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1 Summary

This report summarizes the results of the TOPEX project. The Topological 
Exploitation project (TOPEX) initially aimed at understanding and studying recent 
methods in topolog-ical data analysis (TDA). The research contained is intended to 
provide a basic under-standing of TDA and the type of signal information that TDA 
tools provide, with the aim of providing methods to facilitate unsupervised detection of 
structure within data. Addi-tionally, additional tools are investigated to perform structure 
detection in signal process-ing and data analysis (e.g. covariance distance measures 
and singular value analysis). Lastly, some high-level applications are explored. For 
example, the utility of TDA for op-portunistic data mining is briefly analyzed, along with 
some of the general issues relating to data mining.
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2 Introduction

2.1 Finding Structure within Data Sets

The task of data analysis is becoming increasingly necessary and difficult with 
the well-documented influx of collected data that is so common today. While the field 
of data analysis is very large and ever-growing, there are a growing set of tools within 
the field of topological data analysis (TDA). TDA has recently garnered increasing 
attention in the literature. During the literature search for this project, one TDA 
publication was identified, which applied TDA to study brain activity in the field of 
neuroscience. This method utilized a novel matrix analysis tool, called clique topology 
which was used to study the geometric structure of covariance and correlation matrices. 
It is this method of clique topology that forms the basis for the TDA approach studied in 
the TOPEX project. Within the current literature, there are many different research 
efforts directed at TDA for structure detection. In general, the focal task of these tools is 
towards unsupervised structure detection and data mining.

Data mining tasks include outlier identification, clustering, and pattern finding, i.e. find-
ing a simplified model that matches the data. Related areas include data cleansing [1] and 
denoising [2]. In the context of classification, e.g. structure detection can be performed on 
residuals after classification has taken place, i .e., analyzing what’s left over, after known 
structures in the data have been accounted for. Exploratory data analysis with regard to 
online structure detection is related to change detection, change-point detection and sta-
tionarity. The task of structure detection is really one of distinguishing between organized 
structure and random structure. Recently, this concept has been formalized in the notions 
of informativeness and non-informativeness [2] which aim at quantifying the homogeneity 
of a set of measurements. In this effort, the aim has been to identify tools that can aid in 
automated screening of sensor network data for interesting structure.

With regards to data mining, controlled experiments, are specifically designed to test 
the veracity of a hypothesis, i.e. whether or not a stated expected result is achieved [3]. 
The aim of the test is usually directed at ascertaining the cause of of some observed stim-
uli through demonstrating or proving that there exists a dependent relationship between 
the controlled input parameters and the resulting observations or measurements. This re-
quires careful collection and handling of the data acquisition process, as well as specific 
manipulation of the circumstances under which the hypothesis is tested [3], [4].

In contrast to controlled experiments, natural experiments make use of data of oppor-
tunity, i.e. data that happens to present itself through some convenient means, and allow 
one to test claims that may be possible otherwise [3], [4]. While natural experiments re-
sult in less control over the experiment (due e.g., to ethical, logistical, legal, etc. issues), 
they can provide information not otherwise obtainable. However, the justification between 
cause and effect required for elevating a factor from dependency to cause is generally 
more involved in such natural experiments, as opposed to controlled experiments [3], [4]. 
The tools developed in this effort are mainly aimed at benefiting situations where analysts 
have less control over the experiment. In such circumstances, tools from unsupervised 
data mining, pattern recognition and exploratory data analysis can be applied.

2
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2.2 Organization of This Report

This report is organized as follows. First, Section 3 provides an overview of the 
meth-ods that were studied to perform data analysis. While these methods include TDA, 
other methods were studied as well. The theory and some references to the literature 
are pro-vided in this section. Next, Section 4 provides some results from prototyping the 
methods described in Section 3. Finally, Section 5 lists some general potential 
commercial appli-cations, along with a summary and some areas for possible future 
research.

3
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3 Methods

3.1 Overview

3.1.1 General Approach: Matrix Decompositions

Large data sets are unwieldy to work with, so it of computational benefit to 
summarize the data set by reducing the dimensionality of the data set, either by 
decomposing the data set into subsets of simpler constituent components or 
transforming the data to re-express it such that features of interest become more 
apparent. Then the subset of data that are deemed more significant or more relevant 
can be further analyzed, instead of analyzing the entire data set. Within this effort, the 
focus was on decomposing the data (or a func-tion of the data) into intrinsically simpler 
pieces or components. Matrix decompositions can be used for a wide range of 
purposes, many of which result in a simplification of the data set. However, two very 
popular uses are to perform either denoising or clustering of the data.

Inherent within the undertaking of dimensionality reduction (DR) is the hope that al-
though the measurement vectors (where a single vector measurement record captures 
multiple dimensions) are taken over many times or many locations, the amount of infor-
mation that is really important resides within a space of much lower dimensionality than 
the ambient dimension. I.e., the information lives within a small number of dimensions; 
small relative to the total number of dimensions over which the data is collected. Yet an-
other way of expressing this is through the notion that the relevant information is sparse 
with regards to the measured data. Note that it may be that the data matrix itself is not 
natively sparse, but may be transformed such that the matrix is sparse in some other 
domain. Whether the data matrix is sparse or not, the important information contained 
within the data is typically sparse.

While there are many different DR tools, there are two basic types: linear and non-
linear. Well-known linear DR tools such as SVD, EVD, and PCA rely on a linear matrix 
decompositions to isolate significant o r i nteresting l inear s ubspaces. L inear m atrix de-
compositions abound and include the SVD, QR, SDD, EVD, ICA, and NNMF [3].

3.1.2 Graph Interpretation of Matrix Decompositions

There are multiple interpretations of matrix decompositions [3]. One interpretation 
is that of a graph-theoretic or network perspective. Network science is a fairly recent 
approach to multi-dimensional data analysis and to signal processing, and represents 
data using nodes and vertices on a graph. An entire topological framework for 
performing signal processing over graphs continues to be developed [5], [6], [7]. While 
graph-theoretic ap-proaches have proven very useful, one drawback is that graphs 
encode edge relationships between pairs of nodes or dyads [8]. Higher-order 
relationships, e.g. between three or more nodes are generally not utilized.

4
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3.1.3 Signal Model: Symmetric, Positive Semi-Definite Matrices

The analysis of sensor network data can take many forms. One common analytic 
object for sensor network data is that of an affinity matrix. An affinity matrix can be one of 
many specific types, e.g., Gram, covariance, correlation, adjacency, Laplacian, etc. 
depending on the application, and the viewpoint taken in the data analysis.

The objects under study here are mainly correlation, covariance, and Gram matrices, 
all of which have a symmetric positive semi-definite matrix (PSD) s tructure. More gener-
ally, these types of matrices have also been referred to as affinity matrices [ 3]. The data 
analyzed by the tools in this effort is assumed to be lumped into one single data collec-
tion, as opposed to having to re-analyze data after a series of sequential updates. For the 
latter, sub-space tracking methods may be used.

The NxN empirical covariance matrix C of an MxN data set X is computed as [9], [2]:

C =
1

N
XTJNX, (1)

where the NxN matrix JN is referred to as the column centering matrix and defined as

JN = IN −
1

N
1N1T

N , (2)

where 1N = [1 1, . . . 1]T ∈ RNx1. To convert the covariance (or any symmetric matrix) C̃ to
a correlation√ matrix C, symmetric normalization can be performed as C = DC̃D, where 
Di,i = 1/ C̃i,i, ensuring that Ci,i = 1 [2].

3.1.4 Organization of This Chapter

Sub-section 3.1 provides a brief overview of TDA and an area known as clique 
topol-ogy is reviewed that studies the nearness of data points by quantifying the 
clustering or nearness of the points in a clique, or an all-to-all connected graph. Next, 
3.1 persistence diagrams are analyzed under the condition that the relevant pairwise 
measurements are missing or known to be faulty and thus discarded. Next, the 
possibility of applying the output of persistent homology (a persistence diagram) as an 
input to a neural network for classifying the diagrams, thereby performing classification 
of the underlying data sets. Then, homological methods are studied and extended as 
applied to the problem of sen-sor network measurement data falsification. Then, sub-
section 3.2 discusses some more detailed theory and problems related to TDA. Sub-
section 3.3 describes the theory and rationale behind the topological prototyping 
experiments that were performed. In sub-section 3.4.7 a departure from the more 
topological approaches are explored. There, methods to measure distances between 
correlation, Gram, and covariance matrices are described. Lastly, sub-section 3.4 
provides a collection of additional methods in the liter-ature that have been useful in 
structure detection.

5
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3.2 TDA Literature Survey

3.2.1 Computing Topological Features of Graphs

This section presents some background on topological data analysis. Please see 
the ap-pendix Topological Background for additional foundational topics such as 
topology and homology. As a way to capture higher-order relationships in graphs, 
computationally effi-cient tools have recently been developed based on the field of 
algebraic topology. Such computational topology tools have been applied to data 
analysis and provide more de-tailed information about the non-linear characteristics of 
data, giving rise to the field of topological data analysis (TDA). As an example, one 
computational tool developed is a generalization of a graph representation, known as a 
simplicial complexes, which encode higher order relationships among nodes of a graph 
[8]. Historically signal processing and data analysis tools make extensive use of tools 
from computational geometry, measuring distance and lengths of signals. As sensors 
have become more prevalent and databases have grown, the need for more advanced 
analysis and multi-dimensional and heteroge-neous signal processing tools has grown 
as well. The data has an inherent geometric shape, and as the number of dimensions 
grows, there arises a need to study the large scale features of the data’s shape such 
as the holes or voids in the data. Computational topology makes use of practical 
algorithms for computing topological measures such as connectedness, to analyze the 
shape of a data set. One way to measure connectedness is to count the number of 
connected components, holes or voids in the shape of a data set.

Alternatively stated, classical geometry-based signal processing tools focus on geo-
metric spaces, and topological tools focus on analyzing more general topological features 
within topological spaces. A topological invariant or topological property of a surface is 
one that depends only on the topology of the surface; the property will not change with 
bending, twisting, or stretching [10]. The premise behind many existing signal process-
ing tools is that data has geometric properties. Many geometric properties have been 
exploited in DSP research; indeed he entire notion using Euclidean vector spaces to 
represent and analyze signals implies the geometric concepts of distances and angles 
among signals.

Within the field of classic network science (or network theory), graphs encode dyadic 
relationships (i.e. edge relationships between no more than two nodes). Effective topo-
logical data analysis generally requires the data to be represented in such a way so as 
to capture more than just dyadic edge relationships between nodes. One way to repre-
sent higher-order notions such as surfaces (as opposed to just edges and nodes) is to 
use a simplicial complex, broadening the dyadic concepts from graph theory [8]. A sim-
plicial complex is a generalization of the notion of a graph which encodes higher order 
relationships beyond that of graphs. The simplicial complex is a complex or combinatorial 
collection of simple components or simplices.

A filtration is a way to study simplicial complexes by decomposing them into simpler 
pieces, and analyzing each component separately, where each component resides at a 
different scale. Each component is a nested superset of the previous components, in 
the sense that they contain the previous components. Filtrations can also be used to

6
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threshold any weighted graph, even if only geometrical properties are analyzed. The 
mainstream approach to computational topology is to incrementally ’grow’ a data set by 
analyzing topological features across various scales; i.e. to perform a filtration. Filtrations 
robustly track changes in measures such as connectedness as the shape is stretched or 
twisted [11]. The longer a feature persists over the scale, the more topologically signifi-
cant the feature is.

3.2.2 Persistent Homology: Tracking Topological Features Across Scales

Persistent homology can be defined as an approach to computing topological 
features (specifically homology) as they are born, persist and die across various scales 
[12]. The purpose of this effort was to explore and experiment with approaches from 
topological data analysis (TDA, specifically persistent homology) and compare and 
contrast it with some more traditional non-TDA approaches, e.g. matrix decompositions 
[3], (p. 27).

In [3], four interpretations of matrix decompositions are described including factor, ge-
ometric, component, and graph interpretations. The clique topology approach studied in 
this effort is a generalization of the graphical interpretation of the data. The clique topology 
approach decomposes can be viewed as a type of matrix decomposition. A correlation 
matrix decomposed into a series of nested binary matrices, by iteratively thresholding 
the correlation matrix, lowering the threshold and setting only those correlation elements 
above the current threshold to one and the remaining elements to zero. Then, each 
thresholded binarized matrix is used to compute homology. The homology is computed at 
each threshold, i.e. at each filtration level, and tracked as the threshold applied to the cor-
relation matrix is decreased. In this way, the relationship between topology and geometry 
is explored, by iteratively growing the space while topological changes are computed [11].

The geometry of the space, i.e. the angles between each of the measurement vectors, 
forms the initial structure of the space. Then, spheres are inflated around each point, and 
connections are made between nodes on the basis of whether or not spheres intersect. 
The geometry is explored by encoding the geometry into the topological history, found 
by computing the filtration. Regarding using the correlation matrix as opposed to the 
operating on the actual data directly, one benefit is that depending on the dimensions of 
the data set analyzed, the dimensionality might be much smaller. A downside to this is 
that you either get information about the records (rows), or about the features (columns), 
but not both [3].

Figure 1: Matrix decomposition approach used to detect structure in data.

The focus of this work is to decompose the correlation or covariance matrix into one or
more sub-matrices, then extract a feature (or set of features) as shown in Fig. 1. For ex-
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ample, the distance between two covariances could be used at the feature extracted from a 
data set (or collection of data sets). Then the expected feature (covariance distance in this 
example) FEXP could be compared with the estimated covariance distance FEST , to obtain a 
difference between the two ( ∆).

3.2.3 Focus: Topological Detection of Geometric Structure

Within the literature, topological approaches to data analysis have become 
increasing popular in recent years [11]. Specifically, what is meant by a topological 
approach to signal processing (and more generally to data analysis) is to apply the 
knowledge that measured or collected data inherently has shape. To either store or 
process efficiently, it is often useful to first compress the data, e.g. in [13], then process 
the data to extract information.

Adapting from [11], TDA is interested in capturing and understanding the shapes of 
spaces. This understanding is really in the form of classifications: W e w ould l i ke t o know 
how spaces agree and differ in shape in order to categorize them. There are two very 
general classes of properties of spaces: extrinsic and intrinsic. To do effectively catego-
rize spaces, intrinsic properties of spaces need to be identified. ” ‘We can t ry transforming 
a space in some fixed w ay a nd o bserve t he p roperties t hat d o n ot c h a n ge. W e c all these 
properties the invariants of the space. Felix Klein gave this famous definition for geometry 
in his Erlanger Programm address in 1872”’ [10].

For example, Euclidean geometry refers to the study of invariants under rigid motion, 
e.g., moving a cube in space does not change its geometry. Topology, on the other hand,
studies invariants under continuous, and continuously invertible, transformations. For ex-
ample, we can mold and stretch a play-doh ball into a filled cube by such transformations,
but a ball cannot be stretched into a donut shape without cutting a hole in it [10].

3.2.4 Topology and Topological Data Analysis

The text [11] is a reference that provides a solid introduction to computational 
topology concepts, specifically, how topological concepts are defined, and their 
relationship to tasks in data analysis. The book [10], while somewhat mathematical in its 
approach, places a decent amount of emphasis on the history of geometry and the 
events that lead to the development of topology as we know it today. It provides a 
very helpful semi-technical backdrop to understand topology and homology in particular.

3.2.5 Clique Topology

In this research, the main topological method applied is based on that of [12] for 
the de-tection of geometric structure. In [12], the application was aimed at detecting 
structure in the neuronal activity of hippocampi within rat brains. The neuronal activity 
was recorded and correlation matrices among each pair of neurons was computed. 
Each entry of the correlation matrix was quantized to a single bit (zero or one), with 
respect to a series of thresholds. The result is what is known as a filtration in the 
literature on topological data analysis.
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analysis.

As pointed out in [12], an early applications of algebraic topology to neural data was 
(Singh et al, 2008). There, distributions of algebraic-topological features were used to 
discern if a macaque monkey was engaged in spontaneous activity, or was being exposed 
to natural images. The topological features used were homological cycles. Cycles give 
insight into global and hierarchical structure of the data, and therefore the global structure 
of the system from which the data was derived. These topological tools are also highly 
related to more general problems in sensor networks. Additionally, graph cliques are also 
studied in [14].

A high-level, qualitative algorithm for clique topology that is based on [12] is provided 
below:

1. Calculate the covariance matrix, which provides (minimally) a measure of the linear
dependence among a set of vectors (columns of a matrix, atoms in a dictionary).

2. Induce an order complex (poset topology) onto the upper-half of the covariance
matrix. This orders the elements in the covariance matrix by significance.

3. Represent the covariance matrix as a simple (undirected) graph. Then, after the ap-
plication of the order complex, the order complex of the simple graph is represented
as a sequence of nested graphs, as a function of increasing edge density.

4. For each graph in the sequence of nested graphs, compute the clique complex,
the set of all cliques that is closed under the operation of taking subsets (under
inclusion).

5. Sort these cliques by dimension (i.e. number of elements in each clique).

6. For each set of cliques, determine the boundaries of each clique in the set. Those
cliques which have boundary of zero (i.e. the kernel of the boundary) are cycles.

7. Quotient out those cycles that are boundaries of higher-dimensional cycles. The
intent is to avoid counting cycles twice, i.e. don’t to distinguish between two cycles if
one cycle can be deformed into the other cycle without leaving the clique complex.

8. At a given edge density, the homology of the clique complex provides a relationship
among the cliques in the graph.

A clique is a subset of vertices of an undirected graph such that its induced subgraph is
complete [12]. The clique complex X(G) of an undirected graph G is an abstract simplicial
complex (that is, a family of finite sets closed under the operation of taking subsets),
formed by the sets of vertices in the cliques of G. Any subset of a clique is itself a clique,
so this family of sets meets the requirement of an abstract simplicial complex that every
subset of a set in the family should also be in the family [12]. An m-clique consisting of
m vertices, and a chain is a linear combination of cliques. Whereas Fig. 2 provides a
high-level qualitative description of the general clique topology pipeline, Fig. 3 provides a
more detailed view of the clique topology data flow.
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Figure 2: High-Level Data Flow Diagram for Clique Topology

Figure 3: Detailed Data Flow Diagram for Clique Topology

The common practice of using standard tools such as eigenvalue decomposition is
not appropriate for neural applications. Such matrix analysis relies on quantities which
are invariant under linear change of basis, e.g. eigenvalue decomposition of a covariance
matrix as in PCA are commonly employed [12]. This strategy is natural in the physi-
cal sciences, where meaningful quantities are frequently assumed to be preserved by
linear coordinate transformations [12]. However, in contrast to common approaches, re-
searchers believe that structure in neural data should be invariant under matrix transfor-
mations of the form C = f(A) [12]. The eigen-structure of symmetric matrices such as

10
Approved for Public Release; Distribution Unlimited. 



covariances are distorted when applied to non-linear monotonically increasing transfor-
mations f(x) [12], instead ”‘The arrangement of cliques (all-to-all connected subgraphs) 
in the order complex of a matrix can be used in lieu of eigenvalues to detect random or 
geometric structure”’ [12].

3.2.6 Structure and Change Detection in Correlation Matrices

Reference [15] proposed a method to detect change points in correlation networks 
for time series data that is not based on a specific type of distribution. The work in [15] 
merely focused on taking the Frobenius norm of the difference between two correlation 
matrices. However, there are many more norms that can be applied to detect structure 
change
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3.3 Topological Approaches

3.3.1 Structure Detection Using Betti Curve Area

The first experiment with clique topology was performed by downloading the freely and
publicly available ”‘CliqTop”’ MATLAB code available from Dr. Giusti’s website at

http : //www.chadgiusti.com/tda− software.html.

The structured input data that was used for these experiments was randomly gener-
ated by randomly selecting a entries with single-mode, univariate, Gaussian distributions,
and then adding additive white Gaussian noise (AWGN) to bring the signal to noise ratio
(SNR) down to 15 dB.

The data matrix D was either a structured (the Gaussian distributed data with AWGN)
or an unstructured (consisting of a shuffled version of the noiseless structured case) data
set. These two types of data sets were analyzed by computing their respective covariance
matrices, and then this covariance matrix C was fed into the clique topology algorithm.
The output of the clique topology algorithm are the first β1, second β2, and third β3 Betti
numbers.

3.3.2 Persistence with Incomplete Pairwise Measurements

3.3.2.1 Introduction
One of the original motivations for the use of persistent homology in the study of data

is the stability theorem. Roughly, the stability theorem says that the persistent homology
of the filtered Vietoris-Rips complex built from a point cloud is robust to slight perturbation
of the points.

In contrast, it is straightforward to construct examples for which classical (i.e., non-
parameterized) homology changes drastically under small perturbation. These results
have since been extended to include sub-sampling the points and noise in complexes
built from non-metric data, like correlations between signals. However, none of this work
considers the effect on persistence of gaps in the pairwise similiarity matrix used to con-
struct the complex.

Such gaps appear commonly in real data, either as a result of a missing, corrupted, or
untrustworthy measurement, or as a result of intentional sparsification or subsampling of
the similarity matrix. Unfortunately, in this setting, it is possible for even small amounts of
missing data to create dramatic changes in the resulting persistence diagram. Given the
correspondence between pairwise measurements and filtration levels in which an edge
appears in the standard filtered complex constructions, removing a single edge from the
filtration can cause a cycle that has a finite death time to persist until the end of the filtra-
tion. In this case, the distance between the two persistence diagrams is infinite under the
standard metrics.

Clearly, the opposite change can occur if an edge that should not occur in the filtration
is introduced. To apply persistent homology to study data under these constraints, it will be
necessary to develop techniques for extracting an approximation of the “real” persistence
information. To this end, we are investigating two different approaches:
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• Methods of imputing filtration levels where missing edges should be inserted, and

• Methods for constructing complexes for which persistence is stable to deleting edges
under some appropriate notion of distance. This report describes the former ap-
proach and initial results—the latter is under investigation.

3.3.2.2 Imputing Missing Entries
There are a variety of methods available to impute missing matrix entries. In the case 

that the matrix is a distance matrix of drawn from a Euclidean point cloud, this problem 
is well-studied in computational geometry. Similarly, if a matrix is known to be low-rank 
and the number of missing entries is small, there are a number of methods for finding 
candidates to replace missing entries. Given the general nature of the problem, and 
the intended application to non-metric data, it is reasonable to begin with these more 
general techniques. A standard approach is minimization of the nuclear norm of the 
matrix, given by the sum of the norms of the eigenvalues. This is a much simpler, robust 
and more computable criteria than then naive rank minimizaiton, which is carried out by 
checking that all principal submatrices above a particular size are singular using various 
combinatorial checks. Like all non-convex optimization problems, the result can be non-
deterministic if the problem is badly underspecified, h owever i t i s n ot c lear w here the 
threshold for convergence to a correct answer lies, or even if it exists for various classes 
of data.

3.3.3 Persistent Homology as a Feature Space for Neural Nets

Here, the effort moved to investigate the use of persistence in analyzing the 
progress of a single fully-connected layer of a convolutional neural network (CNN). 
Having learned the fundamentals of neural networks, including those with additional 
convolutional layers, we return to our previous goal of using persistent homology as a 
tool to augment state-of-the-art machine learning techniques. Specifically, the use of 
persistent homology on so-called feature space as a technique for engineering 
convolutional layers of a CNN.

The focus was primarily on developing code and providing a proof of concept for the 
use of persistent homology in feature space. As we have found in previous investigations 
persistence appears to be more effective for classification when applied to groups of simi-
lar data than individual samples. While this approach is effective at identifying meaningful 
topological structure within each class it is difficult to apply this structure to unlabeled 
data, as is the goal for supervised learning tasks. On the other hand, if we were to look at 
the persistent homology of the features instead of the samples we would be able to iden-
tify subsets of features constituting meaningful homological structure within each class 
that can then be blindly applied to unlabeled data.

This approach was applied to two sets of image data, MNIST and CIFAR-10, both of 
which contain 10 classes of images. This technique is specifically useful for image data 
as images generally have a fairly large number of features - pixels, potentially falling into 
3 distinct classes (’R’, ’G’, or ’B’, in the case of CIFAR-10) which leaves room for inter-
esting topological structure in feature space. That is, if we were to look at the feature
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space of 1000 points in 3-dimensional space we would be dealing with 3 points in 1000-
dimensional space.

3.3.4 Homological Methods for Sensor Network Integrity

3.3.4.1 Introduction
The purpose of this section is to present research and development progress on ques-

tions regarding sensor network integrity using tools from topological data analysis (TDA).
The style is intended to be pedagogical, walking the reader through the main ideas, em-
phasizing pictures over proofs to communicate intuition. The primary work thus far has
been to integrate several different tools and combine them with visualization to do experi-
mental data analysis. We will discuss the basic theory and the principal ideas along with
examples and their visualization.

Throughout, we will assume that a sensor network is a collection of sensors, deployed
in some environment with the ability to detect nearby sensors and do some other types
of measurement. The sensors measure some quantity, like temperature, that is assumed
to be a continuous function on the domain. In this light, the sensor network is a finite
sample from an unknown function on an unknown space. The neighbor information of the
sensors is correlated to distances in the domain, but the locations of the sensors (i.e. as
coordinates) are not known. It is a challenging theoretical (and practical) setting in which
to work. One feels intuitively that there will be very strong limits on what can be computed
given the strict limits on the inputs.

However, some very strong theoretical guarantees exist for some fundamental prob-
lems in these so-called coordinate-free sensor networks. Perhaps the most immediately
compelling of these results is the Topological Coverage Criterion or TCC. This gives a
way to extract a guarantee of sensor coverage from the neighborhood information. This
result, first formulated by De Silva and Ghrist [5] was extended and simplified by Cavanna
et al. [4].

It gives a polynomial-time algorithm to certify coverage. The TCC was a major starting
point for the present work, which strives to extend these methods to the analysis of scalar
fields and vector fields over sensor networks. That is, we’d like to extract topological infor-
mation about the unknown function from the network measurements. In particular, we’d
like to identify global inconsistencies in the data, which can manifest themselves only in
the presence of nontrivial network topology. It is assumed that such inconsistencies are
an indication of either sensor errors or possibly intentional manipulation of the network.

Cohomology, and especially persistent cohomology gives a way to identify and local-
ize holes in the data where errors can hide. Interestingly, the theory implies that these
are the only places such errors can hide. The basic setting is elaborated in Section 2,
where it is explained how the neighborhood graph is augmented to form a larger discrete
structure that can be used to represent continuous functions on the the unknown domain.
This is the basic object that one computes and visualizes throughout this work. The first
topological tool to consider is homology.
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In Section 3, we explain the basic principles of homology and how they relate to the
complexes of Section 2 and to sensor networks more generally. The main theme is that
homology gives a language for describing (and counting) holes in the network in a mathe-
matically rigorous way. Moreover, the holes can be ascribed some “size” or other quantita-
tive information using persistent homology. Section 3 also presents some examples of the
visualization of persistent homology in sample networks, showing both the persistent ho-
mology (as a persistence diagram) as well as a representative of the most significant hole.
Most previous work on homological sensor networks was phrased in terms of homology.
However, there is a dual theory of cohomology that is in many senses, the more natural
language for expressing and studying functions on the domain. Section 4 gives the basic
definitions of cohomology. One interpretation of the cohomology theory we are using is as
global structure of a discrete version of differential forms. Seeing as differential forms are
a tool for doing caculus without coordinates, it makes sense that discrete differential forms
allow us to do some calculus on discrete complexes arising from coordinate-free sensor
networks. There is an extensive package by researchers at the University of Illinois im-
plementing Discrete Exterior Calculus [2] that we have integrated into our codebase (See
also the book by Grady and Polimeni [7]). We give some examples of using that code to
visualize cohomology. Cohomology and the Discrete Exterior calculus have an intimate
connection to harmonic analysis. As a result, one can compute the so-called harmonic
cocycles. These are used to give embeddings of the network into circular coordinates
[6]. Examples and illustrations are given in Section 4. It is expected that these harmonic
cocycles can also be used to extend (or interpolate) incomplete data across a network.
Last, we report on an implementation of the TCC and show the resulting figures in Section
5.

3.3.5 Multi-Dimensional Scaling of Collections of Persistence Diagrams

3.3.5.1 Introduction
Topological Data Analysis (TDA) is an approach to studying potentially high-dimensional,

incomplete, or noisy data by studying its “shape.” The primary assumption is that this data
carries relevant geometric and topological information about the “system” from which it
has been generated. Persistent homology is a popular method in TDA which involves
computing a topological signature from point cloud data. Specifically, computing the per-
sistent homology of distance functions involves tracking the scales at which topological
features appear and disappear by constructing a nested sequence of simplicial complexes
on top of the point cloud at a range of scales. The resulting topological signature known
as a persistence diagram, or barcode, is the set of pairs corresponding to the scales at
which these features appear and disappear.

Persistent homology has been shown to be a useful tool for studying point clouds that
are sampled from a single unknown space in order to learn something about its struc-
ture. We will instead consider collections of point clouds sampled from a family of related
spaced defined by a so-called parameter space. Our hypothesis is that by using a metric
on the space of persistence diagrams known as the bottleneck distance, we can embed
the diagrams of this family of spaces in order to learn something about the structure of
the underlying parameter space. Specifically, we utilize Multidimensional Scaling (MDS)
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in order to embed collections of persistence diagrams in low-dimensional space. MDS is 
a general purpose tool for embedding metric data into Euclidean space. The special case 
of MDS on Euclidean point sets is equivalent to principle component analysis (PCA). It 
strives to minimize the mean squared reconstruction error. One can rewrite this optimiza-
tion as an eigenvector problem, and the eigenvalues give some indication of the quality of 
the embedding. To generalize from the case of PCA, the eigenvectors tell us the amount 
of variance in the data explained by the embedding, a measure of how much information 
was lost in the visualization process.

3.4 Additional Approaches to Structure Detection

3.4.1 Overview

This section also contains less-topologically motivated means for ascertaining 
structure in data; the methods are based on the spectrum or singular values of the data. 
The methods include:

• Informativeness

• Scree Plot Analysis

• Randomized Hadamard Multiplication

• Shannon Entropy

In order to facilitate the subsequent discussion the singular value decomposition (SVD) of
an NxN matrix D will be defined as:

D =
[
UΣV T

]
, (3)

where U is a matrix whose columns consist of the left-singular vectors, Σ is a diagonal 
matrix consisting of the singular values σi, where i ∈ {1, ..., N} and V T is a matrix whose 
columns consist of the right-singular vectors [16].

3.4.2 Informativeness

The work of [2] introduces a new framework for measuring heterogeneity in 
correlation matrices. They defined the informativeness of a correlation matrix as the 
distance be-tween a given correlation matrix and the nearest non-informative 
correlation matrix. A non-informative correlation is defined as one with constant off-
diagonal entries. In par-ticular, [2] expands and generalizes the techniques by [17], 
[18] and [19] for comparing correlation matrices. This approach allows the application
of a wide range of distance measures that can be applied to measuring the difference
between a correlation matrix and a non-informative correlation matrix.

A correlation matrix A is an SPD NxN real matrix, such that Ai,i = 1, i.e. is normalized 
so that each diagonal element is equal to a constant value a. In [2], various measures 
were used to estimate the homogeneity of a correlation matrix; in addition to classical
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techniques such as Bartlett’s or Lawley’s methods, newer norms such as the Bures dis-
tance were also studied and simulated. Following [2], a non-informative (correlation) ma-
trix is generally a SPD matrix whose off-diagonal elements are all equal to 1. Specifically,
the set of non-informative matrices is given by a convex combination of a constant matrix
J and centering matrix H [2] as

N ≡
{
Na = aJ + (1− a)

n

n− 1
H : 0 ≤ a ≤ 1

}
, (4)

where H = I − 1
n
J and J = 11T .

Given the above definition, the informativeness of a correlation matrix C is defined to
be the distance from the correlation matrix to the nearest non-informative matrix Na [2]

dN(C) ≡ min
N∈N

d(C,N)

= min
0≤a≤1

d(C,Na).
(5)

Note that in contrast to the Riemannian distances between two covariance matrices,
the informativeness is a single-sample measure which operates on a single correlation
matrix. In this work, two distance measures are explored for d in Eq. (5). The first
distance measure is the Euclidean distance dF

dEUC(C1, C2) = ‖C1 − C2‖F , (6)
based on the Frobenius norm, which is given by the square root of the sum of squared
matrix entries. E.g. the Frobenius norm of an NxN matrix C with real entries is

‖C‖F =

√√√√ N∑
i,j=1

c2i,j. (7)

Another distance measure explored in [2] is the Bures distance dB

dB(C1, C2) =

√
2− 2

∥∥∥√C1

√
C2

∥∥∥
∗
, (8)

where || · ||∗ is the nuclear norm of a matrix.

3.4.3 Scree Plot Analysis

A plot of the sorted singular values σi, where i ∈ {1, ..., N} on a graph in 
descending order is called a scree plot [3]. An attempt is then made to determine the index 
corresponding to the singular value where the graph appears to flatten or level out. A 
principled way of doing this is to perform numerical differentiation on the set of singular 
values. Then the maximum difference indicates the largest drop in singular values, 
corresponding to a suitable cutoff point, beyond which singular values are not significant. 
Determining this threshold at which to cutoff is key. There are two methods for scree plot 
analysis in [3]: direct computation and maximum likelihood estimation.
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3.4.4 Random Hadamard Multiplication

Another method to detecting structure begins by multiplying the SPD matrix by a 
random matrix and is based on [3] and [20]. The random sensing matrix Φ must possess 
cer-tain properties, such as independence, a zero mean, and a low variance (similar to the 
properties typically required for sensing matrices to possess a low coherence in the field 
of compressive sensing). The premise is that if the data matrix D does not contain a 
significant a mount o f s tructure, t hen e lement-by-element multiplication by a  r andom bi-
nary +1/ − 1 matrix will not alter the 2-norm of the data matrix, i.e., ‖D‖2 ≈ ‖ΦD‖2 [3]. If 
there exists structure, then ‖D − ΦD‖2 will be commensurate with the amount of structure 
present. Normalizing by the Frobenius norm of the data matrix gives

h =
‖D‖2 − ‖ΦD‖2
‖D‖F

, (9)

where Φ is a random matrix whose ith, jth entry is defined as φ ij ∈ {+1, −1}.

3.4.5 Shannon Entropy of Singular Values

In order to determine the significant subspaces of a data set, the Shannon 
entropy of the singular values of the data set can be computed [3]. First, the square of 
each singular value is normalized by the sum of all singular values, as

fk =
σk

2∑N
i=1 σ

2
i

, (10)

where σi and σk are the ith and kth singular values, respectively for i, k ∈ {1, ..., N}. Then,
the entropy of the set of singular values is computed as

H(f) =
−1

log(N)

N∑
k=1

fklog(fk), (11)

where log(N) is the natural logarithm of N .

3.4.6 Distributions of Matrix Entries

In [21], the distribution of off-diagonal elements of the normalized Gram 
(correlation) ma-trix was introduced and analyzed, in order to assess geometric changes 
in overcomplete dictionaries. Doing so corresponds to the distribution of the data vectors 
on the surface of the unit hypersphere, a measure of sphericity of the data. The 
Kolmogorov-Smirnov and Kullback-Leibler divergence was used to measure distances 
between the distributions of off-diagonal correlations to ascertain the degree of dictionary 
change.

As an alternative to comparing the mean of Gram matrix entries, the distance between 
Gram matrix entry distributions provides more detailed geometric information about the 
changes in the effective dictionary due to dictionary updates. It is suggested that tradi-
tional statistical distances can be applied to a distribution of Gram matrix entries to detect 
a shift in effective dictionary geometry. Statistical distances can be used to monitor the
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difference between the distributions of entries of the Gram matrix of the optimized CS sys-
tem and Gram matrix entries of the stale CS system, seeking a change in the geometry
of the effective dictionary. These statistical distances (presuming that their computational
complexity is low enough relative to re-generating the sensing matrix) could be used to
alert the system that an updated sensing matrix should be generated.

To compare Gram matrices distributions, traditional methods of probability distribution
distances can be used, of which there are many [22]. Two well-known measures to com-
pare distributions are the Kolmogorov-Smirnov test and the Kullback-Leibler divergence.

3.4.6.1 Overview of Statistical Distances
Reference [23] identifies two significant applications of statistical distances in data

analysis:

• Parametric statistical inference (estimating parameters of a presumed distribution)
• Goodness of fit (measuring distances between a data set and a known distribution)

Many statistical distances are used for both purposes, and there are generally two types
of distances:

• Distances between distribution functions, e.g. Kolmorgorov-Smirnov, Cramer-Von
Mises, Anderson-Darling

• Distances between density functions, e.g. Kullback-Leibler Divergence, Bregman
Divergences, Pearson’s Chi-Square, Hellinger Distance

This effort examines one of the distribution distances from [21], namely the Kolmorgorov-
Smirnov (KS) statistic.

3.4.6.2 Kolmogorov-Smirnov Test
The KS test is a non-parametric statistical goodness of fit test that was originally

developed to determine if an empirical data sample set belongs to a given continuous
underlying CDF [22]. Smirnov later extended the KS-test to compare two empirical data
distributions, i.e. EDFs [22]. To begin, defineX1, X2, ...Xm and Y1, Y2, ...Yn as two indepen-
dent samples from populations with unknown EDFs, defined as FX and FY . In addition,
define Fm and Fn as the corresponding empirical EDFs. Then, the hypothesis test for the
equivalence of the two distributions is formulated as [22]:

Ho : FX(x) = FY (x) ∀x
H1 : FX(x) 6= FY (x) ∃x

(12)

The KS-statistic for comparing two distributions is [22]:

DKS(m,n) = sup
x
|Fm(x)− Fn(x)| (13)

The KS-statistic translates to the maximum difference between the distribution function of
Fm(X) and the distribution function of Fn(x).
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There is a significant body of literature that applies the KS-statistic to perform a binary
hypothesis test as to whether two data sets are drawn from the same distribution. In
addition to this, however, the KS-statistic DKS(m,n) can be used as a rough measure
of distance between two data sets without performing a statistical test, per se. The KS-
statistic can provide a relative measure, in some sense, of how far one data set is from
another data set.

3.4.6.3 Applying the KS Test to SPD Matrix Evaluation
In this section, the KS statistic is applied as a distance measure between the entries

of a SPD matrix G(At1, At2) and an identity matrix of the same size. Define Gt2(:) to be
the discrete finite data set consisting of the absolute value of the entries that lie above the
main diagonal of the updated SPD matrix. Similarly, defineGt1,t2(:) to be the discrete finite
data set consisting of the absolute value of the entries that lie above the main diagonal of
the stale SPD matrix. The total number of elements in either matrix is MxM , so the total
number of elements above the main diagonal of either SPD matrix is

Ntriu =
M (M − 1)

2
. (14)

Therefore, each of the data sets Gt1(:) and Gt1,t2(:) contains Ntriu elements of real
scalars taking values on [0, 1]. Define Ft1,t2(x) to be the EDF of the SPD matrix Gt1,t2(:).
TheNt1,t2 points used to evaluate the EDF are within the interval [min(Gt1,t2(:)),max(Gt1, t2(:))].
This interval is sub-divided into Nt1,t2 sub-intervals, whose bin edges are collected in the
Nt1,t2-element vector xt1,t2. Then the EDF Ft1,t2(x) is given by

Ft1,t2(x) =
1

Nt1,t2

Nt1,t2∑
i=1

I(Gt1,t2(:) ≤ xt1t2(i)). (15)

The KS statistic then acts as a difference operator between the two SPD matrices

DKS {G(At1,t2), IN)} = sup
x
|Ft1,t2(x)− Ft1(x)| (16)

where the argument x indexes the EDFs over the interval (−∞,∞). The Nbin-element
vector x represents the Nbin bin edges into which the interval is divided. The vector x can
be expressed in the MATLAB language as [−∞; sort([G(At1,t2(:);G(At2(:)]);∞]. The as-
sociated KS-statistic offers some interesting geometric interpretation. One interpretation
of the KS-statistic in light of the geometry of the EDF of Gram matrix entries is that the
KS-statistic is the largest difference between two dictionaries, regarding the number of
atom pairs that are at least a given distance apart from each other.

In order to provide some motivation for seeking a measure beyond the Frobenius
norm, an example using a contrived data set to simulate the entries of the Gram ma-
trix is presented in Fig. 4. Data sets (representing Gram matrix entries) are constructed
to demonstrate that Gram matrices with very similar Frobenius norms, or with very sim-
ilar means of their entries can have very different histogram distributions. The different
histogram distributions represent significantly different underlying effective dictionary ge-
ometries. Therefore, single-parameter measures of the Gram matrix (e.g. only the mean
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Gram matrix entry, or only the Frobenius norm of the Gram matrix), may in some cases
not provide a good measure of the relative geometry of the data vectors. Consequently,
other Gram comparison methods are sought which more comprehensively encode the
geometry of the data.
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(a) Histogram 1

(b) Histogram 2

(c) Histogram 3

(d) Histogram 4

Figure 4: Failure of Single Parameter Gram Matrix Measures. Histograms of synthetically
generated Gram matrices are shown. Neither the Frobenius norm nor the mean Gram
matrix entry reflect the geometry of the histograms, and therefore the geometry of the
underlying data sets.
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3.4.7 SPD Matrix Difference Measures

The methods explored previously use the persistent homology of a correlation 
or Gram matrix. In contrast, the tools studied in this section offer less topological 
methods for finding interesting geometric features or changes in the geometry of data. 
One way to as-certain geometric change in data sets is to look at the data sets through 
the lense of their respective covariance matrices, in essence representing each data set 
by its covariance matrix. Then, the space of SPD matrices, each covariance and 
therefore each data set becomes a point and distances can be computed between and 
among data sets. In this section, four categories of SPD matrix measures are 
described: Euclidean matrix mea-sures, metrics between distributions of off-diagonal 
matrix elements, informativeness (or homogeneity) and Riemannian distance metrics.

This are was briefly studied (but mainly left to a  future research effort) was distances 
between pairs of SPD matrices, which can include Gram matrices, correlation matrices 
and Riemannian distances. In a parallel context, the informativeness concept applies dis-
tances between the test affinity matrix and the nearest non-informative m atrix. However 
the Riemannian distances that were tested in [2] were rejected due to the issue of infinite 
distances being returned [2]. Furthermore, as a means for computing a distance between 
two matrices, the structure found within an affinity, correlation, Gram, or covariance can 
be characterized by its distance from the non-informative identity matrix, as is done in the 
results in Section 4.7.5.

3.4.7.1 Euclidean Distance Measure
The Frobenius norm of a matrix is the matrix equivalent of taking the Euclidean norm 

of a vector. It vectorizes the matrix argument and disregards any structure inherent in the 
matrix. The Frobenius norm of a matrix C is

‖C‖2Fro =
√
tr(CTC)

=

√√√√ N∑
i,j=1

c2i,j.
(17)

Consequently, perhaps the most straightforward way to compute a distance between two
SPD matrices C1, C2 is to take the Frobenius norm of the difference of the two matrices,
given by

dEUC(C1, C2) = ‖C1 − C2‖Fro (18)

3.4.7.2 Distances on the Riemannian Manifold
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The affine-invariant Riemannian metric (AIRM) [9] is a metric applied to the space of
MxM symmetric positive definite (SPD) matrices. The distance between NxN covari-
ance matrices C1 and C2 that follows from the AIRM is [24], [9]

daie(C1, C2) =
∥∥∥log (C−1/21 C2C

−1/2
1

)∥∥∥
F

=

√√√√ N∑
i

log2
(
λi(C

−1
1 C2)

)
,

(19)

where λi is the ith eigenvalue of the product C−11 C2 and log refers to the matrix logarithm.

3.4.8 Impact of Record Length on Covariance Measures

When using any of the types of SPD matrix measures that are mentioned in this 
report, the number of data records accumulated prior to computing a particular affinity 
matrix (e.g. covariance, correlation, Gram, etc.) will impact the affinity matrix 
structure itself, as well as distances such as the AIRM or correlation homogeneity 
measures such as informativeness [15]. Even if each of two data sets are drawn from 
the same distribution, the Euclidean geodesic distance between the two respective 
covariance matrices will vary greatly when the number of records from one data set is 
vastly different from the other. Furthermore, both theory and simulation shows that the 
covariance distance will even be significant between a data set and a subset of the same 
data set.

As an example, assume that a collection of measured data vectors xj is distributed 
according to a multi-variate normal distribution, and each data vector is stored in a ma-trix 
Xj = [x1j , ..., xnj ] ∼ N (0, Σ) , with j = 1, ..., L. Then the expected value of dfro(k) for k ∈ 
[2, ..., T − 1] is given by

E [dfro(k)] =

(
1

k
+

1

L− k

) (
tr
(
Σ2
)

+ tr (Σ)2
)
, (20)

where dfro(k) = ‖C(1, k)− C(k + 1, L)‖2F , and C(i, j) = 1
j−i+1

j∑
`=i

(X` − µX) (X` − µX)T , L

is the entire record data length, k is the number of records used to compute the first covari-
ance matrix C(1, k) and L− k + 1 is the number of records used to compute the second
data matrix C(k + 1, L). The parameter index k indicates the time or sample at which one
data record length ends and the next begins.

The proof of this equation is provided in the appendix in Section 6, and is based on
the outline given in [15]. This effect is present in all of the SPD matrix measures and
in practice needs to be identified and accounted for when utilizing any type of matrix
difference as applied to affinity matrices such as covariance, correlation, or Gram.
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3.5 Related Tools Identified for Future Study

In addition, the following list of tools to perform structure detection were found in the
literature, but were not explored in this research [3]:

• Independent Component Analysis

• Semi-Discrete Decomposition

• Non-Negative Matrix Factorization

• Tensor Analysis
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4 Results

4.1 Structure Detection Using Betti Curve Area

Fig. 5 shows the data flow for a single run of this algorithm. Note that the 
shuffling of the data matrix has a significant impact on the appearance of the 
covariance matrix, as compared to the structured case. The covariance matrix that was 
spikey in the structured case now becomes much more dense than in the structured 
case.

Running this algorithm many times in a Monte Carlo type experiment results in a dis-
tribution curve for each of the Betti numbers, or what is referred to as a Betti curve. The 
Betti curves generated from multiple Monte Carlo runs are shown in the lower right corner 
of Fig. 6. Lastly, in the lower left corner of Fig. 6, the sum of the areas of each respec-
tive Betti curve is shown. These sums provide an aggregate signature of the underlying 
topological characteristics of the data over all of the Monte Carlo runs.

Figure 5: Initial Prototype Example-Single Run
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Figure 6: Data Flow for Initial Prototype Example

A baseline experiment using Betti curve areas was performed using 8 correlated sub-
spsaces. The corresponding bar chart is shown in Fig. 7. Note that in the experimental
results, the structured case contains in general fewer cycles for all three Betti numbers
than the shuffled or unstructured case. It is hypothesized that the randomness of the
unstructured shuffled data allows for more connectivity than in the structured case, and
therefore the unstructured data results in a higher Betti number count and therefore a
greater area under the corresponding Betti curves.

Figure 7: Betti Curve Areas (Eight Correlated Subspaces)
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A subsequent additional experiment was conducted where the number of correlated
components was decreased from 8 to 4. The resulting bar graphs of the Betti curve
areas are shown in Fig. 8. When comparing Fig. 8 to Fig. 7, it can be seen that
the decrease in correlated components from 8 down to 4 significantly narrows the gaps
between the corresponding Betti curve areas, for all three Betti numbers. In addition,
decreasing the number of correlated components from 8 to 4 evidently causes the area
under Betti curve 3 to exhibit a reversed relationship. I.e., in Fig. 7, Betti curve area
number 3 was higher for the unstructured case when compared to the structured case;
for 4 correlated components, the unstructured case has a lower Betti curve area than the
structured case, as seen in Fig. 8.

Figure 8: Betti Curve Areas (Four Correlated Subspaces)

4.2 Persistence with Incomplete Pairwise Measurements

As part of our initial investigation into the appropriateness of the method, we 
have run a series of numerical experiments. Beginning by selecting points in 
Euclidean space us-ing a uniform distribution on the unit cube. We measure similarity 
of the vectors using a linear transformation of the standard metric, covariance and 
absolute correlation. We then threshold the matrix, discarding a sequence of 
percentages of the lowest similarity edges (modeling sparsification) or a random sample 
of the data (modeling missing data), and run nuclear norm minimization to recover a low 
rank matrix which explains the obser-vations. (Note that we do not necessarily expect 
even the original matrices to be low rank.) Further experiments are planned using other 
starting data, including data gathered from the Stanford Network Analysis Project 
(SNAP). As expected, in each case the com-
pleted matrices converge entry-wise to the original as the number of deleted entries
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shrinks, and so we see a convergence in the diagrams appear to converge to the dia-
gram of the base matrix. As might be expected, the rate of convergence – that is, the
relationship between the number of missing entries and the success of the optimization
in approximating the matrix – seems to vary substantially between similarity measures.
There is a corresponding convergence in the persistence diagrams, which we are cur-
rently seeking to understand through the lens of the MDS embedding described in the
the accompanying white paper, “Multidimensional Scaling of Collections of Persistence
Diagrams”. While we are still analyzing the underlying phenomena and structure, this ap-
proach appears promising in the case of matrices with relatively small numbers of missing
entries.

However, this approach is difficult to understand due to the stochastic nature of the
method, and thus it is correspondingly difficult to produce analytic bounds on the error.
Therefore the focus ought to shift to investigating other, more analytically tractable meth-
ods of imputing the missing entries. For example, one could search for places to introduce
edges which minimize the total persistence (using the intuition that missing edges create
cycles with long lifetimes and that most real systems have relatively small total persis-
tence), as well as modern techniques drawn from the study of network flows (searching
for the weight to assign a missing edge which causes the least change in the spectrum of
the Laplacian). It is intuitive that these two approaches should be related, and both offer
substantial advantages in terms of formal mathematical analysis.

Figure 9: Control Persistance Diagram
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Figure 10: Persistence Diagrams of Thresholded EDMs
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4.3 Persistent Homology on Feature Space for Neural Nets

We first applied the technique to the MNIST dataset consisting of 60,000 
training and 10,000 testing samples, each 28x28 grayscale images falling into 10 classes 
- handwritten digits 0-9. That is, our training data can be broken up into 10 groups of
6,000 samples in of each digit in 784-dimensional space. In feature space, we have
10 groups of 784 points in 6,000 dimensional space. We calculated the 1-dimensional
persistent homology of each of these groups and found the representative cycles of
each point in each the persistence diagram - topologically significant cycles of edges
between pixels, which we simply interpreted as subsets of pixels. Fig.11 shows the sum
of these subsets as masks weighted by their persistence (death - birth) - that is, for each
digit, we plotted the sum of 28x28 grids, one per persistent feature, in which a pixel is
zero if it is not present in the representative cycle of a feature, and death - birth if the
cycle is present in the cycle of a feature.

Figure 11: Persistence Diagrams of Handwritten Digits

We applied the same technique to the CIFAR-10 dataset consisting of 50,000 training
and 10,000 testing samples, each 32x32 color (RGB) falling into 10 classes such as ship,
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truck, cat, dog etc. We chose this dataset for its irregularity - unlike MNIST the objects
of interest are not “centered” in the plane. Moreover, as we are now dealing with color
images the code developed for MNIST was modified to account for multiple “channels.”
Instead of constructing one persistence diagram per class we constructed three per class,
one for each channel. Fig. 12 shows the resulting masks in which the three masks
constructed independently are combined for each class to form RGB image tensors.

Figure 12: Masks Developed for Images
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4.4 Parameter Space Reconstruction from Embeddings of Persis-
tence Diagrams

The following results are adapted from Dr. Sheehy's and Dr. Giusti's work.

Figure 13, Bottleneck Distances

Figure 14, Embeddings of 1-Sphere
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Figure 15, Embeddings of 2-Sphere

Figure 16, Klein Bottle Embeddings
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4.5 Multi-Dimensional Scaling of Collections of Persistence Diagrams

Figure 17, MDS of Persistence Diagrams (p_1,0)
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Figure 18 MDS of Persistence Diagrams (p_1,3)

Figure 19 MDS of Persistence Diagrams (p_2,6)
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Figure 20, MDS of Pesistence Diagrams (p_3,2)
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4.6 Novel Homological Methods for Sensor Network Integrity

The results of this portion of the effort are summarized in the report contained in Appendix
IV.
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4.7 Additional Approaches

This subsection presents the results of prototyping and simulating the less topological 
methods that were presented in Section 3.4.2 through Section 3.4.7.

4.7.1 Informativeness

This section tests the ability of the informativeness measure described in 
Section 3.4.2 to distinguish structured data sets from non-structured data sets. Two 
distance measures are utilized: Barelett’s method and the Bures distance. First, Fig. 
21 shows the result of Bartlett’s method as applied to finding the distance of 
structured and non-strucutred matrices to the nearest non-informative matrix.

Figure 21: Informativeness with Bartlett’s Method

Next, in Fig. 22 the Bures distance is applied to finding the distance of structured and
non-strucutred matrices to the nearest non-informative matrix. Both the Barlett method
and the Bures distance curves appear to deflect away from the non-structured cases as
more correlated subspaces are added to the test data sets.
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Figure 22: Informativeness with Bures Method

4.7.2 Scree-Plot Analysis

The scree plot discussed in Section 3.4.3 involves plotting the sorted singular 
values and analyzing the result profile. In this experiment, a scree profile is 
computed for both a structured and unstructured data set. The structure in the data set 
is represented by the number of significantly correlated dimensions or subspaces. The 
number of correlated subspaces is varied and the resulting profile is plotted. Values for 
the number correlated subspaces include 1, 6, 12, and 25.

In Fig. 23a, a single pair of data vectors is correlated and the resulting singular value 
spectrum profile i s p lotted. M oving t o F ig. 2 3b, t he n umber o f c orrelated components 
increases to 6. The effect on the scree plot is that the largest values is increased signif-
icantly, and a hard drop-off to zero is noticed at around index 90. Fig. Fig. 23c shows 
that as the number of correlated subspaces increases to 12, the largest singular value 
continues to increases, and the drop-off to zero decreases to about 80. Finally, in Fig. 
23d, 25 dimensions of the data are now correlated and this has the effect of driving the 
largest singular value up further and continuing to decrease the drop-off to zero point to 
approximately 55. Overall, it appears that the more correlated components increases the 
largest singular value and decreases the index at which the singular values drop to zero.
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(a) (b)

(c) (d)

Figure 23: Scree Plots for Various Levels of Structure.

4.7.3 Random Hadamard Multiplication

This section experiments with the method of point-wise multiplication of the data 
with a randomly generated matrix. The method is reviewed in Section 3.4.4, and is 
applied to structured and unstructured data. Fig. 24 depicts the result of iteratively 
computing Eq. 9 for a data set that is randomly generated with no structure, and also 
for a data set that contains an increasing number of significantly correlated components 
or subspaces. The number of subspaces was increased linearly from 1 to 25 over each 
iteration of the algorithm, and Eq. 9 was computed for the data set at each of the 25 
iterations. The result indicates that the random Hadamard structure test statistic 
decreases monotonically with an increasing number of correlated subspaces. One 
benefit of this method is that no computationally expensive singular or eigenvalue 
decomposition is required.
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Figure 24: Random Hadamard Multiplication Structure Test Results

An additional experiment was performed to relate the random Hadamard structure test
statistic to the off-diagonal elements of a normalized SPD matrix, i.e. a correlation matrix.
The SPD matrix has constant off-diagonals; this constant is iterated from 0.025 to 0.5.
This represents a series of non-informative matrices per Section 3.4.2. Therefore, since
each SPD matrix is a non-informative matrix, each is at distance zero from the nearest
non-informative matrix. At each iteration, as the off-diagonal constant element value is
increased, the random Hadamard structure test statistic is computed from Eq. 9. The
results are shown in Fig. 25.

Since each data matrix at each iteration is non-informative matrix, this experiment pro-
vides some idea as to how the random Hadamard strucutre test statistic innately reflects
the magnitude of the correlations components, without regard (in some sense) for the
information content of the data.
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Figure 25: Off-Diagonal Element vs. Random Hadamard Structure Test

4.7.4 Shannon Entropy of Singular Values

Similar to the random Hadamard experiment, this section experiments with another 
method of structure detection, specifically computing the Shannon entropy of the set of 
singular values of the data matrix. The method is reviewed in Section 3.4.5, and is 
applied to structured and unstructured data. Fig. 26 depicts the result of iteratively 
computing Eq. 11 for a data set that is randomly generated with no structure, and also 
for a data set that contains an increasing number of significantly correlated components 
or subspaces. The number of subspaces was increased linearly from 1 to 25 over each 
iteration of the algorithm, and Eq. 11 was computed for the data set at each of the 25 
iterations. The result indicates that the Shannon entropy of the set of singular values 
of the data can function as an effective structure test statistic. Like the random 
Hadamard statistic, the Shannon entropy decreases monotonically with an increasing 
number of correlated sub-spaces. However, unlike the random Hadamard statistic, the 
Shannon entropy of the singular values obviously requires a singular value 
decomposition, which can drive up the computational requirements.
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Figure 26: Shannon Entropy Structure Test Results

4.7.5 SPD Matrix Differences

In Section 3.4.7, the possibility of ascertaining the structure in a data set using 
covariance matrix distances between the covariance of the data set and the covariance 
of an identify matrix was discussed. This section looks at studying
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Figure 27: Frobenius Norm Structure Test Results

Figure 28: Kolmogorov-Smirnov Structure Test Results

As was discussed in Section 3.4.8, the length of the record length (the number of
records or measurements or samples used to compute the covariance) can have a pro-
found impact on the distance between two covariance matrices. To replicate the results
of [15], Eq. (20) is plotted below, along with a curve derived from a Monte Carlo simulation
that confirms the theoretical equation. Each covariance matrix is randomly constructed
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from a set of Gaussian distributed vectors. Each point on the graph represents the differ-
ence in Frobenius norm distance that can be expected due solely to record length, since
each of the two data sets is drawn from the same Gaussian distribution. As can be seen,
the optimimum (lowest) difference is in the middle of the curve, when the two data sets
are of the same length.

Figure 29: Record Length Impact on Frobenius Norm Covariance Distance
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5 Conclusion

5.1 Summary

This report summarizes the results of the TOPEX project. The Topological 
Exploitation project (TOPEX) initially aimed at understanding and studying recent 
methods in topolog-ical data analysis (TDA). The research contained is intended to 
provide a basic under-standing of TDA and the type of signal information that TDA 
tools provide, with the aim of providing methods to facilitate unsupervised detection of 
structure within data. Addi-tionally, additional tools are investigated to perform structure 
detection in signal process-ing and data analysis (e.g. covariance distance measures 
and singular value analysis). Lastly, some high-level applications are explored. For 
example, the utility of TDA for op-portunistic data mining is briefly analyzed, along with 
some of the general issues relating to data mining.

5.2 Areas for Future Research

Euclidean distance matrices (EDM)and their application are an active field of 
research [25], [26]. EDMs are also PSD matrices. It would be useful to measure distances 
between EDMs to track them for changes. A recent publications do not appear to 
adequately address or view EDMs as points on a convex cone or Riemannian space. 
Regarding a sensor network application, it would also be useful to relate distances 
between two EDMs, each of which represents the distances among sensors at a given 
time, and relate that distance to the distance between two sets of sensor network 
measurements. This relationship could be used to track the changes in sensor 
network measurements over time.

Additionally, exploring the relationship between persistent homology and the concept 
of informativeness [2] would likely be useful; specifically how the two tools can be used 
to derive topological features from more traditional geometric tools. Lastly, a potential 
future endeavor may involve exploring the application of Hodge theory to statistically rank 
features of a data set [27].

5.3 Potential Commercial Applications

Some potential commercial applications of this work may include DSA spectrum 
report verification and falsification detection (see [21] and references contained 
therein), as well as biomedical signal analysis where sets of data need to be 
compared over vari-ous sessions, e.g., EEG data analysis [2], [28], [9]. It is 
hypothesized that the methods developed in this work may be applicable to mobile 
RF network analysis. For exam-ple, community detection within mobile networks has 
been studied by [29], where clique analysis is performed between two mobile networks 
and demonstrates that the density of the users affects the calling behavior 
significantly. Also, [30] explores a method for anomaly detection in mobile 
communication time series graphs. The method is based on an eigen-decomposition 
of the correlation matrix formed from the correlation network. In general, community 
detection within correlation has also been studied in various other contexts [31] [32], 
[33], [34], [35].
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APPENDIX A: DERIVATION OF EXPECTED VALUE OF FROBENIUS NORM METRIC

This proof follows the outline that is presented in the supplemental material of [15].
Assume that the sampled data vector xj is distributed according to a multi-variate normal
distribution, and are stored in a matrix Xj = [x1j, ..., xnj] ∼ N (0, Σ) , with j = 1, ..., L, then
the expected value of dEUC(k) for k ∈ [2, ..., T − 1] is given by

E [dEUC(k)] =

(
1

k
+

1

L− k

) (
tr
(
Σ2
)

+ tr (Σ)2
)
, (1)

where dEUC(k) = ‖C(1, k)− C(k + 1, L)‖2F , and C(i, j) = 1
j−i+1

j∑
`=i

(X` − µX) (X` − µX)T .

The proof proceeds in two steps. First the distance corresponding to the Frobenius
norm of the difference of two sample covariance matrices is found, and second the ex-
pected value of the distance is derived.

Frobenius Norm Metric of Sequential Covariance Matrices

The Frobenius distance of the difference between two covariance matrices can be
written as

dEUC(k) = ‖C(1, k)− C(k + 1, L)‖2F , (2)

where C(1, k) is the covariance matrix formed using data samples from 1 through k,
i.e. {x1, x2, ..., xk}, and C(k + 1, L) is the covariance matrix formed using samples k + 1
through L, i.e. {xk+1, xk+2, ..., xL}).

Since the Frobenius norm of a matrix M can be written as the trace of the matrix
squared, i.e. ‖M‖F =

[
tr
{
MTM

}]1/2, the Frobenius covariance distance can be rewritten
using the trace operator as

dEUC(k) = ‖C(1, k)− C(k + 1, T )‖2F
= tr

{
[C(1, k)− C(k + 1, L)]T [C(1, k)− C(k + 1, L)]

}
= tr {[C(1, k)− C(k + 1, L)] [C(1, k)− C(k + 1, L)]}
= tr

{
[C(1, k)− C(k + 1, L)]2

}
.

(3)

The last two lines of the preceding equation follow because C is a SPD matrix, and
the difference of two symmetric matrices are again symmetric, therefore each factor in the
preceding equation is symmetric. Expanding the square of the difference gives

dEUC(k) = tr
{

[C(1, k)− C(k + 1, L)]2
}

= tr {C(1, k)C(1, k)− C(k + 1, L)C(k + 1, L)− 2C(1, k)C(k + 1, L)}
= tr {C(1, k)C(1, k)} − tr {C(k + 1, T )C(k + 1, L)} − tr {2C(1, k)C(k + 1, L)} .

(4)
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The last line follows from the linearity of the trace operator. At this point, recognize that
the definition of C

C(i, j) =
1

j − i− 1

j∑
`=i

X`X
T
`

= XD(i, j)XT ,

(5)

can be substituted into each of the trace operations. The first trace operation is

tr {C(1, k)C(1, k)} = tr
{(
XD(1, k)XT

) (
XD(1, k)XT

)}
= tr

{
XTXXTXD(1, k)D(1, k)

}
= tr

{(
XTX

)2
(D(1, k))2

}
,

(6)

where the second and third lines follow from the invariance of the trace to permutations
of symmetric matrices (tr(ABC) = tr(ACB) for symmetric A,B,C). The second trace
operation is

tr {C(k + 1, L)C(k + 1, L)} = tr
{(
XD(1, k + 1)XT

) (
XD(1, k + 1)XT

)}
= tr

{
XTXXTXD(1, k + 1)D(1, k + 1)

}
= tr

{(
XTX

)2
(D(1, k + 1))2

}
.

(7)

Lastly, the third trace operation is evaluated as

tr {2C(1, k)C(k + 1, L)} = 2tr
{(
XD(1, k)XT

) (
XD(1, k + 1)XT

)}
= 2tr

{
XTXXTXD(1, k)D(1, k + 1)

}
= 2tr

{(
XTX

)2
0
}

= 2 · 0 = 0.

(8)

Combining the results from evaluating each of the trace evaluations of Eqs. (6), (7), and
(8) gives

dEUC(k) = tr {C(1, k)C(1, k)} − tr {C(k + 1, L)C(k + 1, L)} − tr {2C(1, k)C(k + 1, L)}

= tr
{(
XTX

)2
(D(1, k))2

}
− tr

{(
XTX

)2
(D(1, k + 1))2

}
= tr

{(
XTX

)2
(D(1, k))2 −

(
XTX

)2
(D(1, k + 1))2

}
= tr

{(
XTX

)2 (
(D(1, k))2 − (D(1, k + 1))2

)}
.

(9)
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Since the entries of the diagonal matrices are mutually exclusive, the last line can be
written as

dEUC(k) = tr
{(
XTX

)2 (
(D(1, k))2 − (D(1, k + 1))2

)}
= tr

{(
XTX

)2
(D(1, k)−D(1, k + 1) )2

}
= tr

{(
XTX (D(1, k)−D(1, k + 1))

)2}
= tr

{(
XTX∆

)2}
.

(10)

where ∆ is defined as the element-wise difference between two covariance matrices at

∆ ≡ D(1, k)−D(1, k + 1). (11)

Then the trace operation can be written using summation notation, resulting in

dEUC(k) = tr
{(
XTX∆

)2}
=

L∑
i=1

L∑
j=1

(
XT

i Xj

)2
∆jj∆ii.

(12)

Now, separate the terms into those for which i = j and those for which i 6= j as

dEUC(k) =
L∑
i=1

(
XT

i Xi

)2
∆2

ii +
L∑
i=1

∑
j∈[1,L],j 6=i

(
XT

i Xj

)2
∆jj∆ii. (13)

Expected Value of Frobenius Norm Metric Now proceed to take the expected value
of dEUC(k) as
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E [dEUC(k)] = E

 T∑
i=1

(
XT

i Xi

)2
∆2

ii +
T∑
i=1

∑
j∈[1,T ],j 6=i

(
XT

i Xj

)2
∆jj∆ii


= E

[
T∑
i=1

(
XT

i Xi

)2
∆2

ii

]
+ E

 T∑
i=1

∑
j∈[1,T ],j 6=i

(
XT

i Xj

)2
∆jj∆ii


=

T∑
i=1

E
[(
XT

i Xi

)2]
∆2

ii +
T∑
i=1

∑
j∈[1,T ],j 6=i

E
[(
XT

i Xj

)2]
∆jj∆ii

=
T∑
i=1

∆2
iiE
[(
XT

i Xi

)2]
︸ ︷︷ ︸

Term 1

+
T∑
i=1

∑
j∈[1,T ],j 6=i

∆jj∆iiE
[(
XT

i Xj

)2]
︸ ︷︷ ︸

Term 2

(14)

From this point, Term 1 and Term 2 are each further divided into terms prior to the index
k and those terms at k + 1 and later.

Term 1

Recall that D(i, j) is defined to be the diagonal matrix

D(i, j)`` =

{
1/(j − i+ 1) i ≤ ` ≤ j

0 otherwise.
(15)

Written out, the matrices from i = 1 to j = k and from i = k + 1 to j = T are, respectively

D(1, k) =



1
k

0 0 0 0 · · · 0
0 1

k
0 0 0 · · · 0

0 0
. . . 0 0 · · · 0

0 0 0 1
k

0 · · · 0
0 0 0 0 0 · · · 0
...

...
...

...
... . . . ...

0 0 0 0 0 · · · 0


(16)

D(k + 1, T ) =



0 0 · · · 0 0 0 0
0 0 · · · 0 0 0 0
...

... . . . ...
...

...
...

0 0 · · · 0 0 0 0
0 0 · · · 0 1

T−k 0 0

0 0 · · · 0 0
. . . 0

0 0 · · · 0 0 0 1
T−k


, (17)
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so that the first k diagonal elements of D(1, k are equal to 1
k

with the rest of the entries
equal to zero, and the last L− k diagonal entries of D(k + 1, L) are equal to 1

L−k with the
rest of the entries equal to zero. E.g., for i = 1, j = k = 4 and T = 7

D(1, 4) =



1
4

0 0 0 0 0 0
0 1

4
0 0 0 0 0

0 0 1
4

0 0 0 0
0 0 0 1

4
0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, (18)

and

D(5, 7) =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1

3
0 0

0 0 0 0 0 1
3

0
0 0 0 0 0 0 1

3


. (19)

Therefore, D(1, k) is equal to 1
k−1+1

= 1
k

on the first k diagonal entries, and zero every-
where else. Correspondingly, D(k + 1, T ) is equal to 1

T−(k+1)+1
= 1

T−k on the last T − k
diagonal entries and zero everywhere else. As a result,

∆ii = Dii(1, k)−Dii(k + 1, T ) =

{
1/k i ≤ k

−1/(T − k) k + 1 ≤ i ≤ T.
(20)

E.g., written out for T = 7 and k = 4, the matrix ∆ = D(1, k)−D(k + 1, T ) looks like

∆ = D(1, 4)−D(5, 7) =



1
4

0 0 0 0 0 0
0 1

4
0 0 0 0 0

0 0 1
4

0 0 0 0
0 0 0 1

4
0 0 0

0 0 0 0 −1
3

0 0
0 0 0 0 0 −1

3
0

0 0 0 0 0 0 −1
3


(21)

Therefore in general, the square ∆2
ii takes on only two values through the sampling inter-

val [1, T ], as expressed by

∆2
ii =

{
1/k2 i ≤ k

1/(T − k)2 k + 1 ≤ i ≤ T.
(22)
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Therefore, prior to the change at sample k, ∆2
ii is constant and equals 1/k2. After the

change (from k + 1 to T ), ∆2
ii is again constant, but equal to 1/(T − k)2. Since there are

′k′ samples prior to the change, and T − k samples after the change, the summation over
all of T can be expressed as

T∑
i=1

∆2
ii = k · 1/k2 + (T − k) · 1/(T − k)2

=
1

k
+

1

T − k
.

(23)

Therefore, substituting in for ∆2
ii, Term 1 in Eq. (14) can be written as

Term 1 =
T∑
i=1

∆2
iiE
[(
XT

i Xi

)2]
=

(
1

k
+

1

T − k

)
E
[(
XT

i Xi

)2]
.

(24)

Now the expected value in the last line can be evaluated as 2tr(Σ2) + tr(Σ)2, giving

Term 1 =

(
1

k
+

1

T − k

)
E
[(
XT

i Xi

)2]
. (25)

Term 2

For Term 2 of Eq. (14),

T∑
i=1

∑
j∈[1,T ],j 6=i

∆jj∆iiE
[(
XT

i Xj

)2]
, (26)

begin by separating Term 2 into two sums: one sum representing the first k terms prior
the changepoint, and the second sum representing the contribution from the last T − k
terms after the changepoint.

The pre-change sum Term 2 is written as

k∑
i=1

∑
j∈[1,k],j 6=i

∆jj∆iiE
[(
XT

i Xj

)2]
. (27)

Here, ∆ii = D(1, k)− 0nxn and ∆jj = D(1, k − 1)−D(k, k) so that
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k∑
i=1

∑
j∈[1,k],j 6=i

∆ii∆jjE
[(
XT

i Xj

)2]
=

k∑
i=1

(
(k − 1)

1

k2
− 1

k

)
E
[(
XT

i Xj

)2]
. (28)

Evaluating the summation over the index k results in the pre-change sum

k∑
i=1

(
(k − 1)

1

k2
− 1

k

)
E
[(
XT

i Xj

)2]
= k

(
k − 1

k2
− 1

k

)
E
[(
XT

i Xj

)2]
. (29)

The post-change sum for Term 2 is written as

T∑
i=k+1

∑
j∈[k+1,T ],j 6=i

∆jj∆iiE
[(
XT

i Xj

)2]
. (30)

Here, ∆ii = D(1, k)− 0nxn and ∆jj = D(1, k − 1)−D(k, k) so that

T∑
i=k+1

∑
j∈[k+1,T ],j 6=i

∆jj∆iiE
[(
XT

i Xj

)2]
=

T∑
i=k+1

(
T − k − 1

(T − k)2
− 1

T − k

)
E
[(
XT

i Xj

)2]
. (31)

Evaluating the summation over the index k results in the post-change sum

T∑
i=k+1

(
T − k − 1

(T − k)2
− 1

T − k

)
E
[(
XT

i Xj

)2]
= (T − k)

(
T − k − 1

(T − k)2
− 1

T − k

)
E
[(
XT

i Xj

)2]
.

(32)

Combining the pre- and post-change parts of Term2 gives

Term 2 = k

(
k − 1

k2
− 1

k

)
E
[(
XT

i Xj

)2]
+ (T − k)

(
T − k − 1

(T − k)2
− 1

T − k

)
E
[(
XT

i Xj

)2]
=

(
k

(
k − 1

k2
− 1

k

)
+ (T − k)

(
T − k − 1

(T − k)2
− 1

T − k

))
E
[(
XT

i Xj

)2]
=

(
k − 1

k
− 1 +

T − k − 1

(T − k)
− 1

)
E
[(
XT

i Xj

)2]
=

(
k − 1

k
+
T − k − 1

(T − k)
− 2

)
E
[(
XT

i Xj

)2]
= −

(
1

k
+

1

(T − k)

)
E
[(
XT

i Xj

)2]
(33)
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At this point, the expected value in the last line can be evaluated as tr(Σ2), giving

Term 2 = −
(

1

k
+

1

(T − k)

)
E
[(
XT

i Xj

)2] (34)

Combine Term 1 and Term 2
Substituting in Term 1 (Eq.(25)) and Term 2 (Eq.(34)) into Equation (14) gives

E [dEUC(k)] =
T∑
i=1

∆2
iiE
[(
XT

i Xi

)2]
︸ ︷︷ ︸

Term 1

+
T∑
i=1

∑
j∈[1,T ],j 6=i

∆jj∆iiE
[(
XT

i Xj

)2]
︸ ︷︷ ︸

Term 2

=

(
1

k
+

1

T − k

)(
E
[(
XT

i Xi

)2])
︸ ︷︷ ︸

Term 1

−
(

1

k
+

1

T − k

)(
E
[(
XT

i Xj

)2])
︸ ︷︷ ︸

Term 2

=

(
1

k
+

1

T − k

)(
E
[(
XT

i Xi

)2]− E [(XT
i Xj

)2])
(35)

for i 6= j, where the last line follows from factoring out the 1
k

+ 1
T−k from each term. Now,

it remains to evaluate the two expected value terms. The two expected value terms each
represent fourth-order moments of random vectors that are drawn from a zero-mean mul-
tivariate Gaussian distribution. The proof will proceed by evaluating the case for i 6= j,
then move on to address the i = j case.

Covariances E
[(
XT

i Xj

)2]
Writing out the expected value for the cross-term first gives

E
[(
XT

i Xj

)2]
= E

[
XT

i XjX
T
i Xj

]
= E

[ ∑
m,n,q,r

Xi(m)ImnXj(n)Xi(q)IpqXj(r)

]

=
∑

m,n,q,r

ImnIpqE [Xi(m)Xj(n)Xi(q)Xj(r)] .

(36)

The last line follows from the linearity of the expectation operation. To evaluate this,
Isserlis’ theorem can be applied [36]. In general, it states that the expected value of a
product of 2n zero-mean Gaussian multivariate random vectors yi can be found as [36]
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E [y1y2y3 · · · y2n] =
∑∏

E [yiyj]

=
∑∏

Cov(yiyj).

(37)

In particular, for the expectation E
[
XT

i XjX
T
i Xj

]
, Isserlis’ theorem gives [36–38]

E [Xi(m)Xj(n)Xi(q)Xj(r)] = E [Xi(m)Xj(n)]E [Xi(q)Xj(r)] +

E [Xi(m)Xi(q)]E [Xj(n)Xj(r)] +

E [Xi(m)Xj(r)]E [Xj(n)Xi(q)]

= 0 + σmqσnr + 0,

(38)

Substituting this into the formula above gives

E
[(
XT

i Xj

)2]
=
∑

m,n,q,r

ImnIpqE [Xi(m)Xj(n)Xi(q)Xj(r)]

=
∑

m,n,q,r

ImnIpqσmqσnr

(39)

Since Imn is non-zero only when m = n and Iqr is non-zero only when q = r the above
can be rewritten as

E
[(
XT

i Xj

)2]
=
∑

m,n,q,r

ImnIpqσmqσnr

=
∑
m,n

σmnσmn

= tr
(
Σ2
)

(40)

Since for this case i 6= j, and Xi is drawn independently from Xj, the cross-terms σij = 0,
giving

E
[
XT

i XjX
T
i Xj

]
= 2

∑
m

σ2
ij +

∑
m

σiiσjj

=
∑
m

σiiσjj.

(41)

Variances E
[(
XT

i Xi

)2]
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E
[(
XT

i Xi

)2]
=
∑

m,n,q,r

ImnIpqE [Xi(m)Xi(n)Xi(q)Xi(r)] . (42)

In particular, for the expectation E
[
XT

i XiX
T
i Xi

]
, Isserlis’ theorem gives

E [Xi(m)Xi(n)Xi(q)Xi(r)] = E [Xi(m)Xi(n)]E [Xi(q)Xi(r)] +

E [Xi(m)Xi(q)]E [Xi(n)Xi(r)] +

E [Xi(m)Xi(r)]E [Xi(n)Xi(q)]

= σmnσqr + σmqσnr + σmrσnq,

(43)

Substituting this into the formula above gives

E
[(
XT

i Xi

)2]
=
∑

m,n,q,r

ImnIqrE [Xi(m)Xi(n)Xi(q)Xi(r)]

=
∑

m,n,q,r

ImnIqr (σmnσqr + σmqσnr + σmrσnq)

=
∑

m,n,q,r

ImnIqr (σmnσqr) +
∑

m,n,q,r

ImnIqr (σmqσnr) +
∑

m,n,q,r

ImnIqr (σmrσnq)

=
∑
m,n

Imnσmn

∑
q,r

Iqrσqr +
∑

m,n,q,r

ImnIqr (σmqσnr) +
∑

m,n,q,r

ImnIqr (σmrσnq)

= tr (Σ) tr (Σ) + tr
(
Σ2
)

+ tr
(
Σ2
)

= tr (Σ)2 + 2tr
(
Σ2
)

(44)

E [dEUC(k)] =

(
1

k
+

1

T − k

)(
E
[(
XT

i Xi

)2])− (1

k
+

1

T − k

)
E
[(
XT

i Xj

)2]
=

(
1

k
+

1

T − k

)(
2tr(Σ2) + tr(Σ)2

)
−
(

1

k
+

1

T − k

)
tr(Σ2)

=

(
1

k
+

1

T − k

)(
tr(Σ2) + tr(Σ)2

)
.

(45)
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APPENDIX B: DISTRIBUTIONS OF OFF-DIAGONAL CORRELATION MATRIX Prob-
ability Mass and Distribution Functions First, two basic statistical functions are now
defined. Let X ≡ X1, X2, . . . XN be a set of samples from a discrete distribution. The
first statistical function to be defined is the probability mass function (PMF) or empirical
probability density

f(xi) =
1

n

n∑
i=1

I(xi ≤ Xi < xi+1), (46)

where [xi, xi+1] is the ith sub-interval or bin, and there are n bins altogether.

The second tool to define is the cumulative distribution function (CDF) (or empirical
distribution function (EDF) in the discrete case) of the entries of the Gram matrix of the
effective dictionary. The CDF is defined as follows and is adapted from [22]. Again, let
X ≡ X1, X2, . . . Xn be a set of samples from a discrete distribution. Then, the empirical
distribution function (EDF) of the sample set is

F (x) =
1

n

n∑
i=1

I(Xi ≤ x). (47)

where I(ρ) is the indicator function, which is equal to 1 if the condition ρ is true, and equal
to 0 if the condition ρ is false, Xi is the subset of n samples from X that are less than or
equal to x.
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A Brief History of Topology 
As mathematicians researched surfaces in one, two, three, and higher dimensions, 

they looked for invariants among different classes of sur-faces, i.e. coarse measures 
that would distinguish one surface from another. One stellar example of this is Eulers 
polyhedron formula relating vertices, edges and sides of a poly-hedron. Further research 
extended Euler’s formula to shapes other than polyhedra, e.g. to non-convex polyhedra, 
to graphs, etc. This signified an historical shift in thinking about the geometry of shapes 
to the topology of shapes. E.g., how far can a polyhedron be altered, bent, twisted, 
stretched such that it continues to obey Euler’s formula?

In an attempt to address such questions, mathematicians began to study new aspects 
of surfaces such as orientability, as well as how to tell whether two surfaces were ’the 
same’ as each other, i.e. classification of surfaces. I.e. whether they are homeomorphic. 
”‘Two surfaces are homeomorphic if there exists a one-to-one correspondence”’ between 
the points in the objects, such that the correspondence ”‘preserves closeness ”‘ [10]. 
Points that are clustered in one shape are also clustered in the other shape [10].

Simplicial Complexes A simplicial complex is a means to represent relationships 
among sets of data points. The following definitions are adapted from [8]. A simplicial 
complex consists of a pair of sets:

• Vertices

• Simplices

Homology Homology is a principled numerical technique for computing the connect-
edness of an object. The homology of an object can be described qualitatively by describ-
ing it in terms of the dimension of the void that the cycle encloses.

At each threshold of the filtration, three homological quantities are computed:

• Number of 0-Dimensional Cycles (Connected Components)

• Number of 1-Dimensional Cycles (Cycles)

• Number of 2-Dimensional Cycles (Cavities)

Persistent Homology
Fig. depicts a toy example of the basic steps that are involved in computing homology.

First, begin with the upper triangular portion of a covariance matrix and sort the entries
from lowest to highest absolute value. In Fig. 30a, a matrix is labeled with its entires rank,
in order from lowest (1) in green to highest (15) in red. At this point, the actual entries of
the covariance matrix are inconsequential, so long as the order of the entries is identified.
The three-dimensional vectors below the matrix are one possible representation of the
vectors from which the actual covariance matrix is derived.

Begin the thresholding process by retaining only those entries of the covariance matrix
whose rank is greater than or equal to 3. The rank order of the corresponding thresholded
covariance matrix entries that remain after thresholding is shown in black in Fig. 30b.
The remainder of the entries are greyed out. Based on the location of the remaining
entries in the matrix, begin to construct an undirected graph, where each of the nodes
represents each column and row of the covariance matrix. On the graph, connect the
nodes that correspond to the respective row and column of each entry that remains after
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thresholding. For the step in Fig. 30b, on of the remaining entries is entry 1 whose row
and column index are (a, b). Therefore, connect node a to node b in the graph. Similarly,
entry 2 remains and its location in the matrix is given by (b, c), so connect node b to node
c in the graph. Lastly, entry three also remains after thresholding, and since its location in
the matrix is (a, c), connect node a to node c in the graph.

At this threshold, the graph forms one loop or 2-dimensional cycle from nodes a, b, c
as shown in Fig. 30c, and in particular it forms a 3-clique since every node in a, b, c
is connected to every other node in a, b, c. Next, a higher threshold is selected, e.g.
retain only those entries in the orginal covariance matrix that are less than or equal to
6, as shown in Fig. 30d. Based on the location of the new set of thresholded entries
that are retained, the graph is updated and now contains an additional 3-clique from the
connections among nodes a, b, d and a new 2-clique from the conection between nodes a
and f .

(a) The sorted indices of the full covariance ma-
trix.

(b) Thresholding the covariance
matrix leaves only those entries
whose rank is greater than or
equal to 3.

(c) Compute Cycles (d) Threshold Again

Figure 30: Basic Steps to Compute Clique Homology
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from a data matrix, as they relate to their corresponding covariance matrix. The first inter-
pretation is that vectors that are all close to each other form a region of high correlation
due to their interdependency. Next, loops or circuits that can be traveled from one data
vector to another represent a chain of factors that can be (perhaps, but not necessarily)
causally linked. Finally, the ordering of the covariance matrix entries (highly related to the
angular separation between data vectors) is tightly coupled with the rank of the covariance
matrix [26], a measure of the data sets intrinsic geometry in some sense.
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Fig. 31 depicts three interpretations that can be made regarding a set of data vectors



(a) Interpretation 1: Cliques in the covariance matrix tell us
bout concentrated areas of linear interdependencies.

(b) Interpretation 2: Homological loops in the covariance matrix
tell s that there is more than one chain of factors correlated with
a given event.

(c) Interpretation 3: The ordering of covariance matrix entries (related to the
rank of the matrix) constrains the intrinsic dimensionality of the geometry
spanned by the data vectors.

Figure 31: Covariance Matrix Cliques, Loops, and Orderings
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Appendix D: Sheehy Report 

Homological Methods for Sensor Network Integrity

(Kirk Gardner and Donald R. Sheehy)

1 Introduction

In many settings, large networks of sensors collect data. We are studying methods 
to measure, analyze, visualize, summarize, and compare global 
behaviors of the network over time. Major challenges include sensor errors, 
gaps in coverage, and a changing network.

Homological Sensor Networks Our work has focused on the homological 
sensor network (HSN) setting. Also known as coordinate-free sensor networks, this 
model attempts to impose minimal local assumptions on the underlying network. It 
is well-suited to address the following challenging settings:

• The sensors do not have GPS or other coordinates. The do not know where
they are, only which sensors are nearby (their neighborhood).

• The underlying domain the sensors are intended to cover is unknown. The
sensors can detect if they are near the boundary of the domain, but that is all.

• Everything about the network can change from one time to the next including
the positions and identities of the sensors. Only the underlying domain and
the phenomenon they are measuring is assumed to be constant or changing
continuously.

A naive approach to computing signatures or summaries of data collected from such 
a network, would be to compute statistics from the sensors, say the mean or variance of 
the collected data. This approach throws out the fundamental information about local 
neighborhoods that is inherent in the network and reflects the underlying domain. 
Surprisingly, it’s possible to have methods that both reflect shape information (from the 
local neighborhoods to the global network) and operate without coordinates or geometry.

HSNs address these challenges by integrating data collected locally using the 
neighborhood information into a single global signature called a persistence diagram. 
These signature are defined in terms of an algebraic topological invariant called 
(persistent) homology, from whence they derive the name. The homology characterizes 
the shape in a way that does not depend on how it is situated in space. The persistence 
diagram then captures aspects of the data that do not depend on positions of the 
sensors. The only requirement is that the sensors have sufficeint coverage.

Persistence diagrams are a natural choice for data analysis on sensor networks 
due to several desirable properties.
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• The persistence diagram from a network with good coverage can be related directly 
to the ground truth on the domain, and so the specific choice of the sensor 
locations and the under-lying network have a negligible impact on the persistence 
diagram.

• Persistent homology can be used to verify coverage in the network. The
Topological Coverage Criterion (TCC) of de Silva and Ghrist [1] uses
persistent homology to verify coverage of an unknown domain by a coordinate-
free sensor network, and was extended to weighted k-coverage in a more
general setting in [2].

These advantages bring with them some new challenges that we addressed in this 
research. Because the signature is using both the measurements and the local 
neighborhoods defined by the network, there are very distinct reasons why two 
signatures might differ.The data could be different, the domain could be different, or the 
network could be different. As a result, the major thrust of our research looked at the 
relative magnitude of these differences. For example, can we tell if the persistence 
diagram changed because of a significant change in data or because of a significant 
change in the underlying network? These issues make it difficult to distinguish network 
anomalies from meaningful changes in the data.

Another major challenge we address is how to analyze networks that change over 
time. That is, we want to the characterize the behavior of a network in a way that allows 
us to compare the behavior of a network from one day to the next or to compare one 
networks measurements over time to that of another network. Constructing a summary 
of such an event that is both descriptive and discriminative is increasingly difficult when 
the network is allowed to change over time. Persistent homology is particularly well-
suited to this setting as it provides a reliable summary of global behavior from local 
information alone. This summary is robust to missing data and stable under reasonable 
changes to the network.

Our initial experiments focused on evaluating the robustness of persistent homology 
to missing data and how it could be used to compare data sets. Persistent homology can 
be computed from a similarity matrix, such as a matrix of pairwise distances between 
points. In theory, unreliable data should be omitted, because it may appear as a 
significant feature in the persistence diagram. To this end, we conducted an experiment 
in which pairwise distances were removed from a sample of a 2-torus, a surface for 
which the persistent homology is known. We found that even when over 50% of the 
edges were removed the most significant features remained, with additional features 
resulting from the missing data presenting as additional noise.
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• The persistence diagram uses global shape features rather than coordinates or
landmarks to summarize the data.

• The persistence diagram is naturally stable to perturbations in the data.
The persistence diagram is invariant to continuous (invertible) changes in the
underlying domain.

•



Figure 1: A collection of points representing sensors in some domain and the
region they cover.

Stability and its Consequences A fundamental feature of persistent homology is its 
stability to small changes in the network. As a result, we can compare diagrams of 
networks exhibiting similar behavior when they would otherwise be incomparable using 
traditional methods. We demonstrated one way to express the usefulness of this 
property using collections of parametric surfaces. The persistence diagrams of random 
samples of surfaces with different parameters, namely 2-tori with varying radii, were 
compared and embedded in low dimensional space. We found that the embed-ding 
reflected the parameter space from which the tori themselves were constructed, 
indicating that the persistent homology could be used to expose global structural 
differences. Moreover, because the metric on persistence diagrams focuses on the most 
prominent features our experiments on the robustness of persistence diagrams indicates 
that these these structural differences are still exposed in the presence of missing data.

Extending the HSN setting Current work has been focused on applying the 
observations made in these experiments to sensor network data. This differs from the 
traditional setting of coverage in homological sensor networks in a fundamental way. 
Previous work on coverage verification used a pair of neighborhood graphs constructed 
from sensor proximity data at two scales. Coverage is verified by the homology of the 
inclusion from one scale into another, which may be seen as a small subset of the 
persistent homology of the distance to the network. It has been shown that function 
values (i.e. measurements) on a collection of points which cover some unknown domain 
can be used to approximate the persistent homology of the function on the entire domain 
[3]. Once we have verified coverage, sensor measurements give a reliable signature of 
the measured event. Persistence stability allows us to aggregate signatures of events 
occurring over time even when the network is changing, provided coverage is 
maintained. 
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Lastly, verifying coverage requires that sensors can detect the boundary of the domain. 
We are currently investigating how this additional information can be used to compare 
networks covering distinct domains that observe a common event.
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Extending the HSN setting Current work has been focused on applying the observations 
made in these experiments to sensor network data. This differs from the traditional 
setting of coverage in homological sensor networks in a fundamental way. Previous work on 
coverage verification used a pair of neighborhood graphs constructed from sensor 
proximity data at two scales. Coverage is verified by the homology of the inclusion from 
one scale into another, which may be seen as a small subset of the persistent homology of 
the distance to the network. It has been shown that function values (i.e. 
measurements) on a collection of points which cover some unknown domain can be 
used to approximate the persistent homology of the function on the entire domain [3]. 
Once we have verified coverage, sensor measurements give a reliable signature of the 
measured event. Persistence stability allows us to aggregate signatures of events 
occurring over time even when the network is changing, provided coverage is 
maintained. 

Lastly, verifying coverage requires that sensors can detect the boundary of the 
domain. We are currently investigating how this additional information can be used to 
compare networks covering distinct domains that observe a common event. 

2 Background 

Topological Data Analysis (TOA) is an approach to studying potentially high-
dimensional, incomplete, or noisy data by studying its "shape." The primary 
assumption is that this data carries relevant geometric and topological information 
about the "system" from which it has been generated. Homology is a powerful tool from 
algebraic topology which can be generally understood as a way to measure the 
components, loops, and voids in a space. Persistent homology is a popular tool in TOA 
which tracks the evolution of the homology of a space over a range of scales. For 
example, the homology of a sensor network can be used to detect holes in coverage at a 
given scale, where scale can be understood as the sensor's coverage radius. 

Figure 2: (Left) The coverage regions of a collection of points P at some scale 
o. (Middle) The neighborhood graph with edges for each pair of points within
pairwise distance o. (Right) If we attempt to fill cycles in the graph with triangles
we identify a cycle that cannot be filled which reflects I-dimensional homological
feature, a loop.
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The key observation motivating the use of homology in coverage verification is that it 
can be computed without coordinate information. If a network's sensors can simply 
detect the presence within some radius a representative structure known as the 
(Vietoris-)Rips Complex can be com-puted from the resulting neighborhood graph, as 
shown in Figure 2. As this radius increases, holes in coverage may appear or disappear, 
giving a topological signature for the network as the sensor's coverage radius increases. 
The changes in the homology of the corresponding complex, as shown in Figure 3 (left), 
can be readily computed and reflect the changes in the coverage region itself. The 
resulting signature is known as a persistence diagram, depicted in Figure 3 (right). 
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Figure 3: (Left) A filtration of rips complexes at scales 0.5, 0.7, and 1.4 illustrating a 
point (0.7, 1.4) in the corresponding 1-dimensional persistence diagram (right, orange). 
The 1-dimensional feature that is born at scale 0.7 persists until it dies at scale 1.4. 

The space of persistence diagrams comes equipped with a metric known as the 
bottleneck dis-tance, depicted in Figure 4. \/Ve use the bottleneck distance extensively as 
a way to compare collections of closely related spaces, such as networks covering the 
same domain or phenomenon measured by different networks. 

3 Research Results 

3.1 Robustness to Incomplete Data 

Interpreting sensor network data requires integrating information from multiple sources 
that may be prone to error. Although most sources may be functioning properly 
missing data has the potential to corrupt an entire dataset when analyzed with 
traditional methods. Topological methods, on the other hand, integrate local information 
in a way that is robust to missing data. This property was one of the original motivations 
for the use of persistent homology in the study of data. In particular, the stability theorem 
states that the persistent homology of the filtered Vietoris-Rips complex built from a 
point cloud is robust to slight perturbation of the points. 
In order to test the extent of this stability we investigated the effect of gaps in the 
pairwise similarity matrix used to construct the complex. Such a situation may arise as 
the result of a missing, corrupted, or untrustworthy measurement, or as a result of 
intentional sparsification or subsampling of the similarity matrix. 
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3.2 Embeddings of Persistence Diagrams 

Often data that is collected in some high dimensional space has a far lower intrinsic 
dimension. Moreover, the same event may be measured in different ways that renders two 
measurements incomparable, despite similar fundamental structure. Persistent homology 
has been shown to be a useful tool for studying point clouds that are sampled from a single 
unknown space in order to learn something about this structure. We instead considered 
collections of point clouds sampled from a family of related spaced defined by a so-called 
parameter space. Our hypothesis was that we could use the bottleneck distance to embed 
the diagrams of this family of spaces in order to learn something about the structure of the 
underlying parameter space. Specifically, we used Multidimensional Scaling (MOS) to 
embed collections of persistence diagrams in low-dimensional space. 

We also formalized the notion of parametric families of spaces and attempted to 
characterize those with common topological structure. Namely, Tori, Spheres, and Klein 
bottles. Our goal was to relate this structure to that of the parameter space by first 
develooina a theorv on the soaces themselves. 

Figure 7 shows an ideal (triangle markers) and sampled (circle markers) persistence 
diagram, and the 20 MOS embeddings of a collection 110 diagrams with varying 
major and minor radii. 
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This suggests that diagrams of sampled tori may be used to recover their 
corresponding radii by comparison with their expected diagrams in the 
embedding. 

This initial experiment on parametric families of shapes is closely related to 
our current research in a fundamental way. Instead of collections of 
closely related shapes, we use this same embedding technique to study 
collections of measurements by one or many networks. The resulting collection 
of persistence diagrams traces a collection of curves in persistence space in 
the same way a parametric family of tori traces out its parameter space. Our 
hope is that this technique can be used to quantify changes in a network, or a 
some phenomenon observed by the network in the same way it can be used to 
recover the parameters in this experiment. 

3.3 Software Testbed 
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Figure 8: Multiple samples of the same domain with samples close to the boundary 

in red. 

Our implementation of the TCC, which is detailed in our preliminary report, has 
been extended to the analysis of scalar fields over coordinate-free sensor 
networks. In particular, we have modified our software to generate domains can be 
sampled with varying resolution to simulate networks which cover the domain over a 
range of scales, as seen in Figure 8. Assume we are given such a sequence of 
networks in addition to a corresponding sequence of sensor measurements taken as a 
subset of the values of some function over time defined on the domain. We 
demonstrate a novel signature these time-varying functions that extends the tools 
used in the TCC to the analysis of scalar fields over time. 

Our previous experiments focused on the persistent homology of Rips filtrations 
constructed from point clouds in euclidean space. This filtration is closely related to 
the sequence of metric balls growing around the point cloud as the persistent 
homology of both gives a signature for distance to the point cloud. In particular, 
the persistent homology of the Rips complex of a point cloud approximates that of the 
distance to the point cloud as a function on the underlying metric space. 

More generally, the persistent homology of a real-valued function captures 
the changes in the homology groups of its sublevel-sets-the set of paints with 
function values below a given scale. The distance to a point cloud is a real-valued 
function with sublevel-sets equal to the union of metric balls at a given scale. Under 
certain conditions we can approximate the persistent homology of a real-valued 
function given only its values on a finite subset of its domain. Figure 9 depicts a 
function on a subset of the plane and its function values on the simplices of a 
simplicial complex defined on a subset of the plane. The filtration given by ordering 
the simplices of this complex by their function values is known as an induced filtration. 
Ghazal et. al. detail how to construct a filtration. 
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The inclusion of two filtrations) that approximates the persistence diagram of the function 
itself [3] that has a natural application to measurements by coordinate-free sensor 
networks. Extending our testbed to explore this result was a natural next step as it 
assumes coverage and the structures required are a subset of those used in the 
computation of the TCC. This extension has led to promising results on applications to 
functions on coordinate-free networks over time as well as interesting theoretical 
questions on the role of the boundary in these experiments 

A coordinate-free sensor network defined on an unknown, bounded domain consists 
of a nested pair of neighborhood graphs as well as a nested pair of subgraphs The 
vertices of the neighborhood graphs correspond to sensors in the network with edges 
representing the presence of nearby sensors at two scales. The subgraphs are the 
restriction of the two neighborhood graphs to sensors close to the boundary of the 
domain. Moreover, we assume that sensors can measure the value of a real-valued 
Lipschitz function defined the domain. A measurement made by a sensor corresponds to 
the function value at the location of that sensor, which remains unknown. Similarly, a 
sensor network is said to cover a domain at a given scale if the union of metric balls 
centered at the locations of the sensors includes the domain at that scale. 

The proposed setting is a dynamic collection of sensors. Sensors can be moved,
added, or deleted but always maintain coverage of the under1ying domain at some 
scale. An event that occurs on the domain is captured by the sensors over time in a 
sequence of measurements by distinct networks. 

Figure 10: Function values on a single network over time (top row) and their 
corresponding persistence diagrams. 

That is, we are given a sequence of coordinate-free sensor networks which all cover 
some un-known. bounded domain. Each network in the sequence corresponds to a step in 
time and measures. 
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a real-valued Lipschitz function defined on the domain. Rips complexes are constructed 
from the provided neighborhood graphs and their simplices are reordered to form a 
sequence of nested pairs of Rips complexes. As in [3] the persistent homology of this 
sequence of nested pairs approximates that of the function within a factor proportional to 
the coverage radius. The resulting sequence of persistence diagrams therefore 
approximates that of the function over time and traces a curve in persistence space, 
referred to as a trajectory signature, as seen in Figure 12. 

4 Trajectory Signatures 

Throughout, the time-varying function used is the distance to a ring in the plane with 
increasing radius. The function values on simplices of a network are depicted by color in 
Figure 10. Reordering these simplices by function value gives a filtration for each time 
step. 

Figure 11: (Top) Function values on three different networks that cover the same 
domain with at a single time step. (Bottom) Trajectories of the function on the net­
works computed without boundary information. The black the point corresponds 
to the point on the curve corresponding to the time step shown. 

When is information about the boundary needed? Our software was first applied to time-
varying functions on domains without any information about the boundary of the domain. 
Although the resulting signatures were sensitive to changes in the function we found that 
they were too sensitive to features of the network. Moreover, the trajectories did not 
appear to reflect the simple structure of the function as demonstrated in previous 
experiments.This can be seen in Figure 11 which depicts three curves of the same 
function on three different networks covering the same domain. The curves represent 
three very different signatures as a result of noise in the individual networks and a 
general lack of persistent features due to obstruction by features of the domain. 
Because information about the boundary is required in order to verify coverage using the
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TCC we then considered how this additional information could be used to account for 
known features of the domain. 

What do we learn when the boundary is needed? Our algorithm was modified to use 
information about the boundary of the domain instead computing the persistent 
homology of the function relative to the restriction to the boundary. Our hope was that, 
by accounting for known features of the domain captured by the boundary we could 
direct the focus of the signature to the features of the function. The results, as depicted 
in Figure 12, show that this modification yields signatures that are stable to changes in 
the domain while also reflecting the behavior of the observed function. The curves seem 
to follow a common path, unlike those in Figure 11, indicating that information about a 
common boundary yields a signature stable to changes in the network. However, it is 
possible that these signatures are a result of too much dependance on the function and 
tell us nothing about the domain. 

Figure 12: A collection of overlaid trajectories from different networks. For three 

time steps of one of these trajectories the function values on the corresponding 

networks and resulting persistence diagrams are shown. 
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Figure 13: (Left column) networks constructed from samples of 3 distinct do­
mains corresponding to blue (top), orange (middle), and green curves/points in the 
following. (Middle column) A low-dimensional embedding of curves drawn by the 
same function on each domain. (Right column) An embedding of the maximum 
distance between curves for each network. 

What can we learn about the domain? To eliminate the possibility that this signature is 
dominated by the topology of the function we applied the same process to the same 
function applied to multiple domains. We found that the resulting trajectories clustered 
into distinct groups, indicating that changes in the domain are clearly reflected, as seen 
in Figure 13. This suggests that the signature is sufficiently discriminative, and may 
therefore be useful for detecting changes in the domain. 
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5 Lessons Learned and Future Directions
Through our preliminary experiments we discovered a natural application of persistent 
homology in the intersection of homological sensor networks and the analysis of time-
varying functions. In particular, we considered an event observed by a network that 
covers some unknown domain that is changing over time. Each measurement of the 
event by the network, formalized as a sampleof some function on the domain, is 
integrated and summarized by the persistence diagram of the function as “seen” 
by the network. This allows us to compare global behaviors of the network over 
time in a way that is robust to missing data as well as changes in the network.

We found that applying the machinery used to confirm coverage by a coordinate-free 
network can be applied to the analysis of scalar fields on these networks. In particular, 
we propose a signature for time-varying functions on coordinate-free networks that is 
stable to changes in the network.

The extension of scalar field analysis to bounded domains alone is an interesting 
direction for future theoretical work. Preliminary work indicates that this requires 
formalizing fundamental results in algebraic topology to the persistent homology of 
functions on pairs of spaces. This work may lead to useful theoretical guarantees 
assuming the conditions in [2]. Another future direction is to look at more interesting 
time-varying functions such as heat flow and real-world sensor data. Lastly, Figure 13 
indicates potential for these signatures as a way to identify changes in the domain or as 
tool for the “fuzzy” classification of spaces parameterized by a function.
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Symbol Meaning
‖C‖F Frobenius Norm of the Matrix C
‖C‖2 Two-Norm of the Matrix C
‖C‖∗ Nuclear Norm of the Matrix C
βi ith Betti Number
H Shannon Entropy of Singular Values Structure Statistic
φij Entry i, j of the Sensing Matrix Φ
σi ith Singular Value

∆
Generic Designation for Difference between Expected and Estimated
Features

Σ Diagonal Matrix of Singular Values in Singular Value Decomposition
Φ Sensing Matrix Used in Random Hadamard Statistic
a Parameter Used in a Non-Informative Matrix Na

cij ith, jth entry of the Covariance Matrix C

dEUC
Euclidean (Frobenius) Distance between two Covariance or Correlation
Matrices

dN Distance to Nearest Non-Informative Matrix N
f A Set of Normalized Singular Values
h Random Hadamard Structure Statistic
i, j Generic Indices Used in Vectors and Matrices
Ci ith Correlation or Covariance or Gram Matrix
Di ith Data Matrix
E[] Expectation Operator

F (x)
EmpGeneric designation for an Estimated Feature Set Extracted from
Data

Fest Generic designation for an Estimated Feature Set Extracted from Data
Fexp Generic designation for an Expected Feature Set Extracted from Data
H Centering Matrix

H(f) Shannon Entropy of the set of Normalized Singular Values f
I Identity Matrix
I(·) Indicator Function
J Constant Ones Matrix
M Number of rows or Records of a Data Matrix
Na A Non-Informative Matrix of Parameter a
Ntriu The Upper Triangular Entries of a Symmetric Matrix
N Number of columns or Dimensions of a Data Matrix D

tr(A) Trace Operator of the Matrix A
U Set of Left-Singular Vectors in Singular Value Decomposition
V Set of Right-Singular Vectors in Singular Value Decomposition
Xi A Single ith Discrete Probability Mass Function
X A Collection of Discrete Probability Mass Functions Xi
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Abbreviation Meaning
DR Dimensionality Reduction
DSA Dynamic Spectrum Access
EVD Eigenvalue Decomposition
GDB Geographic Database
ICA Independent Component Analysis
KLD Kullback-Leibler Divergence
KS Kolmogorov-Smirnov Statistic
LS Least Squares
MDS Multi-Dimensional Scaling
NNMF Non-Negative Matrix Factorization
PCA Principal Component Analysis
PSD Power Spectral Density or Positive Semi-Definite (Matrix)
RF Radio Frequency
SA Sparse Approximation
SAS Spectrum Access System
SN Sensor Node
SNR Signal to Noise Ratio
SPD Symmetric Positive Definite Matrix
SSDF Spectrum Sensing Data Falsification
SVD Singular Value Decomposition
TCC Topological Coverage Criterion
TDA Topological Data Analysis
TOPEX Topological Exploitation
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