State University - Raleigh, US)

License Creative Commons BY 3.0 Unported license
© Laurie Williams

The science of software engineering and the science of security can be advanced through the
use of sound research methodologies while conducting empirical studies. With the use of
sound methodologies, the evidence produced by a study is more credible, convincing, and
substantiated and can be built upon by future researchers. As a result, the research results
has more impact on other researchers and on practitioners. Additionally, meta-analysis and
theory/law building is enabled when the research results are thoroughly reported.

Over the last twenty or more years, empirical software engineering researchers have
conducted explicit efforts to mature the use of sound methodologies by creating guidelines
and examples that bring established research practices into the context of software engineering.
These guidelines include books and journal papers. Additionally, communities have come
together with the goal of advancing software engineering research methods, including Dagstuhl
seminars (Seminars 06262 and 10122), the International Software Engineering Research
Network (ISERN), and the Empirical Software Engineering and Measurement (ESEM)
conference. Over time, the top software engineering conference began to insist on the use
of sound research methods which raised the bar for the community. A comparison of the
research and validation methods in accepted papers in the 2002 International Conference on
Software Engineering (ICSE) [1] and the 2016 ICSE demonstrated that the 2016 papers [2, 3]
were more likely (3% versus 19%) to be an empirical reports which were more likely (0%
versus 30%) to be accepted when compared with the 2002 papers. Additionally, the 2016

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Adam Shostack, Matthew Smith, Sam Weber, and Mary Ellen Zurko 7

papers were more likely to have a formal evaluation (5% versus 35%) while papers that used
example as their evaluation or to have no evaluation (20% and 7%, respectively, in 2002)
were essentially non-existent in 2016.

Empiricism in emerging in security research. To establish a baseline, Carver et al. [1, 2]
analyzed the evidence of science papers in the top security conference, ACM Computer and
Communications Security (CCS) and IEEE Security and Privacy. Their main motivation was
to assess whether the papers reported information necessary for three key pillars of scientific
research: replication, meta-analysis, and theory building. They examined the papers for
completeness such that other researches would be enabled to understand, replicate, and build
upon the results but looking for: research objectives, subject/case selection, the description
of the data collection procedures, the description of the data analysis procedure, and the
threats to validity. They found that 80% of the papers did not provide clearly-defined and
labeled research objectives to define the goals, questions, and/or hypotheses of the research.
Additionally, 70% had no discussion of the threats to validity or limitations of the work such
that future researchers can make design choices to address these threats and limitations
and to contextualize meta-analysis. These results indicate a need for the security research
community to go through the type of maturation in empirical research that the software
engineering community has gone through, including publishing guidelines in books and
journal and the establishment of a community to drive this maturation.

References
1 M. Shaw, Writing Good Software Engineering Research Papers Proceedings of 25th Inter-

national Conference on Software Engineering (ICSE’03), pp. 726-736, 2003.
2 C. Theisen, M. Dunaiski, L. Williams and W. Visser, Writing Good Software Engineering

Research Papers: Revisited 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), Buenos Aires, 2017, pp. 402-402.

3 C. Theisen, M. Dunaiski, L. Williams and W. Visser, Software Engineering Research at the
International Conference on Software Engineering in 2016 SIGSOFT Softw. Eng. Notes,
Vol. 42, No. 4, pp. 1-7. Buenos Aires, 2017, pp. 402-402.

4 Morgan Burcham, Mahran Al-Zyoud, Jeffrey C. Carver, Mohammed Alsaleh, Hongying Du,
Fida Gilani, Jun Jiang, Akond Rahman, Özgür Kafalı, Ehab Al-Shaer, and Laurie Williams.
Characterizing scientific reporting in security literature: An analysis of ACM CCS and
IEEE S&P papers In Proceedings of the Hot Topics in Science of Security: Symposium
and Bootcamp, HoTSoS, pages 13–23, New York, NY, USA, 2017. ACM.

5 Jeffrey C. Carver, Morgan Burcham, Sedef Akinli Kocak, Ayse Bener, Michael Felderer,
Matthias Gander, Jason King, Jouni Markkula, Markku Oivo, Clemens Sauerwein, and
Laurie Williams. Establishing a baseline for measuring advancement in the science of se-
curity: An analysis of the 2015 IEEE Security & Privacy proceedings In Proceedings of the
Symposium and Bootcamp on the Science of Security, HotSos ’16, pages 38–51, New York,
NY, USA, 2016. ACM.

3.6 “Usable Security” approaches to Empiricism for Secure Software
Development

Matthew Smith (Universität Bonn and Fraunhofer FKIE, DE), Sascha Fahl (Leibniz Uni-
versität Hannover, DE), and Michelle L. Mazurek (University of Maryland - College Park,

19231

8 19231 – Empirical Evaluation of Secure Development Processes

US)

License Creative Commons BY 3.0 Unported license
© Matthew Smith, Sascha Fahl, and Michelle L. Mazurek

Usability problems are a major cause of many of today’s IT-security incidents. Security
systems are often too complicated, time-consuming, and error prone. For more than a
decade researchers in the domain of usable security (USEC) have attempted to combat
these problems by conducting interdisciplinary research focusing on the root causes of the
problems and on the creation of usable security mechanisms. While major improvements have
been made, to date USEC research has focused almost entirely on the non-expert end-user.
However, many of the most catastrophic security incidents were not caused by end-users, but
by developers. Heartbleed and Shellshock were both caused by single developers yet had
global consequences. Fundamentally, every software vulnerability and misconfigured system
is caused by developers making mistakes, but very little research has been done into the
underlying causalities and possible mitigation strategies. In this talk we will explore the
need for empiricism for secure software development in several application areas, including
TLS, passwords, malware analysis and vulnerability analysis.

3.7 How the usable security community does developer studies:
Field-ish studies with Build It, Break It, Fix It

Michelle L. Mazurek (University of Maryland - College Park, US)

License Creative Commons BY 3.0 Unported license
© Michelle L. Mazurek

Joint work of Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Michelle L. Mazurek, and Piotr Mardziel.
Main reference Andrew Ruef, Michael W. Hicks, James Parker, Dave Levin, Michelle L. Mazurek, Piotr Mardziel:

Build It, Break It, Fix It: Contesting Secure Development. ACM Conference on Computer and
Communications Security 2016: 690-703

URL https://dl.acm.org/citation.cfm?doid=2976749.2978382

Lab studies, field measurements, and field studies all contribute valuable knowledge to our
understanding of secure development, but they also all have important drawbacks in terms
of internal and external validity. The Build It, Break It, Fix It competition represents a new
point in this tradeoff space. Teams compete over several weeks to build software according to
a spec, gaining points for functionality and performance, then compete to break each others’
software, causing the vulnerable team to lose points. The competition provides insight into
how and why certain vulnerabilities arise, providing more control than a field study but more
ecological validity than a smaller-scope lab study.

4 Working groups

4.1 Building Code Breakout
Adam Shostack and Carl Landwher

License Creative Commons BY 3.0 Unported license
© Adam Shostack and Carl Landwher

Joint work of Adam Shostack, Carl Landwehr, Florian Alt, Michael Coblenz, Serge Egelman, Shamal Faily,
Joseph Hallett, Trent Jaeger, Mike Lake, Steve Lipner, Fabio Massacci, Simon Ou, Olgierd Pieczul,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://dl.acm.org/citation.cfm?doid=2976749.2978382
https://dl.acm.org/citation.cfm?doid=2976749.2978382
https://dl.acm.org/citation.cfm?doid=2976749.2978382
https://dl.acm.org/citation.cfm?doid=2976749.2978382
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Adam Shostack, Matthew Smith, Sam Weber, and Mary Ellen Zurko 9

Riccardo Scandariato, Laurens Sion, Laurie Williams, Sam Weber

Building codes for physical structures have been developed over centuries to address societies’
needs for buildings that are safe for their occupants and can stand up to customary natural
threats – rain, wind, fire, earthquakes – for the areas in which they are built. Although
such codes are diverse, they generally call for an initial approval by a local authority of the
design and specification of the proposed structure, use of approved materials and methods
in its construction, inspections to be carried out by trained third-party inspectors during
construction, and a final approval for occupancy before the building can be occupied.

The construction and deployment of software systems, with few exceptions, is not subject
to these kinds of third-party inspections and approvals. It has been proposed that the kinds
of mechanisms found in the building code model might help achieve better security in the
software systems deployed in, for example, medical devices, power grids, and “Internet-of-
Things” devices.

The group considered what limits the building code metaphor might have in relation to
software systems, what hypotheses about this approach might be developed and subjected
to empirical evaluation, and what a roadmap might look like that would lead to the appro-
priate development and use of building codes for software systems with security and safety
responsibilities.

4.2 Ecological validity and study design for empirical secure
development studies

Michelle L. Mazurek (University of Maryland - College Park, US) and Daniel Votipka
(University of Maryland - College Park, US)

License Creative Commons BY 3.0 Unported license
© Michelle L. Mazurek and Daniel Votipka

Joint work of Denning, Tamara; Richter Lipford, Heather; Aviv, Adam; Fiebig, Tobias; Smith, Matthew; Murphy,
Brendan; Coblenz, Michael; Bodden, Eric; Fahl, Sascha; Zurko, Mary Ellen; Tichy, Walter F.;
Myers, Brad; Weir, Charles

The design of a study is critical to producing correct results and the secure development
researcher faces several unique and difficult challenges when attempting to choose the right
design. For example, most development tasks are performed over weeks of collaborative work,
making it difficult to even simulate ecologically valid conditions in a controlled lab setting.
Also, security is typically a secondary focus in real-life settings, requiring further complication
of the study design to avoid unrealistic behaviors. Further, measuring correct behaviors with
respect to security is difficult as it is generally requires proving the absence of any errors.
Developer experience can also vary widely across many dimensions including programming
ability, development workflow, and security knowledge, reducing the generalizability of results
without a broad sample of participants.

Fields such as software engineering [4] and usable security [5] offer recommendations
for study design to resolve some of these issues. Other recent work has focused on specific
challenges of secure development measurement, i.e., whether remote participants produce
similar results as local participants; on the differences between using students, GitHub users,
freelancers, and corporate developers [1, 2, 3]; and the effect of varying incentive structures [3].
Unfortunately, little general guidance specific to secure development study design currently
exists for newer researchers, and several specific questions still remain open. Therefore, there
is a need both for outlining best practices for study design based on work in other fields, and

19231

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

10 19231 – Empirical Evaluation of Secure Development Processes

also investigating open questions specific to secure development tasks. As a first step toward
addressing these issues, this working group focused on three specific tasks:

Define a set of generic guidelines for new researchers and highlight security-specific
examples of their application.
Identify methodological issues requiring further research
Identify a set of possible metrics for measuring aspects of secure development

4.2.1 Design Guidelines

The first group identified an initial set of generic guidelines useful to empirical research
broadly, along with secure-development-specific examples for each. We list these guidelines
and examples here.

1. Leverage well-established study-design practices from other fields

Many of the decisions faced when designing a empirical evaluation of secure development
are not unique to this domain of research. Other fields such as software engineering, human-
computer interaction, psychology, sociology, and anthropology have established best practices
that address many of these issues. For example, the Guide to Advanced Empirical Software
Engineering offers best practices for topics such as survey design, statistical analysis, and
research ethics. Researchers should consider these best practices for decisions that are not
specific to secure development research.

2. Use pilot studies to hone in on the research objective and be willing to iterate on the
study design

The initial study design is rarely perfect. The research team typically does not have the
necessary domain knowledge to predict how participants will interpret survey questions, task
descriptions, or interface element or how they will respond during the study. Therefore, it’s
important that all studies begin with a pilot where participants can share their impressions
of the study to ensure the design actually meets the stated research objectives or whether
new objectives should be sought. Similarly, as the study is being carried out, the researchers
should monitor data collected and be open to making updates to the design if it becomes
evident that changes are necessary.

3. Consider the metrics appropriate for the study methodology and desired outcomes

One of the most important considerations when designing any study is in determining
what data to collect. This includes what data to collect about the participant themselves
and study-specific data, e.g., interactions with a tool or survey responses. Significant care
should be taken to ensure that both the variables under study along with any potentially
confounding effects are measured as precisely as possible. This is particularly difficult in
security where correct development solutions require the absence of errors. Therefore, the
researcher must consider designs that limit the scope of possible correct solutions, making
analysis more manageable.

4. Consider the level of expertise of participants

Because developers can vary drastically with respect to their secure-development expertise,
it is important that the research team consider whether and how these variations will affect
the study. For example, when A/B testing a tool to support vulnerability discovery, the

Adam Shostack, Matthew Smith, Sam Weber, and Mary Ellen Zurko 11

researcher should consider the security expertise of the participants. Because developers
with more expertise are more likely to find a vulnerability irrespective of the tool being
tested, their expertise should be measured and considered as a covariate during analysis.
Alternatively, the participants could be provided with additional training at the start of the
experiment to ensure all participants begin on equal footing.

5. Create a context for the experiment that appropriately prompts participants

Participants’ behaviors are typically context-dependent. This is especially true for security
and privacy decisions [6]. Thus, the context in which participants are surveyed or observed
should be selected to best fit the experiment’s goals. For example, a researcher whose goal is
to measure the impact of a new penetration tool at improving vulnerability discovery could
run the study as part of a Capture-the-Flag, where participants are instructed to exploit a
series of programs, encouraging participants to think like an attacker.

6. Consider how and when to use deception to hide the true purpose of your study

In some cases, informing participants of the true nature of a study could bias them
to behave differently than they would in a real-life scenario. For example, participants
may be unwilling or ashamed to admit they do not consider security. However, the use
of deception significantly complicates the study design and in general, the research should
strive to be as transparent with participants a possible (as discussed in the next guideline).
Thus, researchers should balance these needs by considering when deception is necessary to
maintain the integrity of the study.

7. Consider ethics in the design of the study

It is morally imperative that experiments on human subjects be performed ethically.
Therefore, it is important that the researcher consider potential ethical dilemmas during
the design of the study. For example, studies of habituation to compiler security warnings
could cause developers to be more likely to ignore these types of problems in their nor-
mal work. Researchers should consider these possible side effects and design mitigations
against them. The principles of the Belmont Report—Respect for Persons, Beneficence, and
Justice—and the Menlo Report, which builds on the Belmont report focusing on information
and communications technologies, provide useful guidelines for ethical considerations.

4.2.1.1 Future work

Future work will look at refining this list and providing further specific design examples for
secure development studies. We will look at collecting these guidelines both from seminar
participants and the broader community into an online living document. This document
could provide a useful reference point for researchers new to the field.

4.2.2 Studying Methodology

The second group considered open questions with regard to study design for secure develop-
ment. The goal was to brainstorm empirical studies that could shed light on how to make
appropriate study-design choices in secure-development studies..

Table 1 reviews the open questions the group considered. For each question, the group
characterized what is currently known about this question: a significant amount (), some
(G#), or little to none (#).

Further discussion on the general idea of how to think about task instructions and fidelity
suggested several potential concrete studies:

19231

12 19231 – Empirical Evaluation of Secure Development Processes

Amount
Question Currently Known

How much specification or documentation should be provided for each
task? Should unit tests be provided?

#

How much prompting for the importance of security should be provided? G#

How much time should be provided to complete the task? A fixed time
budget or unlimited time?

#

Task complexity and fidelity to real-world tasks:
Reading code vs. writing code #
Real-world code vs. contrived experimental code #
From-scratch development vs. editing pre-written code #

Should participants receive feedback and then get a second chance to
improve their code?

G#

Table 1 Open questions for secure software development study methodology.

What does real-world tasking in industry look like (interview study)

Comparing writing secure code to fixing insecure code

Adding irrelevant details to the task specification to increase cognitive load

Comparing different amounts of security framing and/or role-playing, to similar tasks
without context

Comparing convincing deception, unconvincing deception, and no deception

Comparing starting from scratch to adding new features, with different size additions

Comparing results when task code is written on paper, with a text editor, with an IDE,
and with a debugger

Comparing requiring participants to use a standard development setup to allowing them
to use their own preferred setup

Repeating any of the above studies across a variety of security contexts (e.g., not just
cryptography)

4.2.3 Metrics for Studying Secure Development

The final group explored features of developers and the organizations they belong to that
might be useful in future work. Such features could be measured as outcome variables, or
used as covariates in study design. For each identified feature, the group sought to identify
existing metrics used to measure these features. This brainstorming exercise highlighted
several metrics that could be adopted by secure development researchers. For example,

Adam Shostack, Matthew Smith, Sam Weber, and Mary Ellen Zurko 13

this included measurements for general security awareness (Human Aspects of Information
Security Questionnaire (HAIS-Q) [12]), security behavior (Security Behavior Intention Scale
(SeBIS) [7]), and developer personality (Five-Factor Personality Inventory [13], Consideration
for Future Consequences (CFC) [11], Need for Cognition (NFC) [9], Domain-Specific Risk-
Taking scale (DoSpeRT) [8]). The group also suggested further investigation of psychology,
sociology, and anthropology literature to identify metrics for features such as emotional
state, frustration towards security, and organizational culture. Finally, the group identified
some features that have historically only been measured using simple, Likert-scale self-report
questions. This included expertise in development and security. Some work has attempted
to use knowledge assessments to gauge these expertise levels, but these tests tend to be
cumbersome, and there is no clear evidence of their validity for measuring expertise beyond
the specific questions asked. Future work should consider possible more efficient alternatives.

References
1 Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L. Mazurek, and Sascha

Fahl. Security Developer Studies with GitHub Users: Exploring a Convenience Sample. In
Proceedings of the 13th Symposium on Usable Privacy and Security (SOUPS), pages 81—95,
2017.

2 Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, and Matthew Smith Deception
Task Design in Developer Password Studies: Exploring a Student Sample. In Proceedings
of the 14th Symposium on Usable Privacy and Security (SOUPS), pages 297—313, 2018.

3 Alena Naiakshina, Anastasia Danilova, Eva, Gerlitz, Emanuel von Zezschwitz, and Matthew
Smith. “If You Want, I Can Store the Encrypted Password”: A Password-Storage Field
Study with Freelance Developers. In Proceedings of the 37th Conference on Human Factors
in Computing Systems (CHI), pages 140—152, 2019.

4 Forrest Shull, Janice Singer, and Dag I.K. Sjøberg. Guide to Advanced Empirical Software
Engineering. Springer-Verlag, 2007.

5 Stuart Schechter. Common Pitfalls in Writing about Security and Pri-
vacy Human Subjects Experiments, and How to Avoid Them. ht-
tps://cups.cs.cmu.edu/soups/2010/howtosoups.pdf, 2010.

6 Helen Nissenbaum. Privacy as Contextual Integrity. Washington Law Review, pages 119–
157, 2004.

7 Serge Egelman and Eyal Peer. Scaling the Security Wall: Developing a Security Behavior
Intentions Scale (SeBIS). In Proceedings of the 33rd Conference on Human Factors in
Computing Systems (CHI), pages 2873–2882, 2015.

8 Ann-Renee Blais and Elke U. Weber. A Domain-Specific Risk-Taking (DoSpeRT) Scale for
Adult Populations. Judgement and Decision Making, vol. 1, no. 1, pages 33–47, 2006.

9 John T. Cacioppo, Richard E. Petty, and Chuan Feng Kao. The Efficient Assessment of
Need for Cognition. Journal of Personality Assessment, vol. 48, no. 3, pages 306–307, 2010.

10 John T. Cacioppo, Richard E. Petty, and Chuan Feng Kao. Promotion Orientation Ex-
plains Why Future-Oriented People Exercise and Eat Healthy: Evidence From the Two-
Factor Consideration of Future Consequences-14 Scale. Personality and Social Psychology
Bulletin, vol. 38, no. 10, pages 1272–1287, 2012.

11 Jeff Joireman, Monte J. Shaffer, Daniel Ballet, and Alan Strathman. Promotion Orient-
ation Explains Why Future-Oriented People Exercise and Eat Healthy: Evidence From
the Two-Factor Consideration of Future Consequences-14 Scale. Personality and Social
Psychology Bulletin, vol. 38, no. 10, pages 1272–1287, 2012.

12 Kathryn Parsons, Dragana Calic, Malcolm Pattinson, Marcus Butavicius, Agata McCor-
mac, and Tara Zwaans. The Human Aspects of Information Security Questionnaire (HAIS-
Q): Two further validation studies. Computer & Security, vol. 66, pages 40–51, 2017.

19231

14 19231 – Empirical Evaluation of Secure Development Processes

13 Paul Costa and Robert R. McCrae. Revised NEO Personality Inventory (NEO PI-R) and
NEO Five-Factor Inventory (NEO-FFI): Professional Manual. Psychological Assessment
Resources, 1992.

4.3 Clever Recruitment Techniques: How to Design Studies that get
Enough of the Right Kind of Participants

Tobias Fiebig (TU Delft, NL), Michael Coblenz (Carnegie Mellon University - Pittsburgh,
US), and Fabio Massacci (University of Trento, IT)

License Creative Commons BY 3.0 Unported license
© Tobias Fiebig, Michael Coblenz, and Fabio Massacci

Joint work of Lo Iacono, Luigi; Fahl, Sascha; Coblenz, Michael; Fiebig, Tobias; Aviv, Adam J.; Alt, Florian;
Denning, Tamara; Votipka, Daniel; Mazurek, Michelle; Massacci, Fabio;

4.3.1 Introduction

Recruiting participants for studies among professionals is a serious obstacle for studies on
programmers’ security behavior and practices. In the past, researchers from the usable
security community tried to use mass mailing campaigns to app developers [1], community
driven approaches [2], and recruiting among students [3]. In this workshop, we investigated
recruitment techniques and incentives for professionals, and found that they are tied to the
underlying research questions and design of studies on developers’ security behavior.

4.3.2 Key-Insights and Research Objectives

The key-insights of our workshop are:
The right way to recruit depends on the research question of a study, which determines
the population we want to draw from, and thereby the channel and incentives we can use
for recruitment.
Our knowledge of developer types (as well as other involved stakeholders) is limited.
Hence, future qualitative study should work towards a taxonomy of stakeholders and
programmer types in software development.
Our knowledge of existing recruitment channels and incentive models is mostly incidental.
As such, a structured literature study should enable a more informed view on what worked
in the past.
With the currently unclear situation, extensive pre-testing is essential for finding the right
combination of recruitment methods and target population. a future study should aim
at validating selected combinations of methods and target groups for common research
question types.

4.3.3 Common Research Question Structures

First, we explored common research question setups, to explore the context of studies on
secure software development. We identified four distinct research question setups:
1. How does a certain artifact/organizational structure/training X promote or not promote

better secure outcomes Y ?
2. What are the incentives/barriers X to improving security in a particular operational

condition Y ?
3. What are the challenges/problems faced by population X, and how can they be identi-

fied/mitigated/denied?

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Adam Shostack, Matthew Smith, Sam Weber, and Mary Ellen Zurko 15

We make two observations based on these general research questions: (i) While we selected
general descriptions, in practice instanciations of these question may have a substantial
conceptual overlap, and, (ii) The setup of the research question may already determine the
population we have to select our sample from.

4.3.4 Population Types and Roles

Next, we attempted to categories the types and roles involved in producing software.
Managers
Programmers as users
Testers
Security teams
Designers
Domain experts
Tool creators
Users
Programmers as creators
Architects/Requirements engineer
Code reviewers
Hackers
Attackers

We note that we do not have enough validated insights into the roles commonly involved
in Software development. The above list is tentatively based on an in-group brainstorming.
While, technically, these types and roles can be derived from descriptive literature of the
software development process, this does not necessarily reflect how these are set-up in practice.
Hence, we suggest further qualitative studies, combined with literature research, to identify
types and roles, and validate them in practice.

4.3.5 Incentives

Next, we discussed incentives for study participation. Even though our research could be
better informed by, e.g., Motivational Theory from psychology and Social Science, we note
that the field of software development usually changes frequently. Hence, insights from other
fields, especially if they are older, may not transfer directly. Inceintive methods we discussed
are:

Cash: Either as a flat-payment, a bonus for completion, a raffle, per-hour, as a prize,
or as additional staff time (if mandated by leadership). A bonus for good performance
might mitigate boredom during the study.
Fame, i.e., by combining the survey with a leader board. Competing with others in
general (Vanity/Victory).
Enabling a rare experiences and/or Fun for participants, e.g., driving in a race car,
joining a key-note, etc.
The prospect of helping others.
Helping ones’ own organization / Oneself.
Building better (own) system.
An opportunity for networking, social gains, and competence gains, i.e., by obtaining
new technical skills or exposure to potential interesting technology.
Distraction from ones work.
Obtaining Credits (students).

19231

16 19231 – Empirical Evaluation of Secure Development Processes

Learning best practices for (own) studies.
We note that some of these incentives may indeed be rather expensive. Others, especially
unique experiences, may be more readily available to academic researchers than expected.
For example, several universities have student teams operating FormulaE or Forzza race cars.

4.3.6 Recruitment Channels

Finally, we discussed recruitment channels.

Community engagement: For example, in-person participation at hacking events, present
at industry conferences, using twitter/slack with hashtag #organization, retweeted by
the organization. These are difficult to scale and not necessarily sustainable.
Going to professional events focusing on recruitment: This can be supported by snow-
balling at conference (with quick ways, recording the conversation), by having a booth, or
by giving a talk at conference, asking the audience to participate. Furthermore, it might
be possible to integrate the survey in the talk, e.g., by using mentimeter (mentimeter.com)
with live display during the presentation.
Top-down contact within industry/professional organizations: Letting industry organ-
izations contact their members might be more incentivizing to professionals. This is
especially relevant for questionnaires that should be answered by managers. In general,
involving management first seems to provide reasonable results.
Class projects with optional participation to the study: This primarily leverages ongoing
classes, but one might also use mailinglists for previous courses and advertising through
other classes. A participant notes that lots of people give interest but do not follow up
on this.
Recruit students locally: For example with tear-off strips, and strategically placed, e.g.,
in start-up hubs, or via local mailing list (academic organization) and flyers.
Crawling public information: For example, crawling and contacting Github users and
Google play (App authors).
Hiring: Via platforms like Mechanical turk and other freelancer platforms.
Building a panel of people interested for future studies: This can be combined by combining
going to conference, and asking participants if they are interested in future studies, and
getting a bunch of people to keep up with the panel.
Engagin Local companies: For example, by integrating them in thesis/internship programs,
and directly recruiting CTOs/CIOs for interviews.
Release an application and wait until people actually use it.
Offering Trainings: This uses “hands-on” as an exercise, building on a within subject
design.
Go where people are waiting: If a significant wait time is involved, people might seek
some distraction. The entrance queues at developer conferences might be handy here.
Facebook Ads: These adds usually cost a few hundred dollars, and the standard answer
rate is around 3%; Completion of the survey may be optional.
Send personal invitations: Mass mails have a specific “smell” to them, which might
disincentivize participation. Making them less standardized might induce a sense of
personal engagement, leading to higher conversion.

4.3.7 Summary and Further Work

In summary, we find that pre-test and continuous evaluations are necessary for each ex-
perimental design. This should be an iterative process with several pre-tests. For further

Adam Shostack, Matthew Smith, Sam Weber, and Mary Ellen Zurko 17

work, we suggest to test what incentives work with which populations for which recruitment
techniques. In general, this will not be possible for an exhaustive list. Hence, this study
should be informed by the most common research questions and their relevant populations.
The study should build on motivation theory from psychology and social science. Similarly,
we have to build a taxonomy of populations, i.e., types of developers and other involved
stakeholders. This may be further informed by systematizing knowledge on which combina-
tions of populations, recruitment methods, and incentives proofed to be successful in the
literature.

References
1 Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek, and Chris-

tian Stransky. You get where you’re looking for: The impact of information sources on
code security. In Proceedings of the IEEE Symposium on Security and Privacy (Oakland),
pages 289–305, 2016.

2 Constanze Dietrich, Katharina Krombholz, Kevin Borgolte, and Tobias Fiebig. Invest-
igating System Operators’ Perspective on Security Misconfigurations. In Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security (CCS), pages
1272–1289, 2018.

3 Katharina Krombholz, Wilfried Mayer, Martin Schmiedecker, and Edgar Weippl. "I Have
No Idea What I’m Doing"-On the Usability of Deploying HTTPS. In Proceedings of the
USENIX Security Symposium (UseSec), pages 1339–1356, 2017.

4.4 API Usability Heuristics
Matthew Smith (Universität Bonn and Fraunhofer FKIE, DE) and Joseph Hallett (University
of Bristol, GB)

License Creative Commons BY 3.0 Unported license
© Matthew Smith and Joseph Hallett

Security API heuristics can give some metrics about what security problems reside in code.
The term has slightly different meanings to different communities however, but generally
security principles or heuristics are smaller, more general rules independent of technology,
whereas security guidelines are larger and more specific, and security standards have been
agreed upon by a larger community. It is also not entirely clear what a security API is, as
the term can include not just cryptographic and security related code but also APIs where
the security aspects are less obvious; for instance REST APIs and file access dialogues, and
data structures.

There are many different problems we might hope a security API heuristic might be
able to detect. Problems include issues with mental models or naming conventions where a
developer’s assumptions lead them to believe that APIs disallow (or allow) certain behaviour,
such as the ability to access to local files from a URL interface; issues with adversarially
controlled input where a developer mistakenly believes that an input will always be sanitised.
Issues with documentation are common where documentation is missing or wrong; as well as
issues with canonicalization, redundancy, immutability and call order . Even if an API is
correct at one time, updates to library APIs can lead to functions and patterns becoming
deprecated and needing updates, and building and linking a library is something many
developers struggle with.

Security heuristics, such as Green and Smith’s rules for a good crypto API suggest

19231

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

18 19231 – Empirical Evaluation of Secure Development Processes

principles to help fix these problems but how might we evaluate their effectiveness? A/B
testing is hard to use as the sheer number of parameters can lead to unreasonably large
numbers of participants and tests being performed. Instead other approaches such as
qualitative evaluation of heuristics against APIs, checking known API problems against
proposed heuristics, and analysing change logs to see how APIs were adapted in response to
a usability problem may provide better results.

Future work will look at collecting API heuristics and guidelines into an online resource,
that would also collect new proposals for heuristics and the results of studies using the
heuristics. Other work will look at running experiments to see whether students produce
more secure APIs when given heuristics than without them. Finally if a study shows that a
significant number of people fail to use an API correctly because of a usability issue, then
we ought to be able to report and track this issue—perhaps a new usability CVE database
might be a sensible way forward.

4.5 Methods For Empirical Studies of SDLs
Sam Weber (Carnegie Mellon University - Pittsburgh, US), Adam J. Aviv (U.S. Naval
Academy - Annapolis, US), Michael Coblenz (Carnegie Mellon University - Pittsburgh, US),
Tamara Denning (University of Utah - Salt Lake City, US), Shamal Faily (Bournemouth
University, UK), Mike Lake (CISCO Systems - Research Triangle Park, US), Steven B.
Lipner (SAFECode - Seattle, US), Michelle L. Mazurek (University of Maryland - College
Park, US), Xinming (Simon) Ou (University of South Florida - Tampa, US), Olgierd Pieczul
(IBM Research - Dublin, IE), and Charles Weir (Lancaster University, UK)

License Creative Commons BY 3.0 Unported license
© Sam Weber, Adam J. Aviv, Michael Coblenz, Tamara Denning, Shamal Faily, Mike Lake, Steven
B. Lipner, Michelle L. Mazurek, Xinming (Simon) Ou, Olgierd Pieczul, and Charles Weir

In this breakout group we discussed appropriate methodologies for empirically studying
secure development processes. It would be ideal if we, as a community, could produce a
guide to researchers on what techniques and methodologies to use in order to empirically
evaluate competing processes for secure development.

Unfortunately, the current state of the art falls far short of where we need to be in order
to produce such a guide. Even such apparently easy process changes, like removing a static
analysis from the acceptance tests, turn out in practice to be surprisingly subjective and
highly context-dependent. Other changes are harder to evaluate: if we see more defects, are
we creating more or are we better at detecting them? It was clear to the group that effective
research methodologies was itself a non-trivial research topic.

In order to make more concrete process, we discussed both hypotheses about secure
development that the community maintains, but would like more concrete evidence for, and
what the important outstanding research questions are. We then did a deep-dive on one of
them (threat-modeling).

Things that the community believes are true, but which could use empirical evidence,
include:

threat-modeling is very important,
vulnerabilities and vulnerability mitigation tasks are distinct from each other and need
to be tracked as such in the bug tracking system, and
securing third-party code/libraries is critically important.

Outstanding research questions (many of which are related to the above) include:

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Adam Shostack, Matthew Smith, Sam Weber, and Mary Ellen Zurko 19

the costs and benefits of security-related choices like the use of type-safe languages,
the impact of various software architectures on security,
what are the key advantages of threat modeling? Finding real threats, supporting
communication, focusing thinking, allowing non-security-experts to have input into the
process?
When deciding whether or not to incorporate third-party code, what due-diligence
processes are effective?
how do processes like penetration testing affect company security culture, and how to
distinguish the effects of community culture from specific processes?

In our threat-modeling deep-dive, we realized that there were a myriad of desirable
properties of a threat modeling methodology, such as being low-cost, or easy to use by
non-security experts. There are also many possible desirable properties of a threat model,
such as identifying only feasible attacks, or enabling estimating of the cost of exploitation.
A number of experimental methods for evaluating different threat modeling methodologies
were brought up, including

Obtaining a "gold standard" for a given scenario and comparing the results produced by
each method,
ethnographic methods, where real-world teams are observed,
Leverage the training process of companies that are bringing in external threat-modeling
trainers, and
Conducting internal analyses, where an organization collects threat-modeling artifacts
and then later reviews them versus vulnerabilities that were found or missed. As the
actual threat model is likely to be sensitive, it probably cannot be released, but the
comparison should be able to be disclosed.

The group agreed that none of these methods were "better" than the others, but rather that
all of them obtain different views of threat modeling. By using disparate techniques a more
complete picture can be formed. Although time prevented us from doing similarly deep dives
on other problems, the group felt that this was probably a general observation: given the
nature of cybersecurity, using a variety of techniques will be almost certainly required to give
a complete picture of the benefits and drawbacks of any particular development methodology.

4.6 Publication or reviewing guidelines; Establishing a baseline for
evidence of science in security

Laurie Williams (North Carolina State University - Raleigh, US)

License Creative Commons BY 3.0 Unported license
© Laurie Williams

To build a science, researchers need to document scientific evidence of their work so that future
researchers can support or evolve the hypotheses and theories documented in published
reports and papers. Carver et al. analyzed papers that appeared in two top security
conferences, ACM Computer and Communications Security (CCS) and IEEE Security and
Privacy (S&P) [1, 2]. Their main motivation was to assess whether the papers reported
information necessary for three key pillars of scientific research: replication, meta-analysis,
and theory building. To perform this work, Carver’s team utilized a rubric with which they
analyzed the papers: http://carver.cs.ua.edu/Studies/SecurityReview/Rubric.html. The
group discussion revolved around looking at the components of this rubric and discussed

19231

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

20 19231 – Empirical Evaluation of Secure Development Processes

the benefits of providing rubrics to enable researchers to publish papers that contain the
scientific evidence others can build upon.

References
1 Morgan Burcham, Mahran Al-Zyoud, Jeffrey C. Carver, Mohammed Alsaleh, Hongying Du,

Fida Gi- lani, Jun Jiang, Akond Rahman, Özgür Kafalı, Ehab Al-Shaer, and Laurie Wil-
liams. Characterizing scientific reporting in security literature: An analysis of ACM CCS
and IEEE S&P papers In Proceedings of the Hot Topics in Science of Security: Symposium
and Bootcamp, HoTSoS, pages 13–23, New York, NY, USA, 2017. ACM.

2 Jeffrey C. Carver, Morgan Burcham, Sedef Akinli Kocak, Ayse Bener, Michael Felderer,
Matthias Gander, Jason King, Jouni Markkula, Markku Oivo, Clemens Sauerwein, and
Laurie Williams. Establishing a baseline for measuring advancement in the science of se-
curity: An analysis of the 2015 IEEE Security & Privacy proceedings In Proceedings of the
Symposium and Bootcamp on the Science of Security, HotSos ’16, pages 38–51, New York,
NY, USA, 2016. ACM.

Adam Shostack, Matthew Smith, Sam Weber, and Mary Ellen Zurko 21

5 Participants

Florian Alt
Bundeswehr University Munich, DE

Mike Lake
Cisco, US

Riccardo Scandariato
University of Gothenburg, SE

Adam J. Aviv
U.S. Naval Academy, US

Carl E. Landwehr
George Washington University, US

Reinhard Schwarz
Fraunhofer IESE, DE

Eric Bodden
Paderborn University, DE

Steve B. Lipner
SAFECode, US

Adam Shostack
Seattle, US

Michael Coblenz
Carnegie Mellon University, US

Luigi Lo Iacono
FH Cologne, DE

Laurens Sion
KU Leuven, BE

Tamara Denning
University of Utah, US

Fabio Massacci
University of Trento, IT

Matthew Smith
University of Bonn, DE

Serge Egelman
UC Berkeley, US

Michelle L. Mazurek
University of Maryland, US

Walter F. Tichy
Karlsruhe Institute of Technology, DE

Sascha Fahl
Leibniz University Hanover, DE

Brendan Murphy
Microsoft Research, UK

Daniel Votipka
University of Maryland, US

Shamal Faily
Bournemouth University, UK

Brad A. Myers
Carnegie Mellon University, US

Sam Weber
Carnegie Mellon University, US

Tobias Fiebig
TU Delft, NL

Xinming (Simon) Ou
University of South Florida, US

Charles Weir
Lancaster University, UK

Joseph Hallett
University of Bristol, UK

Olgierd Pieczul
IBM, IE

Laurie Williams
NC State University, US

Trent Jaeger
Penn State University, US

Heather Richter Lipford
UNC Charlotte, US

Mary Ellen Zurko
MIT Lincoln Laboratory, US

19231

	Executive Summary Adam Shostack, Matthew Smith, Weber, and Mary Ellen Zurko
	Table of Contents
	Overview of Talks
	Experience with the Microsoft Security Development Lifecycle Steven B. Lipner
	Security in Modern Software Development Olgierd Pieczul
	Software Engineers are People Too: Applying Human Centered Approaches to Improve Software Development for Security Brad A. Myers
	A Series of Experiments on Software Design Patterns Walter Tichy
	Empiricism in Software Engineering and Secure Systems Laurie Williams
	``Usable Security'' approaches to Empiricism for Secure Software Development Matthew Smith, Sascha Fahl, and Michelle L. Mazurek
	How the usable security community does developer studies: Field-ish studies with Build It, Break It, Fix It Michelle L. Mazurek

	Working groups
	Building Code Breakout Adam Shostack and Carl Landwher
	Ecological validity and study design for empirical secure development studies Michelle L. Mazurek and Daniel Votipka
	Clever Recruitment Techniques: How to Design Studies that get Enough of the Right Kind of Participants Tobias Fiebig, Michael Coblenz, and Fabio Massacci
	API Usability Heuristics Matthew Smith and Joseph Hallett
	Methods For Empirical Studies of SDLs Sam Weber, Adam J. Aviv, Michael Coblenz, Tamara Denning, Shamal Faily, Mike Lake, Steven B. Lipner, Michelle L. Mazurek, Xinming (Simon) Ou, Olgierd Pieczul, and Charles Weir
	Publication or reviewing guidelines; Establishing a baseline for evidence of science in security Laurie Williams

	Participants

