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Abstract: The determination of the properties (i.e. line center, width, and amplitude) of a spectral
line is simulated using a Monte Carlo method. For dual-comb spectroscopy, ideal repetition
rates emerge for both the signal and LO combs that do not correspond to the repetition rates
that possess the highest signal-to-noise ratio. The determination is even more accurate when the
repetition rates have an arbitrary near-harmonic ratio. The simulation results are generalized to
allow for the comparison of any two spectroscopic systems (i.e. not just comb-based systems) by
performing the simulations as a function of the spectral point spacing and signal-to-noise ratio of
the acquired data.
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1. Introduction

Frequency combs have revolutionized the fields of spectroscopy and optical frequency metrology
over the past few decades due to their long coherence times, high precision, and ability to create a
direct link between optical and microwave frequencies [1]. This impact has been felt in a diversity
of areas from attosecond science to tests of fundamental physics to even exoplanetary science [2].
For spectroscopy in particular, the unique combination of high precision and fast acquisition
time enabled by dual-comb spectroscopy (DCS) has challenged Fourier Transform Infrared
Spectroscopy (FTIR) - the longtime gold standard of high-resolution broadband spectroscopy [3].
DCS has proven to be highly proficient at identifying and measuring the concentrations of
molecules, which is desirable for a variety of applications such as greenhouse gas sensing, toxin
detection, and biomedical tissue analysis [4]. To succeed in these endeavors, it is imperative to be
able to accurately and precisely measure the properties (i.e. line center, width, and amplitude)
of some spectral feature. Of course the speed and accuracy of this task benefit from a higher
signal-to-noise ratio (SNR); the understanding and improvement of which have been the focus of
many previous works [5–9]. However, the SNR is not the only significant parameter – as we show
in this work, the repetition rates of the two combs have a tremendous impact on the error and
uncertainty of the ascertained line properties assuming all else is equal. This impact is greatest
when allowing for the selection of arbitrary-harmonic related repetition rates.

In the conventional implementation of DCS, one comb (referred to as the signal comb with
a repetition rate of fSig) is transmitted through a medium of interest while the second comb
(referred to as the local oscillator (LO) or “read-out” comb with a repetition rate of fLO) bypasses
the medium and interferes with the signal comb on a detector. The repetition rates of the two
combs are slightly different so that their ratio (ρr ≡ fLO : fSig) is very close to unity. In the
frequency-domain, this ratio means that the beat notes between any two signal and LO comb lines
seen on the detector occur at unique, evenly spaced frequencies thereby forming a radio-frequency
(rf) comb. This one-to-one mapping links the measured rf comb lines and the optical comb
lines that generated them. Because the amplitude and phase of each individual signal comb
line can be measured, the spectral line is sampled with a spectral point spacing, δν, equal to
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fSig. In the time-domain, the use of nearly identical repetition rates implies that the time delay
between sequential pairs of signal and LO pulses increases by a small, very precise amount.
This configuration is analogous to FTIR in the sense that the relative time-delay between two
pulses is scanned so that they sample one another at discrete points and indeed the recorded
interferograms appear very similar. However, by taking advantage of the high precision of combs
and avoiding the use of a mechanical delay stage, DCS has significantly better spectral resolution,
compactness, robustness, and acquisition times.
Although the repetition rates of the two combs used in the vast majority of conventional

DCS setups possess a near-unity ratio, in principle any near-harmonic (i.e. near-multiple)
relationship between the repetition rates is acceptable. The concept of heterodyning two periodic
optical waveforms with arbitrary near-harmonic repetition rates has been used to characterize
the envelope [10] and more recently the envelope and spectral phase [11, 12] of an unknown
waveform. The latter two techniques are quite similar to DCS in the way that they retrieve optical
information from the rf signal by leveraging the one-to-one mapping between a pair of signal and
LO comb lines and their beat note on a detector. The use of near-harmonic repetition rate combs
has also been applied to DCS – but rather than directly using the rf-to-optical mapping, the
authors viewed the measured rf signal as a temporal-multiplexing of independent traditional DCS
interferograms then demultiplexed and combined them [13]. Another method that utilizes two
pulse trains actually allows for any ρr although its sub-picosecond time accuracy is insufficient
for DCS [14].

|E|

ν (optical)

(a) fLO

fSig

|V |

f (radio)

(b) 2 δf 2kδf (2k ′−1)δf

Fig. 1. (a) Optical spectra of a signal comb (showing an absorption dip) and LO comb with
equal average powers and a repetition rate ratio ρr ≈ 2 : 1. Every other signal comb line
is dotted to illustrate where the rf comb lines in (b) originate. (b) The rf comb seen on a
detector in an electrical bandwidth of fLO/2. A pair of gray lines illustrates the optical-to-rf
mapping for a solid (dotted) rf comb line which in this specific example occur at even (odd)
multiples of δf (k and k ′ are integers). Note that each “interferogram” in the time-domain
will contain two unique bursts (corresponding to the solid and dotted rf combs) because the
LO pulse train sweeps through a given signal pulse twice during each τmin ≡ δf −1.

An example of how the optical information is mixed into the rf domain on a detector for ρr
near 2 :1 is shown in Fig. 1. From Fig. 1 it is clear that the maximum optical bandwidth, ∆νmax,
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that can be used without ambiguity is

∆νmax =
fSig fLO
2 δf

, (1)

where the required rf point spacing is

δf =


���� fLO

nint
(
ρr
) − fSig

���� , ρr > 1���� fLO −
fSig

nint
(
ρ−1
r

) ���� , ρr < 1
(2)

where nint(x) is the nearest integer function. Note that the necessary rf point spacing is equal
to the difference between the repetition rates for only conventional DCS (where ρr ≈ 1). The
maximum optical bandwidth can be doubled by using in-phase/quadrature detection [15, 16].
The minimum amount of time required to resolve these rf comb teeth is τmin ≡ δf −1 as set by the
Nyquist criterion. Once resolved, the desired optical information can be extracted from the rf
comb [11–13].

2. Simulation

The impact of various experimental parameters on the determination of the properties (i.e. line
center, width, and amplitude) of some spectral feature can be quantified using a Monte Carlo
method. Many randomly generated data sets with appropriate SNRs are each fit using a regression
approach to extract the properties of the spectral feature. The errors between these measured
values and the ones used to generate the data are then analyzed as a function of the experimental
parameter to reveal its influence.

A number of approximations and assumptions have been made to simplify our analyses. First,
we only consider a sample medium that possesses a single Lorentzian resonance and only analyze
the absorption due to this resonance i.e. phase information is neglected. Second, we approximate
the spectral envelopes of the signal and LO pulse trains as “top hats” whose width, ∆ν, is less
than ∆νmax. In Sec. 2.1 the amplitude of the top hat is such that the average power of each beam
is fixed while in Sec. 2.2 it is irrelevant. Third, the response function of the detector is assumed
to be flat and the rf comb (which we assume lines up perfectly with the measurement frequency
grid) is sampled at a rate of fLO. Fourth, we assume that the offset frequency and repetition rate
noise of the combs is negligible and that the dominant noise in the measurement may be modeled
as additive complex white Gaussian noise, N(ν). Fifth, we assume that all systematic errors (e.g.
baseline issues from etalon effects) are negligible.

These assumptions allow us to write the normalized, dimensionless, noise-free, optical-domain
signal as

S(ν) = exp [2πi n′(ν) Lν/c] exp [−α(ν) L/2] , (3)

which is only sampled at the signal comb frequencies within ∆ν given by ν = k fSig + fo where k
is an integer, fo is the signal comb offset frequency, n′(ν) is the real part of the sample medium’s
refractive index and L its length, and the absorption coefficient is

α(ν) = s
L

γ2

γ2 + (ν − νc)2
. (4)

The parameters to be obtained from the noisy data are the center frequency, νc, half-width at
half maximum (HWHM), γ, and the strength, s. Since the phase information is neglected in this
work, the noisy signal is

SN (ν) ≡
�� S(ν) + N(ν)

�� , (5)
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in which we expect the average SNR for a weakly absorbing sample to be

SNRρr =
√
ρr SNR1 (6)

where the corresponding SNR for conventional (i.e. ρr ≈ 1) DCS is [5]

SNR1 ≡
√
τ

M

2PSig[
µ−1 (NEP)2 + 4c1η−1hν0PSig + 2bc2 (RIN) P2

Sig

]1/2 , (7)

where τ is the acquisition time, M ≡ ∆ν/ fSig is the number of resolved spectral elements
(where ∆ν is the acquisition optical bandwidth), P is the average laser power incident on the
detector, NEP and η are the noise equivalent power and efficiency of the detector respectively,
µ ≡ PLO/PSig is the laser power ratio, hν0 is the average energy per photon, c1 ≡ (1 + µ)/(2µ),
c2 ≡ (1 + µ2)/(2µ), b is 1 (2) for balanced (unbalanced) detection, and RIN is the laser relative
intensity noise (assumed to be the same for both pulse trains). Eq. (7) does not contain the
factor of 0.8 found in Ref. [5] because the laser spectra are assumed to be “top-hats” rather than
Gaussians. From a frequency-domain perspective, the SNR expression in Eq. (6) arises from
the facts that ρr more interferograms can be measured for any given τ and ∆ν per Eqs. (1) and
(2) (increasing the SNR by √ρr due to averaging), the amplitudes of the LO comb lines are √ρr
times larger, and the frequency domain noise amplitude increases by √ρr because the sampling
rate increases by ρr. In the time-domain, the same √ρr benefit from averaging and the same√
ρr times greater noise amplitude from faster sampling exist in addition to a LO electric field

amplitude that is √ρr greater on average.

2.1. Varying the repetition rates

For a fair comparison of repetition rates to be used in DCS, all other experimental parameters are
fixed. In this case, Eq. (6) implies that the SNR scales with the repetition rates as

SNR ∝
√

fSig fLO , (8)

as shown in the leftmost panel of Fig. 2. Eq. (8) has recently been experimentally verified in
Ref. [9] (note the reported SNRs are for the rf power as opposed to amplitude – the latter being
the convention used in this work). For any given signal and LO comb repetition rates, the noisy
signal SN (ν) from Eq. (5) (with L = 1 and s = 1) was simulated independently many times
with a SNR given by Eq. (8) and a random signal comb offset frequency, fo, each time. Then,
for each simulation, −2 ln [SN (ν)]/L was fit to Eq. (4) using a nonlinear least-squares method
following the Levenberg-Marquardt algorithm. The standard deviation of the errors in the fitted
center frequency (σc), HWHM (σγ), and strength (σs) were then recorded and are displayed in
the rightmost three panels of Fig. 2.

In DCS the spectral point spacing, δν, is usually equal to the signal comb repetition rate, fSig.
However, it is possible to achieve the same spectral point spacing with a signal comb repetition
rate that is m times greater (where m is an integer) by using the spectral interleaving technique
in which a series of m separate spectra are collected with each one having shifted signal comb
lines [17,18]. According to Eqs. (6) and (7) the SNR in the final interleaved spectrum is identical
to one acquired without interleaving because the increase in the signal comb repetition rate by a
factor of m (increasing the SNR by a factor

√
m) is counteracted by the reduction in acquisition

time allowed for each measurement by a factor of m (decreasing the SNR by a factor 1/
√

m)
assuming all other parameters are the same. Thus, the results in Fig. 2 also apply to systems using
the spectral interleaving technique but with the understanding that the horizontal axis should be
interpreted as the final spectral point spacing, δν, which is fSig/m.

                                                                                                  Vol. 26, No. 9 | 30 Apr 2018 | OPTICS EXPRESS 12053 



SNR

101 102 103

f L
O
(γ
)

10−2

100

102

fSig (γ)
10−2 100 102

σc

100 10−1 10−2

fSig (γ)
10−2 100 102

σγ

100 10−1 10−2

fSig (γ)
10−2 100 102

σs

100 10−1 10−2

fSig (γ)
10−2 100 102

Fig. 2. SNR and corresponding standard deviations of the errors in the fitted center frequency
(σc), HWHM (σγ), and strength (σs) as functions of the repetition rates of the signal and
LO combs (which have units of γ, the HWHM of the resonance). Conventional (ρr ≈ 1)
DCS is the middle diagonal line on each plot while the first line above (below) the diagonal
corresponds to ρr ≈ 2 (ρ−1

r ≈ 2) and so forth. The space between neighboring lines shrinks
exponentially due to the logarithmic axes.

The core result of this work is that the repetition rates of the signal and LO combs greatly
impact the error and uncertainty in the measured parameters of a Lorentzian resonance which
is clearly shown in Fig. 2. When all other experimental parameters are fixed, it is ideal to have
fSig ≈ fLO ≈ γ when using the traditional implementation of DCS in which ρr ≈ 1. However,
by allowing the repetition rates to have a near-harmonic relationship, the uncertainty in the
fit parameters can be orders of magnitude lower (assuming fSig / γ) resulting from an SNR
that scales with √ρr (see Eq. 6 and the following paragraph). In this case, it is ideal to have
any fSig / γ in addition to the highest near-harmonic LO repetition rate that is feasible. Of
course there is a lower limit set on the signal comb repetition rate that corresponds to the SNR
approaching 1. Note that it is never beneficial to use a near-subharmonic LO comb as can be seen
in Fig. 2 – this would imply that many signal pulses are never sampled, wasting potential data.
Although any signal comb repetition rate below the HWHM of the resonance should produce
nearly the same fitting error for a given fLO (see Fig. 2), there may be practical reasons to choose
one fSig over another. For example, the higher the signal comb repetition rate, the less congested
the rf comb will be because there are fewer comb teeth in a given electrical bandwidth. On the
other hand, the higher the signal comb repetition rate, the less versatile that system will be in the
sense that fewer samples will meet the fSig / γ requirement.

It is important to note that these results apply strictly to linear measurements because Eq. (3)
does not accurately describe nonlinear signals in general. For example, nonlinear interactions
typically generate new comb lines rather than attenuate existing ones [19–23]. Indeed one
nonlinear experiment demonstrated that the SNR actually decreases with increasing fSig (fixed
laser output powers), which would imply that lower signal comb repetition rates are always better
for nonlinear measurements due to the higher energy per pulse [24]. Of course there are other
techniques that can affect the SNR even for linear measurements. For instance, the GATOR
technique can be used, which would favor a slower LO comb [25].

2.2. Varying the SNR and spectral point spacing

The results of Sec. 2.1 isolate the advantage stemming from the use of near-harmonically related
repetition rates. However, most practical DCS systems have sufficiently different laser powers,
detector efficiencies, types of dominant noise, etc., such that a more general simulation approach
is necessary. For example, DCS has recently been performed with microresonator combs [26],
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but because these combs typically output only milliwatts of power [27], it is inappropriate to use
the results from Fig. 2 to compare their ability to ascertain the properties of a spectral line to
slower oscillators that have orders of magnitude more output power. To generalize our results, the
simulations were performed again but instead of varying the repetition rates, the independent
parameters selected were the SNR and the spectral point spacing, δν. In all other respects the
simulation process was identical to that described in Sec. 2.1. The results are displayed in Fig. 3.

σc

100 10−2 10−4

SN
R

100

102

104

δν (γ)
10−2 100 102

σγ

100 10−2 10−4

δν (γ)
10−2 100 102
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100 10−2 10−4

δν (γ)
10−2 100 102

Fig. 3. Standard deviation of the errors in the fitted center frequency (σc), HWHM (σγ), and
strength (σs) as functions of the SNR and spectral point spacing, δν. The dashed white lines
are gradients to help illustrate the relationship in Eq. (9).

Examining the left-hand side of each plot in Fig. 3 reveals that as long as δν / γ and the SNR
is sufficiently high, then

σ ∝
√
δν

SNR
(9)

where σ is the standard deviation of a given fit parameter. This is a known result in signal
processing that also applies to Gaussian and Voigt profile line shapes as well [28]. This result is
completely general and not specific to DCS because the simulation merely fits a Lorentzian to
arbitrarily collected data. Any two spectroscopic systems can be compared regardless of the laser
power used, acquisition time, etc., as long as the sample is weakly absorbing and the noise is
white, Gaussian distributed, and dominates the systematic error. Therefore, Eq. (9) provides a
useful tool to compare any two spectroscopic systems. It also explains in Fig. 2 why σc, σγ, and
σs, are all proportional to 1/

√
fLO (with zero fSig dependence) for fSig / γ when one considers

the SNR expression in Eq. 8 and the fact that δν = fSig.
All of the plots in Figs. 2 and 3 show that the error rapidly climbs for δν ' 3γ. This

observation corroborates one’s intuition because zero (or only one) signal comb lines are “hitting
the resonance.” This condition means that the vast majority of the fitting involves the wings of
the Lorentzian which are inherently insensitive to changes in νc, γ, and d (i.e. a large change in
one of the parameters results in a minuscule change in data points far from line center) due to
the exponential behavior of the wings. This lack of sensitive data points quickly leads to huge
uncertainty in the fitted parameters despite the fact that the SNR monotonically increases with
fSig (and therefore δν).
To verify the comprehensiveness of the results in Figs. 2 and 3 several series of simulations

were performed. First, the overall patterns in the error plots remained the same as the SNR
was scaled up and down over several orders of magnitude. Second, the number of data points
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over which the fitting was performed was varied between a fixed number of data points, a fixed
frequency range of data points, and a hybrid approach. There was no significant effect on our
results. Third, the strength of the resonance was varied. For sufficiently small strengths (s / 5)
the general patterns in our results were unaffected. However, for larger strengths the absorption
becomes saturated and the comb lines containing the most critical information (those near line
center) have drastically reduced signal-to-noise ratios. This situation leads to significantly less
accurate fits overall.

3. Conclusion

We have isolated the impact of the DCS comb repetition rates on the standard deviation of
the error, σ, of the measured parameters of a single Lorentzian resonance (assuming all else
is equal, i.e. lasers powers, acquisition time, etc.) and found that there is a maximum suitable
spectral point spacing, δν ≈ γ, where γ is the HWHM of the resonance. Because of this, the
repetition rates that yield the smallest errors in the fit parameters do not possess the highest
SNR. For the traditional implementation of DCS the ideal repetition rates are fSig ≈ fLO ≈ γ
but even more accurate measurements can be made by allowing for arbitrary near-harmonic
repetition rate ratios. In this case the ideal repetition rates are fSig / γ and fLO → ∞. In
general, σ ∝ 1/

√
fLO (with zero fSig dependence) for fSig / γ. These are timely results given

the recent advances in high-repetition-rate microresonator combs [26] and external repetition
rate multiplying techniques [9, 29–31]. Since utilizing near-harmonic repetition rates requires
only a slight modification to the rf-to-optical mapping process, any application of DCS where
measuring the parameters of a spectral line is a top priority should readily receive higher accuracy
and lower uncertainty by switching from similar to near-harmonic repetition rates assuming other
experimental parameters remain more or less unchanged.

In practice, spectroscopic systems may differ wildly in everything from the type of dominant
noise to the maximum allowable acquisition time. By running our simulations as a function of
the SNR and spectral point spacing, δν, we identified a general fitting result, σ ∝

√
δν /SNR,

which can be used to compare any two spectroscopic systems despite their differences. In fact,
this relationship can be used to compare even non-comb-based systems as long as the noise
is predominately white and Gaussian distributed. Such a metric shows that while the SNR is
important, efforts to reduce the spectral point spacing should also be made.
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