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Abstract

Creating large amounts of labeled data to train neural net-
works is an obstacle to applying deep learning to new ap-
plications. Heuristic methods for labeling data typically
produce a significant fraction of mislabeled samples. This
report describes some methods in the literature that find
the fraction of noisy labeled datasets that are probably la-
beled correctly and our efforts to improve on these meth-
ods. The method we describe and test is called “Noisy
Label Correcting Cross Validation”. The results of this
method proved inferior to the INCV method in the liter-
ature but the new understandings learned from this effort
inspired two new methods: the generalization sensitivity
analysis and soft labels approaches. Our future plans in-
clude testing these methods.

1 Introduction

Training deep neural networks for real-world models re-
quires large amounts of labeled data. Labeling these
datasets typically require humans to manually label from
hundreds to millions of images. In some cases, the la-
bels are general knowledge, but in other cases, such as
for aerial imagery, correctly labeling the images requires
specialized knowledge. Unfortunately, the need to create
large labeled datasets are often the limiting factor on new
applications of deep learning.

To alleviate the burdensome effort of manually labeling
large quantities of training samples, some researchers are
investigating automatic methods for labeling [10} 2]]. Un-
fortunately, the results from these heuristic labeling meth-
ods to date contain a significant fraction of incorrect la-
bels. Therefore, novel methods that detect and correct in-
correct labels are needed.

Datasets with inaccurate labels for training samples are
called noisy label datasets. Noisy labels reduce accuracy
for deep learning models because deep neural networks
are trained to match the training samples labels, whether
they are right or wrong. It has been shown that even with
random labels, neural networks can memorize the training
data but, as expected, are unable to generalize to other
data [[14].

To the extent that the labels are correct, neural networks
learn by incrementally modifying the trainable parame-
ters (i.e., weights and biases) in the neural networks to
reduce the loss of the models predictions on the training
data. Some examples are relatively easy for the network
to accurately classify and the network first learns these ex-
amples. As the network continues to iterate over the data,
it later learns the more difficult examples [1]. By memo-
rizing difficult examples, the neural network is trained to
accurately predict the label for each training sample, even
when the label is wrong. As a result, these incorrectly la-
beled samples can lower the accuracy of neural network
on unseen samples [3]. Deep neural networks can fit even
random labels, but in that case, they will not generalize
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well to new, unseen data [[14].

New applications of machine learning will require large
amounts of labeled data. Whether because of a lack of ex-
pertise on the part of the labelers or because of the use of
automated labeling methods, some of this new data may
contain too many errors to train neural networks to gener-
alize well and make accurate predictions on unseen data.
To clean these datasets, new methods to remove labeling
errors will be necessary so they can be effectively used to
train deep learning models.

In this report we describe a novel method to find and
correct incorrectly labeled samples. Our method builds
on the iterative noisy cross validation (INCV) method de-
scribed in [3]]. In Section 2] we describe related methods
from the literature. In Section 3| we describe our method
and our results are described in Section[dl

2 Related Work

Numerous methods have been proposed to deal with noisy
labels. Several methods focus on estimating the noise
transition matrix and correcting the objective function ac-
cordingly, such as forward or backward correction [9] and
the S-model [4]. Using the predictions of DNNs provides
another set of approaches to correct labels, such as Boot-
strap [[L1], Joint Optimization [[13]] and D2L [7]]. An alter-
native method is to train on weighted samples, as demon-
strated by Decoupling [8]], MentorNet [6], gradient-based
reweighting (citeren2018learning and Co-teaching [J5].
The primary issue is to design a reliable and convincing
criteria of selecting or weighting samples.

Co-teaching [5]] is a method for selecting samples from
a dataset to create a cleaner but smaller dataset. It is based
on the idea that clean samples will have a lower training
loss than mislabeled samples. If the ratio of mislabeled
samples to correctly labeled samples is known, the misla-
beled samples can be discarded and the correctly labeled
samples can be added to a selected set for training a clas-
sifier.

Co-teaching uses two neural networks. Each network
is trained on half of the data. For each batch of data, the
samples with the lowest training loss are thought to be
clean samples and are used to “teach” the other network.
This cleaned batch of data is passed to the other network
which is trained with the cleaned batch of data and also

selects a set of the cleanly labeled data. The ratio of clean
to noisy samples is needed to determine how many sam-
ples to select.

Throughout this process, co-teaching sequentially adds
clean samples with the lowest training loss to the selected
set until it develops a cleaner dataset. This cleaner dataset
can be used to train a reinitialized neural network. Co-
teaching has shown success in training neural networks
despite very noisy training data. It has reached a classifi-
cation accuracy of 91% on the MNIST dataset and 74% on
the Cifar-10 dataset (state-of-the-art performance is over
99% and 98%, respectively) with a symmetric noise ratio
of 0.5 i.e., half of the samples had incorrect labels).

validation

Datan Dataz Datas
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Clean set, noisy set, relabeled set.

Figure 1: Diagram of the Noisy Label Correcting Cross
Validation method

Iterative noisy cross validation (INCV) is a method that
builds off of the work with co-teaching. INCV creates a
set of clean labeled data so that the co-teaching method
begins with a set of accurately labeled data and can more
quickly clean the data and have a more stable training
process ([3]]). Additionally, unlike co-teaching, INCV
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Table 1: Results of experiments using Resnet 110 for the architectures of all three networks.

Noise ratio | Relabeling Epochs per Co-teaching Test
(symmetric) | iterations | relabeling interation | training epochs | accuracy (%)
0.0 4 10 50 66
04 4 10 50 44

Table 2: Results from the tests with three different network architectures.

Noise ratio | Relabeling Epochs per Co-teaching Test
(symmetric) | iterations | relabeling interation | training epochs | accuracy (%)
0.0 4 10 50 69
04 4 10 50 55

does not require the noise ratio, so it can work with noisy
data where the ratio of noisy labels to clean labels is not
known, which is the typical situation.

In the INCV method, two neural networks are each
trained on half of the data. The networks are then tested
on the unseen half of the data. In the testing phase, sam-
ples are iteratively added to a clean set if the predicted
label is the same as the given label. Iteratively, networks
are trained on both the clean set and a subset of the noisy
set until a clean set is created to start the co-teaching
process. This process further improves upon co-teaching
and leads to higher classification accuracy, even with very
high noise ratios. However, co-teaching and INCV elimi-
nates a large portion of correctly labeled training samples
that are difficult for the networks to classify correctly. We
attempted to improve on INCYV, especially for these hard
examples.

3 Methods

We proposed developing a method that builds off of co-
teaching and INCV methods, both of which only select
a subset of the training data that is deemed to have cor-
rect labels. The objective was to be able to obtain a larger
number of training samples by not discarding mislabeled
samples but to estimate the true labels automatically. In
addition to building off of co-teaching and INCV meth-

ods, we utilize the results of [1] who showed that DNNs
learn simple patterns quickly and later they tend to memo-
rize the difficult patterns. Our proposed method uses vot-
ing by three different neural networks to not only identify
clean samples, but also to fix the labels of noisy samples
in order to produce a clean training set from a noisy set.

Our method, which we called “Noisy Label Correct-
ing Cross Validation”, starts by splitting the data into four
subsets (see Figure[T). Three subsets of the data are used
to each train one neural network. Each of the three neural
networks is tested with the same validation subset.

Samples in the validation set are added to one of three
datasets depending on voting between the three trained
networks: the clean set, the relabeled set, or the noisy set.
The samples in the validation subset are added to the clean
set if all three networks predict the same label and the pre-
dicted label is the same as the given label. If all three net-
works make the same prediction but their prediction is not
the same as the given label, the sample is relabeled with
the predicted and added to the relabeled set. If the pre-
dicted labels vary among the three networks, the samples
is added to the noisy set.

As with the INCV method, the cleaning and relabeling
step is repeated. For each iteration, the three networks are
re-initialized and then trained from scratch on a subset
of the noisy labels, the entire re-labeled set, and the entire
clean set. As aresult, in each iteration the neural networks
should be trained on a larger portion of clean data and a

DISTRIBUTION A: Approved for public release, distribution is unlimited



smaller portion of noisy data. The goal was to develop
a method that would be able to create a large clean set
by relabeling noisy samples rather than simply assigning
clean samples to the clean set as in INCV or co-teaching.

4 Results

4.1 Relabeling experiment

Tests were run using the Cifar-10 dataset, a dataset of
32x32x3 pixel images of objects belonging to ten com-
mon classes, including horses, dogs, cats, trucks, and
boats. The labels were symmetrically switched on dif-
ferent portions of the data to introduce symmetric noise
with different noise ratios as needed for experiments.

The training set is divided into four subsets. One sub-
set is reserved for validation and three subsets are used
to train three neural networks. Initially, the neural net-
works all used the Resnet 110 architecture. The networks
were trained on the data for 50 epochs before testing on
the reserved test subset. The validation data was added to
the clean set, relabeled and added to the clean set, or left
in the noisy set depending on the voting among the three
neural networks.

In the next iteration, the subsets of training data were
shuffled. Once again, three neural networks were initial-
ized and trained on a quarter of the training data. In this
and in further iterations, the networks were trained on
the subset of training data as well as the clean and re-
labeled data. For all tests, the Noisy Label Correcting
Cross validation method was run for four iterations. Un-
fortunately, the results of this method were inferior to the
INCV method.

Due to the unsatisfactory results, we tested different
network architectures for the three neural networks. We
believed the three networks trained on different subsets of
the data would not make the same mistakes. For subse-
quent tests, we used Resnet 32, Resnet 110, and Resnet
164 for the three neural networks (Table [2).

Using three different network architectures improved
the test accuracy somewhat; the accuracy for a noise ra-
tio of 0.4 increased by 11% over the previous test. With
either the same network architecture or with different net-
work architectures, the Noisy Label Correcting Cross Val-
idation method does not perform as well as either co-

teaching or INCV.
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Figure 2: A confusion matrix of true and predicted labels
for clean Cifar-10 data.

4.2 Understanding this failure: Confusion
between classes

A major reason for the lack of success of Noisy Label
Correcting Cross Validation method is the confusion be-
tween similar classes. The three networks were all in
agreement for confusing classes and this led to misla-
beling correctly labeled data. This was because the la-
bel would automatically be changed if all three networks
agreed on the same label.

We had believed that it would be unlikely for all three
networks to be in agreement about the wrong label, but
surprisingly, they often were in agreement and incorrect
for the hard training samples, such as distinguishing be-
tween a cat and a dog. In this case, the networks made the
same mistakes. Figure[2]shows a confusion matrix of true
labels and predicted labels. This figure shows that rather
than incorrect relabeling being a random occurrence, the
three neural networks were made mistakes between the
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same two classes. For example, cats were frequently mis-
taken for dogs and birds were mistaken for airplanes.

This Noisy Label Correcting Cross Validation had no
mechanism to distinguish between hard to classify sam-
ples and samples with wrong labels. The same is true
with the co-teaching and the INCV methods but they only
identify easy and correct samples and ignore not only the
wrongly labeled samples but also the hard to classify sam-
ples.

5 Future plans

As described above, the deficiency of previous noisy label
methods is that they find a subset of the training samples
that are labeled correctly and easy to classify. This can
significantly reduce the size of the training dataset, which
reduces the performance of the trained network. To a large
extent, these methods trade the reduction in generalization
by training with noisy labels with reduction in generaliza-
tion by training with a smaller training dataset. In this
Section we propose novel training approaches that we ex-
pect to eliminate the reduction in generalization caused by
training with noisy labels.

Based on this new understanding of the noisy label
problem, we now propose two new ways to deal with the
noisy label problem. One is to use generalization to dis-
tinguish between hard, correctly labeled samples and in-
correctly labeled samples. The other method is to use soft
labels instead of hard labels in order for networks to learn
using the full noisy training dataset and decrease the neg-
ative generalization impact o the noisy labels.

5.1 Generalization sensitivity analysis

This approach builds on previous noisy label methods,
such as co-teaching [5] or INCV [3]]. Since those meth-
ods extract training samples with small loss, what is left
is a combination of hard examples and incorrectly labeled
samples. As discussed above, it is difficult to distinguish
between these two.

However, there is a way to distinguish between hard ex-
amples and incorrectly labeled samples: training on hard
examples improves the generalization performance while
training on incorrectly labeled samples decreases the gen-
eralization performance [14]. In this method we propose

Algorithm 1 Generalization sensitivity analysis

Require: training dataset D, test dataset T’
RunINCVon D - C,D' =D —C
Train network f(C')

Compute f(T)
Choose k x numClasses hard examples z’
while N # 0 do
Split D’ into 2 parts
Separately fine tune f on each part
Test f(2’) on each f
for Each part do
if f(2’) performance increases then
Add this part to C'
else
Divide this part into two parts
end if
end for
end while

to create a highly sensitive test of the generalization per-
formance and use it to determine if a small batch of train-
ing data is mostly or all correctly labeled or not.

The planned version of the algorithm is shown in Algo-
rithm [I] Specifically, we run INCV or another noisy label
method that separates out the easy and correctly labeled
samples from the training dataset D into a clean training
dataset C. A network f(C) is trained on the clean dataset
C to be used through the rest of this algorithm. We as-
sume (and will test) that the definition of a hard example
is where the largest outputs of the softmax are numeri-
cally close to each other, say within a small value €. For
each class we pick k hard test samples (i.e., the largest
softmax outputs are within €) where £ is a small integer,
say between 1 and 5. We expect that this small test set, .5,
will act as our sensitive barameter for generalization.

The main part of this algorithm is iterative. We divide
the training data D — C (i.e., the training data without the
clean samples) into two parts. The trained network is fine
tuned on each of the two parts and tested on our barameter
test set S. If the generalization performance goes up, all
or most of the training samples in this part must be clean,
hard examples and can be added to C'. Otherwise, this part
of the data is a mixture of correctly and incorrectly labeled
data and should be split into two parts and the procedure
should be recursively repeated on the new parts. This loop
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is repeated until the size of the training data batch is on the
order of a mini-batch.

Of course, there are a number of elements that will be-
come clear as we test this initial method, such as the best
stopping point for the iterative procedure, how to change
the fine-tuning as the amount of training data decreases,
and the magnitude of e. We plan to quickly test our as-
sumptions as we implement this technique.

5.2 Soft labels

The standard way to train neural networks is with 1-hot
vectors, which means a label is a vector of zeros with a
value of one in the location that corresponds to the class.
In other words, the label vector emphatically states that
that a training sample is one class and not any of the oth-
ers. On the other hand, with soft labels, which is related to
label smoothing, the label vector can represent probabili-
ties of the training samples being each of the classes. For
example, a confusing hard example of a dog, which looks
a little like a cat, might be 0.6 in the dog class and 0.4
in the cat class. The confusion matrix in Figure [2| shows
there are many examples that fall in this category.

Our initial vision of the algorithm is initiate the training
with one hot vectors. Since [1] showed that neural net-
works learn simple patterns quickly, the loss for the easy
and correct samples should go quickly to zero. As train-
ing proceeds, the labels for the high loss samples will be
incrementally adjusted towards the the predicted classes,
perhaps requiring the probability of the original label to
be a minimum of 0.5 (this will retain part of the informa-
tion for hard samples while reducing the effect of false
labels).

There are precedents that soft labels will help in the
noisy label problem. Mixup [15] is a data augmentation
scheme where two training samples from different classes
are interpolated to create a mixed sample and a corre-
sponding soft label is used in training. The essence of
mixup is to artificially create hard examples and it is one
of the best data augmentation methods available. Here,
we are not interpolating training samples but rather using
the soft labels on naturally occuring hard examples that
are part of our training data. We hypothesis that using
soft labels on hard examples will increase the generaliza-
tion performance.

In addition, soft labels will decrease the impact of in-
correctly labeled samples because instead of training the
network to memorize the wrong label in this instance, soft
labels allows for the possibility that this training sample
might be a different class. In the wrongly labeled case,
it is reasonable to expect that this change in training for
wrongly labeled samples will minimize the negative im-
pact on the trained network’s generalization.

6 Conclusions

The Noisy Label Correcting Cross Validation method did
not improve classification accuracy for a neural network
trained on noisy data relative to co-teaching or the INCV
methods. As a result, we are not continuing to work with
this method.

However, the new understandings learned from this ef-
fort inspired two new methods: the generalization sensi-
tivity analysis and soft labels approaches. The generaliza-
tion sensitivity analysis builds on methods for identifying
clean labeled samples by using generalization to distin-
guish between hard, correctly labeled samples and incor-
rectly labeled samples in the non-clean remainder. The
other method is to incrementally replace hard labels for
high loss training samples with soft labels to gain the gen-
eralization benefits of the hard training samples and min-
imize the generalization loss from wrongly labeled sam-
ples. We expect this approach to be much more tolerant
to wrong labels than the current training methods. Our
future plans include testing these methods.

Success of these planned methods will enable the use
of automatic labeling methods for new applications, even
when a significant fraction of the labels are incorrect.
These will lead to a significant reduction in the effort re-
quired to obtain large amounts of labeled training data.
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