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Abstract

The implementation and testing of autonomous and cooperative unmanned sys-

tems is challenging due to the inherent design complexity, infinite test spaces, and

lack of autonomy specific measures. These challenges are limiting the USAFs ability

to deploy and take advantage of tactical and strategic advantages offered by these

systems. This research instantiates an Autonomous System Reference Architecture

(ASRA) on a Wide Area Search (WAS) scenario as a test bed for rapid prototyping

and evaluation of autonomous and cooperative systems. This research aims to pro-

vide a framework to evaluate the systems ability to achieve mission and autonomy

objectives, develop reusable autonomous behaviors, and develop reusable cooperative

decision making algorithms. For this research and application to the WAS mission,

metrics of autonomy were derived from literature requirements for autonomous sys-

tems implementing reactive architectures and control: responsiveness, robustness,

and perception accuracy. Autonomous behaviors, to include more complex behaviors

combining simple (atomic) behaviors were developed, and a variety of cooperative

decision rules were defined. The subsequent evaluation implemented a face centered

cubic design of experiments over four scenarios including a single vehicle, and three

levels of cooperation between two vehicles. Following a rigorous test plan, the tests

were conducted in simulation implementing automated testing and expedited analy-

sis. The test results were used to create a response surface model to characterize the

system and conduct multiple response optimization to determine an optimal config-

uration that maximizes area searched, percent detected, and perception accuracy in

a given target density.
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DEVELOPMENT, TEST, AND EVALUATION OF AUTONOMOUS

UNMANNED AERIAL SYSTEMS IN A SIMULATED WIDE AREA SEARCH

SCENARIO: AN IMPLEMENTATION OF THE AUTONOMOUS SYSTEMS

REFERENCE ARCHITECTURE

I. Introduction

1.1 General Issue

The value of autonomous systems stems from the ability to extend and comple-

ment human ability. Autonomous systems can help limit human exposure to life

threatening environments as well as reduce the cognitive load on operators. These

systems have been implemented in aerial, ground, maritime, and space systems and

have proven valuable in Department of Defense (DoD) operations, saving lives and

extending human capabilities (Defense Science Board 2012, Zacharias 2019).

A major technology that has spread rapidly in both the consumer and defense

industries is small unmanned aircraft with basic autonomous capabilities. Small Un-

manned Aerial System (SUAS) have been implemented in areas such as surveillance,

agriculture, photography, and consumer hobbies. These systems often have basic

automated features such as failsafe modes, waypoint following, auto land and take-

off, and a ground control station interface. With development, these features can

be expanded to more advanced functions such as target detection, identification,

and tracking, decision making, data collection and analysis, and vehicle cooperation.

SUAS have the capability to perform many military missions including reconnais-

sance, search and rescue, damage assessment, surveillance, command and control,
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and assisting manned aircraft missions. Furthermore, capabilities can be combined

through a network of SUAS. Distributing capabilities allows for a more robust and

resilient military solution because compromising one UAS does not eliminate the to-

tal capability. Additionally, due to the smaller size and lower cost, SUAS are more

attritable than traditional aircraft. This, in addition to the lack of a human pilot on-

board, means SUAS can be sent to high risk areas and decrease the inherent danger

of many military operations. These benefits and uses of SUAS present great potential

to combine UAS and autonomy.

There is a great potential in extending SUAS autonomy. SUAS with higher levels

of autonomy require a much lower level of operator input, allowing an expansion of

human capability and multitasking levels. By combining these technologies, a host of

new applications become available. However, the merging of these technologies brings

a host of new concerns regarding the uncertainties of autonomous behavior.

A common concern with the growing complexity of autonomous systems is the

lack of trust these systems naturally invoke in humans. Zacharias (2019) gives two

major reasons for this lack of trust. Fist, humans trust when they know they have

a common understanding how the autonomy works and how to interface with the

system. This is difficult to establish due to the fundamental difference of operation

between autonomous systems and humans. The second factor is the degree to which

the reasoning and actions of those systems are obvious and predictable to the human.

This predictability becomes more difficult as the autonomy grows in complexity, due

to the increased probability of unintended or unknown behaviors emerging. This

further complicates the explanation of the autonomy’s behavior, affecting the level

of trust it harbors from humans. The challenge of developing trust between users

and autonomous systems can be addressed through a testing approach tailored to

autonomous systems (Zacharias, 2019). Autonomous applications implemented re-
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sponsibly and appropriately can address many of these unknowns, but these concerns

should not halt autonomy development as doing so would establish a military capa-

bility deficiency compared to our adversaries.

Despite these concerns, autonomous systems have been fielded for military use to

gain a strategic advantage over adversaries (Defense Science Board, 2012). Following

fielding, multiple publications from DoD leadership have been released (AFRL, 2014),

(Defense Science Board, 2012),(Ahner and Parson, 2016), identifying steps forward

in the development of autonomous technology. One recent Air Force report (AFRL,

2014) discusses the unique challenges of testing autonomy. Since autonomous systems

react to environmental stimuli, there are near infinite decision spaces. These systems

are implemented in an unpredictable world with system faults and failures, human

error, weather effects with humans that have varying intentions, especially in war

zones. As a result, there are an infinite number of environments a system can be

subjected to.

Testing all possible states and all ranges of inputs to the system is infeasible,

making autonomous systems a challenge (AFRL, 2014). As a result of this challenge,

the Defense Science Board task force report (2012) calls for test “techniques that focus

on the unique challenges of autonomy.” Areas of interest include robust simulation to

capture test environments and methods to confirm autonomous systems perform as

intended (Defense Science Board, 2012). In response, many studies and reports have

been conducted that identified gaps and challenges in testing autonomous systems.

In 2015, the Office of the Secretary of Defense (OSD) Scientific Test and Analysis

Techniques in Test & Evaluation Center of Excellence (STAT COE) hosted a study

on testing of autonomous systems and released a report with research areas for the

DoD (Ahner and Parson, 2016). The challenge areas identified include:

• Requirements and measures
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• Test infrastructure and personnel

• Design for test

• Test adequacy and integration

• Testing continuum

• Safety and cyber security for autonomous systems

• Testing of human system teaming

• Post acceptance testing

Overcoming these challenge areas is crucial to the future development of au-

tonomous systems. The 2018 National Defense Strategy identifies advanced au-

tonomous systems as one of their key investments: “The Department will invest

broadly in military application of autonomy, artificial intelligence, machine learning,

including rapid application of commercial breakthroughs, to gain competitive mili-

tary advantages” (Mattis, 2018). However, “extensive verification, validation, test,

and evaluation are required before fielding autonomous weapon systems” (David and

Nielsen, 2016). As a result, research efforts to develop requirements and measures

for autonomous systems is a first step to gaining a competitive military advantage

through autonomy.

The DoD is not the only stakeholders in testing autonomous systems. Commercial

applications of autonomous systems also require rigorous testing and are facing chal-

lenges in this area. One example is the production of driver assist technologies and

driverless cars. The RAND Cooperation released a report analyzing how many driv-

ing miles it would require to demonstrate autonomous vehicle reliability, highlighting

the testing challenge (Karla and Paddock, 2016). The report states, “Autonomous ve-

hicles would have to be driven hundreds of millions of miles and sometimes hundreds
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of billions of miles to demonstrate their reliability in terms of fatalities and injuries.”

This statement points to the complex decision spaces autonomous systems are sub-

jected to which make testing autonomy a challenge. Testing these spaces fully would

take tens and sometimes hundreds of years to accomplish. As a result, “developers

of this technology and third-party testers will need to develop innovative methods

of demonstrating safety and reliability” in order to test adequately and affordably

(Karla and Paddock, 2016).

In addition to test, directives about the development of autonomous systems have

been released. Autonomous systems share common behaviors regardless of the un-

derlying technical application. Zacharias (2019) outlines some common behaviors

for all autonomous systems. As a result of these common behaviors, architectural

approaches can be implemented to combine efforts across domains. In his recom-

mendations, he mentions the need for one or more common autonomous system

architectures that combine frameworks used across autonomy communities. These

architectures should be fully functional, allowing users to extend the capabilities for

one application and reuse them for later projects. Zacharias also discusses a use-

ful development process for autonomous systems. These processes should support

“innovation, rapid prototyping, and iterative requirement development to support

rapid [Autonomous System] development and fielding.” However, the software bur-

den of autonomy presents a challenge to rapidly prototype secure autonomous systems

(Zacharias, 2019). To account for this, the commonality of behaviors across domains

of autonomy can be leveraged to decrease the amount of development time required.

To achieve the benefits and overcome the challenges above, the streamlining of

the autonomous system development process must be achieved. Evolutionary de-

velopment and test of autonomous systems can be accelerated through a modular

development framework. This reusable approach can minimize rework between ap-

5



plications through the sharing of software components. This research evaluates a

framework for this development and includes an exploration of relevant autonomy

testing methods and metrics.

1.2 Scope

This research was primarily an implementation of the Autonomous Systems Ref-

erence Architecture (ASRA) developed by the Autonomy and Navigation Technology

Center (ANT) Center at the Air Force Institute of Technology (AFIT). The reference

architecture offers a flexible platform that enables autonomy researchers to rapidly

step through evolutionary autonomy development. A large effort of this research fo-

cused on implementing the framework and building up new software components to

add to the module library. The build up of the software component library in the

framework allows for module reuse which is crucial to rapid evolutionary development.

ASRA was studied by implementing a wide area search (WAS) problem similar

to what is presented in Decker and Jacques (2007). This WAS mission served as the

test bed to evaluate the process of using ASRA for new research problems. The WAS

model is based on a distribution of stationary real and false targets utilizing a proba-

bility draw to simulate sensor behavior. A confusion matrix between encountered and

detected targets determines Type I and Type II sensor error which can be fine tuned

to accurately simulate real world sensor performance (Decker and Jacques, 2007).

Multiple agents were implemented in order to present significant autonomy com-

plexity and a relevant WAS scenario. This research explores variations in the level

of cooperation among small multi-rotor UAS to study their effect on mission perfor-

mance. A major driver of cooperative behavior are rules based on decision algorithms

similar to those studied in Gillen (2003). These rules take into account various agent
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and environmental factors to arrive at a decision governing the agent’s cooperative

behavior.

At this point, it is important to define autonomy and distinguish the difference

with automation. Bihl et al. (2018) describes automation as a system that “functions

with little or no human operator involvement; however, the system performance is

limited to the specific actions it has been designed to do.” In contrast, an autonomous

system “has a set of intelligence-based capabilities that allow it to respond to situa-

tions that were not preprogrammed or anticipated in the design...[and] has a degree

of self-directed behavior” (Bihl et al., 2018). However, to the layman, a system with

automation is often associated with automated manufacturing instead of systems that

have the ability to cooperate and weigh possible actions. Under the definitions listed

above, both are considered automation. This reality indicates some sort of spectrum

within automation that eventually approaches autonomy at some contested point.

In light of the automation spectrum and the multi-disciplinary approach of systems

engineering, a broader definition is given that aligns with the common connotation

of autonomy.

In this research, autonomy is defined as: the ability to make decisions using sen-

sory information without human interaction, adapted from MahmoudZadeh et al.

(2019).

This definition was chosen to enable rapid prototyping of reusable behaviors and

to gain access to information required for testing. The work in this research is ex-

tendable to artificial intelligence and machine learning. ASRA can be extended to

include machine learning algorithms and test methods can be further developed to

accommodate these systems. However, implementing automation according to Bihl
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et al. (2018) allows observability and explainability of the system while developing

test methods and metrics for autonomous systems. This provides a starting point for

metrics and methods that can be expanded to the autonomous systems described in

(Bihl et al., 2018).

In order to test the performance of the autonomy, the reference architecture re-

quired new development of software modules tailored to evaluating autonomy. In this

research, autonomy is defined as the ability of an agent to make decisions according

to predefined decision rules. To make these decisions, an agent perceives the world

around it and uses this information to apply the rules. This research utilized simula-

tion to vary sensor, agent, and environmental parameters over which to evaluate the

ability of the agent to correctly implement decision rules. Simulation allows data to

be collected over many conditions in a short amount of time and can track truth and

agent perception and decisions to produce measures of autonomy and effectiveness in

simulation. Test methods of autonomy is a new module in ASRA, allowing reuse and

modularity.

1.3 Research Objectives and Questions

The research objectives are:

1. Further define and prototype the Autonomous Systems Reference Architecture

(ASRA).

2. Develop test methods and metrics for autonomous systems.

The research questions are:

1. What additions to ASRA need to be made to implement a new WAS applica-

tion?
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2. How does ASRA enable reuse of the similarities that exist in autonomous and

cooperative systems?

3. How does ASRA support the variations of autonomous and cooperative sys-

tems?

4. What are effective and efficient test methods for autonomy?

5. How should the test space be limited given a specific mission space?

6. What are valid and useful measures of autonomous systems?

1.4 Assumptions and Limitations

• A multi-rotor platform will be utilized for the Wide Area Search mission because

of its simple flight dynamics and control.

• The WAS scenario will be multiple vehicle with multiple targets with no prior

knowledge of target location.

• Inter agent communication is nominal.

• Targets are static and uniformly distributed throughout the search area

• Sensor performance can be accurately modeled with a confusion matrix.

• Vehicle operation will be nominal with the exception of a return to launch state

driven by a low fuel condition.

• Errors are independently and identically distributed.

• Canonical analysis is not required.

• Optimization of response is not interested in tuning of weights or desirabilities.
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• A sensor failure causing a return to launch command can be modeled with a

low fuel command.

• Responsiveness to objective plan is approximately that to external stimuli.

• No decision is made on whether Type I error or Type II error is more preferable,

each are weighed equally.

• The sparsity of effects principle can be applied.

1.5 Preview

Chapter I presented the general issue, listed the research goals, provided the scope

and general approach of this research, and listed assumptions made. Chapter II

provides a background on the WAS problem, details the use of cooperative control,

discusses autonomy architectures, and presents existing research on verification and

validation of autonomous systems. Chapter III introduces the specific WAS scenario

and ASRA implemented in this research as well as an overview of the test design

and chosen metrics. The implementation of a WAS agent in ASRA and the selected

testing measures are given in Chapter IV. Finally, Chapter V gives conclusions and

insights on the reference architecture development and test results. This research

extends ASRA to provide an development environment to expedite future autonomous

system research as well as test measures and metrics. Statistical models are created

to predict system performance, including autonomous performance. These responses

can be optimized for a given mission environment, demonstrating statistical models

as tools for requirements prioritization, optimal vehicle configuration, and simulated

model extrapolation.
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II. Literature Review

2.1 Overview

The literature review details information needed to understand this research. In-

formation on the wide area search scenario, cooperative autonomous control, auton-

omy architectures and the unified behavior framework are given. Previous work on

the autonomous system reference architecture expanded in this research is shown

and discussed. The knowledge needed to understand the test methods, models, and

optimization are detailed, including mathematics and assumptions. The literature

base for metrics developed in this research are over viewed. This chapter should be

referenced to guide understanding of the prerequisite topics used in this presentation.

2.2 Wide Area Search Scenario

One of the many applications of UAS is wide area search and detection. With

applications in search and rescue, target surveillance, and attack, these scenarios

require efficient search of a large area to detect and identify targets in an unknown

environment. The mundane task of flying search patterns is well suited to the abilities

of autonomous aircraft making their application in this area of research importance.

Additionally, the potential for increased efficiency with multiple vehicles makes this

scenario an ideal test bed for autonomous operation and cooperative control devel-

opment.

The scenario presented in Jacques and Pachter (2004) equips modeled agents with

an ordinance and studies the trade-offs and outcomes of agent decisions to attack or

continue searching for other agents. When the agents themselves are the munitions,

the decision to attack terminates the agent and has a greater effect on mission success

than a scenario of only search and confirm activities.

11



Two metrics used to evaluate wide area search and attack scenarios are area

coverage rate and false target attack rate. For WAS missions, excluding munitions,

false target attack rate can be roughly equated to false target detection rate which

is driven by the quality of the agent’s sensor. Gillen (2003) found that false target

attack rate has a major impact on mission performance. To improve this false target

attack rate, additional target confirmations can be performed, either by the detecting

agent or another agent, at the expense of area coverage rate.

The wide area search scenario has multiple characteristics that can be adjusted

to alter the simulation. The search area can be sized to match the vehicle’s range or

fuel resources; and in conjunction with the number of targets and distribution type,

define target density. Targets can be stationary or moving with the latter enabling the

targets to evade the searching agents. There are many different search patterns agents

can follow such as spiral, random walk, and lawnmower patterns. Additionally, multi-

agent search pattern directions, either approaching or separating from other agents,

can affect the probability of detecting targets.

The WAS problem assumes on-board sensors to detect and classify the targets.

If the sensor’s performance characteristics are not the focus of the research, a basic

sensor can be modeled with a confusion matrix as described in Jacques and Pachter

(2004) or the tree approach of Ross et al. (2019) where sensor performance can be

modeled for multiple target types sensed under various conditions such as lighting

or orientation. A binary confusion matrix shown in Table 1 characterizes a single

sensor and target type combination but the matrix can be expanded for multiple

sensor and target types. For the binary confusion matrix case, the designer defines

the sensor’s probability of true target recognition, PTR, and probability of false target

recognition, PFTR. Values of 1 on the diagonal describe a perfect sensor and one minus
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these values is the probability of incorrect target recognition of either a true or false

target. Nominal starting values are around PTR = .9 and PFTR = .8.

2.3 Cooperative Autonomous Control

The WAS problem’s main limitation of resources can be addressed through the

application of multiple agents to the same mission area. There are varying levels of

this teamwork that can be implemented as well as many ways to distribute control

throughout the system of agents. Martinez (2008) describes multiple types of coop-

erative controllers with different levels of distributed control. A centralized control

architecture receives all agent information and assigns tasks and roles to each agent.

Decentralized control exists when agents share goals and information allowing agents

to individually make decisions that support global utility. Decentralized control al-

lows for flexible inter-agent operation, allowing the system to adapt to new agents and

to degrade gracefully if any agents fall offline. This requires an arbitration scheme be-

tween agents as no single agent makes group level decisions, but arbitration requires

increased information flow and therefore more agent communication bandwidth. De-

centralized control is also more robust to communication loss because agents can

continue to perform useful tasks without global information, whereas losing commu-

nication under centralized control can leave agents in an unproductive state, waiting

for new tasks that never arrive.

Table 1. Binary confusion matrix describing sensor performance

Encountered
True False

Detected
True PTR 1-PFTR

False 1-PTR PFTR
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The effect of different levels of cooperation have been reported in Dunkel (2002)

and Park (2002). While both of these works analyzed cooperation in a search and

attack scenario where the agents themselves were munitions, some overall conclusions

may still apply to other WAS scenarios such as search and confirm. Dunkel deter-

mined that cooperation does not always yield improved results and it must be applied

strategically to improve mission success. He notes that cooperative attack can easily

degrade system performance because a falsely classified target can waste resources as

more agents are expended to attack a false target. Cooperative classification showed

more potential because the requirement to confirm with multiple agents decreased

the chances of falsely classifying the target. The benefit of cooperation was greatest

when sensor quality was poor as multiple agents were still able to correctly classify

targets. When the result of mis-classifying a target is losing an agent and striking a

non target, cooperation’s effect on decreasing false target classifications becomes very

valuable. For a search and confirm mission, cooperative classification can minimize

wasted resources by minimizing the chances of monitoring a mis-classified target.

Park (2002) determined that the number of deployed agents must be matched to the

density of the target distribution. A higher target density may be best suited for

more agents but only to a point, as the efficiency of agents drops off when deploying

too many agents to a relatively small area.

In Gillen (2003), a cooperative decision algorithm is presented that determines

the criteria an agent uses to determine if it should engage a target. This formula

was designed to encourage participation in cooperative engagement when engaging

the target appeared to be an efficient use of resources, such as when the agent is

low on fuel and less likely to find another target through continued search. These

normalized values were then weighted, summed together, and compared to a thresh-

old. The author found that this cooperation function did improve the probability of
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target detection for low quality sensors under certain mission environment conditions

but tuning the cooperation function for a wide range of mission characteristics was

difficult.

Dunkel (2002) chose three levels of cooperation to test cooperation performance

on, a case with no cooperation, an extreme cooperation case where any agent can

attack any target, and a third case of moderated cooperative classification and at-

tack involving multiple, independent target classifications before attacking. A wide

variance in cooperation effectiveness was found among these three scenarios with

the moderated cooperative case benefiting most by cooperation even with decreasing

sensor performance.

2.4 Autonomy Architecture

Layered Architectures.

Autonomous system architectures have progressed since the mid-eighties from

deliberate ”sense, plan, act loops” to reactive architectures capable of faster execution,

but lacking in higher level planning (Murphy, 2000). The hierarchical control method

slowly steps through sensing the environment to build a world model, determining

a plan to execute a given goal, and then executing that goal in the act phase. The

method is effective at achieving its goal in near-static environments that change slowly

relative to the loop execution time such as space applications. If this loop is too slow,

the environment has changed after sensing is complete and the execution may no

longer be appropriate. Furthermore, the plan and act stages leave the agent unaware

of the current environment state.

To address these limitations, reactive architectures remove the time intensive plan

phase, allowing the sense and act phases to achieve fast adaptation to a changing

environment. Braitenberg (1986) studied how this can be achieved by simply linking
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sensory inputs directly to motor outputs. This yields a highly specific application

for a given autonomous agent; to make the agent more task flexible, multiple sensors

can be linked to motors with each sensor’s sense-act loop running in parallel. This

enables the agent to respond to specific inputs but still lacks overall planning or state

maintaining capabilities enabled by the deliberative approach.

While each of these architectures are individually limited, Gat (1998) proposes

combining them into a 3 layer architecture with a deliberator, sequencer, and con-

troller. The deliberator, a high level planner ultimately guides the controller, a low

level reactive mechanism. To link these layers, the sequencer translates abstract goals

into appropriate reactive controller operations to achieve the goal. Running these lay-

ers concurrently in separate threads or processes frees the deliberator to model and

plan at its own pace while the controller can step through the sense-act loop at a

faster rate that can react to a dynamic environment.

The deliberator layer is able to slowly read the world model to drive high level

planning such as path planning algorithms or mode changes. Additionally, the de-

liberator considers requests from the lower, sequencer layer which can notify when

a goal is completed or if the sequencer was unable to determine a set of behaviors

to accomplish a goal. The deliberator can then use this information in its planning

process and adapt. Because the execution speed of the deliberator does not effect low

level function, Gat (1998) suggests the deliberator’s logic and algorithms should not

be constrained, and thus could range from simple state machines to more dynamic

models that learn from the environment.

The controller can be thought of as behaviors or a set of transfer functions that

each convert sensor inputs to motor outputs in a unique way. Gat (1998) points out

that these behaviors should ”fail cognizantly” or recognize their failure and notify the
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rest of the system. This allows for a fault aware system that can react to unintended

performance of the controller layer.

The sequencer is then tasked with executing the goal given by the deliberator by

selecting the appropriate controller behavior, or sequence of behaviors that achieves

the current goal. The sequencer monitors the controller layer to determine when goals

are achieved or if the deliberator’s goal cannot be achieved with the agent’s available

behaviors. Additionally, the sequencer supplies any parameters the behavior may

need for its operation such as a goal position in the case of a waypoint achieving

behavior.

While the three layer architecture enables a single agent to perform complex func-

tions in a dynamic environment, it does not provide for multi-robot interaction.

Hooper and Peterson (2009) suggest that adding a fourth layer above the deliber-

ator to act as a coordinator between agents enables high functioning multi-agent

integration. This Hybrid Architecture for Multiple Robots (HAMR) assigns the co-

ordinator the tasks of inter-agent communication and translation of important global

information down to the deliberator. The coordinator maintains the state of other

agents and their impact on the world model such as agents’ positions, state history,

and current tasks, and communicates any important internal changes to the rest of

the agents. The coordinator can then operate on this data, determining the utility

of tasks, and pass that information on to the deliberator to aid in decision making

in light of the overall group of agents. To address the arbitration of tasks between

agents and ensure the agent with the highest utility performs the task, the author

suggests all agent deliberators determine their own utility for the task and send that

out to all other agent coordinators so that each agent can determine if they have the

highest utility to perform that task based on what they received from their coordi-
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nator. Because the coordinator is unaware of all agents’ capabilities, agents cannot

perform this arbitration individually.

Unified Behavior Framework.

The controller layer’s behaviors that form the transfer functions from sensors to

motors are often not simply a single behavior but are combinations of multiple low

level behaviors. Braitenberg (1986) suggests that complex behaviors observed in

natural beings are simply, or at least can be modeled by, the combination of many

low level behaviors. The difficulty of designing a highly capable controller layer is

the organization and combination of the many behaviors required to reach the goal

behavior. The Unified Behavior Framework (UBF) presented in Woolley and Peterson

(2009) aims to address these issues by standardizing behaviors through encapsulation

and offering a flexible environment to adjust behavior structures during execution.

To allow for the flexible use and reuse of behaviors, their external interfaces should

be standardized. The UBF specifies that the controller sends sensor information

in a standardized perceived state to the behavior which then returns its output as

an action output. The UBF also allows for multiple behavior control structures

to be implemented, such as subsumption which allows multiple behaviors to run

simultaneously, or motor schema which combines behavior output vectors into a single

output motor control. Traditionally the controller was limited to a single type of

behavior control architecture which may not be as appropriate for all goals the agent

may have.

The UBF enables behaviors to be combined into composite behaviors. This allows

for software reuse, utilizing a set of atomic leaf behaviors in any number of composite

behaviors that achieve a new goal that the individual behaviors could not achieve on

their own. Figure 1 shows the class diagram of UBF behaviors where composite and
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leaf behaviors are two types of behaviors and composite behaviors are composed of

an arbiter and two or more behaviors of any type. This composite pattern builds a

behavior tree that allows leaf and composite behaviors to be handled in the same way

and for requests to flow smoothly down the tree (Gamma et al., 1995). Composite

behaviors must include an arbiter to determine how to combine the action outputs

of its behaviors. Some types of arbiters are winner take all, vector sum, and priority

fusion. These take in each behavior’s action vote and weight to determine a single

action output for the composite behavior.

Figure 1. Class diagram of the Unified Behavior Framework showing composite and
leaf types of behaviors and a composite behavior composed of an arbiter and behaviors
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In the same way that the UBF standardizes behavior interfaces, Peterson et al.

(2011) suggest a standard interface between the sequencer and controller that en-

ables the sequencer to automatically build up behavior libraries instead of requiring

predetermined sets of behaviors. Traditionally, the system designer must anticipate

all goals and build up complex behaviors that achieve them. The sequencer then

accesses this list to determine what to choose to achieve a given goal. Not only does

this require extensive forethought, any new additions to the behavior library must be

manually integrated into the behavior hierarchy. The Dynamic Behavior Hierarchy

Generation (DBHG) attempts to standardize this link through the use of activation

paths to describe leaf behaviors and enable the sequencer to build up behavior hier-

archies on its own. Table 2 shows the elements that make up the activation paths.

Table 2. Description of the Activation Path which acts as a standard representation of
behaviors to define the interface between sequencer and controller layers.

Characteristic Definition

Initial Conditions When true, generates an action vote
Post Conditions Environment effects the behavior intends to achieve
Required Data Sensor data required for behavior to function
Goals Deliberator goals the behavior intends to achieve
Control Settings Motor outputs the behavior generates
Behavior Vote User-defined weight of the behavior when in an acting state

The sequence diagram of the DBHG is shown in Figure 2. Using activation paths

as abstract representation of behaviors, the dynamic sequencer is able to translate the

sequenced and prioritized goals in objective plans sent from the deliberator, which

can contain any number of tasks to be completed, into an arbitrated hierarchy of

behaviors to accomplish those goals. When building up a behavior hierarchy, the

dynamic sequencer refers to a resource manager that monitors the agent’s available

resources and returns only viable behaviors to consider using. The activation path’s

post conditions tell the sequencer those conditions that indicate when the hierarchy

has completed its current task and when the next hierarchy should be sent.
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Figure 2. The sequence diagram of the Dynamic Sequencer shows task plan generation
from objective plan to arbitrated behavior hierarchy.

Autonomous System Reference Architecture.

The Autonomous System Reference Architecture (ASRA), presented in Gray and

Jacques (2019), aims to provide an environment for autonomy researchers to quickly

spin up complex autonomous systems in a variety of domains using reusable and mod-

ular components. The reference architecture is modeled in SysML using the model
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based systems engineering (MBSE) tool, Cameo System Modeler. This approach

provides multiple levels of abstractions and bring out details on the architecture,

interfaces, and concepts. MBSE and the Cameo tool help new users learn the ar-

chitecture and experienced researchers extend and document the architecture with

many different views into the system. This model provides a platform to develop

implementation models which can aid in development and act as a digital twin to

evaluate system performance. An ASRA implementation has been developed using

the Python programming language.

The architecture thoroughly models the autonomous system in its environment

as well as its interactions with other agents. Figure 3 shows a high level abstraction

of an autonomous system where an agent interfaces with its environment through its

action outputs, communication with other agents, and environmental precepts. This

view shows how the reference architecture can model multiple agents in a system.

Figure 3. The agent interfaces with the environment through action outputs, a com-
munication interface with other agents for example, and environmental precepts.

Figure 4 models the three levels of an embodied agent. The autonomy layer con-

sists of an agent core where the autonomy architecture resides and a data marshalling
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service which handles the information flow to and from the agent core. The autonomy

layer interfaces with the hardware layer through the hardware interface layer. This

interface layer moderates their interactions with a standardized messaging structure

which allows for modularity of hardware and autonomy layers. The interface also

acts as a filter, only relaying information meant for that particular agent core. This

interface layer is currently implemented using Lightweight Communication and Mar-

shaling (LCM) but other communications methods can be used as well. For the

hardware layer, ASRA has existing modules to interface with the Ardupilot Soft-

ware in the Loop (SITL) autopilot and a point mass simulator. By swapping out

the hardware layer, researchers can go from a simulated environment to a real world

environment. This is the case with SITL for example. Because SITL is a software

representation of the Ardupilot autopilot in a simulated world environment, transi-

tioning from simulation to flight testing without any major changes to their software

agent. Additionally, this provides a digital twin capability, where the autonomy is

run on a real and simulated agent simultaneously, with the difference being what is

running in this hardware layer.

Figure 5 shows an instantiation of the agent core as the four layer HAMR ar-

chitecture. This is one of many possible agent core architectures such as a simple

reactive controller, or a reinforcement learning implementation. This view also shows

how perceptors interface with the layers, taking in sensor information, processing it

and providing state information to the rest of the agent core. These states update

the agent core state block which each layer references to update its own state block,

which contains only the states it needs to monitor.
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Figure 4. Model of agent architecture with the Hardware Interface Layer handling
interface between Hardware and Autonomy Layers.

2.5 Statistical Models: Linear Regression

Statistical models are used to evaluate the autonomous WAS mission through ex-

periments of the ASRA. Experiments allow researchers to observe phenomena under

experimental conditions. Models are theoretical explanations of experimental ob-

servations expressed in one or more mathematical equations. These mathematical

equations can be used under model assumptions to predict a response given input

parameters. In test and evaluation, statistical methods are used to characterize the

capability of a system with a statistical model. Statistical methods are applied to

gather data in carefully designed experiments in order to asses the degree of uncer-

tainty in results. Statistical methods fall into three categories: descriptive statis-

tics, inferential statistics, and model building. Descriptive states allow analytic and

graphical descriptions of data sets. Inferential statistics are the methods by which

conclusions can be drawn about large groups from observing only a small subset of
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Figure 5. Model of agent core consisting of the four layer HAMR architecture and all
communication routing through the data marshalling service.

25



the large group. In statistics, conclusions are made about a the population which

include all members of a group. Only a subset of the population, referred to as a

sample, is observed to draw conclusions. This concept is shown visually in Figure 6.

In experiments, a sample is taken to develop prediction equations from experimental

data. Prediction equations are statistical models which allow prediction of behavior

from a complex system with an associated probability of error (Milton, 2003).

Figure 6. Graphical depiction of samples and population groups. Statistical methods
allow researchers to make conclusions about a population group from the sample group,
saving time and money.

In basic algebra, the equation y = mx+ b is used to express a linear relationship

where m is the slope and b is the y-intercept. In an experiment, a response can be

expressed as a linear equation with some sort of unique true error, Ei. The equation

of the true relationship is given in Equation 1 where β0 is the y-intercept and β1 is

the slope of the line.
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Yi = β0 + β1x1 + Ei (1)

In simple linear regression, the true relationship in Equation 1 is modeled by

Equation 2 where b0 is the estimate of β0, the y-intercept and b1 is the estimate of

β1, the slope of the line, and ε is the estimate of true error. The response ȳ is the

mean response for input x1.

ȳ = b0 + b1x1 + ε (2)

The method of least squares is applied to find estimates of β0 and β1, solving for

b0 and b1 respectively. The least squares estimation method estimates the parameters

by minimizing the square distance of the estimated error, ε. Using the method of

least squares, the estimates for b0 and b1 are given in Equation 3 and Equation 4. In

Equation 4, n is the total number of observations.

b1 =
n
∑n

i=1 xiyi − (
∑n

i=1 xi)(
∑n

i=1 yi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
) (3)

b0 = ȳ − b1x1 (4)

In order to test hypotheses about results, the assumptions given in Montgomery

(2012) are applied:

1. The random variables Yi and Ei are independently and normally distributed

2. Error has a mean of zero and constant but unknown variance, σ2

3. Linearity and homoscedasticity

4. No auto–correlation or multicollinearity
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These assumptions are common to both regression and analysis of variance (ANOVA).

The satisfaction these assumptions allows one to assert ε ≈ 0, simplifying Equation 2

to Equation 5 where ȳ is the mean response. Equation 5 can be expressed in matrix

form, given in Equation 6. Matrices X and b are defined in Equation 7.

ȳ = b0 + b1x1 (5)

ȳ = Xb (6)

X = [1, x1] , b =

b0
b1

 (7)

Regression analysis allows investigation and modeling of relationships between

variables. The simplest type of regression is simple linear regression. A simple linear

regression is an equation that predicts one response in terms of one input variable, as

shown in Equation 5. The response is linear and therefore resembles the simple line

equation where the intercept is b0 and the slope is b1. When one wishes to investigate

a response with multiple independent variables, multiple linear regression models can

be used in the same fashion. A multiple linear regression can be solved with a matrix

approach, Equation 8.



Y1

Y2
...

Yn


=



1 x11 x21 . . . xk1

1 x12 x22 . . . xk2
...

1 x1n x2n . . . xkn





β0

β1
...

βk


+



E1

E2

...

En


(8)
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Equation 8 is the matrix representation of Equation 1 in multiple linear regression.

Applying ANOVA assumptions simplifies the expression to Equation 9 in the form of

ȳ = Xb.



ȳ1

ȳ2
...

ȳn


=



1 x11 x21 . . . xk1

1 x12 x22 . . . xk2
...

1 x1n x2n . . . xkn





b0

b1
...

bk


(9)

To find the least squares estimate for β, β̂ is calculated using Equation 10.

β̂ = b = (X′X)−1X′y (10)

Matrix calculation of multiple linear regression is most easily done with comput-

ers. Examples of computer programs that can easily calculate regression coefficients

include: MATLAB, Python, and R (Montgomery, 2012).

Once a statistical model is created, the researcher determines the statistical sig-

nificance of the model. To do this, total variability is separated into its components.

The total corrected sums of squares, SST , is obtained by Equation 11 where ȳ... is

the average of all measurements for a given response variable in an experiment with

a treatments and n observations of the ith treatment. The total number of response

observations, N, is equal to an. A treatment is defined as a unique setting of a single

factor.

SST =
a∑
i=1

n∑
j=1

(yij − y...)2 (11)

i = 1, 2, . . . , a treatments
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j = 1, 2, . . . , n observations of treatment

N = an total response observations

The total sums of squares can be broken down into components of error (SSE)

and treatment (SSTr). Sums of squares error can be further broken down into com-

ponents of pure error (SSPE) and lack of fit (SSLOF ). These breakdowns are given

by Equations 12 and Equation 13.

SST = SSE + SSTr (12)

SSE = SSPE + SSLoF (13)

Replicates are required to separate SSE into its components. SSPE gives an

unbiased estimate of experimental error, σ2. Without replicates, SSPE ≈ SSE is

assumed. The SSE is calculated by Equation 14. The SSTr is determined by simple

subtraction, given in Equation 15 (Montgomery, 2017)..

SSE =
a∑
i=1

n∑
j=1

(yij − ȳi.)2 (14)

SSTr = SST − SSE (15)

Determining statistical significance is achieved through hypothesis testing under

a given decision criterion, the probability one is willing to reject a null hypothesis.

To test significance of regression the following hypotheses are tested in Equation 16

and Equation 17.

H0 : β0 = β1 = . . . = βn = 0 (16)
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H1 : at least one βi 6= 0 (17)

The hypotheses are tested using the appropriate test statistic, F0. The test statis-

tic, F0 is calculated using Equation 18.

F0 =
SSTr/(a− 1)

SSE/(N − a)
(18)

To assess F0, it is compared to the Fα,a−1,N−a where α is the decision criterion,

typically 0.05. The decision criterion, α, is also referred to as Type I error and

statistical level of significance. Type I error is defined as the probability of rejecting a

null hypothesis (H0) when it is actually true (false positive). It’s opposite, β is called

Type II error and is the probability of failing to reject the null alternative hypothesis

(H0) when it is actually false (false negative). One should reject H0 and conclude the

regression is insignificant if:

F0 > Fα,a−1,N−a

Fα,a−1,N−a can be determined using a F-statistic table.

Once a significant regression model is created, the analyst will need to deter-

mine model adequacy by checking the assumptions made in ANOVA. The response

variables should be roughly normal with a single peak and decaying tails. This can

be checked by creating a distribution of responses. Next, studentized residuals are

plotted against row. Desirable studentized residuals are ones that reside in a horizon-

tal band with no apparent correlations, shown in Figure 7a. If no pattern appears,

this indicates that the errors are independently distributed. Examples of acceptable

and problematic studentized residuals are shown in Figure 7. If variance of observa-

tions increases with observation, this is evidence of nonconstant variance, a violation
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of ANOVA. Checking model adequacy is an important step in creating a statistical

model so that the conclusions drawn from the model are valid.

Statistical models with polynomials and interactions are also used with regression

and response surface methodology. The sample principles are applied in these cases.

Interactions and higher order terms are included if there is evidence of significance

or need. An analyst would include interactions if there is a desire to investigate

the significance of factor interactions. Higher order responses are used if there is

Figure 7. Checking studentized residuals for model adequacy: a). shows a horizontal
band of studentized residuals, acceptable b). shows funneling, problematic c). double
bow, problematic d). non-linear, problematic. Acceptable studentized residuals im-
plies assumption of independently distributed errors is met. Problematic studentized
residuals implies assumption on error is not met.Valid assumptions are needed to make
valid inferences from statistical models
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knowledge of second order responses from system experts or numerically if higher

order model terms are indicated by a lack of fit test and curvature test. A lack of fit

test indicates there is a lack of fit in the model. This can indicate a need for including

interaction terms, second order effects, or some other missing effect. To show that

a second or higher order model is needed, a test for curvature can be conducted. If

the statistical test indicates curvature, a second or higher order model is necessary

(Montgomery, 2012). Statistical software such as JMP, SPSS, and Minitab can be

used to quickly calculate these statistical models and tests. Bihl (2017) gives a guide

on utilizing JMP for this purpose.

In response surface methodology (RSM), a statistical model based upon linear

regression above is used to create a response surface. Response surfaces are used to

characterize a system and optimize multiple responses. There are multiple methods

for optimizing multiple responses in a system. Desirability functions is one way to si-

multaneously optimize multiple responses. To do so, the analyst creates a desirability

function, di, for each response which varies over the range 0 ≤ di ≤ 1. If the objective

is at the target, di = 1. If the response is outside of an acceptable region, di = 0. The

optimal configuration is the one which maximizes overall desirability. Each objectives

is given a weight wi to account for objectives that are more important than others.

Weights wi sum to 1. In additive form, the desirability score for m objectives is given

in Equation 19.

D =
m∑
i=1

widi (19)

The desirability function is applied to points on the response surface. The point

which gives maximum desirability indicates the optimal response based on the weights

given (Myers, 2016).
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2.6 Test Planning

The purpose of test planning is to ensure that the time and money put into

testing yield useful and informative results. The steps in test planning help guide the

analyst in creating the right test for the right reasons. Each step in the test planning

process should be traceable to system requirements. The test should address the

problem statement and answer the test objectives. It is very possible that one step

in the process might inform earlier steps. In these cases, it is useful to interate again

through the process to create the most useful and effective test plan. This feedback

loop increases the amount of learning done before testing and helps to mitigate risk

of test on budget and schedule. Using the guidance from the STAT COE, a summary

of 10 steps have been compiled (Cortes, 2014):

1. Draft a problem statement that addresses scope and the type of problem to be

investigated by the test plan

2. Create a system decomposition, often a work breakdown structure (WBS)

3. Write clear, concise, testable, traceable, and measurable test objectives

4. Identify evaluation measures (response variables)

5. Identify required data for evaluation of responses

6. Identify sources of variation that could affect responses

7. Identify and understand all potential factors that could affect the responses

8. Select region of interest, factors to vary, and factor levels

9. Select experimental design based upon the above and how many runs can be

afforded by the test infrastructure, timeline, and budget.

10. Trace above to problem statement and test requirements
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2.7 Design of Experiments

An important step in experimentation is the experimental design chosen (test

planning step 9) using design of experiments (DoE). The results and conclusions

made from an experiment are largely dependant on the methods used to collect data.

Generally, experiments study processes or systems. Processes or systems consist of

inputs and outputs which are impacted by factors that can either be controllable

or uncontrollable and include a number of factors from design parameters to envi-

ronmental and operating conditions (Montgomery, 2017). Figure 8 shows a simple

graphic of this process.

Figure 8. Graphical depiction if a process. An important initial step in experimentation
is identifying inputs, outputs, controllable and uncontrollable factors. Based upon
resources and time, the number of final factors, inputs, and outputs to be tested will
be selected.

In experimental design, these factors are identified as either potential design fac-

tors or nuisance factors (test planning step 6-7). A design factor is one that an

experimenter desires and has the ability to vary in an experiment. A nuisance factor
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is one that has an effect on the process but is not of particular interest of the ex-

periment. Nuisance factors can be classified as either controllable, uncontrollable, or

noise. A controllable nuisance factor is one the experimenter can manipulate while

an uncontrollable nuisance factor cannot. A noise nuisance factor is one that varies

naturally but can be controlled for purposes of an experiment. Experimental design

is the process of identifying these factors and utilizing randomization, replication,

blocking, and the factorial principle (Montgomery, 2017).

Randomization.

Randomization is important in experimental design because statistical methods

require observations to be independently distributed random variables. Randomiz-

ing the allocation of experimental material and order of runs properly allows this

assumption to be valid. Additionally, proper randomization of an experiments assists

in averaging the effects of extraneous factors present due to time such as learning or

wear (Montgomery, 2017).

Replication.

Replication or repeats of the same experimental conditions allows the experimenter

to obtain an estimate of experimental error. This has two purposes: to determine if

the observed differences in data are statistically different and to more accurately esti-

mate the mean response. Increasing the number of replicates allows the experimenter

to make a more precise estimate of the true mean response rather than experimental

error. Replicates reflect sources of variability both between runs and possibly within

runs (Montgomery, 2017).
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Blocking.

Another experimental technique is blocking. Blocking allows the experimenter to

reduce or eliminate variability from nuisance factors. Generally, a block is a set of

homogeneous experimental conditions where each level (setting of a factor) of condi-

tions could potentially be a block. For example, an experiment may require multiple

batches of raw material for all required runs. However, there could be differences be-

tween batches due to supplier variability. For a given experiment, the batch number

may not be a factor of interest. Instead, this is a nuisance factor and each batch

would be a block in the experiment to take out the effect of supplier batch from

experimental error (Montgomery, 2017).

Factorial Principle.

Lastly, the factorial principle determines experimental testing of all or a fraction of

combinations and interactions of factors. In design of experiments (DoE), the setting

at which each factor is set is a level. If L levels of k factors are selected and a full

factorial is applied, the number of runs required is Lk.

N Runs = Lk

Observing responses at selected levels and their interactions allows the experi-

menter to characterize the bounds of a system in a systematic way. However, se-

lecting all factors at all levels may create a number of runs unaffordable with time

and/or money. Therefore, the sparsity of effects principle is applied. The sparsity of

effects principle says most systems are dominated by some main effects and low order

interactions. Typically, higher order interactions are negligible and a system can be

explained with a few factors and low order interactions. Classically, factorials are
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selected with L = 2 and augmented with center points if testing for curvature (2nd

order model) is of interest (Montgomery, 2017).

Factor screening can be used to keep the levels of factors selected low. In factor

screening, many factors over two levels are used to determine the most influential

factors for a system over a relatively large region of interest (wide breadth of exper-

imental conditions). Designs have been created specifically for screening which give

inaccurate model coefficients but allow many factors to be tested over fewer runs to

determine factors with the strongest effects. Factor screening takes place is step 8 of

the test planning process.

Once the number of factors are determined, a design is chosen (test planning step

9). There are many things to consider when selecting a design. When finalizing the

design, the selection should be able to give the required information to satisfy the test

objectives from the test plan. Decisions in test design are trade offs. Typically, by

gaining one thing, another is lost. For example, having replicates allows the analyst

to determine experimental error but require more runs. Additionally, adding center

points to the design allows testing of curvature and assessment of lack of fit to use

a quadratic model. However, adding center points decreases the variance optimally

of the model in exchange for a model that is closer to the true population response.

When making trade off decisions the analyst should always reference the test problem

statement and objectives to make the best decision possible.

Full factorial designs include observations at all conditions and their interactions.

When full factorials are not permissible due to time or money, fractional factorial

designs can be implemented. Fractional designs lack most interactions of factors but

have a portion included. Fractional designs can be projected by running the other

portions of the fraction(s) to get closer, or eventually become a full factorial design.
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Center points and replicates can be added as discussed above to give estimates of

pure error, lack of fit, and assessment of curvature.

Factorial designs with three factors each with two levels are often depicted as a

cube. Factors set at a high level are signified by a +1 and factors set at a low level

are signified with a -1. Figure 9 shows a cube depiction of all the design points given

in Table 3. A factorial design can be augmented with center points and interactions

with main effects (Montgomery, 2017). Figure 10 shows a graphical depiction of the

entire design given in Table 4.

Run Factor 1 Factor 2

1 -1 -1
2 1 1
3 -1 1
4 1 1

Table 3. Factorial design: two factors, two levels Figure 9. Factorial design cube

Run Factor 1 Factor 2

1 -1 -1
2 1 1
3 -1 1
4 1 1
5 0 0
6 0 0
7 -1 0
8 1 0
9 0 -1
10 0 1
11 0 0
12 0 0

Table 4. Face centered cubic design
Figure 10. Factorial centered cubic
design cube
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2.8 Testing Autonomy

Testing autonomous systems is founded in the same principles as non-autonomous

systems. Test planning, design of experiments, and statistical models are imple-

mented. As shown in test planning, traceability to requirements is important and

referenced throughout the test process. In the STAT COE workshop report, Ahner

and Parson (2016) calls for requirements and measures that address the systems abil-

ity to complete critical tasks as well as autonomous decision making capabilities. In

test, the ability of the system to achieve its required tasks is the primary test metric

(OAS, 2010). There are a variety of metrics that have been used to describe a system

with autonomy: fuel usage to measure efficient search (Berthold et al., 2019), percent

detected in underwater search (Roberts et al., 2018), and response time in flocking

formations of UAVs (Hauert et al., 2011). To begin creating metrics for autonomy

specifically, one can research what is needed for an autonomous system to be both

effective and safe and leverage these requirements to develop test metrics.

Literature addresses requirements of autonomous systems. In Woolley and Pe-

terson (2009), autonomous systems that implement reactive architectures prescribe

to requirements of reactive planning. These requirements state that an autonomous

system shall be: responsive, robust, and modular (Woolley and Peterson, 2009).

1. Responsive: a responsive autonomous system allows timely planning and reac-

tion to its environment, allowing safe operation in a dynamic environment

2. Robust: a robust autonomous system allows performance in unanticipated cir-

cumstances and sensor failures

3. Modular: a modular autonomous system allows incremental development

These requirements allow reactive architecture systems to function safely and effec-

tively in unpredictable environments (Woolley and Peterson, 2009).
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Brooks (1986) identifies 4 requirements for an intelligent autonomous mobile

robot:

1. The system shall achieve multiple goals

2. The system shall have multiple sensors

3. The system shall be robust

4. The system shall be extensible

The requirement to have multiple sensors is derived from the first. According

to Brooks, multiple goals are necessary for useful implementation of an autonomous

system. Multiple goals are achieved by perceiving an environment with multiple

sensors. The requirement of using “multiple sensors” to achieve “multiple goals” has

two consequences: a requirement to be responsive and the reality of making decisions

under uncertainty. According to Brooks, the control system “must be responsive

to high priority goals, while still servicing necessary ‘low level’ goals” in order to

achieve multiple goals efficiently. These goals are achieved by an agent perceiving

its environment with multiple sensors and making appropriate decisions. However,

each sensor provides information with an associated error. Since the agent uses this

information to make decisions, autonomous systems make decisions in conditions with

error (Brooks, 1986). This reality brings into question the quality of decisions made

under error and the impact of error in the performance of required tasks.

The third requirement, robustness, addresses the systems ability to adapt. An

agent will experience sensor failures. In response, the system should adapt its logic

to only use sensors currently reliable to achieve remaining functionality.

The last requirement listed is extensible. As more capabilities are added to the

autonomous system, more processing power will be needed. If the agent is not ex-
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tensible, adding more capabilities will impair the robots processing speed, hurting

operational functions due to slow processing time (Brooks, 1986).

These requirements can be implemented in autonomous systems using reactive

or active architectures and utilized to create test objectives to enter into the test

planning steps. The methods of test planning, design of experiments, and statistical

models can be used once metrics are identified to measure the extent to which these

requirements are met.

2.9 Summary

In literature review, information on the wide area search scenario, cooperative

autonomous control, autonomy architectures and the unified behavior framework are

given. Previous work on the autonomous system reference architecture expanded in

this research is presented and the knowledge needed to understand the test methods,

models, optimization and origin of autonomy metrics are detailed. This information

will be implemented in the research implementation and analysis.
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III. Methodology

3.1 Overview

Chapter III provides a discussion of the selected scenario and test methods per-

formed in this research. Details of the selected wide area search scenario are given

along with the four levels of cooperation to be tested. Next, the chosen approach

to implement this WAS scenario in ASRA is discussed. For test methods, the steps

used to plan the test, including metrics are presented. The details of factor selection,

automated testing and optimization are presented.

3.2 WAS Scenario Design

A wide area search and confirm mission was selected as the application for this

research. This differs slightly from some of the existing WAS research as no muni-

tions are involved and the targets are not attacked, simply revisited to confrim their

classification. The main objective was to both find all targets in search mode to get

an initial classification, and refine that classification with a confirmation at a lower

altitude. The confirming could be either the original searching agent in a single agent

case or another agent in the case of a cooperating case. This provides a mission with

competing goals: to efficiently find as many targets as possible in a given search area,

and to accurately classify them.

All agents had the same sensor model which utilized a binary confusion matrix

and a circular field of view. The binary confusion matrix was degraded based on a

chosen best case Ground Sample Distance (GSD) or minimum altitude, and only the

first reading of a target was recorded. This resulted in an altitude where flying higher

increased the area coverage rate but degraded the sensor image quality. Flying lower

than the minimum altitude did not improve the sensor any further than the best case

43



performance. The minimum altitude was selected as the agents’ confirm altitude, so

the higher search altitude diminished the sensor quality by some factor.

The agents searched in a “lawnmower” pattern with spacing determined by the

sensor field of view and search altitude to give maximum coverage of the search area

in the minimum number of passes. This put classification accuracy and area cover-

age rate at odds as both could not be maximized for the same mission parameters.

Additionally, each agent had a fuel usage model based on its velocity. This limited

endurance and would trigger a return to launch (RTL) condition to ensure that the

vehicle returned home with a 20 percent fuel reserve. The fuel consumption rate was

designed to simulate mid-sized consumer multi-rotors and, together with the search

area size, limited system performance in some cases.

Real and false targets were implemented to test the sensor’s false alarm and false

positive error. These targets were uniformly distributed across a given search area

and kept static throughout the simulation. When a target came into view, a number

was pulled randomly from a uniform distribution and compared to the confusion

matrix to make a determination on how the target was sensed. If the number was

lower than the appropriate confusion matrix diagonal value, the target was sensed

correctly, otherwise it was an incorrect classification and a Type I or Type II error

was assigned to that target instead of a correct classification. Targets were sensed

only once per pass so targets were ignored in sequential frames.

The scenario was run at four levels of cooperation to study their effects on system

performance. First, the single agent case was run as a baseline to test the basic

autonomy and ASRA performance. In this case, a single agent searched the entire

area and then transitioned to confirm any targets it detected as real. Second, a basic

cooperation case was implemented where two agents split the search area initially,

then searched and confirmed their half without communicating with the other agent.
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Third, the extreme cooperation case consisted of two agents splitting the search area

and sharing their target information. As soon as an agent found a target, the other

agent would immediately break from search, confirm the target, and return to their

search pattern. Finally, the moderate cooperation case implemented a utility function

to determine when an agent should break from search to confirm any target.

An additional case was run on the final, moderate cooperation case that specifi-

cally tested the WAS system’s ability to compensate for an agent falling offline. To

test this, one agent was initialized with a low fuel capacity, causing it to RTL early

in the mission. The remaining agent would then continue searching the total area,

taking over the area left by the other agent. The RTL agent could then return to the

mission but could only confirm already found targets.

Tested Cooperation Levels:

1. Single Agent Case - one agent searches and confirms entire area.

2. Basic Cooperation Case - Two agents split search area and individually search

their half.

3. Extreme Cooperation Case - Two agents split search area, search, and immedi-

ately confirm any target other agent finds.

4. Moderate Cooperation Case - Two agents split search area, search, and use a

utility function to determine value of confirming any target or continuing search.

These scenarios were designed to tax the system in multiple ways, providing a

means to analyze how an advanced implementation of autonomy with cooperative

agent interactions can alter mission effectiveness. Many elements could have been

added to the scenario such as target priorities, persistent surveillance, more agents,

moving targets, or a more advanced simulation environment but were not imple-

mented due to time constraints.

45



3.3 Software Design

This research implemented ASRA with a three layer architecture for the single

agent case initially, and was expanded to the four layer HAMR architecture to pro-

vide the additional coordinator layer needed for the cooperation cases. To achieve

this, the existing state of ASRA had to be extended which consisted of additions to

the sequencer and the inter-module messaging structure as well as completely new

deliberator, coordinator, and perceptor modules. LCM provided the communication

interface between modules because it provides low-latency data transfer between dis-

crete software parts along with logging and live inspection tools. All LCM messages

had a single sender to prohibit information loss caused by two senders sending unique

information at the same time. This increases the required number of LCM mes-

sages but allows layers to send data at anytime without requiring synchronization, a

requirement when running software modules concurrently.

The coordinator relayed appropriate information between agents and provided the

deliberator with additional information on other agents and utility values on cooper-

ation related tasks. The deliberator layer was implemented as a state machine with

transitions driven by completed behaviors or new goals such as stopping search to

confirm a target. The sequencer layer was implemented as a static sequencer that se-

lected behaviors by matching objective plan (OP) goals to the goals of the controller’s

predetermined behavior hierarchy. This is a simplified sequencer compared to the Dy-

namic Behavior Hierarchy Generation sequencer presented in Peterson et al. (2011)

which builds up the behavior hierarchy dynamically at run time. The controller was

an instantiation of the UBF that did not require the use of complex behaviors, but

a test of complex behaviors was performed to analyze the process of building up

complex behaviors. Behavior sensor inputs were not provided by the sequencer but
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instead were provided by the originator of the sensor data such as the simulator for

position data or the deliberator for waypoint position data.

The perceptor and simulator made up the remaining two modules. The percep-

tor contained the target sensor and communicated over LCM to send sensed target

information and receive commands from the deliberator. A particle mass simulator

and the Ardupilot Software in the Loop (SITL) simulator were two viable simulators.

SITL’s higher fidelity model but longer run time had to be weighed against the faster

particle simulator. Identical scenarios were run in both simulators to determine the

appropriate simulator to use for all experiment runs.

3.4 Test Definition

Test definition is an important part of test planning. Test definition includes

problem statements, system decomposition, and test objectives. Test objectives map

to problem statements and elements of the system breakdown. The test plan is given

in Appendix Q.

Creation of the problem statement/questions provide what the test needs to ad-

dress or answer and drives the following steps in the test plan.The problem statement

includes the scope of study and indicates the type of problem to be investigated.

Problem Statements/Questions:

1. What configuration of design parameters will maximize area searched and per-

centage of real targets found for a multi-rotor vehicle(s) in a WAS mission?

2. What configuration of design parameters yield robustness, perception accuracy,

and responsiveness for a multi-rotor vehicle(s) in a WAS mission?

Problem Type: Optimization of multiple response variables/objectives

Scope: Rotary vehicle in a WAS mission
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System Decomposition: A breakdown of the system being studied allows the

problem statements to be applied across the entire system (Figure 11).

Figure 11. Component breakdown of the system

Test objectives indicate individual questions that the test should answer. Test

objectives often drive response variables that will be measured in the test. The

test objectives are written in question form. Test objectives are created by broadly

applying the problem statements to the system breakdown given in Figure 11. Table

5 maps test objectives to system components and problem statement number.

Test Objectives:

1. What percent of targets are detected correctly?

2. What percent of targets are detected in an assigned search area?

3. What percent type I error occurs on targets out of those detected?

4. What percent type II error occurs on targets out of those detected?

5. What percent of targets are confirmed correctly out of all confirmations?
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6. What percent of targets are confirmed in an assigned search area?

7. What percent type I error occurs on confirmations out of those confirmed?

8. What percent type II error occurs on confirmations out of those confirmed?

9. What percent of the assigned search area is actually searched?

10. How much time would it take to complete the mission in real time?

11. How robust is the autonomous system to sensor failure?

12. How responsive is the autonomous system to reactive planning?

13. How accurate is the perception of the autonomous system?

Table 5. Test objectives map to system components and problem statements

Objectives WBS Element Problem Statement Number

Percent Correct Detected Sensor 1
Percent Detected Sensor 1

Type I Error Detect Sensor 1
Type II Error Detect Sensor 1

Percent Correct Confirmed Sensor 1
Percent Confirmed Sensor 1

Type I Error Confirm Sensor 1
Type II Error Confirm Sensor 1
Percent Area Covered Air Vehicle 1

Mission Time Air Vehicle 1
Robustness Autonomy 2

Responsiveness Autonomy 2
Perception Accuracy Autonomy 2

Table 5 shows test objectives that trace to problem statements that reflect the

task and function of the system and its ability to make decisions.
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3.5 Iterative Development

Methods of development and test included iterative delivery in sprints with col-

laboration between software development and testing. Each iteration included a test

and software deliverable, demonstrating modularity and extensibility of both test and

design. The required data for each test was given to the software developer in the

test planning phase to allow timely testing. Collaboration between the tester and

software resulted in test informed design, meaning test informed design and design

informed test. Figure 12 shows the collaboration in parallel. Parallel development

allowed feedback between test and development for design decisions. The sprints used

in the iterative development are given below:

Sprints:

1. Deliver single vehicle with ingress, search, confirm, and land behaviors. Test

included all mission and vehicle related response variables and the

responsiveness autonomy metric using automated testing.

2. Deliver two vehicles with ingress, search, confirm, and land behaviors with low

and high cooperation levels. Test included all mission and vehicle related

response variables, responsiveness, and perception accuracy using automated

testing.

3. Deliver two vehicles with ingress, search, confirm, and land behaviors with

moderate corporation levels. Test included all mission and vehicle related

response variables, responsiveness, perception accuracy, and robustness using

automated testing.
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Figure 12. Graphical depiction collaboration between test and software developer

3.6 Automated Testing

The purpose of automated testing is to efficiently execute all selected factors and

levels, and collect and organize all response data for analysis. The code created
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followed the process shown in Figure 13. The output of the script is a spreadsheet of

response variables for each factorial condition. The spreadsheet can be loaded into

JMP for statistical analysis through the GUI. A guide outlining the functions of JMP

in this project is outline in Appendix P. The process shown in Figure 13 is executed

for each sprint.

Figure 13. Graphical depiction of automated testing code

The automated testing code was run in a Python script which called each Python

class shown in Figure 13. The Python script was run in a Linux terminal. The
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GenerateDoE function created the experimental design using the factors and levels

from inputs. The GenerateDoE function is from pyDOE, a Python library (Baudin

et al., 2009). The resulting design is given in Table 30 and Table 31 in Appendix H.

The experimental design is saved and each row is referenced to set up the con-

ditions for the simulation WASAgent. The required data for testing is found within

the LCM messages passed within and/or between agent(s). The LCM messages are

logged through lcm-logger. LogReader allows the lcmlog to be read and analyzed by

Python in Analysis. Each run saves the outputs to a spreadsheet that is appended

with each run to save the data in case of an error. The spreadsheet is saved as a CSV

file.

Once the project progressed past sprint 1, the size of files created by lcm-logger

grew to file sizes in the range of 200 MBs for each simulation. Additionally, 4.5

days are required to test sprint 2 entirely (320 simulations, 160 for each level of

cooperation). Adjusting messages and simulation step size could potentially allow

alleviation of this challenge. The simulation step size drives the precision of the

simulation, measured in seconds. To alleviate file size, lcm-logger only subscribed

to messages needed for analysis of that sprint. This resulted in faster running code

and smaller file sizes. Additionally, the step size of the simulation can be adjusted

in exchange for speed and smaller file sizes. As a result, tests were conducted to

determine a step size that would allow faster computation without losing acceptable

precision. Given the same inputs and seed number for random uniform distribution

of targets, it was found that a step size of 0.3 seconds was preferable. Results are

shown in Table 6. With a step size of 0.3 seconds and subscribing to only required

messages, the file size for sprints 2 and 3 was brought down from 200 MB to less than

20 MB. Percent difference in Table 6 is calculated in reference to a 0.05 second step

size. A negative percent difference indicates a decrease from the 0.05 reference. A
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positive percent difference indicates an increase from the 0.05 reference point. In the

step size test, only required messages were subscribed. In light of these findings, a

step size of 0.3 is implemented in sprints two and three.

Table 6. Step size test results

Measure 0.05 Seconds 0.1 Seconds 0.3 Seconds

Percent Area Covered 62.21%
62.8%

+∆0.11%

62.83%

+∆0.99%

Mission Minutes 5.62 mins
5.67 mins

+∆0.88%

5.75 mins

+∆2.31%

File Size (MB) 13.5 MB
6.8 MB

−∆49.62%

2.3 MB

−∆82.96%

3.7 Metrics & Required Data

Using the requirements for autonomous systems listed by (Brooks, 1986) and a

reactive control system as prescribed by Peterson’s Unified Behavior Framework, the

following metrics of autonomy were selected:

Responsiveness: The amount of time the agent requires to respond to external

stimuli. This is measured as the amount of time required to actuate on an objective

plan (OP). The maximum responsiveness of each run is saved and the distribution

of worse case responsiveness is evaluated over all runs.

Responsiveness = max [ tOP actuation − tOP created ]

Robustness: The degree to which the system can continue the mission using

operable vehicles after a vehicle is forced offline due to a failed sensor. Robustness is

calculated as a percent difference in response Yi for each run n, Yin.
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Robustness (Yin) = 100

(
Yin, error − Yin, no error

Yin, no error

)
%

Perception Accuracy: The impact of false perception on actions selected by the

agent. This is measured by a ratio of correct plans selected by the agent against all

possible plans.

Perception Accuracy =
OPcorrect
OPTotal

In order to account for all possible combinations and, the above was calculated by

the following:

Perception Accuracy = 1− TypeIError
OPTotal −OPN Confirm +NConfirm + TypeIError + TypeIIError

Note that a new OP was not created and passed for each target confirmed, rather

only when there was a decision to enter and exit the confirm behavior.

In addition to metrics for autonomy, the following were used to evaluate the

system’s mission performance:

Percent Area Searched: The percent square area evaluated by the agent for

targets out of total assigned area.

Percent Area Searched = 100

(
Asearched m

2

Aassigned m2

)
%
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Mission Time: The amount of time taken by the agent(s) to finish the mission.

This is the projected actual time to accomplish the mission which is proportional to

the number of simulation iterations:

Mission Minutes =
Nsim iterationsNsim step size

60

Percent Detected: Percent of targets detected by the agent, either as true or

false. This metric captures what percent of the targets had the chance of being true

or false by the sensor.

Percent Detected = 100

(
Ndetected targets

Nfalse targets +Ntrue targets

)
%

Percent Correct Detected: Percent of the true targets detected by the agent.

Percent Correct Detected = 100

(
Ncorrect detection

Ndetected

)
%

Type I Error Detected: The percent of real targets detected that were in truth

false.

Type I Error Detected = 100

(
NTypeI Error

Ndetected

)
%

Type II Error Detected: The percent of false targets detected that were in truth

true targets.

Type II Error Detected = 100

(
NTypeII Error

Ndetected

)
%

Percent Confirmed: The percent of all targets that were confirmed correctly.

Percent Confirmed = 100

(
Ncorrect confirmations

Nfalse targets +Ntrue targets

)
%
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Percent Correct Confirmations: The percent of confirmations that were

confirmed correctly out of possible confirmations.

Percent Correct Confirmations = 100

(
Ncorrect confirmations

Nconfirmations

)
%

Type I Error Confirm: The percent of real targets confirmed that were in truth

false.

Type I Error Confirm = 100

(
NTypeI Error Confirm

Nconfirmed

)
%

Type II Error Confirmed: The percent of false targets confirmed that were in

truth true targets.

Percent Type II Error Confirmed = 100

(
NTypeII Error Confirm

Nconfirmed

)
%

3.8 Factor and Level Selection

In theory, there are near infinite factors and levels that could be chosen for testing.

However, applying a full factorial design to a large number of factors and levels

makes testing unachievable. To start off, the factors in Table 7 were drafted using

expert input on the WAS problem, Jacques (2019). Detect real refers to the sensor’s

probability of true target recognition (PTR) and detect false refers to the sensor’s

probability of false target recognition (PFTR). Using the factors as given, a DoE

would require N = 28 = 256 runs without any replicates to estimate experimental

error or center points to detect curvature.

.

The factors and levels in Table 7 were tested in a screening design to determine a

rough estimate of factor significance. A Plackett-Burman design was implemented on
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Table 7. Factors and Levels Pre-screening

Factor High Low

Full FOV 39◦ 14 ◦

Search Velocity 15 m/s 5 m/s
Detect Real 0.9 0.65
Detect False 0.9 0.65
Search Area 490,000 m2 202,500 m2

N Real Targets 19 1
N False Targets 19 1
Search Altitude 150 m 300 m

sprint 1, a nonregualr design used for screening up to 11 factors with two levels using

only 12 runs. The results showed search velocity dominating over sensor configuration

configuration. It was concluded that flying at 15 m/s was taxing fuel too much for

the given search area, as indicated by the small percentage of assigned area covered

by the single agent. The factors and levels were adjusted as given in Table 8 as a

result of these findings.

Table 8. Refined Factors and Levels

Factor High Low

Full FOV 39◦ 14 ◦

Search Velocity 10 m/s 5 m/s
Detect Real 0.9 0.65
Detect False 0.9 0.65
Search Area 490,000 m2 292,500 m2

N Real Targets 19 1
N False Targets 19 1
Search Altitude 150 m 300 m

The changes made in Table 8 allowed resources to be challenged against each

other. No factor level was optimal in all situations, allowing trade space evaluation.

However, there is a desire to estimate experimental error and detect curvature. As a

result, the test space was limited to decrease the number of runs required to meet these

interests. In order to limit the test space, the field of view (FOV) and search altitude
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were held constant. The full FOV diameter on the ground can be calculated using

Equation 20. All possible combinations of FOV diameter on the ground are given in

Table 9. The first combination is selected to hold constant across experiments.

Ground FOV Diameter = 2 ∗ altitude ∗ tan(
FOV ◦

2
) (20)

Table 9. FOV and altitude combinations

FOV Altitude Ground Diameter

39◦ 150 m 26.56 m
39◦ 300 m 53.18
14◦ 150 m 9.21
14◦ 300 m 18.42

The final factors and levels used in all further experiments are shown in Table 10.

Table 10. Final Factors and Levels

Factor High Low

FOV 39◦

Search Velocity 10 m/s 5 m/s
Detect Real 0.9 0.65
Detect False 0.9 0.65
Search Area 490,000 m2 292,500 m2

N Real Targets 19 1
N False Targets 19 1
Search Altitude 150 m

Using the factors as given in Table 10, a DoE would require N = 26 = 64 runs

without any replicates to estimate experimental error or center points to detect cur-

vature. The run size is now small enough to allow replicates reasonably. Running this

design showed lack of fit and significant interaction and second order effects, indicat-

ing a need to detect curvature. A final design choice of a face center central composite

design (FCCD) was chosen. This design was chosen because it is a classic design for

response surface methodology of second order. The design includes a factorial, center
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points, and interactions between the center points and main effects to detect second

order model while limiting run size. Implementing this design requires 80 runs. As a

result, this model was implemented with two replicates, giving a total of 160 runs per

level of cooperation or for a single vehicle. All sprints can be simulated in approxi-

mately 84 hours, with a maximum of 48 hours for sprint 2. The final experimental

design is given in Table 30 and Table 31 in Appendix H.

The experimental design method for the framework is shown in Figure 14. The

design takes an instantiation of the framework, WAS for a rotary vehicle, and imple-

ments the experimental design though the simulation. Data is collected for analysis

of each iteration. Figure 14 shows the design in only three dimensions for readability.

Since there are six factors, the test space is in six dimensions. The results of the sim-

ulation will be used to make conclusions about the instance of the framework in order

to give optimal configurations for real flight using statistical methods and models.

3.9 Optimization of multiple responses

Response surfaces are created for each response variable in all sprints. Response

surfaces are statistical models to predict a single response for a given set of inputs.

Multiple responses can be optimized using desirability functions. Each response has

a mark desirability for each response value. A more desirable response will have a

higher desirability score. The range of desirability is from 0 to 1. The desirability of

each response is weighted to reflect relative importance of one response over others.

All weights must sum to one. The weights and individual desirabilities (di) are used

to calculate multiple response Desirability (Di). The optimal response is one with the

maximum Desirability (Di). The maximum Desirability configuration can be input

into the response surfaces to predict performance at the optimal point given weights

(wi) and desirability (di) values. This is done with python classes and scripts. The
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Figure 14. Graphical depiction of experimental design to test an instance of the frame-
work
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values of weights (wi) and individual desirability (di) values can be changed with a

configuration class.

A range of values are input into the response surface to measure Desirability. In

this research, the range of values tested in experimental design are used to test all

combinations. Since operational environment cannot be chosen, values of search area

and number of true and false targets are defined as target sparse, moderate density,

and target rich environments. Given a search area and number of true and false

targets expected, the all other inputs are varied to maximize Desirability. Optimal

mission parameters are selected from those that give maximum Desirability for each

environment. The process for each case is shown in Figure 15. The python code

created for optimization is given in Appendix O.

3.10 Summary

This chapter provided the methodology used to implement and test the WAS

scenario. The search and confirm scenario to be implemented in ASRA consisted

of one to two agents searching in “lawnmower” patterns to detect targets and then

confirm targets at four levels of cooperation. Overall software implementation details

were then given, specifying the four layer HAMR architecture and LCM messaging

interface between layers. Test definition outlined the test plan implemented in this

research. The iterative development strategy was presented as well as the method

used to generate simulation testing using automated testing. Design and test choices

such as step size selection and narrowing down of the chosen factors and levels were

presented. The required data to capture the response variables were given and meth-

ods for optimization of vehicle configuration were presented. The methods shown in

this chapter were implemented to generate the results discussed in the next chapter.
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Figure 15. Graphical depiction of optimization method
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IV. Analysis and Results

4.1 Overview

Chapter IV details this ASRA implementation as well as the DoE results from the

experimentation runs. First, an overview of the autonomous system’s architecture

is given, bridging MBSE and autonomous system design methods. Next, a detailed

walk through of the system’s software implementation is given, starting at the con-

troller and working up to the coordinator. The resulting mission performance at each

cooperation level is presented as well as a comparison of simulators currently offered

in ASRA. Finally, the results of the design of experiments are given for all sprints.

An optimization of responses is applied to two vehicle operation to configure a vehicle

for flight using statistical models created from design of experiments results.

4.2 ASRA Architecture Design

MBSE tools and techniques were used to design the system from both a tradi-

tional systems engineering view and the autonomy view. Both domains have unique

taxonomy and system vocabulary, so a link between the two had to be made. A

glossary of these terms is provided in Appendix R. Model Based Systems Engineering

decomposes a system from the mission level, to tasks, and then functions. Figure

16 shows the functional decomposition for the WAS agent system. This functional

decomposition is usually compared to the system’s physical decomposition to allocate

functions to components. This ensures a complete allocation of all functions and all

components. Because the focus of the research is less on the physical instantiation of

the agent and more on the software and autonomy, a physical decomposition was not

created for this thesis. Instead, these system functions were traced to the autonomy

functions discussed below.
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Figure 16. Functional decomposition of WAS agent system from Mission level, to task,
and to function.

When decomposing autonomous systems using a behavior controller, a list of low

level functions that accomplish the mission must be made. Usually this is done by

decomposing the mission to objectives, to tasks, then tasks to any behaviors that

accomplish that task. For this research, tasks and behaviors were mapped one to

one so there was only one behavior that accomplishes a task. For this reason, the

decomposition of the autonomy to behaviors shown in Figure 17 does not display

a task layer. Additionally, the perceptor, hardware, deliberator, and coordinator

provide functionality to the autonomous system which is displayed in Figure 18.

This implementation’s four-layer HAMR architecture, shown with communication

links in Figure 19, utilizes a coordinator modeled after the HAMR architecture with

some simplifications, a finite state machine for the deliberator, a static sequencer,

and a UBF controller. For the single agent case, the coordinator was not run so

the architecture followed the three-layer architecture in this case. The coordinator

receives information from other agents and sends cooperation information to the

deliberator. The deliberator generates objective plans which contain one or more
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Figure 17. Behavior decomposition of WAS agent system from Mission level, to objec-
tive, and to behavior.

Figure 18. Additional autonomy components provide required system functionality.
Perceptors provide sensor information, hardware performs hardware tasks, and logic
in the deliberator and coordinator provide functionality not captured in behaviors.

goals. The sequencer receives the objective plan and converts it to sequenced tasks.

These tasks must match behavior goals given in each behavior’s activation paths for a

viable task plan to be made by the sequencer. The sequencer then sends the individual

tasks of the task plan to the controller. The controller receives the task, finds the

matching behavior in the manually generated behavior hierarchy and executes the

66



behavior. This execution of the behaviors’ motor commands is done in the lightweight

particle simulator that runs in the controller.

While running the particle simulator in the controller does not strictly adhere to

ASRA’s embodied agent model shown in Figure 4, this design was chosen due to

the simplicity and efficiency of a direct interface between the particle simulator and

controller. Because the particle simulator is likely to be used mainly for development,

this efficiency was determined to be worth the diminished modularity. This design still

allows other simulators running in the hardware layer of Figure 4 to be implemented

by selecting their interface as the behaviors’ execute action in the controller, as is

done when running the Ardupilot SITL simulator.

Figure 19. The four layer architecture required 12 LCM message types were used to
communicate between its 5 discrete software modules in each agent as well as between
agent coordinators.

4.3 ASRA Software Implementation

This section will detail this software instantiation of ASRA. First, it provides

details of the overall software configuration and interaction between modules. Second,

it provides a detailed explanation of the development of each module.
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Software Structure.

This software instantiation of ASRA is built on top of an existing, basic ASRA

implementation written in Python and developed by the AFIT Autonomy and Navi-

gation Technology Center. The initial Python codebase included a behavior library,

a particle simulator, an Ardupilot SITL interface, a UBF controller, and a static

sequencer. The main modules that had to be added for this research were new be-

haviors, additional sequencer features, a deliberator, and a coordinator.

The interface between modules was handled by LCM. This messaging system uses

UDP multicast in a publish-subscribe model where messages are sent to all clients and

clients only listen to messages they are subscribed to. This method does not require

a central hub as clients communicate directly. Each layer or module acted as a client

and thus had a direct connection with all other layers. Each module subscribed to

its required messages and all other messages were ignored by that module. This

architecture used 12 LCM message types between modules as shown in Figure 19.

These messages are listed in Appendix A with a description of their contents.

These modules were all designed to be able to run sequentially or concurrently

where the only interface between modules after initialization is through LCM. Run-

ning these modules in parallel adheres to the layered hybrid architecture and allows

them to each run at their own pace. Running in parallel allows the controller to run

its reactive loop fast enough to keep up with its environment while the deliberator

slowly monitors and plans.

Throughout the first half of the software development, Python threads were used

to provide this parallelism, but this lead to unreliable LCM message updates. This

was likely due to Python’s Global Interpreter Lock which requires all threads to

share the same Python interpreter. Accessing the interpreter one at time is not true

concurrency. Python’s multiprocessing module allows one Python program to create
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additional Python processes, each with their own interpreter and allocated memory.

Combining this with LCM should allow the layers to truly run concurrently, but in

practice, the Python LCM library would immediately return an obscure error when

running in multiple processes that were spun off using the multiprocess module. For

these reasons, the main function of all layers was executed sequentially starting at

the highest layer, either the coordinator or deliberator, depending on the scenario.

While running the autonomy layers sequentially somewhat defeats the purpose of

the layered architecture, the limited processing and planning required of the deliber-

ator meant this did not have a noticeable effect on the reactiveness of the controller.

If the deliberator execution time for each iteration was substantial, the controller’s

ability to react appropriately to a dynamic environment could be reduced. When

using the particle simulator, a slower deliberator would not degrade the controller’s

reactiveness because the particle simulator steps once each iteration, in sequence with

the other layers. When using Ardupilot SITL as the simulator, which runs at a rate

independent of the autonomy layers, there is a possibility of a slow deliberator hin-

dering the controller’s reactiveness. SITL’s limited execution speed of around five

times real time meant the controller was still reactive to the changing environment

in SITL despite running sequentially with the deliberator.

A single setup script was used to initialize the WAS scenario, generating the

targets and their locations, and setting up each of the layers with all necessary info.

This script referenced a configuration file that defined WAS, sensor, cooperation, and

simulation parameters as well as LCM channel names. For each layer, it created

the state blocks that contained a unique LCM instance as well as a state class that

was updated by the LCM instance when LCM’s handle function was called. Each

individual layer called LCM.handle() at the beginning of the iteration which updated

the associated state in the state block with any new information from the LCM bus.
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LCM.handle() did not update all states with a single call so it was run in a while

loop until it returned 0, indicating that there were no new messages to update.

Once the layers were set up, this script iterated through all of the layers’ main

functions until it received notification from the deliberator that the scenario was

complete. Additionally, a separate process was started to plot live agent positions in

a separate window which was essential when debugging the interactions of multiple

agents. Finally, the setup script would present an analysis of mission performance

such as target detections and confirmations.

Controller.

The controller was structured after the UBF and consisted of a behavior hierarchy,

an executive, and behavior controller. The behavior hierarchy was manually created

in the setup script as a single layer of leaf behaviors contained in the behavior library

because it did not require composite behaviors to provide the necessary functionality.

While not used in the experiment runs, composite behaviors were experimented with

to study the process of building a multi-level behavior hierarchy.

The leaf behaviors used for this simulation are shown in Table 11 and sample be-

havior code is given in Appendix B. These behaviors take in position data, determine

where the agent is and where it needs to go, and determine the appropriate motor

controls required to get there. The behavior then outputs an action which includes

a weight, an action complete boolean, and an actuator command containing motor

controls such as 3D velocity. Each behavior has an associated activation path that

describes its attributes such as abstract goal and sensor requirements. These activa-

tion paths are standardized representations of behaviors used by the sequencer when

selecting the appropriate behavior to accomplish an objective. The basic sequencer

70



used in this research only required the name and abstract goal fields of the activation

path to determine the appropriate behavior to perform a task.

Table 11. Behaviors used in this simulation and their required sensor inputs.

Behavior Required Sensor Input

Takeoff Agent Position, Goal Position
Land Agent Position, Goal Position
FlySearchPattern Agent Position, Waypoint List
FlyConfirmPattern Agent Position, Waypoint List
GoToWaypoint Agent Position, Goal Position
HoldXYZ Agent Position, Goal Position

To gain experience building composite behaviors in ASRA, ConfirmOrbit and

SearchAvoid composite behaviors shown in Figure 20 were constructed but not im-

plemented in the simulation. Composite behaviors are the combination of two or

more leaf behaviors. The outputs of these behaviors must be combined in some way

to convert each of their action outputs into a single action output of the composite

behaviors. Arbiters accomplish this synthesis and can take many forms. A priority

arbiter selects the action output of the behavior with a higher priority while a vector

sum arbiter performs vector addition to return a single action output motor command

vector.

ConfirmOrbit was implemented to add a surveillance orbit around the target once

confirmed. This behavior was composed of OrbitRevs and FlyConfirmPattern leaf

behaviors and used a priority arbiter. The behaviors set their own priorities based

on when they should be active. OrbitRevs has a priority of 0 until it comes into

proximity of a target. The FlyConfirmPattern priority was always 0.5 and was active

until the agent arrived at a target and confirmed its target type. At that point, the

OrbitRevs behavior would set its priority from 0 to 1, causing the arbiter to select its

action until one orbit revolution was completed. Next, OrbitRevs set its weight to 0
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Figure 20. Additional composite behaviors were not used in the simulation but were
implemented to test the process of implementing composite.

and the arbiter selects the FlyConfirmPattern action output due to its weight of 0.5,

causing the agent to continue towards the next target.

The priority arbiter selecting a single action based on its priority is similar to

leaf behaviors acting individually and sequentially. By combining behaviors into a

composite behavior, the task of switching behaviors at the right time is handled by

the behaviors themselves instead of by the sequencer. This packages the behaviors to-

gether, frees sequencer resources, avoids unnecessary communication between layers,

and should yield more responsive control.

The SearchAvoid composite behavior was made of the FlySearchPattern leaf be-

havior and the Avoid composite behavior. This behavior attempts to fly the search

pattern while staying away from an avoid location as shown in Figure 21. The Avoid

composite behavior was made of Orbit and FlyAway leaf behaviors. Both of these

composite behaviors use the vector sum arbiter which simply performs vector addi-
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tion on the 3D velocity vectors in each behavior’s actuator output. The Orbit and

FlyAway leaf behaviors were designed to only provide a non-zero actuator motor

velocity when within a certain range of the avoid location. The Avoid composite

behavior’s actuator velocity vector pointing away from the avoid location would then

be combined with FlySearchPattern’s velocity vector pointing at the next target to

smoothly route around the avoid location.

Figure 21. The SearchAvoid composite behavior causes the agent to fly the search
pattern while avoiding a specified location, shown here as the green dot.

The process for creating these composite behaviors in ASRA was intuitive. For

each composite behavior, the leaf behaviors must be designated and the composite

behavior’s sensor inputs must be set to include all sensor inputs required by the leaf

behaviors. Next, an activation path is created for the composite behavior. When

setting up the behavior hierarchy in the setup script, the weights of each leaf be-
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haviors as well as any parameters unique to that leaf behavior such as tuning gains

can be specified if different from default values. Once the composite behavior is cre-

ated, the composite structure allows both composite and leaf behaviors to be handled

identically by the controller.

For new ASRA implementations, this behavior and activation path generation are

the two main adaptations that must be made. The behavior library simplifies this

process by providing behaviors that can be used as is, modified slightly, or used as a

template to create new behaviors. Additionally, the example composite behaviors in

the library demonstrate the slightly more complex process of building up composite

behaviors.

The second piece of the controller layer was the executive which contained the

layer’s main function. This main function, given in Appendix C, first receives up-

dated state information over LCM such as positions or new tasks from the sequencer

and updates its stateblock. If it receives a new task plan, the executive finds the ap-

propriate root behavior by matching the current task goal to the behavior’s abstract

goal in its activation path. The executive would then set the task status message to

“in progress”. The executive then calls the behavior controller to generate an action

by handing the current root behavior a stateblock with the necessary sensor inputs. If

that root behavior is a composite behavior, the root behavior transfers the stateblock

to the leaf behaviors, arbitrates their action outputs, and returns a single, arbitrated

action. If that action returns as complete, which usually takes a few iterations, the

executive updates the task status message to “complete” and sends the message to the

sequencer. This message along with all other LCM messages used by the controller

are shown in Table 12.

Behaviors were designed such that if they are completed and no new task plan was

received, the behavior would continue to hold the current state. For example, when
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Table 12. The controller required two LCM messages for two way communication with
the sequencer, three messages with position information for the behaviors, and the
particle simulator sent the vehicle position and fuel status.

Message Name Sender Recipient Description

TaskPlan Sequencer Controller Task list and current task number
TaskStatus Controller Sequencer Current task name and status
PlatformPos Simulator Controller Agent position
GoalPos Deliberator Controller Current goal position for behavior

to achieve
WaypointPos Deliberator Controller List of waypoints forming search

or confirm pattern
FuelStatus Simulator Deliberator,

Coordinator
Agent fuel remaining

a waypoint was achieved, the behavior would simply continue to achieve the same

waypoint and effectively hover at the point instead of stopping all motor outputs.

This meant designing behaviors to “go to a waypoint” instead of just “go forward”.

This was determined to be the safest design as defaulting to a hover is usually the

safest action for multi-rotors.

The particle simulator and Ardupilot SITL were interchangeable and interfaced

with the behavior controller. The controller’s execute action callback determines

what software module handles the behaviors’ action outputs in the execute action

method. The simulator of choice was set as this execute action callback. When

using Ardupilot SITL, the callback is set as an interface that would convert the

action output’s motor commands to control messages understood by SITL. When

using the particle simulator, the callback was set as the simulator’s update position

function. This function takes in the action output’s motor commands, steps forward

one simulator iteration which updates the agent position, and updates the agent

position LCM message. This particle simulator was selected for the experiment runs

and a comparison to SITL is provided later in this chapter.
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Sequencer.

The sequencer handles the conversion of objective plans sent from the deliberator

to individual tasks sent to the controller. For this research, tasks and behaviors were

mapped one to one so objectives were only broken down to tasks, and did not need

broken down further to separate behaviors. The objective plans could include one to

many objectives, each with a sequence number and activation priority. The sequencer

takes the objectives and creates a list of tasks in order of the objective’s sequence

number. If objectives shared a sequence number, the associated task is ordered based

on the activation priority. Table 13 shows the four messages the sequencer used for

two way communication with the deliberator and controller.

Table 13. The sequencer required four LCM messages for two way communication with
the deliberator and controller.

Message Name Sender Recipient Description

TaskPlan Sequencer Controller Task list and current task number
TaskStatus Controller Sequencer Current task name and completion

status
ObjectivePlan Deliberator Sequencer List of objectives
RePlan Sequencer Deliberator Current Objective Plan name, com-

pletion or failed solution status

The sequencer’s main function is given in Appendix D. This starts by updating its

state block with any new messages from LCM. If a new objective plan was received,

it attempts to generate a task plan for the objective plan. To do this, it searches all

activation paths for goals that match the current objectives. This effectively matches

objectives with behaviors by way of the activation path interface. If no activation

paths are found with matching goals, the sequencer notifies the deliberator of a failed

task plan generation through the RePlan message. Multiple checks could be included

in this process, such as only picking viable behaviors that have all the necessary sensor

information available to them, but this was not implemented in this research. The
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sequencer then sends the new task plan and sequence number, indicating which task

in the plan to complete immediately, to the controller to execute.

If the objective plan was not new, the sequencer handles the current plan by

checking if the TaskStatus message indicates a change in the controller, such as the

new task has started or the current task has completed. When the task is completed,

the sequencer increases the task status sequence number to tell the controller to

move to the next task in the plan. When the controller finishes the final task, the

sequencer notifies the deliberator that the objective plan is completed through the

RePlan message and the controller continues executing the current behavior until a

new task is given.

ASRA has areas in the sequencer that can be expanded such as building in a

resource manager to return only viable behaviors, or utilizing the activation path’s

initial and post conditions to determine when a task completed. These were not

implemented in this research as they were not necessary on this initial ASRA im-

plementation. The sequencer requires little modification to the specific autonomy

application. It behaves like a transfer function, converting objective plans to task

plans. As long as these are specified correctly, new implementations of ASRA should

not need to make many changes to this layer.

Deliberator.

The deliberator provides the high level decision making for the WAS agent and

was implemented as a finite state machine. There were two versions of these state

machines; one for the single agent mission consisting of the six states shown in Fig-

ure 22, and one for the cooperative mission consisting of the seven states shown in

Figure 23. The deliberator’s nine messages, more than any other layer or module, are
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shown in Table 14. These messages provide communication with every other software

module.

Figure 22. The state diagram for single agent has a mostly linear flow except for the
return to launch condition triggered by low fuel at any time.

The perceptor, discussed in the next section, contains the target sensor and was

told what mode to put the sensor in by the Deliberator in the DelInfo message. The
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Figure 23. The state diagram for a cooperative agent has more forks because search
can be exited early to confirm a target and must be returned to if area still needs
searched.
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Table 14. The deliberator required nine LCM messages for communication. Additional
recipients of messages not sent from the deliberator are excluded.

Message Name Sender Recipient Description

ObjectivePlan Deliberator Sequencer,
Coordinator

List of objectives to achieve
current goal

RePlan Sequencer Deliberator Current Objective Plan name,
completion or failed solution
status

DelInfo Deliberator Perceptor,
Coordinator

Commands to control perceptor
and agent information for
Coordinator

TargetList Perceptor Deliberator List of targets perceptor has found
CoordCmds Coordinator Deliberator Information on other agents, loiter

value, offline agents
GoalPos Deliberator Controller Current goal position
WaypointPos Deliberator Controller List of waypoints forming flight

pattern
PlatformPos Simulator Deliberator Agent position
FuelStatus Simulator Deliberator Agent fuel remaining

perceptor then provided its list of targets to the deliberator in the TargetList message

when its list changed, such as when a new target was found. The DelInfo message

was also received by the coordinator to provide it with the state of the deliberator’s

state machine, current state, search area completion status, and the targets currently

being confirmed. The coordinator then used this information to calculate cooperation

utilities or to share with other agents.

The deliberator’s main script starts by updating its stateblock with any new LCM

messages. Then, only on the first iteration, the deliberator checks to see if the coordi-

nator has specified a portion of the search area to search. If not, the deliberator reads

the full search area out of the configuration file and generates a search pattern. The

state is then set to takeoff and the takeoff objective plan is then sent to the sequencer

in the ObjectivePlan message. Additional information needed to accomplish any goal

in the objective plan is then sent over the WaypointPos and GoalPos messages to the

controller. This code is given in Appendix E
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On every iteration of the main function, the deliberator checks for a RePlan

message from the sequencer indicating that the current objective plan is complete.

This triggers the deliberator to move to the next state such as Ingress to Search or

Confirm to Egress. This logic was sufficient for the single agent case where no new

decisions, besides an RTL command, would interrupt the standard flow of events. The

cooperation cases required additional state change logic to break out of the current

state to confirm another agent’s targets for example. The deliberator also updates

its target list based on the perceptor’s target list or the coordinator’s list of targets,

compiled from other agents.

Additional deliberator functions specific to the WAS scenario:

• Fuel Status Monitoring

The deliberator incorporated a RTL feature that would automatically cause

the agent to return to the takeoff location with a fuel buffer specified in the

configuration file, usually 20%. This prediction was accurate because the de-

liberator knew the flight profile that would be used to return home from the

current location and it used the same fuel usage rate calculation used by the

simulator which was only a function of velocity. This prediction was performed

every iteration of the simulation and if it calculated that the fuel capacity spent

to return to launch from the current location left the vehicle with less than the

specified buffer, the agent performed the RTL.

• Search Pattern Generation

The search pattern for each agent was generated during initialization in the

deliberator based on the search boundaries received from the coordinator or

configuration file for the single agent case. The horizontal pass “lawnmower”

pattern was generated using the sensors predicted ground field of view radius in
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the search flight profile, calculated from the search altitude and sensor angular

field of view given in the configuration file. This radius was scaled down slightly

to provide a slight overlap between passes to ensure any targets centered in

between passes were not skipped over due to the simulator’s step size. The

scaled down radius formed the spacing off the edges of the search area and

twice this radius was used as the pass spacing. This provided the minimum

number of passes required to fully search the area.

• Search Area Redistribution

In the moderate cooperation case, the agents were given the ability to redis-

tribute the search area if an agent fell offline due to a RTL. When the search

pattern gets split by the coordinator during initialization, it provides the delib-

erator with a list of all agents’ waypoint lists. When an agent falls offline, its

last recorded search position is compared with its waypoint list to determine

the last horizontal pass it fully completed. A remaining agent then extends its

search pattern to completely search this horizontal pass. This means that the

maximum overlap between the two agent’s search areas is at most one horizon-

tal pass. The final pass of the remaining agent could have been shortened such

that there was no search pattern overlap but it was simplest to limit waypoints

to those given in the initial waypoints lists by the coordinator.

• Cooperative Utility Function The utility function that determined cooperation

value on a per-target basis ran in the deliberator. The overall design of this

cooperative ability followed the three key points for decentralized, cooperative

asset management given in Malhotra et al. (2017). First, each agent’s deliber-

ator is initialized with the same mission goals so that “each agent knows the

mission(s).” Second, nominal operation and information sharing between agents

is assumed in this research and all necessary information is shared such that
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“each asset has a nearly-common operational picture of the environment.” Fi-

nally, each agent runs the same utility function so that “each asset knows the

capabilities and control algorithms used by the other agents” (Malhotra et al.,

2017).

This leads to a utility function that received information about all other agents

and calculated each of their utility for every target that needed confirmed and

was not currently in another agent’s confirm list. If the current agent had

the greatest utility that was above a certain threshold, that agent would stop

searching and confirm that target. Often it was determined that multiple targets

were worth confirming. In this case, the target positions were all given in a

waypoint list message to the controller. The confirm behavior would then route

through all the target locations given in this message.

Some of these parameters were developed when testing with three agents and

are less applicable to the two agent case. These parameters were included in

the two agent experiment runs for consistency if three or more agents are run

in the future. All parameters are scaled between 0 and 1 and summed to form a

utility value for a given target for a given agent that must be above a threshold

for that agent to confirm that target. Through qualitative testing, a threshold

value of 3.2 and the parameters and functions shown below were chosen for

the experimental runs because they yielded reasonable performance across all

scenarios.

– Distance to Target: high target value if low distance to target

Targets close to the current agent should be valued higher than further

targets. This horizontal distance was run through the function in Figure

24 to return a value between 0 and 1. This function likely should be scaled

with the search area size, but was held constant for the experiment runs.
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For example, the distance value of a target 100 meters away should be

more in a large search area than in a smaller search area. The gains that

define this curve were tuned over multiple test runs to achieve resonable

behavior.

Figure 24. The closer an agent is to a target, the more valuable it is to go confirm it.

– Fuel Status: low confirm value if low fuel

It is not optimal for an agent with low fuel to stop searching as the time

spent moving to the target is of no value and the chances of running out of

fuel on the way to and from the target is increased. With a limited amount

of fuel, agents are more valuable continuing search because every unit of

distance traveled in search is valuable and that value is guaranteed. This

value used the function in Figure 25 to return a value between 0 and 1.

– Number of Targets Found: high confirm value if many targets already

found

This describes the number of targets each agent has already found. This

parameter values continuing to search when the agent has found only a

few targets and values confirming if the agent has already found many

targets. With a uniform distribution of targets, if an agent comes across

many targets already, their probability of finding more targets within their
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Figure 25. The more fuel an agent has, the more valuable it is to go confirm instead of
continuing to search. If an agent has low fuel, it is better to continue searching to not
risk running out of fuel on the way to or from the target.

search area decreases, so confirming becomes more useful for that agent.

This value used the function in Figure 26 to return a value between 0 and

1. This value was set to .5 if the agent had already finished search, as the

number of targets it found once completing search becomes irrelevant.

Figure 26. The more targets an agent found, the more valuable it is for that agent to
stop searching and confirm a given target.

– Search Complete: high confirm value if the search pattern is complete

Figure 27 shows that an agent that has completed search is assigned a

higher utility than one who still has area to search. This promotes finishing

search before confirming but allows agents to stop searching to confirm a

high value target. This also prioritizes the agent who has finished search
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over one still searching. This value is set to 1 if the agent has finished

search, and 0 otherwise.

Figure 27. An agent who has finished search values confirming any target more than
an agent still searching.

– In Loiter State: high confirm value if the agent in loiter

Figure 28 shows that a loitering agent generates a high confirm value as

confirming is their only remaining task. This parameter works in concert

with the search complete parameter as this will be true only if search is

complete. This parameter goes a step further in assigning more value

to loitering agents who have completed search, rather than confirming

agents who have finished search. This was included because in testing

with three or more agents, when two agents loitered, one of the loitering

agents would confirm all targets because it happened to be closer to many

and the remaining agent continued to loiter. This value is set to 1 if the

agent is in loiter, and 0 otherwise.

– Number of Agents Finished Search: low confirm value if many agents fin-

ished search

If many agents have finished search, confirming any target should be weighted

less. It is not necessary to know if the current agent is one who has finished

search or not because the search complete weight brings that information
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Figure 28. An agent who is loitering values confirming any target more than an agent
not loitering. This helps distribute targets between loitering agents so that no agent
remains loitering while the other confirms all remaining targets.

into the utility function. While this parameter is the same for all agents,

it was included because it can determine if the minimum value threshold

is achieved or not. This value is set to one minus the percentage of agents

who have finished search as shown in Figure 29.

Figure 29. Agents who have finished search should confirm before an agent still in
search, so the value to stop search and go confirm a target should decrease as more
agents finish search. The agents who have finished search make up for this utility loss
in the Search Complete parameter.

• Confirm pattern generation

When the deliberator determined multiple targets required confirmation at once,

it would generate a confirm pattern that visited the targets in order of proximity

to the previous target visited. So if three targets needed confirmed, the agent
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would first visit the nearest target to the agent, then the target nearest that

second target, and then the final target. While this is in no way a truly optimal

route, it did prove to generate a fairly sensible flight path through the targets.

A more advanced optimal path algorithm could have been implemented but this

method was implemented quickly and proved sufficient for the purposes of this

research.

• State Transitions

The deliberator state machine for the single agent and minimal cooperation

cases followed the main flow ingress, search, confirm, and egress with only an

RTL command causing a diversion from this nominal flow. These main state

transitions were triggered by the completion of the associated objective plan. In

this case, the deliberator ran the fuel check each iteration and if it did not return

an RTL command, the deliberator would check if the sequencer indicated that

the current objective plan was completed. If it was completed, the deliberator

would move to the next state in the nominal flow and send the associated

objective plan.

The extreme and moderate cooperation cases introduced new transitions trig-

gered by target confirmation decisions. To extend the existing single agent state

machine, a new function was added to handle these additional transitions. This

function ran every iteration and checked the status of the confirm target list

generated by the target utility function. If the list was empty when the vehicle

was in confirm, this function would handle the state transition out of confirm.

If the list contained targets when the vehicle was not confirming, the state was

changed to confirm and necessary actions were taken such as sending the correct

objective plan and waypoint message to the controller.
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Deliberator outputs, such as objective plans or waypoint lists, occurred dur-

ing state transitions and the sequencer and controller performed the operations

contained in the states, such as the sequencer advancing tasks or behaviors fly-

ing the search pattern. This meant the deliberator state machine design was

centered on the transitions, and not the activities within the state. For this rea-

son, the deliberator has no procedures assigned to certain states. It’s functions

run regardless of the current state because the majority of its functionality is

determining when a new state change or new objective plan is required. For

example, the RTL calculation, target utility function, and agent offline check

were run every iteration, regardless of the state and only their execution varied

slightly depending on the state. This approach allowed for the resuse of the

single agent deliberator in the multi-agent deliberator.

Perceptor.

The perceptor was implemented as a separate software module, similar to the

HAMR layers. It used the four LCM messages shown in Table 15 to communicate

with the deliberator and coordinator. The perceptor module was the simplest of the

five, as it only needed to run a target sensor algorithm upon the deliberator’s request

and return a list of targets and their attributes. This sense algorithm is capable of

running in a separate thread but was simplified to run once per iteration like the rest

of the modules without affecting performance.

The perceptor was initialized with a target list from the configuration file that

contained true target attributes such as the true target type and true position. The

target generation function was run in the setup script and accepted the search area

boundary and the number of real and false targets from the configuration file. It

would then randomly pick target x and y locations from a uniform distribution for
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Table 15. The perceptor required four LCM messages for communication with the
deliberator, coordinator, and simulator.

Message Name Sender Recipient Description

DelInfo Deliberator Perceptor Agent information and controls
commands for perceptor

TargetList Perceptor Deliberator List of targets perceptor has found
CoordCmds Coordinator Perceptor Target list compiled from all

agents
PlatformPos Simulator Perceptor Agent position

the desired number of real and false targets. The seed could be specified for this

distribution in cases where constant target locations were desired over multiple runs.

When the perceptor determined one of these targets was in view, it would run the

sense algorithm on the target and assign it sensed parameters containing error, such

as sensed position and sensed target type. The perceptor’s main script first updated

its state block with any new LCM messages, and then updated its target list with any

new target’s found or confirmed in the coordinator’s list of targets compiled from the

other agents. The perceptor then ran the appropriate sense function based on the

perceptor command received from the deliberator, either search or confirm, updating

the appropriate target attributes shown in Table 16, and sending it to the deliberator

and coordinator. This sense function is given in Appendix F.

Table 16. Target attributes.

Attribute Description

search agent ID of search detecting agent
confirm agent ID of confirming agent
real Boolean of target type, confusion target or real target
true position True 3D target position
search position Sensed position in search, contains error when error is enabled
confirm position Sensed position in confirm, contains error when error is enabled
search detected Boolean of if target has been detected
confirm detected Boolean of if target has been detected
search type Detection type: TypeI, TypeII, correct, not detected
confirm type Detection type: TypeI, TypeII, correct, not detected
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The perceptors sensor was modeled as a circular field of view with degrading

sensor performance as altitude increased above a minimum altitude. The field of

view on the ground was a function of altitude and sensor angular field of view. To

keep the sensor simple, only the first reading of a target as it came into frame was

evaluated and subsequent readings were ignored. The sense algorithm was called each

simulation iteration when in search or confirm states. Confirm and search detections

were handled with slightly different sense functions as each ignored a target if it had

been sensed in that flight regime already.

When the sense algorithm is called, it degrades the sensor quality by scaling down

the diagonal confusion matrix probabilities, based on how the current GSD compares

to the best case GSD. If the GSD was calculated as less than the best case, the

detection parameters were scaled down using an exponential decay function, resulting

in a worse performing sensor. Using GSD more accurately degraded the sensor by

including the effects of altitude and field of view. This is shown in the code given in

Appendix F.

The sensor then loops through the target list, checking if any new targets’ true

positions are inside the current ground field of view radius. Because the sensor only

sensed and confirmed a target once, targets that had already been found in search

or confirm were ignored when in the same mode. When a target was new and in

the field of view, a number was pulled from a uniform, random distribution between

zero and one. If this value was below the potentially degraded diagonal value of

the confusion matrix, the target reading was recorded correctly, if not, the sensor

incorrectly classified the target and a typeI or typeII error was assigned to the target

for the given detection mode. If the configuration file specified a location error for

the sensor, a random, uniform radius and angle around the true target position was
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selected as the target’s sensed position. The perceptor then sent the updated target

list to the coordinator and deliberator.

Coordinator.

The coordinator formed the fourth autonomy layer and was not used in the single

agent case as the deliberator received no value from a coordinator that had no com-

munication with other agents. An attempt was made to design the coordinator to

accommodate any number of agents but the task of splitting the search area beyond

three agents became a challenge not necessary to address for this research. Table

17 lists the messages sent and received by the coordinator communicate with the

deliberator, perceptor, and simulator.

Table 17. The coordinator required five LCM messages for communication with the
other layers as well as an additional message for communication with any additional
agent.

Message Name Sender Recipient Description

DelInfo Deliberator Coordinator Commands to control perceptor
and agent information for
Coordinator

TargetList Perceptor Deliberator List of targets perceptor has found
CoordCmds Coordinator Deliberator Information on other agents, loiter

value, offline agents
FuelStatus Simulator Coordinator Agent fuel remaining
AgentTargs Coordinator Other

Coordinators
Agent position, state, compiled
target list, fuel status

Using LCM with a dynamic number of agents presents a challenge because agents

must first know the agent’s channel name and subscribe to it before receiving LCM

message from that channel. One way to address this is to leave a channel open for

new agents to announce their presence. Besides the startup sequence, the odds of

two agents sending on this channel simultaneously is rather low. Strategies could be

implemented to address this, such as each agent sending at a constant but random
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interval until all agents confirm each agents’ presence. Because this problem was not

important to the scope of the research, the decision was made to simply initialize

the agents with full knowledge of cooperating agents so they could be subscribed to

during initialization.

The coordinator’s main function, given in Appendix G, first updates its stateblock

with any new LCM messages. Then if the agent has not been initialized, it splits

the overall search area and sends its portion to the deliberator to generate a search

pattern. Each iteration, the coordinator also calculates the utility of loitering after

finishing search to wait for new targets to be found and need confirmed. This decision

is based on the state of other agents, mainly if all have finished their search pattern

yet. Next, the coordinator updates and sends its global agent message to other

agents shown in Table 18. Finally, the coordinator updates its target list with any

new information from other agents, detects if any agents fell offline by a lack of

heartbeat message, generates a list of targets currently being confirmed, and sends

that information with the loiter utility to the deliberator through the CoordCmds

message.

Table 18. Global agent information message attributes.

Attribute Description

agent id ID agent this message describes
unique id send timestamp, used as a heartbeat to detect agent loss
target list Agent’s complete list of targets
agent position Agent’s position
confirming list Targets agent is actively pursuing
state Agent’s deliberator state, used when calculating utility
search complete Boolean of if agent has fully searched its area
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4.4 Simulator Comparison

While ASRA can be extended to utilize many simulators, support already ex-

isted for two simulator options that could have been used for development and test

runs. A particle simulator was the lighter weight option, starting up and running

quickly but providing a low fidelity model. This simulator simply took in velocity

commands and stepped the vehicle in that direction a certain amount based on the

time step and velocity magnitude. This did not involve a vehicle dynamics model so

it simulates a massless particle that can move in any direction. This provided a fairly

reasonable model of a small multi-rotor vehicle when driven by velocity commands

because these vehicles can hover and move in any direction. This simulator in its

existing form was not conducive to simulating a fixed wing aircraft due to the lack of

rules limiting movement to that of fixed wing aircraft. This simulator also does not

currently incorporate the effects of environmental factors such as wind or air density.

These rules and features could be implemented in the particle simulator to provide

advantages of this simulator to fixed wing applications. If not acceptable for final

evaluation of an autonomous system, the particle simulator could still be valuable to

researchers during the development of an autonomous system, when its fast startup

and execution time are most valuable.

The other simulator option that was already incorporated into ASRA was the

Ardupilot SITL. This simulates a UAS flight controller by running flight controller

firmware on the computer in a simulated environment. This allows autonomous sys-

tems to move from simulation to flight tests with minimal changes, as the interface

with Ardupilot SITL and physical flight controllers is identical. This comes at a cost

of a longer startup and simulation time as well as a more complicated interface with

the simulator. The Ardupilot SITL simulator is also limited by the fact that it can-

not initialize a vehicle in the air. Additionally, because the flight controller firmware
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is only designed to run at real time speed, Ardupilot SITL becomes unstable when

running simulations faster than around five times realtime.

The Ardupilot flight controller firmware uses the MAVLink messaging protocol

to communicate with other devices so this is the communication method used by

Ardupilot SITL. This means that to communicate with Ardupilot SITL, the action

outputs of the behaviors must be converted to MAVLink messages. ASRA provides

modules to perform this conversion in the interface layer.

One way ASRA can convert behavior action outputs to MAVLink messages is by

setting the behavior controller’s execute action method to convert the motor com-

mands of behaviors’ actions directly to MAVLink messages and then sending them

to Ardupilot SITL. This is the simpler of the two methods but is less modular as

it builds in Ardupilot SITL specific functionality into the controller. The other way

ASRA handles this conversion, is by providing a separate software module as an in-

terface between the controller and simulator. The controller’s execute action function

is set to send the behavior’s actions over LCM which are received by the Autopilot

interface module. This interface then converts the standardized LCM messages into

messages understood by the currently selected simulator, Ardupilot SITL in this case.

In both cases, an interface module is required to provide a conversion in the opposite

direction, reading in Ardupilot SITL’s MAVLink messages and sending out similar

LCM messages to the agent core.

Ardupilot SITL’s higher fidelity model had to be tested against the more time ef-

ficient particle simulator. Identical single agent scenarios were run in both simulators

and compared. It was determined that the difference in scenario outputs was negligi-

ble. To make the two runs comparable, they were run with the same target positions

and with perfect sensor accuracy to ensure the same targets were revisited in both

cases. The difference in area covered was within 0.13%, but the main difference was
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the execution time. The particle simulator completing the simulation in 8 seconds

while Ardupilot SITL took 8 minutes. The minimal difference in area covered was

acceptable given the particle simulator’s immense time savings and the relatively low

fidelity required for this research. For these reasons, the particle simulator was chosen

for the experiment runs.

If Ardupilot SITL had been chosen for the experiment runs, there would still

be value in being able to use the particle simulator for development. This ASRA

implementation was able to easily switch between both simulators by adjusting a

single configuration file parameter. This quick switch offered the particle simulator’s

fast startup and execution times for development and Ardupilot SITL’s higher fidelity

simulation environment for analysis runs.

4.5 WAS Simulation Performance

This section provides insight on the WAS mission execution at the various levels of

cooperation by presenting agent position plots to aid in understanding agent behavior.

Additionally, an overview of the intricacies of designing and tuning the utility function

is provided.

The first mission that was developed was the single agent mission which took

around 8 seconds to run in the particle simulator. This short run time and simple flight

path made viewing plotted results after the simulator completed an acceptable way to

debug the autonomy. Figures 30 and 31 show a sample of this output which depicts

the flight path of a single agent mission which included ingress, search, confirm, and

egress.

The cooperative missions’ longer run times of roughly 30 seconds and more com-

plex, multi-vehicle flight paths necessitated a live plotting capability. This provided

faster feedback to the developer as the flight path was displayed during the simula-
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Figure 30. A single agent mission in 2D showing the search and confirm patterns.

Figure 31. A single agent mission in 3D showing the search altitude above the confirm
altitude and the targets below.

tion. When tuning the cooperative utility function, this live plotting was especially

useful as it allowed the developer to walk through the simulation with the agent to

better understand the cooperative decisions each agent was making.

Figure 32 shows the basic cooperation case scenario where the search area is split

and agents search and confirm their sections individually. This basic cooperation case
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was a simple extension of the single agent case, and only required an additional search

area splitting algorithm run in the setup script during initialization. Figure 33 shows

an example output of the extreme cooperation case where agents immediately confirm

targets found by the other agent. The agent that completes search first, loiters in the

center, waiting for the searching agent to find new targets. In this case with a high

target density, it was common for one agent to follow the other, confirming its targets

before being able to return to its own search pattern. The agents would then switch

roles for the other half of the total search area. As expected, this behavior appears

to be very inefficient. This case required the coordinator layer to be implemented as

more information passed between agents than just the search area. The transition

from basic cooperation to this case of extreme cooperation is when the majority of

the inter-agent communication was developed.

Figure 32. A 2D plot of the basic cooperation case where the search area was divided
between agents and agents searched and confirmed their sections individually. Any
unconfirmed targets were due to miss-classifications of the imperfect sensor.
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Figure 33. A 2D plot of the extreme cooperation case where agents immediately
confirmed targets found by the other agent. If one agent finishes searching, it loiters
in the center waiting to confirm any new targets the remaining, searching agent may
find. Targets may not be completely flown over as the sensor field of view senses the
target some distance away.

Tuning the utility function in the moderated cooperation case across all scenarios

presented in the DOE experiment proved to be a challenge. Significant experimenta-

tion was performed to select utility function tuning parameters that yielded balanced

performance across all scenarios. These tuning parameters consisted of the minimum

utility threshold required to confirm a target, or the gains used in the weighting func-

tions presented in the deliberator section above. Figure 34 shows an example of an

unintended behavior of valuing target proximity with a low overall utility threshold,

causing the agents to stop searching and confirm the target they just found individu-

ally. This did not exhibit the desired level of cooperative behavior for the moderated

cooperation case.

Opposite to the immediate confirmations shown in Figure 34 is a refusal to leave

the search pattern to confirm. This tendency to complete the search pattern before
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Figure 34. A truncated 2d plot of a three agent moderated cooperation case showing
unintended behavior from the cooperative utility function that overly values target
proximity with a low threshold, allowing agents to individually and immediately confirm
a target they just found in search. Note that the marker spacing is based on the plot
refresh rate and not the simulator step size.

confirming any targets can be seen in Figure 35 and is driven by a threshold set too

high, keeping agents from deciding to search a target when in search. When agents

completed search, the search weight parameter in the utility function was usually

enough to push the utility value above the threshold. Depending the target loca-

tions, the agents may end up only confirming targets in their own section, exhibiting

behavior very similar to the basic cooperation case shown in 32.

Figure 36 shows a middle ground between remaining in search until completed and

immediately confirming targets that were found. The agents are willing to immedi-

ately confirm targets but also save up targets to confirm all at once such as targets

2,7, and 13. There happens to be minimal overlap between agents due to the target

locations and confirmation path generation method.

The final utility function selected for the moderated cooperation case experiment

runs performed similarly to that shown in Figure 35 where breaking from search to

confirm was discouraged, but immediately confirming very near targets was allowed.
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Figure 35. A 2d plot of two agents with a cooperative utility function tuned to discour-
age confirming during search. In this case, agents waited until search was completed
to distribute and confirm targets in a somewhat efficient manner.

This minimized breaking from search early but allowed it when the target was very

close. What was considered ”close” likely should change based on search area, but

this would create another tuning parameter. With a fixed idea of what ”close” is,

the agents stopped search to confirm more often in smaller search areas because the

odds of targets being close to the search path is higher in this case. This set of tuning

parameters was selected over the balanced utility function shown in Figure 36 due

to the inefficiencies associated with breaking from search too often. These utility

function parameters were selected through qualitative analysis of the cooperative

performance but a rigorous experimental analysis to tune this utility function would

likely improve its performance much further. Additionally, modifying the tuning

parameters for each mission based on the expected characteristics of that mission,

such as search area size or expected target density, would likely improve the utility

function’s performance across a wider range of scenarios.
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Figure 36. A 2d plot of two agents in the moderated cooperation case with a cooperative
utility function tuned to balance immediate confirmations and a tendency to keep
searching.

4.6 Design of Experiments Results

The design of experiments test of WAS was conducted with two replicates for

both one vehicle and two vehicle simulations. This was chosen to both minimize

simulation and analysis time, to estimate experimental error, and detect a lack of fit.

However, to fully validate that two replicates are appropriate and more runs are not

required for a valid model, a multiple comparison test was conducted to show that

the two groups of replicates are statistically the same. All response variables passed

the multiple comparison test, allowing the conclusion that two full runs of the FCCD

design is adequate enough to capture experimental error and describe the system with

a statistical model. The results are included in Appendix I and Appendix J. These

results are generated in JMP and indicate that there is no statistically significant

difference between replicates 0 and 1 for 80 runs, in both one vehicle operation and
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two vehicle operation. This is shown by the blue point and line on the scatter plots.

All response variables passed both Tukey HSD and Student’s t comparison tests

which test for a null hypothesis that both populations are the same. Tukey’s multiple

comparison test is more reliable than a single comparison student t test. Both results

were given for completeness.

Responsiveness.

The responsiveness variable in one vehicle operation was recorded for each objec-

tive plan: takeoff, search, confirm, and land. The maximum for each run was saved as

the responsiveness. These models and distributions are given in Appendix M. There is

a statistically significant and valid model for one vehicle responsiveness as a function

of search area. The studentized residuals and lack of fit tests indicate a valid model.

The significant ANOVA indicates a statistically significant model. The responsive-

ness distribution shows a roughly normal response with responsiveness ranging from

0.355 µs - 0.707 µs. The model, distribution, and descriptive statistics are given in

Appendix M.

In two vehicle operation, responsiveness was not correlated to any independent

variable; parameter estimates were not statistically significant despite a significant

ANOVA. In addition, the responsiveness distribution is not roughly normal. Al-

though the residuals look acceptable and the regression is significant, this model is

not suggested due to the roughly marginal significance of parameter estimates. Re-

sponsiveness ranges from 1.62 µs - 0.275 ms. The model, distribution, and descriptive

statistics are given in Appendix N.

The importance of responsiveness will increase as the operational environment

becomes more dynamic and constant planning and re-planning is required. In an

application of urban WAS, the responsiveness metric could be more useful. The results
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suggest the time required to actuate from an objective plan is essentially computation

time. The results suggest that the system is responsive enough to objectives plans to

assume real time planning and implementation, an important requirement of reactive

architectures. The results are similar for one vehicle operation and are given in

Appendix M.

One Vehicle Operation.

The FCCD design was applied to one vehicle operation. Statistical models were

created to predict response variables using the input parameters given in Table 19.

The models are given in Appendix K. These models can be used to predict future

responses. The response percent area covered did not pass a lack of fit test and a

model could not be found that fixed this issue. In lieu of percent area covered, the

percent detected metric can be used to get an idea of how much area was covered.

However, percent area covered will still be calculated in two vehicle operation because

it is possible to detect all targets without finishing the search area assigned. All

other response variables pass the lack of fit test and visual inspection of studentized

residuals. As a result, model adequacy is held and valid conclusions can be made from

these models. In two vehicle operation tests, the response variables will be narrowed

down for optimization of multiple responses. Perception accuracy will capture error

that impacts objective plans. As a result, Type I and Type II error for detection

and confirmation will be eliminated for response optimization. Percent detected and

percent confirmed can also be eliminated if a suitable model for percent area covered

is found with the results. Mission time will remain a response of interest.
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Table 19. Variables used in the model given in Appendix K

Input Parameters Response Variables

Search Velocity Percent Correct Detected
Detect real Percent Correct Confirmed
Detect False Mission Time
N True Targets Detect Type I Error
N False Targets Detect Type II Error
Search Area Confirm Type I Error

Confirm Type II Error
Percent Detected
Percent Confirmed

Two Vehicle Operation and Cooperation Levels.

The FCCD was applied to all three levels of cooperation: basic, moderate, and

extreme. The data was compiled across all three levels and cooperation level was

used as an input parameter. A statistical model was created to predict the response

variables using the input parameters given in Table 20. The model results are given in

Appendix L as JMP outputs. A FCCD was applied to capture the detected curvature

in system response. Figure 37 shows an example of curvature in the perception

accuracy response.

Table 20. Variables used in the model given in Appendix L

Input Parameters Response Variables

Search Velocity Percent Correct Detected
Detect real Percent Correct Confirmed
Detect False Percent Area Covered
N True Targets Mission Time
N False Targets Perception Accuracy
Search Area
Cooperation Level
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Figure 37. Response surface for perception accuracy as a function of sensor parameters
at a high level of cooperation.

These models allow analysis of predicted performance. To demonstrate this abil-

ity, mission time is plotted as a surface and contour plot at three levels of cooperation

in Figure 38 with vehicle parameters given in Table 21 as a function of the number of

real and false targets. Analysis such as one shown in Figure 38 allows decision makers

and engineers to determine operating conditions for a given mission, based upon mis-

sion and vehicle parameters such as number of true and false targets as shown. Figure

38 shows the system is more sensitive to the number of true targets than false targets

in mission time response. The most optimal cooperation level to minimize mission

time is the moderate case. This shows the utility function minimizes mission time for

any given mission. However, extreme cooperation is counterintuitively more optimal
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than basic cooperation. This could be a result of one or two things: more runs are

require to adequately model extreme cooperation or there are unknown effects that

need to be captured in order to more accurately inform intuition. To gain a better

understanding while also factoring out the effect of target placement on extreme co-

operation results, more replicates should tested. Collecting more data runs will either

bring to light unknown dependencies of extreme cooperation or decouple the impact

of target location on test results, making these results more explainable. Viewing

various combinations of predicted response plots for all responses to determine opti-

mal vehicle configuration would be impractical. To aid in implementing these models,

multiple surface optimization through desirability functions allows quick analysis for

vehicle configuration based upon user preferences.
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Figure 38. Response surface and contour plots of mission time for each level of coop-
eration by number of true and false targets.
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Table 21. Constant conditions used to mission time in Figure 38

Input parameter Setting

Search Velocity 10 m/s
Detect Real 0.80
Detect False 0.80
Search Area 450m x 450m

The response surface equations given in Appendix L are used to determine optimal

configuration for given operational environment. Three example environments: target

sparse, target moderate, and target rich are defined to demonstrate the ability to

optimize vehicle configuration based off an expected environment. The settings used

to define these conditions are given in Table 22. To determine optimal response, the

range of input parameters tested in experimental design with a certain precision of

change are inputted into the prediction equations for all response variables. These

values are given in Table 23. The step size indicates how the values between the

maximum and minimum are spaced in the range of tested values. The range of values

tested for optimal response are implemented for each level of target density to produce

an optimal configuration for a given expected operational environment.

Table 22. Definitions of target sparse, moderate density, and target rich environments

Environment Search Area N Real Targets N False Targets

Target Sparse 450m x 450m 1 1
Moderate Density 700m x 700m 10 10

Target Rich 700m x 700m 19 19

Table 23. Range of values tested in response surface for desirability calculations

Input Parameter Minimum Maximum Step Size

Search Velocity 5 m/s 10 m/s 1 m/s
Detect Real 0.65 0.9 0.01
Detect False 0.65 0.9 0.01

Cooperation Level -1 1 1
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To conduct optimization, a desirability function is calculated for each response

tested. To calculate the desirability of each response, the disabilities given in Table

24 are implemented with a linear scale between bounds. Values outside specified

values are given a desirability of zero. To optimize multiple responses, a weighted

desirability function is implemented for each configuration with the weights given in

Table 25. The weights given represent an example of multiple response prioritization.

The maximum weighted desirability is chosen as the optimal configuration for a given

environment. The findings for each environment are given in Table 26.

Table 24. desirability (di) for each response variable

Percent Correct Detected
Low Medium High

Response 60% 85% 110%
desirability, di 0.02 0.38 0.6

Percent Correct Confirmed
Low Medium High

Response 60% 80% 110%
desirability, di 0.05 0.4 0.55

Percent Area Covered
Low Medium High

Response 60% 85% 115%
desirability, di 0.05 0.15 0.8

Mission Time
Low Medium High

Response 5 mins 12 mins 21 mins
desirability, di 0.45 0.4 0.15

Perception Accuracy
Low Medium High

Response 35% 70% 105%
desirability, di 0.05 0.45 0.6

The calculations of desirability for optimal response was calculated using original

Python classes and scripts. The code used to conduct optimization is given in Ap-

pendix O. The code allows the user to change the weights (data in Table 25), singular

response desirability functions (data in Table 24), definitions of target density (data
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Table 25. Weights used in the Desirability function

Response Variable Desirability Weight, wi

Percent Correct Detected 0.225
Percent Correct Confirmed 0.225

Percent Area Covered 0.15
Mission Time 0.15

Perception Accuracy 0.25

Table 26. Configurations that maximize desirability using information from Table 25
and 24

Target Rich Moderate Density Target Sparse

Cooperation Level Extreme Extreme Extreme
Search Velocity 8 m/s 7 m/s 5 m/s

Detect False 0.89 0.89 0.65
Detect Real 0.89 0.65 0.65
Desirability 0.6364 0.6549 0.6833

given in Table 22), and the range of values to evaluate desirability (data in Table 23).

These results serve as an example for how response surface models can be practically

used to configure vehicles for optimal performance. The configuration results can

be inputted back into the response surfaces to predict performance. The response

predictions for the optimal configurations are given in Table 27 for each operational

environment.

Table 27. Predicted responses of optimal configuration using desirability criterion and
response surfaces

Response Target Rich
Moderate
Density

Target Sparse

Correct Detected 64.70% 60.41% 60.86%

Correct Confirmed 64.80% 56.80% 35.13%

Area Covered 99.78% 104.07% 107.73%

Mission Time 11.48 mins 12.30 mins 11.80 mins

Perception Accuracy 79.42% 76.96% 96.94%

The predictions given in Table 27 were validated by testing these conditions in

the simulation. The results and the associated percent difference are given in Table
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28. A positive percent difference indicates an increase in simulation response from

the predicted response. A negative percent difference indicates a decrease in sim-

ulation response than predicted. For the target sparse simulation, the false target

was identified correctly and the true target was identified incorrectly. As a result,

none of the targets were confirmed, explaining the zero percent correct confirmed and

much lower mission time. The incorrect target identification is a result of Type II

error. Since Type II error does not change the objective plan, the perception accu-

racy for the target sparse environment is 100%. Overall, one confirmation simulation

for each case shows a well performing low fidelity simulation prediction model for

each response, with the exception of percent correct confirmed. This demonstration

implements optimization of mission and autonomy related response in order to select

the best platform for a given mission and select optimal vehicle parameters. If more

effort was applied to improving these models, the worst performing model, percent

correct confirm, should be prioritized, followed by the mission time model.

In addition to surface confirmation runs, model adequacy was confirmed with lack

of fit tests and visual confirmation of studentized residuals. Appendix L shows the

studentized residuals and lack of fit test for all response variables. All response vari-

ables show adequate randomness in a horizontal band. The near-perfect randomness

of residuals can be attributed to the uniform distributions used in generating target

locations and sensor probability draws. The satisfactory inspection of residuals in-

dicates the ANOVA assumptions hold. Additionally, each response lack of fit test

resulted in rejection of the null hypothesis that a lack of fit in the model exists. This

suggests there are no missing higher-order effects. Therefore, the results from the

confirmation runs, lack of fit tests, and visual inspection of studentized residuals in-

dicate an adequate statistical model, allowing valid conclusions from this statistical

model.
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Table 28. Optimal configuration confirmation simulation runs and percent difference
to predicted responses

Response
Simulation

Response

Percent

Difference

Target Rich

Correct Detected 71.05% ∆ +9.82%

Correct Confirmed 55.56% ∆ -14.26%

Area Covered 91.47% ∆ -8.321%

Mission Time 13.90 mins ∆ +21.08%

Perception Accuracy 80.00% ∆ +0.73%

Moderate Density

Correct Detected 65.00% ∆ +7.60%

Correct Confirmed 20.00% ∆ -64.79%

Area Covered 104.59% ∆ +0.50%

Mission Time 13.94 mins ∆ +13.31%

Perception Accuracy 88.89% ∆ +16.32%

Target Sparse

Correct Detected 50% ∆ -17.84%

Correct Confirmed 0% ∆ -100%

Area Covered 107.10% ∆ -0.59%

Mission Time 6.81 mins ∆ -47.635%

Perception Accuracy 100% ∆ +3.16%
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Robustness.

The moderate cooperation simulation implemented a robustness test. In this

test, one replicate of the FCCD design was run with a random seed of seven. This

test was repeated but with error triggering one vehicle to RTL. To simulate the off-

boarding of a vehicle due to sensor failure, one of the vehicles is given 60% fuel

at take off, triggering RTL. The remaining vehicle is given the remaining area and

replans accordingly. The down vehicle refuels and return as a confirmation agent if

the mission is not yet completed. The use of consistent random seeds makes target

locations identical for each run, removing the impact of target placement on response

variables and making runs more directly comparable. The mission time and area

covered between runs were evaluated to determine the extent to which the mission

was diminished, using a percent difference. A negative value indicates degradation

of performance (increased time, decreased percent area covered). A positive value

indicates an improvement. Descriptive statistics of this test are given in Figure 39.

The percent difference in area covered is at worse 4.76% degraded while mission time

is at worse degraded by 7.35%. Area is degraded less than mission time because the

RTL agent can return as a confirmation agent, helping to decrease time required to

finish the mission alone. However, this is not the case for percent area covered because

the RTL agent cannot enter search. When the remaining agent needs to RTL due to

fuel, it is unable to refuel and search cannot continue. However, the RTL agent can

continue confirming the remaining agents. The degradation percentages are rather

low, indicating the system is adequately able to continue the mission of WAS.
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Figure 39. JMP output for percent difference in mission time and percent area covered

Application of DoE and RSM Results.

DoE and RSM allows identification of design parameters with the largest effect

on system performance. Identification of these parameters allows prioritization of

requirements. For example, if flying at a certain speed allows optimal system perfor-

mance, the ability of the aircraft to fly at that given speed would be a high priority.

Additionally, implementing DoE and RSM allows one to vary operational environ-

115



ments to determine an optimal system configuration for a given scenario. The optimal

system configuration from statistical models for a given scenario can be implemented

in real missions to achieve predicted performance.

4.7 Test Method for Autonomous Systems

This research implemented rigorous test planning, automated testing, and analysis

for an autonomous system. The following steps are compiled to capture the test

method utilized in this research:

1. Acquire system requirements for the system of interest. If there are no re-

quirements for autonomy, write what is required for this autonomous system;

conduct a literature review and talk to developers to determine what is required

2. Draft a problem statement from requirements that addresses scope and the type

of problem to be investigated by the test plan

3. Create a system decomposition, often a work breakdown structure (WBS) and/or

a context/domain model.

4. Write clear, concise, testable, traceable, and measurable test objectives that

apply the problem statements to entire system, to include autonomy

5. Identify evaluation measures (response variables)

6. Identify required data for evaluation of responses

7. Identify sources of variation that could affect responses

8. Identify and understand all potential factors that could affect the responses

116



9. Select region of interest, factors to vary, and factor levels. If applicable, run a

screening design to limit the test space and check region of interest for a full

scale test.

10. Select experimental design based upon the above and how many runs can be

afforded by the test infrastructure, timeline, and budget

11. Trace above to problem statement and test requirements

12. Perform the test, implementing automated testing where possible to streamline

the process. Before moving on to the next step, ensure initial data allows the

test objectives to be met.

13. Implement statistical methods according to the test plan to describe the system.

Predictable models should be statistically significant, have no lack of fit, and

pass visual inspection of residuals for ANOVA assumption verification

14. Select weights to represent the prioritization of response variables. Next, deter-

mine desirability functions for each response. The resulting Desirability equa-

tion aggregates overall value.

15. Conduct multiple-response optimization to determine operating parameters that

maximum Desirability.

16. Make recommendations according to findings from test methodology.

4.8 Summary

This chapter presented the design and implementation of an autonomous WAS

agent in ASRA as well as the tests and results performed on the simulation. MBSE

principles aided in designing the autonomous agent and software implementation.
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ASRA provided the capability to implement an autonomous system to accomplish this

WAS scenario and offered existing software and modules which reduced development

times. Qualitative scenario results showed the challenges associated with developing

cooperative autonomous systems and tuning their behavior and interactions.

The DoE results allowed prediction for response variables, with exception of re-

sponsiveness and robustness. These prediction equations were used to optimize per-

formance of two vehicle operation using Desirability functions. The bounds of inputs

were selected for three target density levels: target sparse, medium density, and a

target rich environment. The test methodology implemented in this research is pre-

sented for autonomous systems, providing test and evaluation professionals a general,

domain agnostic outline of steps for testing an autonomous system.
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V. Conclusion

5.1 Overview

Chapter V provides conclusions in light of the overall research that was accom-

plished. The research questions presented earlier are answered based on the work

performed to this point. Finally, important lessons learned throughout this research

development are recorded along with future work that could be done to extend this

research.

5.2 Research Findings

What additions to ASRA need to be made to implement a new WAS

application?

ASRA MBSE models were already developed to the point that the WAS applica-

tion could be accurately modeled. The software instantiation of ASRA, used as the

basis for this research, also included the majority of the functionality for a 3 layer ar-

chitecture with a basic sequencer, UBF controller, and behavior library. Only slight

modifications to the sequencer and controller were required, with the exception of

new behaviors unique to this scenario. The basic sequencer required some additions

to sequence objective plans with multiple individual objectives and hand appropriate

behaviors to the controller one at a time. Additionally, communications between the

sequencer and controller were limited and thus extended to provide the sequencer in-

sight on the status of the controller. Additional messages were also added to provide

two way communication between layers. These were fundamental items needed for

any three layer autonomy implementation.

To implement the WAS scenario specifically, more substantial additions were also

required. A new deliberator layer was implemented as a state machine to handle high
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level planning and a coordinator was added to handle the communication between

agents. These modules are fundamentally less universally applicable to new mission

types and as implemented, are specific to the WAS mission. New WAS specific behav-

iors and their associated activation paths had to be developed. Many of the behaviors

that existed in the behavior library could be reused with only slight modifications,

while others such as the FlySearchPattern behavior required new development. As

the behavior library grows, the number of needed behaviors that do not exist in the

library should decrease. Finally, additional messages were required, some specific to

the WAS mission, but others to improve the overall communication between layers.

How does ASRA enable reuse of the similarities that exist in autonomous

and cooperative systems?

ASRA’s MBSE models are designed be reusable as components can be saved in

Cameo Systems Modeler and used for new designs. These models describe different

levels of abstractions so new autonomous systems may share a high level model while a

lower level model may address the differences between systems. As more autonomous

systems are modeled with ASRA, the library of modeled components will expand and

become more likely to contain the models required in new applications.

This specific software implementation is highly reusable for future three or four

layer designs, but less for completely new agent core architectures. The sequencer

and controller layers are more universally useful than the deliberator and coordinator.

Except for new additions of more advanced features, modifying the sequencer in new

applications is likely not necessary. For example, moving from the single agent to

multi agent scenarios required no modifications to the sequencer. For the controller,

the behavior library allows reuse of existing behaviors directly, with slight modifica-

tions, or as guides to develop new behaviors. The main contents of the deliberator

and coordinator are tailored to the WAS mission specifically, making them less di-
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rectly usable by new applications. The interface with other layers that exists in these

higher layers is still useful as a basis when implementing these layers in new systems.

How does ASRA support the variations of autonomous and cooperative

systems?

ASRA models are designed to handle a wide range of autonomous system designs

thanks to the modularity of its architecture. Defined interfaces allow module con-

tents to be swapped yet still work in concert with other modules, but these interface

definitions are not fully defined. Further defining these interfaces, would improve the

model’s ability to handle any new type of autonomy to be accurately modeled and

implemented. The majority of variations in autonomous systems can be found in the

agent core within the autonomy layer. ASRA’s hardware interface layer standardizes

the interface between the hardware layer and the agent core, allowing compatibility

with many agent core designs such as a machine learning implementation or reactive

controller.

This specific software implementation of ASRA is tailored to a layered architecture

with a UBF controller. By simply adjusting the behavior set, this architecture is

very flexible to new implementations. If a completely new agent core is desired,

the existing software for the layered architecture would be replaced with this new

autonomy architecture. In this case, the existing LCM messaging system could be

reused to handle the interface with this new architecture. This would provide an

interface with the existing perceptor and simulator modules. Any additional perceptor

or simulators could also be implemented using the existing interface.

What are effective and efficient test methods for autonomy?

Effective and efficient test methods are rooted in application of test planning and

design of experiments. Effective test methods are those which implement test plan-

ning to answer relevant questions for a given system. Autonomy should heighten
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performance of the overall mission. As a result, mission tasks are allocated to au-

tonomy, and test objectives are made for these tasks. This was done in the work

breakdown of the system and its use to create test objectives. This process allows

for an effective test that answers relevant questions. To ensure test efficiency, design

of experiments can be implemented to test a design space of interest. Design of ex-

periments allows a systematic approach of testing a design space. Applying design

of experiments with test planning allows the required questions to be answered with

efficient use of resources.

How should the test space be limited given a specific mission space?

The test space can be limited by utilizing factor selection and limitation methods.

In this research, potential factors were identified through the use of screening designs.

These factors were limited by holding some of these factors constant throughout the

experiment in order to limit the space. Limiting the space allowed a full factorial

to be tested with center points and experimental replication of design. The selected

factors were checked with a screening design to confirm only significant factors were

selected for a final design of experiments. Limiting the factor space saved time and

resources, allowing multiple trials. In this research, factor limitation was a trade for

implementing a full factorial in simulation rather than a fractional factorial. Using

a fractional factorial can be efficient but aliasing exists. Having aliasing means that

the test is unable to separate all effects in the test. With a full factorial, the analyst

has no coupling between factor effects but more runs are required than a fractional

design.

What are valid and useful measures of autonomous systems?

Measures of autonomy were derived from reactive architecture requirements of au-

tonomous systems. Useful measures are informative to the user and can be measured.

Valid measures are those which are based in system requirements. In this research,
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the requirements of responsiveness, robustness, and perception accuracy were quan-

tified and tested. The extent to which these requirements were met can be used to

determine the suitability of autonomy for the given system.

In this research, the responsiveness metric could be improved for future research.

However, it has the potential to be better quantified; it is a valid metric because it is

based in reactive control requirements for an autonomous system. Suggestions made

in future research will allow it to be more useful to users.

Robustness gave insight into degradation of the systems ability to cover an assigned

area and the time required to finish a mission. It is a valid metric because it is based

in system requirements. It is useful because it measurable and gives some insight but

is not predictable. The results give a range of percent difference values for mission

time and percent area covered. However, the robustness metric is somewhat time

dependent on error. This is one area for improvement of this metric.

Perception accuracy gave insight on the impact of sensor error on objective plan

selection. The percent to which sensor error had no impact on objective plan was

recorded in each run. This response is predictable with a significant and valid statis-

tical model. As a result, this metric could be considered the most useful because it is

informative to the user, measurable, and predictable. This metric is valid because it

is tied to a consequence of using sensors. Multiple sensors is one of the requirements

from (Brooks, 1986). Brooks references consequences of using multiple sensors, one

of which being autonomous systems perceive and operate under error. This metric

gives insight on the extent to which error does not impact objective plan selection,

informing the user on the suitability of the sensor used for autonomous logic.

5.3 Lessons Learned

Cooperative Utility Function Design
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Implementing a cooperative utility function and achieving reasonable results pre-

sented a challenge. Not only must parameters of the utility function be tuned, the

parameters themselves must be selected from a pool of many potential aspects that

affect cooperation. While qualitatively good results could be achieved for a specific

set of scenario conditions, generating reasonable performance from the utility function

across all scenario conditions with only qualitative testing was difficult. To address

this, the utility function could be designed to include knowledge of the scenario, such

as search area size or expected target density. This could provide the performance

achieved when tuning to a specific scenario, across the range of scenarios the system

may face. Additionally, a quantitative testing method could be implemented to aid

in tuning and selecting utility function parameters. Under certain tuning parameter

conditions, the utility function resulted in indecisiveness where the agent could not

decide if it should confirm a target or not so over the course of making one decision

and then the opposite decision, the agent would position itself directly in between

the goal of each position. This behavior was tuned out but could also be avoided by

requiring agents to stick to a decision.

LCM Usage

LCM’s main handle function should be run until it returns 0 to ensure all new

messages’ callback functions are executed. Utilizing lcm-logplayer gui with lcm spy

is quicker than using logreader code created to inspect what happened during the

flight. When working on sprints two and three, file size was an issue and the log files

stopped recording. After a lot of testing, it was found that subscribing to required

messages and running the code in a Linux terminal solved the issue. During this

process, using lcm-logplayer gui with lcm spy was key because the files were so large.

Tests could not be conducted in a smaller form because the issue was dependent on

file size. Running the simulation took awhile and inputting large files into logreader
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took even longer. Additionally, running code in Pycharm at large scale only created

more problems so all test runs were executed in the Linux terminal.

5.4 Future Work

WAS Scenario

This wide area search scenario could be extended to study the cooperative ben-

efit of three or more agents that can dynamically join and leave the network. This

implementation can accommodate more than two agents in many areas but due to

development time, the functions dealing with search area distribution between agents

was limited to two agents. Additional search patterns might also yield interesting

results along with the study of moving targets and multiple sensor types distributed

among agents. Extending the utility function to include information about the poten-

tial scenario could improve its performance across a wider range of missions. Finally,

performing more rigorous tests on the utility function to determine optimal tuning

parameters could yield improved results.

ASRA

This software implementation of ASRA utilized a static sequencer with basic func-

tionality. This could be improved by implementing the dynamic sequencer described

in Peterson et al. (2011). Initial steps in that direction could be to implement a

resource monitor in the sequencer that condenses the list of viable behaviors to those

that can actually be implemented with the agent’s current set of sensor information

and system controls. Additionally, monitoring the current task’s post conditions in

the sequencer would provide a more robust way to determine task completion, espe-

cially with complex behaviors.

This research sent additional required information to the behavior such as a list

of waypoints to achieve from the deliberator. This limited the type and number
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of objectives that an objective plan could include because the deliberator does not

know the current task being performed. By sending all required information with

the objective plan to the sequencer, the sequencer can then provide the required

information to the correct behavior.

The particle simulator could be extended to provide support for a wind or weather

effects, obstacles, or additional vehicle types such as fixed wings or ground vehicles.

This would provide some of the useful features of Ardupilot SITL in the lightweight

particle simulator. Finally, successfully using LCM in multiple processes would allow

for future layered architectures to run concurrently.

ASRA models currently lack the component interface definitions required for com-

plete modularity of components. Defining these interfaces would extend the model’s

ability to guide the creation of new software modules, such that they interface with

existing components. This serves to achieve ASRA’s goal of rapid prototyping by

ensuring component interoperation between existing and new autonomy components.

Responsiveness

In this research, responsiveness was the least useful as currently defined. In a wide

area search application, responsiveness was effectively processing time. However, in

a urban environment with multiple agents, this became more important for vehicle

operation. Additionally, based upon the architecture chosen, the first timestamp

was taken from the creation of objective plans. However, the ability to compare

actuation time to objective plans trigger would be more informative. This would

allow responsiveness to external stimuli to be captured rather than responsiveness to

objective plan creation.

Robustness

In this research, robustness was not a predictable response. Instead, descriptive

statistics were used to show the range of values observed over all runs. This metric was
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time dependant on the amount of fuel given to one agent. In the future, this trigger to

RTL could be random with more runs to get a better sample that is not dependent on

time. Another area of research is robustness to operational environment. For example,

the performance of an agent configured for a target rich environment operating in a

target sparse environment can be used to determine the robustness to operational

environment.

Optimization

Optimization method included desirability functions which used weights. A com-

mon next step which was not included in this research is weight sensitivity analysis.

If the weight is changed by a small amount, this analysis looks at how desirability

changes relative to weight change. If it is sensitive to weight change, more thought

and attention should be applied to selection of the weights. Since this research used

optimization to demonstrate the tool and practical use of statistical models, this area

was not explored. Another area of research for optimization would be confirming

optimal performance settings in a higher fidelity simulation such as SITL and then

in flight test. These tests would help extrapolate the model from simulation to real

world to given more accurate results.

Model Based Systems Engineering (MBSE)

This research included coded elements from a systems engineering model. The

next process would be to update the model to ensure consistancy between the model

and coded elements of that model. Current ASRA models stop short of defining the

software elements within components and could be extended to fully define the soft-

ware elements used in this ASRA implementation. Implementing an accurate system

model to the level of software code improves documentation, decreasing acclimation

and development time.
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5.5 Final Thoughts

This research implemented a cooperative wide area search and confirm scenario,

building on an existing ASRA software instantiation. By combining MBSE and au-

tonomous system design concepts, an autonomous system was fully implemented

in ASRA. Through this development, ASRA’s software and models were extended,

easing the development of future ASRA implementations through its reusable and

modular design.

This research expanded test and evaluation of autonomous systems through test

planning and metrics specific to autonomy. Automated scripts tested the system’s

main tasks and functions, as well as the use of autonomy to complete those tasks.

The results allow insight for the entire system, including autonomy. This research

baselined the use of responsiveness and robustness metrics, with perception accuracy

shown to be a predictable system response. The statistical models created from test

data allows a user to optimize configuration for a given environment based upon

user defined weights and desirabilities. This research enables confirmation of system

configuration responses in SITL and flight test for predicted optimal performance.

Lastly, the fully implemented four layer architecture along with integrated testing

procedures allows for an efficient digital twin implementation for a variety of military

designs.

Statistical models allow prioritization of requirements for system design and de-

velopment. Requirements can be prioritized by largest effect on system performance

in order to make the largest system impact with research and development time and

money. This ability allows developers and managers to make more significant impacts

on performance, budget, and schedule.

Finally, this research delivered a test methodology for autonomous systems. This

methodology allows testers to make recommendations and conclusions about au-
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tonomous systems, informing decision makers about optimal operating conditions.

The ability to rapidly prototype (Zacharias, 2019), test, and evaluate (Defense Sci-

ence Board, 2012) autonomous systems allows for the fielding of autonomous systems

to gain a military advantage, a primary goal of the 2018 National Defense Strategy

(Mattis, 2018).
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Appendix A. LCM Message Descriptions

Table 29. 12 LCM messages were required to provide the necessary communication
between layers.

Message Name Sender Recipient Description

TaskPlan Sequencer Controller Task list and current task number
TaskStatus Controller Sequencer Current task name and status
PlatformPos Simulator Controller

Deliberator
Perceptor
Coordinator

Agent position

GoalPos Deliberator Controller Current goal position for behavior
to achieve

WaypointPos Deliberator Controller List of waypoints forming search
or confirm pattern

FuelStatus Simulator Deliberator
Coordinator

Agent fuel remaining

ObjectivePlan Deliberator Sequencer List of objectives to achieve
current goal

RePlan Sequencer Deliberator Current Objective Plan name,
completion or failed solution
status

DelInfo Deliberator Perceptor
Coordinator

Commands to control perceptor
and agent information for
Coordinator

TargetList Perceptor Deliberator
Coordinator

List of targets perceptor has found

CoordCmds Coordinator Deliberator
Perceptor

Information on other agents, loiter
value, offline agents

AgentTargs Coordinator Other
Coordinators

Agent position, state, compiled
target list, fuel status
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Sample Takeoff Behavior

Page 1 of 2

class Takeoff(Behavior):14
    """15
    Takeoff to a specified target altitude at current horizontal position.16
    """17

18
    def __init__(self, weight=1.0):19
        super().__init__(weight)20
        self.pid = PID()21

22
    def gen_action(self, state_block):23
        """24
        :param state_block:25
        :type state_block: StateBlock26
        :return: A unit vector of the velocity in the navigation frame (NED) 
pointing in the negative down direction.

27

        :rtype: Action28
        """29

30
        # Initialize action output31
        action = MultiRotor.Move(behavior_weight=self.weight, behavior_id=
self.id)

32

33
        # Get sensor inputs34
        platform_pos = state_block[self.state_ids[0]].position35
        target_pos = state_block[self.state_ids[1]].position36
        delta_alt = target_pos.z - platform_pos.z37

38
        # Apply PID39
        u = self.pid.evaluate(delta_alt)40

41
        # Scale behavior output between 0 to 142
        if la.norm(u) > 1.0:43
            act_cmd_z = u / la.norm(u)44
        else:45
            act_cmd_z = u46

47
        # Pack action48
        action.actuators.vertical.motion_type = 'velocity'49
        action.actuators.vertical.z = act_cmd_z50
        if round(platform_pos.z) % 25 is 0:51
            print('current alt is', platform_pos.z)52
        if abs(delta_alt) <= 3:53
            print('at target altitude in takeoff behavior')54
            action.complete = True55
        else:56
            action.complete = False57

58
        return action59
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Sample Takeoff Behavior

Page 2 of 2

    def set_state_ids(self, platform_position, target_position):61
        self.state_ids = [platform_position, target_position]62



Sample FlySearchPattern Behavior

Page 1 of 2

class FlySearchPattern(Behavior):186
    """187
    Fly through waypoints given in waypoint list.188
    """189

190
    def __init__(self, weight=1.0):191
        super().__init__(weight)192
        self.pid = PID()193
        self.current_wp_num = 0194

195
    def gen_action(self, state_block):196
        """197
        :param state_block:198
        :type state_block: StateBlock199
        :return: A unit vector of the velocity in the navigation frame (NED
) pointing towards the next waypoint.

200

        :rtype: Action201
        """202

203
        # Initialize action output204
        action = MultiRotor.Move(behavior_weight=self.weight, behavior_id=
self.id)

205

206
        # Get sensor inputs207
        platform_pos = state_block[self.state_ids[0]].position208
        path = state_block[self.state_ids[1]].waypoint_list209
        target_pos = path[self.current_wp_num]210

211
        # Calculate distance from target position212
        delta_ned = np.zeros(3)213
        if isinstance(target_pos, GeodeticPosition) and isinstance(
platform_pos, GeodeticPosition):

214

            delta_ned[0] = delta_lat_to_north(target_pos.latitude - 
platform_pos.latitude,

215

                                              platform_pos.latitude, 
platform_pos.altitude)

216

            delta_ned[1] = delta_lon_to_east(target_pos.longitude - 
platform_pos.longitude,

217

                                             platform_pos.latitude, 
platform_pos.altitude)

218

            delta_ned[2] = target_pos.altitude-platform_pos.altitude219
        elif isinstance(target_pos, LocalLevelPosition) and isinstance(
platform_pos, LocalLevelPosition):

220

            delta_ned[0] = target_pos.x - platform_pos.x221
            delta_ned[1] = target_pos.y - platform_pos.y222
            delta_ned[2] = target_pos.z - platform_pos.z223
        else:224
            raise RuntimeError('Target and platform positions must be in 
same frame and same container type')
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Sample FlySearchPattern Behavior
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226
        # Apply PID227
        u = self.pid.evaluate(delta_ned)228

229
        # Scale behavior output between 0 to 1230
        if la.norm(u) > 1:231
            act_cmd_ned = u / la.norm(u)232
        else:233
            act_cmd_ned = u234

235
        # Pack action236
        action.actuators.horizontal.motion_type = 'velocity'237
        action.actuators.horizontal.x = act_cmd_ned[0]238
        action.actuators.horizontal.y = act_cmd_ned[1]239
        action.actuators.vertical.motion_type = 'velocity'240
        action.actuators.vertical.z = act_cmd_ned[2]241

242
        if la.norm(delta_ned) <= 3:243
            if self.current_wp_num == len(path)-1:244
                # all waypoints have been routed through245
                action.complete = True246
            else:247
                # move to next waypoint248
                self.current_wp_num += 1249
        return action250

251
    def set_state_ids(self, platform_position, waypoint_position):252
        self.state_ids = [platform_position, waypoint_position]253
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Controller Main Function

Page 1 of 1

def main(self):67
68

    while self.__state_block.lcm_update_states():69
        pass70

71
    task_plan_state = self.__state_block[self.__task_plan_state_id]  # 
total task plan right out of sequencer

72

    task_status_state = self.__state_block[self.__task_status_state_id]  # 
current task

73

74
    if task_plan_state.plan:  # keep doing original task even if finished75
        root_behavior = self.get_root(task_plan_state.plan[task_plan_state.
sequence_no])

76

        self.controller.set_root_behavior(root_behavior)77
78

        if task_plan_state.plan[task_plan_state.sequence_no].task != 
task_status_state.name or \

79

                task_status_state.unique_id != task_plan_state.unique_id:80
            task_status_state.name = task_plan_state.plan[task_plan_state.
sequence_no].task

81

            task_status_state.unique_id = task_plan_state.unique_id82
            task_status_state.set_status_in_progress()83
            self.__state_block.send_state(self.__task_status_state_id)84

85
        # Get and execute action86
        cur_action = self.controller.gen_action(self.__state_block)87
        self.controller.execute_action(cur_action)88

89
        # Set TaskStatus state90
        if cur_action.complete is not None:91
            if cur_action.complete:92
                task_status_state.set_status_finished()  # set current task
 to finished

93

                task_status_state.name = task_plan_state.plan[
task_plan_state.sequence_no].task

94

                self.__state_block.send_state(self.__task_status_state_id)95
            elif not cur_action.complete:96
                task_status_state.set_status_in_progress()  # set current 
task to in progress

97

                task_status_state.name = task_plan_state.plan[
task_plan_state.sequence_no].task

98

                self.__state_block.send_state(self.__task_status_state_id)99
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Sequencer Main Functions

Page 1 of 2

def handle_plan(self):117
    """118
    Handles the current task plan by dispatching new tasks to controller and
 monitoring task state in controller.

119

    """120
    task_plan_state = self.__state_block[self.__tp_state_id]121
    replan_state = self.__state_block[self.__replan_state_id]122
    task_status_state = self.__state_block[self.__task_status_state_id]123

124
    if task_plan_state.is_plan_new() \125
            and task_status_state.name == task_plan_state.plan[
task_plan_state.sequence_no].task:

126

        task_plan_state.set_status_in_progress()127
        self.__state_block.send_state(self.__tp_state_id)128

129
    elif task_plan_state.is_in_progress() \130
            and task_status_state.name == task_plan_state.plan[
task_plan_state.sequence_no].task:

131

        if task_status_state.is_finished():132
            task_plan_state.set_status_finished()133
            if task_plan_state.sequence_no < len(task_plan_state.plan)-1: 
 # if whole task_plan is finished

134

                task_plan_state.sequence_no += 1135
136

            self.__state_block.send_state(self.__tp_state_id)137
138

    elif task_plan_state.is_finished() and \139
            task_status_state.name == task_plan_state.plan[task_plan_state.
sequence_no].task and \

140

            task_status_state.is_finished():141
        replan_state.set_status_op_finished()142
        replan_state.unique_id = task_plan_state.unique_id143
        replan_state.replan_reason = task_plan_state.plan[task_plan_state.
sequence_no].task

144

        self.__state_block.send_state(self.__replan_state_id)145
146

def main(self):147
    """148
    Main function to be called in loop, either by executive's run or setup 
script).

149

    Handles new objective plans, converting to task plans or notifying 
deliberator of failed task plan generation

150

    """151
    while self.__state_block.lcm_update_states():152
        pass153

154
    task_plan_state = self.__state_block[self.__tp_state_id]155
    op_state = self.__state_block[self.__op_state_id]156
    replan_state = self.__state_block[self.__replan_state_id]157
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158
    if self.old_op_id != op_state.unique_id:159
        plan = self.gen_plan()  # Generate new plan160
        if plan is not None:161
            if plan != []:162
                task_plan_state.plan = plan163
                task_plan_state.sequence_no = 0164
                task_plan_state.unique_id = op_state.unique_id165
                replan_state.unique_id = op_state.unique_id166
                self.__state_block.send_state(self.__tp_state_id)167

168
                replan_state.set_status_op_in_progress()169
                replan_state.replan_reason = task_plan_state.plan[
task_plan_state.sequence_no].task

170

                replan_state.unique_id = task_plan_state.unique_id171
                self.__state_block.send_state(self.__replan_state_id)172

173
    if task_plan_state.plan:174
        self.handle_plan()175
    else:176
        replan_state.set_status_op_failed()177
        self.__state_block.send_state(self.__replan_state_id)178
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def main(self):830
831

    while self.state_block.lcm_update_states():832
        pass833

834
    # get coordination info during initialization835
    while not self.got_coordination_info:836
        if self.state_block[self.config.coordinator_commands_state_id].
boundary_list != []:

837

            self.boundary = self.state_block[self.config.
coordinator_commands_state_id].boundary_list[self.config.agent_id]

838

            self.got_coordination_info = True839
840

    # check on fuel level and trigger egress state if necessary841
    if not self.check_low_fuel():  # returns True if out of fuel and RTLing842
        self.save_agent_last_search_location()843
        self.check_loiter_utility()844
        if 'RTL' not in self.state_history:845
            self.check_redistribute_search()846
        if not self.machine.is_RTL():847
            self.update_confirm_list()  # constantly keep an optimized 
route through targets needing confirmed

848

            self.do_confirm_transition()  # update the waypoint list and 
change state to confirm if necessary

849

850
    replan_state = self.state_block[self.__replan_state_id]851

852
    # startup state853
    if replan_state.is_op_failed():854
        if self.machine.is_initial():855
            print('Initializing state machine...')856
            self.send_waypoint_list(states.WaypointListNED(waypoint_list=
self.gen_search_pattern(),

857

                                                           channel=self.
config.waypoint_channel))

858

            self.return_to_search_location = self.state_block[self.config.
waypoints_state_id].waypoint_list[0]

859

            self.send_target_position(states.PositionNED(position=self.
return_to_search_location))

860

            self.handle_state('ingress')  # to ingress state861
862

    # state transitions based off a finished and matching replan to 
objective plan

863

    if replan_state.is_op_finished() and self.matching_replan():864
        if self.machine.is_ingress():865
            self.handle_state('search')  # to search state866

867
        elif self.machine.is_search():868
            self.search_complete = True869
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            self.send_deliberator_info()870
871

            if self.confirm_list == []:872
                confirm_pattern = self.gen_confirm_pattern_with_alt(alt=
self.config.confirm_alt)

873

            else:874
                confirm_pattern = self.gen_confirm_pattern_with_alt(alt=
self.config.confirm_alt, target_list=self.confirm_list)

875

876
            if confirm_pattern == []:  # if no targets to confirm877
                self.handle_state('egress')878
            else:879
                self.send_waypoint_list(states.WaypointListNED(
waypoint_list=confirm_pattern,

880

                                                               channel=
self.config.waypoint_channel))

881

                self.handle_state('confirm')882
883

        elif self.machine.is_confirm() and self.search_complete:884
            self.handle_state('egress')885

886
        elif self.machine.is_coop_confirm():887
            if 'search' not in self.state_history or self.state_history[-2]
 is 'search':

888

                self.send_waypoint_list(states.WaypointListNED(
waypoint_list=self.gen_search_pattern(),

889

                                                               channel=
self.config.waypoint_channel))

890

                self.handle_state('search')  # to search state891
892

        elif self.machine.is_loiter():  # not actually going to be reached 
since the loiter behavior never ends

893

            self.handle_state('egress')894
895

        elif self.machine.is_egress():896
            self.handle_state('landed')  # to landed state897

898
        elif self.machine.is_RTL():899
            self.handle_state('landed')900



Appendix F. Perceptor Sense Function Code

144



Perceptor Sense Function

Page 1 of 2

def detect_target(self):102
    """103
    Determine if any targets are in current field of view and simulate a 
sensor with error

104

    """105
106

    location = self.state_block[self.config.platform_pos_state_id].position107
    target_list = self.state_block[self.config.target_list_state_id].
targets

108

109
    # get FOV radius on ground for current altitude110
    fov_radius = (abs(location.z) * math.tan(math.radians(self.config.FOV /
 2)))

111

112
    # calc GSD for current altitude113
    GSD = fov_radius * 2 / 1080114
    if GSD > self.config.best_gsd:115
        detect_false = self.detect_false * np.exp(self.config.gsd_decay * (
GSD - self.config.best_gsd))

116

        detect_real = self.detect_real * np.exp(self.config.gsd_decay * (
GSD - self.config.best_gsd))

117

    else:118
        detect_false = self.detect_false119
        detect_real = self.detect_real120

121
    if target_list is not None:122
        for target in target_list:  # compare every target location to the 
current agent location

123

            if target.search_detected:  # only need to detect new targets124
                continue125

126
            # Check if the target is within the ground FOV radius and the 
agent is at the current altitude

127

            if ((location.x - target.position.x) ** 2 +128
               (location.y - target.position.y) ** 2) < fov_radius ** 2 
and \

129

                    abs(location.z - self.config.search_alt) < 3:130
131

                target.search_detected = True132
                if target.agent is None:133
                    target.agent = self.config.agent_id134

135
                prob = np.random.uniform()  # make a random probability d
raw for each time target was sensed

136

137
                if prob < detect_real and target.real is True:138
                    # encounter real and detect real139
                    target.search_type = 'correct'140

141
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                elif prob > detect_real and target.real is True:142
                    # encounter real and detect false143
                    target.search_type = 'TypeII'144

145
                elif prob < detect_false and target.real is False:146
                    # encounter false and detect false147
                    target.search_type = 'correct'148

149
                elif prob > detect_false and target.real is False:150
                    # encounter false and detect real151
                    target.search_type = 'TypeI'152

153
                # Get target's sensed position with error154
                normal_diagonal = np.random.normal(0, fov_radius * self.co
nfig.fov_error)

155

                uniform_angle = np.random.uniform(0, 360)156
                rand_x = normal_diagonal * math.cos(math.radians(
uniform_angle))

157

                rand_y = normal_diagonal * math.sin(math.radians(
uniform_angle))

158

                target.search_position = LocalLevelPosition(x=target.
position.x + rand_x,

159

                                                            y=target.posi
tion.y + rand_y,

160

                                                            z=0)161
                self.state_block.send_state(self.config.target_list_stat
e_id)

162
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def main(self):250
251

    while self.state_block.lcm_update_states():252
        pass253

254
    if not self.initialized:  # split search area, reset target list255
        self.state_block.states[self.config.coordinator_commands_state_id].
boundary_list = self.split_search_area()

256

        self.should_loiter()257
        self.state_block.send_state(self.config.
coordinator_commands_state_id)

258

        self.state_block[self.config.agent_targets_state_id].targets = []259
        self.state_block.send_state(self.config.agent_targets_state_id)260
        self.initialized = True261

262
    self.update_deliberator_state()263

264
    if self.state_history != []:265
        if 'RTL' != self.state_history[-1]:266
            self.update_global_agent_message()267
            self.check_cooperative_confirm()268

269
    elif not self.RTL_sent:270
        self.RTL_sent = True271
        self.update_global_agent_message()272
        self.state_block[self.config.agent_targets_state_id].state = 'RTL'273
        self.state_block.send_state(self.config.agent_targets_state_id)274
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Table 30. PyDOE output for experimental design of final factors and levels selected,
given in Table 10

Run Search Velocity Detect Real Detect False Search Area N Real N False

1 5 0.65 0.65 450 1 1

2 10 0.65 0.65 450 1 1
3 5 0.9 0.65 450 1 1
4 10 0.9 0.65 450 1 1
5 5 0.65 0.9 450 1 1
6 10 0.65 0.9 450 1 1
7 5 0.9 0.9 450 1 1
8 10 0.9 0.9 450 1 1
9 5 0.65 0.65 700 1 1
10 10 0.65 0.65 700 1 1
11 5 0.9 0.65 700 1 1
12 10 0.9 0.65 700 1 1
13 5 0.65 0.9 700 1 1
14 10 0.65 0.9 700 1 1
15 5 0.9 0.9 700 1 1
16 10 0.9 0.9 700 1 1
17 5 0.65 0.65 450 19 1
18 10 0.65 0.65 450 19 1
19 5 0.9 0.65 450 19 1
20 10 0.9 0.65 450 19 1
21 5 0.65 0.9 450 19 1
22 10 0.65 0.9 450 19 1
23 5 0.9 0.9 450 19 1
24 10 0.9 0.9 450 19 1
25 5 0.65 0.65 700 19 1
26 10 0.65 0.65 700 19 1
27 5 0.9 0.65 700 19 1
28 10 0.9 0.65 700 19 1
29 5 0.65 0.9 700 19 1
30 10 0.65 0.9 700 19 1
31 5 0.9 0.9 700 19 1
32 10 0.9 0.9 700 19 1
33 5 0.65 0.65 450 1 19
34 10 0.65 0.65 450 1 19
35 5 0.9 0.65 450 19 1
36 10 0.9 0.65 450 1 19
37 5 0.65 0.9 450 1 19
38 10 0.65 0.9 450 1 19
39 5 0.9 0.9 450 1 19
40 10 0.9 0.9 450 1 19
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Table 31. PyDOE output for experimental design of final factors and levels selected,
given in Table 10, continued

Run Search Velocity Detect Real Detect False Search Area N Real N False

41 5 0.65 0.65 700 1 19
42 10 0.65 0.65 700 1 19
43 5 0.9 0.65 700 1 1
44 10 0.9 0.65 700 1 19
45 5 0.65 0.9 700 1 19
46 10 0.65 0.9 700 1 19
47 5 0.9 0.9 700 1 19
48 10 0.9 0.9 700 1 19
49 5 0.65 0.65 450 19 19
50 10 0.65 0.65 450 19 19
51 5 0.9 0.65 450 19 19
52 10 0.9 0.65 450 19 19
53 5 0.65 0.9 450 19 19
54 10 0.65 0.9 450 19 19
55 5 0.9 0.9 450 19 19
56 10 0.9 0.9 450 19 19
57 5 0.65 0.65 700 19 19
58 10 0.65 0.65 700 19 19
59 5 0.9 0.65 700 19 19
60 10 0.9 0.65 700 19 19
61 5 0.65 0.9 700 19 19
62 10 0.65 0.9 700 19 19
63 5 0.9 0.9 700 19 19
64 10 0.9 0.9 700 19 19
65 7.5 0.775 0.775 575 10 10
66 7.5 0.775 0.775 575 10 10
67 5 0.775 0.775 575 10 10
68 10 0.775 0.775 575 10 10
69 7.5 0.65 0.775 575 10 10
70 7.5 0.9 0.775 575 10 10
71 7.5 0.775 0.65 575 10 10
72 7.5 0.775 0.9 575 10 10
73 7.5 0.775 0.775 450 10 10
74 7.5 0.775 0.775 700 10 10
75 7.5 0.775 0.775 575 1 10
76 7.5 0.775 0.775 575 19 10
77 7.5 0.775 0.775 575 10 1
78 7.5 0.775 0.775 575 10 19
79 7.5 0.775 0.775 575 10 10
80 7.5 0.775 0.775 575 10 10
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Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
replicate
0
1

Estimate
17.400840
18.866969

Std Error
1.8401869
1.8401869

DF
158
158

Lower 95%
13.766301
15.232430

Upper 95%
21.035378
22.501507

Tukey HSD All Pairwise Comparisons
Quantile = 1.97509 , Adjusted DF = 158.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
-1.46613

Std Error
2.602417

t Ratio
-0.56

Prob>|t|
0.5740

Lower 95%
-6.60614

Upper 95%
3.673885

All Pairwise Comparisons Scatterplot

14

15

16

17

18

19

20

21

22

14 15 16 17 18 19 20 21 22
Detect_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
Quantile = 1.97509 , DF = 158.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-1.46613

Std Error
2.602417

t Ratio
-0.56

Prob>|t|
0.5740

Lower 95%
-6.60614

Upper 95%
3.673884



FCCD_1VehicleFinal - Fit Least Squares Page 2 of 2

Response Detect_TypeI_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

14

15

16

17

18

19

20

21

22

14 15 16 17 18 19 20 21 22
Detect_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



FCCD_1VehicleFinal - Fit Least Squares Page 1 of 2

Response Detect_TypeII_error
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
replicate
0
1

Estimate
18.053156
19.298984

Std Error
2.1051321
2.1051321

DF
158
158

Lower 95%
13.895326
15.141154

Upper 95%
22.210985
23.456813

Tukey HSD All Pairwise Comparisons
Quantile = 1.97509 , Adjusted DF = 158.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
-1.24583

Std Error
2.977106

t Ratio
-0.42

Prob>|t|
0.6762

Lower 95%
-7.12589

Upper 95%
4.634232

All Pairwise Comparisons Scatterplot

15

16

17

18

19

20

21

22

23

15 16 17 18 19 20 21 22 23
Detect_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
Quantile = 1.97509 , DF = 158.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-1.24583

Std Error
2.977106

t Ratio
-0.42

Prob>|t|
0.6762

Lower 95%
-7.12589

Upper 95%
4.634231



FCCD_1VehicleFinal - Fit Least Squares Page 2 of 2

Response Detect_TypeII_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

15

16

17

18

19

20

21

22

23

15 16 17 18 19 20 21 22 23
Detect_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



FCCD_1VehicleFinal - Fit Least Squares Page 1 of 2

Response Confirm_TypeI_error
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
replicate
0
1

Estimate
5.7822009
4.7082643

Std Error
1.3694528
1.3694528

DF
158
158

Lower 95%
3.0774055
2.0034688

Upper 95%
8.4869964
7.4130597

Tukey HSD All Pairwise Comparisons
Quantile = 1.97509 , Adjusted DF = 158.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.073937

Std Error
1.936699

t Ratio
0.55

Prob>|t|
0.5800

Lower 95%
-2.75122

Upper 95%
4.899096

All Pairwise Comparisons Scatterplot

3

4

5

6

7

8

3 4 5 6 7 8
Confirm_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
Quantile = 1.97509 , DF = 158.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.073937

Std Error
1.936699

t Ratio
0.55

Prob>|t|
0.5800

Lower 95%
-2.75122

Upper 95%
4.899095



FCCD_1VehicleFinal - Fit Least Squares Page 2 of 2

Response Confirm_TypeI_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

3

4

5

6

7

8

3 4 5 6 7 8
Confirm_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



FCCD_1VehicleFinal - Fit Least Squares Page 1 of 2

Response Confirm_TypeII_error
replicate
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
replicate
0
1

Estimate
6.7671160
5.5855962

Std Error
1.4294746
1.4294746

DF
158
158

Lower 95%
3.9437721
2.7622522

Upper 95%
9.5904600
8.4089401

Tukey HSD All Pairwise Comparisons
Quantile = 1.97509 , Adjusted DF = 158.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.181520

Std Error
2.021582

t Ratio
0.58

Prob>|t|
0.5597

Lower 95%
-2.81129

Upper 95%
5.174332

All Pairwise Comparisons Scatterplot

3

4

5

6

7

8

9

3 4 5 6 7 8 9
Confirm_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
Quantile = 1.97509 , DF = 158.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.181520

Std Error
2.021582

t Ratio
0.58

Prob>|t|
0.5597

Lower 95%
-2.81129

Upper 95%
5.174331



FCCD_1VehicleFinal - Fit Least Squares Page 2 of 2

Response Confirm_TypeII_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

3

4

5

6

7

8

9

3 4 5 6 7 8 9
Confirm_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



FCCD_1VehicleFinal - Fit Least Squares Page 1 of 4

Response Max
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
replicate
0
1

Estimate
4.03725e-7
4.10287e-7

Std Error
3.84262e-9
3.84262e-9

DF
158
158

Lower 95%
3.96135e-7
4.02698e-7

Upper 95%
4.11315e-7
4.17877e-7

Tukey HSD All Pairwise Comparisons
Quantile = 1.97509 , Adjusted DF = 158.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
-6.562e-9

Std Error
5.4343e-9

t Ratio
-1.21

Prob>|t|
0.2290

Lower 95%
-1.73e-8

Upper 95%
4.1707e-9

All Pairwise Comparisons Scatterplot

0.0000004

4.05e-7

4.1e-7

4.15e-7

Max

0.0000004 4.05e-7 4.1e-7 4.15e-7
Max

All Pairwise Comparisons for replicate

Student's t All Pairwise Comparisons
Quantile = 1.97509 , DF = 158.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-6.562e-9

Std Error
5.4343e-9

t Ratio
-1.21

Prob>|t|
0.2290

Lower 95%
-1.73e-8

Upper 95%
4.1707e-9



FCCD_1VehicleFinal - Fit Least Squares Page 2 of 4

Legend
Significant
Not Significant



FCCD_1VehicleFinal - Fit Least Squares Page 3 of 4

Response Max
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

0.0000004

4.05e-7

4.1e-7

4.15e-7

Max

0.0000004 4.05e-7 4.1e-7 4.15e-7
Max

All Pairwise Comparisons for replicate



FCCD_1VehicleFinal - Fit Least Squares Page 4 of 4

Legend
Significant
Not Significant



Appendix J. Multiple Comparison Test Results: Two
Vehicle Operation

177



2VehicleResults_ALL 4 - Fit Least Squares Page 1 of 6

Response Percent_Detected
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
corp level = -1

replicate
0
1

Estimate
100.02390
100.03289

Std Error
0.46344967
0.46344967

DF
477
477

Lower 95%
99.113241
99.122239

Upper 95%
100.93455
100.94355

Tukey HSD All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.008999

Std Error
0.4954485

t Ratio
-0.02

Prob>|t|
0.9855

Lower 95%
-0.982531

Upper 95%
0.9645331

All Pairwise Comparisons Scatterplot

99.4

99.6

99.8

100.0

100.2

100.4

100.6

99.4 99.6 99.8 100.0 100.2 100.4 100.6
Percent_Detected

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.008999

Std Error
0.4954485

t Ratio
-0.02

Prob>|t|
0.9855

Lower 95%
-0.982530

Upper 95%
0.9645327



2VehicleResults_ALL 4 - Fit Least Squares Page 2 of 6

Response Percent_Detected
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

99.4

99.6

99.8

100.0

100.2

100.4

100.6

99.4 99.6 99.8 100.0 100.2 100.4 100.6
Percent_Detected

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 0

replicate
0
1

Estimate
98.346264
98.355263

Std Error
0.35033502
0.35033502

DF
477
477

Lower 95%
97.657874
97.666872

Upper 95%
99.034655
99.043654

Tukey HSD All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.008999

Std Error
0.4954485

t Ratio
-0.02

Prob>|t|
0.9855

Lower 95%
-0.982531

Upper 95%
0.9645331



2VehicleResults_ALL 4 - Fit Least Squares Page 3 of 6

Response Percent_Detected
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

97.8

98.0

98.2

98.4

98.6

98.8

99.0

97.8 98.0 98.2 98.4 98.6 98.8 99.0
Percent_Detected

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.008999

Std Error
0.4954485

t Ratio
-0.02

Prob>|t|
0.9855

Lower 95%
-0.982530

Upper 95%
0.9645327



2VehicleResults_ALL 4 - Fit Least Squares Page 4 of 6

Response Percent_Detected
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

97.8

98.0

98.2

98.4

98.6

98.8

99.0

97.8 98.0 98.2 98.4 98.6 98.8 99.0
Percent_Detected

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 1

replicate
0
1

Estimate
96.668633
96.677632

Std Error
0.46344967
0.46344967

DF
477
477

Lower 95%
95.757977
95.766976

Upper 95%
97.579288
97.588287

Tukey HSD All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.008999

Std Error
0.4954485

t Ratio
-0.02

Prob>|t|
0.9855

Lower 95%
-0.982531

Upper 95%
0.9645331



2VehicleResults_ALL 4 - Fit Least Squares Page 5 of 6

Response Percent_Detected
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

96.0

96.2

96.4

96.6

96.8

97.0

97.2

96.0 96.2 96.4 96.6 96.8 97.0 97.2
Percent_Detected

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.008999

Std Error
0.4954485

t Ratio
-0.02

Prob>|t|
0.9855

Lower 95%
-0.982530

Upper 95%
0.9645327



2VehicleResults_ALL 4 - Fit Least Squares Page 6 of 6

Response Percent_Detected
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

96.0

96.2

96.4

96.6

96.8

97.0

97.2

96.0 96.2 96.4 96.6 96.8 97.0 97.2
Percent_Detected

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



2VehicleResults_ALL 4 - Fit Least Squares Page 1 of 6

Response Percent_Detected
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
corp level = -1

replicate
0
1

Estimate
100.02390
100.03289

Std Error
0.46344967
0.46344967

DF
477
477

Lower 95%
99.113241
99.122239

Upper 95%
100.93455
100.94355

Tukey HSD All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.008999

Std Error
0.4954485

t Ratio
-0.02

Prob>|t|
0.9855

Lower 95%
-0.982531

Upper 95%
0.9645331

All Pairwise Comparisons Scatterplot

99.4

99.6

99.8

100.0

100.2

100.4

100.6

99.4 99.6 99.8 100.0 100.2 100.4 100.6
Percent_Detected

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.008999

Std Error
0.4954485

t Ratio
-0.02

Prob>|t|
0.9855

Lower 95%
-0.982530

Upper 95%
0.9645327



2VehicleResults_ALL 4 - Fit Least Squares Page 2 of 6

Response Percent_Detected
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

99.4

99.6

99.8

100.0

100.2

100.4

100.6

99.4 99.6 99.8 100.0 100.2 100.4 100.6
Percent_Detected

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 0

replicate
0
1

Estimate
98.346264
98.355263

Std Error
0.35033502
0.35033502

DF
477
477

Lower 95%
97.657874
97.666872

Upper 95%
99.034655
99.043654

Tukey HSD All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.008999

Std Error
0.4954485

t Ratio
-0.02

Prob>|t|
0.9855

Lower 95%
-0.982531

Upper 95%
0.9645331



2VehicleResults_ALL 4 - Fit Least Squares Page 3 of 6

Response Percent_Detected
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

97.8

98.0

98.2

98.4

98.6

98.8

99.0

97.8 98.0 98.2 98.4 98.6 98.8 99.0
Percent_Detected

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.008999

Std Error
0.4954485

t Ratio
-0.02

Prob>|t|
0.9855

Lower 95%
-0.982530

Upper 95%
0.9645327



2VehicleResults_ALL 4 - Fit Least Squares Page 4 of 6

Response Percent_Detected
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

97.8

98.0

98.2

98.4

98.6

98.8

99.0

97.8 98.0 98.2 98.4 98.6 98.8 99.0
Percent_Detected

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 1

replicate
0
1

Estimate
96.668633
96.677632

Std Error
0.46344967
0.46344967

DF
477
477

Lower 95%
95.757977
95.766976

Upper 95%
97.579288
97.588287

Tukey HSD All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.008999

Std Error
0.4954485

t Ratio
-0.02

Prob>|t|
0.9855

Lower 95%
-0.982531

Upper 95%
0.9645331



2VehicleResults_ALL 4 - Fit Least Squares Page 5 of 6

Response Percent_Detected
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

96.0

96.2

96.4

96.6

96.8

97.0

97.2

96.0 96.2 96.4 96.6 96.8 97.0 97.2
Percent_Detected

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.008999

Std Error
0.4954485

t Ratio
-0.02

Prob>|t|
0.9855

Lower 95%
-0.982530

Upper 95%
0.9645327



2VehicleResults_ALL 4 - Fit Least Squares Page 6 of 6

Response Percent_Detected
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

96.0

96.2

96.4

96.6

96.8

97.0

97.2

96.0 96.2 96.4 96.6 96.8 97.0 97.2
Percent_Detected

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



2VehicleResults_ALL 3 - Fit Least Squares Page 1 of 6

Response Perception_Accuracy
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
corp level = -1

replicate
0
1

Estimate
77.627898
77.785175

Std Error
1.4755611
1.4755611

DF
477
477

Lower 95%
74.728495
74.885772

Upper 95%
80.527301
80.684578

Tukey HSD All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.157277

Std Error
1.577441

t Ratio
-0.10

Prob>|t|
0.9206

Lower 95%
-3.25687

Upper 95%
2.942317

All Pairwise Comparisons Scatterplot

76.0

76.5

77.0

77.5

78.0

78.5

79.0

79.5

76.0 76.5 77.0 77.5 78.0 78.5 79.0 79.5
Perception_Accuracy

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.157277

Std Error
1.577441

t Ratio
-0.10

Prob>|t|
0.9206

Lower 95%
-3.25687

Upper 95%
2.942316



2VehicleResults_ALL 3 - Fit Least Squares Page 2 of 6

Response Perception_Accuracy
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

76.0

76.5

77.0

77.5

78.0

78.5

79.0

79.5

76.0 76.5 77.0 77.5 78.0 78.5 79.0 79.5
Perception_Accuracy

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 0

replicate
0
1

Estimate
79.741957
79.899234

Std Error
1.1154193
1.1154193

DF
477
477

Lower 95%
77.550214
77.707491

Upper 95%
81.933700
82.090977

Tukey HSD All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.157277

Std Error
1.577441

t Ratio
-0.10

Prob>|t|
0.9206

Lower 95%
-3.25687

Upper 95%
2.942317



2VehicleResults_ALL 3 - Fit Least Squares Page 3 of 6

Response Perception_Accuracy
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

78.0

78.5

79.0

79.5

80.0

80.5

81.0

81.5

78.0 78.5 79.0 79.5 80.0 80.5 81.0 81.5
Perception_Accuracy

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.157277

Std Error
1.577441

t Ratio
-0.10

Prob>|t|
0.9206

Lower 95%
-3.25687

Upper 95%
2.942316



2VehicleResults_ALL 3 - Fit Least Squares Page 4 of 6

Response Perception_Accuracy
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

78.0

78.5

79.0

79.5

80.0

80.5

81.0

81.5

78.0 78.5 79.0 79.5 80.0 80.5 81.0 81.5
Perception_Accuracy

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 1

replicate
0
1

Estimate
81.856015
82.013292

Std Error
1.4755611
1.4755611

DF
477
477

Lower 95%
78.956612
79.113889

Upper 95%
84.755419
84.912696

Tukey HSD All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.157277

Std Error
1.577441

t Ratio
-0.10

Prob>|t|
0.9206

Lower 95%
-3.25687

Upper 95%
2.942317



2VehicleResults_ALL 3 - Fit Least Squares Page 5 of 6

Response Perception_Accuracy
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

80.0

80.5

81.0

81.5

82.0

82.5

83.0

83.5

84.0

80.0 80.5 81.0 81.5 82.0 82.5 83.0 83.5 84.0
Perception_Accuracy

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.157277

Std Error
1.577441

t Ratio
-0.10

Prob>|t|
0.9206

Lower 95%
-3.25687

Upper 95%
2.942316



2VehicleResults_ALL 3 - Fit Least Squares Page 6 of 6

Response Perception_Accuracy
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

80.0

80.5

81.0

81.5

82.0

82.5

83.0

83.5

84.0

80.0 80.5 81.0 81.5 82.0 82.5 83.0 83.5 84.0
Perception_Accuracy

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



2VehicleResults_ALL 3 - Fit Least Squares Page 1 of 6

Response Detect_TypeII_error
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
corp level = -1

replicate
0
1

Estimate
19.547732
19.100830

Std Error
1.4928725
1.4928725

DF
477
477

Lower 95%
16.614312
16.167411

Upper 95%
22.481151
22.034250

Tukey HSD All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.4469013

Std Error
1.595948

t Ratio
0.28

Prob>|t|
0.7796

Lower 95%
-2.68906

Upper 95%
3.582860

All Pairwise Comparisons Scatterplot

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5
Detect_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.4469013

Std Error
1.595948

t Ratio
0.28

Prob>|t|
0.7796

Lower 95%
-2.68906

Upper 95%
3.582859



2VehicleResults_ALL 3 - Fit Least Squares Page 2 of 6

Response Detect_TypeII_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5
Detect_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 0

replicate
0
1

Estimate
18.983199
18.536298

Std Error
1.1285055
1.1285055

DF
477
477

Lower 95%
16.765742
16.318841

Upper 95%
21.200656
20.753754

Tukey HSD All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.4469013

Std Error
1.595948

t Ratio
0.28

Prob>|t|
0.7796

Lower 95%
-2.68906

Upper 95%
3.582860



2VehicleResults_ALL 3 - Fit Least Squares Page 3 of 6

Response Detect_TypeII_error
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0
Detect_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.4469013

Std Error
1.595948

t Ratio
0.28

Prob>|t|
0.7796

Lower 95%
-2.68906

Upper 95%
3.582859



2VehicleResults_ALL 3 - Fit Least Squares Page 4 of 6

Response Detect_TypeII_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0
Detect_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 1

replicate
0
1

Estimate
18.418666
17.971765

Std Error
1.4928725
1.4928725

DF
477
477

Lower 95%
15.485247
15.038346

Upper 95%
21.352086
20.905184

Tukey HSD All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.4469013

Std Error
1.595948

t Ratio
0.28

Prob>|t|
0.7796

Lower 95%
-2.68906

Upper 95%
3.582860



2VehicleResults_ALL 3 - Fit Least Squares Page 5 of 6

Response Detect_TypeII_error
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5
Detect_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.4469013

Std Error
1.595948

t Ratio
0.28

Prob>|t|
0.7796

Lower 95%
-2.68906

Upper 95%
3.582859



2VehicleResults_ALL 3 - Fit Least Squares Page 6 of 6

Response Detect_TypeII_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5
Detect_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



2VehicleResults_ALL 4 - Fit Least Squares Page 1 of 6

Response Confirm_TypeII_error
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
corp level = -1

replicate
0
1

Estimate
11.042013
12.456437

Std Error
1.7508611
1.7508611

DF
477
477

Lower 95%
7.6016595
9.0160828

Upper 95%
14.482367
15.896791

Tukey HSD All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
-1.41442

Std Error
1.871749

t Ratio
-0.76

Prob>|t|
0.4502

Lower 95%
-5.09232

Upper 95%
2.263471

All Pairwise Comparisons Scatterplot

9

10

11

12

13

14

15

9 10 11 12 13 14 15
Confirm_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-1.41442

Std Error
1.871749

t Ratio
-0.76

Prob>|t|
0.4502

Lower 95%
-5.09232

Upper 95%
2.263470



2VehicleResults_ALL 4 - Fit Least Squares Page 2 of 6

Response Confirm_TypeII_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

9

10

11

12

13

14

15

9 10 11 12 13 14 15
Confirm_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 0

replicate
0
1

Estimate
13.404461
14.818885

Std Error
1.3235265
1.3235265

DF
477
477

Lower 95%
10.803798
12.218221

Upper 95%
16.005124
17.419548

Tukey HSD All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
-1.41442

Std Error
1.871749

t Ratio
-0.76

Prob>|t|
0.4502

Lower 95%
-5.09232

Upper 95%
2.263471



2VehicleResults_ALL 4 - Fit Least Squares Page 3 of 6

Response Confirm_TypeII_error
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

11

12

13

14

15

16

17

11 12 13 14 15 16 17
Confirm_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-1.41442

Std Error
1.871749

t Ratio
-0.76

Prob>|t|
0.4502

Lower 95%
-5.09232

Upper 95%
2.263470



2VehicleResults_ALL 4 - Fit Least Squares Page 4 of 6

Response Confirm_TypeII_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

11

12

13

14

15

16

17

11 12 13 14 15 16 17
Confirm_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 1

replicate
0
1

Estimate
15.766909
17.181332

Std Error
1.7508611
1.7508611

DF
477
477

Lower 95%
12.326555
13.740978

Upper 95%
19.207263
20.621686

Tukey HSD All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
-1.41442

Std Error
1.871749

t Ratio
-0.76

Prob>|t|
0.4502

Lower 95%
-5.09232

Upper 95%
2.263471



2VehicleResults_ALL 4 - Fit Least Squares Page 5 of 6

Response Confirm_TypeII_error
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

13

14

15

16

17

18

19

20

13 14 15 16 17 18 19 20
Confirm_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-1.41442

Std Error
1.871749

t Ratio
-0.76

Prob>|t|
0.4502

Lower 95%
-5.09232

Upper 95%
2.263470



2VehicleResults_ALL 4 - Fit Least Squares Page 6 of 6

Response Confirm_TypeII_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

13

14

15

16

17

18

19

20

13 14 15 16 17 18 19 20
Confirm_TypeII_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



2VehicleResults_ALL 5 - Fit Least Squares Page 1 of 6

Response Detect_TypeI_error
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
corp level = -1

replicate
0
1

Estimate
19.471654
17.742080

Std Error
1.4569024
1.4569024

DF
477
477

Lower 95%
16.608914
14.879340

Upper 95%
22.334394
20.604820

Tukey HSD All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.729574

Std Error
1.557494

t Ratio
1.11

Prob>|t|
0.2673

Lower 95%
-1.33083

Upper 95%
4.789973

All Pairwise Comparisons Scatterplot

16

17

18

19

20

21

16 17 18 19 20 21
Detect_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.729574

Std Error
1.557494

t Ratio
1.11

Prob>|t|
0.2673

Lower 95%
-1.33082

Upper 95%
4.789971



2VehicleResults_ALL 5 - Fit Least Squares Page 2 of 6

Response Detect_TypeI_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

16

17

18

19

20

21

16 17 18 19 20 21
Detect_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 0

replicate
0
1

Estimate
19.291254
17.561681

Std Error
1.1013147
1.1013147

DF
477
477

Lower 95%
17.127227
15.397653

Upper 95%
21.455282
19.725709

Tukey HSD All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.729574

Std Error
1.557494

t Ratio
1.11

Prob>|t|
0.2673

Lower 95%
-1.33083

Upper 95%
4.789973



2VehicleResults_ALL 5 - Fit Least Squares Page 3 of 6

Response Detect_TypeI_error
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

16

17

18

19

20

21

16 17 18 19 20 21
Detect_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.729574

Std Error
1.557494

t Ratio
1.11

Prob>|t|
0.2673

Lower 95%
-1.33082

Upper 95%
4.789971



2VehicleResults_ALL 5 - Fit Least Squares Page 4 of 6

Response Detect_TypeI_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

16

17

18

19

20

21

16 17 18 19 20 21
Detect_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 1

replicate
0
1

Estimate
19.110855
17.381281

Std Error
1.4569024
1.4569024

DF
477
477

Lower 95%
16.248115
14.518541

Upper 95%
21.973595
20.244021

Tukey HSD All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.729574

Std Error
1.557494

t Ratio
1.11

Prob>|t|
0.2673

Lower 95%
-1.33083

Upper 95%
4.789973



2VehicleResults_ALL 5 - Fit Least Squares Page 5 of 6

Response Detect_TypeI_error
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

16

17

18

19

20

21

16 17 18 19 20 21
Detect_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.729574

Std Error
1.557494

t Ratio
1.11

Prob>|t|
0.2673

Lower 95%
-1.33082

Upper 95%
4.789971



2VehicleResults_ALL 5 - Fit Least Squares Page 6 of 6

Response Detect_TypeI_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

16

17

18

19

20

21

16 17 18 19 20 21
Detect_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



2VehicleResults_ALL 2 - Fit Least Squares Page 1 of 6

Response Confirm_TypeI_error
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
corp level = -1

replicate
0
1

Estimate
8.9605680
7.6263514

Std Error
1.3066456
1.3066456

DF
477
477

Lower 95%
6.3930752
5.0588586

Upper 95%
11.528061
10.193844

Tukey HSD All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.334217

Std Error
1.396863

t Ratio
0.96

Prob>|t|
0.3400

Lower 95%
-1.41055

Upper 95%
4.078983

All Pairwise Comparisons Scatterplot

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5
Confirm_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.334217

Std Error
1.396863

t Ratio
0.96

Prob>|t|
0.3400

Lower 95%
-1.41055

Upper 95%
4.078982



2VehicleResults_ALL 2 - Fit Least Squares Page 2 of 6

Response Confirm_TypeI_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5
Confirm_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 0

replicate
0
1

Estimate
9.6864100
8.3521934

Std Error
0.98773121
0.98773121

DF
477
477

Lower 95%
7.7455678
6.4113512

Upper 95%
11.627252
10.293036

Tukey HSD All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.334217

Std Error
1.396863

t Ratio
0.96

Prob>|t|
0.3400

Lower 95%
-1.41055

Upper 95%
4.078983



2VehicleResults_ALL 2 - Fit Least Squares Page 3 of 6

Response Confirm_TypeI_error
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

7

8

9

10

11

7 8 9 10 11
Confirm_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.334217

Std Error
1.396863

t Ratio
0.96

Prob>|t|
0.3400

Lower 95%
-1.41055

Upper 95%
4.078982



2VehicleResults_ALL 2 - Fit Least Squares Page 4 of 6

Response Confirm_TypeI_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

7

8

9

10

11

7 8 9 10 11
Confirm_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 1

replicate
0
1

Estimate
10.412252
9.078035

Std Error
1.3066456
1.3066456

DF
477
477

Lower 95%
7.8447591
6.5105425

Upper 95%
12.979745
11.645528

Tukey HSD All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.334217

Std Error
1.396863

t Ratio
0.96

Prob>|t|
0.3400

Lower 95%
-1.41055

Upper 95%
4.078983



2VehicleResults_ALL 2 - Fit Least Squares Page 5 of 6

Response Confirm_TypeI_error
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
Confirm_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
1.334217

Std Error
1.396863

t Ratio
0.96

Prob>|t|
0.3400

Lower 95%
-1.41055

Upper 95%
4.078982



2VehicleResults_ALL 2 - Fit Least Squares Page 6 of 6

Response Confirm_TypeI_error
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
Confirm_TypeI_error

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



2VehicleResults_ALL 2 - Fit Least Squares Page 1 of 6

Response Mission_Time
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
corp level = -1

replicate
0
1

Estimate
12.029091
12.014591

Std Error
0.36760985
0.36760985

DF
477
477

Lower 95%
11.306756
11.292256

Upper 95%
12.751426
12.736926

Tukey HSD All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.0145000

Std Error
0.3929915

t Ratio
0.04

Prob>|t|
0.9706

Lower 95%
-0.757709

Upper 95%
0.7867088

All Pairwise Comparisons Scatterplot

11.6

11.7

11.8

11.9

12.0

12.1

12.2

12.3

12.4

12.5

11.6 11.7 11.8 11.9 12.0 12.1 12.2 12.3 12.4 12.5
Mission_Time

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.0145000

Std Error
0.3929915

t Ratio
0.04

Prob>|t|
0.9706

Lower 95%
-0.757708

Upper 95%
0.7867085



2VehicleResults_ALL 2 - Fit Least Squares Page 2 of 6

Response Mission_Time
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

11.6

11.7

11.8

11.9

12.0

12.1

12.2

12.3

12.4

12.5

11.6 11.7 11.8 11.9 12.0 12.1 12.2 12.3 12.4 12.5
Mission_Time

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 0

replicate
0
1

Estimate
11.026708
11.012208

Std Error
0.27788693
0.27788693

DF
477
477

Lower 95%
10.480674
10.466174

Upper 95%
11.572742
11.558242

Tukey HSD All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.0145000

Std Error
0.3929915

t Ratio
0.04

Prob>|t|
0.9706

Lower 95%
-0.757709

Upper 95%
0.7867088



2VehicleResults_ALL 2 - Fit Least Squares Page 3 of 6

Response Mission_Time
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

11.4

11.5

10.6 10.7 10.8 10.9 11.0 11.1 11.2 11.3 11.4 11.5
Mission_Time

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.0145000

Std Error
0.3929915

t Ratio
0.04

Prob>|t|
0.9706

Lower 95%
-0.757708

Upper 95%
0.7867085



2VehicleResults_ALL 2 - Fit Least Squares Page 4 of 6

Response Mission_Time
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

11.4

11.5

10.6 10.7 10.8 10.9 11.0 11.1 11.2 11.3 11.4 11.5
Mission_Time

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 1

replicate
0
1

Estimate
10.024326
10.009826

Std Error
0.36760985
0.36760985

DF
477
477

Lower 95%
9.3019906
9.2874906

Upper 95%
10.746660
10.732160

Tukey HSD All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.0145000

Std Error
0.3929915

t Ratio
0.04

Prob>|t|
0.9706

Lower 95%
-0.757709

Upper 95%
0.7867088



2VehicleResults_ALL 2 - Fit Least Squares Page 5 of 6

Response Mission_Time
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

9.6

9.7

9.8

9.9

10.0

10.1

10.2

10.3

10.4

10.5

9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5
Mission_Time

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.0145000

Std Error
0.3929915

t Ratio
0.04

Prob>|t|
0.9706

Lower 95%
-0.757708

Upper 95%
0.7867085



2VehicleResults_ALL 2 - Fit Least Squares Page 6 of 6

Response Mission_Time
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

9.6

9.7

9.8

9.9

10.0

10.1

10.2

10.3

10.4

10.5

9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5
Mission_Time

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



2VehicleResults_ALL 2 - Fit Least Squares Page 1 of 6

Response Percent Covered
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
corp level = -1

replicate
0
1

Estimate
104.03622
104.07716

Std Error
0.46686824
0.46686824

DF
477
477

Lower 95%
103.11885
103.15979

Upper 95%
104.95359
104.99453

Tukey HSD All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.040939

Std Error
0.4991031

t Ratio
-0.08

Prob>|t|
0.9347

Lower 95%
-1.02165

Upper 95%
0.9397740

All Pairwise Comparisons Scatterplot

103.4

103.6

103.8

104.0

104.2

104.4

104.6

103.4 103.6 103.8 104.0 104.2 104.4 104.6
Percent Covered

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.040939

Std Error
0.4991031

t Ratio
-0.08

Prob>|t|
0.9347

Lower 95%
-1.02165

Upper 95%
0.9397735



2VehicleResults_ALL 2 - Fit Least Squares Page 2 of 6

Response Percent Covered
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

103.4

103.6

103.8

104.0

104.2

104.4

104.6

103.4 103.6 103.8 104.0 104.2 104.4 104.6
Percent Covered

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 0

replicate
0
1

Estimate
104.05928
104.10022

Std Error
0.35291922
0.35291922

DF
477
477

Lower 95%
103.36581
103.40675

Upper 95%
104.75275
104.79369

Tukey HSD All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.040939

Std Error
0.4991031

t Ratio
-0.08

Prob>|t|
0.9347

Lower 95%
-1.02165

Upper 95%
0.9397740



2VehicleResults_ALL 2 - Fit Least Squares Page 3 of 6

Response Percent Covered
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

103.4

103.6

103.8

104.0

104.2

104.4

104.6

104.8

103.4 103.6 103.8 104.0 104.2 104.4 104.6 104.8
Percent Covered

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.040939

Std Error
0.4991031

t Ratio
-0.08

Prob>|t|
0.9347

Lower 95%
-1.02165

Upper 95%
0.9397735



2VehicleResults_ALL 2 - Fit Least Squares Page 4 of 6

Response Percent Covered
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

103.4

103.6

103.8

104.0

104.2

104.4

104.6

104.8

103.4 103.6 103.8 104.0 104.2 104.4 104.6 104.8
Percent Covered

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 1

replicate
0
1

Estimate
104.08234
104.12328

Std Error
0.46686824
0.46686824

DF
477
477

Lower 95%
103.16497
103.20591

Upper 95%
104.99971
105.04065

Tukey HSD All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.040939

Std Error
0.4991031

t Ratio
-0.08

Prob>|t|
0.9347

Lower 95%
-1.02165

Upper 95%
0.9397740



2VehicleResults_ALL 2 - Fit Least Squares Page 5 of 6

Response Percent Covered
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

103.4

103.6

103.8

104.0

104.2

104.4

104.6

104.8

103.4 103.6 103.8 104.0 104.2 104.4 104.6 104.8
Percent Covered

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-0.040939

Std Error
0.4991031

t Ratio
-0.08

Prob>|t|
0.9347

Lower 95%
-1.02165

Upper 95%
0.9397735



2VehicleResults_ALL 2 - Fit Least Squares Page 6 of 6

Response Percent Covered
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

103.4

103.6

103.8

104.0

104.2

104.4

104.6

104.8

103.4 103.6 103.8 104.0 104.2 104.4 104.6 104.8
Percent Covered

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



2VehicleResults_ALL 2 - Fit Least Squares Page 1 of 6

Response Percent_Correct_Confirmations
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
corp level = -1

replicate
0
1

Estimate
43.582722
43.247257

Std Error
2.7641026
2.7641026

DF
477
477

Lower 95%
38.151399
37.815934

Upper 95%
49.014044
48.678579

Tukey HSD All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.3354649

Std Error
2.954950

t Ratio
0.11

Prob>|t|
0.9097

Lower 95%
-5.47087

Upper 95%
6.141796

All Pairwise Comparisons Scatterplot

40

41

42

43

44

45

46

47

40 41 42 43 44 45 46 47
Percent_Correct_Confirmations

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.3354649

Std Error
2.954950

t Ratio
0.11

Prob>|t|
0.9097

Lower 95%
-5.47086

Upper 95%
6.141793



2VehicleResults_ALL 2 - Fit Least Squares Page 2 of 6

Response Percent_Correct_Confirmations
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

40

41

42

43

44

45

46

47

40 41 42 43 44 45 46 47
Percent_Correct_Confirmations

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 0

replicate
0
1

Estimate
43.230766
42.895301

Std Error
2.0894651
2.0894651

DF
477
477

Lower 95%
39.125072
38.789607

Upper 95%
47.336460
47.000995

Tukey HSD All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.3354649

Std Error
2.954950

t Ratio
0.11

Prob>|t|
0.9097

Lower 95%
-5.47087

Upper 95%
6.141796



2VehicleResults_ALL 2 - Fit Least Squares Page 3 of 6

Response Percent_Correct_Confirmations
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

39

40

41

42

43

44

45

46

47

39 40 41 42 43 44 45 46 47
Percent_Correct_Confirmations

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.3354649

Std Error
2.954950

t Ratio
0.11

Prob>|t|
0.9097

Lower 95%
-5.47086

Upper 95%
6.141793



2VehicleResults_ALL 2 - Fit Least Squares Page 4 of 6

Response Percent_Correct_Confirmations
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

39

40

41

42

43

44

45

46

47

39 40 41 42 43 44 45 46 47
Percent_Correct_Confirmations

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 1

replicate
0
1

Estimate
42.878810
42.543345

Std Error
2.7641026
2.7641026

DF
477
477

Lower 95%
37.447488
37.112023

Upper 95%
48.310133
47.974668

Tukey HSD All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.3354649

Std Error
2.954950

t Ratio
0.11

Prob>|t|
0.9097

Lower 95%
-5.47087

Upper 95%
6.141796



2VehicleResults_ALL 2 - Fit Least Squares Page 5 of 6

Response Percent_Correct_Confirmations
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

39

40

41

42

43

44

45

46

39 40 41 42 43 44 45 46
Percent_Correct_Confirmations

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.3354649

Std Error
2.954950

t Ratio
0.11

Prob>|t|
0.9097

Lower 95%
-5.47086

Upper 95%
6.141793



2VehicleResults_ALL 2 - Fit Least Squares Page 6 of 6

Response Percent_Correct_Confirmations
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

39

40

41

42

43

44

45

46

39 40 41 42 43 44 45 46
Percent_Correct_Confirmations

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



2VehicleResults_ALL 2 - Fit Least Squares Page 1 of 6

Response Percent_Confirmed
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
corp level = -1

replicate
0
1

Estimate
24.366177
23.813562

Std Error
1.7041291
1.7041291

DF
477
477

Lower 95%
21.017649
20.465034

Upper 95%
27.714704
27.162090

Tukey HSD All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.5526144

Std Error
1.821791

t Ratio
0.30

Prob>|t|
0.7618

Lower 95%
-3.02711

Upper 95%
4.132343

All Pairwise Comparisons Scatterplot

22

23

24

25

26

22 23 24 25 26
Percent_Confirmed

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = -1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.5526144

Std Error
1.821791

t Ratio
0.30

Prob>|t|
0.7618

Lower 95%
-3.02711

Upper 95%
4.132341



2VehicleResults_ALL 2 - Fit Least Squares Page 2 of 6

Response Percent_Confirmed
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

22

23

24

25

26

22 23 24 25 26
Percent_Confirmed

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 0

replicate
0
1

Estimate
23.349420
22.796805

Std Error
1.2882005
1.2882005

DF
477
477

Lower 95%
20.818171
20.265556

Upper 95%
25.880669
25.328055

Tukey HSD All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.5526144

Std Error
1.821791

t Ratio
0.30

Prob>|t|
0.7618

Lower 95%
-3.02711

Upper 95%
4.132343



2VehicleResults_ALL 2 - Fit Least Squares Page 3 of 6

Response Percent_Confirmed
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

21

22

23

24

25

21 22 23 24 25
Percent_Confirmed

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 0
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.5526144

Std Error
1.821791

t Ratio
0.30

Prob>|t|
0.7618

Lower 95%
-3.02711

Upper 95%
4.132341



2VehicleResults_ALL 2 - Fit Least Squares Page 4 of 6

Response Percent_Confirmed
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

21

22

23

24

25

21 22 23 24 25
Percent_Confirmed

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 1

replicate
0
1

Estimate
22.332663
21.780049

Std Error
1.7041291
1.7041291

DF
477
477

Lower 95%
18.984135
18.431521

Upper 95%
25.681191
25.128577

Tukey HSD All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , Adjusted DF = 477.0 , Adjustment = Tukey-Kramer

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.5526144

Std Error
1.821791

t Ratio
0.30

Prob>|t|
0.7618

Lower 95%
-3.02711

Upper 95%
4.132343



2VehicleResults_ALL 2 - Fit Least Squares Page 5 of 6

Response Percent_Confirmed
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

20

21

22

23

24

20 21 22 23 24
Percent_Confirmed

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant

Student's t All Pairwise Comparisons
corp level = 1
Quantile = 1.96495 , DF = 477.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
0.5526144

Std Error
1.821791

t Ratio
0.30

Prob>|t|
0.7618

Lower 95%
-3.02711

Upper 95%
4.132341



2VehicleResults_ALL 2 - Fit Least Squares Page 6 of 6

Response Percent_Confirmed
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

20

21

22

23

24

20 21 22 23 24
Percent_Confirmed

All Pairwise Comparisons for replicate

Legend
Significant
Not Significant



ResponsivenessMC Page 1 of 12

Response Responsiveness
Multiple Comparisons for User-Defined Estimates

User-Defined Estimates
corp level = -1

replicate
0
1

Estimate
3.23237e-6
3.45762e-6

Std Error
1.49166e-6
1.51981e-6

DF
462
462

Lower 95%
3.01082e-7
4.71019e-7

Upper 95%
6.16365e-6
6.44421e-6

Tukey HSD All Pairwise Comparisons
corp level = -1
Quantile = 1.96511 , Adjusted DF = 462.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
-2.252e-7

Std Error
1.621e-6

t Ratio
-0.14

Prob>|t|
0.8895

Lower 95%
-3.411e-6

Upper 95%
2.9602e-6

All Pairwise Comparisons Scatterplot

0.0000015

0.000002

0.0000025

0.000003

0.0000035

0.000004

0.0000045

0.000005

0.0000055

0.0000015 0.0000025 0.0000035 0.0000045 0.0000055
Responsiveness

All Pairwise Comparisons for replicate

Student's t All Pairwise Comparisons
corp level = -1
Quantile = 1.96511 , DF = 462.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-2.252e-7

Std Error
1.621e-6

t Ratio
-0.14

Prob>|t|
0.8895

Lower 95%
-3.411e-6

Upper 95%
2.9602e-6



ResponsivenessMC Page 2 of 12

Legend
Significant
Not Significant



ResponsivenessMC Page 3 of 12

Response Responsiveness
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

0.0000015

0.000002

0.0000025

0.000003

0.0000035

0.000004

0.0000045

0.000005

0.0000055

0.0000015 0.0000025 0.0000035 0.0000045 0.0000055
Responsiveness

All Pairwise Comparisons for replicate

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 0

replicate
0
1

Estimate
3.41187e-6
3.63712e-6

Std Error
1.12759e-6
1.16457e-6

DF
462
462

Lower 95%
1.19603e-6
1.34861e-6

Upper 95%
5.62772e-6
5.92564e-6

Tukey HSD All Pairwise Comparisons
corp level = 0
Quantile = 1.96511 , Adjusted DF = 462.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
-2.252e-7

Std Error
1.621e-6

t Ratio
-0.14

Prob>|t|
0.8895

Lower 95%
-3.411e-6

Upper 95%
2.9602e-6



ResponsivenessMC Page 4 of 12

Legend
Significant
Not Significant



ResponsivenessMC Page 5 of 12

Response Responsiveness
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

0.0000015

0.000002

0.0000025

0.000003

0.0000035

0.000004

0.0000045

0.000005

0.0000055

0.0000015 0.0000025 0.0000035 0.0000045 0.0000055
Responsiveness

All Pairwise Comparisons for replicate

Student's t All Pairwise Comparisons
corp level = 0
Quantile = 1.96511 , DF = 462.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-2.252e-7

Std Error
1.621e-6

t Ratio
-0.14

Prob>|t|
0.8895

Lower 95%
-3.411e-6

Upper 95%
2.9602e-6



ResponsivenessMC Page 6 of 12

Legend
Significant
Not Significant



ResponsivenessMC Page 7 of 12

Response Responsiveness
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

0.0000015

0.000002

0.0000025

0.000003

0.0000035

0.000004

0.0000045

0.000005

0.0000055

0.0000015 0.0000025 0.0000035 0.0000045 0.0000055
Responsiveness

All Pairwise Comparisons for replicate

Multiple Comparisons for User-Defined Estimates
User-Defined Estimates
corp level = 1

replicate
0
1

Estimate
3.59138e-6
3.81663e-6

Std Error
1.49166e-6
1.51981e-6

DF
462
462

Lower 95%
6.60101e-7
8.30038e-7

Upper 95%
6.52267e-6
6.80323e-6

Tukey HSD All Pairwise Comparisons
corp level = 1
Quantile = 1.96511 , Adjusted DF = 462.0 , Adjustment = Tukey

All Pairwise Differences
replicate
0

-replicate
1

Difference
-2.252e-7

Std Error
1.621e-6

t Ratio
-0.14

Prob>|t|
0.8895

Lower 95%
-3.411e-6

Upper 95%
2.9602e-6



ResponsivenessMC Page 8 of 12

Legend
Significant
Not Significant



ResponsivenessMC Page 9 of 12

Response Responsiveness
Multiple Comparisons for User-Defined Estimates

Tukey HSD All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

0.0000015

0.000002

0.0000025

0.000003

0.0000035

0.000004

0.0000045

0.000005

0.0000055

0.0000015 0.0000025 0.0000035 0.0000045 0.0000055
Responsiveness

All Pairwise Comparisons for replicate

Student's t All Pairwise Comparisons
corp level = 1
Quantile = 1.96511 , DF = 462.0

All Pairwise Differences
replicate
0

-replicate
1

Difference
-2.252e-7

Std Error
1.621e-6

t Ratio
-0.14

Prob>|t|
0.8895

Lower 95%
-3.411e-6

Upper 95%
2.9602e-6



ResponsivenessMC Page 10 of 12

Legend
Significant
Not Significant



ResponsivenessMC Page 11 of 12

Response Responsiveness
Multiple Comparisons for User-Defined Estimates

Student's t All Pairwise Comparisons
All Pairwise Comparisons Scatterplot

0.0000015

0.000002

0.0000025

0.000003

0.0000035

0.000004

0.0000045

0.000005

0.0000055

0.0000015 0.0000025 0.0000035 0.0000045 0.0000055
Responsiveness

All Pairwise Comparisons for replicate



ResponsivenessMC Page 12 of 12

Legend
Significant
Not Significant
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FCCD_1VehicleFinal 4 - Fit Least Squares Page 1 of 2

Response Detect_TypeII_error
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
61
83

144

Sum of
Squares

11115.262
16280.610
27395.872

Mean Square
182.217
196.152

F Ratio
0.9290

Prob > F
0.6160

Max RSq
0.7097

Studentized Residuals

-8
-6
-4
-2
0
2
4
6
8

0 20 40 60 80 100 120 140 160 180
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Effect Tests

Source
Search_Velocity
detect_real
detect_false
search_area
N_real
N_false
Search_Velocity*Search_Velocity
Search_Velocity*detect_real
Search_Velocity*detect_false
detect_real*detect_false
detect_real*N_real
Search_Velocity*N_false
detect_false*N_false
N_real*N_false
N_false*N_false

Nparm
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

DF
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Sum of
Squares
380.428

1577.619
273.948
20.565

12741.613
8739.290
366.687
185.681
314.052
556.064

2872.939
181.826
282.123
185.523
220.610

F Ratio
1.9996
8.2924
1.4399
0.1081

66.9733
45.9360
1.9274
0.9760
1.6507
2.9228

15.1009
0.9557
1.4829
0.9752
1.1596

Prob > F
0.1595
0.0046*
0.2321
0.7428
<.0001*
<.0001*
0.1672
0.3248
0.2009
0.0895
0.0002*
0.3299
0.2253
0.3251
0.2834

Prediction Profiler

0
20
40
60
80

100
19.98721
[14.6373,
25.3371]

7.5
Search_Velocity

0.775
detect_real

0.775
detect_false

575
search_area

10
N_real



TypeIIConfirmRS Page 1 of 2

Response Confirm_TypeII_error
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
60
83

143

Sum of
Squares
5253.396
9396.469

14649.864

Mean Square
87.557

113.210

F Ratio
0.7734

Prob > F
0.8524

Max RSq
0.6370

Studentized Residuals

-10

-5

0

5

10

0 20 40 60 80 100 120 140 160 180
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
search_area
N_real
N_false
(Search_Velocity-7.5)*(Search_Velocity-7.5)
(detect_false-0.775)*(detect_false-0.775)
(detect_real-0.775)*(search_area-575)
(search_area-575)*(search_area-575)
(detect_real-0.775)*(N_real-10)
(search_area-575)*(N_real-10)
(N_real-10)*(N_real-10)
(detect_real-0.775)*(N_false-10)
(search_area-575)*(N_false-10)
(N_real-10)*(N_false-10)

Estimate
46.301289
0.172081
-19.0181
-4.87438

-0.031553
0.381193

-0.157433
-1.769334
-293.1883
0.1574549
0.0010761

-1.45936
-0.002979
-0.119153
0.8239796
0.0012715
-0.013985

Std Error
9.439308
0.352389
7.047771
7.047771
0.007048
0.097886
0.097886
0.707035
282.814

0.057256
0.000283
0.795227
0.000795
0.054555
0.795227
0.000795
0.011045

t Ratio
4.91
0.49

-2.70
-0.69
-4.48
3.89

-1.61
-2.50
-1.04
2.75
3.80

-1.84
-3.75
-2.18
1.04
1.60

-1.27

Prob>|t|
<.0001*
0.6261
0.0078*
0.4903
<.0001*
0.0002*
0.1100
0.0135*
0.3016
0.0067*
0.0002*
0.0686
0.0003*
0.0306*
0.3019
0.1121
0.2075

Prediction Profiler

0
20
40
60
80

100
13.16991
[9.16286,
17.177]

7.5
Search_Velocity

0.775
detect_real

0.775
detect_false

575
search_area

10
N_real
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Response Detect_TypeI_error
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
33

117
150

Sum of
Squares
3301.803

18306.761
21608.564

Mean Square
100.055
156.468

F Ratio
0.6395

Prob > F
0.9303

Max RSq
0.5732

Studentized Residuals

-4
-3
-2
-1
0
1
2
3
4

0 20 40 60 80 100 120 140 160 180
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
detect_real
detect_false
search_area
N_real
N_false
(detect_false-0.775)*(N_real-10)
(detect_real-0.775)*(N_false-10)
(detect_false-0.775)*(N_false-10)
(search_area-575)*(N_false-10)

Estimate
40.686212
9.2738232
-41.28353
0.0014062
-0.801424
0.9460895
1.9758132
-1.004174
-1.223314
0.0008155

Std Error
10.51619
8.357384
8.357384
0.008357
0.116075
0.116075
0.942996
0.942996
0.942996
0.000943

t Ratio
3.87
1.11

-4.94
0.17

-6.90
8.15
2.10

-1.06
-1.30
0.86

Prob>|t|
0.0002*
0.2689
<.0001*
0.8666
<.0001*
<.0001*
0.0378*
0.2886
0.1965
0.3885

Prediction Profiler

0
10
20
30
40
50
60
70

18.1339
[16.259,
20.0088]

0.775
detect_real

0.775
detect_false

575
search_area

10
N_real

10
N_false
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Response Confirm_TypeI_error
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
60
83

143

Sum of
Squares
5158.644
7762.211

12920.855

Mean Square
85.9774
93.5206

F Ratio
0.9193

Prob > F
0.6316

Max RSq
0.6732

Studentized Residuals

-15

-10

-5

0

5

10

15

0 20 40 60 80 100 120 140 160 180
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
search_area
N_real
N_false
(Search_Velocity-7.5)*(detect_real-0.775)
(Search_Velocity-7.5)*(search_area-575)
(detect_real-0.775)*(search_area-575)
(detect_false-0.775)*(search_area-575)
(Search_Velocity-7.5)*(N_real-10)
(detect_real-0.775)*(N_real-10)
(search_area-575)*(N_real-10)
(detect_false-0.775)*(N_false-10)
(search_area-575)*(N_false-10)
(N_real-10)*(N_false-10)

Estimate
53.630396

-0.65598
-6.912147
-22.26512
-0.037838
-0.26853

0.3589383
3.3725112
0.0051846
0.0726818
0.1761873
0.0790678
0.7518675
0.0020418
-0.919268
-0.002754
-0.010997

Std Error
8.690516
0.330941
6.618821
6.618821
0.006619
0.091928
0.091928
2.688578
0.002689
0.053772
0.053772
0.037341
0.746827
0.000747
0.746827
0.000747
0.010373

t Ratio
6.17

-1.98
-1.04
-3.36
-5.72
-2.92
3.90
1.25
1.93
1.35
3.28
2.12
1.01
2.73

-1.23
-3.69
-1.06

Prob>|t|
<.0001*
0.0494*
0.2981
0.0010*
<.0001*
0.0041*
0.0001*
0.2117
0.0558
0.1786
0.0013*
0.0360*
0.3158
0.0070*
0.2204
0.0003*
0.2909

Prediction Profiler

0
20
40
60
80

100
5.245233
[3.75979,
6.73068]

7.5
Search_Velocity

0.775
detect_real

0.775
detect_false

575
search_area

10
N_real
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Response Percent_Detected
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
59
83

142

Sum of
Squares

3016.7795
3734.4529
6751.2324

Mean Square
51.1319
44.9934

F Ratio
1.1364

Prob > F
0.2930

Max RSq
0.7856

Studentized Residuals

-10

-5

0

5

10

0 20 40 60 80 100 120 140 160 180
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
search_area
N_real
N_false
(detect_real-0.775)*(detect_real-0.775)
(Search_Velocity-7.5)*(search_area-575)
(detect_real-0.775)*(search_area-575)
(search_area-575)*(search_area-575)
(Search_Velocity-7.5)*(N_real-10)
(detect_real-0.775)*(N_real-10)
(search_area-575)*(N_real-10)
(Search_Velocity-7.5)*(N_false-10)
(detect_real-0.775)*(N_false-10)
(search_area-575)*(N_false-10)
(N_real-10)*(N_false-10)

Estimate
141.949

-1.216906
-3.556619
3.3492823

-0.0511
-0.124934
-0.158604
-278.6331
-0.009408
-0.044474
-0.000199
-0.042215
0.5299708
-0.000855
-0.049159
1.2244152
-0.001411
0.0165489

Std Error
6.424476
0.24006

4.801206
4.801206
0.004801
0.066683
0.066683
163.2477
0.00195

0.039005
0.000163
0.027087
0.541739
0.000542
0.027087
0.541739
0.000542
0.007524

t Ratio
22.10
-5.07
-0.74
0.70

-10.64
-1.87
-2.38
-1.71
-4.82
-1.14
-1.22
-1.56
0.98

-1.58
-1.81
2.26

-2.60
2.20

Prob>|t|
<.0001*
<.0001*
0.4601
0.4866
<.0001*
0.0631
0.0187*
0.0900
<.0001*
0.2561
0.2257
0.1213
0.3296
0.1166
0.0717
0.0253*
0.0102*
0.0295*

Prediction Profiler

50
60
70
80
90

100
100.4434
[97.7686,
103.118]

7.5
Search_Velocity

0.775
detect_real

0.775
detect_false

575
search_area

10
N_real



FCCD_1VehicleFinal 3 - Fit Least Squares Page 1 of 1

Response Percent_Correct_Confirmations
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
29

117
146

Sum of
Squares
9936.189

39118.719
49054.908

Mean Square
342.627
334.348

F Ratio
1.0248

Prob > F
0.4434

Max RSq
0.7805

Studentized Residuals

-6

-4

-2

0

2

4

6

0 20 40 60 80 100 120 140 160 180
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
detect_real
detect_false
search_area
N_real
N_false
(detect_real-0.775)*(detect_real-0.775)
(detect_real-0.775)*(search_area-575)
(detect_false-0.775)*(search_area-575)
(search_area-575)*(search_area-575)
(search_area-575)*(N_real-10)
(N_real-10)*(N_real-10)
(search_area-575)*(N_false-10)
(N_real-10)*(N_false-10)

Estimate
113.56363
26.140778
24.989936
-0.178795
1.0346708

-0.99826
-528.2151
-0.207884
-0.211849
-0.000611
-0.00809

-0.118907
0.0073796
0.032161

Std Error
16.4051

12.76344
12.76344
0.012763

0.17727
0.17727

486.6769
0.103691
0.103691
0.000487

0.00144
0.093881

0.00144
0.020002

t Ratio
6.92
2.05
1.96

-14.01
5.84

-5.63
-1.09
-2.00
-2.04
-1.25
-5.62
-1.27
5.12
1.61

Prob>|t|
<.0001*
0.0423*
0.0521
<.0001*
<.0001*
<.0001*
0.2796
0.0468*
0.0428*
0.2117
<.0001*
0.2073
<.0001*
0.1100

Prediction Profiler

0
20
40
60
80

100
50.74715
[43.5418,
57.9525]

0.775
detect_real

0.775
detect_false

575
search_area

10
N_real

10
N_false



FCCD_1VehicleFinal 4 - Fit Least Squares Page 1 of 1

Response Percent_Correct_Detected
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
16

135
151

Sum of
Squares
3775.208

46802.184
50577.392

Mean Square
235.951
346.683

F Ratio
0.6806

Prob > F
0.8091

Max RSq
0.2078

Studentized Residuals

-4

-2

0

2

4

0 20 40 60 80 100 120 140 160 180
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
N_real
(Search_Velocity-7.5)*(detect_real-0.775)
(detect_real-0.775)*(detect_false-0.775)
(detect_real-0.775)*(N_real-10)
(detect_false-0.775)*(N_real-10)

Estimate
23.059503
0.7630558
18.383115
29.758624
-0.290224
5.1230634
-116.8649
4.410524

-2.067798

Std Error
14.93809
0.637181
12.74362
12.74362
0.176995
5.176482
103.5296
1.437912
1.437912

t Ratio
1.54
1.20
1.44
2.34

-1.64
0.99

-1.13
3.07

-1.44

Prob>|t|
0.1248
0.2330
0.1512
0.0209*
0.1031
0.3239
0.2608
0.0026*
0.1525

Prediction Profiler

0
20
40
60
80

100
63.19003
[60.3313,
66.0488]

7.5
Search_Velocity

0.775
detect_real

0.775
detect_false

10
N_real



FCCD_1VehicleFinal 2 - Fit Least Squares Page 1 of 3

Response Percent_Confirmed
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
56
83

139

Sum of
Squares
6239.515
6622.381

12861.895

Mean Square
111.420
79.788

F Ratio
1.3965

Prob > F
0.0826

Max RSq
0.8857

Studentized Residuals

-4

-2

0

2

4

0 20 40 60 80 100 120 140 160 180
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
search_area
N_real
N_false
(Search_Velocity-7.5)*(Search_Velocity-7.5)
(Search_Velocity-7.5)*(detect_real-0.775)
(detect_real-0.775)*(detect_false-0.775)
(detect_false-0.775)*(detect_false-0.775)
(detect_real-0.775)*(search_area-575)
(search_area-575)*(search_area-575)
(detect_real-0.775)*(N_real-10)
(detect_false-0.775)*(N_real-10)
(search_area-575)*(N_real-10)
(N_real-10)*(N_real-10)
(detect_real-0.775)*(N_false-10)
(search_area-575)*(N_false-10)
(N_real-10)*(N_false-10)
(N_false-10)*(N_false-10)

Estimate
59.217343
-0.004785
26.842105
4.1307815

-0.1026
0.5344153

-0.71164
-0.877147
5.3026316
-55.78947
369.1412

-0.218947
-0.000751
1.5131579
-1.089181
-0.004152
-0.057329
-1.403509
0.0054313
0.015229

0.0819957

Std Error
8.972664
0.334902
6.698046
6.698046
0.006698
0.093028
0.093028
0.691754
2.720759
54.41518
276.7015
0.054415
0.000277
0.755766
0.755766
0.000756
0.053376
0.755766
0.000756
0.010497
0.053376

t Ratio
6.60

-0.01
4.01
0.62

-15.32
5.74

-7.65
-1.27
1.95

-1.03
1.33

-4.02
-2.71
2.00

-1.44
-5.49
-1.07
-1.86
7.19
1.45
1.54

Prob>|t|
<.0001*
0.9886
<.0001*
0.5384
<.0001*
<.0001*
<.0001*
0.2069
0.0533
0.3070
0.1844
<.0001*
0.0075*
0.0472*
0.1518
<.0001*
0.2847
0.0654
<.0001*
0.1491
0.1268
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Response Percent_Confirmed
Prediction Profiler

0
20
40
60
80

22.41838
[18.5931,
26.2437]

7.5
Search_Velocity

0.775
detect_real

0.775
detect_false

575
search_area

10
N_real



FCCD_1VehicleFinal 2 - Fit Least Squares Page 1 of 2

Response Mission Time
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
58
83

141

Sum of
Squares

21.612942
30.049720
51.662662

Mean Square
0.372637
0.362045

F Ratio
1.0293

Prob > F
0.4470

Max RSq
0.9922

Studentized Residuals

-4

-2

0

2

4

0 20 40 60 80 100 120 140 160 180
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
search_area
N_real
N_false
(Search_Velocity-7.5)*(Search_Velocity-7.5)
(detect_real-0.775)*(detect_real-0.775)
(Search_Velocity-7.5)*(search_area-575)
(detect_false-0.775)*(search_area-575)
(search_area-575)*(search_area-575)
(Search_Velocity-7.5)*(N_real-10)
(detect_real-0.775)*(N_real-10)
(search_area-575)*(N_real-10)
(Search_Velocity-7.5)*(N_false-10)
(detect_false-0.775)*(N_false-10)
(search_area-575)*(N_false-10)
(N_real-10)*(N_false-10)

Estimate
15.951629
-1.776593
0.1158081
-0.921364
0.0191813
0.0613377
0.0355387
0.0800006
-28.10643
-0.004678
0.0071704
-0.000112
-0.007466
0.0716956
-0.000478
-0.004754
-0.069045
-0.000267
-0.000991

Std Error
0.564329
0.021074
0.421485
0.421485
0.000421
0.005854
0.005854
0.040179
16.07144
0.000171
0.003424
0.000016
0.002378
0.047558
4.756e-5
0.002378
0.047558
4.756e-5
0.000661

t Ratio
28.27

-84.30
0.27

-2.19
45.51
10.48

6.07
1.99

-1.75
-27.32

2.09
-6.94
-3.14
1.51

-10.04
-2.00
-1.45
-5.62
-1.50

Prob>|t|
<.0001*
<.0001*
0.7839
0.0305*
<.0001*
<.0001*
<.0001*
0.0484*
0.0825
<.0001*
0.0380*
<.0001*
0.0021*
0.1339
<.0001*
0.0475*
0.1488
<.0001*
0.1357

Prediction Profiler

4

10

16

22

14.00089
[13.7629,
14.2389]

7.5
Search_Velocity

0.775
detect_real

0.775
detect_false

575
search_area

10
N_real

1
N_f
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RSM_noarea Page 1 of 4

Least Squares Fit
Effect Summary

Source
Search_Velocity
corp level*corp level
corp level
Search_Velocity*corp level
N_real
N_real*corp level
Search_Velocity*N_real
N_false
N_false*corp level
Search_Velocity*N_false
N_real*N_false
detect_real*detect_false
detect_real*N_false
detect_false*N_real
N_real*N_real
detect_false
detect_false*corp level
Search_Velocity*Search_Velocity
detect_real
Search_Velocity*detect_real
Search_Velocity*detect_false
detect_real*corp level

LogWorth
82.112
19.967

9.802
5.355
5.001
4.345
2.265
2.189
1.253
1.118
0.984
0.357
0.348
0.346
0.331
0.266
0.259
0.244
0.229
0.198
0.193
0.178

PValue
0.00000
0.00000
0.00000
0.00000
0.00001
0.00005
0.00543
0.00647
0.05585
0.07626
0.10365
0.43996
0.44857
0.45089
0.46641
0.54230
0.55063
0.57034
0.58959
0.63384
0.64143
0.66448

^

^

^

Response Mission_Time
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
106
351
457

Sum of
Squares
297.0866

3130.7513
3427.8379

Mean Square
2.80270
8.91952

F Ratio
0.3142

Prob > F
1.0000

Max RSq
0.6583

Studentized Residuals

-4
-3
-2
-1
0
1
2
3
4

0 50 100 150 200 250 300 350 400 450 500
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
N_real

Estimate
18.63482

-1.319778
0.5943434
-0.496818
0.0683207

Std Error
1.342004
0.055051
1.101018
1.101018
0.015292

t Ratio
13.89

-23.97
0.54

-0.45
4.47

Prob>|t|
<.0001*
<.0001*
0.5896
0.6520
<.0001*



RSM_noarea Page 2 of 4

Least Squares Fit
Response Mission_Time

Parameter Estimates
Term
N_false
corp level
(Search_Velocity-7.5)*(Search_Velocity-7.5)
(Search_Velocity-7.5)*(detect_real-0.775)
(Search_Velocity-7.5)*(detect_false-0.775)
(detect_real-0.775)*(detect_false-0.775)
(Search_Velocity-7.5)*(N_real-10)
(detect_false-0.775)*(N_real-10)
(N_real-10)*(N_real-10)
(Search_Velocity-7.5)*(N_false-10)
(detect_real-0.775)*(N_false-10)
(N_real-10)*(N_false-10)
(Search_Velocity-7.5)*corp level
(detect_real-0.775)*corp level
(detect_false-0.775)*corp level
(N_real-10)*corp level
(N_false-10)*corp level
corp level*corp level

Estimate
0.0418287
-1.002383
-0.053156
-0.111167
0.2084167
2.8291667
-0.017352
-0.008669
-0.005264
-0.011037
-0.007812
-0.002814
0.0188371
-0.129773
-0.510303
0.0280871
0.0237069
2.5976328

Std Error
0.015292
0.153101
0.09359

0.447236
0.447236
8.944713
0.006212
0.124232
0.007221
0.006212
0.124232
0.001725
0.067423
1.348466
1.348466
0.018729
0.018729
0.265178

t Ratio
2.74

-6.55
-0.57
-0.25
0.47
0.32

-2.79
-0.07
-0.73
-1.78
-0.06
-1.63
0.28

-0.10
-0.38
1.50
1.27
9.80

Prob>|t|
0.0065*
<.0001*
0.5703
0.8038
0.6414
0.7519
0.0054*
0.9444
0.4664
0.0763
0.9499
0.1036
0.7801
0.9234
0.7053
0.1344
0.2062
<.0001*

Response Percent Covered
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
106
351
457

Sum of
Squares
1006.368

11261.965
12268.332

Mean Square
9.4940

32.0854

F Ratio
0.2959

Prob > F
1.0000

Max RSq
0.2102

Studentized Residuals

-8
-6
-4
-2
0
2
4
6
8

0 50 100 150 200 250 300 350 400 450 500
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
N_real
N_false
corp level
(Search_Velocity-7.5)*(Search_Velocity-7.5)

Estimate
108.09409
-0.282361
-0.386792
1.2701834
-0.080376
-0.053136
0.0230602
-0.015661

Std Error
2.538846
0.104147
2.082941
2.082941
0.02893
0.02893

0.289641
0.177057

t Ratio
42.58
-2.71
-0.19
0.61

-2.78
-1.84
0.08

-0.09

Prob>|t|
<.0001*
0.0070*
0.8528
0.5423
0.0057*
0.0669
0.9366
0.9296
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Least Squares Fit
Response Percent Covered

Parameter Estimates
Term
(Search_Velocity-7.5)*(detect_real-0.775)
(Search_Velocity-7.5)*(detect_false-0.775)
(detect_real-0.775)*(detect_false-0.775)
(Search_Velocity-7.5)*(N_real-10)
(detect_false-0.775)*(N_real-10)
(N_real-10)*(N_real-10)
(Search_Velocity-7.5)*(N_false-10)
(detect_real-0.775)*(N_false-10)
(N_real-10)*(N_false-10)
(Search_Velocity-7.5)*corp level
(detect_real-0.775)*corp level
(detect_false-0.775)*corp level
(N_real-10)*corp level
(N_false-10)*corp level
corp level*corp level

Estimate
0.4032906
-0.381189
-13.07944
-0.01107

-0.177346
-0.004143
-0.014542
-0.178255
0.0021022
-0.592748
-1.107204
1.5236683
-0.145938
-0.067925
-1.332831

Std Error
0.846095
0.846095
16.9219

0.011751
0.235026
0.013662
0.011751
0.235026
0.003264
0.127554
2.551072
2.551072
0.035432
0.035432
0.501673

t Ratio
0.48

-0.45
-0.77
-0.94
-0.75
-0.30
-1.24
-0.76
0.64

-4.65
-0.43
0.60

-4.12
-1.92
-2.66

Prob>|t|
0.6338
0.6525
0.4400
0.3467
0.4509
0.7619
0.2165
0.4486
0.5199
<.0001*
0.6645
0.5506
<.0001*
0.0559
0.0082*

Prediction Profiler

8

14

20
9.913563
[9.21177,
10.6154]

75

90

105
105.3259
[103.998,
106.654]

7.5
Search_Velocity

0.775
detect_real

0.775
detect_false

10
N_real

10
N_false corp level
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Least Squares Fit
Effect Summary

Source
Search_Velocity
N_false
search_area
corp level*corp level
Search_Velocity*search_area
N_real
corp level
search_area*corp level
N_real*N_false
detect_false
detect_real
detect_false*N_false
Search_Velocity*N_real
Search_Velocity*corp level
search_area*N_real
N_real*corp level
N_false*corp level
Search_Velocity*N_false
detect_real*N_false
detect_real*N_real
search_area*N_false
search_area*search_area
detect_false*N_real
N_real*N_real
N_false*N_false
detect_false*detect_false
detect_false*search_area
detect_false*corp level
detect_real*detect_false
detect_real*detect_real
Search_Velocity*detect_false
Search_Velocity*Search_Velocity
Search_Velocity*detect_real
detect_real*corp level
detect_real*search_area

LogWorth
212.456
193.339
155.210
82.585
65.186
53.814
45.994
34.464
21.617
20.730
17.277
12.697
10.780
10.219

8.560
8.252
5.702
4.862
3.433
2.927
2.554
2.097
1.799
1.442
0.862
0.792
0.766
0.724
0.694
0.665
0.603
0.484
0.408
0.275
0.200

PValue
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00001
0.00037
0.00118
0.00279
0.00801
0.01588
0.03615
0.13733
0.16151
0.17141
0.18895
0.20250
0.21612
0.24944
0.32785
0.39101
0.53134
0.63065

^
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Least Squares Fit
Response Percent_Correct_Detected

Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
195
249
444

Sum of
Squares
56134.47
95314.69

151449.16

Mean Square
287.869
382.790

F Ratio
0.7520

Prob > F
0.9814

Max RSq
0.4781

Studentized Residuals

-5
-4
-3
-2
-1
0
1
2
3
4
5

0 50 100 150 200 250 300 350 400 450 500
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
search_area
N_real
N_false
corp level
(Search_Velocity-7.5)*(Search_Velocity-7.5)
(Search_Velocity-7.5)*(detect_real-0.775)
(detect_real-0.775)*(detect_real-0.775)
(Search_Velocity-7.5)*(detect_false-0.775)
(detect_real-0.775)*(detect_false-0.775)
(detect_false-0.775)*(detect_false-0.775)
(Search_Velocity-7.5)*(search_area-575)
(detect_real-0.775)*(search_area-575)
(detect_false-0.775)*(search_area-575)
(search_area-575)*(search_area-575)
(Search_Velocity-7.5)*(N_real-10)
(detect_real-0.775)*(N_real-10)
(detect_false-0.775)*(N_real-10)
(search_area-575)*(N_real-10)
(N_real-10)*(N_real-10)
(Search_Velocity-7.5)*(N_false-10)
(detect_real-0.775)*(N_false-10)
(detect_false-0.775)*(N_false-10)
(search_area-575)*(N_false-10)
(N_real-10)*(N_false-10)
(N_false-10)*(N_false-10)
(Search_Velocity-7.5)*corp level
(detect_real-0.775)*corp level

Estimate
10.305325
0.1023603
29.441522
43.475704
-0.011194
-0.055185
-0.035686
0.7449319
0.4287897
1.4668492

91.5159
-2.983167
-10.26892
164.49836
-0.001714
-0.023386
-0.076872
-0.000202
-4.965e-5
2.734648

-2.028278
0.0001708
0.0279692
-0.015747
-1.792136
1.547349

0.0015931
0.0027363
-0.054202
-0.146783
-0.431546

Std Error
10.01871
0.37124

7.424793
7.424793
0.007425
0.103122
0.103122
1.032445
0.781341
3.015965
312.5363
3.015965
60.3193

312.5363
0.003016
0.060319
0.060319
0.000313
0.041888
0.837768
0.837768
0.000838
0.060289
0.041888
0.837768
0.837768
0.000838
0.011636
0.060289
0.454674
9.093477

t Ratio
1.03
0.28
3.97
5.86

-1.51
-0.54
-0.35
0.72
0.55
0.49
0.29

-0.99
-0.17
0.53

-0.57
-0.39
-1.27
-0.65
-0.00
3.26

-2.42
0.20
0.46

-0.38
-2.14
1.85
1.90
0.24

-0.90
-0.32
-0.05

Prob>|t|
0.3042
0.7829
<.0001*
<.0001*
0.1323
0.5928
0.7295
0.4710
0.5834
0.6270
0.7698
0.3231
0.8649
0.5989
0.5700
0.6984
0.2032
0.5188
0.9991
0.0012*
0.0159*
0.8386
0.6429
0.7072
0.0330*
0.0654
0.0579
0.8142
0.3691
0.7470
0.9622
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Least Squares Fit
Response Percent_Correct_Detected

Parameter Estimates
Term
(detect_false-0.775)*corp level
(search_area-575)*corp level
(N_real-10)*corp level
(N_false-10)*corp level
corp level*corp level

Estimate
-2.444293
-0.008918
-0.141188
-0.094075
2.1280093

Std Error
9.093477
0.009093
0.126298
0.126298
1.788247

t Ratio
-0.27
-0.98
-1.12
-0.74
1.19

Prob>|t|
0.7882
0.3273
0.2642
0.4567
0.2347

Response Percent_Correct_Confirmations
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
195
249
444

Sum of
Squares
74866.09

134626.39
209492.48

Mean Square
383.929
540.668

F Ratio
0.7101

Prob > F
0.9938

Max RSq
0.7307

Studentized Residuals

-4
-3
-2
-1
0
1
2
3
4

0 50 100 150 200 250 300 350 400 450 500
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
search_area
N_real
N_false
corp level
(Search_Velocity-7.5)*(Search_Velocity-7.5)
(Search_Velocity-7.5)*(detect_real-0.775)
(detect_real-0.775)*(detect_real-0.775)
(Search_Velocity-7.5)*(detect_false-0.775)
(detect_real-0.775)*(detect_false-0.775)
(detect_false-0.775)*(detect_false-0.775)
(Search_Velocity-7.5)*(search_area-575)
(detect_real-0.775)*(search_area-575)
(detect_false-0.775)*(search_area-575)
(search_area-575)*(search_area-575)
(Search_Velocity-7.5)*(N_real-10)
(detect_real-0.775)*(N_real-10)
(detect_false-0.775)*(N_real-10)

Estimate
-30.69702
0.1672568
78.851749
20.756791
-0.015076
2.1763319
-1.500359
-0.351956
-0.438266
2.1582879
394.68506

-0.34846
6.812989

167.97103
0.001923

0.0247355
-0.056116
-0.000264
-0.041014
2.1632823
0.9235647

Std Error
11.78318
0.436622
8.73243
8.73243

0.008732
0.121284
0.121284
1.214277
0.918949
3.54713

367.5795
3.54713
70.9426

367.5795
0.003547
0.070943
0.070943
0.000368
0.049266
0.985314
0.985314

t Ratio
-2.61
0.38
9.03
2.38

-1.73
17.94

-12.37
-0.29
-0.48
0.61
1.07

-0.10
0.10
0.46
0.54
0.35

-0.79
-0.72
-0.83
2.20
0.94

Prob>|t|
0.0095*
0.7019
<.0001*
0.0179*
0.0850
<.0001*
<.0001*
0.7721
0.6337
0.5432
0.2835
0.9218
0.9235
0.6479
0.5880
0.7275
0.4294
0.4724
0.4056
0.0286*
0.3491
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Least Squares Fit
Response Percent_Correct_Confirmations

Parameter Estimates
Term
(search_area-575)*(N_real-10)
(N_real-10)*(N_real-10)
(Search_Velocity-7.5)*(N_false-10)
(detect_real-0.775)*(N_false-10)
(detect_false-0.775)*(N_false-10)
(search_area-575)*(N_false-10)
(N_real-10)*(N_false-10)
(N_false-10)*(N_false-10)
(Search_Velocity-7.5)*corp level
(detect_real-0.775)*corp level
(detect_false-0.775)*corp level
(search_area-575)*corp level
(N_real-10)*corp level
(N_false-10)*corp level
corp level*corp level

Estimate
0.001998

-0.149019
-0.043457
-3.536018
1.4816632
0.0023399
0.0215819
0.0568206
-0.400772
2.1683772
-6.810244
-0.013367
0.0283959
0.0125477
2.6914355

Std Error
0.000985
0.070907
0.049266
0.985314
0.985314
0.000985
0.013685
0.070907
0.53475
10.695
10.695

0.010695
0.148542
0.148542
2.103189

t Ratio
2.03

-2.10
-0.88
-3.59
1.50
2.37
1.58
0.80

-0.75
0.20

-0.64
-1.25
0.19
0.08
1.28

Prob>|t|
0.0432*
0.0361*
0.3782
0.0004*
0.1334
0.0180*
0.1155
0.4234
0.4540
0.8394
0.5246
0.2120
0.8485
0.9327
0.2013

Response Mission_Time
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
195
249
444

Sum of
Squares

444.96152
98.85410

543.81562

Mean Square
2.28185
0.39700

F Ratio
5.7477

Prob > F
<.0001*

Max RSq
0.9892

Studentized Residuals

-8
-6
-4
-2
0
2
4
6
8

0 50 100 150 200 250 300 350 400 450 500
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
search_area
N_real
N_false
corp level
(Search_Velocity-7.5)*(Search_Velocity-7.5)
(Search_Velocity-7.5)*(detect_real-0.775)
(detect_real-0.775)*(detect_real-0.775)

Estimate
7.9545497
-1.319778
0.5943434
-0.496818
0.0185881
0.0683207
0.0418287
-1.002383
-0.045862
-0.111167
6.3217988

Std Error
0.60035

0.022246
0.444915
0.444915
0.000445
0.006179
0.006179
0.061867
0.04682

0.180725
18.72806

t Ratio
13.25

-59.33
1.34

-1.12
41.78
11.06

6.77
-16.20

-0.98
-0.62
0.34

Prob>|t|
<.0001*
<.0001*
0.1823
0.2647
<.0001*
<.0001*
<.0001*
<.0001*
0.3278
0.5388
0.7359
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Least Squares Fit
Response Mission_Time

Parameter Estimates
Term
(Search_Velocity-7.5)*(detect_false-0.775)
(detect_real-0.775)*(detect_false-0.775)
(detect_false-0.775)*(detect_false-0.775)
(Search_Velocity-7.5)*(search_area-575)
(detect_real-0.775)*(search_area-575)
(detect_false-0.775)*(search_area-575)
(search_area-575)*(search_area-575)
(Search_Velocity-7.5)*(N_real-10)
(detect_real-0.775)*(N_real-10)
(detect_false-0.775)*(N_real-10)
(search_area-575)*(N_real-10)
(N_real-10)*(N_real-10)
(Search_Velocity-7.5)*(N_false-10)
(detect_real-0.775)*(N_false-10)
(detect_false-0.775)*(N_false-10)
(search_area-575)*(N_false-10)
(N_real-10)*(N_false-10)
(N_false-10)*(N_false-10)
(Search_Velocity-7.5)*corp level
(detect_real-0.775)*corp level
(detect_false-0.775)*corp level
(search_area-575)*corp level
(N_real-10)*corp level
(N_false-10)*corp level
corp level*corp level

Estimate
0.2084167
2.8291667
13.801799
-0.003693
0.0011667
0.0015683
-1.445e-5
-0.017352
-0.014294
-0.008669
8.9514e-5
-0.004701
-0.011037
-0.007812
-0.045382
0.0000801
-0.002814
-0.002338
0.0188371
-0.129773
-0.510303
0.0073757
0.0280871
0.0237069
2.5976328

Std Error
0.180725
3.614504
18.72806
0.000181
0.003615
0.003615
1.873e-5
0.00251

0.050201
0.050201

5.02e-5
0.003613
0.00251

0.050201
0.050201

5.02e-5
0.000697
0.003613
0.027245
0.544907
0.544907
0.000545
0.007568
0.007568
0.107157

t Ratio
1.15
0.78
0.74

-20.44
0.32
0.43

-0.77
-6.91
-0.28
-0.17
1.78

-1.30
-4.40
-0.16
-0.90
1.60

-4.04
-0.65
0.69

-0.24
-0.94
13.54

3.71
3.13

24.24

Prob>|t|
0.2494
0.4342
0.4615
<.0001*
0.7470
0.6646
0.4407
<.0001*
0.7760
0.8630
0.0753
0.1938
<.0001*
0.8764
0.3665
0.1113
<.0001*
0.5179
0.4897
0.8119
0.3495
<.0001*
0.0002*
0.0018*
<.0001*

Response Perception_Accuracy
Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
195
249
444

Sum of
Squares
8129.944
8783.261

16913.205

Mean Square
41.6920
35.2741

F Ratio
1.1819

Prob > F
0.1068

Max RSq
0.9389

Studentized Residuals

-4
-3
-2
-1
0
1
2
3
4

0 50 100 150 200 250 300 350 400 450 500
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)
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Least Squares Fit
Response Perception_Accuracy

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
search_area
N_real
N_false
corp level
(Search_Velocity-7.5)*(Search_Velocity-7.5)
(Search_Velocity-7.5)*(detect_real-0.775)
(detect_real-0.775)*(detect_real-0.775)
(Search_Velocity-7.5)*(detect_false-0.775)
(detect_real-0.775)*(detect_false-0.775)
(detect_false-0.775)*(detect_false-0.775)
(Search_Velocity-7.5)*(search_area-575)
(detect_real-0.775)*(search_area-575)
(detect_false-0.775)*(search_area-575)
(search_area-575)*(search_area-575)
(Search_Velocity-7.5)*(N_real-10)
(detect_real-0.775)*(N_real-10)
(detect_false-0.775)*(N_real-10)
(search_area-575)*(N_real-10)
(N_real-10)*(N_real-10)
(Search_Velocity-7.5)*(N_false-10)
(detect_real-0.775)*(N_false-10)
(detect_false-0.775)*(N_false-10)
(search_area-575)*(N_false-10)
(N_real-10)*(N_false-10)
(N_false-10)*(N_false-10)
(Search_Velocity-7.5)*corp level
(detect_real-0.775)*corp level
(detect_false-0.775)*corp level
(search_area-575)*corp level
(N_real-10)*corp level
(N_false-10)*corp level
corp level*corp level

Estimate
75.968288
-0.087734
-6.29421
24.87312

0.0013047
0.4250571
-1.825802
2.1140586
0.0766012
-0.865391
129.37136
0.330026

25.727862
146.46561
-0.000577
0.0096985
0.0276137
-0.000278
-0.014457
0.0572896
0.0464394
-0.000066
-0.005237
-0.020456
-0.077543
2.1226407
-3.284e-5

0.0399338
0.029989

0.0063703
0.9982227
-3.998226
0.0021733
0.0101629
0.2033815
2.0258798

Std Error
3.348046
0.124061
2.481212
2.481212
0.002481
0.034461
0.034461
0.345022
0.261108
1.007873
104.4432
1.007873
20.15746
104.4432
0.001008
0.020157
0.020157
0.000104
0.013998
0.279965
0.279965
0.00028

0.020147
0.013998
0.279965
0.279965
0.00028

0.003888
0.020147
0.151943
3.038852
3.038852
0.003039
0.042206
0.042206
0.597595

t Ratio
22.69
-0.71
-2.54
10.02

0.53
12.33

-52.98
6.13
0.29

-0.86
1.24
0.33
1.28
1.40

-0.57
0.48
1.37

-2.66
-1.03
0.20
0.17

-0.24
-0.26
-1.46
-0.28
7.58

-0.12
10.27

1.49
0.04
0.33

-1.32
0.72
0.24
4.82
3.39

Prob>|t|
<.0001*
0.4798
0.0115*
<.0001*
0.5993
<.0001*
<.0001*
<.0001*
0.7694
0.3910
0.2161
0.7435
0.2025
0.1615
0.5675
0.6307
0.1714
0.0080*
0.3023
0.8380
0.8683
0.8139
0.7950
0.1446
0.7819
<.0001*
0.9067
<.0001*
0.1373
0.9666
0.7427
0.1890
0.4749
0.8098
<.0001*
0.0008*
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Least Squares Fit
Response Percent Covered

Lack Of Fit

Source
Lack Of Fit
Pure Error
Total Error

DF
195
249
444

Sum of
Squares

4526.8927
1194.4103
5721.3029

Mean Square
23.2148
4.7968

F Ratio
4.8396

Prob > F
<.0001*

Max RSq
0.9162

Studentized Residuals

-8
-6
-4
-2
0
2
4
6
8

0 50 100 150 200 250 300 350 400 450 500
Row Number

Externally Studentized Residuals with 95% Simultaneous Limits (Bonferroni)

Parameter Estimates
Term
Intercept
Search_Velocity
detect_real
detect_false
search_area
N_real
N_false
corp level
(Search_Velocity-7.5)*(Search_Velocity-7.5)
(Search_Velocity-7.5)*(detect_real-0.775)
(detect_real-0.775)*(detect_real-0.775)
(Search_Velocity-7.5)*(detect_false-0.775)
(detect_real-0.775)*(detect_false-0.775)
(detect_false-0.775)*(detect_false-0.775)
(Search_Velocity-7.5)*(search_area-575)
(detect_real-0.775)*(search_area-575)
(detect_false-0.775)*(search_area-575)
(search_area-575)*(search_area-575)
(Search_Velocity-7.5)*(N_real-10)
(detect_real-0.775)*(N_real-10)
(detect_false-0.775)*(N_real-10)
(search_area-575)*(N_real-10)
(N_real-10)*(N_real-10)
(Search_Velocity-7.5)*(N_false-10)
(detect_real-0.775)*(N_false-10)
(detect_false-0.775)*(N_false-10)
(search_area-575)*(N_false-10)
(N_real-10)*(N_false-10)
(N_false-10)*(N_false-10)
(Search_Velocity-7.5)*corp level
(detect_real-0.775)*corp level

Estimate
121.65461
-0.282361
-0.386792
1.2701834
-0.023578
-0.080376
-0.053136
0.0230602
-0.012582
0.4032906
18.544354
-0.381189
-13.07944
-23.8997

-0.003042
-0.003833
0.0080205
-8.304e-6
-0.01107

-0.011898
-0.177346
-0.000988
-0.003905
-0.014542
-0.178255
0.0026738

-0.00049
0.0021022
0.0021101
-0.592748
-1.107204

Std Error
1.947269
0.072155
1.443106
1.443106
0.001443
0.020043
0.020043
0.200669
0.151864
0.586193
60.74556
0.586193
11.72385
60.74556
0.000586
0.011724
0.011724
6.075e-5
0.008142
0.162831
0.162831
0.000163
0.011718
0.008142
0.162831
0.162831
0.000163
0.002262
0.011718
0.088372
1.767437

t Ratio
62.47
-3.91
-0.27
0.88

-16.34
-4.01
-2.65
0.11

-0.08
0.69
0.31

-0.65
-1.12
-0.39
-5.19
-0.33
0.68

-0.14
-1.36
-0.07
-1.09
-6.07
-0.33
-1.79
-1.09
0.02

-3.01
0.93
0.18

-6.71
-0.63

Prob>|t|
<.0001*
0.0001*
0.7888
0.3792
<.0001*
<.0001*
0.0083*
0.9086
0.9340
0.4918
0.7603
0.5158
0.2652
0.6942
<.0001*
0.7438
0.4943
0.8913
0.1746
0.9418
0.2767
<.0001*
0.7391
0.0748
0.2742
0.9869
0.0028*
0.3531
0.8572
<.0001*
0.5313



2VehicleResults_ALL 2 - Fit Least Squares Page 8 of 9

Least Squares Fit
Response Percent Covered

Parameter Estimates
Term
(detect_false-0.775)*corp level
(search_area-575)*corp level
(N_real-10)*corp level
(N_false-10)*corp level
corp level*corp level

Estimate
1.5236683
-0.022875
-0.145938
-0.067925
-1.332831

Std Error
1.767437
0.001767
0.024548
0.024548
0.347569

t Ratio
0.86

-12.94
-5.95
-2.77
-3.83

Prob>|t|
0.3891
<.0001*
<.0001*
0.0059*
0.0001*

Prediction Profiler

0
20
40
60
80

100
60.23852
[55.4057,
65.0713]

0
20
40
60
80

100
45.84483
[40.1609,
51.5288]

8

14

20
9.921439
[9.63184,
10.211]

40
50
60
70
80
90

100
76.45166
[74.8366,
78.0667]

75

90

105
105.3292
[104.39,
106.269]

7.5
Search_Velocity

0.775
detect_real

0.775
detect_false

575
search_area
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Least Squares Fit
Prediction Profiler
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Appendix M. Responsiveness: One Vehicle Operation

Figure 40. Maximum responsiveness model for single vehicle operation
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Figure 41. Distribution and descriptive statistics for maximum responsiveness for one
vehicle operation
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Appendix N. Responsiveness: Two Vehicle Operation

Figure 42. Maximum responsiveness model for two vehicle operation
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Figure 43. Distribution and descriptive statistics for maximum responsiveness for two
vehicle operation
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Appendix O. Response Surface Optimization Code
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Appendix P. JMP Use Guide
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JMP Use Guide 

Data entry:  

In this research, data was entered from the analysis conducted in Python. The columns from the design 

of experiment test matrix and those from analysis were combined into one CSV file. Data columns 

required include: independent variables, replicate number, cooperation level (if any), and response 

variables. 

 

Multiple Comparison Test: 

Click on analyze and then fit model to get the following dialogue window. 

 

Select one response variable, click Y to add.  Select replicate and click add to input as an independent 

variable. For multi-vehicle calculations, all levels were done simultaneously so cooperation level was 

also added as an independent variable. Click Run.  

In the produced model, click the red downward facing arrow next to Response (shown below). Select 

estimates and then multiple comparison. 



 

 

In this new dialogue box, enter replicate 0 and 1, and then -1, -1 cooperation level. Click add estimates. 

Select all pairwise comparisons, Tukey and Student’s t. Click ok. Repeat this with 0, 0 cooperation level 

and 1, 1 cooperation level with replicate the same.  

 

Investigate print outs. Look for blue lines to show that there is no significant difference between groups.  



 

  



Creating a statistical model: 

 

To create a statistical model, click analyze and then fit model. Select independent variables, select 

macros and then response surface. Select dependent variable(s), click Y and then click Run.  

 

 

Analyzing a statistical model: 

 

If desired, remove factors that have large p values. Check lack of fit and studentized residuals. If 

studentized residuals do not show, click red arrow, row diagnostics, and plot studentized residuals. If 

lack of fit does not show click red arrow, regression report, and then lack of fit. The parameter estimates 

are used to create the prediction equation.  

 

Easy steps to input prediction equation into code: 

One the model is validated, click the red arrow, save columns, and prediction formula. This step will save 

a column of predicted values in your JMP table. Go to that column, right click and select formula. This 

will open a dialogue box shown below with the prediction formula. Open a word document. Click in the 

white space and hold. Drag the equation into a word document. Repeat for all response variables. Save 

the word document as a text file. It is helpful to do a search and replace on variable names. In this 

research, the colons were replaced with nothing and variables with two words were replaced with 

underscores instead of spaces for easy coding. To paste into python, copy the equation and paste 

without formatting (right click, paste without formatting in Pycharm). This should paste in one line. 
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Beginner’s guide to design of experiments in T&E by the STAT T&E COE 
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Assumptions 
 No learning 

 Cyber secure network 

 Not flying in rain, human agent execute RTL if weather changes 

 

Scope:  

Iteration 1 

 Wide Area Search 

 Autonomous target detection report 

 Static targets of approximately 8.43x2.46m 

 Simulated environment  

 One sensor 

 One agent 

 Rotary vehicle type 

 Optimal search interest: Find as many targets as possible given accessible resources 

 Priority in finding all targets in search area 

 Second priority its to confirm locations 

 On a given search pattern (we are not researching the pattern) 

Iteration 2 

 Wide Area Search 

 Autonomous target detection report 

 Static targets of approximately 8.43x2.46m 

 Simulated environment  

 One sensor 

 2 agents 

 High, moderate, and low cooperation levels 

 Rotary vehicle type 

 Optimal search interest: Find as many targets as possible given accessible resources 

 Priority in finding all targets in search area 

 Second priority its to confirm locations 

 On a given search pattern (we are not researching the pattern) 

 

Future Iterations and areas of future research: 

 Moving Targets 

 Multiple Sensors 

 Obstacles 

 Alternate search patterns 
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 Contour Map output 

 Capture world model baseline to extrapolate to real world 

System Boundary 
 Air Vehicle 

 Search area 

 Information being passed 

 Recipient of intel 

We are not concerned about the ground station in this test or project, just the AV, the area being searched, 

the intelligence gathered, and if it is useful to the recipient 

 

 

System Decomposition (WBS) 
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Mission: Search mission area for targets and report detected and confirmed target locations 

Definition of mission success: 

 Search area complete 

 List of target locations 

 List of confirmed target locations 

User Questions 
 What percentage of targets in a given area can I expect the system to find? 

 How accurate is the target location list reported? 

 How accurate is the system reasoning? 

 Does the system have the ability to adjust reasoning following failure? 

 How many AVs are required to search X area in no more than Y time with Z accuracy? 

 

Problem Type: Optimal configuration to achieve the mission  
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Optimization implies objectives that are to be maximized or minimized using system constraints. 

Problem Statement 
What configuration of design parameters will maximize area searched and percentage of real targets 

found? 
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User Requirements:  What the system needs to do 

***only writing requirements that the team has to implement, not things that have already been done, 

or incorporating a ground station, this is being done in simulation*** 

 The system shall search a given area for targets 

o The system shall detect targets 

o The system shall make declarations on targets (what it thinks it is) 

o The system shall log locations of targets 

o The system shall send 

 Telemetry 

 Target locations 

 Target declarations 

 The system shall search in an efficient manner 

o The system shall monitor health (fuel, sensor health, etc) 

o The system shall adjust flight path  

 According to health (to include sensor health and failures) 

 According to obstacles 

 The system shall confirm target location 

Qualification Requirements / Test Objectives for Autonomy 
Reusable optimization test, no requirement measures. Instead, compare TPMs of design to chosen 

figures of merit (sections to follow) 

 The system shall be responsive enough to maintain a real time internal state 

 The system shall be able to detect sensor failure (on/off) 

 The system shall alter reasoning to account for a failed sensor  
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TPM 
 

 

  

Measure WBS Element 

 Responsiveness Autonomy, Agent level, 
distribution 

Robustness Autonomy, Multi-Agent 

Perception accuracy (wrongly impacted 
decisions) 

Autonomy, Multi-Agent 

Type I error (detect & confirm) Sensor 

Type II error (detect & confirm) Sensor 

Target identification confidence Sensor 

Percent targets identified (detect & confirm) Sensor 

Area covered Air Vehicle 

Area coverage rate Air Vehicle 

 

Notes on TPMs:  

 Responsiveness: assess ability to react to perception, is the agent getting lost in planning 

 Perception accuracy: Impact of perception error on decisions made by the autonomous system 

Figures of Merit 
Are specified by the user and compared to the TPMs to make mission level decisions for fielding. The 

FOMs are determined by the threats of a given environment that decision makers intend to implement 

an autonomous WAS agent. The simulation in the framework allows decision makers to input their 

configuration and determine if they are willing to accept the reported risk. 

Test to aid Design Decisions 
 Constrain problem and use simulation to find: 

o Minimum number of agents required (area searched in amount of time) 

o Minimum sensor quality (payload selection) (to achieve desired intel accuracy) 



8 
 

Notes: Idea to optimize a configuration given all other constraints, have the simulation step with 

minimum and continue to simulate until all other figures of merit are met 

Optimization Objectives 
  Maximize area searched 

 Maximized area detected 

 Maximize confirmed targets 

 Minimize mission time required 

System Constraints 
 Fuel available 

 Logic, what is enough?  

 

The user can constrain certain parameters based upon their mission environment to configure 

remaining parameters (see ideas for testing to aid design decisions).  

 

Testing Constraints 
 

 Validity of assumptions made 

 Time 

 Computing power 

 Mission Planner 

 SITL 

Nuisance Factors 
 

Source of Variability Simulate Cannot Simulate 

Placement of Targets X  

Probability Draw Sensor X  

Environmental  X 

Measures of Effectiveness (MOEs) 
 Responsiveness: the system can respond to its environment in a timely manner 

o Internal state can be assumed to be real time 

 Robust: the system can operate given sensor failure 

 Search effectiveness: effective use of resources, replace C2 of human agents in this case 

 Type I error, confirmed and detected 
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 Type II error, confirmed and detected 

 Percent area searched 

Measures of Performance (MOPs) 
 Mission Time 

 Area covered 

 Worse case responsiveness 

 Percent false positive (Type I error) 

 Percent detected 

 Percent fault injection detection 

 Target report accuracy 

 Confirmation accuracy 

 Perception accuracy  

 

Notes: Perception accuracy would be how accurate is the plan. How different is the solution to that 

given truth? Idea would be to iterate each plan given truth and another given sensed. How many plans 

are the same? How many are different? 

Response Variables 
 

Responsiveness: 

 𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 − 𝑡𝑑𝑒𝑡𝑒𝑐𝑡 

The amount of time for a handed down objective plan to be put into action. The timestamp of 

the objective plan is compared to the timestamp of the task status to begin as “in progress.” 

Robustness: Percent fault injection detection 

If one of the agents goes down, the system should be able to respond accordingly. 

𝑁𝑓𝑢𝑎𝑙𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝑁𝑓𝑎𝑢𝑙𝑡 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 
 

A score of 1 detects all faults, meaning that the system is fully able to recover after a vehicle 

failure. A fault response is one where a logic is given to respond. Have a way to flag no solution 

and log what the problem was to create one.  

Percent Detected: The percent of real targets detected 

 This metric reflects the percentage of real targets detected while searching the area.  

𝑁𝑟𝑒𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 𝑓𝑜𝑢𝑛𝑑

𝑁𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 𝑖𝑛 𝑎𝑟𝑒𝑎 
*100% 

False Positive Detected (Type I error): The percent of real target declarations that were in truth false 

targets. The same for type II with the numerator equal to number of false negatives. 
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𝑁𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑁𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑙 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
*100% 

 

 

Percent Confirmed: The percent of real targets confirmed (percent confirmed truths in code) 

 This metric reflects the percentage of real targets confirmed while searching the area.  

𝑁𝑟𝑒𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑

𝑁𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 𝑖𝑛 𝑎𝑟𝑒𝑎 
*100% 

Percent Confirmed Confirmations: The percent of confirmed targets confirmed correctly (percent 

confirmed confirmations in code) 

This metric reflects the ability of the agent(s) to confirm targets. The number of correctly confirmed 

targets is divided by the number of targets the agent could confirm (revisit) 

𝑁𝑟𝑒𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑

𝑁𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠  
*100% 

 

False Positive Confirmed (Type I Error): The percent of real target declarations that were in truth false 

targets. The same for type II with the numerator equal to number of false negatives. 

𝑁𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑙 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
*100% 

 

Search Effectiveness Score: Metric to represent effective search 

In WAS, optimization problem of: min time, max target accuracy, min vehicles used, min AV loss, max area 

searched. Use weights of importance and do a vector sum as a score. The results of this can be used to 

compare design choices and gives a metric for the objective of searching efficiently. 

 

 

Value Based Thinking (VBT) approach: 

 𝑉𝑎𝑙𝑢𝑒 =  Σ 𝑤 ∗ 𝑉(𝑥𝑖) 
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W is the weight of an attribute. The summation of all must equal 1. V(xi) is the value function 

which ranges from 0 to 1. Xi is the performance metric for a given attribute. A value function has 

an associated curve. It can any shape. Some common ones are piecewise, linear, or square root. 

This is dependent on user needs and should be implemented in a changeable way. Table 1 shows 

fields that will need to be determined by the user.  

 

 

An example: 

𝑆𝐸𝑆 = 0.3𝑉(𝑥𝑖)𝑡𝑒𝑠𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 +  0.2𝑉(𝑥𝑖)𝑡𝑖𝑚𝑒 +  0.05𝑉(𝑥𝑖)𝑁𝑎𝑔𝑒𝑛𝑡𝑠
+  0.15𝑉(𝑥𝑖)𝑁𝑙𝑜𝑠𝑡 𝑎𝑔𝑒𝑛𝑡𝑠

 +  0.3𝑉(𝑥𝑖)𝑎𝑟𝑒𝑎 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑑   

 

 

 

 

 

 

 

Attribute Metrics: 

𝑇𝑎𝑟𝑔𝑒𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 − 𝑁𝑤𝑟𝑜𝑛𝑔 

𝑁𝑟𝑒𝑎𝑙 𝑑𝑒𝑡𝑒𝑐𝑡

∗
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 − 𝑁𝑤𝑟𝑜𝑛𝑔 

𝑁𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑

)  

𝑇𝑖𝑚𝑒 =  
𝑡𝑠𝑒𝑐𝑜𝑛𝑑𝑠

3600
  

𝑁𝑙𝑜𝑠𝑡 𝑎𝑔𝑒𝑛𝑡𝑠 = 𝑁 

𝐴𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑑 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑔𝑖𝑣𝑒𝑛 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑟𝑒𝑎 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 

 

  

Attribute Weight 0 𝑉𝑎𝑙𝑢𝑒   1 𝑉𝑎𝑙𝑢𝑒 Function of utility curve 

Target Accuracy     

Time     

Vehicles Used     

Agents Lost     

Area Searched     

Attribute Weight 𝟎 𝑽𝒂𝒍𝒖𝒆   𝟏 𝑽𝒂𝒍𝒖𝒆 Shape  
Target Accuracy 0.3 𝑥𝑖≤0.56 𝑥𝑖≥0.72 linear 

Time 0.2 𝑥𝑖≥ 3 hours 𝑥𝑖≤ 0.5 hours Square root 

Vehicles Used 0.05 𝑥𝑖≥ 5 vehicles 𝑥𝑖<1 vehicle linear 

Agents Lost 0.15 𝑥𝑖≥2 𝑥𝑖≤0 linear 

Area Searched 0.03 𝑥𝑖≤0 𝑥𝑖≥1.0 linear 
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Design Parameters 
What can be varied in the design? 

 Altitude 

 Max Velocity 

 Weights in arbiter 

 Confusion Matrix 

 Number of targets  

 Search area boundary 

 Sensor field of view 

 Sensor performance decay rate WRT increate in altitude 

 Detect real probability 

 Detect false probability 

Test Considerations 
 Test boundaries of performance 

 Test as many rules at the same time 

 Rules often specify boundaries 

 Test as many common points at the same time 

 Transient profiles exist—test enough profiles (at different modes) to give mission assurance 

 What is the minimum rule set? How does it recover? 

 Use replication to understand noise, account for different sources of error 

 Are mode changes robust? 

 Maybe we don’t test or concern ourselves with validating out of the box capabilities  

 Circular Error Probability (CEP), is there a way to utilize dynamics to minimize error 

o Want spatial diversity to close in error 

 Bounds of design parameters are a trade space, if I can very them how does the system perform, 

each vertex is design metric 

 Aid developmental test 
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Factors and Levels 
 

Single Vehicle Test 

Factor High Low 

FOV 39° 

Search Velocity 10 m/s 5 m/s 

Detect Real 0.9 0.65 

Detect False 0.9 0.65 

Search Area 700 m 200 m 

N Real Targets 19 1 

N False Targets 1 19 

Altitude 150 

 

2 Vehicle Test 

Factor High Low 

FOV 39° 

Search Velocity 10 m/s 5 m/s 

Detect Real 0.9 0.65 

Detect False 0.9 0.65 

Search Area 700 m 200 m 

N Real Targets 19 1 

N False Targets 1 19 

Altitude 150 

Cooperation High, Moderate, Low 
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Experimental Design 
Full factorial with three replicates 

Required Data 
Each run will need to be saved with the response data. This will allow one to assess the input 

parameters from the test matrix. Other option is to have a message with all input parameters. The 

following are data that will need to be logged by LCM: 

 Perception Error 

o N Plan given truth ≠Plan given sensed 

o N Plan given truth = Plan given sensed 

 Responsiveness 

o Timestamp objective time handed 

o Timestamp first action 

 Robustness 

o N fault injections 

o N no response (thinking no response can be triggered by a max time to come up with a 

new plan) 

o Some sort of state to inform developers the failure mode and what will need to be 

considered in their code 

 Percent detected 

o N real targets identified 

o N real targets in search area 

 Type I error detect 

o N type I error declarations 

o N total real targets in search area (truth) 

 Type II error detect 

o N type II error declarations 

o N total real targets in search area (truth) 

 Type I error confirm 

o N type I error confirm declarations 

o N total real targets in search area (truth) 

 Type II error confirm 

o N type II error confirm declarations 

o N total real targets in search area (truth) 

 Percent confirmed 

o N real targets confirm declaration 

o N real targets in search area 

 Search Effectiveness Score 

o Time to mission completion 

o N vehicles 
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o N vehicle failure (fuel empty, collision) 

o Area searched 

 

 

 

Testing Autonomy Background:  
 

Testing autonomy is complex for many reasons. This test attempts to test the system and its objectives 

as well as the underlying logic of the agent. The Figure 1 depicts the following breakdown of autonomy.  

Autonomy exists inside the system. It consists of a prebuilt autopilot, which is reasonably trusted by users. 

Autopilots have been used in commercial flight with human supervision and reliably implements actuation 

for flight control.  Configuration parameters and constraints are the bounds and parameters used in the 

autonomous agent to constrain the performance. These are user inputs that drive the logic of the agent. 

The portion of autonomy requires more assurance is the agent’s ability to perceive the world around it 

and to make the appropriate decisions regarding it.  

 

Assuming the system is able to reach the overall mission objectives, decision makers what to know if they 

can trust the decide portion of autonomy. To do this, simulation is helpful in assessing the robustness of 

the logic and rules. What will the system do in a wide variety of situations and is there adequate logic to 

handle them? To asses this, there are a number of items of concern according to research and problem 

reports: responsiveness, robustness, trustworthiness, reasoning, and robot intent. In this project, there is 

an attempt to capture the responsiveness, robustness, and perception accuracy of the agent. 
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Figure 1: Autonomy Graphic 
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Term Domain Description Citation
Abstract Goal AI The specific tasks behaviors accomplish. Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J

Activation Path AI An abstract and standardized definition of a behavior. Consists of an initial condition, post condition, 

required data, abstract goal, control setting, and a vote. 

Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J

Activity Diagram SysML Represents behavior in terms of the order in which actions execute based on the availability of their 

inputs, outputs, and control, and how the actions transform the inputs to outputs

A Practical Guide to SysML: 

The Systems Modeling 

Language, 2nd Ed

Allocated 

Architecture

SE Complete description of the systems design, including the functional architecture allocated to the 

physical architecture, derived input/output, technology and system-wide, trade-off, and qualification 

requirements for each component, an interface architecture that has been integrated as one of the 

components and complete documentation of the design and major design decisions. 

Buede and Miller, 2016

Arbiter AI Algorithms that give a behavior action vote value to scale the affect or selection of a behavior from a set 

of available behaviors. An example would be a vector summation arbiter.

Unified Behavior Framework 

for Reactive Robot Control, 

Woolley, Brian G & Peterson, 

Gilbert L

Autonomy AI The ability to make decisions using sensory information without human interaction. Adapted from: Autonomy 

and Unmanned Vehicles, 

Mahmoudzadeh, Somaiyeh, 

Powers, David, Bairam 

Zadeh, Reza

Behavior AI and SE A primitive transfer function from sensor inputs to motor outputs.  Includes all types of behavior such as 

leaf and composite that generate actuation. In SysML, behaviors are activities that have been allocated 

to a block in a diagram.

Buede and Miller, 2016, A 

Practical Guide to SysML: The 

Systems Modeling Language, 

2nd Ed

Behavior 

Diagrams

SysML Can be an activity diagram, sequence diagram, state machine diagram, or use case diagram. Composed 

of activities and the flow and information between them. These diagrams specify how the components 

interact within the system and how the system interacts with external systems.

A Practical Guide to SysML: 

The Systems Modeling 

Language, 2nd Ed

Behavior Library AI All possible behaviors the controller can choose from. Only behavior library requires knowledge of the 

addition or removal of behaviors, minimizing changes throughout the system when adapting to a new 

environment.

Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J

Behavior Model SE Defines the control, activation, and termination of system functions that is needed to meet the 

performance requirements of the system.

(Buede and Miller, 2016)

Behavior Planner AI Behavior planner generates set of behaviors that satisfy objective plan (OP). It uses the behavior 

representation to generate plans that are composed of a set of behaviors and ordering constraints 

necessary to accomplish OP. 

Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J

Block  SysML A general modeling concept in SysML that is used to model entities that have structure, such as 

subsystems, hardware, software, physical objects, and abstract entities. A block can represent any real 

or abstract entity that can be conceptualized as a structural unit with one ore more distinguishing 

features. Blocks often capture hierarchy. 

A Practical Guide to SysML: 

The Systems Modeling 

Language, 2nd Ed

Block Definition 

Diagram

SysML Represents structural elements called blocks, and their composition and classification (UML class 

diagram)

A Practical Guide to SysML: 

The Systems Modeling 

Language, 2nd Ed

Component SE Subset of physical realization (and the physical architecture) of the system to which a subset of the 

system's functions have been (will be) allocated. 

Buede and Miller, 2016

Composite 

Behavior

AI The combination of two ore more behaviors with an arbiter to produce a single action output. Unified Behavior Framework 

for Reactive Robot Control, 

Woolley, Brian G & Peterson, 

Gilbert L

Configuration 

Items

SE lowest-level components in the physical architecture Buede and Miller, 2016

Glossary



Control Setting AI The controls, often motor controls, that a behavior is programmed to affect. An attribute of a behavior's 

activation path.

Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J

Controller AI Executor Manages behaviors and their implementation. Implements one or more feedback control loops,  

often selected from a library of transfer functions or Behaviors.

Erann Gat. On Three-Layer 

Architectures. Artificial 

Intelligence and Mobile 

Robots: Case Studies of 

Successful Robot Systems, 

pages 195–210, 1998.

Coordinator AI Expands on capabilities, allowing prioritization of tasks and managing negotiations for multi-agent 

applications. Multi-agent task allocation to perform multiple tasks simultaneously.

 HAMR : A Hybrid Multi-

Robot Control Architecture, 

Hooper, Daylond & Peterson, 

Gilbert

Deliberator AI Performs high-level reasoning tasks that include task decomposition, task allocation, and planning. 

Generates new tasks from sensor data and processing that occur during task performance.

 HAMR : A Hybrid Multi-

Robot Control Architecture, 

Hooper, Daylond & Peterson, 

Gilbert

Design SE Preliminary activity that has the purpose of satisfying the needs of the stakeholders, begins in the mind 

of the lead engineer but has to be transformed into model employing visual formats in a highly skilled 

manner for success to be achieved.

Buede and Miller, 2016

Engineering of a 

System

SE Engineering discipline that develops, matches, and trades off requirements, function, and alternate 

system resources to achieve a cost effective, lifecycle balanced product based upon the needs of 

stakeholders. 

Buede and Miller, 2016

Fault SE Defect in the system that can cause an error. Faults can be permanent or temporary depending on an 

internal malfunction or external transient. 

Buede and Miller, 2016

Figure of Merit SE Describes a specific system property or attribute for a given environment and context; a FOM is 

measured within the system. 

Buede and Miller, 2016

Functional 

Architecture

SE A logical architecture that defines what the system must do, a decomposition of the system's top-level 

functions.

Buede and Miller, 2016

Functional 

Requirements

SE The 2 - 7 functions that are the first-level decomposition of the system's functions. Buede and Miller, 2016

Fundamental 

Objective

SE Aggregation of the essential set of objectives that summarizes the current decision context and is yet 

relevant to the evaluation of the options under consideration.

Buede and Miller, 2016

Fundamental 

Objectives 

Hierarchy

SE Subdivision of the fundamental objective into value objects that more meaningfully define the 

fundamental objective, thereby forming a value structure.

Buede and Miller, 2016

Initial Condition AI Represent environment variables that when true generate an action recommendation and vote from 

behavior. There are two types: active and passive. An activation path attribute

Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J

Integration SE Process of assembling the system from its components, which must be assembled from their 

configuration items.

(Buede and Miller, 2016)

Interface SE Connection for hooking to another system (external interface) or for hooking one system component to 

another (internal interface). The interface of a system contains both a logical element and a physical 

element (or link) that are responsible for carrying items (electrochemical energy or information) from 

one component or system to another.

(Buede and Miller, 2016)

Internal Block 

Diagram

SysML Represents interconnection and interfaces between the parts of a block (modified UML composite 

structure diagram)

A Practical Guide to SysML: 

The Systems Modeling 

Language, 2nd Ed

Items SE Inputs that are received by the system, the outputs that are sent by the system to other systems, and 

the inputs that are generated internally to the system and sent to other parts of the system to assist in 

the transformation process for which the system is responsible. 

Buede and Miller, 2016

Leaf Behavior AI An atomic behavior that cannot be broken down any further that requires no arbitration. Unified Behavior Framework 

for Reactive Robot Control, 

Woolley, Brian G & Peterson, 

Gilbert L

Lifecycle SE Begins with the gleam in the eyes of the users or stakeholders, is followed by the definition of the 

stakeholders' needs by the systems engineers, includes developmental design and integration, goes 

through production and operational use, usually involved refinement, and finishes with the retirement 

and disposal of the system.

Buede and Miller, 2016

Measure of 

Effectiveness 

(MOE)

SE Variable that describes how well a system carries out a task or set of tasks within a specific context; a 

MOE is measured outside the system for a defined environment and state of context variables.

Buede and Miller, 2016

Measure of 

Performance 

(MOP)

SE Variable that describes a specific system property or attribute for a given environment and context. A 

MOP is measured within the system.

Buede and Miller, 2016



Mission 

Requirements

SE Requirements that relate to objectives of the stakeholders that are defined in the context of the 

subsystem, not the system itself. 

Buede and Miller, 2016

Model
SE Any incomplete representation of reality, an abstraction. The essence of a model is the question or set of 

question that the model can reliably answer. 

Buede and Miller, 2016

Objectives 

Hierarchy

SE Hierarchy of objectives that are important to the system's stakeholders in a value sense; that is, the 

stakeholders would (should) be willing to pay to obtain increased performance (or decreased cost) in any 

one of these objectives. The definition of the natural subsets of the fundamental objectives into a 

collection of performance requirements. 

Buede and Miller, 2016

Operational 

Concept

SE
Vision for what the system is (in general terms), a statement of mission requirements, and a description 

of how the system will be used. The shared vision is based on the perspective of the system's 

stakeholders of how the system will be developed, produced, deployed, trained, operated, and 

maintained, refined, and retired to overcome some operational problem and achieve the stakeholders 

operational needs and objectives. The vision requirements are stated in terms of measures of 

effectiveness. The operational concept includes a collection of scenarios; one ore more for each group of 

stakeholders in each relevant phase of the system's life-cycle.

Buede and Miller, 2016

Package Diagram SysML Represents the organization of a model in terms of the packages that contain model elements A Practical Guide to SysML: 

The Systems Modeling 

Language, 2nd Ed

Physical 

Architecture

SE
Resources for every function identified in the functional architecture. The general physical architecture is 

a description of the partitioned elements of the physical architecture without any specification of the 

performance characteristics of the physical resources that comprise each element.

Buede and Miller, 2016

Physical Model
SE Representation of an entity in 3-D space and can be divided into full-scale mock-up, subscale mock up, 

breadboard, and electronic mock-up.

Buede and Miller, 2016

Post Condition AI Set of environment effects that the behavior intends to achieve. This intent is based upon action 

recommendations for the behavior given an initial condition. Post condition may invalidate other goals. 

An activation path attribute

Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J

Prototype

SE
Physical model of the system that ignores certain aspects of the system, glosses over other aspects, and 

is fairly representative of a third segment of aspects of the system. The prototype can range from a 

subscale model of the system to a paper display (storyboard) of the user interface of the system.

Buede and Miller, 2016

Qualification
SE Process of verifying and validating the system design and then obtaining the stakeholders' acceptance of 

the design.

Buede and Miller, 2016

Qualification 

Methods
SE

Inspection, analysis and simulation, instrumented test, and demonstration.

Buede and Miller, 2016

Qualification 

Requirements
SE Requirements that address the needs to qualify the system as being designed right, the right system, and 

an acceptable system.

Buede and Miller, 2016

Qualitative 

Model

SE
Model that provides symbolic, textual, or graphical answers. Symbolic models are based on logic or set 

theory. Textual models are based in verbal descriptions. Graphical models use either elements of 

mathematical graph theory or simply artistic graphics to represent a hierarchical structure, the flow of 

items or data through the system's function, or the dynamic-interaction of the system's components.

Buede and Miller, 2016

Quantitative 

Model
SE Model that provides answers that are numerical; these models can be either analytic, simulation, or 

judgmental models.

Buede and Miller, 2016

Required Data AI Represents set of sensors (or data) required for behavior to function properly. This data includes 

computed data that is not directly from a sensor. 

Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J

Resource 

Manager

AI Resource manager monitors system resources (hardware and data) and optimizes based on planned 

objectives and power management in relation to concurrent tasks. RM also answers queries about the 

prospects for a behavior’s activation based on resource availability, allowing the system to dynamically 

respond to low battery life, failure of sensors, etc. 

Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J

Sequence 

Diagram

SysML Represents behavior in terms of a sequence of messages exchanged between systems, or between parts 

of the system.

A Practical Guide to SysML: 

The Systems Modeling 

Language, 2nd Ed

Sequencer AI Enables and disables behaviors to achieve an objective plan, maintains internal state to alert deliberator 

if new plan is needed. Can consist of behavior executive, behavior library, resource manager, and 

behavior planner. The sequencer receives the objective plan from the deliberator and delivers arbitrated 

hierarchy of behaviors to the controller.

Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J

Stakeholder

SE Owner and/or bill payer, developer, producer or manufacture, tester, deployer, trainer, operator, user, 

victim, maintainer, sustainer, product improved, and decommissioned. Each stakeholder has significantly 

different perspective of the system and the system's requirements. 

Buede and Miller, 2016



State machine 

diagram

SysML Represents behavior of an entity in terms of its transitions between states triggered by events. A Practical Guide to SysML: 

The Systems Modeling 

Language, 2nd Ed

Structure 

Diagrams

SysML Can be a block definition diagram or internal block diagram. Each is of type block that shows structure 

within the design. Examples include physical architecture and IBDs.

A Practical Guide to SysML: 

The Systems Modeling 

Language, 2nd Ed

System
SE Set of components (subsystems, segments) acting together to achieve a set of common objectives via 

the accomplishment of a set of tasks.

Buede and Miller, 2016

System 

Requirements
SE

Translation (or derivation) of the original requirements into engineering terminology.

Buede and Miller, 2016

System Task or 

Function
SE

Set of functions that must be performed to achieve a specific objective.

Buede and Miller, 2016

Systems Thinking
SE Holistic look at the whole of systems, interrelationships with outside forces (systems, external systems, 

and context), and the properties of systems, especially emergence and stability.

Buede and Miller, 2016

Task AI A behavior hierarchy selected by the Sequencer to accomplish an objective plan goal. Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J

Task Plan AI A solved solution to an objective plan consisting of one or more sequenced tasks that together achieve 

the overall objective plan goal.

Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J

Traceable
SE Pertaining to requirements, each derived requirement must be traceable to an originating requirement 

via some unique name or number. 

Buede and Miller, 2016

Validation
SE Process of determining that the systems engineering process has produced the right system, based upon 

the needs expressed by the stakeholder. 

Buede and Miller, 2016

Verification
SE Matching of configuration items, components, subsystems, and the right system to their corresponding 

requirements to ensure that each has been built right.

Buede and Miller, 2016

Verification Plan
SE How the qualification data will be used to determine that the real system conforms to the design that 

was developed.

Buede and Miller, 2016

Vote AI A vote is a value for a given behavior when in a state in which it acts. A vote of 0 is given when in a state 

that the behavior would not be useful and some other value when in a different state . Used by the 

composite behavior's arbiter to determine the composite behavior's action output.

Dynamic Behavior 

Sequencing for Hybrid Robot 

Architectures, Peterson, 

Gilbert L; Duffy, Jeffrey P; 

Hooper, Daylond J
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