
The Effects of Funding Gaps on Depot
Maintenance Hours

THESIS

Carlo S. D’Amato, 1st Lieutenant, USAF

AFIT-ENV-MS-20-M-196

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Army,
the United States Department of Defense or the United States Government. This
material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.



AFIT-ENV-MS-20-M-196

THE EFFECTS OF FUNDING GAPS ON DEPOT MAINTENANCE HOURS

THESIS

Presented to the Faculty

Department of Cost Analysis

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cost Analysis

Carlo S. D’Amato, B.A.

1st Lieutenant, USAF

March 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENV-MS-20-M-196

THE EFFECTS OF FUNDING GAPS ON DEPOT MAINTENANCE HOURS

THESIS

Carlo S. D’Amato, B.A.
1st Lieutenant, USAF

Committee Membership:

Lt Col Scott Drylie, Ph.D.
Chair

Lt Col Clay M. Koschnick, Ph.D.
Reader

Dr. Jonathan D. Ritschel, Ph.D.
Reader



AFIT-ENV-MS-20-M-196

Abstract

The relationship between expenditures and readiness level is a topic of interest

to military senior leaders, defense resource planners, and the American taxpayer

alike. Senior leaders within the Air Force (AF) justify increased defense budgets by

pointing to the potential adverse effects that decreased funding could have on military

readiness. Resource planners within the AF are then tasked with the responsibility of

ensuring that budgets are allocated most effectively to maximize the AF’s ability to

project airpower across a variety of contingency operations. This thesis investigates

the relationship between budgets and readiness by examining the relationship between

depot level funding and hours of aircraft downtime spent at the depot. Funding is

analyzed in terms of the magnitude that the amount of funding receives deviates from

the amount of funding requested by the planner. The analysis ultimately did not find

any conclusive relationship between deviations from requested depot budget levels

and the number of hours of downtime spent at the depot.
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THE EFFECTS OF FUNDING GAPS ON DEPOT MAINTENANCE HOURS

I. Introduction

1.1 Background

Stewardship of taxpayer dollars is a perennial concern within DoD, and is a com-

mon backdrop for empirical research, internal studies, and formal audits. A subject

line of a 2018 memo from Secretary of Defense James Mattis reads: “Be Peerless

Stewards of Taxpayers’ Dollars.” The memo is a call-to-arms for planners across the

DoD to “gain the full value from every taxpayer dollar spent on defense” and “focus

on lethality and affordability” [?] (Mattis, 2018). Mattis thereby identifies financial

stewardship as a prime DoD objective and defines its purpose: the provision of the

best warfighting capability with the budgets provided. This is perhaps a definition

of stewardship that is most analogous to how businesses assess themselves. It frames

taxes as costs and national defense as the product. For senior leaders, fighting ca-

pability and readiness are the “receipt” that the USAF provides to the American

taxpayer (Donovan & Goldfein, 2019).

Itemizing this receipt is typically framed in terms of the USAF’s ability to put

planes in the air (Fry, 2010; Losey, 2019). It comes as no surprise then that the

ongoing decline in mission capable aircraft has made headlines (Losey, 2018; Losey,

2019; Mehta, 2018). That decline is seen in the Mission Capability (MC) metric.

MC measures the percentage of aircraft at the unit level that are ready to conduct

operations (Air Force Logistics Management Agency [AFLMA], 2009). The MC rate,

in aggregate, declined from 2012 to 2018 (Losey, 2019). In Fiscal Year (FY) 2019, the
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rate increased trivially from 70.65% to 70.99%. Making matters worse is the fact that

this negative trend comes despite a steady growth in the Air Force’s top-level budget

over that same period (Figure 1). The Air Force has been accordingly admonished in

internal audits for overspending and under-delivering on key aircraft readiness metrics

(GAO [Government Accountability Office], 2018).

Figure 1. Mission Capability vs. Budget

The incongruity of growing budgets and declining readiness suggests that readiness

may be more complex than what is revealed by the MC rate. The DoD officially

frames readiness as “The ability of US military forces to fight and meet the demands

of the national military strategy” (Department of Defense [DoD], 2019) This definition

leaves it to the branches to determine how readiness should be measured. For its part,

the Air Force has internally made the shift from the unit-focused MC metric to the

total-inventory minded aircraft availability (AA) metric as the preferred measurement

of readiness (Oliver, 2003; Meserve, 2007; Fry, 2010; Ritschel, Ritschel, and York,

2019).

The major difference between AA and MC is that AA explicitly includes aircraft

that the unit has sent away to the depot for maintenance in its calculation of the

quantity of operable aircraft (Fry, 2010). Under MC, only the aircraft in direct pos-

2



session of the unit are used in the operability calculation. Including aircraft possessed

by the depot ensures that aircraft undergoing more serious repair or maintenance are

not left unaccounted for during readiness audits, as they are when using MC. The

two equations, 1 and 2, are represented below. The mission capable hours, the total

hours in the period that the airframe is operable and ready for use, are ultimately

divided by a larger denominator in the AA metric:

MC =
Mission Capable Hours

Inventory Hours of Unit Possessed Aircraft
(1)

AA = Mission Capable Hours
Inventory Hours of Unit Possessed Aircraft+Inventory Hours of Depot Possessed Aircraft

(2)

One implication of the AA metric is that the longer that aircraft are at the depot,

the worse the readiness picture is. Indeed, top-level Air Force data from the last five

years show that an average of 30% of all aircraft downtime is due to time spent at the

depot for maintenance. The next logical step is to examine how defense planners, as

peerless stewards of taxpayer dollars, can best allocate funds to minimize the amount

of downtime that is spent at the depot, thereby reducing downtime as a whole. Doing

so will shed light on the overall relationship between budgets and Air Force readiness.

1.2 Problem Statement

Defense economists fundamentally contend that it is the way budgets are allo-

cated, not just the overall magnitude of the Air Force total budget authority, has an

impactful role on readiness (Hartung, 1999; Biddle, 2004). In 1980, defense analyst

Franklin C. Spinney released a report that depicted declining readiness as a function

of underfunded operations and support (O&S) budgets (Spinney, 1985). Spinney ob-
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served that cyclical swells in the Air Forces total budget authority provoked strong

short run investment in new capabilities-driven programs. In the long run, the OS

tails of these same programs were not being protected during subsequent ebbs in

funding. Spinney felt that the failure to protect O&S funding was linked to a decline

in readiness. Programs were being funded with a stated level of O&S funding in

mind and the level was not being maintained; were it maintained, readiness would

not suffer.

Spinney’s report, though controversial at the time, found widespread support

within the Department of Defense (Hankins, 2018). In comments made to the Air

Force Times in 2019, Heritage Foundation Fellow John Venable blamed the slide in

availability on the prioritization of research and development over operations and

maintenance during Air Force budget planning (Losey, 2019). Venable’s comments

echo Spinney’s concerns from 40 years prior. Moreover, Venable’s claims support

Spinney’s tacit implication that greater O&M budgets would lead to increased readi-

ness.

The chart in Figure 2 suggests that some of the patterns observed in Spinney’s

initial report may still be observed today. Figure 2 shows how investment and OS

budgets continue to be unstable from year to year. Investment budgets especially

appear to fluctuate radically in a way that is not matched by steady growth in OS

budgets.

4



Figure 2. Trends in OS and Investment Budgets

Spinney’s claims, however influential, remain only vaguely supported. Detailed

investigation of the relationship between budgets and readiness requires linking air-

craft availability to specific O&S expenditures, not just those at the top level. The

budgetary readiness model will need to operationalize OS expenditure categories as

independent variables within the equation. Data for such a task are, fortunately,

available.

The Air Force’s Funding Requirement Management platform (FRM), provides

budget data that are indexed by Air Force Element of Expense/Investment Identifi-

cation Code (AFEEIC). The AFEEIC can then be used to identify the category of

good or service purchased. FRM also provides budget data both in terms of planned

expenditure, as outlined in the unit’s execution plan, and in terms of the actual

funding level executed at the end of the fiscal period. The consolidation of planned

requirements and executed obligation under the umbrella of a single system facilitates

the rapid identification of budgetary shortfalls and surpluses across various Air Force

platforms. Overall, the data provided by FRM allow for a granular analysis that is

impossible with top-level OS data.

This research will seek to establish how budgetary gaps, the deviations between
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requested budgets and actual spending, in various budgetary categories influence the

downtime hours caused by depot maintenance. A regression will be conducted to

measure how budgets allocated for depot level repairs ultimately impact the total

aircraft hours spent under depot possession. The analysis will necessarily identify

and include the additional non-financial variables pertinent to aircraft downtime in

order to control for their effects within the broader model.

More specifically, the FRM data will combine with the metrics already outlined

within the body of defense readiness literature to provide a comprehensive view of

the key determinants of reductions in unscheduled maintenance. The analysis will

use organically supported Air Force attack, fighter, and bombing aircraft as its mod-

elling cohort. The end result is a model that will provide insight into the functional

relationship between OS funding and readiness.

The central question guiding the research is: How do shortfalls or surpluses in

depot-allocated budgets impact depot downtime hours? Specifically, which types of

expenditures, by AFEEIC, have the greatest impact on depot maintenance hours?

1.3 Outline of Thesis

The remaining chapters in the thesis will be organized as follows. Chapter II

furnishes a review of the unique economic characteristics of the defense sector, as well

as provide background on the usage of AA as a quantifiable metric of readiness and

identify the key empirical drivers of AA. Chapter III contains the regression analysis

of the data provided by FRM in conjunction with the relevant variables identified in

Chapter II to create a regression model. Chapter IV presents the results of the model

created in Chapter III. Chapter V provides concluding remarks on the relationship

between OS expenditures and readiness are made.
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II. Literature Review

“The defense business,

notwithstanding the rhetoric of the

corporate managers involved in it,

is not private enterprise in anything

like the classic sense. But it is not

public enterprise. It is sui generis.

Therein lies much of the difficult

rationalizing and reforming it, or

even talking about it sensibly. . . ”

-Dr. Robert Higgs

2.1 The Defense Economic Framework

The market forces at play in the defense sector are markedly different from those

in the private sector. Consumers in private markets reconcile supply and demand

through their preferences: they spend money on what provides the greatest amount

of utility in accordance with their needs (Mises, 1958; Kaldor, 1986). The utility of

defense goods, however, can only truly be proven during war (Kaldor, 1986). It is

therefore war, not the consumer, that mediates the supply and demand of defense

goods (Kaldor, 1986).

Yet militaries must be maintained even in the absence of war in order to ensure

preparedness should war break out (Eisenhower, 1961). Without the inputs of con-

sumer preferences or the exigent needs of an armed conflict, the military is forced

to forge ahead based on the best estimates of central planners within the defense
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apparatus (Kaldor, 1986; Hartley, 2012). The necessity of a peacetime force thereby

makes the planner an inextricable piece of any analysis of the defense economy.

The planner’s job is complicated by a variety of peculiarities of the defense market

that are fundamentally rooted in its status as a public good. Planners theoretically

develop budgets that will provide the military readiness required to meet national

defense goals. Fiscal realities may necessitate changes to the “optimal” funding levels

identified by the planners. If the planner has done the job correctly, deviations from

what has been deemed necessary should result in some sort of fluctuation in readiness.

2.2 Defense as a Public Good

National defense, unlike any private sector output, is a public good. Public goods

are defined by their non-rivalry and non-excludability. Essentially, they are goods that

can be consumed regardless of the number of total consumers and whose consumption

cannot be diminished. In the words of economist Robert Higgs, “public goods, if

created for anyone, are created for all” (Higgs, 1990). Indeed, once provided, an

individual cannot diminish the amount of national defense being supplied, nor prevent

others from being protected by national defense (Hartley, 2012).

Although national defense is a desirable good, the inability to exclude non-paying

consumers from the market means that private markets will struggle to provide the

optimal amount of public goods (Hummel Lavoie, 1990). Moreover, no single indi-

vidual can raise the funds necessary to protect the nation from threats (Higgs, 1990)

The result is that the government must supply national defense to correct the private

market’s inevitable failure to provide the optimal amount of national defense.

The optimal provision of a public good is a difficult task. Private sector businesses

can rely on market forces to guide the allocation of resources to their most productive

purpose (Mises, 1958). Public goods, to include defense, must rely on the political
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process and planners to effectively allocate funding (Hartley, 2012). The intertangled

web of regulations and bureaucracy complicates the effective allocation of resources

(Coyne, Michaluk, and Reese, 2016). Hence, although government provides national

defense to correct a failure in the private market, the governmental control of national

defense contains its own inefficiencies and market failures.

2.3 The Economic Characteristics of National Defense

Despite frequent bipartisan calls to “run government as a business,” profit and

readiness are not analogous metrics (Dunne, 1995; Hartley Solomon, 2012; Hartley,

2012; Coyne et al. 2016; Mintzberg, 2017). While both profit and readiness can be

considered the outputs of private and defense markets respectively, readiness is a far

more ambiguous concept. Profit can be easily used to measure the productivity of

an investment in the private sector. Moreover, the metric is readily defined as any

revenues generated in excess of expenditures.

Readiness, meanwhile, is not as unambiguously calculated as profit. Readiness

levels are foremost defined in the context of the threats a system will face (Hartung,

1999). A fighter squadron will excel against enemies with air-to-air capabilities, but

be of only marginal use against a ground-based enemy shielded by jungle growth; two

readiness levels exist for the same squadron. In economic terms, this means that the

marginal productivity of a defense investment is defined in terms of its advantage

over rival actors.

Goods whose value depends on the value of a rival’s goods are known as tourna-

ment goods (Hove Lillekvelland, 2015). The concept of the tournament good was

originally introduced by economists Edward Lazear and Sherwin Rosen to account for

the high wages earned by senior executives in excess of their marginal productivity

(Lazear Rosen, 1981). Lazear and Rosen posited that firms could elicit optimal lev-
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els of productivity from skilled workers by making workers compete for promotions.

Their model found that rational workers will set their marginal effort equal to the

marginal expected gains that their additional effort will yield (Lazear Rosen, 1981).

In short, the value of skilled workers is accentuated when they are incentivized to

stratify themselves above lower-performing colleagues. Moreover, the greater the re-

wards of the promotion, the greater the resources a skilled worker is willing to commit

to secure it.

Lazear and Rosen’s framework can be expanded to defense goods (Kirkpatrick,

2003; Hove and Lillekvelland, 2015). Rival nations competing for military victory

face similar incentives as employees competing for promotions. Nations must decide

how much defense equipment to invest in to improve their chances of victory; the

greater the gap between a nation and its rivals, the greater its chance at victory. In

turn, the more significant the victory, the more resources the nation will commit to

increasing the probability of victory (Hove and Lillekvelland, 2015). Planners must

therefore analyze requirements both in the context of the utility that defense forces

provide as well as the evolution of the threats that they are expected to face. This

complicates the work of planners, who must optimize around a constantly shifting

definition of readiness.

Planners also lack a direct avenue of communication with voters as consumers

of national defense. Voters, with their limited knowledge of defense matters, must

entrust politicians with the minutiae of defense policy. A classic principal-agent

problem emerges, with the voters as principals and the politicians as agents (Hartley,

2012). Because the principal’s preferences must be expressed through the agent, the

agent may pursue his own benefit at the expense of the principal’s. A self-interested

agent may choose to promote populist defense policies that are more beneficial to his

polling numbers than to actual national defense goals (Hartley, 2012; Twight, 1990).
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In practice, this means that defense planners may find undue opposition against base

closures, but undue support for defense pay increases (Hartley, 2012; Carrell and

Hauge, 2009; Twight, 1990). Ultimately, the planner executes a version of voter

preferences that is filtered by the political bureaucracy.

These challenges, discussed at length by economists since the socialist calculation

debates of the early 20th century, tell us that that we, as a society, are not likely to

generate the optimal amount of defense (Hartley, 2012; Coyne Lucas, 2016). The

marginal value of more or less defense is neither known to decision makers, nor by

a citizenry which must monitor its decision makers. All of this bodes poorly for

the defense planner who must determine a common marginal valuation of military

preparedness and allocate resources accordingly.

Analyzing budgets strictly in terms of their raw magnitude therefore ignores the

central role that planners fulfill in the defense budgeting. Instead, it is necessary to

examine budgets in the context of how greatly they deviated from the amount outlined

by their planners. Considering the impacts of gaps not only evaluates the marginal

impact of expenditures on readiness across different programs, but also evaluates the

effectiveness of the planner’s ability to plan for the budgetary needs of the military.

If the gaps have no impact, the implication is that planners may be overestimating

their needs during the planning process.

2.4 Budget Planning in the Air Force

In the active duty Air Force, the budgetary planning of depot purchased equip-

ment maintenance (DPEM) has recently been centralized away from the MAJCOM

and consolidated at the directorate level (Fry, 2010; AFMAN 63-143). The task of

submitting the annual Project Objective Memorandum (POM) and spreading funds

across MAJCOMS now falls under the Central Asset Management office (CAM), a
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subsidiary of the Air Force Logistics, Engineering and Force Protection directorate

(A4). The ostensible advantage of this setup is that planners may move funds more

freely across requirements at the enterprise level, as opposed to having consult mul-

tiple requirements owners at the MAJCOM level (Fry, 2010). Figure 3 outlines the

funding process of depot level expenditures via CAM.

Figure 3. The CAM Budget Allocation Process (AFMAN 63-143)

It is incumbent upon these planners at CAM to efficiently program resources

such that readiness is provided at the optimal level. However, just as the economic

framework of the defense sector complicates the generation of the optimal level of

national defense, the conceptually broad nature of readiness adds layers of complexity

to the planner’s task. Readiness is not objectively defined, and must be rigorously

operationalized to have meaning.

2.5 The Components of Readiness

Readiness is conceptually comprised of two qualities: utilization and availability

(Advanced Technology Incorporated ,1980; Harrison, 2014). Utilization indicates the

amount of time that a resource is being actively employed. Meanwhile, availability in

the modern military context denotes the amount of time a resource is ready for use.

A study commissioned by the Chief of Naval Operations in 1980 expresses the two

facets of readiness mathematically within an example of radars:
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R1(utilization) =
Radar Uptime

Radar Uptime + Radar Downtime
(3)

R2(availability) =
Time in Period−Radar Downtime

T ime in Period
(4)

For the purposes of equations 3 and 4, the researchers define uptime as the time that

the radar is in active use. The definition of downtime is more broad, and counts all

of the time that the system is broken, regardless of whether or not there is demand

for the system.

An important takeaway is that utilization metrics do not distinguish between in-

activity and inoperability. A system that is never utilized will have the same R1 as a

system that is totally broken: its readiness is 0 in both cases (Advanced Technology

Incorporated, 1980). Availability metrics, meanwhile, do not distinguish between op-

erability and warfighting proficiency (Harrison, 2014). An available system is assumed

to ipso facto be able to successfully execute the mission it is designed for.

In aircraft terms, flying hours and sorties are examples of metrics that track

utilization (AFLM, 2009). The sortie rate (SR), as seen in equation 6, is an example

of a utilization metric. SR measures utilization by approximating the maximum

quantity of sorties possible given average maintenance turnaround times and flight

durations (Stillion Orletsky, 1999). Availability, on the other hand, is expressed

through metrics that indicate the quantity of operable aircraft in the fleet (AFLM,

2009). Aircraft Availability (AA), as mentioned in the previous chapter, is the prime

method through which the Air Force identifies fleet availability (Fry, 2010; Ritschel

et al., 2019).

Inventory Hours = # of P lanes in F leet ∗ 24 ∗Days in Period (5)
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Utilization=SR= 24 Hours
Time Required for Repairs+Time to Accomplish Pre−Flight Checklist+Flight Duration

(6)

Availability = AA =
MC Hours

Total Active Aerospace V ehicle Inventory Hours
(7)

Utilization metrics tend to be less stable than availability metrics (Boito, Keating,

Wallace, DeBlois, and Blum, 2015). This is because utilization rates are at the mercy

of a variety of factors, including unit taskings, unit training requirements, and weather

(Boito et al., 2015). Flying hour policies must be flexible in order to accommodate all

of these contingencies. Normalizing the unique policy factors influencing flying hour

goals at each unit is therefore a difficult task.

Changes to aircraft inventory conversely involve high level decision makers and

require considerable amounts of planning (Boito et al., 2015). Decisions made at

such high levels invariably impact entire fleets. Consequently, the policy factors

influencing aircraft inventory are more uniform across units (Snyder, Kim, Carrilo,

and Hildebrandt, 2012). Comparisons based on availability, as opposed to utilization,

lessens the complexity of the data normalization required to compare readiness across

units or platforms. It is for this reason that examining the impact of budgets across

a wide variety of aircraft is best undertaken in terms of availability and not the end

utilization of the aircraft. Availability acts as an effective control for the variety of

utilization policies across different aircraft.
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2.6 Measuring Readiness: Utilization vs. Availability

Readiness reporting in the Air Force is done primarily through metrics that in-

dicate availability (Harrison, 2014). Per AFI 10-201, units report readiness via two

interrelated systems: The Status of Resources and Training System (SORTS) and the

Defense Readiness Reporting System (DRRS). Commanders identify the percentage

of unit resources, both materiel and personnel, that are available to deploy. Although

AA is not explicitly reported in these systems, the manner in which availability is

reported in SORTS and DRRS is congruous with the concept of availability as calcu-

lated in AA.

Units are assigned a readiness rating based on their ability to meet target avail-

ability levels established by the Air Force (AFI 10-201; Harrison, 2014). The result is

that the resources of a unit are used as a proxy for its ability to carry out its mission

(Harrison, 2014). The information from SORTS then carries over to DRRS, where

commanders have the opportunity to make a self-assessment of the unit’s readiness

(AFI 10-201; Harrison, 2014).

Critics of Air Force readiness reporting question the validity of using availability

as a proxy for performance (Moore et al. 1991; Harrison, 2014). Todd Harrison, in

his commentary “Rethinking Readiness”, observes that Air Force readiness reporting

operates under the flawed assumptions that: (1) any resources that are available are

also fully capable; (2) availability targets correctly encapsulate the requirements of

the mission; (3) availability targets properly correlate to mission needs; (4) the com-

mander will accurately state his subjective readiness assessment in DRRS (Harrison,

2014). Harrison argues that the conflation of availability with performance, as well

as the inevitable bias that seeps into any self-assessment, makes accurate readiness

reporting impossible through current Air Force systems (Harrison, 2014).

Harrison, echoing previous criticisms of defense readiness reporting, proposes the
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implementation of metrics that directly measure mission-related skills (Moore et al.

1991; Harrison, 2014). The goal of these new “strategy-based metrics” is to shift the

focus from readiness inputs, such as inventory availability, to readiness outputs, which

would change based on the mission. Using a fighter wing as an example, Harrison

identifies the need for tailored metrics that would measure low-altitude bombing ac-

curacy and air-to-air combat skills. Data for these metrics would be collected over the

course of already scheduled training exercises. Strategy-based metrics would thereby

serve as a more accurate approximation of performance than traditional input-based

metrics (Harrison, 2014).

The accuracy of strategy-based metrics comes at analytical cost. The most glaring

issue is that the Air Force does not presently aggregate metrics for mission perfor-

mance in any of its force-wide systems. Availability metrics, meanwhile, are di-

rectly reported in the Logistics, Installations, and Mission Support – Enterprise View

(LIMS-EV) system. LIMS-EV has been well received by the defense community as a

particularly accurate repository for fleet health metrics (Petcoff, 2010). Hence, while

compelling arguments can be made for the fidelity of readiness outputs to wartime

performance, the pure fact is that they are not yet available for analytical purposes.

Even if they were available, the specificity of strategy-based metrics makes them

unsuitable for readiness analysis across different conflicts. In addition to measuring

warfighting capability, readiness most broadly encompasses the ability of the mili-

tary to achieve national defense goals (Snyder et al., 2012). National defense goals

are not homogenous; conflicts involving near-peer adversaries are strategically sepa-

rate from contingencies involving insurgencies, or operations containing a significant

humanitarian component (Snyder et al., 2012).

Each contingency accordingly requires the projection of different capabilities. As

political scientist Stephen Biddle observes, “There is. . . no single, underlying quality
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of generic ‘capability’ to which all specific mission capacities are epiphenomenal”

(Biddle, 2004). Biddle’s remark identifies a key weakness of capability-based metrics:

they are not generic enough to provide an accurate picture of Air Force readiness

across the gamut of threats it must face. AA, on the other hand, is a metric that

is easily understood regardless of mission set or utilization; AA communicates how

many aircraft are ready to take to the skies in the event of a conflict.

Comparing the operability of aircraft across airframes is thus a task best under-

taken through an availability-based metric, such as AA. Using a utilization-based

metric, such as SR, would muddy the waters between inoperability and inactivity;

given that the Air Force is not presently engaged in a total war, it is best to capture

readiness in terms of the force that could be employed as opposed to the force that

is actively employed. Likewise, more refined strategy-based metrics are both unavail-

able and ill-suited to the snapshot perspective needed for a generalized view of Air

Force readiness (Snyder, 2012).

2.7 The Aircraft Availability Metric

AA is the most appropriate method to quantify readiness in a cross-platform anal-

ysis of Air Force platforms. What follows is deeper exploration of the AA equation

and the factors that previous research has identified as drivers of availability in a man-

ner similar to Ritschel et al. (2019). As established in the introduction, AA expands

upon the MC by including aircraft awaiting depot-level repairs in its calculation of

availability (Fry, 2010). AA is then expressed as a ratio of the total hours aircraft in

the fleet are in mission capable over the inventory hours in the period (Equation 9).

MC =
MC Hours

PAI Hours
(8)
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AA =
MC Hours

TAIHours
(9)

Figure 4 illustrates the sub-metrics that comprises AA (Ritschel et al., 2019; Fry,

2010; AFLM, 2009). Units must account for degradations in AA by applying one

of five root causes: (1) depot, (2) not mission capable maintenance, (3) not mission

capable supply, (4) not mission capable both, and (5) unit possessed not reported.

Uptime occurs when an aircraft is not affected by a down time label.

Figure 4. Taxonomy of Aircraft Availability (Ritschel et al., 2019)

The drivers of downtime each cover a unique mission-impacting status (Fry, 2010;

Ritschel et al., 2019). Depot aircraft are those aircraft whose repairs or maintenance

needs are too serious to be taken care of at the unit level. Not Mission Capable

Maintenance (NMCM) refers to aircraft being repaired at the unit level. Not Mission

Capable Supply (NMCS) refer to aircraft who are unavailable due to an absence

of repair parts. Not Mission Capable Both (NMCB) is applied when an aircraft is

awaiting both repair and parts. Lastly, Unit Possessed Not Reported (UPNR) is a

special status applied to aircraft whose repairs are complex enough so as to require

input from an outside agency to determine the way forward. The UPNR status is

applied during the waiting period for this determination.

Downtime is not split equally among the five statuses (Ritschel et al., 2019).
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Figure 5 shows the taxonomy of non-availability over the last five years; NMCM

and depot repairs constitute the largest proportion of non-available hours. The over-

whelming majority of NMCM, 70%, is unscheduled (Ritschel et al.,2019). Meanwhile,

the inverse is true of depot level maintenance, 70% of which is scheduled.

Figure 5. Total Downtime Hours by Label

Accounting for the drivers behind NMCMU is the main focus of Ritschel et al.

(2019). The research found that total unscheduled maintenance hours did not de-

crease proportionally with decreases in TAI; spreading resources across a smaller pool

of aircraft did not result in efficiency gains in maintenance needs. The research sub-

sequently identified platform type, airframe age, repair cannibalization rates, break-

down incidence, fleet size, and pilot reported discrepancy incidence as significant

drivers of NMCMU.

NMCM and depot time are conceptually corelated metrics due to the fact that

any repairs that cannot be resolved at the unit level must flow to the depot level. As

a result, the driving variables of breakdowns requiring unit-level repair, as identified

by Ritschel et al. (2019), can be theoretically extended to an analysis of the drivers of

breakdowns requiring depot-level repair. These variables ultimately fall in line with
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variables previously identified as theoretically pertinent to AA as a whole (Oliver,

2001; Fry, 2010). Fry (2010) provides a comprehensive list of the researched inputs

to AA, reproduced here in Table 1.

Table 1. Pertinent Factors to Aircraft Availability (Fry, 2010)

In addition to the largely environmental factors explored by Ritschel et al. (2019),

Fry’s table underscores the significance of personnel matters in determining availabil-

ity. The theoretical framework tying manning to operability in the modern Air Force

is chiefly laid out in the research of Oliver, Johnson, White, and Arostegui (2001).

It should be noted that, technically, Oliver et al. (2001) focused on MC, and not
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AA. However, the similarity between the two metrics is close enough that the insights

provided by older research on MC can still be applied to contemporary explorations

of AA (Fry, 2010).

The researchers found that the ratio of 3-level maintainers to 5 and 7-level main-

tainers, a proxy for the overall level of experience of the unit, was a significant de-

terminant of the MC rate. Moreover, metrics measuring the total amount of O-3s

and 9-levels assigned to the unit, as well as the reenlistment rate, were also found

to be significant. Oliver’s conclusions are upheld by Dahlman and Thaler (2002) as

well as Chimka and Nachtmann (2007), who found that the presence of experienced

maintainers in the unit was critical to high operability rates.

The literature has thus coalesced around three main potential drivers of avail-

ability: empirical characteristics of the aircraft (Ritschel et al., 2019), the allocation

of personnel to the aircraft (Oliver et al., 2001; Chimka Nachtmann, 2007), and

the allocation of budgets to the programs (Fry, 2010). Although the factors identi-

fied in Ritschel et al. (2019) were not explicitly linked to depot repairs, unit level

maintenance ultimately flows into the depot level sooner or later. The empirical

characteristics and and manning levels of the aircraft will need to be controlled for in

order to properly isolate for the impact that budgets, as allocated by CAM, have on

depot downtime.

2.8 Measuring the Costs of Availability

Planners can deduce the marginal costs of readiness by examining the per-unit

costs of readiness inputs. One of the more widespread examples of per-unit estimates

is Costs per Flying Hour (CPFH), which is often used to compare the marginal

cost of utilizing the aircraft (Boito et al., 2015). Costs can similarly be expressed

in terms of availability by dividing costs by Primary Aircraft Inventory (PAI). The
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Direct Cost Per Aircraft (DCPA) indicates the marginal cost of making an aircraft

available, independent of how many hours it flies (Boito et al. 2015). Crucially, both

measures are obtained a posteriori ; the total costs must be known before the analyst

can determine the marginal cost.

CPFH =
O&S Costs

FH
(10)

DCPA =
O&S Costs

PAI
(11)

Building predictive models of readiness is famously difficult (Hildebrandt Sze,

1990; Higgs, 1990; Boito et al., 2016). The Aircraft Availability Model (AAM) was

one of the Air Force’s first attempts to build a predictive model of availability (Fry,

2010). The AAM focused exclusively on availability as a function of spares inven-

tory, and excluded declines in availability driven by maintenance events (O’Malley,

1983). Required part supply levels were modelled against varying squadron sizes to

determine the optimal level of spares to acquire at different budgets (O’Malley, 1983).

Consequently, the model is effective at mitigating NMCS rates, but does little in the

way of helping mitigate NMCMU or depot rates (Fry, 2010).

Recent research at RAND has focused on an approach that treats budget as a fixed

known quantity that must be optimally allocated across different readiness priorities

(Snyder et al., 2012). Optimization was evaluated based on the marginal impact of

increased budget allocation on the AA of the aircraft in question. The researchers

selected AA on the basis of its ability to provide insight into readiness across multiple

platforms, a merit that was highlighted earlier on in this chapter.

Broader examinations of the impact of CAM-associated budgets on AA conducted

by Fry (2010) yielded inconclusive results. However, Fry’s research was limited by the
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fact that it only considered CAM budgets that were part of the cost per flying hour

(CPFH) program. CPFH budgets are a subsection of the monies managed by CAM

that are entirely separate from the DPEM funding outlined at the top of the chapter

(AFMAN 64-143). Despite the name, FHP funding is not an exhaustive grouping of

funding categories that promote sortie generation; one of the main takeaways from

Fry (2010) is that DPEM funding categories should be included in future analysis of

the interaction between budgets and readiness.

The broad list of sub-categorizations of AA offer many avenues of analysis of

the various driving factors behind each. However, the models just outlined do not

consider the role of the planner in the formation of budgets. Budgets are treated as

either known constraints or as a freely adjusted variable in the mix between cost and

readiness level. None consider that the planner has already theoretically identified

the cost of optimal amount of readiness in the budget requirement, and the readiness

consequences that result from deviating from the planned amount.

2.9 Conclusion

The defense economy operates under constraints that are not entirely analogous to

those found in the private sector. The invisible hand of Adam Smith is supplanted by

the defense planner, who must wade through the entanglement of politics, uninformed

citizens, and unknown threats to provide budgets for the optimal level of readiness.

In turn, readiness may be viewed in terms of utilization or in terms of availability. For

the purposes of a quantifiable analysis across platforms, availability is the preferred

perspective.

Depot level maintenance constitutes a significant proportion of aircraft unavail-

ability. The centralization of depot level budgets under a single entity, CAM, offers

the opportunity to evaluate how deviations from planned budgets impact depot down-
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time, and readiness as a whole in turn. Further analysis will need to be conducted in

order to understand how budget gaps impact downtime differently across platforms

and expenditure type at the enterprise level.
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III. Methodology

3.1 Model Overview

The previous chapter identified the role that the empirical characteristics of the

aircraft, manning levels, and budgets play on aircraft downtime (Ritschel et al., 2019;

Chimka Nachtmann, 2007; Fry, 2010). However, none of the identified research

specifically focused on the impact of these factors on downtime at the depot level.

Figure Data from the last 10 years indicate that depot possession is the second most

common downtime status impacting availability. The purpose of this chapter will

be to identify a model that applies the empirical, personnel, and budgetary factors

identified as conceptually relevant to aircraft downtime and apply them to the spe-

cific context of depot level downtime, thereby filling the gap in the current body of

literature.

Much of the methodology expands upon that employed by Fry (2010). Many of the

same considerations involving modelling cohort and analytical technique were made

accordingly, but with key differences in the databases and specific variables involved.

The relationship between depot downtime and budgets is investigated through the

analysis of two distinct cohorts of aircraft. The first is a cohort of 23 separate plat-

forms analyzed on an annual period from FY2010 to FY2019. The purpose of this

first analysis is to provide a general look at the top-level relationships between fund-

ing gaps and depot downtime on an annual level. The analysis of the first cohort then

gives way to analysis of a smaller, more concentrated, cohort of 7 different platforms

that are analyzed at quarterly intervals from FY2015 to FY2019. The analysis of this

second cohort serves to provide a more focused examination of how particular types

of funding, down to quarterly movements, impact depot downtime.
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3.2 Data Sources and Variable Collection

The empirical characteristics of the aircraft, manning levels, and budget allocation

are sourced from three separate databases. Empirical characteristics of the aircraft,

such as flying hours, age, and pilot reported discrepancies (PRD), are found in the

Logistics Installations and Mission Support – Enterprise View (LIMS-EV) database.

Personnel allocation and skill level, as identified through Air Force Specialty Code

(DAFSC), are provided by the Air Force Total Ownership Cost (AFTOC) database.

Finally, OS budgets allocated for depot level repairs are provided through the Air

Force Logistics, Engineering and Force Protection directorate (A4) Funding Require-

ments Management (FRM) system. What follows is a description of each of the three

databases and an outline of the data and variables collected therein.

LIMS-EV is comprised of a series of subsystems that provide enterprise-level ana-

lytics for different Air Force competencies (Headquarters Air Force [HAF]/A4 Public

Affairs [PA], 2020). Metrics regarding aircraft utilization, availability, and fleet char-

acteristics are contained within the LIMS-EV Weapons System View (WSV) panel

(HAF/A4 PA, 2019). The data are updated directly from the Air Force’s Core Auto-

mated Maintenance System (CAMS) and the Reliability and Maintainability Infor-

mation System (REMIS) on a daily basis. The empirical aircraft characteristics, with

the exception of the dependent variable, mirrors those initially explored in Ritschel

et al. (2019) and are reproduced in Table 2. All of the variables in Table 2 are found

using the LIMS-EV WSV. Where reasonable, the metrics collected from LIMS-EV

are divided by Total Available Inventory (TAI) to provide a per-aircraft average of

the metric. Providing the data in terms of an average facilitates the comparison of

platforms with widely disparate fleet sizes (Fry, 2010; Ritschel et al., 2019).
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Table 2. Empirical Variables

Depot possession hours serve as the model’s dependent variable. Depot hours are

sourced from LIMS-EV and are similarly divided by TAI to provide a per-aircraft

average. Both the dependent and independent variables found within LIMS-EV can

be further aggregated on a quarterly and annual level and sorted by platform.

AFTOC is a cost reporting system that primarily provides information on the costs

of Air Force programs broken down by cost element structure (CES), but also pro-

vides insight into manning levels of each program (AFTOC portal website SAF/FMC

heading). AFTOC calculates manning levels by providing a headcount of the quantity
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of personnel attached to a weapons system by DAFSC. DAFSC and weapons system

are linked by the Program Element Code (PEC), an accounting identifier associated

with each Air Force mission. The data variables collected from AFTOC are found in

Table 3.

Table 3. Personnel Variables

Manning data from AFTOC were filtered to include DAFSCs identified as maintenance-

oriented in the respective Air Force Officer/Enlisted Classification Directory. For

enlisted airmen, only DAFSCs with the 2A prefix were included. For officers, only

DAFSCs with the 21A prefix were included. Further filters were imposed to exclude

officers in command billets. Out of all of these personnel, only enlisted 5, 7, and

9 levels are permitted to perform unsupervised maintenance on an aircraft (GAO,

2019). Moreover, enlisted 9 levels serve in a predominately supervisory capacity

(GAO, 2019). Enlisted 5 and 7 levels are aggregated into one number, “sup.rat”, to

reflect the proportion of manning accomplishing technical work on the flightline.

Conversations with AFTOC database administrators revealed that the calcula-

tion of manning through AFTOC is not without caveats. Headcounts are averaged

across the fiscal year such that a change in PEC or duty AFSC results in non-integer

headcount values; if an airman changes station 6 months into the fiscal year, she will
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contribute 0.5 to her losing unit’s headcount and 0.5 to her gaining unit’s headcount.

Moreover, one PEC can support multiple weapons systems. Headcounts are thus

averaged across the weapons system just as they are for changes in PEC or DAFSC.

This averaging occurs regardless of whatever the operational reality is at the squadron

level. Additionally, the PEC does not distinguish between Overseas Contingency Op-

erations (OCO) and peacetime funding. The manning data provided within AFTOC

should therefore be only used to draw insights into the broad force-structure for each

weapon system, not specific information as to the exact man-hours used to support

each weapons system.

FRM contains data on budgetary execution levels as communicated in the execu-

tion plan and found at end of quarter and end of year positions. Per discussions with

FRM analysts, the budget data reported within FRM are divided into three positions:

requirement, plan, and actual. The required budget is the amount formulated at the

unit-level that represents the ideal amount of funding that the unit would receive for

an expenditure. The planned budget reflects the requested amount that is modified

to reflect the reality that requirements cannot expect to be fully funded. Both the

required and planned amount are found in the annual execution plan. Finally, the

actual amount is the amount of funding that the unit has successfully obligated by

the end of the fiscal period. All three of these budgetary positions are presented in

thousands of dollars and escalated to FY2019 dollars using the appropriate inflation

index from the office of the Deputy Assistant Secretary for Cost and Economics. Ta-

ble 4 provides an outline of the different ways to measure the gaps between expected

and received budgets.
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Table 4. Methods of Expressing Budgetary Gaps

Budgets in FRM can be further sorted by Air Force Element of Expense Invest-

ment Code (AFEEIC), year, quarter, and mission design. Table 5 provides a legend

to the different types of AFEEIC.
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Table 5. Legend to Types of AFEEIC

Once again, the data are not provided without caveats. Of key import is the

fact that the methodology used to categorize expenditures into different AFEEICs

is not directly comparable between organic and contractor logistics supported (CLS)

functions (Fry, 2010). Organic expenditures are categorized in accordance with the

guidance provided by AFMAN 63-143. Contractors, meanwhile, report costs in ac-

cordance with their own accounting classifications that may differ across contactors

(Fry, 2010). The result is that the same expenditure may be classified differently

depending on whether it is organically supported or CLS. It is for this reason that

only the definitions of organic EEICS are included in Table 5.

Furthermore, although CAM was formed in 2007, the FRM analysts cautioned
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that data prior to FY 2010 are unreliable. The analysts further advised that units only

began reporting execution plan projections at the quarterly level in FY 2015. Prior

to 2015, planned budgets are only reported at the annual level and quarterly spend

plans were left blank. Finally, the advent of the 5-digit AFEEIC as a replacement

of the 3-digit EEIC took hold in FRM in 2013. Distinguishing between organic and

CLS expenditures is only possible using the full 5-digit AFEEIC.

3.3 Platform Selection and Data Aggregation

The limitations of the data create the need for two different modelling cohorts: one

mixed cohort of CLS and organic aircraft and one cohort of strictly organic aircraft.

A key deficiency of CLS data is that CLS aircraft definitionally lack any information

on organic manning; maintenance on CLS aircraft is done by non-military contrac-

tors. Acquiring manning data that corresponds to Air Force skill level would require

reaching out to each contracting support function individually, which is beyond the

scope of this research. Similarly, detailed empirical data, such as break or cannibaliza-

tion rates, are not available in LIMS-EV for many CLS platforms. Most importantly,

the differing accounting classifications between CLS and organically supported sys-

tems means that budgetary analysis of a cohort involving both types of aircraft must

remain at the aggregate level and cannot be broken out by AFEEIC.

Data on CLS aircraft are still analytically useful. Top-level requirement, planning,

and actual budget data are still available for CLS aircraft. Data on average fleet age,

flying hours, and number of sorties are also still available. These data are sufficient

to create an initial, exploratory, cohort containing both CLS and organically support

aircraft that are compared on the basis of fleet age, flying hours, number of sorties,

and aggregate budget gaps. Likewise, aggregating CLS and organic airframes allows

the usage of the full 10 years of FRM top-level budget data.
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However, the selection of the platforms, regardless of support type, is further

complicated by the need to for each platform to have robust data across all three of

the databases. The list of platforms recorded in FRM from FY2010 to FY2019 serves

as the starting point for possible aircraft platforms to be used in the model. These

aircraft are then cross-checked against the lists of platforms available in AFTOC and

LIMS-EV for the same period. Any aircraft that were phased out or phased in during

this period were not included. Platforms with multiple Mission Design Series (MDS)

suffixes, such as the A-10A and A-10C, were condensed to their base platform (MD).

The exception to this is the F-15, which was split to distinguish between the F-15

and the F-15E.

Aggregating aircraft by platform, as opposed to the more granular MDS, is nec-

essary as not all three databases provide the same level of granularity at the MDS

level. As an example, the F-15C and F-15D are aggregated under a single heading in

LIMS-EV, but broken out separately in AFTOC. Platform level nomenclature is more

uniform than MDS nomenclature across the databases. Analyzing at the platform

level ensures that the same aircraft are being compared. Data are thereby aligned by

platform, year, and, for the second cohort, quarter for each of the three systems.

Nevertheless, initial analysis revealed that the C-130 platform, and its derivatives,

is referred to inconsistently across the databases. Within FRM, the C-130 existed

both as “C-130” and “C-130(SOF)”, with no way to determine which MDS these

platform titles encompass. Within AFTOC, certain C-130 MDS suffixes were included

at the platform level, adding to the confusion. The C-130 family of platforms was

therefore excluded from the dataset to prevent misalignment of data across the three

databases.

Platforms were further restricted to those for which depot maintenance intervals

were clearly outlined within Air Force Technical Order 00-25-4: Depot Maintenance
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of Aerospace Vehicles and Training Equipment. The U-2 was a notable absence.

Furthermore, rotary-wing and unmanned aircraft were also excluded from analysis to

preserve the homogeneity of the cohort. Lastly, because CAM only manages active

duty funding, only active duty platforms and manning levels were analyzed. The

full list of excluded aircraft is found alongside the reason for exclusion in Table 6.

The remaining included aircraft are found in Table 7. Aircraft that were kept on for

further analysis as part of the second cohort are bolded.

Table 6. Platforms Excluded from Analysis

Table 7. Platforms Included in Analysis

Table 7 shows that the platforms in the second, smaller, cohort are strictly organ-

ically supported attack/fighter and bomber aircraft, as categorized in LIMS-EV. A

fully organic cohort was necessary in order to include the full compliment of empirical

data, as well as data on manning, that are otherwise unavailable in a set that con-
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tains CLS platforms. Attack/fighters and bombers were selected due to their unified

fundamental mission purpose of deploying munitions against the enemy. Other plat-

form types, such as tankers and ISR, are left as areas for future research. The F-22

was also excluded from the second cohort due to a lack of expenditures in organic

AFEEIC categories.

The data for the second cohort are examined at the quarterly, as opposed to

annual, level in order to increase the quantity of data points for the smaller set of

platforms. FY2010 to FY2019 spans 10 years of data, whereas Q1 FY2015 to Q4 2019

spans 20 quarters. The additional time periods provide critical degrees of freedom

needed to ensure a more robust analysis. The switch to quarters also requires that

budgets are expressed in terms of planned, not required, budgets. Spend plans for

the full requirement budget do not currently exist at the quarterly level.

3.4 Initial Model Construction

The many aircraft characteristic variables found in the literature review focus on

the proximal events that would trigger the need for a repair (Ritschel et al., 2019).

Previous research specifically found that age, breaks, MD, cannibalization, PRD, and

fleet size were the most relevant aircraft characteristics relevant to unscheduled unit

level repair events (Ritschel et al., 2019). However, as previously discussed, depot

maintenance crucially differs from unit level repairs in that the overwhelming majority

of depot level maintenance (DLM) is planned. Variable selection for depot level model

therefore focuses less on the metrics that correlate with proximal causes of downtime,

and instead focuses more on factors that are likely to increase the complexity and

duration of scheduled DLM events.

With this in mind, the pertinent variables proposed by the body of literature

on aircraft availability add up quickly. Between Tables 2, 3, and 5, there are 28
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potential independent variables that have been pulled from the various databases.

Many of the variables, such as sorties and flying hours, overlap significantly on even

a conceptual level. Such variables that are so closely related conceptually are likely

to introduce significant multicollinearity to the model. Paring down these variables

to a theoretically cohesive list is the first step of the analysis. The theoretical models

for the first and second modelling cohorts are outlined here respectively in Equation

12 and Equation 15:

Annual Total Depot Hours per Aircraft = f(Aircraft Empirical V ariables)+

(Top Level Budgetary V ariables) (12)

Quarterly Total Depot Hours per Aircraft = f(Aircraft Empirical V ariables)+

(Manning V ariables) + (Top Level Budgetary V ariables)+

(AFEEIC Level Budgetary V ariables) (13)

Following the lead of Fry (2010), significant relationships between independent

variables are explored with the aid of correlation tables. The correlation table in

Figure 6 illustrates the relationships between the possible variables to be used in the

first, exploratory, cohort of aircraft. The wide variety of possible MDs, 23 in total,

led to the aggregation of MDs into LIMS-EV mission type, such as bomber or tanker,

in order to improve readability of the table. As expected, the strictly mathematical

relationships between the different methods used to measure budgetary gaps resulted

in high correlation coefficients between budgetary variables. Furthermore, sorties and
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flying hours shared a correlation coefficient of 0.42, indicating a moderate positive

relationship between the two.

Figure 6. Correlation Matrix for Cohort 1

The demonstrated correlation between sorties and flying hours indicates that in-

cluding both would introduce redundancy in the model. Importantly, sorties effec-

tively track the amount of times aircraft systems are cycled on as they leave the

hangar. Sorties are therefore a better measurement of the wear placed on compo-

nents, such as the starter, that are used every time the aircraft leaves the hangar, but

not necessarily for every hour of flight.

Meanwhile, the correlation table in Figure ?? , illustrates the correlations be-

tween the multitude of variables used for the second, fully organic, modelling cohort.

Once again, the airframes have been aggregated by mission type to improve graph

readability:
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Figure 7. Correlation Matrix for Cohort 2

belfig:corr2

Of note are the significant correlations between all of the measurements of man-

ning. The ratios of the quantity of maintainers of all skill levels, both officer and

enlisted, to aircraft are highly interrelated. The high correlation is logically consis-

tent with the fact that units will invariably seek to maintain specific ratios of skill

levels; a 1-level officer is expected to supervise a set range of enlisted counterparts.

The result is that it is possible to extrapolate from any one manning quantity of

a specific skill level the number of superiors, peers, and subordinates that would

support that quantity; the presence of one officer implies the presence of, say, ten en-

listed. It is therefore unnecessary to include multiple measures of manning within the

model. Instead, only the number of enlisted 5 and 7 levels, “sup.rat”, who perform

unsupervised work on the aircraft are included.

Aircraft empirical characteristics are also somewhat interrelated. The cannibaliza-

tion rate is correlated both with the quantity of pilot reported discrepancies (PRDs),
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=0.73, as well as the discrepancy repeat and recur rate, =0.64 . Indeed, bothersome

PRDs may be corrected in the short run by cannibalizing parts from another aircraft

in the hangar. Cannibalization rate is selected to remain in the model as a proxy for

aircraft with recurring, but not ultimately mission compromising, issues. The logic

is that aircraft with recurring issues at the unit level are more likely to require more

involved maintenance at the depot level.

Budget variables, whether aggregated at the top level or broken out by AFEEIC,

do not tend to correlate with any of the other variables. The only exception to this

is the very strong correlation, =0.91, between the absolute magnitude of the bud-

getary gap in dollars, “delta”, and expenditures in the 54101 aircraft, “ac”, AFEEIC

category. This correlation indicates a strong relationship between the magnitude of

the overall budgetary gap and the magnitude of 54101 dollars as a subsection of the

overall budget.

3.5 Balancing the Dataset

Breaking out the data by AFEEIC in the second cohort caused the dataset to

initially be unbalanced. The issue is that requests for budgets in each AFEEIC are

not made for all aircraft in all quarters. Typically, units have needs for expenditures

that fit in two or three of the seven AFEEICs in a given fiscal year. Consequently,

there were blank spaces in the raw dataset whenever a unit did not formulate an

organic requirement for a specific AFEEIC in a given period. Additionally, there

were 59 instances in which no requirement was planned, but fallout funds were still

received and executed later in the fiscal year.

AFEEICS with no requested or received funding in a given period were assumed

to be $0. Crucially, the $0 value is not assumed out of a lack of data. The budgets

are not missing values; the values are simply blank. The $0 assumption hinges on the
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interpretation that a lack of articulate need is conceptually identical to requesting $0.

Future research may opt to explore the significance of this interpretation in greater

detail.

Balancing the dataset in this way created a dataset for the quarterly cohort com-

prised of 7 platforms with an entry for each of the 7 AFEEICS in all 20 periods,

totaling 140 rows of data. The annual dataset is comprised of 23 airframes over the

course of 10 periods, totaling 230 rows of data. The data are presented in separate

Microsoft Excel workbooks.

3.6 Regression Assumptions

The model is constructed using the ordinary least squares (OLS) method of esti-

mation. The first three requirements of running an unbiased OLS estimation requires

that the model be linear in parameters, the data be collected independently, and that

there is no perfect collinearity between variables (Hilmer and Hilmer, 2014). These

three requirements are met in the very creation of the model: the model is specified to

be linear in parameters, the data that are collected are exhaustive of the populations

that they examine, and none of the variables are perfectly collinear.

The next three assumptions concern the probability distribution of the error term,

, and are required to ensure the OLS method provides the best linear unbiased esti-

mates. (Hilmer and Hilmer, 2014) The three error terms requirements are that: 1)

the error term has zero mean; 2) the error term is uncorrelated with each independent

variable and all functions of each independent variable; 3) the error term has constant

variance.

The first assumption is resolved by including an intercept variable within the equa-

tion that will account for non-zero bias in the residuals (Hilmer and Hilmer, 2014).

The second assumption is violated when residuals from one period correlate with
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the residuals from a previous period. This issue, known as autocorrelation, is fre-

quently found in data featuring a time component (Hilmer and Hilmer, 2014). Oliver

(2001) indicated that time-series of aircraft operability are susceptible to this error,

an observation that is upheld by Fry (2010). Autocorrelation is tested for using the

Breusch-Godfrey/Woolridge test and is corrected for by using standard errors that are

robust to autocorrelation through the Arellano method using the “sandwich” package

in R (Torres-Reyna, 2010). Autocorrelation can also be controlled for by time-lagging

the dependent variable and introducing it into the model as an independent variable

(Hilmer and Hilmer, 2014). The dataset is reduced in size by the amount of time lags

(Hilmer and Hilmer, 2014). The Arellano method is ultimately preferred to the lag

method as it does not reduce the size of the dataset.

The third assumption is tested using the Breusch-Pagan test for heteroskedastic-

ity. Low-p values reject the null hypothesis of constant variance (Fry, 2010). Het-

eroskedasticity is also mitigated through the usage of the aforementioned Arellano

robust standard errors, as they are robust to both autocorrelation and heteroskedas-

ticity (Torres-Reyna, 2010).

3.7 The Fixed Effects Model

Panel data are datasets that present the data both over a cross-section of units as

well as over the course of a period of time (Croissant and Millo, 2008). In the context

of this research, aircraft platforms are the units that are being observed longitudinally

by year and quarter. The presence of different sub-groups of units within the dataset

create the risk of a correlation between the independent variables and the error term

(Hilmer and Hilmer, 2014). Left unchecked, this correlation will bias parameters

generated through an ordinary least squares analysis (OLS).

Fixed effects models control for unwanted correlation by controlling for each sub-
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group within the dataset. Isolating each subgroup ensures that any error specific

to a sub-group is included within the regression (Hilmer and Hilmer, 2014). Fixed

effects models can be run in R by creating entity specific intercepts using the “plm”

package. The method by which “plm” isolates subgroups within the panel data is

mathematically equivalent to creating a dummy variable for each platform in the

dataset. The choice to use a fixed-effects model over a random-effects model is tested

through a Hausman test, which examines whether the error terms of the individual

subgroups are correlated with the regressors. A significant p-value indicates the

primacy of a fixed-effects model. Additionally, fixed effects models are preferred when

the dataset constitutes an exhaustive sample of the population it is taken from, and

especially when the data contain fewer than 8 sub-groups (Fox, Negrete-Yankelevich,

and Sosa, 2014).

Fixed-effects models that control for a time component in addition to the sub-

group component are known as two-way fixed-effects models. In the first, exploratory,

modelling cohort, the periods are measured in consecutive fiscal years. Ten fiscal years

correspond to 10 periods. Modelling the first cohort using a two-way model is once

again identical to creating dummy variables for each time period. The second cohort,

however, uses five years and four quarters per year. A two-way model will specify 20

different time periods. Including years and quarters as dummy variables will yield

only 9 periods.

The nature of budgetary flows means that the second cohort is best modelled

without the time effect. The typical longitudinal dataset tracks the observational

units as they naturally evolve with the passing time; one period of time flows into

the next and the effects of the independent variables accumulate (Hilmer and Hilmer,

2014). Quarterly budgetary data will flow from one quarter to the next as leftover

funds rollover, but these funds reset at the beginning of each fiscal year. Thus, when
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faced with the choice between treating the quarterly data as one continuous stream

or as separate clusters of time, the latter option is more appropriate.

3.8 Summary of Analytical Process

The first, larger, cohort of 23 aircraft is analyzed using a two-way fixed effects

model. Data on age, numbers of sorties, number of flying hours, platform, and

top-level budget gaps are included within the model that is refined over a few it-

erations of testing. The Hausman test is used to verify the suitability of the fixed

effects format. Examinations of variation inflation factor (VIF) scores are used to

check for multicollinearity in the model. The Breusch-Godfrey/Woolridge test and

Breusch-Pagan test are used to test for autocorrelation and heteroskedasticity. Arel-

lano robust standard errors are used to then mitigate any eventual autocorrelation

and heteroskedasticity. The general form of the model is shown in Equation 14.

The second, more focused, cohort of 7 fighter/attack and bomber aircraft is ana-

lyzed using an individual fixed effects model. The inclusion of only organic aircraft

allows for the inclusion of a larger quantity of variables relevant to the underlying char-

acteristics of the aircraft, as well as variables that describe the manning levels of the

aircraft. Budgets are further broken out by AFEEIC to investigate the relationship

between specific categories of expenditure and hours of depot downtime. As with the

first cohort, the model is validated using the Hausman, Breusch-Godfrey/Woolridge,

and Breusch-Pagan tests. The model is similarly refined over multiple iterations. The

general form of the focused cohort is shown in Equation 15.
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Annual Total Depot Hours per Aircraft

= f(Y ear) + (MD) + (Aircraft Age) + (# of Sorties ) + (Flying Hours)

+ (Total Enlisted 5 & 7 levels) + (Total Budgetary Gap) (14)

Quarterly Total Depot Hours per Aircraft

= f(Y ear) + (Quarter) + (MD) + (Aircraft Age) + (Repeat/Recur)

+ (# of Breaks) + (# of Sorties) + (Total Enlisted 5 & 7 levels)

+ (Budget Gap Software ) + (Budget Gap Aircraft) + (Budget Gap ABM)

+ (Budget Gap Engines) + (Budget Gap Exchangeables) + (Budget Gap OMEI)

+ (Budget Gap Storage) + (Total Budgetary Gap) (15)
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IV. Results

4.1 Results

The first iteration of the model, as seen in Table 8, includes all measurements

of budgetary gaps as well as both sorties and flying hours alongside age in order to

facilitate deeper analysis of the inclusion of each variable. The results of the Hausman

test yielded a p-value of 0.0175, rejecting the null hypothesis that the unique errors

of the model are not correlated with the regressors. This result indicates that the

model is correctly specified using a fixed effects approach as opposed to a random

effects approach. The Breusch-Pagan test for heteroskedasticity produced a p-value <

0.01. Furthermore, the Breusch-Godfrey-Woolridge test for serial correlation yielded

a similar result, p < 0.01. The results of these tests respectively indicate the presence

of both heteroskedasticity and autocorrelation in the model. Finally, Table 9 shows

the VIF scores of the model.

The models are specified so as to mitigate the bias and imprecision brought

about by the heteroscedasticity, autocorrelation, and multicollinearity revealed in

the first model. Heteroscedasticity and autocorrelation are corrected using Arellano

robust estimators (HAC estimator), as previously discussed in the methodology sec-

tion (Torres-Reyna, 2010). The Arellano method is employed in all iterations of the

model to ensure robust estimators.
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Table 8. Annual Model 1

Table 9. VIF Scores of Annual Model 1

46



Even when using Arellano robust estimators to correct for heteroskedasticity and

autocorrelation, the output of the first iteration of the model yields very little explana-

tory power. It should be noted at this juncture that the interpretation of coefficients

created by 2-way fixed effects models is not as straightforward as for individual fixed

effects models. Coefficients in a two-way model are expressed relative to the individ-

ual’s own average over time, but also relative to the averages of the other individuals

in the model (Kropko & Kubinec, 2018). Kropko and Kubinec (2018) find that the

coefficients can, at best, be interpreted as “generalizations of the effect of deviations

from the case-means at a particular point in time. . . (or) for each particular case.”

Hence, the significance of sorties, p<0.05, in the model should not be taken as an

indicator that every additional sortie decreases depot time by 6.788 hours. Instead,

the results express the potential for a loosely negative relationship between sorties

and depot maintenance downtime hours.

Additionally, the fixed effects methodology employed by the “plm” package reports

the R2 strictly of the within estimators, not of the model as a whole; the explanatory

power of the fixed individual and time effects are not included in the adjusted R2

output of Table 8. Although the “within” R2 is expected to be lower than the overall

R2, the results of this model are so low so as to make it impossible to draw any

meaningful inferences from the relationship between the size of a gap in depot level

budgets and the amount of hours aircraft spend undergoing depot level maintenance.

The concern of possible collinearity between sorties and flying hours was not ul-

timately born out in the model. Table 9 shows that the VIF scores are both well

under 5, indicating minimal overlap. Indeed, the VIF scores for all of the models fell

comfortably below the threshold score of 5. However, while age does not have an

explicitly high VIF score theoretical considerations make age’s inclusion in the model

inappropriate. From a conceptual standpoint, average age of the fleet can conceivably
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decrease from one year to the next if particularly old aircraft are retired. In practice

however, the average change in fleet age from one year to the next was only 0.97

years. The absolute proximity of 0.97 to 1 indicates that the impact of age is already

effectively accounted for within the time component of the fixed-effects model.

The next set of models built off of the first model by examining deviations from

required budgets and deviations from planned budgets separately. Furthermore, the

choice remained between measuring budgets in terms of absolute deviation in dollars

or in terms of the percentage the received amount constituted of the initially required

or planned amount. Table 10 compares the two approaches using required budgets

and Table 11 does the same using planned budgets. The HAC estimators are also

presented within the table.

Table 10. Annual Model 2
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Table 11. Annual Model 3

The results of the tables indicate that budgets gaps continue to have low explana-

tory power over total depot hours at the annual level. Although sorties are statistically

significant across all of the models, the overall “within” R2 and adjusted R2 do not

change greatly between models. Measuring budgets in terms of their deviations from

the required amount or the planned amount does not meaningfully change the ex-

planatory power of the model. Similarly, alternating between examining budget as an

absolute deviation, versus as a percentage does not appear to make a difference. The

result is that it is not reasonable to make inferences about the relationship between

budgets and depot level downtime at this level of analysis.

The focus of the analysis then shifts from a large cohort of aircraft at the annual

level to a smaller subsection of organically supported attack/fighter and bomber air-

craft at the quarterly level. The examination of the smaller, fully organic, cohort

allows the inclusion of more aircraft-specific metrics, such as break-rates, as well as

variables related to the manning levels of each MD. Budgets are also divided into

AFEEIC category for a more granular investigation of which types of budget dollars
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have a measurable relationship with depot hours.

The smaller cohort is run without a fixed time effects component to reflect the

aforementioned non-continuous nature of budgets from fiscal year to the next. Each

year and quarter are assigned a dummy variable for inclusion in the model. 2015 and

quarter 1 serve as the base cases. Moreover, the absence of a fixed time effect allows

for the reintroduction of the age variable into the model. The individual effects of

each platform still remain in the model. Table 12 shows the first iteration of the

model featuring the smaller cohort.
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Table 12. Quarterly Model 1
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Table 13. VIF Scores of Quarterly Model 1

Breusch-Pagan and Breusch-Godfrey/Woolridge tests reveal the presence of het-

eroskedasticity and autocorrelation, p>0.05, in the initial model. These issues are

once again mitigated using Arellano robust standard estimators. VIF scores for the

model are within the acceptable range of VIF < 5, with the exception of sorties, VIF

= 6.872. The inclusion of the sorties variable is conceptually supported by the way

that sorties act as a proxy measure for the wear and tear on aircraft systems that

occur every time the aircraft goes through the power cycle. Moreover, the results of

the models have consistently indicated that sorties are statistically significant. For

these reasons, flying hours are removed from the next iteration of the model despite

having the lower VIF score.

The overall fit of the quarterly model is greatly improved over the annual model.
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The adjusted “within” R2 indicates that 10.7% of the model’s variation is explained

by the model when excluding the predictive power of platform. Moreover, budgetary

variables appear as statistically significant for the first time. The overall percentage

that the actual budget received constitutes of the initially planned budget is signifi-

cant, p=0.055, with a positive coefficient of 0.04. This result is counterintuitive, as it

suggests that higher amounts of funding relative to the planned amount coincide with

greater depot downtime hours, even if only just slightly. The negative and significant,

p=0.016, value for storage expenditures is more intuitive. The result indicates that

the more money spent within this category, the fewer hours of depot maintenance.

The magnitude of the coefficient is nevertheless very small. Making great inferences

into the model’s output remains ill-advised.

In the final quarterly model, flying hours, breaks, and the repeat/recur rate are

excluded. None of these variables approached statistical significance in the first

passthrough. Moreover, the cannibalization rate has previously been determined to

be the most appropriate indicator for problematic aircraft in the methodology section.

The final iteration of the quarterly model is found in Table 14.

The results of the final quarterly model do not differ significantly from the first it-

eration of the quarterly model. As before, storage expenditures are statistically signif-

icant, p=0.003, and slightly negative. Sorties remain a significant variable, p=0.042,

and negative. This result suggests that aircraft that fly more sorties experience fewer

depot downtime hours. The quantity of PRDs is also significant, p=0.021, and posi-

tive. This is an intuitive outcome, as it suggests that an increased quantity of PRDs

results in more depot downtime hours down the line.
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Table 14. Quarterly Model 2
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V. Conclusions and Future Research

5.1 Conclusion

The results of this study, like many of those that preceded it, do not provide

definitive conclusions. No matter how budgets were examined in concert with other

variables, budgets were rarely significantly associated with depot downtime hours.

Deviation from top level budgets, in terms of percentage, and storage budgets were

found to be significant, but with coefficients of fairly low magnitude and in models

with little overall explanatory power. Examining the results in the context of the

initial research questions will shed light into the potential policy implications of these

results, as well as provide an opportunity to highlight the limitations of the study

and future avenues of study.

How do shortfalls or surpluses in depot-allocated budgets impact depot downtime

hours?

The results of the annual model indicate that neither shortfalls nor surpluses

impact the amount of depot downtime hours. Digging down to the quarterly level

indicated the potential for a relationship between overall budgets, expressed as a

percentage, and downtime hours. The results, although statistically significant, fun-

damentally did not hold large amounts of explanatory power.

The ability to uncover robust relationships is ultimately limited by the availability

of data within FRM. Annual data were only available over the past 10 fiscal years.

10 years is not a large window in economic terms. Moreover, the 5 years for which

quarterly data represent an even smaller piece of the puzzle. In comparison, Spinney

had access to over 30 years of data at the time of his initial report. Identifying large

relationships, such as that between budgets and depot hours, require decades of data
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to better capture the ebbs and flows in spending trends within the DoD. Indeed,

the last 10 years have seen sequestration as well as drawdowns in both Iraq and

Afghanistan. The 10 years before that saw the start of the Global War on Terror and

associated increase in forces. The bottom line is that 5 to 10 years of data may not

be sufficient to view the full range of funding levels that any given requirement can

expect to receive.

Investigating the relationship between depot hours and budgets is also limited by

the fact that depot level maintenance is scheduled along rigorously predetermined

timeframes that limit the volume of truly unexpected costs. TO 00-25-4 explicitly

states that “depot maintenance will be accomplished on a planned basis to facilitate

the programming of funds, material, manpower, facilities and other resources.” A clear

nexus is drawn on the doctrinal level between formalized depot schedules and easing

the task of budget allocation. Furthermore, depots have 90 days of flexibility when

conducting program depot maintenance. Hence, depot maintenance is simultaneously

predictable, but also flexible in the event of contingencies. It is possible that the

margins of error and high level of information available to maintenance planners

allows depot managers to balance depot down hours within a certain range for each

aircraft. The absence of a counterfactual, in which an airframe is consistently and

significantly defunded, limits the ability to investigate the impacts of budgets on

downtime hours at the extremes.

In a world of perfect planning, any deviation from a perfect plan will cause imper-

fect outcomes. The current combination of variables within the model suggest that

deviations from planned budgets do not have immediate effects on availability. This

is not proof that downtime will be the same regardless of surplus or shortfall. Instead,

the research indicates that there may be enough flexibility in the current process of

budget allocation that linear analyses of budgets and downtime may not uncover the
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interaction between the two; The readiness “receipt” remains more complex than its

name would imply.

Which types of expenditures, by AFEEIC, have the greatest impact on depot mainte-

nance hours?

Only the AFEEIC corresponding to storage expenditures was found to be statis-

tically significant. Even still, within the broader context of the explanatory power

of the model, the role of storage expenditures should not be overstated to imply a

causal relationship. The remaining AFEEIC categories were not found to be signifi-

cant, and therefore conclusions regarding their relative impact on depot maintenance

hours cannot be made.

Investigating the impact of budgets by category only examines a piece of the re-

sources managed by defense planners. In addition to funds, the above quote from the

TO 00-25-4 also makes reference to the programming of “material. . . and other re-

sources”. This research ultimately does not go into detail into the mechanisms behind

the allocation of manpower or the logistical issues that depots face when accomplish-

ing depot maintenance. Indeed, LIMS-EV does not categorize depot maintenance to

the same degree that unit-level maintenance is. The NMCS, NMCM, and NMCB

labels all offer insight that is unavailable for depot level repairs.

5.2 Future Research

Autocorrelation within panel data additionally presents unique difficulties. The

cross-section of different sub-groups makes lagging variables a complex and intensive

process; each variable must be lagged for each time period, for each subgroup. Future

methods of analysis may want to use methods that are more favorable to time-series
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data, such as Auto Regressive Integrated Moving Average (ARIMA), as opposed to

traditional OLS methods.

From a theoretical standpoint, the planned nature of depot maintenance implies

the existence of a base timeline for depot down hours. Future researchers may opt to

investigate actual depot hours relative to their deviation from the amount of depot

hours planned for the platform in the given year. Focusing future research to a single

MDS, as opposed to a cohort of multiple platforms, may be the optimal choice for

future researchers seeking to create a scalable model of the budget and depot hour

relationship.
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