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1. Introduction 

Numerical models of the head and the upper body are used to design and evaluate 
head protection against various externally applied loading to the head. A key 
component to the reliability of these models is the accuracy with which the 
deformation and final failure (fracture) response and associated failure mechanisms 
of the skull—the natural protection of the brain—are represented. The skull is 
heterogeneous due to its sandwich structure, with dense outer and inner layers 
(tables) surrounding a highly porous inner layer (the diploe). The porosity changes 
substantially as a function of thickness, from averages of 7% at the outer table, 
rising to 58% in the diploe, and reducing to 16% in the inner table on average 
(Alexander et al. 2019c). Furthermore, the porosity can peak to more than 80% in 
the diploe. 

Bone volume fraction (BVF), which is the porosity percentage subtracted from 
100%, is commonly related to the modulus and strength of porous bone by a power 
relationship, as reviewed by Helgason et al. (2008) and Morgan et al. (2018). 
Musy/Maquer et al. (2017) demonstrated that compared with other morphological 
parameters, BVF, the higher-scale microstructural measure, is the single best 
predictor of both the stiffness and yield strength of trabecular bone for a specific 
age of a species (thus the same bone chemistry). Motivated by the mechanical 
implications of the BVF on the microstructure, researchers at the US Army Combat 
Capabilities Development Command (CCDC) Army Research Laboratory (ARL) 
recently proposed and optimized a power relationship between the BVF and the 
modulus (E) for the human skull bone based on compression experiments using 
multiple fresh-frozen and thawed human skull bone coupons (Alexander et al. 
2020). Modulus values at a given normalized depth for the human skull were 
calculated from the power relationship for use in finite-element (FE) simulations at 
three different scales: a single modulus for the entire thickness of the skull, moduli 
for each of the three layers of the sandwich structure (outer table, mid-diploe, and 
inner table), and a continuous representation along the normalized depth.  

However, the parameters of the skull-bone power relationship were derived from 
experimental measurements on multiple specimens with two critical assumptions. 
These assumptions were based on considering the full skull structure as a series of 
stacked layers, each layer having its own uniform properties, for purposes of 
developing the analytical power-law model based on the possible experimental 
measurements. The first assumption was that the strain within each layer was 
uniform and equal to the average surface strain of each layer, measured using 
digital image correlation (DIC). The second assumption was that stress measured 
at the load cell was assumed to be the uniaxial compressive stress acting throughout 
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the structure, and hence on each layer. These assumptions were motivated in part 
from earlier experiments on minipig skulls, which showed that the surface strain 
formed a gradient of layers along the compression direction that was normal to the 
outer surface of the skull (Alexander et al. 2019a). However, the use of these 
assumptions remained to be validated in the heterogeneous human skull using 
rigorous 3-D analysis coupled with the evolution of the measured global  
stress–strain and full-field localized nonuniform surface strains up to failure. 

The purpose of the present detailed study was to verify the assumptions used as the 
starting point for the development of the analytical relationship between BVF and 
modulus as well as to develop mechanism-based microstructurally inspired failure 
models for skull bone at coupon specimen scale. This was accomplished with a 
detailed 3-D FE simulation of one of the compression experiments from the 
multiple specimens used to derive the CCDC Army Research Laboratory  
human-skull power relationship. The most-basic means of testing these 
assumptions would be to simulate the experiment with an FE mesh replicating the 
complete intricate details of the 3-D structure of the bone. Such a mesh would be 
created by converting high-resolution micro-computed tomography (micro-CT) 
scans of the skull bone into volumetric meshes through a labor-intensive process 
that would require a prohibitively large number of elements due to the complex  
3-D shape of the bone and porous features. Therefore, in this report, to verify the 
human skull E–BVF power relationship derived with the critical assumptions and 
also to inversely derive failure laws rather than attempting to mesh the bone 
structure in detail, a simpler method was used to fill the space with elements and 
map them to the corresponding mesostructural elements from the measured  
micro-CT data. For each element, the BVF of the physical volume the element 
represented could be calculated. Then, element-specific mechanical properties 
could be calculated based on the BVF of the element. An in-house method for 
mapping the elements to the micro-CT data has been previously developed 
(Alexander et al. 2019b) and will be used in the present report due to the ease of its 
implementation.  

However, the power relationship described only the initial linear response of the 
human skull bone, whereas skull coupons compressed experimentally show a 
distinct three-part apparent nonlinear global response, which also included 
trabecular collapse and densification (Robbins and Wood 1969; Boruah et al. 2013; 
Alexander et al. 2020). For instance, Fig. 1 provides an example from the literature 
of the three-part global response. The transition point between the first and second 
parts corresponded to the start of the discontinuous diploe failure and was identified 
by a local maximum in the load-displacement response. The transition is referred 
to here as the start of the instability, as marked in Fig. 1. When further analyzed the 



 

3 

first part of the response was found to consist of two distinct subregimes: an initial 
linear elastic regime followed by a nonlinear regime leading to the instability point 
(Fig. 1 inset). Deviation from the initial linear elastic response could most probably 
be due to initiation of localized failure in some regions within the specimen. Based 
on this hypothesis, in the present study it was assumed that some of the elements 
failed during the loading in this regime. The nonlinear response of bone samples 
observed experimentally at the macro scale has likewise been previously simulated 
by implementing nonlinear material properties on an element-by-element basis. For 
example, Hambli (2013) used a micro-level mesh of only the bone phase of 
trabecular bone structures such that elements had an average size of 20 µm and 
were represented only with dense bone material (BVF = 1). Critical strain 
thresholds were set for compression and tension, and when elements exceeded these 
thresholds their stiffness was reduced. In simulating the femur, both Bessho et al. 
(2007) and Ariza et al. (2015) used much larger elements (3 mm), which 
represented a mixture of bone and marrow. Each element was assigned a nonlinear 
material response that included postyield softening and was dependent on the BVF 
of the element. Bessho et al. (2007) also included failure criteria such that elements 
that met these threshold conditions were subsequently considered nonloadbearing. 

 
Fig. 1 (left) Example of the three-part global nonlinear response of human skull coupons 
loaded in compression (modified from Alexander et al. 2020). The transition between the first 
and second parts represents the start of the instability. (right) Subset shows the two 
subregimes within the first part: an initial linear elastic regime followed by a nonlinear regime 
leading to the start of the instability. 

The first part of the present study validates the use of the critical assumptions, based 
on the representation by a stacked uniform layered structure, to derive the initial 
linear elastic power-law representation of the response. In the second part, the 
experimentally measured subsequent nonlinear response prior to the start of the 
instability (Fig. 1) was simulated by modeling failure at the element level. Critical 
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tensile- and compressive-failure stress thresholds were identified through an 
iterative process. These stress thresholds were assumed to be dependent on the BVF 
by power relationships, similar to the E–BVF relationship, and several iterations of 
simulations were needed to identify suitable parameter values. The principal stress 
components of the element were monitored, and when these exceeded the failure 
thresholds, the element was considered to have failed.  

2. Methods  

2.1 Specimen Extraction and Compression 

The skull specimen measured approximately 8 × 8 mm on the outer surface and 
included the entire thickness of the skull from the inner to outer surfaces. After 
extraction the specimen was imaged with high-resolution micro-CT (5.3 µm). 
Details of extraction and micro-CT imaging have been previously documented in 
which the specimen of the current report was labeled and referred to as Specimen 
04-09 (Alexander et al. 2019c). The specimen was then quasi-statically compressed 
as previously documented (Alexander et al. 2020, with additional information in 
Alexander et al. 2018). The experiment was conducted in compliance with ARL’s 
Policy for Use of Human Cadavers for Research, Development, Test, and 
Evaluation under the guidance and oversight of the ARL Human Cadaver Review 
Board and the ARL Safety Office. Briefly, the specimen was loaded in the through-
thickness dimension. The outer and inner surfaces of the skull coupon were each in 
contact with compression platens. These outer and inner surfaces are hereafter 
referred to as the top and bottom of the specimen, respectively. Likewise, the 
compression platen in contact with the top surface is referred to as the top platen, 
and the platen in contact with the bottom surface is referred to as the bottom platen. 
The specimen was compressed by displacing one of the compression platens in the 
through-thickness dimension at a constant rate, while the other platen remained 
stationary. Two of the free nonloaded adjacent faces of the specimen were speckled 
for tracking full-field displacement and strain using DIC. The speckle patterns of 
these two faces were imaged during the compression experiment by two separate 
cameras. The two cameras are hereafter referred to as the left and right cameras, 
and the two faces of the specimen imaged are referred to as the left and right faces. 

The compressive load-displacement response of the specimen showed three 
different phases, as reported in the previous publication of Alexander et al. (2020). 
Here, only the initial phase, up to the start of instability (defined in Fig. 1), was 
modeled. Figure 2 shows this portion of experimentally measured apparent stress 
as a function of the compressive strain for Specimen 04-09. The apparent stress was 
calculated by normalizing the force recorded by the load cell by the original  
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cross-sectional area of the specimen. The apparent compressive strain in the 
experiment was calculated by averaging the 2-D strain fields over the two faces of 
the specimen, which were speckled for DIC.  

 

Fig. 2 Apparent stress and strain of Specimen 04-09 measured experimentally during 
quasi-static compression prior to the start of the instability 

2.2 Finite-Element Mesh Generation and Mapping to Micro-CT 
Images 

A volume of interest (VOI) in the form of a rectangular block was selected from 
the full 3-D shape of the specimen, as shown in Fig. 3. The 3-D space of the 
rectangular block was then volumetrically meshed with 16,683 tetrahedral 
elements, ignoring the inner porous structure of the bone. The average element 
volume was 2.20 × 107 µm3 ± 1.32 × 107 µm3.* The original BVF of each element, 
𝑓𝑓𝐵𝐵𝐵𝐵,0, was calculated by mapping the elements to the micro-CT dataset, downsized 
by a factor of 16 to a resolution of 84.9 µm. The in-house method of calculating 
𝑓𝑓𝐵𝐵𝐵𝐵,0 for each element was previously described (Alexander et al. 2019b). Figure 3 
shows the resulting mesh, where the distance between the top and bottom of the 
mesh, hereafter referred to as the simulated depth, 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠, was less than the distance 
between the top and bottom of the experimental specimen, 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒. 

                                                 
* The report describing the in-house algorithm for mapping the micro-CT dataset to the FE mesh (Alexander 
et al. 2019b) reported the volume of the elements incorrectly. The number cited here is correct. 
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Fig. 3 Comparison of the FE mesh with the morphology of the bone coupon, as imaged 
using micro-CT. The sides facing the left and right cameras are shown on the left in the red 
box and on the right in the blue box. Top row shows micro-CT images of the specimen prior 
to testing. Middle row shows the rectangular-box shaped VOI used for FE meshing. Bottom 
row shows the FE mesh, with colors corresponding to the original BVF of each element (color 
bar on right). 

The 𝑓𝑓𝐵𝐵𝐵𝐵,0 value of each element was rounded to the nearest 0.01 to produce a 
discrete range of 101 different values of BVF, from 0.00 to 1.00. Then the lowest 
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BVF of 0.00 was artificially assigned a value of 0.001 for the numerical calculations 
to prevent premature termination of simulations due to highly distorted elements. 

Each element was assigned into 1 of 101 different element sets based on 𝑓𝑓𝐵𝐵𝐵𝐵,0 of 
the element such that all of the elements within a given element set had the same 
𝑓𝑓𝐵𝐵𝐵𝐵,0 value. 

2.3 Simulation of Initial Linear Response 

A preliminary simulation modeled only the initial linear response of the 
experiment, hereafter referred to as the linear simulation. The goal was to check if 
the modeling framework, with the E–BVF power law applied on an element-by-
element basis to the simplified rectangular mesh, could replicate the initial linear 
modulus from the experiment. The simulation was run in Abaqus Standard 2017, 
using four processors on Department of Defense High Performance Computing 
systems. Each of the 101 element sets were assigned unique elastic material 
properties. The Poisson’s ratio was set to 0.3 for all elements. The modulus was 
calculated based on 𝑓𝑓𝐵𝐵𝐵𝐵,0 using the previously reported power relationship between 
modulus, in gigapascals (GPa), and BVF (Alexander et al. 2020): 

 𝐸𝐸 = 8.528�𝑓𝑓𝐵𝐵𝐵𝐵,0�
1.585

 (1) 

The compression described in Section 2.1 was simulated in the following manner. 
The compression platens located on the top and bottom surfaces of the specimen 
were modeled as analytical rigid surfaces. The bottom platen was specified to be 
stationary by constraining all 6 degrees of freedom. The specimen was compressed 
by displacing the top platen in the through-thickness direction, the y-direction, as 
depicted in the coordinate system in Fig. 3. The y-direction displacement (𝑛𝑛𝑦𝑦) was 

specified to linearly increase from 𝑛𝑛𝑦𝑦 = 0 to 𝑛𝑛𝑦𝑦 = 𝛿𝛿𝑠𝑠𝑚𝑚𝑒𝑒
𝑡𝑡𝑡𝑡𝑒𝑒 , where 𝛿𝛿𝑠𝑠𝑚𝑚𝑒𝑒

𝑡𝑡𝑡𝑡𝑒𝑒  was the 
maximum displacement of the top platen. This displacement was chosen to be 
𝛿𝛿𝑠𝑠𝑚𝑚𝑒𝑒
𝑡𝑡𝑡𝑡𝑒𝑒 = 0.03702 mm. This value was chosen to correspond to an applied strain in 

the simulation of 𝜀𝜀𝑚𝑚𝑒𝑒𝑒𝑒 = 0.4%, where 𝜀𝜀𝑚𝑚𝑒𝑒𝑒𝑒 was the ratio of 𝛿𝛿𝑠𝑠𝑚𝑚𝑒𝑒
𝑡𝑡𝑡𝑡𝑒𝑒  to the original 

depth of the mesh (𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠): 

 𝜀𝜀𝑚𝑚𝑒𝑒𝑒𝑒 = 𝛿𝛿𝑠𝑠𝑚𝑚𝑒𝑒
𝑡𝑡𝑡𝑡𝑒𝑒 /𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 (2) 
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Contact between the platens and the specimen was modeled using the surface-to-
surface contact pair formulation in Abaqus to minimize interpenetration 
of the surfaces with a penalty method approximation.* A tangential friction 
coefficient between the specimen and platens was set to µ = 0.1. Preliminary 
simulations showed that the effect of changing this parameter from µ = 0.1 to  
µ = 0.01 was negligible (Appendix A). 

The stress–strain response of the specimen in the simulation is compared with the 
experimental response in Fig. 4, where the reported simulated stress was calculated 
as the resultant force in the compression direction, measured at the top rigid platen, 
normalized by the original cross-sectional area of the specimen mesh. The reported 
simulated strain was calculated by normalizing the displacement of the top platen 
by the original depth of the mesh. For further comparison of the simulation and 
experiment, Fig. 5 compares the development and localization of loading direction 
compressive strain in the experiment and simulation. As shown in Figs. 4 and 5, 
the linear simulation matched the initial linear regime of the experimental response 
in terms of both modulus and qualitative comparison of the loading direction 
compressive strain contours. 

  

                                                 
* Interpenetration of the surfaces was minimized by specifying the pressure–overclosure 
relationship to be “hard”, as defined in the online Abaqus Analysis User’s Guide, Section 37.1.2.: 
Contact Pressure-Overclosure Relationships. This “hard” constraint was enforced via the default 
method, which for surface-to-surface contact was the penalty method. Constraint enforcement 
methods are described in the Abaqus Analysis User’s Guide, Section 38: Contact Formulations 
and Numerical Methods. 
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Fig. 4 Comparison of the apparent stress and strain between the linear simulation and the 
experiment. The point at which both the simulation and experiment reached an apparent 
stress level of 5.7 GPa is marked as TimePoint A. This timepoint is used for further analysis 
of the simulation because it falls within the linear regime of the experimental response, shown 
as the red dashed line. 
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Fig. 5 Strain fields in the loading direction compared between the linear simulation (top 
row) and experiment (bottom row). Inset at upper right shows color bar for all strain fields. 
Comparisons are at four different levels of applied strain, labeled A–D and identified on the 
stress–strain curves at top. At each of the four levels, the sides facing the left and right cameras 
are shown (identified in Fig. 3). Contours from simulation are plotted on the undeformed 
mesh.  

2.4 Mesoscale Simulation of Failure 

To implement the concept of failure in the numerical model, it was assumed that 
the deviation of the experimental stress–strain relation from linearity is due to 
failure at the microstructure scale, which can be represented by element failure 
resulting from either exceeding a compressive or tensile stress threshold. 
Simulations including failure criteria were run in Abaqus Explicit 2017 with the 
same computational resources as the linear simulation. The same boundary 
conditions were used as in the linear simulation with the following two exceptions. 
First, the maximum vertical displacement of the top platen was set to 𝛿𝛿𝑠𝑠𝑚𝑚𝑒𝑒

𝑡𝑡𝑡𝑡𝑒𝑒 =
0.055532 mm. This value corresponded to an applied simulation strain (Eq. 2) of 
𝜀𝜀𝑚𝑚𝑒𝑒𝑒𝑒 = 0.6%, which was roughly the strain in the experiment at the initial load 
peak (Fig. 2). Second, the contact between the platens and the specimen was 
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modeled using the general contact formulation in Abaqus* rather than using the 
contact pairs formulation as in the linear simulation. However, the failure 
simulations used the same normal and tangential interaction properties used in the 
linear simulation.  

The constitutive behavior of the elements was specified using custom-written  
user-specified material subroutines (VUMAT). For the failure simulations, each of 
the 101-element sets was assigned a unique material definition including the 
original density and the two parameters passed to the VUMAT: the Poisson’s ratio 
and 𝑓𝑓𝐵𝐵𝐵𝐵,0. The Poisson’s ratio was set to 0.3 for all elements. The original density 
(𝜌𝜌0, in units of grams per cubic centimeter [g/cm3]) of each element set was the 
density of pure bone (𝜌𝜌𝑏𝑏,0, for which 𝑓𝑓𝐵𝐵𝐵𝐵 was 1) scaled by the 𝑓𝑓𝐵𝐵𝐵𝐵,0 of the elements: 

 𝜌𝜌0 = 𝜌𝜌𝑏𝑏,0 ⋅ 𝑓𝑓𝐵𝐵𝐵𝐵,0 (3) 

In Eq. 3 the density of pure bone was assumed to be 𝜌𝜌𝑏𝑏,0 = 1.8 g/cm3 (Mow and 
Huiskes 2005). 

The procedure for calculating the stress for each element at a given increment 
(timepoint), 𝑡𝑡 = 𝑖𝑖, is detailed in the following and summarized in the flowchart of 
Fig. 6. Here the current value of variables are referred to with the subscript 𝑖𝑖, 
whereas the original value at the start of the simulation (at 𝑡𝑡 = 0) are referred to 
with the subscript 0. All elements were considered active at the start of the 
simulation (𝑡𝑡 = 0). The current status of the element, “active” or “failed”, was 
tracked through a state-dependent variable, SDV1, as described in Fig. 6. 

                                                 
* Described in the online Abaqus Analysis User’s Guide, Section 35.4.1: Defining General Contact 
Interactions in Abaqus/Explicit. 
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Fig. 6 Conceptual flowchart of VUMAT process for calculating stress and determining the 
state (active or failed) of each element at a given timepoint, 𝒕𝒕 = 𝒊𝒊 

2.4.1 Active Elements 

If an element was active (SDV1>–1), the stress of the element was calculated using 
linear elasticity, with the modulus calculated from 𝑓𝑓𝐵𝐵𝐵𝐵,0 using Eq. 1. After 
calculating the stress from the linear elastic equations, the principal stresses of the 
element were then obtained. The maximum and minimum principal stresses were 
then compared against failure criteria to determine if the element would fail. 

The failure criteria in compression (𝜎𝜎𝑓𝑓𝑐𝑐) and tension (𝜎𝜎𝑓𝑓𝑡𝑡) were calculated for each 
element from the original bone volume fraction of the element as 

 𝜎𝜎𝑓𝑓𝑐𝑐 = 𝜎𝜎𝑓𝑓,0
𝑐𝑐 ⋅ �𝑓𝑓𝐵𝐵𝐵𝐵,0�

𝑛𝑛  (4) 

 𝜎𝜎𝑓𝑓𝑡𝑡 = 𝜎𝜎𝑓𝑓,0
𝑡𝑡 ⋅ �𝑓𝑓𝐵𝐵𝐵𝐵,0�

𝑘𝑘
 (5) 
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The four parameters governing these criteria were 𝜎𝜎𝑓𝑓,0
𝑐𝑐 , 𝜎𝜎𝑓𝑓,0

𝑡𝑡 , 𝑛𝑛, and 𝑘𝑘, which were 
iteratively varied to study their effect on the simulation (Appendix B). In the end, 
to reduce the number of unknown parameters for optimization, the exponents of the 
power laws were set to n = k = 2 based on reviews of previous experimental studies 
relating compressive and tensile failure stress to the relative density, which is a 
correlative measure of BVF (Gibson and Ashby 1997; Morgan et al. 2018). After 
having specified the exponents to be 2, the remaining parameters were iterated to 
final values of 𝜎𝜎𝑓𝑓,0

𝑐𝑐 = 𝜎𝜎𝑓𝑓,0
𝑡𝑡 = 175 𝑀𝑀𝑀𝑀𝑀𝑀 to match the experimentally obtained  

stress–strain beyond the linear region and then the final failure.  

The maximum principal stress (𝜎𝜎1) was compared with the tensile failure stress  
(Eq. 5), and the element was considered to have failed in tension if 

 𝜎𝜎1 ≥ 𝜎𝜎𝑓𝑓𝑡𝑡 (6) 

Similarly, the minimum principal stress (𝜎𝜎3) was compared with the compressive 
failure stress (Eq. 4), and the element was considered to have failed in compression 
if 

 𝑀𝑀𝑎𝑎𝑎𝑎(𝜎𝜎3) ≥ 𝜎𝜎𝑓𝑓𝑐𝑐   (7) 

If the element failed by either compression or tension, the value of the flag noting 
the state of the element (SDV1) was changed so that the element was considered as 
“failed” during the next time increment, i+1 (Fig. 6). Once an element had failed, 
it remained in the failed state until the end of the simulation. If neither Eq. 6 nor 
Eq. 7 were satisfied, the element was considered to remain active during the next 
time increment. 

2.4.2 Failed Elements 

An element was recognized to have already failed in a previous time increment (in 
either compression or tension) if it had a value of SDV1 < –1 at the start of the 
VUMAT. In this case the failed element was treated as a fluid for all subsequent 
time increments: it was nonloadbearing in tension and only carried hydrostatic 
stress under compression with no shear. For a failed element, first, the relative 
density of the element, 𝜌𝜌𝑟𝑟𝑒𝑒𝑟𝑟, was calculated as the ratio of the original density of 
the element (Eq. 3) to the current density of the element, 𝜌𝜌𝑠𝑠: 

 𝜌𝜌𝑟𝑟𝑒𝑒𝑟𝑟 = 𝜌𝜌0/𝜌𝜌𝑠𝑠 (8) 
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Equation 8 could be rewritten by using the definition of density as the ratio of mass 
to volume. Then, with the conservation of mass within each element (𝑚𝑚𝑠𝑠 = 𝑚𝑚0), 
the relative density was expressed as the volume ratio: 

 𝜌𝜌𝑟𝑟𝑒𝑒𝑟𝑟 = 𝑉𝑉𝑠𝑠 𝑉𝑉0⁄   (9) 

Equation 9 represents the ratio of the current volume of the element at 𝑡𝑡 = 𝑖𝑖, 𝑉𝑉𝑠𝑠, to 
the original volume of the element, 𝑉𝑉0. Therefore, the relative density provided an 
indication of whether the element was in a state of tension or compression, and the 
following check was performed: 

 𝜌𝜌𝑟𝑟𝑒𝑒𝑟𝑟 ≤ 1 (10) 

If 𝑉𝑉𝑠𝑠 < 𝑉𝑉0, Eq. 10 was satisfied, and the failed element was considered to be in 
compression and to carry stress. In this case the volumetric strain 𝜀𝜀𝑣𝑣𝑡𝑡𝑟𝑟 was 
calculated as  

 𝜀𝜀𝑣𝑣𝑡𝑡𝑟𝑟 = 𝜌𝜌𝑛𝑛(𝜌𝜌𝑟𝑟𝑒𝑒𝑟𝑟) (11) 

The stress state for the failed element in compression was then calculated from the 
bulk modulus of the element, 𝐾𝐾, as 

 �
𝜎𝜎𝑒𝑒𝑒𝑒 𝜎𝜎𝑒𝑒𝑦𝑦 𝜎𝜎𝑒𝑒𝑥𝑥
𝜎𝜎𝑒𝑒𝑦𝑦 𝜎𝜎𝑦𝑦𝑦𝑦 𝜎𝜎𝑦𝑦𝑥𝑥
𝜎𝜎𝑒𝑒𝑥𝑥 𝜎𝜎𝑦𝑦𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥

� = �
𝐾𝐾𝜀𝜀𝑣𝑣𝑡𝑡𝑟𝑟 0 0

0 𝐾𝐾𝜀𝜀𝑣𝑣𝑡𝑡𝑟𝑟 0
0 0 𝐾𝐾𝜀𝜀𝑣𝑣𝑡𝑡𝑟𝑟

� (12) 

In Eq. 12 the bulk modulus (K) was calculated from the original elastic modulus of 
the element (Eq.1) and the Poisson’s ratio.  

On the other hand, if 𝑉𝑉𝑠𝑠 > 𝑉𝑉0, Eq. 10 was not satisfied, and the failed element was 
considered to be in a state of tension. The treatment of these elements depended on 
the original BVF of the element, 𝑓𝑓𝐵𝐵𝐵𝐵,0. If 𝑓𝑓𝐵𝐵𝐵𝐵,0 ≥ 0.1, the element did not carry any 
stress for 𝑡𝑡 = 𝑖𝑖. If 𝑓𝑓𝐵𝐵𝐵𝐵,0 < 0.1, the element was treated as if it was in compression, 
and it carried stress as determined by Eqs. 11 and 12. Treating as loadbearing the 
low-BVF elements that had previously failed and were subsequently in tension was 
a numerical approximation employed to mitigate these elements from becoming 
severely distorted, as described in Appendix C. This approximation did not have a 
noticeable effect on the stress–strain response (Appendix C). 
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3. Results 

The parameters chosen for the failure limits (Eqs. 4 and 5) were the same between 
tension and compression. The leading coefficients were set as 𝜎𝜎𝑓𝑓,0

𝑐𝑐 = 𝜎𝜎𝑓𝑓,0
𝑡𝑡 =

175 MPa, and the exponents were 𝑘𝑘 = 𝑛𝑛 = 2. Figure 7 compares the stress–strain 
response of the experiment with the simulation using these failure limits. The 
compressive strain in the loading direction is also compared between the simulation 
and the experiment, analogous to Fig. 5, which was for the linear simulation without 
incorporation of the failure. 

 
Fig. 7 Comparisons between uniaxial stress–strain response from the simulation with 
failure and the experiment (top) and for the strain in the loading direction (contours on 
bottom). The strain values A–D correspond to the same strain values as in Fig. 5 (for the linear 
simulation without failure). 

Figure 8 compares the surface failed elements of the simulation with the 
experimentally measured principal surface strain fields, which were derived using 
DIC measurements. Figure 9 compares the timing of element failure with the 
stress–strain response by showing the 𝑓𝑓𝐵𝐵𝐵𝐵,0 of each failed element (Fig. 9a) and the 
total number of failed elements (Fig. 9b) during the simulation. Figure 10 shows 
the distribution of 𝑓𝑓𝐵𝐵𝐵𝐵,0, grouped by 5% increments of 𝑓𝑓𝐵𝐵𝐵𝐵,0. For each group,  
Fig. 10 indicates the ratio of active elements to failed elements at the end of the 
simulation. A total of 2595 elements failed in compression (15.6% of the total 
number of elements in the mesh), while 266 elements (1.6%) failed in tension. 
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Fig. 8 Comparison of the location of failed elements in the simulation (top row) with the 
maximum and minimum principal strain fields measured in the experiment (middle row and 
bottom row, respectively). The simulation and experiment are compared at four different 
levels of applied strain, labeled as A’ through D’ and identified on the stress–strain curves at 
top. At each of the four levels, the sides facing the left and right cameras are shown (identified 
in Fig. 3). For the simulation images, active elements are shown in blue, elements that 
previously failed in compression in gold, and elements that previously failed in tension in red. 
Colors on the experimentally measured strain fields correspond to levels of maximum 
principal strain as depicted in the color bars at top, where positive and negative values indicate 
tension and compression, respectively. 
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Fig. 9 Comparison of stress–strain response with timing of element failure. The stress–
strain responses from the simulation and experiment are plotted as in Fig. 7. a) Each element 
failure is depicted with a circle, with a BVF shown by axes on right. b) Cumulative number of 
elements that failed by each mechanism during the simulation is plotted. In both 9a and 9b, 
color indicates failure type as in Fig. 8 (gold = compression, red = tension). 

 

Fig. 10 Distribution of the original BVF of the elements and the ratio of active to failed 
elements at the end of the simulation. Elements are grouped into 𝒇𝒇𝑩𝑩𝑩𝑩,𝟎𝟎 increments of 5%. For 
each group the ratio of active elements at the end of the simulation is shown in blue, elements 
that failed in tension in red, and compressively failed elements in gold. Total number of 
elements was 16,683. 
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4. Discussion 

4.1 Linear Response Modeled Using E–BVF Power Law 

The linear portion of the compressive response of skull bone was modeled by 
assigning element-specific moduli using the ARL power law for the modulus of 
human skull bone (Eq. 1). The parameters of the E–BVF power law relationship 
were derived from the experimentally measured surface stress–strain by 
approximating each specimen used in the experimental study as a stack of layers, 
each layer with uniform properties, and employing the iso-stress assumption: the 
far-field compressive stress measured by the load cell (at the platen) was assumed 
to be the same stress acting throughout the structure during the initial linear loading 
of the compressive response, such that the stress at any given timepoint was 
invariant with respect to position within the structure. In addition, the strain within 
a layer, which in reality was heterogeneous, was approximated with a single value 
calculated from the measured average surface strain of the layer. The present study 
provided a means of testing these assumptions because the 3-D material 
heterogeneity was modeled at the length scale of the element. The ability of the 
linear simulation to match the linear-regime modulus of the experiment to within 
5% indicated that these assumptions were sufficient to capture the mesoscale 
response, providing a less complex method of measuring the strain for researchers 
in future. 

The validity of the modeling procedure used to derive the E–BVF power law was 
further demonstrated by treating Specimen 04-09, which was simulated here, as a 
completely separate independent test case. The E–BVF power law given previously 
as Eq. 1 was originally derived from the data of seven coupons including Specimen 
04-09. To treat Specimen 04-09 as a separate test case, the E–BVF power law was 
recalculated by excluding the data from this specimen and only using the data from 
the other six specimens. This procedure is detailed in Appendix D, where it is 
shown that the new, recalculated power law was almost unchanged. In addition, the 
failure simulation was rerun as described in Section 2.4, with the only difference 
being that the new, recalculated E–BVF power law was used in place of the 
relationship given in Eq. 1. However, using these two different power laws did  
not produce significantly different simulation load-displacement responses 
(Appendix D).  

The applicability of the iso-stress assumption was further investigated by plotting 
the variation of compressive stress throughout the heterogeneous FE mesh. The 
minimum principal stress for each element, 𝜎𝜎3, was extracted from the linear 
simulation at the timepoint marked in Fig. 4 as TimePoint A and are shown in  
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Fig. 11a. Then the original position of each element in the undeformed mesh was 
used to calculate the depth of the element such that a depth of 0% corresponded to 
the bottom of the mesh and a depth of 100% corresponded to the top of the mesh, 
as annotated in Fig. 11a. Next the depth was divided into 10 levels of 10% each, 
and the elements were sorted into the levels according to their depth values. The 
depth was divided into 10 levels to directly compare with the modeling technique 
previously used to derive the skull bone E–BVF power law (Alexander et al. 2020). 
Figure 11b plots the mean and standard deviation of 𝜎𝜎3 over each of these 10 levels, 
where the standard deviation is a measure of the total amount of variation of 𝜎𝜎3 
within the x, y, and z dimensions of the level. 

 
Fig. 11 Variation of the minimum principal stress (𝝈𝝈𝟑𝟑) in the linear simulation at TimePoint 
A (marked in Fig. 4). a) Stress values plotted on the undeformed mesh, with depth depicted as 
varying from 0% at the bottom to 100% at the top. Elements with black color have values of 
𝝈𝝈𝟑𝟑 < –30 MPa. b) Depth was divided into 10 groups of depth = 10% each. The mean (filled 
circle) and standard deviation (error bars) within each group are plotted together with the 
far-field, apparent stress (red dashed line) calculated from the resultant force on the platen. 

As shown in Fig. 11, the stress varied within the layers as expected from the 
heterogeneity of the material properties within the layer. The greatest variation 
occurred in the middle layers corresponding to the diploe, likely because there was 
also greater variation in the BVF in the diploe than in the tables, which were 
relatively homogenous. Despite these variations, the average within each layer 
matched the far-field stress to within 1 MPa. An additional insight provided by  
Fig. 11 is that the specimen had elements with a nonnegative value of 𝜎𝜎3, which 
indicates that these elements were in tension despite the specimen being loaded in 
simple compression. This was also likely due to the material heterogeneity and 
emphasized the importance of including a tensile failure criterion in the failure 
simulation. 
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4.2 Failure Criteria Used to Model Secondary Softening 

The softening evidenced in the experimental compression curve was modeled 
through tensile and compressive failure criteria. These criteria were dependent on 
the BVF by power relationships, Eqs. 4 and 5. The exponents of the power law 
were chosen as 𝑘𝑘 = 𝑛𝑛 = 2. The leading coefficients, 𝜎𝜎𝑓𝑓,0

𝑡𝑡  and 𝜎𝜎𝑓𝑓,0
𝑐𝑐 , represented the 

compressive and tensile strength of pure bone tissue (BVF = 1), and the final values 
after iterating were 𝜎𝜎𝑓𝑓,0

𝑡𝑡 = 𝜎𝜎𝑓𝑓,0
𝑐𝑐 = 175 MPa. There are many factors to consider 

when comparing the leading coefficients of the power law and nonporous bone 
tissue strength with literature values. First, the skull bone coupon modeled in the 
present study consisted of all three layers of the skull sandwich structure, including 
not only cortical, but also trabecular bone. Therefore, deriving a single power 
relationship between the failure strength and the BVF for the skull bone assumed 
that the bone tissue/material (BVF = 1) in trabecular bone had the same mechanical 
properties as bone tissue in the cortical bone. However, Gibson and Ashby (1997), 
in reviewing the pertinent literature at the time, noted that there had not been direct 
experiments performed to measure the strength of trabecular bone material. They 
therefore calculated the compressive and tensile strength of trabecular bone tissue 
to be 136 and 105 MPa, respectively, by scaling down the corresponding strengths 
of cortical bone tissue by 70%. Similarly, Bayraktar et al. (2004) found the 
compressive and tensile strength of trabecular bone tissue in the human femur to be 
on average 137 and 83 MPa, respectively, which were approximately 20%–30% 
less than the corresponding strengths of cortical bone tissue.  

Second, the majority of studies, which related the mechanical properties of bone to 
the BVF, were performed on bone samples originating from anatomical locations 
other than the skull. However, power relationships between BVF and mechanical 
properties likely change based on the anatomical sites from which the bones were 
extracted, as demonstrated by Morgan et al. (2003) for the case of modulus–density 
relationships. A power-law relationship specifically for human skull in tension was 
published by Boruah et al. (2017). The tensile failure stress was related to the BVF 
of the outer cortical layer as 𝜎𝜎𝑓𝑓𝑡𝑡 = 109.54�𝑓𝑓𝐵𝐵𝐵𝐵,0�

2.79
 MPa. However, the BVF 

under consideration was only on a small range, roughly 60%–90%, having used 
only specimens from the outer cortical table. 

Given the previously mentioned caveats and considerations, a few comparisons 
with previous literature can be drawn for the compressive and tensile failure criteria 
of Eqs. 4 and 5. First, the dependence of the tensile and compressive strengths on 
the square of the BVF matches previous experimental results, as described in the 
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reviews by Gibson and Ashby (1997) and Morgan et al. (2018). Second, using the 
same value of failure strength for both tensile and compressive failure deviates from 
previous studies that indicated that bone is stronger in compression than in tension 
(Gibson and Ashby 1997; Bayraktar et al. 2004; Morgan et al. 2018). Third, the 
value of the tissue compressive and tensile strength of 175 MPa is higher than the 
results summarized previously. Possible explanations for these differences are the 
assumptions and limitations of the current study, as in the following.  

4.3 Critical Assumptions and Limitations 

The failure simulations were carried out in Abaqus Explicit owing to problems with 
convergence encountered during preliminary simulations attempted in Abaqus 
Standard. In the experiment the compression was applied at a quasi-static nominal 
strain rate of 0.001/s (Alexander et al. 2020). However, in the failure simulations 
the platen was specified to move at a speed of approximately 11.1 mm/s, thereby 
applying a nominal strain rate of 1.2/s. This non-quasi-static speed was chosen to 
reduce the computation time of the explicit solver to complete the simulation within 
a few hours. To assess whether the simulation could still be approximated as  
quasi-static, the kinetic energy (KE) and internal energy (IE) were output during 
the simulation, and the percentage of KE to IE was calculated. The KE/IE 
percentage never exceeded 2%, with an average of <0.1%. Explicit simulations of 
quasi-static experiments are recommended to stay within a KE/IE percentage of 5% 
(Gulavani et al. 2014). Others have used this 5% bound as a criterion of ensuring 
that kinetic energy is not dominating the response (e.g., Kader et al. 2017; Kandail 
et al. 2018). 

The methodology of modeling failure was developed and demonstrated using one 
specimen by comparing the simulated response with detailed experimental 
measurements of the response from that specimen. Furthermore, this particular 
specimen had a nonrectangular shape, due to the difficulty of machining such small 
specimens from relatively thin skull with a highly porous layer in the middle, as 
shown in the “Full Specimen” micro-CT images of Fig. 3. The FE mesh was based 
only on a cut-out of the specimen in the shape of a rectangular parallelepiped 
(“Rectangular VOI”, Fig. 2) in order to use the in-house mapping algorithm. 

In the present study the mechanical response of the elements after failure was 
modeled using an approximate, nonphysical method. For example, if an element 
was further compressed after failure, it was assumed to only have a volumetric 
hydrostatic response with no shear resistance with a bulk modulus calculated using 
the original BVF of the element (𝑓𝑓𝐵𝐵𝐵𝐵,0). However, the current BVF of a failed 
element is expected to be different than the original BVF of the element. Future 
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efforts could attempt to base the postfailure response on the current BVF of the 
element rather than 𝑓𝑓𝐵𝐵𝐵𝐵,0. 

In the mapping algorithm used here, each voxel in the micro-CT dataset was 
assigned to a specific element. Therefore, the biofidelity of the mesh may be 
governed by at least three factors: 1) the size of the elements relative to the size of 
the voxels, 2) the resolution of the micro-CT scan (the physical volume of bone that 
each voxel represents), and 3) the relative size of the microstructural features in the 
specimen that must be captured in the FE mesh. The relative size of the elements 
to the voxels was quantified by recording the total number of voxels, 𝑛𝑛𝑣𝑣𝑡𝑡𝑒𝑒, assigned 
to each element when mapping the mesh to the micro-CT data to calculate the 𝑓𝑓𝐵𝐵𝐵𝐵,0 
for each element (Section 2.2). Since each voxel contains information averaged in 
3-D, the value of 𝑛𝑛𝑣𝑣𝑡𝑡𝑒𝑒 corresponds to the physical volume within the bone specimen 
the element represented. The frequency distribution of 𝑛𝑛𝑣𝑣𝑡𝑡𝑒𝑒 is shown in Fig. 12. 
This distribution may be favorable for the following reasons. The minimum value 
of 𝑛𝑛𝑣𝑣𝑡𝑡𝑒𝑒 is shown to be greater than 5 voxels. This indicates that the 𝑓𝑓𝐵𝐵𝐵𝐵,0 value for 
even the smallest elements was calculated by averaging over more than 5 voxels. If 
the elements had been too small compared with the voxels, the BVF of the elements 
would be based on only a few voxels. In this case the model would be susceptible 
to severe discontinuities in the material properties. Moreover, the average of 𝑛𝑛𝑣𝑣𝑡𝑡𝑒𝑒 
was between 20 and 40 pixels. If the elements were too large compared with the 
voxels, the BVF of large elements would be calculated from too many voxels, and 
the structural variation of the bone specimen would be averaged out. 

 

Fig. 12 Frequency distribution of the number of micro-CT voxels (𝒏𝒏𝒗𝒗𝒗𝒗𝒗𝒗) mapped to each 
element during the algorithm used to calculate the BVF of each element. The distribution was 
skewed to the right, with groups of only a few elements having 𝒏𝒏𝒗𝒗𝒗𝒗𝒗𝒗 > 𝟏𝟏𝟏𝟏𝟎𝟎. 



 

23 

To compare the size of the elements to the microstructural features, the diameter of 
the inscribed sphere 𝑑𝑑𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑏𝑏𝑒𝑒𝑖𝑖 of each element was calculated (Fig. 13a). The value 
of 𝑑𝑑𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑏𝑏𝑒𝑒𝑖𝑖 provided an indication of the lengthscale of physical features within 
the bone coupon that could be completely contained within a single element. The 
frequency distribution of 𝑑𝑑𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑏𝑏𝑒𝑒𝑖𝑖 is compared with microstructural features of 
the bone coupon in Fig. 13. 

 

Fig. 13 Size of the elements relative to the microstructural features of the bone specimen. a) 
Frequency distribution of the diameter of the inscribed sphere of each element. b) Micro-CT 
image of the face of the specimen imaged by the right camera (shown in Fig. 3, top row). 
Lengthscale of several features is indicated as a means of comparison with 13a. 

5. Conclusions and Future Work 

The HEMC mesoscale simulation method involved filling the volume of the 
specimen with elements and then obtaining the BVF of each element. Next, 
element-specific material properties were assigned using the E–BVF power law 
previously optimized for human skull (Alexander et al. 2020). This power 
relationship was derived with the critical assumption that the skull specimen can be 
approximated with a stack of microstructurally differing layers but with each layer 
having different properties that were uniform within the layer. The computational 
concept developed here for the heterogeneous specimen was able to model the 
linear portion of the stress–strain response of the coupon with a stiffness deviating 
by less than 5% from that which was measured experimentally, thus also verifying 
the use of critical assumptions while experimentally obtaining the E–BVF  
power-law relationship. 

Incorporating and optimizing compressive and tensile power-law failure criteria 
(Eqs. 4 and 5) enabled the simulation to approximate the subsequent progress of 
nonlinearity in the experimental stress–strain response and capture the 
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experimentally observed initiation of the final catastrophic failure. The 
methodology developed to represent the failure initiation enabled the identification 
of the localized failure instability locations, which were comparable to what was 
experimentally measured within the skull bone during uniaxial compressive 
loading, thus validating the extension of the HEMC procedure to the initiation of 
failure. The ability to predict failure initiation and to identify localized failure 
locations at coupon scale can be used in future studies to develop simpler 
approaches for injury biomechanics when focusing on skull fracture at larger scale. 
Thus, future work will be directed at incorporating the methodology developed here 
into simulations of skull bone specimen macro-structures with layering to develop 
simplified predictive capability to be used at larger scale. 
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Appendix A. Effect of Platen/Specimen Friction Coefficient
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A tangential friction coefficient of 𝜇𝜇 = 0.1 between the specimen and the platens 
was used for both simulations: the simulation that only modeled the linear regime 
as well as for the simulation that included nonlinear deformation and failure. The 
effect of the magnitude of this friction coefficient parameter was tested by running 
an additional linear simulation using the same setup as described in the main body 
of the report (Section 2.3) but with a tangential friction coefficient reduced by an 
order of magnitude to 𝜇𝜇 = 0.01. The apparent stress–strain curve, analogous to  
Fig. 4 of the main report, is shown in Fig. A-1. Reducing 𝜇𝜇 by an order of magnitude 
was seen to be negligible with a reduction in modulus of less than 1%. It was 
therefore concluded that the friction coefficient between the specimen and the 
platens was not a governing parameter in the simulations.  

 
Fig. A-1 Effect on the apparent stress–strain response of reducing the friction coefficient 
between the platens and the specimen by an order of magnitude
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Appendix B. Representative Effect of Failure Strength 
Parameters
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In the failure simulation of this study, compressive and failure strengths (𝜎𝜎𝑓𝑓𝑐𝑐 and 
𝜎𝜎𝑓𝑓𝑡𝑡, respectively) were calculated for each element using power laws based on the 
initial bone volume fraction (BVF) of the element, 𝑓𝑓𝐵𝐵𝐵𝐵,0 (Eqs. 4 and 5 of the main 
report). Each power law consisted of a leading coefficient and an exponent that 
scaled 𝑓𝑓𝐵𝐵𝐵𝐵,0. The effects of the leading coefficient and the exponent on the  
stress–strain response are demonstrated in Figs. B-1 and B-2, respectively. These 
show the stress–strain response of failure simulations identical to that of the main 
body of the report, apart from the parameters of the power laws used to calculate 
the failure stresses. Only a few representative simulations are included here to 
provide a general idea of the parameter effects. The total number of simulations 
used to iteratively identify the parameters was many more than included here. 

 
Fig. B-1 Effect of scaling the leading coefficient of the failure stress power laws 
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Fig. B-2 Effect of scaling the exponents of the failure stress power laws. All three simulations 
used identical leading coefficients of 120 MPa. Simulation using 𝝈𝝈𝒇𝒇𝒄𝒄 = 𝝈𝝈𝒇𝒇𝒕𝒕 = 𝟏𝟏𝟏𝟏𝟎𝟎 ∙ �𝒇𝒇𝑩𝑩𝑩𝑩�

𝟏𝟏
 was 

also plotted in Fig. B-1.
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Appendix C. Effect of Low-Bone Volume Fraction (BVF) Elements 
Carrying a Tensile Stress after Failure
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Once an element had failed in the failure simulation, in subsequent timesteps, the 
VUMAT checked whether the failed element was in a state of tension or 
compression (Section 2.4.2 of the main report). This was determined by calculating 
the relative density, which was equivalent to the ratio of the current volume of the 
element 𝑉𝑉𝑠𝑠 to the original volume of the element 𝑉𝑉0 (Eqs. 8 and 9 of the main report). 
If 𝑉𝑉𝑠𝑠 > 𝑉𝑉0, the failed element was considered as being in a state of tension.  

Physically, failed elements loaded in tension should not carry stress. However, in 
the failure simulations described in this report, an approximation was employed to 
avoid the failed elements from becoming overly distorted. This approximation is 
hereafter referred to as the restorative-force approximation (RFA), and it consisted 
of considering failed elements as load bearing if the original BVF of the element, 
𝑓𝑓𝐵𝐵𝐵𝐵,0, was less than 10% (Section 2.4.2 of the main report). The effect of the RFA 
was tested by comparing two preliminary simulations. These preliminary 
simulations were identical to the failure simulation of the main body of this report, 
except that they used a different modulus (E)–BVF power law [𝐸𝐸 =
8.755�𝑓𝑓𝐵𝐵𝐵𝐵,0�

1.603
] and one of them lacked the RFA. In the simulation without the 

RFA, all elements that had previously failed and were subsequently in a state of 
tension were considered nonloadbearing regardless of 𝑓𝑓𝐵𝐵𝐵𝐵,0. Figure C-1 provides a 
flowchart highlighting the effect of excluding the RFA on the VUMAT algorithm 
for determining the stress of failed elements. 
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Fig. C-1 VUMAT flowchart showing the calculation of stress in preliminary simulations run 
without using the restorative-force approximation. The VUMAT is identical to that presented 
in the main body of the report (Fig. 6) except that the procedure for the restorative-force 
approximation is bypassed (box with red X). Therefore, all previously failed elements with 
𝝆𝝆𝒓𝒓𝒓𝒓𝒓𝒓 > 𝟏𝟏 were set to be nonloadbearing (red dotted line). 

Figure C-2 compares the effective stress–strain curves for simulations with and 
without the RFA, together with the final shape of the deformed mesh after 
compression. The effect of the RFA is shown in comparing the deformed meshes. 
In both cases, some elements with very low BVF values became severely distorted 
after having failed during the simulation. However, the number of distorted 
elements, and the extent of the distortion, is limited by the RFA. At the same time, 
it is shown that this approximation only negligibly affects the stress–strain 
response; the stress–strain curves are indistinguishable in the linear regime and only 
slightly deviate thereafter. Therefore the RFA was used in the failure simulations 
of the report due to the highly advantageous effect on element distortion and 
negligible effect on the stress–strain response. 
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Fig. C-2 Effect of the restorative-force approximation on the stress–strain response and on 
element distortions. The deformed meshes at the end of the simulations with and without the 
approximation are shown on the upper and lower right, respectively. Contours show the 
original BVF of the elements (both meshes use the same color map). 
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Appendix D. Considering Specimen 04-09 as a Completely 
Separate Test Case
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D.1 Introduction 

In the simulation as described in Section 2.4 of the main report, the modulus (E) 
was calculated using the modulus–bone volume fraction (E–BVF) power law 
reported in Alexander et al.1: 

 𝐸𝐸 = 8.528�𝑓𝑓𝐵𝐵𝐵𝐵,0�
1.585

 (D-1) 

The power law of Eq. D-1 had been calculated from experiments on seven coupons, 
including Specimen 04-09. Specimen 04-09 was simulated in the present study.  

In this appendix the modeling procedure was essentially repeated de novo so as to 
treat Specimen 04-09 as a completely new specimen and a completely separate 
experiment. To accomplish this, the E–BVF power relationship was recalculated 
without Specimen 04-09. This new relationship, calculated from the other 
specimens, was then applied to simulate the compression experiment of Specimen 
04-09. The stress–strain response was compared between the simulation and 
experiment to confirm the validity of the modeling procedure by treating Specimen 
04-09 as a confirmation test case. 

D.2 Methods and Results 

First, the E–BVF power law was recalculated without using the data from 
Specimen 04-09. Instead, only the data from the other six specimens of Alexander 
et al.1 were included. The resulting power law was 

 𝐸𝐸 = 8.658�𝑓𝑓𝐵𝐵𝐵𝐵,0�
1.600

 (D-2) 

Figure D-1 compares these two power law fits.  

  

                                                 
1 Alexander SL, Gunnarsson CA, Rafaels K, Weerasooriya T. Multiscale response of the human 
skull to quasi-static compression. Journal of the Mechanical Behavior of Biomedical Materials. 
2020;102. 
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Fig. D-1 Effect of removing Specimen 04-09 on the E–BVF power relationship. (left) Original 
power relationship calculated with Specimen 04-09 included.1 Seven coupons were used: three 
from Skull 04, two from Skull 07, and two from Skull 19. (right) Power relationship 
recalculated after removing the data from Specimen 04-09. Thus, the data were from a total 
of six coupons. 

Next the simulation of Specimen 04-09 was run following exactly the procedures 
outlined in Section 2.4 of the main report with the exception that the E–BVF power 
law was changed to Eq. D-2. This simulation is referred to as the “Excluded-
Simulation” since the E–BVF relationship was calculated without Specimen 04-09. 
In contrast, the original simulation, which used Eq. D-1, is referred to as the 
“Included-Simulation” since Specimen 04-09 was included in the E–BVF power 
law calculation. Figure D-2 compares the stress–strain response for the Excluded-
Simulation and Included-Simulation. 
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Fig. D-2 Stress–strain response of Specimen 04-09 comparing the Included-Simulation and 
the Excluded-Simulation. The Included-Simulation (blue curve) used the E–BVF power 
relationship from Alexander et al. 2020 (Eq. D-1), which was calculated with the data from 
Specimen 04-09 included. The Excluded-Simulation (orange curve) used an E–BVF power 
relationship recalculated after excluding the data from Specimen 04-09 (Eq. D-2). 

D.3 Conclusion 

In this appendix Specimen 04-09 was treated as a completely separate specimen 
from the original experimental cohort of Alexander et al.2 Removing the data from 
Specimen 04-09 caused only a minor change in the E–BVF power relationship 
because there were still the data from the six other coupons. Furthermore, using the 
updated E–BVF power relationship to simulate the compression of Specimen  
04-09 did not significantly alter the stress–strain response compared with the 
original Included-Simulation. These findings confirm the validity of the modeling 
procedure described in Section 2.4 of the main report, as well as the validity of the 
derived power laws. 

  

                                                 
2 Alexander SL. Gunnarsson CA, Rafael K, Weerasooriya T. Microstructural dependence of the 
compressive mechanical response of human skull. Aberdeen Proving Ground (MD): Army 
Research Laboratory (US); 2018 Sep. Report No.: ARL-TR-8512. 



 

40 

List of Symbols, Abbreviations, and Acronyms 

2-D two-dimensional 

3-D three-dimensional 

ARL  Army Research Laboratory 

BVF bone volume fraction 

CCDC US Army Combat Capabilities Development Command 

DIC digital image correlation 

E modulus 

E–BVF modulus–bone volume fraction 

FE finite element 

g/cm3 grams per cubic centimeter 

GPa gigapascal 

HEMC hybrid experimental–modeling–computational 

IE internal energy 

K bulk modulus 

KE kinetic energy 

μ-CT micro-computed tomography 

RFA restorative-force approximation 

VOI volume of interest 
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