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Abstract

Recent advances in waveform generation and in computational power have enabled the

design and implementation of new complex radar waveforms. Still, even with these

advances in computation, in a pulse agile mode, where the radar transmits unique

waveforms at every pulse, the requirement to design physically robust waveforms

which achieve good autocorrelation sidelobes, are spectrally contained, and have a

constant amplitude envelope for high power operation, can require expensive compu-

tation equipment and can impede real time operation. This work addresses this concern

in the context of FM noise waveforms which have been demonstrated in recent years in

both simulation and in experiments to achieve low autocorrelation sidelobes through

the high dimensionality of coherent integration when operating in a pulse agile mode.

However while they are effective, the approaches to design these waveforms requires

the optimization of each individual waveform making them subject to the concern

above.

This dissertation takes a different approach. Since these FM noise waveforms are

meant to be noise like in the first place, the waveforms here are instantiated as the

sample functions of a stochastic process which has been specially designed to pro-

duce spectrally contained, constant amplitude waveforms with noise like cancellation

of sidelobes. This makes the waveform creation process little more computationally

expensive than pulling numbers from a random number generator (RNG) since the

optimization designs a waveform generating function (WGF) itself rather than each

waveform themselves. This goal is achieved by leveraging gradient descent optimiza-

tion methods to reduce the expected frequency template error (EFTE) cost function for
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both the pulsed stochastic waveform generation (StoWGe) waveform model and a new

CW version of StoWGe denoted CW-StoWGe. The effectiveness of these approaches

and their ability to generate useful radar waveforms is analyzed using several stochas-

tic waveform generation metrics developed here. The EFTE optimization is shown

through simulation to produce WGFs which generate FM noise waveforms in both

pulsed and CW modes which achieve good spectral containment and autocorrelation

sidelobes. The resulting waveforms will be demonstrated in both loopback and in

open-air experiments to be robust to physical implementation.
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Chapter 1

Introduction

Over the years the generation of the radar waveforms has changed greatly from simple spark-

gap generators in the early 20th century [1] to the high powered magnetrons [2] and the pulse

compression waveforms of the mid 20th century [2–5]. More recently the trend is towards so-

phisticated arbitrary waveform generators (AWG). High fidelity AWGs along with the incredible

computational abilities of modern computers have motivated a great deal of interest in the field of

waveform diversity and design [6–10]. The goals behind designing new waveforms is of course to

make a given radar system or radar mode more effective. What more effective means is application

specific; however, some generalizations can be made.

In general, radar waveforms should produce unambiguous responses. In the context of the

matched filter, a basic and effective processing tool, the autocorrelation sidelobes represent am-

biguities which can hide or mask targets of interest. Consequently, a great deal of radar wave-

form design focuses on minimizing these ambiguous responses in both the range and Doppler

domains [3, 5, 11].

Radar waveforms should be spectrally contained. The electromagnetic spectrum is a finite re-

source. If two users use the same bandwidth then they will interfere with each other and neither

will be able to operate effectively. Given the proliferation of spectrum usage especially for com-

mercial applications, it is more important than ever that Radar systems operate in a bandwidth

efficient manner for their own sake and for the sake of other users [12–14].

Radar waveforms should be amenable to implementation on high powered equipment. Gener-

ally speaking, in order to combat the R4 power loss, where R is the range to some object, incurred

by the two way spherical spreading of the electromagnetic energy, radars often operate at very
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high power levels. High power operation necessitates high power amplifiers which operate in

the saturation region. If a radar signal or any signal for that matter with amplitude modulation

(AM) is passed through an amplifier operating in saturation, it will invariably endure non-linear

distortion effects which degrade radar performance and expand the signal spectrum into adjacent

bands diminishing spectral containment [6, 15]. Though more sophisticated techniques exist such

as predistortion [16, 17], the most straightforward way to mitigate this effect is to design constant

modulus (constant amplitude) waveforms.

Numerous waveform implementations and design schemes have been proposed over the years

to address these issues and others. This work however considers the design and implementation of

what are known as frequency modulated (FM) noise waveforms.

Noise waveforms in general take advantage of the high dimensionality of noise and noise like

signals to reduce ambiguous responses such as autocorrelation sidelobes [18–21]. To get an idea

of how this works, consider an experiment. If the results are noisy one might run the experiment

again and again to mitigate the noise and get a clean result. This is akin to transmitting the same

pulse over and over again as with traditional LFM based radar. While the noise is reduced, the

autocorrelation sidelobes remain the same. With noise radar or pulse agile radar in general where

different pulses are transmitted every pulse repetition interval (PRI), this is like doing an entirely

new experiment every pulse. The results can still be combined to lower the noise power, but

since the sidelobe responses are different also, they too decrease when coherently combined. This

diminishes the ambiguity due to range sidelobes with more and more unique pulses, though it

could be argued the ambiguity appears elsewhere rather than being completely mitigated as will be

shown with range sidelobe modulation (RSM) [6, 22].

The difficulty with noise radar is a high peak to average power ratio (PAPR) or a lot of AM

which leads to the non-linear distortion discussed above. To mitigate this problem while retaining

the benefits of noise radar, FM noise waveforms preserve the desirable high dimensionality side-

lobe reduction properties or noise radar while achieving a constant amplitude temporal envelope

(hence FM). The high dimensionality reduction of sidelobes and the constant amplitude character
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of these waveforms addresse two of the aforementioned design goals. Often, the most difficult

aspect of FM noise waveform design and constant amplitude waveform design as a while is the

spectral containment aspect. For FM noise waveforms this often entails an iterative, sometimes

computationally expensive design process to make each individual FM noise waveform have a de-

sirable spectrum and good autocorrelation sidelobes [23–26]. Other FM noise implementations are

process based. Rather than optimizing each waveform, the phase of the waveform is the sample

function of a random process, though in their current formulations these methods lack much design

flexibility [27–29].

The goal of this work is to combine the optimization based and the process based FM noise

radar implementations by defining a waveform generating function (WGF) according to the stochas-

tic waveform generation (StoWGe) model [30] and optimizing the WGF to instantiate waveforms

with a desired power spectral density (PSD). In this way, the entire optimization process only has

to be performed once rather than on a per waveform level and unique FM noise waveforms are

generated as sample functions of the WGF. Additionally, this model is extended to continuous-

wave a (CW) form where rather than transmitting pulses, the radar emits a single, long-duration

waveform. The next several paragraphs outline the structure of this dissertation.

In order to provide context to the waveform design implementations in the later chapters, Chap-

ter 2 introduces various basic radar principles in the context of an admittedly simplistic but repre-

sentative radar scenario where the role of the radar waveform and subsequent digital signal pro-

cessing (DSP) are emphasized.

If the radar waveforms developed in this work are the sample functions of random processes,

then it makes sense to define and analyze them in terms of the classical definitions and notation

random signals and noise. Chapter 3, provides a brief overview of random variables and random

processes before explaining how FM noise waveforms and noise waveforms as a whole can be

analyzed as random processes. Then, various stochastic signal based metrics are defined in order

to provide a means to evaluate the efficacy of a given WGF for producing useful radar waveforms.

In Chapter 4, the StoWGe model is introduced as a parameterized stochastic process. Then by
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optimizing its parameters by minimizing the expected frequency template error (EFTE) cost func-

tion, various WGFs are optimized to generate waveforms with desirable spectral characteristics.

These WGFs are then analyzed in other respects according to the stochastic waveform properties

defined in Chapter 3. Waveforms generated by several of the WGFs are then implemented in both

loop-back and open-air settings to evaluate their physical robustness.

In Chapter 5, the StoWGe model is modified to allow for the design of CW radar waveforms.

The resulting model is very similar to the communications scheme continuous phase modulation

(CPM). In a similar progression as Chapter 4, the CW-StoWGe parameters are optimized according

to the EFTE cost function. The resulting optimized WGFs are then evaluated according to the

stochastic waveform metrics defined in Chapter 3. Waveforms generated by several of the WGFs

are then implemented in both loop-back and open-air settings to evaluate their physical robustness.

Chapter 6 provides conclusions as well as a discussion on future work while the appendices

provide tabulated optimization results, the derivation of numerous equations relating to StoWGe,

CW-StoWGe, and their respective optimizations, and finally a summary of terminology.
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Chapter 2

Background

The goal of this chapter is not provide a comprehensive overview of radar principles. Rather,

it is to give context to the radar waveform design schemes and objectives of the later chapters.

To do so, this chapter introduces numerous basic radar concepts through the examination of an

admittedly simplistic, but representative sensing scenario. Since this dissertation is concerned

with the design of radar waveforms, throughout this chapter an emphasis is placed on the role of

the radar waveform in enabling the radar to do its job.

In Section 2.1, it is first shown how noise complicates the detection process before introducing

the matched filter as a means to maximized the signal to noise ratio (SNR) in presence of additive

white Gaussian noise (AWGN). Then linear frequency modulated (LFM) pulse is then introduced

as a superior pulse compression waveform as compared to the simple unmodulated pulse in that

it leverages bandwidth to achieve finer range resolution. Finally, pulse integration is shown to

improve SNR and tapering is shown to mitigate to an extent the deleterious autocorrelation side-

lobes inherent to the LFM waveform. Section 2.2 introduce several waveform design schemes and

topologies for acheiving such goals as sidelobe mitigation and spectral containment. This section

provides an introduction to FM noise waveforms which are the primary focus of this work. Sec-

tion 2.3 introduces CW radar, Section 2.4 discusses the ambiguity function and doppler processing,

while Section 2.5 provides a brief overview of the gradient descent techniques used in this work.
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2.1 Basic Radar Processing

2.1.1 The Unmodulated Pulse and Basic Radar Operation

The simplest form of electromagnetic energy a radar can transmit is the unmodulated pulse. This

signal has no amplitude modulation (AM) such that its amplitude is constant over the pulse dura-

tion. Additionally, it has no frequency modulation (FM) in that its frequency is constant over the

pulse duration. The unmodulated pulse is defined as

spb(t) =

 Acos(2π fct) 0 < t < T

0 otherwise
(2.1)

where fc is the carrier frequency of the pulse, A is the amplitude, and T is the duration. The

unmodulated pulse definition in 2.1 is represented as a passband signal as implied by the subscript

pb. Alternatively, it could be represented in complex-baseband. For this simple waveform its

complex representation is simply a real-valued, time limited, DC pulse such that

sbb(t) =

 A 0 < t < T

0 otherwise
(2.2)

where the subscript bb denotes baseband. More generally, any constant amplitude passband signal

is defined as

spb(t) = Acos(2π fc +φ(t)) (2.3)

where φ(t) is some phase function. Alternatively, any constant amplitude baseband signal is de-

fined as

sbb(t) = Aexp( jφ(t)). (2.4)

For the unmodulated pulse of (2.1), φ(t) is zero.

Physically speaking, the baseband signal is up-converted to the carrier frequency fc before be-

ing transmitted. On receive, the passband signal is down-converted to the baseband representation
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1 2 3 4 56
Objects

Figure 2.1: Ideal, simplistic radar data where the entire pulse envelopes are visible, undistorted,
and are free of noise. The leading edges clearly indicate the positions of six distinct objects.

for processing. For this work, the details of this process are only important inasmuch as the up-

conversion and down-conversion steps can be performed. For the purposes of design, analysis,

and processing it is more convenient to utilize the baseband representation. From here on out,

these tasks will be performed at complex-baseband. More information on the physical hardware

implementation of radar signals can be found in any radar textbook such as [31].

Consider a radar operating in some environment. At time t0 it transmits an unmodulated pulse

and then listens for the echoes. In this simplistic case, its goal is to simply determine the distance

to any objects in the scene. In an ideal world the received power envelopes may look like Fig.

2.1. where various, distinct reflections are clearly visible and their range can be easily evaluated

by identifying the time delay of the leading edge of the pulse. Their amplitudes vary based on

the distance to the objects, their particular reflectivity, and numerous other factors which are not

necessary to consider here. Even when the reflections fall on top of each other, their position in

Fig. 2.1 is obvious. Based on the propagation speed of electromagnetic radiation, the distance to

each object is

R =
τc
2

(2.5)
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where τ is the delay of the leading edge of the reflection, c is the speed of light in a vacuum, and

the factor of 2 indicates the delay to the object is doubled because the pulse has to travel to and

from the object.

Unfortunately, reality is never as simple as in Fig. 2.1. Without any kind of additional process-

ing a more reasonable range response is shown in Fig. 2.2. Filtering, distortion, and primarily the

presence of noise has completely obscured the positions of the objects which are plainly visible in

Fig. 2.1. The most straightforward solution to this problem would be to simply transmit as much

power as possible to raise the signal well above the noise, but this is not as simple as it sounds.

In (2.5) the factor of 1/2 accounts for the two way propagation of the radar waveform. This two

way propagation also results in a two way spherical spreading loss such that the power returned by

any given object is inversely proportional to the fourth power of its range. In other words, if two

objects would otherwise reflect the same amount of energy but one is twice as far away from the

radar, the further object will only return 1/16 the energy as the closer object. Transmitting more

and more energy is a losing battle with respect to range losses. Consequently, minimizing noise,

interference, and maximizing detectability through post-processing are essential to radar detection

as discussed in the next section.

2.1.2 Linear Frequency Modulation and Pulse Compression

In Fig. 2.1, the energy returned from each pulse is spread out over the entire pulse duration.

Previously, only the leading edge was considered. However, it is possible to realize a greater

response by "compressing" the returns from each object by using the matched filter to implement

pulse compression. To demonstrate this, consider the ideal response in Fig. 2.1. In this noise

free environment, the returned signal is a convolution of the time reversed transmit signal with the

impulse response of the environment such that

ys(t) =
ˆ

∞

−∞

s(τ− t)x(τ)dτ (2.6)
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1 2 3 4 56

Figure 2.2: The same radar radar data as in Fig. 2.1, but with additive white Gaussian noise

where s(t) is the transmit signal and x(t) is the channel’s impulse response. In this case, the

sequence of six objects can be described via a linear combination of delta functions such that

x(r) = an

6

∑
n=1

δ (r− rn) (2.7)

where r is range from the transceiver and an is some complex valued scaler which is proportional

to the objects reflectivity. r and t are related by (2.5). In Fig. 2.2, the returns are distorted by the

addition of white Gaussian noise (WGN) which is an excellent approximation for many natural

sources of noise like the thermal noise which is inherent to all electronic devices. The addition of

noise modifies (2.6) to

y(t) =
ˆ

∞

−∞

s(τ− t)x(τ)dτ + v(t) (2.8)

where v(t) is the additive WGN. In Fig. 2.2, the noise power of v(t) is strong enough to completely

obscure the objects which were easily visible in Fig. 2.1. The relative power between the returned

signal and the noise is the signal to noise ratio (SNR). Unless other factors cause further interfer-

ence, SNR is an effective tool for determining whether something is detectable. In fact, the radar
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range equation which typically measures the maximum range a radar can detect something, is a

function of SNR. A detailed discussion of the radar range equation is not needed here, but can be

found in [31].

The fact remains that, even without describing any specific values, some additional processing

is necessary to make the returns in Fig. 2.2 useful. To do so, it is often useful to apply a linear

filter. In the time domain, this operation is mathematically described via a convolution. Thus the

filtered data becomes

y f (t) =
ˆ

∞

−∞

f (t− τ)y(τ)dτ (2.9)

where f (t) is some filter function and yf(t) is the returned data under the filtering operation. For

the matched filter, f (t) becomes

f (t) = as∗(−t) (2.10)

which is the complex conjugated, time reversed version of the baseband signal s(t) with an arbitrary

scale factor a. By replacing f (t) with the matched filter and by replacing y(t) with its signal

component, ys(t), and its noise component, v(t), (2.9) becomes

ymf(t) =
ˆ

∞

−∞

as∗(τ− t)(ys(τ)+ v(τ))dτ (2.11)

where ymf(t) is the returned data under the matched filtering operation. Recall, that ys(t) as defined

in (2.6) is a linear combination of time shifted versions of the transmit signal. Under the matched

filtering operation ys(t) instead becomes a linear combination of time shifted autocorrelations.

The autocorrelation is defined as

r(t) =
ˆ

∞

−∞

s∗(t− τ)s(t)dτ. (2.12)

The usefulness of the matched filter is described by the Schwartz inequality. For two arbitrary
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functions, f1(x) and f2(x), a relationship exists such that [31]

ˆ b

a
f1(x) f2(x)dx≤

ˆ b

a
f1(x)dx

ˆ b

a
f2(x)dx (2.13)

which holds with equality iff f1(x) = a f2(x) where a is some constant. At t = 0 in (2.12), this

is precisely the case. Consequently, whenever t = t0 where t0 is the location of an object in x(t),

(2.11) becomes

y(t0) =
ˆ T

0
|s(t)|2dt +

ˆ t0+T/2

t0−T/2
s∗(t)v(t)t. (2.14)

The first term in (2.14) is, by definition, the total energy of the transmit signal and also the form

of the Schwartz inequality that realizes the equality condition. If v(t) is exclusively WGN, the the

matched filter maximizes the SNR. This is the most important aspect of the matched filter. A more

complete discussion of this can be found in [5, 7, 32, 33].

The autocorrelation of the baseband unmodulated pulse realizes a triangular function. This

triangular function becomes somewhat like a downward facing parabola as shown in Fig. 2.3

when it is plotted on a dB scale. Applying the matched filter to the data in Fig. 2.2 realizes Fig.

2.4 where several responses are clearly visible however there are still some obvious issues. While

object 1 is plainly visible, 2 and 3 are hard to tell apart, 4 looks like part of 2 and 3, while 5 and

6 look like one return. For the most part, the problem here is resolution, there just is not enough

separation between many of the objects to reliably identify them given the wide autocorrelation

response of the unmodulated pulse. The resolution of the tone is usually defined as the Rayleigh

resolution which is [31]

δR =
cT
2

(2.15)

From (2.15), one solution is to shorten the pulse. The time width of the autocorrelation response

is 2 times the temporal length of the signal so shortening the signal shortens the autocorrelation.

However, this means less energy on target leading to poorer SNRs. To compensate, the radar could

transmit at a higher power, but this leads to a vicious cycle of transmitting ever shorter pulses at
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Figure 2.3: The autocorrelation response of a baseband tone

ever higher powers. Due to hardware constraints, there are practical limits to both.

To address the resolution problem, we can transmit a pulse with a more advantageous auto-

correlation. For decades the linear frequency modulated (LFM) pulse has been the prototypical

modulated radar waveform. As the name implies, the frequency function of an LFM is a linear

function of time such that at passband the LFM is defined [7, 31, 32, 34]

sLFM(t) =

 Acos(2π fct +π
B
T t2) −T/2 < t < T/2

0 otherwise
(2.16)

which has been centered at t = 0 for convenience. As described by (2.3), the phase function of

(2.16) is

φ(t) = 2π fct +π
B
T

t2 −T/2 < t < T/2 (2.17)

and the radial frequency function is the derivative of the phase function yielding

dφ(t)
dt

= 2π fc +2π
B
T

t −T/2 < t < T/2 (2.18)
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1 2 3 4 56

Figure 2.4: The noisy radar data from Fig. 2.2 after being matched filtered with a baseband tone

such that the frequency function in Hz is

f (t) = fc +
B
T

t −T/2 < t < T/2 (2.19)

which is a linear function of time. Over the course of the pulse, the signal chirps through B Hz

in T seconds. To understand what effect the modulation has on the autocorrelation function and

further the scene in Fig. 2.4, it is useful to apply some arbitrary, but representative numbers to the

modulated and unmodulated pulses.

Consider a modulated and an unmodulated pulse, both with T = 10 us and for the LFM B = 10

MHz. Each pulse has been normalized to unit energy such that |s(t)|2 = 1. The autocorrelation

response of each is shown in Fig. 2.7 where showing only half of the autocorrelations is necessary

since they are symmetric about t = 0. The LFM autocorrelation clearly will do a much better

job of resolving relatively close together objects as opposed to the tone owing to its well defined

peak. Additionally, a lobing structure has been revealed where the lobe around the match point,

t = 0, is called the mainlobe while all other lobes are known as sidelobes. As will be shown, these

sidelobes are inherent to virtually all waveforms and are problematic in their tendency to hide
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weaker reflections. For now though, the LFM autocorrelation is superior to the tone autocorrelation

from its resolution improvement alone. To show why introducing a modulation has resulted in such

a drastic autocorrelation improvement, it is useful to examine their power spectra.

The power spectra of either the LFM or the tone or any pulsed radar waveform for that matter

is evalutated by taking the magnitude squared of the Fourier transform of the pulse. The result of

these operations is shown in Fig. 2.6. The baseband tone is simply a DC pulse so its power is

concentrated at 0 frequency and takes on a sinc squared envelope owing to its rectangular pulse

shape. The LFM spectrum on the other hand is spread fairly evenly throughout its swept bandwidth

(| f | ≤ 2.5MHz). The vertical lines in Fig.2.6 represent the bandwidth of the tone and the LFM.

For the tone the bandwidth is considered to be

Btone ≈
1
T

(2.20)

which in this case is 100kHz. This corresponds to approximately the 4 dB bandwidth of the tone.

For the LFM, the bandwidth is normally considered to be its swept bandwidth which corresponds

to approximately is 6 dB bandwidth which in this case is 5 MHz.

In general, the notion of bandwidth is defined for the application. For matters of resolution,

the relevant bandwidth metrics are usually defined with respect to the spectral power falling below

some relative power threshold like the ones just mentioned for the tone or the LFM. For non-LFM

waveforms, the 3dB bandwidth (the point at which the spectral power falls below 1/2 (-3dB) of the

peak power) is commonly used to estimate the resolution. In other applications it may be relevant

to consider the XX% bandwidth or the bandwidth which contains XX% of the signal power. A

common value may be the 99% bandwidth. The absolute bandwidth is the frequency beyond

which there is no frequency content.

Regardless, the threshold bandwidth metrics (3dB, 4dB, 6dB), tie nicely into what is known as

the time-bandwidth product (BT ). For any tone, the BT is

BT = T
1
T

= 1. (2.21)
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Sidelobes

Mainlobe

LFM Resolution

Tone Resolution

Figure 2.5: The autocorrelation of 10 us tone and a 10 us, 5 MHz LFM

For the LFM from above, using the swept bandwidth or the 6dB bandwidth which are synonymous

in this case, the BT becomes

BT = (10−5 s)(5 ·106 Hz) = 50. (2.22)

In general, a waveform with X times the BT of another waveform will likewise have an X times

improved resolution. So, for a given pulse length increasing the bandwidth improves the range

resolution. Finally, if an LFM were transmitted rather than a tone, after the matched filtering

operation, the result in Fig. 2.2 becomes Fig. 2.7 where objects 2 and 3 are now clearly separable.

Still, there are problems. Despite the processing gains of matched filtering and using the much

higher resolution LFM, objects 4 and 6 are still buried beneath the noise since the SNR is too low

to detect them.
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~6 dB down

~4 dB down

Figure 2.6: The power spectrum of 10 us tone and a 10 us, 5 MHz LFM

1 2 3 4 56

Figure 2.7: The noisy radar data from Fig. 2.2 where the transmit signal was an LFM after being
matched filtered
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2.1.3 Pulse Integration and LFM Sidelobe Mitigation

2.1.3.1 Pulse Integration

Radars rarely operate in a single pulse mode. Typically, whether it is attached to an aircraft, a

spacecraft, or is stationary, the view of the radar will be changing as either it moves itself or the

object it is attached to moves. Still, radars will often transmit with pulse repetition frequencies

(PRF) in the kHz or even tens of kHz where thousands of pulses will be transmitted every second

such that despite the motion of the radar or the platform, consecutive pulses will return data from

largely the same scene, especially for objects that are stationary with respect to the radar. The

inverse of the PRF is the pulse repetition interval (PRI) which says a pulse is transmitted every

PRI seconds. Sets of consecutive pulses are often jointly processed as determined by the length of

the coherent processing interval (CPI). Organizing pulses in this way is useful for several reasons.

Due to the Doppler effect, objects moving with respect to the radar induce a frequency shift

on the signal which is very effective for identifying moving objects in the presence of stationary

objects. By collecting multiple pulses in a CPI, these (usually) small frequency shifts can be

measured to estimate velocity. More will be said on this later.

The more immediately relevant reason for transmitting multiple pulses is achieving more power

on target. Assuming the scene changes minimally over the course of a CPI or if the changes due

to object or platform motion can be compensated for, the energy from various pulses can be added

together or integrated to achieve a better signal to noise ratio.

To demonstrate how this works consider the matched filter data from N different pulses in a

CPI. For every pulse, the underlying scene is the same, but the noise is assumed to be indepen-

dent, identically distributed (i.i.d.), and zero mean. At any arbitrary point in time, the summation

(integration) of this data is

yN(t0) =
N

∑
n=1

yn(t0)+ vn(t0). (2.23)
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Since the signal data in each case is the same and in phase (2.23) becomes

yN(t0) = Ny(t0)+
N

∑
n=1

vn(t0). (2.24)

where the n subscript has been dropped since all yn(t0) are by definition equivalent. The signal

power is then (Ny(t0))2. The noise power however is evaluated as the variance of the noise com-

ponent. Since the noise is zero mean, its variance is defined

E

∣∣∣∣∣ N

∑
n=1

vn(t0)

∣∣∣∣∣
2
= E

[(
N

∑
n=1

vn(t0)

)(
N

∑
n=1

v∗n(t0)

)]
(2.25)

Since the noise is i.i.d., the cross terms cancel and (2.25) becomes [35]

E

[(
N

∑
n=1

vn(t0)

)(
N

∑
n=1

v∗n(t0)

)]
= Nσ

2
v (2.26)

where σ2
v is the noise variance of a single sample. From this result, the signal power increased by

a factor of N2 while the noise power only increased by a factor of N. The SNR is then improved by

a factor N, the ratio between these values. Thus for the integration of N pulses, the relative noise

power will decrease by 10log10(N). Much more will be said about random variables in Chapter 3.

Consider Fig. 2.7. Objects 5 and 6 are buried beneath the noise, but this is for a single pulse.

With coherent pulse integration Fig. 2.7 becomes Fig. 2.8 where 100 pulses have be coherently

integrated. In Fig. 2.8 object 4 is now plainly visible and the LFM sidelobes have been revealed

from the noise. Still, object 6 is not identifiable. It appears to no longer be buried in the noise, but it

instead is hidden beneath the sidelobes of object 5. Because of this, no degree of pulse integration

will reveal object 6 necessitating other approaches. One option is to use a waveform other than

the LFM which has lower autocorrelation sidelobes. In general, the mitigation of autocorrelation

sidelobes is the driving force behind waveform design.
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1 2 3 4 56

Sidelobes
Sidelobes

Sidelobes

Figure 2.8: The noisy radar data from Fig. 2.2 where the transmit signal was an LFM after being
matched filtered and coherently integrated over 100 pulses

2.1.3.2 LFM Sidelobe Mitigation

One of the best ways to mitigate the sidelobes of the LFM is through tapering the received data’s

spectrum such that

Ytaper( f ) = Y ( f )W ( f ) (2.27)

where Y ( f ) is the spectrum of the returned data and W ( f ) is the tapering function. In general, these

tapering functions will smooth the sharp corners of the LFM spectrum that are seen in Fig. 2.6. In

the time domain, this has the effect of lowering the autocorrelation sidelobes significantly, but also

inducing SNR and range resolution losses. In Fig. 2.9, the resulting autocorrelation and spectrum

are shown after tapering an LFM with a Taylor window [31]. The autocorrelation response is

calculated via the Weiner-Khinchine theorem by taking an inverse Fourier transform of the tapered

spectrum. The resulting autocorrelation in Fig. 2.9 demonstrates a sidelobe level about 30 dB

below the original peak, but the autocorrelation peak itself is almost 5 dB lower than its untapered

counterpart and it has a slightly poorer resolution. Given a scenario with sufficient SNR, tapering

would likely be desirable.
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Figure 2.9: Comparison of an LFM waveform with and without a Taylor tapering window

Applying the taper to the LFMs in Fig. 2.8 yields Fig. 2.10 where the new tapered results are

shown in red on top of the untapered LFM results. The clear lowering of sidelobes is apparent

as well as a loss in SNR. Critically, despite the loss in SNR the improved sidelobe levels have

revealed object 6 as just past object 5. This example is just representative as there are numerous

window functions each of which have their own trade offs and can be applied in different ways.

Further information on tapers can be found in [36, 37].

2.2 Pulse Compression Waveform Design

Section 2.1.2 introduced the concept of autocorrelation sidelobes and Section 2.1.3 showed through

Fig. 2.8 where they become a problem. Section 2.1.3.2 introduced the means to suppress them and

this section will discuss in detail the various waveforms and waveform design schemes which have

been developed to lower autocorrelation sidelobes and achieve other goals.
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1 2 3 4 56

6

Figure 2.10: The noisy radar data from Fig. 2.2 with either an LFM or a tapered LFM and coherent
integration

2.2.1 Non-linear FM

After discussing the LFM waveform and tapering techniques it is natural to first discuss what are

typically considered non-linear FM waveforms (NLFM). In section 2.1.3.2, tapering was discussed

as means to lower autocorrelation sidelobes at the expense of reduced range resolution and SNR

loss. In the frequency domain, tapering LFM waveforms has the effect of making the power

spectrum more Gaussian like. NLFM waveforms inherently posses this Gaussian like spectrum

and consequently much lower autocorrelation sidelobes. They are often design via the principle of

stationary phase (POSP) and have frequency function which resembles a "sideways-S" [38–40].

2.2.2 Phased-coded Waveforms

The phase-coded signal model considers radar waveforms as a sequence of discrete values. Prac-

tically speaking, such a model is intuitive. After all most electronic systems nowadays are digital

systems which sample the input data into a sequence of discrete values anyway. Additionally, the

phase-coded model is relatively simple making it mathematically tractable from a design stand-
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point. Stated formally, a unit energy phase coded signal of duration T is defined as [7]

s(t) =
1√
T

N

∑
n=1

exp( jφn)rect
(

t− (m−1/2)tb
tb

)
(2.28)

where rect(·) is defined

rect(t) =

 1 −1/2 < t < 1/2

0 otherwise
(2.29)

and the N phase values, φ1, φ2, · · · , φN are collectively the phase code. tb is the time width of each

rect(·) and is known as the chip time. Since the model is a based on a sequence of rectangular chips,

the autocorrelation can be evaluated as the discrete correlation of the phase coded sequence with

itselef. The continuous time autocorrelation is then a linear interpolation of the discrete correlation

as is seen in Figs. 2.11 and 2.12.

2.2.2.1 Phase-coded Waveform Examples

As a field, there has been a huge number of contributions to the study of phase codes, far too many

to study in detail here. However, many excellent resources exist such as [7,41]. As a representative

example, Barker codes and Minimum Peak Sidelobe (MPS) codes are discussed in some detail here

while some other design schemes are introduced.

Perhaps the most well known set of phase codes are the Barker codes. Originally developed

in 1953, Barker codes realize a peak to sidelobe ratio (PSL) of 1/N where N is the length of the

code [42]. Barker codes are binary codes in that the phase values only take on one of two antipodal

states usually referred to as 1 and 0 which map to π and 0 respectively but any two relative states

are acceptable so long as that are opposite each other on the unit circle. The unfortunate aspect

of Barker codes is that they are only known to exist for values N ≤ 13. The N = 13 Barker code

autocorrelation is shown in Fig. 2.11.

With this limitation in mind, numerous authors have sought to find the next best thing which

are termed minimum peak sidelobe (MPS) codes. As the name implies, for a length N binary
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1/N

Figure 2.11: The autocorrelation of a length-13 Barker code

code, the MPS sequence achieves the lowest possible sidelobe level. Due to the binary nature of

the code, numerical optimization methods are not suited to the problem. Consequently exhaustive

searches have been employed to find MPS codes. The problem with an exhaustive search is how

many sequences there are for a given value of N since Ns = 2N where Ns is the number of candidate

binary sequences. In 1975, Lindner implemented such an exhaustive search for N ≤ 40, but due

to the sheer number of codes to check, the computerized search took 50 days of computation [43]!

Since then, other more efficient approaches have extended the list of known MPS codes such

as [44] which found codes all the way to N = 70. Fig. 2.12 shows the autocorrelation of an MPS

code for N = 64 where the optimal PSL happens to be 4/N or 1/16.

If one considers codes with larger alphabets such that φn is allowed to take on values beyond

just π or 0, sequences which meet the Barker code performance of 1/N can be found for longer than

N = 13 sequences. These are known as polyphase barker codes [45]. Beyond Barker, polyphase

Barker and MPS codes, numerous other code designs have been proposed. These include Frank

codes [46], Zadoff-Chu codes [47], P-codes [48,49], Golomb codes [50], and many more. [11,41]

provide excellent overviews of this topic along with a more in depth analysis of particular codes
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4/N

Figure 2.12: The autocorrelation of a length-64 MPS code

and coding schemes.

2.2.2.2 Phase-coded Waveform Spectral Characteristics

To this point, little has been said about the spectral content of radar signals. In Section 2.1.2,

bandwidth was discussed with respect to the autocorrelation response and resolution, but for tones

and LFMs bandwidth is not really an issue from a waveform generation standpoint since each have

a spectra which decays or "roll-off" quite quickly beyond its main bandwidth. For phase codes this

is not the case. The rectangular shape of the chips and the instantaneous phase changes between

the chips tend towards waveforms with poor spectral roll-off.

Taking the Fourier transform of (2.28) yields

S( f ) =
1√
T

N

∑
n=1

sin(π f tb)
π f

exp( j(φn−2π f (n−1/2)tb)) (2.30)

and the power spectral density is then

|S( f )|2 = sin2 (π f tb)
T (π f )2

N

∑
n=1

N

∑
m=1

exp( j(φn−φm−2π f (n−m)tb)) (2.31)
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which can be reduced to

|S( f )|2 = sin2 (π f tb)
T (π f )2

(
N +2

N−1

∑
n=1

N

∑
m=n+1

cos(φn−φm−2π f (n−m)tb)

)
(2.32)

which is a super-position cosine modulated sinc squared functions which results in poor roll-off

[11] . The cosine terms result in a repeating pattern of images every 1/tb Hz centered at 0 Hz

in this baseband representation. These images are then attenuated by the sinc squared function.

For the Barker and MPS codes in figs. 2.11 and 2.12, the spectra are plotted in Fig. 2.13 where

each spectrum has been normalized to the same bandwidth. Based on Fig. 2.13, the fundamental

bandwidth, | f | < 1/2, is determined by the chip length tb. In general, as with the LFM spectrum

in Fig. 2.6, the goal is to contain the spectrum to within this interval to the degree possible.

Otherwise, the transmit electronics will filter out the higher frequency components of the signal

leading to linear signal distortion and AM. This AM can then result in further non-linear distortion

in the high power amplifier. Even if the transmission system can handle the extended spectrum,

then the signal may interfere with other users and the receiver then needs to be able to handle the

wide bandwidth itself. Accepting such a wide bandwidth may result in additional interference to

the radar from other users that would otherwise be attenuated out of band if the radar could just

focus on the fundamental interval. Additionally, a wider bandwidth means accepting a higher noise

power as additional higher frequency noise is accepted.

Clearly, there good reasons to keep the signal spectrally contained. Consequently, several meth-

ods have been proposed to aid in spectral roll-off. One method is to smooth the phase transitions

by linearly changing the phase over a fraction of the chip width [7]. For bi-phase codes such as the

ones shown in this section, the bi-phase to quadriphase (BTQ) transform [51] and derivative phase

shift keying [52] have been shown to be affective at containing the bi-phase spectrum. Another

approach is to use a different shaping filter for the chips. Rather than using rectangular chips Chen

and Cantrell suggested using a Gaussian weighted sinc function [53]. However, this approach in-

troduces AM to the signal which presents its own problems. Finally, a method that was originally
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Figure 2.13: The power spectral density of the Barker and MPS codes from Figs. 2.11 and 2.12
respectively

developed for implementing poly-phase codes is discussed in the next Section.

2.2.3 Polyphase-coded Frequency Modulation

The last section ended with a discussion on the spectral challenges associated with implementing

bi-phase and poly-phase coded waveforms. Polyphase-coded Frequency Modulation (PCFM) was

developed as a means to address these issues [54]. The PCFM waveform model borrows heavily

from the continuous phase modulation (CPM) communications scheme which is commonly used

for power constrained applications where power efficiency is key such as the BluetoothTM wireless

standard [55–58]. Being a phase modulation scheme CPM is constant amplitude like phase codes

making it amenable to high power transmitters. However, its phase function is continuous as well

making it actually a frequency modulation scheme with, in general, better spectral containment

than a purely phase modulated scheme.

The CPM signal model is predicated on a continuous wave (CW) signal in that it has no math-
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ematically defined beginning or end such that

sCPM(t;I) = exp

(
j2π

m

∑
k=−∞

Ikhkq(t− kTs)

)
, mT ≤ t ≤ (m+1)T (2.33)

where I is an infinite length vector of information carrying symbols, Ts is the symbol time, hk is

a scalar known as the modulation index which can change with every symbol. q(t) is the symbol

phase response which itself is defined as

q(t) =
ˆ t

0
g(τ)dτ (2.34)

where g(t) is the frequency shaping filter or frequency pulse. To adapt (2.33) to a pulsed Radar

waveform model, the communications aspects were dropped and the signal was made time limited

yielding

sPCFM(t;x) =

 exp
(

j ∑
N
n=1 xnq(t−nTs)

)
0≤ t ≤ (N−1)T

0 otherwise
(2.35)

where the N-length vector x = [α1 α2 · · · αN ]
T is comprised of the PCFM parameters which have

subsumed the 2π term [54,59]. (2.35) can alternatively be written in terms of the frequency shaping

filter such that (2.35) becomes

sPCFM(t;x) =

 exp
{

j
(´ t

0 g(τ)∗
[
∑

N
n=1 αnδ (t− (n−1)Ts)

]
dτ

)}
0≤ t ≤ (N−1)

0 otherwise
(2.36)

where the integration stage shows explicitly that the PCFM phase (and the CPM phase function

on which it is based) are continuous functions of times. For CPM, g(t) can take on many different

shapes yielding different advantages and disadvantages when it comes to spectral containment and

demodulation. PCFM however, was constructed as a means to implement poly-phase codes which

dictates q(t) should be a rectangular function such that at the end of every subpulse (every Ts

interval), the PCFM phase will match the phase of the poly-phase code it was meant to implement.
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The shaping filter g(t) is normalized to integrate to 1 such that the shaping filter is

g(t) =


1
Ts

0 < t ≤ Ts

0 0 < otherwise
(2.37)

and the PCFM parameters are bounded on the interval αn ∈ {−π,π}. To then implement a poly-

phase code as a PCFM waveform, the PCFM code is computed as the piecewise difference of

the poly-phase code. Since the element by element difference of an N-length vector results in an

(N−1)-length vector, the first element of the N-length PCFM code is set to the first element of the

poly-phase code. In this way, the PCFM parameters are akin to instantaneous frequencies. Such

a process results in the phase functions in Fig. 2.14(a) where a P4 code [49] has been adapted to

the PCFM model to improve containment. 2.14(b) shows the dramatic improvement in spectral

containment however 2.14(c) shows a degradation in the PSL level has likewise occurred.

Given the spectral containment capabilities of the PCFM model, it did not take long for its

capabilities as a standalone waveform design scheme to be realized. Instead, waveforms optimized

based on the PCFM model waveforms were demonstrated in [60] where greedy search methods

were shown as an effective means find PCFM codes which result in good spectral containment

autocorrelation sidelobes.

More recently, a new representation of the PCFM model has been used to impelement highly

efficient and effective PCFM optimization schemes which utilize gradient descent methods, the

subject of Section 2.5. Consider the integration and convolution steps of (2.36). If these are

evaluated, the PCFM phase takes on an exceedingly simple definition

φ(t;x) =
N

∑
n=1

αnbn(t), (2.38)

where each basis function

bn(t) =
ˆ t

0
g(τ− (n−1)Ts)dτ (2.39)

is the integral of g(t) time shifted by an integer multiple of Ts. Given the rectangular shaping filter,
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(a)

(c)(b)

Figure 2.14: A P4 code compared to its implementation as a PCFM waveform
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each bn(t) becomes a time shifted ramp function such that

g(t) =


0 0 < t ≤ (n−1)Ts

(t− (n−1)Ts)/Ts (n−1)Ts < t ≤ nTs

1 nTs <≤ NTs

(2.40)

The definition of bn(t) results in what is known as first order PCFM. Additional integration stages

can be incorporated into the PCFM definition to realize function with are continuous not only

in phase, but also frequency, chirp-rate, etc, but for the sake of brevity these are not considered

here [61]. Likewise, the basis functions in 2.40 could be generalized to any desirable function to

realized coded FM (CFM) such as through the use of legendre polynomials [62].

Other options for bn(t) aside, the convenience of (2.38) is realized when one considers how the

PCFM form has to be optimized and handled on a computer. It has to be sampled and the sampled

version needs to somehow capture the continuous nature of the PCFM phase that achieves excellent

spectral containment. Conveniently, the PCFM form can be easily discretized by sampling the

N basis functions and collecting them into the basis function matrix B. The discretized PCFM

waveform is then realized as

s = exp( jBx) (2.41)

where B is an M×N matrix. By bounding the PCFM parameters to the digital frequency space

[−π,π], the number of PCFM parameters, N, becomes approximately equivalent to BT such that

N ≈ BT . The ratio between M and N is then the oversampling factor K which represents the

ratio between the maximum digital bandwidth allowed by the number of samples in the discrete

waveform and the waveform’s 3 dB bandwidth. In Fig. 2.14(b), K = 10 since the edges of the

digital bandwidth extend to | f |= 5 and the 3 dB bandwidth occurs at approximately | f |= 1/2. The

key aspect of the oversampling factor is that it allows for the unambiguous digital representation of

the roll-off region. By ensuring the digital waveform exhibits good spectral roll-off in this region,

the physical implementation of the waveform will likewise exhibit a good spectral roll-off enabling
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a high fidelity, physical radar waveform.

Given these parameters, the original PCFM formulation guaranteed that for an oversampling

factor of K, there were also K samples of the ramping portion of each bn(t). In [63], it was shown

that by relaxing the condition N ≈ BT such that N > BT further sidelobe suppression could be

achieved. However, to guarantee a BT lower than N, the PCFM parameters had to be further

restricted to the interval [−π/L,π/L] where L is the termed the over-coding factor. Given [63]

utilized a greedy search, to maintain the new interval the search just ignored values outside that

interval.

In further optimization work, gradient descent methods were utilized. Since explicitly limiting

the interval of the PCFM parameters would greatly complicate the gradient descent implementa-

tions if not make them impossible, the optimizations themselves were designed to seek spectrally

contained solutions regardless of the degree of over-coding. In [23], this was achieved using a

Frequency Template Error (FTE) metric, which had previously been examined in [60], to explic-

itly optimize for a good spectral roll-off. In [64], only initializations which tend towards spectrally

contained solutions were considered. In [65], since the cost function did not tend towards contained

solution, no over-coding was used and spectral containment was achieved explicitly through the

PCFM form itself. In general, the PCFM form has been used in a variety of ways for a variety of

purposes some of which will be discussed in the next section.

2.2.4 FM Noise Waveforms

The concept behind noise waveforms is relatively simple. Given a set of unique individual wave-

forms where the sidelobe response of one waveform is completely uncorrelated with the response

of others then when coherently summed, the sidelobe responses of the different waveforms will

add in a noise like manner. Thus, through coherent integration as discussed in section 2.1.3, the

sidelobe response can be mitigated just like the noise response.

To demonstrate this, Fig. 2.15 shows the same scene examined in numerous figures thus far,

but tested with varying numbers of noise waveforms under three different CPI length ranging from
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1 to 10 to 100. Critically, this is a pulse agile setting where a unique pulse is transmitted at every

PRI. In Fig. 2.15(a) with only one waveform to work with, objects 4 and 6 are obscured and the

scene looks much like Fig. 2.7. In Fig. 2.15(b), object 4 has now been revealed from underneath

the noise, but critically in Fig. 2.15(c) where 100 unique noise waveforms are used, object 6

has been revealed and there are no visible sidelobes. It is not that these waveforms do not have

sidelobes, rather the sidelobes are already at or below the noise floor so they are indistinguishable

from the noise. Since they are noise waveforms, the sidelobes then decay with the noise level as

more and more waveforms are coherently integrated. This is in direct contrast to Fig. 2.16 where

instead of transmitting and coherently integrated 100 unique noise waveforms, the same single

noise waveform was transmitted at every PRI. The noise floor is lower, but this time the sidelobes

are revealed, not suppressed, and object 6 is obscured.

Given the sidelobe suppression shown in Fig. 2.15, radar noise waveforms offer a unique

performance advantage such that better detection can be achieved in the presense or large returns

by simply transmitting more unique waveforms. The question then is how to make and design

them.

In 1959, Horton answered this question simply for use on aircraft altimeters. Just transmit

noise [21]. Surely if the radar waveform itself is literally noise then it will exhibit the desired noise

like characteristics. However, just transmitting noise implies significant AM resulting in a high

PAPR making it poorly suited for high power operation. To overcome this, one could consider the

noise waveform implementations suggested by [27–29, 66] where the noise modulation is in the

phase such that the signals are constant amplitude and thus amenable to high power transmission.

This is the first mention of what are known as FM noise waveform which are the focus of this

work. The rest of this section introduces some the latest work on this topic.

2.2.4.1 Psuedo-Random Optimized FM (PRO-FM)

To achieve good autocorrelation sidelobes and spectral roll-off, PRO-FM utilizes an alternating

projection approach where a candidate waveform is projected in an iterative fashion between the
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(a)

(b)

(c)

1 2 3 4 56

1 2 3 4 56

1 2 3 4 56

1 
Noise Waveform

10
 Noise Waveforms

100
 Noise Waveforms

Figure 2.15: The noisy radar data from Fig. 2.2 with varying CPI sizes of 1, 10 and 100 corre-
sponding to (a), (b), and (c) respectively
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1 2 3 4 56

Sidelobes

Sidelobes

Sidelobes

100 of the SAME
Single

 Noise Waveform

Figure 2.16: The noisy radar data from Fig. 2.2 but the transmit waveform is a single noise
waveform with a 100 pulse CPI

time and frequency domains [25, 26]. For the k iteration, the process is defined by the alternating

application of

rk+1(t) = F−1 {|G( f )|exp( j∠F{pk(t)})} (2.42)

and

pk+1 = u(t)exp( j∠(rk+1(t)) (2.43)

where F and F−1 are the Fourier and inverse Fourier transforms respectively, |G( f )| is some desired

spectral envelope, u(t) is a constant amplitude envelope, and ∠ extracts the angle of the argument.

The key to producing good FM noise waveforms from (2.42) and (2.43) is the choice of |G( f )|.

In [25, 26], |G( f )| was chosen to be a Gaussian envelope. In terms of the spectrum a Gaussian

envelope exhibits decent roll-off aiding in spectral containment. In terms of autocorrelation per-

formance, since the inverse Fourier transform of a Gaussian function is likewise Gaussian, if the

PSD of the waveform is Gaussian then the autocorrelation will likewise be Gaussian resulting in

zero autocorrelation sidelobes. In practice, the optimization will result in a good spectral match,

but not perfect.
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To demonstrate the effectiveness of the PRO-FM approach. 100 FM noise waveforms were

optimized according to (2.42) and (2.43) for a BT of 128. Adopting the PCFM notation for over-

sampling with respect to the 3 dB bandwidth, K was set to 4. These parameters and optimization

results are shown in Figs. 2.17 and 2.18 which show the resulting Spectra and autocorrelations

respectively.

In Fig. 2.17, the RMS spectrum of the 100 PRO-RM waveforms matches the spectral template

out to about | f | < 1 (2 times the 3 dB bandwidth) before it deviates from the template due to

the rectangular pulse shape. Thus the PRO-FM waveforms exhibit decent spectral roll-off. In

2.18, perhaps the most impressive aspect of PRO-FM is its RMS autocorrelation response. For a

generic noise waveform such as white Gaussian noise, the RMS autocorrelation sidelobes should

be −10log10(BT ). After optimization, the PRO-FM RMS sidelobes near the mainlobe are a

full order of magnitude better at −20log10(BT ). Then to demonstrate the noise like coherent

integration of FM noise waveform sidelobes, the coherent integration of the autocorrelations results

in an approximately 10log10(100) = 20 dB sidelobe level improvement versus the RMS sidelobes

since 100 autocorrelation were summed.

These waveforms have been demonstrated experimentally and they have been utilized for

numerous applications such as for spectral notching to limit the impact of in band interference

[67–69], radar and communications spectrum sharing [70–72], simultaneous dual-polarized radar

[73], non-linear harmonic radar with FM-noise waveforms [74], and even random movement radar

which mimics the human eye [75].

Since the formulation of PRO-FM, a few other approaches have been formulated to optimize

FM noise waveforms such as Temporal Template Error (TTE) waveforms which utilize a hybrid

approach between a gradient based optimization and a projection [24], and Logarithmic frequency

template error (Log-FTE) waveforms which utilize a gradient descent and the PCFM waveform

model approach to achieve excellent spectral containment [23].
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Figure 2.17: RMS spectrum of 100 optimized PRO-FM waveforms and their desired template

Figure 2.18: Coherently integrated and RMS autocorrelation of 100 PRO-FM waveforms com-
pared to the RMS autocorrelation of 100 generic noise waveforms
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2.2.4.2 Process Based FM Noise Waveforms

As opposed to the previously discussed FM noise waveform approaches which are optimized or

designed on an individual level, process based FM noise waveforms are more similar to drawing

a sample function from a random process. Some examples of this kind of implementation are

[27–30,66,76], where the phase function of the waveforms are based on a Gaussian random process

and instantiating the phase function is as simple as using an RNG to generate the phase and thus

the waveforms. Using this kind of methodology, creating waveforms with a given set of predefined

characteristics is very cheap computationally speaking.

The majority of this dissertation expands these types of waveforms and on the work in [30].

Chapter 3 discusses these kinds of waveforms within the classical terminology of random variables

and processes and how they translate to a more radar centric perspective. Chapters 4-6 put these

concepts to work in designing what are called waveform generating functions (WGF) to achieve

desirable radar waveform characteristics.

2.3 Continuous Wave Radar

In a pulsed mode, over a PRI the energy on target will be proportional to the average power of the

transmission. If the pulse is constant amplitude and it has power Pt , then the average power over a

PRI is

Pavg =
Pttd
TPRI

(2.44)

where td is the duty factor and TPRI is the length of the PRI in seconds. The duty factor arises from

the fact that the radar is only transmitting a fraction of the time. If the transmitter is only active

5% of the time, then td = 0.05. The distinction between a pulsed mode and continuous wave (CW)

radar lies in the duty factor. A CW radar transmits 100% of the time so td = 1. In the context of

(2.44), this means a CW radar can transmit at a fraction of the power of a pulsed radar and achieve

the same power on target. However, transmitting continuously presents other issues [31].

In a pulsed mode, the highly sensitive, delicate receive electronics have to be shut off during
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transmission to protect them from the extremely high output power that would otherwise break

them. This results in a blind range which is proportional to the pulse length. However after

transmission, the receiver can listen without being drowned out by the transmitter. For a CW radar,

this is no longer the case. The transmitter and receiver are necessarily simultaneously operating

so the receiver has to contend with the direct path from the transmitter. Even though CW radars

can get aways with transmitting at lower powers overall the, the direct path signal, if unmitigated,

would be orders of magnitude stronger than any returns. To combat this, a large part of CW radar

design is devoted to mitigating direct path interference [31]. Still, this constraint leads to CW

radars usually be low power systems with relatively short operating ranges.

In terms of the transmit waveform and processing, CW operation enables some interesting

modes. In frequency modulated continuous wave (FMCW) radar, the transmission is frequency

modulated such as with continuous repetitions of an LFM or an alternating sequence of up-chirps

and down-chirps. With appropriate processing, range and velocity information can be obtained

[77].

In terms of noise radar, the approaches proposed by [21, 66] were CW based. The original

PRO-FM formulation was likewise for CW operation [25] where matched filtering was used by

cutting the transmit waveform into contiguous segments. The advantage CW radar provides to

noise waveforms is an extremely high BT . In general, for noise waveforms their sidelobe levels are

proportional to their BT . In a pulse mode we can consider the concept of an aggregate BT which is

the BT of an individual waveform times the number of waveforms in a CPI. This aggregate BT will

be proportional to the final sidelobe level after coherent integration. However, if each waveform

were longer or more were transmitted during a CPI, then the aggregate BT would increase for a

given bandwidth. The limit of this process is CW radar which intuitively achieves the highest BT

for a given bandwidth. For noise radar this is important because it mitigates the interference effect

of the direct path by lowering it sidelobes. If the sidelobes of the direct path are low enough, they

will not mask targets of interest. For the CW FM noise waveforms designed in Chapter 6, the same

segmented matched filtering process will be used.
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2.4 The Ambiguity Function and Doppler Processing

This section will provide a brief discussion of the ambiguity function and doppler processing. This

is important for the open air results of Chapters 4-6 where the range Doppler plots are formed from

the open-air testing results.

2.5 Gradient Descent Techniques

The different waveform design schemes employed in this work all utilize a the gradient descent

class of optimization techniques. In mathematical optimization problems the goal is to minimize

(or maximize) some cost function value which measures some attribute of a problem. Often times

this is described as minimizing the error, but it could just as easily mean attempting to maximize

profits. In general, the mathematical optimization problem can be defined as [78]

minimize J(x)

such that fi(x)≤ ci, i = 1,2, . . . ,M
(2.45)

where x is a vector of parameters, each fi(x) ≤ ci is a constraint on the parameters where each ci

is a constant. The goal of any optimization process is then to find x∗ such that

J(x∗)≤ J(x) for all x. (2.46)

where the ∗ indicates x∗ minimizes the cost function value. As defined in 2.46, x∗ is a global

minimizer of J(x). That is there is no x such that J(x) is less than J(x∗). In practice however, it is

often only possible to find an x such that

f (x∗)≤ f (x) for all x ∈N (2.47)

where N is an infinitesimal open set (local neighborhood) containing x∗ [11].

In general, the gradient descent optimization process is iterative. At the kth iteration, the set of
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optimizable parameters is updated as

xk+1 = xk +αkpk (2.48)

where xk is the vector of parameters, pk is the search direction and αk is the step size or how far to

move xk in the direction of pk. Generally speaking, the step direction pk is chosen as

pk =

 −∇Jk when k = 0

−∇Jk +βkpk−1 otherwise
(2.49)

such that the search direction is a linear combination of the negative of the current gradient and the

previous step directions. Gradient descent techniques usually vary in their calculation of β . One

popular family of techniques are non-linear conjugate gradient (NLCG) techniques such as was

used to design PCFM waveforms in [64]. An excellent survey of NLCG methods can be found

in [79].

For this work however, the relatively simple heavy ball gradient descent method is used where

β is defined such that

0 < β < 1. (2.50)

In this way, the search direction has a kind of inertia where the search direction can not change to

quickly [80]. If the resulting search direction results in a direction of ascent, then it is reset to the

negative of the current gradient which is guaranteed to decrease the cost function value to some

degree. For the cost functions in this work, this method has been found to be a simple, efficient

means of reaching a locally optimal solution.

For the final dissertation, this section will be expanded upon to provide a more comprehensive

overview of optimization and gradient descent techniques.
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Chapter 3

Stochastic Waveform Analysis and Evaluation

The purpose of this chapter is to develop a mathematical framework for analyzing and evaluat-

ing radar signals with stochastic characteristics and specifically the waveform generating function

(WGFs) designed in the rest of the work. The concepts developed here build directly off of the

fundamentals of random signals analysis covered in any random signals text such as [35, 81–83]

to name a few. The usual progression in these texts is to begin with a basic overview of random

variables and random processes before venturing into more advanced topics. The approach taken

here is no different.

Sections 3.1 and 3.2 provide a brief overview of random variables and random processes re-

spectively. Section 3.3 applies the topics in sections 3.1 and 3.2 to radar signals and radar signal

processing. Section 3.4 defines various metrics for evaluating random processes as radar signal

generating functions.

3.1 Random Variables

Random variables describe the possible outcomes of an experiment such as rolling a fair die or the

toss of a fair coin. In the case of the fair die, there are six equally probable outcomes while for the

fair coin there are two equally probable outcomes. In either case the experiment, that is the roll of

the die or the flip of the coin, is entirely described by their probability mass function or PMF. In
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the case of the fair die, this can be written as

PX(x = xi) =

 1/6 xi = 1,2,3,4,5,6

0 otherwise
. (3.1)

(3.1) can read as, "The probability that the random variable X is equal to xi is 1/6 for xi =

1,2,3,4,5,6 and 0 otherwise". Additionally, (3.1) has several other properties which generalize

to any probability mass function. Notice that for (3.1), and any PMF in general,

PX(x = xi)≥ 0 (3.2)

and
n

∑
i=1

PX(x = xi) = 1. (3.3)

In the case of (3.1), n = 6. To further characterize PMFs and random variables in general, it is

useful to define what are called moments which are calculated via the expectation operator, E[ · ],

to evaluate the expected value. The most commonly used moments are the mean and variance

defined as

E[X ] =
n

∑
i=1

xiPX(x = xi) = µX (3.4)

and

E[(X−µX)
2] =

n

∑
i=1

(xi−µX)
2PX(x = xi) (3.5)

respectively, where the mean is the first moment and the variance is the second moment. In plain

language, (3.4) can be understood as the average value of X while (3.5) can be understood as the

average squared deviation of X from its average value.

3.1.1 Covariance and Independence

Practically speaking, random experiments rarely exist in a vacuum. In fact it may be necessary

to consider jointly two or more experiments at the same time. Instead of rolling one die what if
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two fair die are rolled? In this case of random variables X1 and X2 for the first and second die

respectively, the joint PMF is

P(x1 = x1,i;x2 = x2,i) =

 1/36 x1,i = 1,2,3,4,5,6; x2,i = 1,2,3,4,5,6

0 otherwise
. (3.6)

An important concept that comes from considering multiple random variables together is the con-

cept of dependence (or independence). In (3.6) the two experiments are intuitively independent.

That is, the result of one die roll does not effect the other. Consequently, in (3.6) the probability of

P(x1 = x1,i;x2 = x2,i) = PX1(x1 = x1,i)PX2(x2 = x2,i). (3.7)

Independence also indicates an important result for expectations. For independent random vari-

ables

E[X1X2] = E[X1]E[X2]. (3.8)

In other words the expectation of their product can be written a product of their expectations. Now

consider a case where the random variables are dependent. To do so, define a new random variable

as

Y = X1 +X2 (3.9)

where X1 and X2 are the die rolls from before and Y is the sum of their results. The relationship

between Y and either X1 or X2 can be measured as the covariance between them defined as

σXY = E [(Y −µY )(X−µX)] (3.10)

which is a measure of how Y and X move together. In words, how do they vary together around

their respective means? If they both tend to either be more or less than the their means then σXY

will be positive. If they both tend to have opposite signs about their means then σXY will be

negative. If they have no tendency to be either positive or negative relative to their means and each
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other, then σXY will be 0. The concept of covariance is crucially important to random variables

and random processes and almost any subject where they are used.

3.1.2 Continuous Random Variables and the Characteristic Function

Thus far the discussion on random variables has focused exclusively on discrete random variables

and there PMFs. However, many natural processes such as the thermal noise in a circuit are instead

described by continuous random variables and the probability density function (PDF). The contin-

uous analogue to the uniform (equal probability) PMF of the die roll in (3.1), is the continuous

uniform distribution defined as

fX(x) =

 1/(b−a) a < x < b

0 otherwise
(3.11)

for a < x < b. The outcome of an experiment described by 3.11 is equally likely to be any value

in the range a < x < b. Like the PMF, the PDF is also strictly positive and integrates to 1. The

moments of a continuous random variable are defined by an integral rather than a sum as

E[X ] =

ˆ
∞

−∞

x fX(x)dx = µX , (3.12)

while the variance is defined as

E[(X−µX)
2] =

ˆ
∞

−∞

(x−µX)
2 fX(x)dx = σ

2
X , (3.13)

and the covariance becomes

E[(X−µY )(X−µX)] =

ˆ
∞

−∞

ˆ
∞

−∞

(x−µX)(y−µY ) fX ,Y (x,y)dx dy = σXY . (3.14)

Another useful tool, and one that will be used extensively in the development of the waveform
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design techniques in this work, is the characteristic function, which is defined

ΨX(ω) = E[exp( jωX)] =

ˆ
∞

−∞

exp( jωx) fX(x)dx. (3.15)

This form applies to both continuous and discrete random variable, but for the discrete case the

PMF has to be written on a continuous number line using dirac delta functions. The study of

random variables is much more extensive and rigorous than what has been presented here, but this

should be sufficient for the content of this work. More details can be found in any statistics or

random processes text such as [35, 82].

3.2 Random Processes

One way to look at a random processes is as a sequence (continuous or discrete) of random vari-

ables. At any instant of time, the random process defines a random variable with its own PDF or

PMF and perhaps a dependence on other parts of the random process (other random variables). To

see this, consider the random walk denoted as X [n] (square brackets indicate discrete time) and is

defined as follows. At each instant of time, n, a fair coin is flipped. If it comes up heads, one is

added to the counter. If it comes up tails, one is subtracted from the counter. At time zero, the

counter is set to 0 such that X [0 ] = 0. The table below shows the PMFs of X [n] for the first several

times n. For clarity, the zero valued cells have been filled with ’-’. At each time n the value of X [n ]

is described by the PMF in each column of table 3.1. Something that is not immediately evident

from the table however, is the dependence between the different random variables at each time n.

Based on the definition of the random walk, if X [n0 ] = 4, then X [n0 + 1 ] can only equal either 3

or 5 with equal probability, but there is really no way to see just from the content of Table 3.1.

This is much more apparent when viewing random processes from a more holistic perspective.

Rather than looking at the process as a sequence of correlated random variables, it can be viewed

as a collection of member function which each have their own probability of occurring. For the

random walk some possible partial sequences are
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n
0 1 2 3 4 5

X [n ]

5 - - - - - 1/32
4 - - - - 1/16 -
3 - - - 1/8 - 5/32
2 - - 1/4 - 1/4 -
1 - 1/2 - 3/8 - 5/16
0 1 - 1/2 - 3/8 -
-1 - 1/2 - 3/8 - 5/16
-2 - - 1/4 - 1/4 -
-3 - - - 1/8 - 5/32
-4 - - - - 1/16 -
-5 - - - - - 1/32

Table 3.1: Random Walk PMFs for n = 0,1,2,3,4,5

n = 0, 1, 2, 3, 4, 5, 6, · · ·

xa[n ] = 0, −1, −2, −1, 0, −1, −2, · · ·

xb[n ] = 0, 1, 2, 3, 4, 3, 4, · · ·

xc[n ] = 0, 1, 0, −1, −2, −3, −2, · · ·

Table 3.2: Random walk partial sequences for n = 0,1,2,3,4,5,6

where xa or any other letter subscript for that matter indicates a unique sample function of the

random process X [n ]. In this form, the dependence on previous values is more obvious. Since the

counter is only able to change by one unit at every time step, the sample functions only change

by one unit from time n to time n+1. The next several subsections detail metrics, properties, and

estimation techniques for stochastic processes.

3.2.1 Correlation Functions

Table 3.1 showed how a stochastic process at a given function of time is itself a random variable.

Table 3.2 anecdotally showed how the random variables at different times can be correlated with

each other. In other words, if for a given sample function, the value at time n1 is known and n1 and
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n2 are correlated, then something can be said about the sample function at time n2. For a random

process this correlation between samples at different times is described by the two dimensional

autocorrelation function defined as

RXX [n1,n2 ], E [X(n1 )X∗(n2 )] . (3.16)

or in the continuous case with continuous time t

RXX(t1, t2), E [X( t1 )X∗( t2 )] . (3.17)

where (·)∗ indicates complex conjugation in the case the process is complex. The autocorrelation

can be generalized to describe the correlation between difference random processes, in which case

(3.16) and (3.17) become cross-correlation functions as

RXY [n1,n2 ], E [X(n1 )Y ∗(n2 )] . (3.18)

or in the continuous case with continuous time t

RXY (t1, t2), E [X( t1 )Y ∗( t2 )] . (3.19)

(3.16-3.19) are two dimensional functions of n1 and n2 or t1 and t2.

3.2.2 Stationarity and the Power Spectral Density (PSD)

A powerful concept which can greatly reduce the complexity of analyzing a stochastic process is

stationarity. In general, stationarity comes in a couple of different forms but they are based on the

moments of a process being invariant in time. For the first order moment stationarity indicates the

mean is a constant µX for all time,

E [X(t)] = µX . (3.20)
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For the autocorrelation function (second moment) this indicates

RXX(t1, t2) = RXX(t1− t2) (3.21)

meaning the autocorrelation is only a function of the relative time between each sample rather

than the absolute time of the samples. This makes the autocorrelation a simpler, one dimensional

function. If this pattern, continuous for all higher order moments of X(t), then X(t) is said to be

Strict Sense Stationary (SSS). If only the first and second moments are stationary, as in (3.21), then

X(t) is said to be Wide Sense Stationary (WSS).

In addition to simplifying the form of the autocorrelation, if a process is WSS then its PSD

is likewise constant in that its spectral content is constant as a function of time. By the Weiner-

Khinchine relation, the PSD is [35]

SXX( f ) =
ˆ

∞

−∞

RXX(τ)exp(− j2π f τ)dτ. (3.22)

If the autocorrelation were a function of multiple variables, t1 and t2, different cuts of RXX(t1, t2)

would yield unique PSDs indicating the spectral content of X(t) changes as a function of time.

These results can likewise be applied to cross-correlations and cross-power spectral densities as

long as X(t) and Y (t) are jointly stationary. These take the form

RXY (t1, t2) = RXY (t1− t2). (3.23)

and

SXY ( f ) =
ˆ

∞

−∞

RXY (τ)exp(− j2π f τ)dτ. (3.24)

respectively. Their discrete counterparts are

RXY [n1,n2 ] = RXY [n1−n2] (3.25)
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and

SXY ( f ) =
∞

∑
τ=−∞

RXY [τ]exp(− j2π f τ). (3.26)

3.2.3 Estimation of the Autocorrelation and the PSD

Often times when analyzing a stochastic process its properties are unknown a priori so it is nec-

essary to estimate them by observing the behavior of sample functions. Broadly speaking, this

estimation process falls into one of two categories, either model-based or model-free estimation.

In model-based estimation, the process being analyzed is assumed to have some sort of structure. If

this assumption is correct, then parameters such as the autocorrelation and PSD can be effectively

estimated with relatively little data. For example, model based estimation is used for the efficient

digitization of human speech and adaptive filtering [81, 84]. For the purposes of this work and

in the context of basic radar processing such as match filtering and spectral estimation, it is more

important to consider model free estimation.

Before discussing the estimation of the PSD and the autocorrelation it is important to note that

the estimation procedures presented here assume the underlying process being estimated is WSS.

If only one sample function can be measured, then the process is also assumed to be ergodic.

The estimation is carried out on the samples of a process so the development in this section is

necessarily discrete.

3.2.3.1 Power Spectral Density Estimation

For either the autocorrelation or the PSD, the estimation process consists of estimating the second

moments of numerous, individual random variables which are the sample data. For a stationary

random process, the mean can be estimated as

µ̂X =
1
N

N

∑
n=1

x[n] (3.27)
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where the hat of µ̂X indicates this is an estimate of µX or the sample mean and each x[n] is a discrete

sample of the random process X(t) or the discrete process X [n]. (3.27) is unbiased, that is

E[µ̂X ] =
E[∑N

n=1 x[n]]
N

=
NµX

N
= µX (3.28)

In other words, (3.27) will approach exactly µX (assuming the process is stationary).

Likewise, for a WSS process, an estimator of the PSD can be formed as the DFT of a finite

length vector of samples of some random process whether it be continuous or discrete. This DFT

estimate of the spectrum is defined as

X̂XX( f ) =
N−1

∑
n=0

x[n]exp(− j2π f n) (3.29)

and the PSD estimate is then

ŜXX( f ) = |X̂XX [ f ]|2 =
N−1

∑
n=0

N−1

∑
k=0

x[n]x∗[k]exp(− j2π f (n− k)) (3.30)

This form of spectral estimate is called a periodogram. The bias of this estimator is evaluated by

taking the expectation yielding

E[ŜXX( f )] =
N−1

∑
n=0

N−1

∑
k=0

E[x[n]x∗[k]]exp(− j2π f (n− k)) (3.31)

where by linearity, the expectation has been moved inside of the double summation. Since the ran-

dom process is assumed to be stationary, the expectation in 3.31 is a function of only the difference

between n and k such that

E[ŜXX( f )] =
N−1

∑
n=0

N−1

∑
k=0

RXX [n− k]exp(− j2π f (n− k)). (3.32)

For each lag, ` = n− k, there are N− |`| relevant terms in the summation such that 3.32 can be
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rewritten and normalized by N as

E[ŜXX( f )] =
N−1

∑
`=−(N−1)

(
1− |`|

N

)
RXX [`]exp(− j2π f `) (3.33)

From 3.33, the expectation of the DFT estimate of the PSD is the DFT of a windowed form of the

process’s autocorrelation function. This indicates the periodogram estimate is biased. The window

takes the form

w[`] =


(

1− |`|N

)
|`|< N

0 otherwise
. (3.34)

This window is a discrete triangular function and is known as a Bartlett window [81–84]. If

the DFT is evaluated in 3.33, the expectation of the periodogram results in a convolution of the

processes PSD and the DFT of the Bartlett window such that

E[ŜXX( f )] =
1
N

(
sin(π f N)

sin(π f )

)2

∗SXX( f ) (3.35)

where ∗ denotes convolution. In other words, the mean value of the estimate provided by the

periodogram will never approach the true PSD of X(t); however, it can be made arbitrarily close

by increasing the number of DFT points.

In addition to the bias it is important to consider the variance of an estimator. That is, on

average how far will the estimate deviate from the mean in a mean squared error sense. In general

this is a difficult quantity to measure as the result will be depend on the fourth order moments of

the process, however it can be computed exactly in special cases such as with WGN [35,81,82]. In

general the periodogram realizes poor performance in terms of variance and bias. To address this,

various other spectral estimation techniques have been proposed [81]. With respect to periodogram

methods, windowing techniques are commonly applied which work by applying windows to the
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autocorrelation estimate such that

E[ŜXX( f )] =
N−1

∑
`=−(N−1)

w[`]RXX [`]exp(− j2π f `) (3.36)

where w[`] is some real function which is zero for |`| > N. Through a judicious choice of w[`]

a trade off can be made between bias and variance. Any spectral estimation or random signals

processing text will discuss various windows that have been proposed over the years [35,81–83,85].

3.2.3.2 Autocorrelation Estimation

Because of their Fourier transform relationship, it is difficult to discuss the PSD and the autocor-

relation as separate topics. Case and point, from the form of PSD estimate in the previous section

it should be intuitive how the autocorrelation can be estimated at least in a biased form. However,

An unbiased estimate of the autocorrelation can be defined as

R̂XX [`] =
1

N−|`|

N

∑
k=1+`

x[k]x∗[k− `] ` < N (3.37)

where by definition of the autocorrelation of a stationary process the negative lags are RXX [`] =

R∗XX [−`]. The fractional term in (3.37) normalizes the sum by the number of terms in the sum

for lag ` realizing an unbiased estimate. The issue with (3.37) lies in the variance. At values of `

near N, the number of samples used to estimate R̂XX [`] is very small such that it will have a high

variance. Alternatively, the autocorrelation can be estimated as

R̂XX [`] =
1
N

N

∑
k=1+`

x[k]x∗[k− `] ` < N (3.38)

which is a biased estimator such that the expectation of (3.38) is

E[R̂XX [`]] =

(
1− |`|

N

)
RXX [`] |`|< N (3.39)
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Interestingly, (3.39) is exactly the form of the scaled autocorrelation in (3.33). The windowing of

the autocorrelation reduces the influence of the high variance lags of the autocorrelation estimate.

Additionally, computing the periodogram from (3.38) guarantees the PSD estimate will be positive

[81]. Finally, (3.38) is the resulting estimate from matched filtering a data vector. For these reasons,

in the context of periodograms and radar signal processing (3.38) is the desired autocorrelation

estimator.

3.3 Stochastic Processes as Radar Signals

At this point it is good to recall the reasoning behind using noise-like radar waveforms. As dis-

cussing in Section 2.1.2, the match filtering process results in autocorrelation sidelobes. These

sidelobes can hide objects of interest and degrade radar performance. Noise-like waveforms ad-

dress this through uniqueness. Since each waveform has unique, uncorrelated sidelobes with each

other. Their coherent summation through pulse integration will, on average, result in lower side-

lobe levels. The amount of sidelobe level improvement is a function of BT . In this pulsed, case

this is the aggregate BT of all the pulses integrated, and in the CW case this is the BT of the entire

radar CPI.

For the pulsed case this begs the question, what is the average autocorrelation performance of

a single waveform and what improvement can be expected when integrating pulses? For the CW

case the question is what autocorrelation level can be expected for a given BT ? In either case the

answer depends on processes’s autocorrelation function.

3.3.1 Pulsed Stochastic Processes as Radar Signals

A complex baseband pulsed stochastic process is time limited such that

S(t) =

 Sp(t) 0 < t < T

0 otherwise
(3.40)
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During the interval 0 < t < T , Sp(t) is random, but outside of this interval it is deterministically 0.

Because of this, the ensemble autocorrelation function of S(t) is zero valued beyond the stochastic

interval such that

RSS(t1, t2) =

 RSpSp(t1, t2) 0 < t1 < T, 0 < t2 < T

0 otherwise
(3.41)

For radar processing purposes, if a sample function of S(t) were used as a radar waveform, the

matched filter response of the function is computed as

r(τ) =
1
T


´ T+τ

0 s(t)s∗(t− τ)dt −T < τ ≤ 0
´ T

τ
s(t)s∗(t− τ)dt 0 < τ < T

0 otherwise

. (3.42)

where the bounds of the integrals have be carefully selected to omit the zero valued portions of

the sample function s(t), and r(τ) is the sample matched filter response 1. Interestingly, this is the

exact form of the autocorrelation estimator of a stationary process in the previous section. With

this in mind, the expectation of (3.42) is

E[r(τ)] =
1
T


´ T+τ

0 RSS(t, t− τ)dt −T < τ ≤ 0
´ T

τ
RSS(t, t− τ)dt 0 < τ < T

0 otherwise

. (3.43)

The right hand side of (3.43) is the integral over the contours of RSS(t1, t2) defined by t1− t2 = τ

over the non-zero portions of RSS(t1, t2). Since S(t) is not necessarily stationary the matched filter-

ing operation results in an averaging operation over RSS(t1, t2), such that E[rSS(τ)] is the average

expected correlation between samples in S(t) separated by τ seconds. If S(t) happens to be WSS

over the course of the pulse, then (3.42) becomes exactly the autocorrelation estimation function

1To avoid a conflict in terminology, RSS(t1, t2) will be referred to as the autocorrelation of the random process S(t),
while r(τ) is the matched filter response (in the context of radar processing) of a sample function of S(t).
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in the previous section (assuming the process is sampled as well).

Still, (3.43) represents the ensemble average of S(t) under the matched filtering operation. That

is, if every member function of S(t) were matched filtered and averaged, the result would approach

(3.43). Practically speaking, S(t) will likely have an infinite number of sample functions while a

radar CPI will likely, at most, consist of hundreds of waveforms. The question is then how does

rSS(τ) behave when only a few to a few hundred autocorrelation sample function are coherently

integrated?

To determine this, consider the fact that r(t) is itself a random variable whose mean is the

right hand side of (3.43). It then also has a variance that is decreased with increasing coherent

integration so the expected sidelobe level of a single sample function should be proportional to the

second moment of r(t) which is

E[|r(τ)|2]. (3.44)

If N matched filter responses from N unique sample function of S(t) are coherently integrated and

normalized then the variance of this sum becomes

E

∣∣∣∣∣ 1
N

N

∑
n=1

rn(τ)

∣∣∣∣∣
2
 (3.45)

which can be expanded to

1
N2

N

∑
n1=1

N

∑
n2=1

E
[
(rn1n2(τ))

(
r∗n1n2

(τ)
)]

(3.46)

The terms defined by n1 = n2 are the second moment of the matched filter response of S(t) while

the other terms are correlations between the matched filter responses of different sample functions.

Since the different sample function are ideally independent of each other, their correlations are

the product of their expectations. Since they were generated using the same waveform generating
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function they have the same expected autocorrelation functions such that.

E

∣∣∣∣∣ 1
N

N

∑
n=1

rn(τ)

∣∣∣∣∣
2
=

1
N

E[|r(τ)|2]+ N−1
N
|E[r(τ)]|2 (3.47)

From (3.47) the contribution of second moment decreases at a rate of 1/N or −10log10(N). Thus,

the sidelobe levels will decrease from their nominal single waveform level of E[|r(τ)|2] to E[r(τ)]2

at a rate of−10log10(N). Assuming E[r(τ)] is ideal in that it has zero sidelobes, the sidelobes will

likewise approach zero.

By the Weiner-Khinchine theorem, the power spectral density, in the context of radar process-

ing, can be written as a function of the expected matched filter response such that

S( f ) =
ˆ

∞

∞

E [r(τ)]exp(− j2π f τ)dτ. (3.48)

Here, it is important to note that S( f ), the power spectral density as measured by the matched filter

response in the context of radar processing, is not equivalent to SSS( f ) since the pulsed waveform

generating process, S(t), is not stationary. The PSD of S(t) changes as a function of time. Just like

E [r(τ)] is the average correlation between samples, S( f ) is the average PSD of S(t).

3.3.2 Stochastic Processes as CW Radar Signals

For CW signals, S(t) is now considered to be infinite in time. However, since CPI’s are time

limited only a portion of a sample function of S(t) can ever be generated, transmitted, and recorded.

Consequently, the matched filter will only ever be as large as some window of a sample function of

S(t). Assuming this time window is the same size as the CPI, the matched filter response becomes

r(τ) =
1

Twin


´ Twin+τ

0 s(t)s∗(t− τ)dt −Twin < τ ≤ 0
´ Twin

τ
s(t)s∗(t− τ)dt 0 < τ < Twin

0 otherwise

(3.49)
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where Twin is the size of the matched filter window. In this case, since S(t) is infinitely long and

it needs to "look" the same at all times for the autocorrelation to be consistent at any reference

time, in the CW case, S(t) is assumed to be WSS. Under these assumptions, the expectation of the

matched filter response of the windowed S(t) is

E[r(τ)] =
1

Twin−|τ|
RSS(τ) −Twin < τ < Twin. (3.50)

Since S(t) is WSS, the autocorrelation is a function of only τ and (3.50) is exactly the form of

the time averaging autocorrelation estimate. The final wrinkle in the CW case is that for a given

CPI there is only one sample function to work with and thus no pulse integration. This means

that, while the results of (3.44) - (3.47) apply here, they are not relevant without pulse integration.

Alternatively, the sidelobe levels of a CW noise like waveform should be proportional to BT . For a

given bandwidth, this means increasing Twin. For this decrease in sidelobe level to be guaranteed,

S(t) needs to also be ergodic such that the limit of time averages of a single sample function are

equivalent to the ensemble averages. This realizes

RSS(τ) = lim
Twin→∞

1
Twin


´ Twin+τ

0 s(t)s∗(t− τ)dt −Twin < τ ≤ 0
´ Twin

τ
s(t)s∗(t− τ)dt 0 < τ < Twin

0 otherwise

. (3.51)

If S(t) is ergodic such that (3.51) applies, then r(τ) will, as a function increasing BT , approach

RSS(τ) which ideally has zero autocorrelation sidelobes.

As in the pulsed case, the expected PSD can be calculated via the Weiner-Khinchine theorem

such that

S( f ) =
ˆ Twin

−Twin

1
Twin−|τ|

RSS(τ)dτ =

(
sin(π f Twin)

π f

)2

∗SSS( f ). (3.52)

where ∗ denotes convolution. In the CW case, the result in the context of radar processing, is

exactly the windowed (and biased) PSD estimate of SSS( f ) as defined in section 3.2.3 (assuming a

sampled form of s(t)).
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3.4 Evaluating Stochastic Radar Waveforms

Section 3.3 provided an overview of basic radar processing (i.e. matched filtering and Fourier

transforms) looks like when using the sample functions of stochastic processes as radar signals.

This was discussed for both the pulsed and CW cases. Throughout that analysis, the waveform

generating function S(t) and its member functions were continuous. However, in modern systems

the matched filtering and spectral estimation steps are performed on computers and is necessarily

discrete. Additionally, the design and optimization in chapters 4 - 6 are likewise performed on a

computer so it is necessary to consider the content of section 3.3 in discrete terms.

3.4.1 The Discrete Waveform Generating Process

The discrete analogue to the pulsed waveform generating process defined in (3.40) is

S[m] =

 S[m] m = 1,2, · · · ,M

0 otherwise
. (3.53)

where the pulsed stochastic process S[m] is stochastic for exactly M samples from m = 1,2 · · · ,M

and deterministically zero otherwise. In CW case, S[m] is stochastic for all m and is denoted

Scw[m]. The discrete matched filter responses are

r[`] =


∑

M+`
m=1 s[m]s∗[m− `]dt `= 1−M,2−M, · · · ,0

∑
M
` s[m]s∗[m− `]dt `= 1,2, · · · ,M−1

0 otherwise

(3.54)

for the pulsed case, and

r[`] =


∑

Mwin+`
m=1 s[m]s∗[m− `]dt `= 1−Mwin,2−Mwin, · · · ,0

∑
Mwin
` s[m]s∗[m− `]dt `= 1,2, · · · ,Mwin−1

0 otherwise

(3.55)
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for the CW case, where Mwin is some window length since only a portion of the infinitely long CW

stochastic process can be processed.

Before discussing the discrete PSDs, it is convenient to write (3.53) as the M-length vector,

s, where the zero-valued portions of (3.53) are omitted 2. A particular sample function of the

stochastic process, s, is written as ŝ.

Section 3.2.3 defined the periodogram estimate of a signal’s power spectrum. For the pulsed

stochastic signal, s, the periodogram estimate can be written as a matrix multiply of a zero-padded

version of a sample function as

ŝf = Aˆ̄s (3.56)

where s̄ is a zero-padded version of s such that

s =
[
sT 0T

W−M
]T

, (3.57)

ˆ̄s is a sample function of the zero-padded random process to account for the pulsed nature of s,

A is the W ×W DFT matrix, and W is W ≥ 2M− 1 (such that (3.57) is at least the length of the

sample matched filter response, (3.54)). (3.56) is defined in terms of a sample function of s̄. For

future convenience, the transformation of the random process s̄, is defined as

sf = As̄. (3.58)

For the CW case, Scw[m] can also be written as s, but in this case it is an Mwin-length vector

indicating that it is a truncated version of an infinitely long process. Consequently, when evaluating

the periodogram no zero-padding is necessary and the estimate becomes

ŝf = Aŝ (3.59)
2Previously, the stochastic processes and random variables themselves have been written as capital letters. This

implies the vectorized form of the random process should be ’S’ however this creates a conflict with typical vector
notation where bold, capital letters denote matrices and lower case bold letters are vectors. To avoid confusion, typical
vector notation is applied here and the distinction will be made in context
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and biases apply as discussed in 3.2.3. The transformation of the CW process s is similar to (3.58),

but without the zero-padding. With these definitions, it is possible to start defining metrics and the

tools needed to evaluate the usefulness of stochastic processes for analysis on a digital system.

3.4.2 Metrics for Stochastic Radar Waveforms

Thus far, an effort has been made to distinguish between terms which specifically refer to the fun-

damental characteristics of a random process such as the the autocorrelation function, RSS(t1, t2),

and terms which refer to these quantities in the context of radar processing. For example, in radar

processing the matched filter response is interchangeably called the autocorrelation, but to avoid

confusing this with RSS(t1, t2), it has been referred to exclusively as the matched filter response.

At this point, this chapter pivots from a random signals focus, to a radar analysis and processing

focus. Consequently, terms such as the autocorrelation and the PSD can be assumed to be in the

context of radar signal processing rather than random signals analysis unless explicitly stated as

such.

The following subsections consider two classes of stochastic radar waveform metrics which

apply to both pulsed and CW radar waveforms. Section 3.4.2.1 defines aggregate metrics. These

measure the average performance of the entire ensemble of functions defined by s (i.e. the resulting

autocorrelation after coherently integrating all member functions). Section 3.4.2.2 discusses the

metrics used to evaluate the behavior of the stochastic waveforms defined by s on an individual

basis (i.e. what autocorrelation performance can be expected if only a single sample function is

used). Both classes of metrics are vitally important for evaluating the usefulness of a particular

stochastic process for the generation of radar waveforms.

3.4.2.1 Aggregate Metrics

Expected Power Spectral Density

E
[
|sf|2

]
(3.60)
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In (3.60), E[·] evaluates the element wise expectation and | · |2 is the element wise magnitude

squared. It measures the average PSD over all the sample waveforms defined by the process s[m].

If the PSD of all the sample function in s[m] were evaluated and averaged, the result would be

(3.60).

Expected Autocorrelation

AHE
[
|sf|2

]
(3.61)

Since the Fourier transform, and here the inverse discrete Fourier transform in the form of matrix

multiplication, is a linear process. The expected autocorrelation can be calculated from an IFFT

of the expected PSD by the Weiner-Khinchine theorem. If the autocorrelation of all the sample

functions of s[m] where evaluated and averaged, the result would be (3.61).

Expected Cross-Power Spectral Density

E [saf� s∗bf] (3.62)

In (3.62), the subscripts ’a’ and ’b’ denote that saf and sbf are the spectra of unique sample functions

of the waveform generating process s[m] as opposed to the magnitude squared of a single sample

function of s[m] as in (3.60) and (3.62). In this way, (3.62) measures the mean pair-wise cross-

power spectral density of s[m]. If the sample average were taken over all of the pair-wise cross-

power spectral densities of the sample functions defined by s[m], the result would approach (3.62).

Expected Cross-Correlation

AHE [saf� s∗bf] (3.63)

Similarly to (3.62), (3.63) measures a pairwise relationship, but here it is the time-domain cross

correlation. If the sample average were taken over all of the pair-wise cross-correlations of the

sample functions defined by S[m], the result would approach (3.63).
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3.4.2.2 Individual Metrics

Power Spectral Deviation(
E
[
|sf|4

]
−E

[
|sf|2

]2
)1/2

(3.64)

Whereas (3.60) measures the average PSD of the sample functions of S[m], (3.64) measures the

magnitude of the expected error between a single sample function’s spectrum and of the expected

PSD in (3.60).

Expected RMS Autocorrelation(
E
[∣∣∣AH |sf|2

∣∣∣2])1/2

(3.65)

(3.65) is the square root of the second moment of the autocorrelation of the sample functions in

S[m]. If the square root of the sample average of the magnitude square of the autocorrelations of

all the sample functions in S[m] were calculated, the result would approach (3.65). In other words,

(3.65) represents the average magnitude of the autocorrelation of a single sample function of S[m]

as opposed to the autocorrelation after coherently integrating the autocorrelation response of every

sample function of S[m] as in (3.61).

Expected RMS Cross-Power Spectral Density(
E
[
|saf� s∗bf|

2
])1/2

(3.66)

(3.66) measures the average magnitude of the cross-power spectral density of two waveforms. In

other words, if only one pair of waveforms is considered, on average, how much common spectral

content do they have.

Expected RMS Cross-Correlation(
E
[∣∣AHE [saf� s∗bf]

∣∣2])1/2
(3.67)

If only one pair of waveforms generated by S[m] are correlated, (3.67) represents the average

magnitude of this cross-correlation.
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3.4.2.3 Summary of Stochastic Waveform Measures

Table 3.3: Summary of Stochastic Waveform Measures

Aggregate Measures

Power Spectrum E
[
|sf|2

]
Autocorrelation AHE

[
|sf|2

]
Cross-Power Spectral Density E

[
saf� s∗bf

]
Cross-Correlation AHE

[
saf� s∗bf

]

Individual Measures

Power Spectral Deviation
(

E
[
|sf|4

]
−E

[
|sf|2

]2
)1/2

RMS Autocorrelation
(

E
[∣∣∣AH |sf|2

∣∣∣2])1/2

RMS Cross-Power Spectral Density
(

E
[∣∣saf� s∗bf

∣∣2])1/2

RMS Cross-Correlation
(

E
[∣∣AH [saf� s∗bf

]∣∣2])1/2

3.4.3 Stochastic Waveform Moments

The aforementioned equations, 3.60 through 3.67, are functions of the moments of S[m]. To see

this, begin by expanding the expected PSD in 3.60 or 3.61 to

E
[
|sf|2

]
= E [As� (As)∗] (3.68)
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where� is the Hadamard (element-wise) product and (·)∗ is complex conjugation. The wth sample

of (3.68) is

E
[∣∣sf,w

∣∣2]= E

[(
W

∑
m1=1

aw,m1sm1

)(
W

∑
m2=1

aw,m2sm2

)]
(3.69)

This product of sums can be written as a sum of products such that

E
[∣∣sf,w

∣∣2]= W

∑
m1=1

W

∑
m2=1

aw,m1a∗w,m2
E
[
sm1s∗m2

]
(3.70)

where the expectation has been moved inside the summation since it is a linear operator. In (3.64),

and less obviously in (3.65), a similar sum of expectations appears as

E
[∣∣sf,w

∣∣4]= W

∑
m1=1

W

∑
m2=1

W

∑
m3=1

W

∑
m4=1

aw,m1a∗w,m2
a∗w,m3

aw,m4E
[
sm1s∗m2

s∗m3
sm4

]
. (3.71)

In (3.70) and (3.71), the terms

E
[
sm1s∗m2

]
(3.72)

and

E
[
sm1s∗m2

s∗m3
sm4

]
(3.73)

represent the second and fourth order moments of the samples in s respectively. For convenience

these terms can be collected into CW×W and KW×W×W×W where C is the correlation matrix and K

is a fourth-order moment hyper-cube. Additionally, C and K include the zero-valued portions of s

meaning the majority of C and K are actually zero and the non-zero portions are the first M samples

in each dimension is denoted as CM×M and KM×M×M×M respectively. In the CW case, there are

no zero valued portions and the moment structures become CMwin×Mwin and KMwin×Mwin×Mwin×Mwin .

For the expected cross terms, (3.62), (3.63), (3.66), and (3.67), two different samples functions

"a" and "b" are considered such that their samples are completely independent of each other. Con-

sider the expected cross-PSD (3.62) which can be expanded in a similar fashion to the expected
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PSD (3.60) such that for a single sample, the equation becomes

E
[
saf,ws∗bf,w

]
=

W

∑
m1=1

W

∑
m2=1

aw,m1a∗w,m2
E [sa,m1]E

[
s∗b,m2

]
(3.74)

In (3.74), the expectation of the product can be written as a product of the expectations. Since sa

and sb were generated from the same random process the expectations of their individual samples

are equivalent and (3.74) becomes

E
[
saf,ws∗bf,w

]
=

W

∑
m1=1

W

∑
m2=1

aw,m1a∗w,m2
E [sm1]E

[
s∗m2

]
(3.75)

where E
[
s∗m2

]
is the first moment of the mth

1 sample of s[m]. Likewise, using the same reasoning,

similar moments appear in (3.66) and (3.67) as

E
[
|saf� s∗bf|

2
]
=

W

∑
m1=1

W

∑
m2=1

W

∑
m3=1

W

∑
m4=1

aw,m1a∗w,m2
a∗w,m3

aw,m4E
[
sm1s∗m2

]
E
[
s∗m3

sm4

]
. (3.76)

such that the RMS cross-correlation and the RMS cross-PSD are functions of the second order

moments of S[m].
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Chapter 4

Pulsed Stochastic Waveform Generation (StoWGe)

Chapter 3 introduced stochastic processes as radar waveform generating functions (WGF) where

the sample functions of a given process are utilized as radar waveforms. In the same vein, various

metrics were introduced as a means to assess the suitability of a given random process as a radar

WGF. However, nothing was said about how to find or design a random process that has desirable

properties. In [30], the stochastic waveform generation (StoWGe) signal model was introduced

as a means to design and optimize stochastic processes which produce FM noise waveforms with

desirable power spectra. This chapter reintroduces this topic and expands upon it greatly by formu-

lating the model in more general terms, implementing it in a more flexible manner, and considering

a much more comprehensive set of test cases.

This chapter begins with an overview of the StoWGe model in Section 4.1. Section 4.2 in-

troduces the expected frequency template error (EFTE) for pulsed StoWGe, while Section 4.3

introduces the means to optimize the StoWGe expected power spectrum by minimization of the

EFTE cost function along with a regimen of test cases. Section 4.4 discusses the results of the

optimization and Section 4.5 discusses both loop-back and open-air experimental results.

4.1 The Pulsed StoWGe Signal Model

The StoWGe signal model produces waveforms of the form in 3.40. However, to facilitate opti-

mization on a computer and since the waveforms produced by StoWGe are constant amplitude, the
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most appropriate baseband signal mode is

S[m] =

 exp( jΦ[m]) m = 1,2, · · · ,M

0 otherwise
(4.1)

where the capital S and the capital Φ indicate that these are stochastic processes themselves, while

individual sample functions would be lower case. In (4.1), S[m] is a non-linear transformation of

the stochastic process Φ[m]. The goal then is to design Φ[m] such that the sample functions of S[m]

are useful pulsed radar waveforms.

For convenience, (4.1) can be rewritten using the same vector notation as in section 3.4.1 such

that the non-zero portions of (4.1) are

s = exp( jφφφ). (4.2)

To facilitate the optimization of s as a WGF, according to the pulsed StoWGe model φφφ is parame-

terized as

φφφ= Bx+µµµ (4.3)

where B is an M×N, real-valued matrix of basis functions, x is an N× 1 vector of independent,

identically distributed, zero-mean, random variables, and φφφ is an M× 1 vector of constant real

values. In this form, x providesφφφ with its stochastic character and by designing B, the distributions

of φφφ can be tailored such that the WGF, s, has desirable characteristics.

µµµ provides φφφ with a mean value such that

E[φφφ] =µµµ. (4.4)

where the expectation operator is applied on an element wise basis. Alternatively, µµµ could be

omitted and the members of x could be allowed to have non-zero means to achieve the same result
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in which case (4.4) would become

E[φφφ] = BµµµX (4.5)

whereµµµx is a vector of the means of the random variables in x. While this would be just as effective

at providing any desired mean to the elements ofφφφ it unnecessarily obfuscates them by tying them

into the elements of B and the mean values of x.

To gain a better idea of how the pulsed StoWGe structure functions, (4.3) can be rewritten such

that

φφφ=

(
N

∑
n=1

Xnbn

)
+µµµ (4.6)

where Xn is the nth random variable in the vector x and bn is the nth column vector of B. In this

form, φφφ is a linear combination of basis functions which are the columns of B, and the weight of

each basis function is randomly chosen as a sample value of each member of x. Since the elements

of x are by definition zero-mean, µµµ can provide any mean value to the elements of φφφ.

Section 3.4.3 established that the metrics defined in Section 3.4.2 are functions of the moments

of the WGF. For the pulsed StoWGe model, these moments are likewise functions of B andµµµ. The

correlation between the m1th sample and the m2th is defined

E
[
sm1s∗m2

]
= E [exp( j(φm1−φm2)] (4.7)

where the phase values can be expanded based on the structure of µµµ such that

E
[
sm1s∗m2

]
= E [exp( j((bm1−bm2)x+µm1−µm2))] (4.8)

where bm1 and bm2 are row vectors of B. Since the values of µµµ are constant, they can be factored

out of the expectation and the equation can be rewritten as

E
[
sm1s∗m2

]
= exp( j(µm1−µm2))E

[
N

∏
n=1

exp( j(bm1,n−bm2,n)Xn

]
. (4.9)
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Since the elements of x are assumed to be statistically independent, the expectation can be moved

inside the product operator yielding

E
[
sm1s∗m2

]
= exp( j(µm1−µm2))

N

∏
n=1

E [exp( j(bm1,n−bm2,n)Xn] . (4.10)

Such that (4.9) becomes a product of expectations rather than the expectation of a product. Similar

to the analysis in [27, 28, 76], note that the expectation in (4.10) is the form of the characteristic

function of a random variable which itself is defined as

ψX(ω) = E [exp( jωX)] (4.11)

where ψX(ω) is the characteristic function of the random variable X as defined in Section 3.1.2.

Putting (4.11) into (4.10), the correlation of the signal samples become

E
[
sm1s∗m2

]
= exp( j(µm1−µm2))

N

∏
n=1

ψXn(bm1,n−bm2,n). (4.12)

Likewise, the fourth order moment is

E
[
sm1sm2s∗m3

s∗m4

]
= exp( j(µm1 +µm2−µm3−µm4))

N

∏
n=1

ψXn(bm1,n+bm2,n−bm3,n−bm4,n). (4.13)

In (4.12) and (4.13), the moments of s are functions of the elements of B and µµµ. Therefore, (4.3)

can be optimized according to the metrics in Section 3.4 by adjusting the values of the elements of

B and µµµ.

4.2 The Expected Frequency Template Error (EFTE) for Pulsed StoWGe

In [30], the expected frequency template error (EFTE) cost function was introduced as a means

to measure the squared error between the expected power spectrum of some waveform generating
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process and some desired spectrum. This can be stated mathematically as

JP =

∣∣∣∣∣∣∣∣E[|sf|2
]
−u
∣∣∣∣∣∣∣∣2

2
(4.14)

where

E
[
|sf|2

]
(4.15)

is the expected power spectrum of the WGF s as defined in Section 3.4, || · ||22 is the squared

Euclidean norm, and u is some desired power spectrum. Then, as (4.14) is minimized, the WGF

will on average produce waveforms with a power spectrum that is more and more similar to u.

Overall, the EFTE cost function has important advantages relative to other stochastic waveform

metrics.

For one, the expected power spectrum shares a Fourier transform relationship with the ex-

pected autocorrelation. Accordingly, by selecting a desired spectrum which results in an excellent

expected autocorrelation, the expected autocorrelation can be optimized simultaneously. This con-

cept has been used extensively in the design of FM noise waveforms [23, 24, 26] and in the design

of single, low auto-correlation sidelobe waveforms [38, 39] as was discussed in Section 2.2. How-

ever, these waveform design implementations operated on a per waveform basis whereas here the

notion is applied to an entire family of waveforms via the WGF.

Additionally, the expected power spectrum is only a second order function of the waveform

generating process as apposed to a fourth order function in the individual metrics of Section 3.4.

This represents a clear advantage in terms of the processing and complexity requirements of any

optimization using this metric. Alternatively, one may consider optimizing the expected autocor-

relation directly since it is also a second order function of the waveform generating process. The

most straightforward choices are to optimize via minimizing either ISL, PSL, or the more flexible

generalized integrated sidelobe level (GISL) [64]. However, these metrics largely disregard spec-

tral containment making the EFTE metric more desirable at least for noise like waveforms [86].

One major drawback of the EFTE cost function is that it only considers the average behavior
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of waveforms. Individual waveforms could have very poor properties such as wildly spread out

spectra or high autocorrelation sidelobes, but as long as they average out to the desirable outcome

the EFTE metric will not capture this behavior. Practically, speaking we will only ever be able to

coherently integrate a finite number of waveforms so it is important to consider their individual

behavior in addition to their aggregate characteristics. With this mind, it is helpful to at least

examine the individual metrics of Section 3.4 to ensure the minimization of the EFTE cost function

is producing useful WGFs.

4.3 Optimization of the Pulsed StoWGe Expected Power Spectrum

As alluded to in section 4.2, the pulsed StoWGe expected power spectrum can be optimized by

minimizing the EFTE cost function as was performed in [30]. In order to determine the best

optimization method, the 2-norm in (4.14) can be expanded such that it becomes

J =
(

E
[
|sf|2

])T (
E
[
|sf|2

])
−2uT

(
E
[
|sf|2

])
+uT u (4.16)

which is a fourth order function of s. Additionally, as shown in (4.12), the second order moments

of the samples in s are already products of the characteristic functions of the random variables of

x. The characteristic functions themselves are dependent on B and µµµ. Consequently, the EFTE

cost function (4.14) is highly non-linear. This, along with it being unconstrained makes it unlikely

that (4.14) is convex, in that it is unlikely to have a global minimum.

In addition to being non-convex and non-linear, (4.14) is also unconstrained. That is the ele-

ments of B andµµµ are allowed to take on any real value. As discussed in Section 2.5, non-linear cost

functions can be difficult to optimize, but at the very least it is straightforward to apply gradient

descent methods to find at least a local minimum so long as the function is differentiable as is the

case of (4.14). With this in mind the most important part of gradient descent optimization is to

calculate the gradient itself.
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4.3.1 The Pulsed StoWGe EFTE Gradient

As the name implies gradient descent techniques require the evaluation of the cost function gradi-

ent. For the EFTE cost function this can be calculated for both the basis function matrix, B, and

the mean value vector, µµµ. In terms of a single element of B, the derivative of (4.14) is

∂J
∂bk,n

= 2
(

∂E[|sf|2]
∂bk,n

)T (
E[|sf|2]−u

)
(4.17)

where bk,n is the element of B in the kth row and nth column, and the derivative of the expected

power spectrum is evaluated on an element wise basis. The derivative of the wth element of

E[|sf,w|2] is

∂E[|sf,w|2]
∂bk,n

= 2ℜ


M

∑
m=1

aw,ma∗w,k exp( j(µm−µk))
∂ΨXp(bm,n−bk,n)

∂bk,n

N

∏
p=1
p6=k

ΨXp(bm,n−bk,n)


(4.18)

where ℜ{·} extracts the real part. A full derivation of (4.18) can be found in appendix A.1.2.1.

(4.17) can be evaluated for each element of B and collected into the structure

∇BJ =



∂J
∂b1,1

∂J
∂b1,2

· · · ∂J
∂b1,N

∂J
∂b2,1

∂J
∂b2,2

· · · ∂J
∂b2,N

...
... . . . ...

∂J
∂bM,1

∂J
∂bM,2

· · · ∂J
∂bM,N


(4.19)

to realize the gradient with respect to B.

Likewise, the derivative with respect to an single value of µµµ is

∂J
∂ µk

= 2
(

∂E[|sf|2]
∂ µk

)T (
E[|sf|2]−u

)
(4.20)

where µk is a single element of µµµ. Taking the derivative on an element wise basis, the derivative of
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the wth element of E[|sf,w|2] is

∂E[|sf,w|2]
∂ µk

= 2ℑ

a∗w,k exp(− jµk)
M

∑
m=1
m6=k

aw,m exp( jµm)
P

∏
p=1

ΨXp(bk,p−bm,p)

 (4.21)

where ℑ{·} extracts the imaginary part. A complete derivation of (4.21) can be found in Section

A.1.2.2. The results of (4.20) and (4.21) can be collected into the structure

∇µµµJ =



∂J
∂ µ1

∂J
∂ µ2
...

∂J
∂ µM


(4.22)

to realize the gradient of the EFTE cost function with respect to the mean value phase vector µµµ.

4.3.2 Gradient Descent Implementation

As discussed in Section 2.5, the local optimization of a non-linear problem can be more of an

art than a science. The quality of the final result is often strongly dependent on the choice of

initialization, as will be seen in the results of work, and the type of optimization and its parameters

(e.g. β for gradient descent methods). Consequently, the choice of parameters is often a heuristic

process of trial and error and educated guesses as was the case here.

In the course of evaluating the efficiency of various gradient descent techniques such as the ones

in [79], it was found that one of the simplest varieties, heavy ball gradient descent, was uniquely

robust and efficient at minimizing the pulsed StoWGe EFTE cost function. As was discussed in

more detail in Section 2.5, for gradient descent methods a search direction is chosen such that

qi =

 −gi when i = 0

−gi +βqi−1 otherwise
(4.23)
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where for heavy ball gradient descent β takes on a value such that 0 < β < 1 which makes the

search direction at the ith iteration a linear combination of the current gradient and weighted ver-

sions of previous search directions [80]. The fact that heavy ball gradient descent would be more

efficient (converging more quickly than other implementations) than other more sophisticated ap-

proaches such as non-linear conjugate gradient methods, is itself a surprising result considering

they generally work very well.

Nevertheless, it does not really matter what type of gradient descent method is used so long as

it is used properly. Given the same initialization and line search method, they should come to the

same solutions. It is just matter of how quickly they do so. More impactful, to the final results are

the stopping conditions. Stopping conditions which are too strict will stop the optimization while

significant improvement could still be attained. Stopping conditions what are too lax will achieve a

much better approximation of the local minimum than the former case, but a significant number of

iterations may result in little improvement and wasted time. The stopping conditions chosen here

were pragmatically chosen based on a process of trial and error. With this in mind, the goal was to

provide the optimization with as many iterations as it needed to find a good solution but no more.

• No matter what, in each case the optimization was performed for at least 5000 iterations.

This supersedes the following stopping conditions

• The optimization was ended after 1000000 iterations.

• If the aggregate decrease in the cost function over the course of any consecutive 1000 iter-

ations was less than .01 dB, the optimization was ended. Such small decreases in the cost

function value indicate further meaningful improvement is unlikely even with an extreme

number of iterations.

• If the cost function value fell below -200 dB, the optimization was ended. A cost function

value below -200 dB indicates the total squared error between the expected spectrum and

desired spectrum is < 10−20. Practically speaking, the error is 0 at this point making further

optimization unnecessary.
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In a vacuum these parameters and stopping conditions seem completely arbitrary, but in practice

they were found to provide a good compromise between optimization time and finding an excellent

approximation of a local minimum.

4.3.3 Initializations

One difficulty in evaluating the optimization of StoWGe via the EFTE cost function is the number

of parameters to consider. Table 4.1 highlights this issue by listing all the independent parameters.

The parameters M, N, pX(x), and u are fixed throughout the optimization, while the basis function

Fixed Parameters

M Number of samples per waveform

N Number of random variables per waveform

pX(x) Random Variable Distribution Function

u The Desired expected spectrum

Optimizable Parameters
B Basis Function matrix

µµµ Waveform Sample mean value vector

Table 4.1: Waveform generating process parameters which must be selected or initialized prior to
optimization

matrix B and the mean phase value vector µµµ are optimized. The fixed parameters have to be set

before beginning the optimization while the optimizable parameters have to be initialized. With

a total of six parameters to consider the number of optimizations to run can quickly become im-

practical. With this in mind, it is necessary to select a meaningful subset of test cases. The next

several paragraphs discusse the selected initializations for the parameters in Table 4.1 along with

the rationale for those selections.

Number of Waveform Samples: M – To understand how the EFTE minimization performs

on StoWGe, the only requirement on M is that it is sufficiently large such that a meaningfully

large BT with respect to the 3 dB bandwidth can be realized. For digital waveforms the maximum

BT is equal to the number of digital samples. If the waveform is oversampled relative to its 3

dB bandwidth then the BT is reduced by that factor. To allow for a meaningfully large BT , M is
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fixed such that M = 512 samples. This way, even if the expected spectrum has a relatively high

oversampling factor relative to the 3 dB bandwidth such as 4, the waveforms produced by the

optimized WGF will still possess a relatively high BT of 128.

Number of Random Variables: N – The smaller the value of N, the fewer the number of ran-

dom variables that have to be instantiated with every waveform and the fewer the number of basis

function that have to be summed to instantiate the phase function. From this, it is desirable that N is

kept as small as possible. The questions are then how small can N be and still be able to match the

desired spectrum and with a small value of N are the waveform instantiations sufficiently different

to realize noise like sidelobe reductions with coherent integration. To answer these questions, N

will be varied over the powers of 2 between 1 and 512 such that N ∈ {2,4,8,16,32,64,128,256}.

Random Variable Distribution Function: pX(x) – The possible forms of pX(x) include all

valid PDFs. However, here we only need to consider PDFs with zero mean. The phase mean

value vector µµµ makes giving pX(x) a mean value unnecessary. Still the options for pX(x) are vast.

The approach taken here is to consider a few common and relatively simple distributions which

have mathematically tractable characteristic functions. With this in mind the first distribution to be

considered is the binary uniform distribution less formally known as a fair coin toss. That is, the

distribution has equal probability of taking one of two states such that

DU2: pX(x) =
1
2

δ (x+π)+
1
2

δ (x−π) (4.24)

where here the two states are±π . Alternatively, we also consider a continuous uniform distribution

defined as

CU: pX(x) =
1

2π

 1 −π ≤ x≤ π

0 otherwise
(4.25)

where the distribution extends from −π to π . In addition to these uniform distributions it is in-

formative to compare them to the Gaussian distribution which has already been evaluated for the

purposes of FM noise waveforms in other works such as [27–30, 66, 76]. Here, the Gaussian pro-
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cess is defined to have unit variance such that

G: pX(x) =
1√
2π

e−
1
2 x2

(4.26)

For convenience the three different pX(x) will be referred to via shorthand as DU2, CU , and G

respectively. These three distributions should provide insight into the behavior and usefulness of

highly constrained distributions such as DU2 and less restrictive distributions such as CU and G

which can take on a continuum of values.

Desired Spectrum: u – As discussed in Chapter 2, it is often desirable for a waveform to ex-

hibit a Gaussian like spectrum since this spectrum ideally results in zero autocorrelation sidelobes

and good spectral roll-off. Still, for low oversampling factors with respect to the 3 dB bandwidth

the roll-off is fairly poor. In fact, for an oversampling factor of 2, a Gaussian spectrum only de-

cays to about -12 dB in normalized power by the edge of the sample bandwidth. This may be

enough motivation to move away from the Gaussian spectrum in certain cases. One alternative is

the Super-Gaussian spectral shape defined as

u( f ) = Aexp
(
| f |n

x3dB

)
(4.27)

where A arbitrarily scales the power, x3dB can be chosen to set B3dB and n is an integer greater

than two. If n is set to two, then (4.27) is simply a Gaussian function. Values of n greater than

two result in a function with a similar shape as a Gaussian, but with a flatter passband and a much

steeper roll-off. As n approaches infinity (4.27) approaches a rectangular function which is the

third spectral shape considered here.

The baseband rectangular spectral template is defined such that

u( f ) =

 1 − fB/2≤ f ≤ fB/2

0 otherwise
(4.28)

where the 3 dB bandwidth, fB, is also the absolute bandwidth in this case. This template repre-
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sents perfect spectral containment. In Fig. 4.1 these three functions, Gaussian, Super Gaussian

with n = 4, and the rectangular function, are plotted with an oversampling factor with respect to

the 3 dB bandwidth of K = 2. The Super-Gaussian decays much more quickly towards the sam-

ple bandwidth edges (±Bsamp/2) as compared to Gaussian function and the rectangular functions

resembles a "brick-wall" at the 3 dB bandwidth representing the best possible spectral roll-off.

The downside to the Super-Gaussian function as compared to the traditional Gaussian is that

it will never achieve zero autocorrelation sidelobes. However, it will not have nearly as high

of sidelobes as the rectangular function either. To examine this, the best case autocorrelation

responses of these functions are plotted in Fig. 4.2 with an oversampling factor of K = 8 in order

to provide good visibility of the sidelobe structure. The Gaussian autocorrelation function has no

sidelobes shown and if it were zoomed out arbitrarily far it never would. The rectangular spectrum

results in the familiar sinc like sidelobes of an LFM with peak levels at roughly -13.4 dB. The

super Gaussian spectrum however has a peak sidelobe at roughly -20 dB, but subsequent peaks

decay rapidly from this level with the next peaks at roughly -37 dB. The key takeaway from this

plot is that even for noise or FM noise waveforms where coherent integration of multiple pulse can

be expected to lower the sidelobe levels, if the average spectrum approaches the shapes in Fig. 4.1

their autocorrelation responses can be no better than the shapes in Fig. 4.2.

Historically, the super-Gaussian function has been a topic of much interest in optics [87], here

it is suggested a compromise between the zero-autocorrelation sidelobe producing Gaussian spec-

trum that demonstrates modest spectral containment and the rectangular spectrum which achieves

ideal spectral containment, but exhibits poor sidelobe performance. With this in mind, these three

templates are used with two different oversampling factors of K = 2,4 plotted in Figs. 4.1 and 4.3

respectively.
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Sample BW

3dB BW

B3dB

Bsamp
= 2

Figure 4.1: Desired spectra for the EFTE optimization with a 3 dB oversampling factor of K = 2

Figure 4.2: Corresponding autocorrelation response of the desired EFTE spectra
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Sample BW

3dB BW

B3dB

Bsamp
= 4

Figure 4.3: Desired spectra for the EFTE optimization with a 3 dB oversampling factor of K = 4

For future convenience, these spectral templates are referred to by shorthand. The Gaussian

templates with either K = 2 or K = 4 are G2 and G4 respectively. The Super-Gaussian templates

with n = 4 and either K = 2 or K = 4 are S4G2 and S4G4 respectively. The Rectangular templates

with either K = 2 or K = 4 are R2 and R4 respectively.

Initial Basis Function Matrix: B0– As has been shown in other works for non-convex opti-

mization, the initialization can have a dramatic effect on the result of the optimization. In general,

the challenge is to find an initialization that tends towards good solutions. For this work, two

initializations are examined to demonstrate this behavior. The first one is based on the PCFM

framework as discussed in Section 2.2.3. The initial B has the exact form of the PCFM basis ma-

trix for a given M, N, and oversampling factor of the desired spectrum with respect to the 3 dB

bandwidth.

The second initialization is an identity matrix when the number of random variables matches

the number of waveform samples, but when N < M the matrix is modified as in Fig. 4.4
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Figure 4.4: Structure of the "Identity" basis matrix initialization (BID)

For convenience, the PCFM basis matrix initialization is referred to as BPC and the modified

identity matrix initialization is referred to as BID.

Initial Phase Mean Value Vector: µµµ0 – An asymmetric baseband expected spectrum can

be achieved in only a few ways. Either the phase values have a non-zero mean value, the random

variable distributions are asymmetric about zero, or the combination of the two. The result of these

cases is a characteristic function with an imaginary component leading to an asymmetric baseband

expected spectrum. Since this work, is only concerned with the symmetric spectral templates

discussed above, it is not necessary for the phase of the StoWGe signals to have a non-zero mean

value. Although, for future work this can be considered for such cases as spectral notching where

asymmetric baseband spectra are required. For this work however,µµµ0 will be initialized as a vector

of zeros and will not be optimized.

Summary: – All the initializations and their shorthand notation from above are summarized

in Table 4.2.
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Variable Definition Test Cases

M Number of waveform Samples M = 512

N Number of random variables N = 2, 4, 8, 16, 32, 64, 128, 256

pX(x) Random Variable Distribution

DU2 – Discrete Uniform, 2 states

CU – Continuous Uniform

G – Gaussian with unit variance

u Desired Spectrum

G2 – Gaussian (K = 2)

G4 – Guassian (K = 4)

S4G2 – Super-Gaussian (n = 4,K = 2)

S4G4 – Super-Gaussian (n = 4,K = 4)

R2 – Rectangular (K = 2)

R4 – Rectangular (K = 4)

B0 Basis Function Initialization
BPC – PCFM basis matrix

BID – Modified identity matrix

µµµ0 Phase Mean Value Vector 0 – [0 0 · · · 0 ]TM×1

Table 4.2: Initializations for the StoWGe parameters. All combinations of every optimization are
considered resulting in 288 total optimizations

4.4 Optimization Results

In one sense, determining which optimization was the most successful in terms of pX(x), N, and

B0 is as simple looking for the most negative values (best) in the tables of appendix B where the

results of the test cases outlined in Table 4.2 are tabulated. Objectively speaking, these results

provided the closest expected power spectrum matches to the desired templates in the squared

error sense. From this perspective the DU2 distribution almost always outperformed the CU and

G distributions so at this cursory level is almost always the best choice for the spectral templates

considered here. However, the problem with such a sweeping statement is that the goal is not

simply to find a WGF that has the desired expected power spectrum, it is to find WGFs which are

useful for generating FM noise waveforms. The expected power spectrum is just one aspect of that

goal albeit an important one. An excellent example of where minimizing the EFTE cost function

82
98 

Approved for public release; distribution is unlimited



has produced WGFs with near perfect matches to the desired template, but are not useful as FM

noise waveforms are when N is small.

4.4.1 Small N

4.4.1.1 Discrete Distributions

According to the tables in Appendix B, for many of the templates the DU2 distribution realizes

excellent matches to the desired power spectral template regardless of the value of N. In the case

of the S4G2 template, the values of N = 2,4 actually perform the best and even meet the -200 dB

stopping point of the optimization, but these excellent matches hide a significant issue.

If pX(x) is a discrete distribution with a finite number of states then the WGF will likewise have

a finite number of sample functions. For the DU2 distribution, two states per random variable, the

WGF can only produce 2N unique waveforms, so when N = 2,4 the expected power spectrum

measured by the EFTE is just the sample mean of the 4 or 16 sample functions respectively. With

so few sample functions to choose from, the WGF in this case is clearly not useful for generating

FM noise waveforms, since the last thing any noise waveforms should do is repeat themselves.

In fact, when N = 2 there is a 25% chance that two of the same waveform will be transmitted

consecutively assuming they are all equally probable as they would be for the DU2 case.

Instead, in a completely roundabout way, these small sets of waveforms are more like comple-

mentary waveforms [65, 88, 89], in that they combine to match a desired property. In the Gaussian

template cases, they combine to produce zero autocorrelation sidelobes making them explicitly

complementary waveforms. Still, what really sets the small N cases for discrete distributions apart

is the very small number of member functions. Because of this, only WGFs with a sufficiently

large sample space will be considered for FM noise purposes.

To a degree "sufficiently large" is somewhat arbitrary, but it can be thought of this way. Given

a 100 pulse CPI, or some other reasonably sized CPI, what are the odds that the same waveform

is repeated in those 100 pulses? For the DU2 case, all sample functions are equally probable so

the answer is just 100(1/2N). For N = 2,4,8,16, the solutions are 100%, 100%, 39%, and 0.15%
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respectively. With N = 16, in about 15 out of every 1000 CPIs there will be 2 of the same sample

function in a randomly chosen set of 100. Although with N = 16 the chance of a repeat is small,

out of an abundance of caution this work will only consider values of N ≥ 32 as useful for FM

noise purposes from here on out for the DU2 distribution.

4.4.1.2 Continuous Distributions

For the CU and G distributions, the small N cases tend to perform worse than the larger N cases

according to the tables in Appendix B. Consequently, they are of less concern since they would not

be considered "good" in the first place. Still, they sometimes do outperform the larger N cases so

it is prudent to examine the behavior of the WGF with a continuous pX(x) and small N.

Being continuous, regardless of the value of N the WGF with a continuous pX(x) can produce

an infinite number of sample functions so the small sample function set size will not be an issue

here. However, they do present a less obvious issue that is revealed by examining the power

spectral deviation as defined in (3.64).

In Table B.1, the BPC initialization results in a better match to the power spectral template for

smaller values of N for pX(x)=CU, and nearly equivalent results for any value of N for pX(x)=G.

Figs. 4.5 and 4.6 show the resulting power spectral deviation for the CU case and the G case

respectively for values of N including 2, 8, 32, and 128. Additionally, the G2 template is shown

for reference however the resulting expected power spectra for each case are not. For the CU case,

the optimization was so effective that the expected power spectra are virtually indistinguishable

from the desired template.

The most notable aspects of Figs. 4.5 and 4.6 is the tremendous spike in the power spectral

deviation at 0 frequency for the smaller values of N. As N increases, the spike decreases and the

power spectral deviation function becomes more smooth overall until in the N = 128 case it is

indistinguishable from the template meaning the deviation is on the order of the expected power

spectrum. This is a striking parallel to the periodogram of Gaussian processes where the variance

of the power spectrum estimate is likewise on the order of the measurement itself [35].

84
100 

Approved for public release; distribution is unlimited



For the smaller values of N, the spike is reasonable. With so few random variables to construct

the phase for any given sample function the probability that they are all close to zero or all well

away from 0 is non-negligible. This represents a problem from a pulse integration standpoint.

Because of this, it will take more pulse integration for the sample power spectrum to resemble the

expected power spectrum. To safely avoid this issue only WGFs with N ≥ 32 will be considered

for either the CU or G distributions same as the DU2 case.

Figure 4.5: Normalized power spectral deviation for the DU2 distribution, the G2 template, and
various values of N
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Figure 4.6: Normalized power spectral deviation for the G distribution, the G2 template, and
various values of N

4.4.2 Pulsed StoWGe Evaluation

With the small N cases addressed, the question becomes how to evaluate the effectiveness of the

rest of the WGFs for instantiating useful radar waveforms. At a first level, it is only necessary

to examine the cases with the best resulting cost function values as a function of u and PX(x) for

N ≥ 32. With six templates and three distributions this leaves 18 WGFs to examine in more detail.

These cases are collected in Table 4.3.

Beyond the template match, it is important to understand how these WGFs perform in other

ways, but especially in the time domain and on an individual basis. Such an analysis can be

performed by utilizing several of the metrics discussed in 3.4. The metrics deemed helpful for

evaluating the usefulness of the optimized WGFs are

• Expected power spectrum - This metric is directly optimized by the cost function. It is clearly

relevant to the analysis.
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Distribution (pX(x))

DU2 CU DU2

J N B0 J N B0 J N B0
T e

m
pl

at
e

(u
)

G2 -154.1 128 BPC -154.0 32 BId -74.2 32 BPC

G4 -200.0 128 BPC -115.1 32 BPC -88.5 256 BPC

S4G2 -157.3 32 BPC -89.6 32 BPC -46.2 64 BPC

S4G4 -88.8 64 BPC -76.2 64 BPC -42.0 32 BPC

R2 -57.1 128 BPC -42.9 32 BPC -37.1 32 BPC

R4 -48.1 64 BPC -39.6 32 BPC -33.8 32 BPC

Table 4.3: The best resulting WGFs for each pX(x) and template as a function of N for N ≥ 32 and
B0.

• Power spectral deviation - While it is essential that the waveforms on average have a good

spectrum, it is also useful to understand how the power spectrum of a given waveform can

be expected to deviate from the expected power spectrum. If each waveform deviates wildly

from the expected spectrum, it may take much more coherent integration for the sample

power spectrum to resemble the expected power spectrum as opposed to a WGF with much

less power spectral deviation.

• Expected autocorrelation - For a WGF to be useful for creating noise like waveforms, at

a minimum the autocorrelation sidelobes should decrease with coherent integration. The

expected autocorrelation represents the lowest possible sidelobes given sufficient coherent

integration. In general, the expected autocorrelation should have extremely low sidelobe

levels, but ultimately this depends on the spectral template and the WGFs ability to realize

that template.

• Expected RMS autocorrelation - While it is useful to know that the sidelobe levels will

decrease with coherent integration, it is likewise useful to know at what level they will begin.

The expected RMS autocorrelation represents the expected autocorrelation level of a single

WGF generated waveform.

87
103 

Approved for public release; distribution is unlimited



• Expected RMS cross-correlation - If any single pair of StoWGe waveforms are filtered with

each other, the expected RMS cross-correlation represents the magnitude of this result. In

general, it is desirable that unique waveforms have little cross-correlation to maximize sep-

arability and reduce ambiguity.

This of course is only five of the eight metrics listed in Table 3.3. The other three, are in general,

unhelpful for this analysis. Consider the expected cross-correlation and the expected cross-power

spectrum. In either case these measure the integration of pulse pairs under a cross-correlation or as

a product of their power spectra. Since each waveform in each pair are different sample functions,

zeroing out the expected cross-correlation and the expected cross-power spectrum is as simple as

putting a random initial phase on each sample function according to an uniform distribution on

U [−π,π]. In any radar setting, this can be done without any performance loss since matched

filtering will remove this phase anyway allowing for coherent integration without issue.

The other unused metric is the RMS cross-power spectral density which measures the expected

magnitude of the product of two different power spectra. The formulation of StoWGe guarantees

that any waveform instantiation is independent of all others. For the RMS cross-power spectral

density this means the unique waveform terms in 3.66 are separable such that

(
E
[
|saf� s∗bf|

2
])1/2

=
(

E
[
|saf|2

]
E
[
|sbf|2

])1/2
= E

[
|sf|2

]
(4.29)

which is simply the expected power spectrum again. Still, this could be useful in another context

such as when there is coupling between different instantiations of the waveforms, but for StoWGe

this simply is not the case. The next three sections discuss the results for each type of template

(Gaussian, Super-Gaussian, Rectangular). For each template all of the five different metrics which

were deemed useful are plotted for each pX(x) in order to provide an informative understanding of

how each distribution is suited to each template.
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4.4.2.1 Gaussian Template Results

In Figs. 4.7 and 4.8 the spectral and temporal metrics of each of the two Gaussian templates

respectively. Judging from Fig. 4.7(a,b) each of the different distributions were able to achieve

fairly good matches to the Gaussian templates where for the G2 template the expected spectra are

indistinguishable from temple while for the G4 template there is some deviation from the template

on the part of the CU and G distributions at the sample bandwidth edges.

The spectral deviation plots are a little more interesting. In 4.7(c), the DU2 distribution real-

izes some periodic, small spikes in deviation while in 4.7(d), the G distribution shows much more

variance over its bandwidth compared to the others indicating its individual waveforms could on

occasion have much more or less power in the roll-off regions. In Fig. 4.8(a,b), the expected

autocorrelation (ACF) for each distribution either matches the templates resulting ACF or even

outperforms it in case of the G distribution. Although, the CU distribution does somewhat worse

for the G4 template, but not meaningfully so. The expected autocorrelation represents the re-

sulting autocorrelation with infinite coherent integration. The autocorrelation levels of noise like

waveforms decrease at a rate of 10log10(L) where L is the number of waveforms being coherently

integrated. If a given waveform of a WGF realizes sidelobe level around -40 dB, it would still take

the coherent integration of 1000000 waveforms to run into the sidelobe floor presented by the CU

distribution in 4.8(b), so really the expected autocorrelation sidelobes only need to be as low as

what can be reasonably obtained given the RMS autocorrelation sidelobes of a given WGF and the

size of the CPI.

In Fig. 4.8(c), the RMS autocorrelations for the poorly contained spectrum of the G2 template

all exhibit a fast oscillatory component with the DU2 distribution having the highest amplitude

oscillations. For the G4 template in Fig. 4.8(d), the G distribution exhibits a broadening at the base

of the mainlobe and a couple of fairly large oscillations thereafter. The CU distribution has some

higher frequency oscillations while for the DU2 distribution, there is a small bump at the mainlobe

but is then smooth thereafter. For noise and noise like waveforms without any optimization, the

peak sidelobe level should be at about −10log10(BT ) which are -24.1 and -21.1 for the G2 and
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G4 templates respectively. Even accounting for the oscillations, roughly speaking each choice of

distribution was able to meet or exceed these values. Though, the broadening of the base of the

mainlobe in the G distribution case for the G4 template makes it less obvious where the sidelobe

region truly begins.

In Fig. 4.8(e), the oscillations present for the G2 template RMS autocorrelations are likewise

present in the RMS cross-correlations. However in Fig. 4.8(f), the large scale oscillations disap-

pear from the RMS autocorrelations. Overall however, the RMS cross-correlation results largely

resemble the RMS autocorrelation results but without a mainlobe.
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Figure 4.7: Optimized expected power spectrum for the G2 template (a). Optimized expected
power spectrum for G4 template (b). Expected power spectral deviation for the G2 template after
optimization (c). Expected power spectral deviation for the G4 template after optimization (d).
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Figure 4.8: Expected autocorrelation for the G2 template after optimization (a). Expected auto-
correlation for the G4 template after optimization (b). Expected RMS autocorrelation for the G2
template after optimization (c). Expected RMS autocorrelation for the G4 template after optimiza-
tion (d). Expected RMS cross-correlation for the G2 template after optimization (e). Expected
RMS cross-correlation for the G4 template after optimization (f).
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4.4.2.2 Super-Gaussian Template Results

Compared to the G2 and G4 templates, there is much more disparity between the distributions when

it comes to matching the S4G2 and S4G4 templates. In Fig. 4.9(a,b) the G distribution does a very

poor job of matching to either template. The CU distribution does much better in comparison. For

the S4G2 template in 4.9(a) the DU2 expected power spectrum is nearly indistinguishable from

the template while for the S4G4 template of 4.9(b) it matches the template down to about -35 dB

which clearly outperforms the other the other distributions. In 4.9(c,d), the spectral deviation plots

are largely proportional to the expected power spectra. However, the G distribution experiences a

somewhat larger degree of spectral deviation while the DU2 case for the S4G2 template has some

small spikes similar to its behavior for the G2 template in 4.7(c).

As opposed to the G2 and G4 templates, the S4G2 and S4G4 templates have near in sidelobes.

In 4.10(a,b), each distribution was largely able to match these sidelobes. However, beyond the first

few sidelobes the distributions start to really deviate below -80 dB. However, these sidelobes are

still low enough that they would only ever be seen with an exceptionally large amount of coherent

integration.

The RMS autocorrelations for the S4G2 template in Fig. 4.10(c) exhibit some ringing as they

did for the G2 template in 4.8(c), but the DU2 distribution now exhibits very prominent oscillations

suggesting some kind of periodic component in the WGF. This will be revisited in 4.4.2.4. Inter-

estingly, these oscillations almost completely disappear for the S4G4 template in 4.10(d), however

the G distribution shows the large scale oscillations that were also present in the G4 template of

4.8(d).

The RMS cross correlations in Fig. 4.10(e,f) once again are very similar to the RMS autocor-

relation, but with less dramatic oscillations in the S4G4 case and with the mainlobe removed.

92
108 

Approved for public release; distribution is unlimited



E
xp

ec
te

d 
P

ow
er

 S
pe

ct
ru

m
P

ow
er

 S
pe

ct
ra

l D
ev

ia
ti

on

(c)

(a)

(d)

(b)

Super-Gaussian (n = 4, K = 2) Super-Gaussian (n = 4, K = 4)

Figure 4.9: Optimized expected power spectrum for the S4G2 template (a). Optimized expected
power spectrum for S4G4 template (b). Expected power spectral deviation for the S4G2 template
after optimization (c). Expected power spectral deviation for the S4G4 template after optimization
(d).

4.4.2.3 Rectangular Template Results

The rectangular template represents the most restrictive power spectrum and unsurprisingly it re-

sulted in the worst optimized values of the EFTE cost function of the three template types. How-

ever, the DU2 distribution performed significantly better than either the G or CU distributions. In

Fig. 4.11(a,b) the CU distribution was able to match to the template marginally better than the G

distribution, but they both achieved poor matches the template. The DU2 distribution did a pretty

good job implementing the brick wall at the 3 dB bandwidth, but even it bottomed out at about
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Super-Gaussian (n = 4, K = 2)

(d)
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(f)

Super-Gaussian (n = 4, K = 4)

Figure 4.10: Expected autocorrelation for the S4G2 template after optimization (a). Expected
autocorrelation for the S4G4 template after optimization (b). Expected RMS autocorrelation for
the S4G2 template after optimization (c). Expected RMS autocorrelation for the S4G4 template
after optimization (d). Expected RMS cross-correlation for the S4G2 template after optimization
(e). Expected RMS cross-correlation for the S4G4 template after optimization (f).
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-25 dB in the roll-off region in the R2 case. In the R4 case of 4.11(b) it realized a sort of spectral

pedestal before dropping steeply again to -35 dB.

The spectral deviation plots in Fig.4.11(c-d) are roughly proportional to the spectral results,

however in either the R2 or the R4 case the DU2 spectral deviation is slightly smoother and lower

at the edges of the template bandwidth than what would be expected from the expected spectrum.

This indicates that from sample function to sample function, these edges are a little more consistent

than the rest expected spectrum.

Compared to the sidelobes of the other templates, the R2 and R4 templates exhibit dramatically

higher sidelobe levels akin to the sinc like sidelobes of an LFM. In Fig. 4.12(a,b), the previously

included template trace has been left off to improve clarity. However, the DU2 trace effectively

follows what would be expected of the template owing to its decent spectral match. The poorly

matched G and CU expected spectrum result in likewise poor matches to the template’s expected

autocorrelation.

Fig. 4.12c,d shows the expected RMS autocorrelation response where the first several side-

lobes of the expected autocorrelation are clearly visible. No matter how much coherent integration

is used these will remain. The rest of the expected RMS autocorrelation behaves similarly to the

other templates. The DU2 distribution does have an interesting bump in the expected RMS au-

tocorrelation towards the edges of the sidelobe regions. It is important to note, that as the DU2

waveforms are coherently integrated, their autocorrelation response will more and more resemble

the sinc like response in 4.12.

The expected RMS cross-correlation also presents an interesting behavior in the DU2 distribu-

tion case. In Fig. 4.12(e,f), the DU2 trace has a correlation spike at 0 delay indicating that there

is some degree of correlation between the samples functions of its corresponding WGF. It would

appear this correlation was need to achieve the good spectral matches shown in 4.11(a-b).
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Figure 4.11: Optimized expected power spectrum for the R2 template (a). Optimized expected
power spectrum for R4 template (b). Expected power spectral deviation for the R2 template after
optimization (c). Expected power spectral deviation for the R4 template after optimization (d).
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(c) (d)
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(b)

Figure 4.12: Expected autocorrelation for the R2 template after optimization (a). Expected auto-
correlation for the R4 template after optimization (b). Expected RMS autocorrelation for the R2
template after optimization (c). Expected RMS autocorrelation for the R4 template after optimiza-
tion (d). Expected RMS cross-correlation for the R2 template after optimization (e). Expected
RMS cross-correlation for the R4 template after optimization (f).
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4.4.2.4 DU2 Distribution and S4G2 Spectral Template Case Study

Section 4.4.2.2 commented on the large oscillations present in the expected RMS autocorrelations

and cross correlations of the DU2 distribution for the S4G2 template in Fig. 4.10(c,e). While the

N = 32 case provided the best spectral match it also produced those dramatic oscillations that result

in higher autocorrelation sidelobes. This begs the question, is there another result from the DU2

results of Table B.3 that produces a better expected RMS autocorrelation? Although it would have

a poorer spectral template match, if the expected RMS autocorrelation is much better the poorer

spectral performance may be worth it.

To explore this idea, all the results for N ≥ 32 for the DU2 distribution in Table B.3 are plotted

in Fig. 4.13. Each sub figure has 8 traces corresponding to N = 32,64,128,256 and B0 =BPC,BID.

The traces belonging to the B0 = BPC, N = 32 case from Figs. 4.9 and 4.10 are plotted in blue.

While what is considered to be the best WGF here, the B0 = BPC, N = 256 case, is plotted in

red. For convenience since they utilized the same B0, these case will be referred to as N = 32 and

N = 256. All other traces are plotted in gray for clarity.

Interestingly, despite achieving a cost function value that is more than 13 dB worse than the

ideal case, the expected spectrum trace in Fig. 4.13(a) of the N = 256 case and the N = 32 are

nearly indistinguishable. This is reasonable though. In linear terms the total difference between

-157.3 dB and -142.9 dB is quite small even if the ratio between them is more than an order of

magnitude.

Perhaps more notably, the spectral deviation of the N = 256 case in Fig. 4.13(b) does not posses

the small peaks seen in the N = 32 case and on others. Further, the expected RMS autocorrelation

and cross-correlation of the N = 256 case in Fig. 4.13(d,e) lack the large oscillations apparent in the

N = 32 case indicating these features may be related. Since the N = 256 WGF provides largely the

same expected power spectrum performance as the N = 32 case while achieving a better expected

RMS autocorrelation, the N = 256 appears to be a better choice as a WGF.
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(a) (b)

(c)

(d)

(e)

All Results for the DU2 distribution and the S4G2 template

Figure 4.13: All results for the DU2 distribution and the S4G2 template. N = 32 is plotted in blue.
N = 256 is plotted in red. (a) expected power spectrum (b) power spectral deviation (c) expected
autocorrelation (d) expected RMS autocorrelation (e) expected RMS cross-correlation
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4.4.2.5 Basis and Correlation Matrices

The previous sections looked at how well the StoWGe model and the EFTE optimization is able

to optimize for a desired expected power spectrum. This section looks at how it did so. The

correlation matrices and selected basis functions for the K = 4 templates (G4, S4G4, R4) are

plotted in Figs. 4.14 - 4.16 respectively. Sixteen of the N basis functions are plotted in each case

since plotting all of them makes the plots difficult to interpret. The correlation matrices are plotted

in magnitude on a dB scale. Since the optimized WGFs have a 0 valued µµµ, the correlation matrices

are real and with the exception of the Gaussian distributed RVs, they can be negative.

Beginning with the G4 template, in Fig. 4.14(a,c,e) each distribution has optimized towards

unique basis function shapes from the smooth wavelet like functions of the G distribution to the

step like functions of the DU2 distribution. While this in itself is interesting, for gaining intuition

into how the distributions achieve their respective curves in Figs. 4.7 and 4.8, it is more important

to examine the correlation matrices in 4.14(b,d,f).

Consider the G distribution correlation matrix in 4.14(b). Due to the nature of the characteristic

function of Gaussian distributions and the fact thatµµµ is set to zeros, the correlation matrix is strictly

positive. Now recall that the expected autocorrelation is defined as the sum across the diagonals

of the correlation matrix and the expected spectrum is the IFFT of that result. In 4.7(b), the G

result nearly matches the template. Since the correlation matrix is strictly positive, the only way

for this to happen is for the regions above and below the main diagonal to be extremely close to

zero. Indeed, in 4.14(b) this is the case.

The CU and DU2 results are a little more nuanced. Their correlation matrix values can be

negative, so while there may be meaningful correlation in the diagonals off from the main diagonal,

it is possible the sum of those diagonals is small resulting in low autocorrelation sidelobes. This

appears to be the case for the DU2 correlation matrix in 4.14(f) where significant correlation is

observed at the bottom left and top right corners perhaps as large as -12 dB indicating the beginning

and end of the DU2 waveforms are somewhat correlated. However, in 4.8(b) the resulting expected

autocorrelation is a near perfect match to the templates ideal autocorrelation so the correlation must
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cancel itself out when summed. In other words, since the waveforms are not necessarily stationary

over the pulse duration, the matched filter result only depends on the average correlation at a given

delay hence the summing operation over the diagonals. Intriguingly, the DU2 distribution resulted

in the best template match in 4.7(b) meaning the correlation between the ends of the waveform

may be helpful to further improve spectral containment.

For the S4G4 template results in 4.15 recall that the G distribution did a poor job of matching to

the spectral template (4.9(b)). In an attempt to match to the template, the optimization resulted in

sort of square shaped steps at the edges of the basis functions. The impact of these features is seen

on the main diagonal of the resulting correlation matrix in 4.15(b) where the top left and bottom

right regions of the diagonal become like an identity matrix indicating little if any correlation

between samples. Despite its best attempts this was not enough and the G distribution appears

ill-suited to achieve the S4G4 template.

The CU and DU2 distributions did significantly better, but the DU2 distribution once again

provided the best performance in the roll-off region. In this case, some sidelobes are present in the

template autocorrelation meaning some correlation should be expected off from the main diagonal

as is the case for the CU and DU2 distributions in Fig. 4.15(d,f). The CU distribution resulted in

smooth basis functions while the DU2 distribution resulted in relatively smooth basis function, but

with periodic spikes. If Fig. 4.10(b), the DU2 distribution produced the best match to the template

autocorrelation although it exhibits a sidelobe floor around -110 dB. This floor is attributable to the

significant correlation in the upper and lower triangular regions of Fig. 4.15(f) where evidently the

correlation does not cancel as well as it did in the G4 case (4.14(f)).

Finally, for the R4 template in 4.16, only the DU2 distribution was able to produce a de-

cent match to the desired template (Fig. 4.11(b)). Like the with the G distribution for the S4G4

template, both the G and CU distributions optimized towards jagged basis functions and bizarre

correlation matrices. This appears to be an indicator the optimization had trouble achieving a good

template match. Considering the LFM like sidelobes of the R4 template it makes sense that the

DU2 correlation matrix in 4.16(f) has significant correlation throughout the entire matrix. This was
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necessary to achieve the expected autocorrelation in Fig. 4.12(b) and the corresponding spectrum

in 4.11(b).

4.4.3 Pulsed StoWGe Optimization Conclusions

Overall, the StoWGe model was capable of minimizing the EFTE cost function to realize various

desired expected power spectral densities. However, the choice of various underlying parameters

had a significant impact on how well the gradient descent optimization was able to do so and how

useful the StoWGe WGFs are for producing good radar waveforms.

In Section 4.4.1 it was shown that N should be kept larger than a few dozen. In Section 4.4.2,

it was shown that the DU2 distribution largely outperforms either the G or the CU distributions

for any of the templates considered here and for either of the basis function initializations. This in

itself is an interesting result. The tendency with diverse radar waveform design is that more degrees

of freedom results in better outcomes. Here, the G and CU distributions are far less restricted than

the DU2 distribution since they are continuous, but it would appear their freedom is not useful.

Rather, it is unwieldy. While the DU2 distribution can only take on two values the optimization

then only has to account for those two outcomes rather than a continuum of them.

Consider the G distribution. however unlikely its possible for any one of the random variable

to be extremely large and expand the spectrum of given waveform greatly. For the CU case or the

G case, the optimization has to consider what happens when several of the parameters happen to

be zero leading to a very small tight for that waveform. The DU2 distribution only has to consider

two outcomes per random variable and at least for the cases considered here, that appears to be

very advantageous.

4.5 Experimental Results

The goal of this Section is to verify the simulated results of Section 4.4.2 in both loop-back and

open-air testing. This will consist of selecting several cases from Section 4.4.2 which were deemed
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Figure 4.14: Correlation matrices and selected basis functions for each distribution and the G4
template. Correlation matrices are plotted in magnitude on a dB scale. (a) selected G basis func-
tions (b) G correlation matrix (c) selected CU basis functions (d) CU correlation matrix (e) selected
DU2 basis functions (f) DU2 correlation matrix
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Figure 4.15: Correlation matrices and selected basis functions for each distribution and the S4G4
template. Correlation matrices are plotted in magnitude on a dB scale. (a) selected G basis func-
tions (b) G correlation matrix (c) selected CU basis functions (d) CU correlation matrix (e) selected
DU2 basis functions (f) DU2 correlation matrix
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Figure 4.16: Correlation matrices and selected basis functions for each distribution and the R4
template. Correlation matrices are plotted in magnitude on a dB scale. (a) selected G basis func-
tions (b) G correlation matrix (c) selected CU basis functions (d) CU correlation matrix (e) selected
DU2 basis functions (f) DU2 correlation matrix
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to be useful. For the G distribution this means implementing the G2 and G4 template results only

since the G distribution was unable to achieve acceptable matches to the other spectral templates.

For the CU distribution this means implementing the G2, G4, S4G2, and S4G4 for the same rea-

sons. Finally, the all the DU2 cases will be implemented as it was able to acceptably match to

every template.

4.5.1 Loop-back Testing

4.5.2 Open-Air Testing

4.6 Conclusions
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Chapter 5

CW Stochastic Waveform Generation (CW-StoWGe)

As discussed in 2.3, CW modes maximize the BT for a given bandwidth. Since the sidelobe

performance of noise waveforms and specifically the FM noise waveforms considered in this work

is directly proportional to the BT it is logical to consider FM noise waveforms for a CW mode.

This chapter begins by introducing the CW-StoWGe model in Section 5.1 and then discusses

the EFTE cost function for CW-StoWGe in Section 5.2. In Section 5.3, the means to optimize

the CW-StoWGe power spectrum are discussed, Section 5.4 presents the optimization results, and

finally the CW-StoWGe waveforms will be shown to be robust to both loop-back and open-air

implementations experimentally in Section 5.5.

5.1 The CW-StoWGe Signal Model

For pulsed StoWGe, the basis matrix B and the mean phase value vector µµµ described the phase

of the entire signal and while the signal could be arbitrarily long, it was always finite. In a CW

mode however, the infinitely long signal would likewise require an infinitely large B and µµµ. For

this reason, to extend StoWGe to an infinitely length in time it is necessary to fundamentally alter

the structure such that there are only a finite number of parameters to optimize. To do so, consider

the CPM signal model defined as [57, 58, 90]

s(t;I) = exp

(
j2π

m

∑
k=−∞

Ikhkq(t− kTs)

)
, mT ≤ t ≤ (m+1)T (5.1)
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where I is an infinite length vector of information carrying symbols, Ts is the symbol time, hk is a

scalar known as the modulation index which can change with every symbol, and q(t) is the phase

response defined as

q(t) =
ˆ t

0
g(τ)dτ (5.2)

where g(t) is the frequency shaping filter or frequency pulse which is required to be time limited.

For communications, CPM has been found to be extremely useful for its constant amplitude nature

making it energy efficient and its spectral efficiency in terms of bits/hertz. CW-StoWGe likewise

takes advantage of CPM’s energy and spectral efficiency. From an optimization stand point, the

finite length frequency shaping filter makes this possible.

Consider (5.1), the phase is an infinite superposition of time shifted versions of a single basis

function while the pulsed StoWGe phase is a finite superposition of numerous basis functions. The

fact that the frequency pulse is time limited means it can be modeled by a finite set of parameters

which themselves can be optimized to achieve desired characteristics. Still, to put (5.1) completely

into the StoWGe framework it is necessary to modify it to a degree such that the CW-StoWGe

waveform model is

s(t;x) = exp

(
j

m

∑
k=−∞

Xkq(t− kTs)

)
, mT ≤ t ≤ (m+1)T (5.3)

where hk has been removed entirely and I has been replaced with x to emphasize the random vari-

ables no longer carry information and can take on any zero-mean distribution. For communications

purposes, the information symbols would almost certainly be distributed on a discrete uniform ba-

sis. Still, even with these changes the forms of (5.1) and (5.3) are very similar, but for (5.1) the

design paradigm calls for a good communications signal while for (5.3) the design goal is for good

radar waveforms that posses low autocorrelation sidelobes and good spectral containment. Chapter

6 will consider utilizing the CW-StoWGe optimization for communications purposes in addition

to radar.

In chapter 4, the StoWGe signal model was introduced in discrete terms to facilitate its design
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and optimization on a computer. Likewise here, the CW-StoWGe model can be discretized as

s[m ] = exp

(
j

(
k

∑
n=−∞

Xnq[m−nTs ]

))
kTs ≤ m < (k+1)Ts (5.4)

where q(t) becomes

q[m ] =
m

∑
k=0

g[k ]. (5.5)

In (5.4), Ts is now a positive integer such that a new random variable contributes to the signal phase

every Ts samples. The frequency pulse, g[k ], is defined to be non-zero for 0 ≤ n < LTs samples

where L is an integer. In CPM, L = 1 one corresponds to full-response CPM [57] while L > 1

corresponds to partial-response CPM [58]. For CPM, the value of L has a significant impact on

how easy or difficult it is to demodulate a signal, but it is useful for shaping the signal’s power

spectrum. For radar, L is a means to gain more design freedom with little down side other than the

computational complexity of optimizing more parameters. The structure of (5.4) is visualized in

Fig. 5.1.
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Figure 5.1: The CW-StoWGe phase structure at time m assuming is a multiple of nTs for Ts = 4
and L = 3.

As with pulsed StoWGe, to evaluate the usefulness of a given CW-StoWGe implementation

according to the metrics in Section 3.4 it is necessary to evaluate its second and fourth order

moments. The correlation between two samples of (5.4) can be expressed as the expectation of

the product between the two samples at times m1 and m2. For convenience, it is assumed m1 > m2
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such that the moment is

E [s[m1]s∗[m2] ] = E

[
exp

(
j

k1

∑
n1=k2+1

Xn1q[m1−n1Ts ]+ j
k2

∑
n2=m2−L+1

Xn2(q[m1−n2Ts ]−q[m2−n2Ts ])

)]
(5.6)

where the common components of the phase of s[m1 ] and s∗[m2 ] have been canceled. after a

significant amount of manipulation and accounting for that fact that the CW-StoWGe process is

cyclo-stationary, the correlation between samples of the CW-StoWGe process is

C[` ] =
Ts−1

∑
v=0

b `+v
Ts c+L−1

∏
n1=L

ΨXn1

(
v+`+(L−1−n1)Ts

∑
k=0

g[k ]

)
L−1

∏
n2=0

ΨXn2

(
v+`+(L−1−n2)Ts

∑
k=v+1+(L−1−n2)Ts

g[k ]

) . (5.7)

where b·c is the floor operation and ΨXn1
and ΨXn2

are the characteristic functions of the n1th

random variable and the n2th random variable respectively. The results of (5.7) can be organized

into a (2W −1)×1 correlation vector where W is arbitrary such that

c = [ C[−W +1] C[−W +2] · · · C[W −2] C[W −1] ]T (5.8)

which in turn can be used to create a toeplitz W ×W correlation matrix with C[0] centered on the

main diagonal such that

C =



C[0 ] C[−1 ] · · · C[−W +1 ]

C[1 ] C[0 ] · · · C[−W +2 ]
...

... . . . ...

C[W −1 ] C[W −2 ] · · · C[0 ]


. (5.9)
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5.2 The Expected Frequency Template Error (EFTE) for CW-StoWGe

On the surface, the EFTE for CW-StoWGe is very similar to that of the pulsed StoWGe case. In

fact, without a deeper look it is exactly the same aside from a subscript. It is defined as

JCW =

∣∣∣∣∣∣∣∣E[|sf|2
]
−u
∣∣∣∣∣∣∣∣2

2
. (5.10)

where JCW indicates the CW-StoWGe model. Consider the expected power spectrum of the pulsed

StoWGe model where a single sample is defined as

E
[∣∣sf,w

∣∣2]= awCaH
w (5.11)

where aw is the wth row of the DFT matrix A. For pulsed StoWGe, the expected power spectrum is

defined using the zero-padded version of its correlation matrix, C. This is to account for its pulsed

nature. Whereas for the CW case, the expected power spectrum is defined such that

E
[∣∣sf,w

∣∣2]= awCaH
w (5.12)

where there is no zero-padding on the correlation matrix C. Instead, it is by definition truncated

since the full matrix would be infinite in size. This implication was discussed in Section 3.3.2

where the autocorrelation and the PSD of a CW signal were discussed. In that section it was shown

that by estimating the autocorrelation or the PSD from a finite portion of a sample function, the

resulting estimates are biased even if the process is ergodic. For the autocorrelation estimate this

bias takes the form of a triangular window while the PSD is convolved with the Fourier transform

of the triangular window, a sinc squared function as shown in (3.52).

This affects the EFTE cost function in meaningful ways. For the pulsed case, the EFTE mea-

sures the error between a desired template and the true expected power spectrum of the process.

No bias is incurred since the sample functions of the process are inherently time limited. In the

CW case, the EFTE measures the error between a desired template and a biased version of the
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true expected power spectrum of the process. Consequently, minimizing the EFTE cost function

for CW-StoWGe minimizes the squared error between a desired template and the expected power

spectrum under the assumption the expected power spectrum is estimated via a DFT (periodogram)

with W points. As will be shown, the value of W has a meaningful impact on the apparent roll-off

and thus spectral containment of any CW-StoWGe generating function.

5.3 Optimization of the CW-StoWGe Expected Power Spectrum

Optimization of the CW-StoWGE expected power spectrum is very similar to that of the pulsed

power spectrum. Since the same cost function is used, albeit with a different waveform model,

many of the same conditions from the pulsed case apply. The cost function is still unconstrained,

non-linear, and non-convex. However, in this case the shaping filter, g, is optimized rather than

either the basis function matrix B or the mean phase value vector, µµµ. Since the cost function

is differentiable with respect to the shaping filter, gradient descent methods will once again be

utilized.

5.3.1 The CW-StoWGe EFTE Gradient

This section will briefly discuss the CW-StoWGe EFTE Gradient while a more detailed derivation

will be found in Appendix A.2.2. The challenge right now is determining the best way to write

out the indexing of (A.61). I was actually able to calculate this in MatLabTM to perform the

optimization since the indexing was just a matter selecting certain values from matrices.

5.3.2 Gradient Descent Implementation

In the final version this section will include similar information to 4.3.2 such as the gradient descent

variant used and stopping conditions.
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5.3.3 Initializations

As in the pulsed case, there are numerous parameters that must be considered in optimizing the

CW-StoWGe WGF. These parameters are listed in Table 5.1. In this case, the parameters Ts, L,

pX(x), and u must be initialized while the shaping filter function consists of the parameters to be

optimized. The next section discuss each parameter, their selected initialization(s) and the rational

Fixed Parameters

Ts Number of samples per waveform

L Number of random variables per waveform

pX(x) Random Variable Distribution Function

u The Desired expected spectrum

Optimizable Parameters g Shaping Filter Function

Table 5.1: Waveform generating process parameters which must be selected or initialized prior to
optimization

behind those selections.

Intervariable Spacing, Ts, and Partial Response, L: The intervariable spacing and the partial

response parameter are discussed together since their product, LTs, determines the length of g and

consequently the number of optimizable parameters. The intuition for the product LTs is that it

should be as large as possible since more degrees of freedom should result in more design freedom

resulting in a better spectral match. However, it remains to be seen that for a given product of Ts and

L is better to have more random variables tightly spaced in time but with but with long responses

(small Ts, large L)? Alternatively, is it better to have fewer, more space out random variables with

less overlap in time (large Ts, small L)? To examine these questions, various combinations of Ts

and L will be considered, including an experiment where their product is kept constant, but their

relative values are varied.

Random Variable Distribution Function pX(x): To maintain a consistent comparison to the

pulsed results, the same set of random variable distribution functions will be examined as for the

pulsed StoWGe model in Chapter 4.
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Desired Spectrum u: To maintain a consistent comparison to the pulsed results, the same set

of spectral templates will be examined as for the pulsed StoWGe model in Chapter 4.

Initial Frequency Shaping Filter g0: The choice of the initial shaping filter is somewhat

arbitrary, but it is reasonable to use shaping filters which are already common to use in CPM

implementations and variations thereof. With this in mind four initializations will considered.

They include a full rectangular function and a partial function which are defined as

g0 = gRECF = 1TsL×1 (5.13)

and

g0 = gPREC =
[
01×Tsb(L−1)/2c 11×Ts 01×T sd(L−1)/2e

]T (5.14)

respectively, where b·c and d·e are the floor and ceiling operators respectively. The second two are

based on the commonly used raised cosine shaping filter [90]. The full and partial initializations

are defined

g0 = gRCF = (1− cos(2π[1/2 3/2 · · · TsL−1/2]))/(TsL) (5.15)

and

g0 = gRCP =
[
01×Tsb(L−1)/2c (1− cos(2π[1/2 3/2 · · · Ts−1/2]))/Ts 01×T sd(L−1)/2e

]T
(5.16)

respectively where cos(·) operates on an element wise basis.

5.4 Optimization Results

This section will perform a similar analysis to 4.4 where the results of Tables B.7 - B.12 are

analyzed in detail
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5.5 Experimental Results

This section will analyze the implementation of selected WGFs from Tables B.7 - B.12. They

will be implemented in both loopback and open-air testing to evaluate their robustness to physical

effects and usefulness as CW radar waveforms.

5.5.1 Loopback Testing

5.5.2 Open-Air Testing

5.6 Conclusions
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Chapter 6

Conclusions & Future Work
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Appendix A

StowGe Derivations

This appendix derives the expected power spectrum as defined in (3.60) in terms of the pulsed

StoWGe waveform generating function of Chapter 4 and the CW StoWGe waveform generating

function of Chapter 5. In doing so, the most important aspect of the process in either case is the

calculation of the moments of the waveform generating process s. If these can be calculated, the

calculation of the expected power spectrum and the other metrics in Section 3.4 is straightforward

extension of the moment calculation.

This appendix also derives the gradients with respect to the waveform generating process basis

matrix B and the phase mean value vector µµµ for the pulsed StoWGe EFTE cost function. These

gradients are defined as

∇BJ =



∂J
∂b1,1

∂J
∂b1,2

· · · ∂J
∂b1,N

∂J
∂b2,1

∂J
∂b2,2

· · · ∂J
∂b2,N

...
... . . . ...

∂J
∂bM,1

∂J
∂bM,2

· · · ∂J
∂bM,N


(A.1)

and

∇µµµJ =



∂J
∂ µ1

∂J
∂ µ2
...

∂J
∂ µM


(A.2)

respectively.

For the CW StoWGe-implementation, the gradient is evaluated with respect to the frequency
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shaping filter vector g. This gradient is defined as

∇gJ =



∂J
∂g1

∂J
∂g2
...

∂J
∂gN


. (A.3)

A.1 Pulsed StoWGe

A.1.1 The Pulsed StoWGe Expected Spectrum

As in (4.2) and (4.3) The pulsed StoWGe waveform generating process is defined as

s = exp( jφφφ) (A.4)

where

φφφ= Bx+µµµ (A.5)

and B is a M×N matrix of basis functions, x is a N × 1 vector of random variables, and µµµ is

a vector of constant values which are the expected value of the samples of φφφ. From 3.70, the

expected spectrum can be written a function of the moments of s such that

E
[∣∣sf,w

∣∣2]= W

∑
m1=1

W

∑
m2=1

aw,m1a∗w,m2
E
[
sm1s∗m2

]
(A.6)

For pulsed StoWGe, the correlation between samples is

E
[
sm1s∗m2

]
= E [exp( j((bm1−bm2)x+µm1−µm2))] (A.7)
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such that the correlation is a function of the characteristic functions of the random variables in the

vector x as

E
[
sm1s∗m2

]
= exp( j(µm1−µm2))

N

∏
n=1

ψXn(bm1,n−bm2,n). (A.8)

Putting (A.6) and (A.8) together, a single sample of the expected spectrum of the pulsed StoWGe

waveform generating function is

E
[∣∣sf,w

∣∣2]= M

∑
m1=1

M

∑
m2=1

aw,m1a∗w,m2
exp( j(µm1−µm2))

N

∏
n=1

ψXn(bm1,n−bm2,n) (A.9)

In terms of the pulsed StoWGe second moment matrix this becomes

E
[∣∣sf,w

∣∣2]= awCaH
w (A.10)

where aw is the wth row of the W ×W DFT matrix A.

A.1.2 The Pulsed StoWGe EFTE Gradient

A.1.2.1 Basis Function Matrix Gradient

To calculate the gradient of the EFTE cost function, defined as

J =

∣∣∣∣∣∣∣∣E[|sf|2
]
−u
∣∣∣∣∣∣∣∣2

2
, (A.11)

with respect to basis matrix B, begin by evaluating the derivative of the cost function with respect

to a single element of B such that

∂J
∂bk,n

=
∂

∂bk,n

∣∣∣∣∣∣∣∣E[|sf|2
]
−u
∣∣∣∣∣∣∣∣2

2
(A.12)
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where bk,n is the element of B in the kth row and the nth column. According to the chain rule,

(A.12) becomes

∂J
∂bk,n

= 2

∂E
[
|sf|2

]
∂bk,n

T (
E
[
|sf|2

]
−u
)

(A.13)

where the derivative is applied to E
[
|sf|2

]
element wise. For the wth sample of the expected

spectrum, the derivative is

∂E[|sf,w|2]
∂bk,n

=
M

∑
m1=1

M

∑
m2=1

aw,m1a∗w,m2
exp( j(µm1−µm2))

∂

∂bk,n

(
P

∏
p=1

ψXp(bm1,p−bm2,p)

)
. (A.14)

The only possibly non-zero terms of the derivative in (A.14) occur when exclusively either m1 or

m2 are equal to k. Therefore, (A.14) can be rewritten as

∂E[|sf,w|2]
∂bk,n

= aw,k exp( jµk)
M

∑
m2=1
m2 6=k

a∗w,m2
exp(− jµm2)

∂

∂bk,n

(
P

∏
p=1

ΨXp(bk,p−bm2,p)

)

+a∗w,k exp(− jµk)
M

∑
m1=1
m1 6=k

aw,m1 exp( jµm1)
∂

∂bk,n

(
P

∏
p=1

ΨXp(bm1,p−bk,p)

) (A.15)

The two summations are complex conjugates of each other such that

∂E[|sf,w|2]
∂bk,n

= 2ℜ

aw,k exp( jµk)
M

∑
m=1
m6=k

a∗w,m exp(− jµm)
∂

∂bk,n

(
P

∏
p=1

ΨXp(bk,p−bm,p)

) (A.16)

where the subscript of the iterator m has been dropped since it is no longer necessary. Finally, there

is exactly one term in the product where bn,k appears resulting in

∂E[|sf,w|2]
∂bk,n

= 2ℜ


M

∑
m=1
m6=k

aw,ma∗w,k exp( j(µm−µk))
∂ΨXp(bm,n−bk,n)

∂bk,n

N

∏
p=1
p6=n

ΨXp(bm,p−bk,p)


(A.17)

From (A.17) and (A.13), the entire structure of ∇BJ can be calculated.
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A.1.2.2 Mean Phase Value Vector Gradient

According to the chain rule, the derivative of the EFTE cost function with respect to a single

element of the mean value vector µµµ is

∂J
∂ µk

= 2
(

∂E[|sf|2]
∂ µk,n

)T (
E[|sf|2]−u

)
(A.18)

where µk is the kth element of µµµ. The derivative of E
[
|sf|2

]
can be evaluated in an element wise

manner such that

∂E[|sf,w|2]
∂ µk

=
M

∑
m1=1

M

∑
m2=1

aw,m1a∗w,m2

∂

∂ µk
exp( j(µm1−µm2))

P

∏
p=1

ψXp(bm1,p−bm2,p). (A.19)

The non-zero terms of (A.19) occur when k = m1 or k = m2 but not both. Taking this into account,

one of the sums can be removed yielding

∂E[|sf,w|2]
∂ µk

= jaw,k exp( jµk)
M

∑
m2=1
m2 6=k

a∗w,m2
exp(− jµm2)

P

∏
p=1

ΨXp(bk,p−bm2,p)

− ja∗w,k exp(− jµk)
M

∑
m1=1
m1 6=k

aw,m1 exp( jµm1)
P

∏
p=1

ΨXp(bm1,p−bk,p)

(A.20)

Since this is a difference of conjugates, (A.20) can be written as the imaginary part of either term

such that

∂E[|sf,w|2]
∂ µk

= 2ℑ

a∗w,k exp(− jµk)
M

∑
m=1
m6=k

aw,m exp( jµm)
P

∏
p=1

ΨXp(bk,p−bm,p)

 (A.21)

where ℑ extracts the imaginary part. From (A.21) and (A.18) the gradient defined by (A.2) can be

calculated.
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A.1.3 The Pulsed StoWGE EFTE Gradient for Selected Distributions

Evaluating the gradient with respect to specific distributions is a matter of evaluating the character-

istic function for the distribution, its derivative with respect to the relevant parameter, and inserting

these results into the generalized gradients which is (A.17) and A.21 in this case.

A.1.3.1 Discrete uniform distribution with two states (DU2)

Multiplying a DU2 RV by bm,n− bk,n shifts the position of the deltas in its PDF such that for the

distribution used here

DU2: pX(x) =
1
2

δ
(
x+π(bm,n−bk,n)

)
+

1
2

δ
(
x−π(bm,n−bk,n)

)
(A.22)

The characteristic function is then

DU2: ΨX(bm,n−bk,n) = cos(π(bm,n−bk,n)) (A.23)

and its derivative with respect to bk,n is

DU2:
∂ΨX(bm,n−bk,n)

∂bk,n
= π sin(π(bm,n−bk,n)) (A.24)

Inserting A.23 and A.24 into A.17 realizes

∂E[|sf,w|2]
∂bk,n

= 2ℜ


M

∑
m=1
m6=k

aw,ma∗w,k exp( j(µm−µk))π sin(π(bm,n−bk,n))
N

∏
p=1
p6=n

cos(π(bm,n−bk,n))


(A.25)

Inserting (A.28) into (A.21) yields

∂E[|sf,w|2]
∂ µk

= 2ℑ

a∗w,k exp(− jµk)
M

∑
m=1
m6=k

aw,m exp( jµm)
P

∏
p=1

cos(π(bm,n−bk,n))

 (A.26)
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A.1.3.2 Continuous uniform distribution (CU)

Multiplying a continuous uniform RV with a scaler stretches the distribution. For the U [−π,π]

distribution used here, this realizes

CU: pX(x) =
1

2π(bm,n−bk,n)

 1 −π(bm,n−bk,n)≤ x≤ π(bm,n−bk,n)

0 otherwise
(A.27)

The characteristic function is then

CU: ΨX(bm,n−bk,n) =
sin(π(bm,n−bk,n))

π(bm,n−bk,n)
(A.28)

The derivative of A.33 with respect to bk,n is then

CU:
∂ΨX(bm,n−bk,n)

∂bk,n
=
−π2(bm,n−bk,n)cos(π(bm,n−bk,n))+π sin(π(bm,n−bk,n))

π2(bm,n−bk,n)2 (A.29)

Inserting A.28 and A.29 into A.17 realizes

∂E[|sf,w|2]
∂bk,n

= 2ℜ

{
∑

M
m=1
m6=k

aw,ma∗w,k exp( j(µm−µk))×(
sin(π(bm,n−bk,n))

π(bm,n−bk,n)2 −
cos(π(bm,n−bk,n))

bm,n−bk,n

)
∏

N
p=1
p6=n

sin(π(bm,n−bk,n))

π(bm,n−bk,n)

} (A.30)

where the derivative has been rearranged to make it more concise. Inserting (A.28) into (A.21)

yields

∂E[|sf,w|2]
∂ µk

= 2ℑ

a∗w,k exp(− jµk)
M

∑
m=1
m6=k

aw,m exp( jµm)
P

∏
p=1

sin(π(bm,n−bk,n))

π(bm,n−bk,n)

 (A.31)
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A.1.3.3 Gaussian distribution (G)

The zero mean Gaussian distribution with variance (bm,n−bk,n)
2 is defined

G: pX(x) =
1

(bm,n−bk,n)
√

2π
e
− 1

2

(
x

bm,n−bk,n

)2

(A.32)

The characteristic function is realized by taking the Fourier transform of (A.32) yielding

G: ΨX(bm,n−bk,n) = e−
1
2 (bm,n−bk,n)

2x2
(A.33)

The derivative of A.33 with respect to bk,n is then

G:
∂ΨX(bm,n−bk,n)

∂bk,n
= (bm,n−bk,n)e−

1
2 (bm,n−bk,n)

2x2
(A.34)

Inserting A.33 and A.34 into A.17 yields

∂E[|sf,w|2]
∂bk,n

= 2ℜ


M

∑
m=1
m6=k

aw,ma∗w,k exp( j(µm−µk))(bm,n−bk,n)
N

∏
p=1

exp
(
−1/2(bm,n−bk,n)

2x2)


(A.35)

where the p 6= n has been removed from the product operator since it subsumed the exponential

component of the derivative term. The derivative with respect to mean value vector becomes

∂E[|sf,w|2]
∂ µk

= 2ℑ

a∗w,k exp(− jµk)
M

∑
m=1
m6=k

aw,m exp( jµm)
P

∏
p=1

exp
(
−1/2(bm,n−bk,n)

2x2)
 (A.36)
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A.2 CW-StoWGe

A.2.1 The CW-StoWGe Expected Spectrum

The discrete CW StoWGe waveform generating process is defined as

s[m ] = exp

(
j

(
k

∑
n=−∞

Xkq[m−nTs]

))
kTs ≤ m < (k+1)Ts (A.37)

where positive integer Ts is the inter-variable spacing such that a new Xk contributes to the phase

content of (A.37) every Ts samples. The phase function q[m] is the cumulative sum of the frequency

shaping filter or frequency pulse defined as

q[m ] =
m

∑
k=0

g[k ]. (A.38)

and the frequency shaping filter is time limited such that

g[m] =

 g[m] n = 0,1, · · · ,LTs

0 otherwise
(A.39)

where positive integer L is the response length of the frequency shaping filter such that each random

variable contributes to the frequency content of (A.37) for LTs samples. The non-zero elements of

g[k] can be collected into the (LTs)× 1 vector g. To begin evaluating the expected spectrum, the

product of different samples of (A.37) is

s[m1]s∗[m2] = exp

(
j

(
k1

∑
n1=−∞

Xn1q[m1−n1Ts]−
k2

∑
n2=−∞

Xn2q[m2−n2Ts]

))
(A.40)
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then by assuming m1 > m2, the common components of the infinite sums can be canceled such that

s[m1]s∗[m2] = exp

(
j

(
k1

∑
n1=k2+1

Xk1q[m1−n1Ts]

)

+ j

(
k2

∑
n2=k2−L+1

Xn2 (q[m1−n2Ts]−q[m2−n2Ts])

))
.

(A.41)

Since these sums are the argument of a complex exponential, (A.41) can be written as a product of

complex exponentials yielding

s[m1]s∗[m2] =
k1

∏
n1=v2+1

exp
(

jXn1q[m1−n1Ts]
)
×

k2

∏
n2=k2−L+1

exp
(

jXn2(q[m1−n2Ts]−q[m2−n2Ts])
) (A.42)

The correlation between these two samples is the expectation between them such that

E
[
s[m1]s∗[m2]

]
= E

[
k1

∏
n1=v2+1

exp
(

jXn1q[m1−n1Ts]
)
×

k2

∏
n2=k2−L+1

exp
(

jXn2(q[m1−n2Ts]−q[m2−n2Ts])
)] (A.43)

Since each random variable is independent, the expectation of the products can be written as the

product of the expectations such that

E
[
s[m1]s∗[m2]

]
=

k1

∏
n1=v2+1

E
[

exp
(

jXn1q[m1−n1Ts]
)]
×

k2

∏
n2=k2−L+1

E
[

exp
(

jXn2(q[m1−n2Ts]−q[m2−n2Ts])
)] (A.44)

In this form, the terms in the products are exactly the characteristic functions of their respective

random variables where

ω = q[m1− k1Ts] (A.45)
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or

ω = q[m1− k1Ts]−q[m2− k2Ts] (A.46)

given the characteristic function is defined

ΨX(ω) = E[exp( jωX)] (A.47)

as was discussed in Section 3.1.2. Consequently, (A.44) can be rewritten in terms of characteristic

functions such that

E
[
s[m1]s∗[m2]

]
=

k1

∏
n1=k2+1

ΨXn1

(
q[m1−n1Ts]

)
×

k2

∏
n2=k2−L+1

ΨXn2

(
q[m1−n2Ts]−q[m2−n2Ts]

) (A.48)

Unfortunately, the form of (A.48) is problematic in that it is not stationary. Consider the times

(A.48), but increment each time index by 1 to realize

E
[
s[m1 +1]s∗[m2 +1]

]
=

k1

∏
n1=k2+1

ΨXn1

(
q[m1−n1Ts +1]

)
×

k2

∏
n2=k2−L+1

ΨXn2

(
q[m1−n2Ts +1]−q[m2−n2Ts +1]

) (A.49)

Since there is no guarantee that the incremented q[m+1 ] equals q[m ] (otherwise it would be con-

stant), equations (A.48) and (A.49) are not equal indicating the CW-StoWGe waveform generating

process is not stationary. From the discussion in Section 3.3.1 this means the expected autocor-

relation will differ depending on the reference time and consequently so will the expected power

spectrum. However, CW-StoWGe is cyclo-stationary in that the autocorrelation is independent of

certain time shifts. In the case of (A.48), incrementing the time indeces by multiples of Ts results

in commensurate changes of the values of k1 and k2 such that

E
[
s[m1]s∗[m2]

]
= E

[
s[m1 +nTs]s∗[m2 +nTs]

]
(A.50)
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where n is an integer. Averaging over the interval Ts realizes a stationary correlation function

defined as

C[` ] = E
[
s[m+ `]s∗[m]

]
=

Ts−1

∑
v=0

[
k1

∏
n1=k2+v

ΨXn1

(
q[m+ v+ `−n1Ts]

)
×

k2

∏
n2=k2−L+1

ΨXn2

(
q[m+ v+ `−n2Ts]−q[m+ v−n2Ts]

)] (A.51)

where ` is a positive integer. However since the autocorrelation is conjugate symmetric C[` ] =

C∗[−` ]. Averaging a cyclo-stationary process in this way is a common way to evaluate the ex-

pected spectrum and autocorrelation for CW signals. [90].

For convenience, m can be set to 0 such that a values for k1 and k2 are also set in terms of ` and

v. Given the definition given by (A.37), k1 and k2 become

k1 =
⌊`+ v

Ts

⌋
+L−1 (A.52)

and

k2 = L−1 (A.53)

respectively, such that (A.51) becomes

C[` ] =
Ts−1

∑
v=0

b `+v
Ts c+L−1

∏
n1=L

ΨXn1

(
q[v+ `−n1Ts]

)
×

L−1

∏
n2=0

ΨXn2

(
q[v+ `−n2Ts]−q[v−n2Ts]

)]
.

(A.54)

(A.54) is written in terms of the phase function q[m ] but the optimization performed in Chapter 5

is performed on the frequency shaping filter. q[m ] can be replace by g[m ] by leveraging (A.39).
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However, the indexing becomes onerous. Nevertheless, in terms of g[m ], (A.54) becomes

C[` ] =
Ts−1

∑
v=0

b `+v
Ts c+L−1

∏
n1=L

ΨXn1

(
v+`+(L−1−n1)Ts

∑
k=0

g[k ]

)
L−1

∏
n2=0

ΨXn2

(
v+`+(L−1−n2)Ts

∑
k=v+1+(L−1−n2)Ts

g[k ]

) . (A.55)

where the upper bounds of the sums can include some of the zero valued portions of g[m ], but this

is allowable since they will not effect the value of C[` ]. According to the discussion in section

3.4.3, the expected spectrum can be calculated as a function of the correlation matrix. With (A.55)

an arbitrarily large (W ×W ) correlation matrix can be created as a toeplitz construction of all lags

for [ C−W+1 C−W+2 · · · CW−2 CW−1 ]
T by placing the lag `= 0 along the main diagonal. The

wth term in W length expected power spectrum is then calculated as

E
[∣∣sf,w

∣∣2]= awCaH
w . (A.56)

The key distinction between the expected power spectrum here and the pulsed StoWGe case is

the evaluation of C and the lack of zero-padding. Zero-padding implies a pulsed signal which is

clearly not applicable in the CW case.

A.2.2 The CW-StoWGe EFTE Gradient

The calculation of the CW-StoWGe EFTE gradient begins identically to the Pulsed StoWGe gradi-

ent except the derivative is taken with respect to the frequency shaping filter instead a basis function

matrix. The EFTE cost function is defined as

JCW =

∣∣∣∣∣∣∣∣E[|sf|2
]
−u
∣∣∣∣∣∣∣∣2

2
. (A.57)

The derivative with respect to the yth element of g[m ] is then

∂JCW

∂gy
=

∂

∂gy

∣∣∣∣∣∣∣∣E[|sf|2
]
−u
∣∣∣∣∣∣∣∣2

2
. (A.58)
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According to the chain rule, (A.58) becomes

∂JCW

∂gy
= 2

∂E
[
|sf|2

]
∂gy

T (
E
[
|sf|2

]
−u
)

(A.59)

where the derivative is applied to E
[
|sf|2

]
element wise. For the wth sample of the expected power

spectrum, the derivative is

E
[∣∣sf,w

∣∣2]= aw
∂C
∂gy

aH
w (A.60)

where the partial derivative is evaluated with respect to each element of C. Since C is toeplitz,

there are only W unique derivatives to evaluate corresponding to [ C0 C1 · · · CW−1 ]T . The

derivative of the correlation function at lag ` is

∂C[` ]

∂gy
=

∂

∂gy

Ts−1

∑
v=0

b `+v
Ts c+L−1

∏
n1=L

ΨXn1

(
v+`+(L−1−n1)Ts

∑
k=0

g[k ]

)
L−1

∏
n2=0

ΨXn2

(
v+`+(L−1−n2)Ts

∑
k=v+1+(L−1−n2)Ts

g[k ]

) (A.61)

In a mathematical sense, applying the partial derivative in (A.61) is straightforward in that it just

requires repeated application of the product rule. The difficultly lies in proper indexing.

A.2.3 The CW-StoWGe EFTE Gradient for Selected Distributions

This section will evaluate the CW-StoWGe EFTE Gradient for the DU2, CU, and G distributions.
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Appendix B

Tabulated Optimization Results

B.1 Pulsed StoWGe

Gaussian (K = 2)
PX(x) : DU2 CU Gaussian

B0 : BPC BId BPC BId BPC BId

#
of

R
an

do
m

V
ar

ia
bl

es
(N

) 2 -154.1 -154.1 -153.9 -57.4 -73.9 -59.0

4 -154.1 -154.1 -152.4 -129.4 -74.2 -74.2

8 -154.1 -149.1 -129.5 -143.4 -74.2 -74.2

16 -154.1 -153.6 -121.0 -153.8 -74.2 -74.2

32 -154.1 -154.0 * -114.3 -154.0 -74.2 -74.2

64 -142.8 -117.0 -107.6 -153.3 -70.5 -62.6

128 -154.1 -116.7 -100.8 -153.8 -74.1 -74.0

256 -154.1 -117.1 -97.7 -153.3 -74.1 -73.5

Table B.1: Pulsed StoWGe EFTE optimized cost function values for various combinations of
parameters and initializations for a desired Gaussian spectrum which is oversampled by a factor of
2 with respect to its 3 dB bandwidth (K = 2)

B.2 CW-StoWGe

B.3 StoWGe Comms
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Gaussian (K = 4)
PX(x) : DU2 CU Gaussian

B0 : BPC BId BPC BId BPC BId
#

of
R

an
do

m
V

ar
ia

bl
es

(N
) 2 -135.6 -179.2 -64.5 -41.4 -56.0 -48.6

4 -173.9 -169.7 -102.8 -55.7 -71.2 -60.2

8 -158.6 -156.0 -115.5 -56.8 -76.4 -68.5

16 -163.1 -139.5 * -112.9 -60.0 -88.2 -65.7

32 -138.0 000 -115.1 -59.2 -88.1 -60.1

64 -170.6 -130.0 -114.6 -57.2 -88.2 -54.3

128 -200.0 -129.8 -113.2 -84.4 -84.6 -50.9

256 -188.2 -129.4 -110.6 -90.9 -88.5 -88.0

Table B.2: Pulsed StoWGe EFTE optimized cost function values for various combinations of
parameters and initializations for a desired Gaussian spectrum which is oversampled by a factor of
4 with respect to its 3 dB bandwidth (K = 4)

Super-Gaussian (n = 4,K = 2)
PX(x) : DU2 CU Gaussian

B0 : BPC BId BPC BId BPC BId

#
of

R
an

do
m

V
ar

ia
bl

es
(N

) 2 -200.1 -148.0 -61.5 -42.9 -45.7 -43.4

4 -200.0 -182.1 -84.2 -46.2 -45.9 -45.9

8 -151.9 -150.0 -90.7 -50.9 -45.9 -45.9

16 -155.9 -137.0 -93.2 -52.1 -45.9 -45.7

32 -157.3 -132.4 -89.6 -58.3 -45.4 -45.3

64 -153.2 -129.9 -87.2 -57.0 -46.2 -44.1

128 -154.7 -129.8 -84.9 -56.2 -46.2 -45.6

256 -142.9 -129.0 -59.3 -59.5 -46.2 -45.5

Table B.3: Pulsed StoWGe EFTE optimized cost function values for various combinations of
parameters and initializations for a desired Super-Gaussian spectrum with a roll-off factor of 4
(n = 4) and is oversampled by a factor of 2 with respect to its 3 dB bandwidth (K = 2)
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Super-Gaussian (n = 4,K = 4)
PX(x) : DU2 CU Gaussian

B0 : BPC BId BPC BId BPC BId
#

of
R

an
do

m
V

ar
ia

bl
es

(N
) 2 -86.1 -85.9 -58.2 -39.8 -41.5 -39.8

4 -88.1 -88.4 -73.0 -50.1 -41.8 -41.7

8 -88.4 -88.4 -78.3 -52.1 -41.8 -41.8

16 -88.1 000 -77.6 -50.7 -42.0 -41.7

32 -88.1 -88.3 -73.1 -47.1 -42.0 -41.4

64 -88.8 -88.1 -76.2 -28.2 -42.0 -40.8

128 -88.8 -79.0 -54.5 -49.3 -42.0 -40.8

256 -76.3 -88.6 -61.4 -59.1 -42.0 -42.0

Table B.4: Pulsed StoWGe EFTE optimized cost function values for various combinations of
parameters and initializations for a desired Super-Gaussian spectrum with a roll-off factor of 4
(n = 4) and is oversampled by a factor of 4 with respect to its 3 dB bandwidth (K = 4)

Rectangular (K = 2)
PX(x) : DU2 CU Gaussian

B0 : BPC BId BPC BId BPC BId

#
of

R
an

do
m

V
ar

ia
bl

es
(N

) 2 -56.9 -56.8 -42.4 -38.5 -37.2 -36.8

4 -57.0 -57.0 -43.1 -35.3 -37.2 -37.1

8 -57.1 -57.0 -43.4 -33.0 -37.3 -37.1

16 -57.0 -57.1 -43.3 -34.4 -37.2 -37.3

32 -56.9 -56.7 -42.9 -37.5 -37.1 -37.1

64 -57.0 -57.0 -42.8 -42.4 -36.9 -36.9

128 -57.1 -56.7 -40.5 -42.5 -36.8 -36.8

256 -57.0 -54.4 -39.5 -41.7 -36.8 -36.7

Table B.5: Pulsed StoWGe EFTE optimized cost function values for various combinations of
parameters and initializations for a desired rectangular spectrum is oversampled by a factor of 2
with respect to its absolute bandwidth (K = 2)
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Rectangular (K = 4)
PX(x) : DU2 CU Gaussian

B0 : BPCFM BId BPCFM BId BPCFM BId

#
of

R
an

do
m

V
ar

ia
bl

es
(N

) 2 -51.0 -51.0 -38.8 -33.3 -33.9 -33.6

4 -51.1 -51.1 -40.0 -31.5 -33.9 -33.9

8 -51.0 -51.1 -40.0 -31.6 -34.0 -33.9

16 -51.0 -51.0 -39.8 -33.3 -34.0 -33.9

32 -50.9 -51.1 -39.6 -38.9 -33.8 -33.7

64 -51.1 -50.4 -38.1 -39.4 -33.7 -33.6

128 -51.0 -49.2 -36.5 -38.7 -33.8 -33.5

256 -48.1 -49.7 -37.2 -39.3 -33.7 -33.6

Table B.6: Pulsed StoWGe EFTE optimized cost function values for various combinations of
parameters and initializations for a desired rectangular spectrum is oversampled by a factor of 4
with respect to its absolute bandwidth (K = 4)

135
151 

Approved for public release; distribution is unlimited



Gaussian (K = 2)
PX(x): DU2 CU G

g0 L Ts: 2 4 8 2 4 8 2 4 8

R
E

C
F

1 -45.3 -42.5 -47.9 -53.5 -54.0 -76.7 -54.8 -59.0 -62.4

2 -48.9 -83.0 -71.4 -68.1 -75.2 -84.1 -61.6 -64.2 -65.9

4 -89.2 -88.9 -98.1 -78.6 -82.1 -87.1 -64.9 -66.3 -67.1

8 -89.4 -99.5 -104.3 -79.0 -82.5 -87.4 -66.4 -67.2 -67.6

R
E

C
P

1 -45.3 -42.5 -47.9 -53.5 -54.0 -76.7 -54.8 -59.0 -62.4

2 -85.6 -63.7 -54.0 -74.0 -85.2 -91.6 -61.3 -64.2 -66.0

4 -81.4 -89.4 -95.6 -79.0 -83.5 -87.9 -65.1 -66.4 -67.2

8 -89.2 -99.5 -102.0 -79.0 -82.6 -87.2 -66.3 -67.2 -67.6

R
C

F

1 -45.3 -42.5 -47.9 -53.5 -54.0 -76.7 -54.8 -57.9 -61.8

2 -48.9 -83.1 -71.4 -68.1 -75.3 -90.4 -62.7 -64.8 -66.1

4 -89.2 -88.9 -98.1 -78.6 -82.1 -87.1 -65.4 -66.5 -67.2

8 -89.4 -99.5 -104.3 -79.0 -82.5 -87.4 -66.7 -67.3 -67.6

R
C

P

1 -45.3 -42.5 -47.9 -53.5 -54.0 -76.7 -54.8 -57.9 -61.8

2 -85.6 -63.7 -54.0 -74.0 -83.7 -89.6 -61.3 -63.4 -65.6

4 -81.4 -89.4 -95.6 -79.0 -85.6 -92.3 -65.1 -65.9 -67.0

8 -89.2 -99.5 -102.0 -79.0 -86.3 -92.7 -66.3 -67.0 -67.5

Table B.7: CW-StoWGe EFTE optimized cost function values for various combinations of param-
eters and initializations for a desired Gaussian spectrum which is oversampled by a factor of 2 with
respect to its 3 dB bandwidth (K = 2)

136
152 

Approved for public release; distribution is unlimited



Gaussian (K = 4)
PX(x): DU2 CU G

g0 L Ts: 2 4 8 2 4 8 2 4 8

R
E

C
F

1 -57.1 -49.6 -52.3 -54.1 -53.2 -54.1 -50.3 -56.3 -61.3

2 -76.5 -73.5 -60.9 -85.3 -69.7 -70.7 -58.3 -64.8 -70.3

4 -77.5 -88.6 -116.2 -79.0 -84.7 -99.1 -65.8 -71.8 -77.5

8 -105.5 -108.0 -113.7 -95.9 -97.7 -115.8 -72.3 -78.2 -84.0

R
E

C
P

1 -57.1 -50.0 -52.4 -54.1 -86.9 -54.1 -50.3 -56.3 -61.3

2 -96.2 -73.5 -60.2 -85.1 -69.7 -75.9 -57.2 -64.4 -70.2

4 -79.7 -126.8 -98.1 -87.0 -92.9 -104.2 -64.7 -72.4 -78.2

8 -80.1 -112.2 -116.0 -86.9 -98.3 -113.8 -67.6 -77.2 -84.0

R
C

F

1 -57.1 -49.6 -52.3 -54.1 -53.2 -54.1 -50.3 -56.4 -59.9

2 -76.5 -55.3 -79.0 -85.3 -69.7 -70.7 -58.3 -66.6 -71.7

4 -80.0 -108.5 -117.4 -87.0 -84.7 -101.9 -67.7 -73.4 -78.4

8 -102.4 -112.2 -112.5 -94.4 -98.4 -107.7 -74.5 -79.4 -84.6

R
C

P

1 -57.1 -49.6 -52.4 -54.1 -53.2 -54.1 -50.3 -56.4 -59.9

2 -96.2 -73.5 -52.4 -85.1 -69.7 -80.0 -57.2 -64.0 -68.6

4 -79.7 -118.9 -113.0 -87.0 -95.6 -108.1 -64.7 -71.0 -75.9

8 -80.1 -111.9 -112.3 -86.9 -94.7 -113.5 -67.6 -74.9 -81.8

Table B.8: CW-StoWGe EFTE optimized cost function values for various combinations of param-
eters and initializations for a desired Gaussian spectrum which is oversampled by a factor of 4 with
respect to its 3 dB bandwidth (K = 4)
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Super-Gaussian (n = 4,K = 2)
PX(x): DU2 CU G

g0 L Ts: 2 4 8 2 4 8 2 4 8

R
E

C
F

1 -53.1 -41.3 -46.1 -54.1 -59.8 -62.5 -46.8 -48.4 -49.4

2 -54.7 -70.8 -67.0 -59.9 -74.6 -75.9 -49.1 -49.8 -50.2

4 -64.0 -90.2 -111.8 -61.0 -80.4 -93.1 -50.0 -50.3 -50.5

8 -75.5 -79.2 -114.5 -61.0 -82.7 -94.3 -50.3 -50.5 -50.6

R
E

C
P

1 -53.1 -41.3 -46.1 -54.1 -59.8 -62.5 -46.8 -48.4 -49.4

2 -67.4 -61.3 -75.2 -64.4 -76.9 -80.5 -49.0 -49.8 -50.2

4 -66.9 -105.8 -111.0 -64.5 -81.9 -93.0 -50.0 -50.3 -50.5

8 -80.5 -115.2 -112.4 -64.5 -82.7 -94.3 -50.3 -50.5 -50.6

R
C

F

1 -53.1 -41.3 -46.1 -54.1 -59.8 -62.5 -46.8 -48.1 -49.2

2 -54.7 -57.3 -57.6 -59.9 -74.6 -75.9 -49.4 -50.0 -50.3

4 -89.1 -81.6 -113.7 -61.0 -80.4 -93.1 -50.1 -50.4 -50.5

8 -79.7 -109.0 -111.4 -61.0 -82.7 -94.3 -50.4 -50.5 -50.6

R
C

P

1 -53.1 -41.3 -46.1 -54.1 -59.8 -62.5 -46.8 -50.3 -49.2

2 -67.4 -61.3 -60.2 -64.4 -76.9 -80.5 -49.0 -49.7 -50.2

4 -66.9 -106.3 -115.4 -64.5 -81.9 -93.0 -50.0 -50.2 -50.5

8 -80.5 -109.7 -116.3 -64.5 -82.7 -94.3 -50.3 -50.4 -50.6

Table B.9: CW-StoWGe EFTE optimized cost function values for various combinations of param-
eters and initializations for a desired Super-Gaussian spectrum with a roll-off factor of 4 (n = 4)
and is oversampled by a factor of 2 with respect to its 3 dB bandwidth (K = 2)
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Super-Gaussian (n = 4,K = 4)
PX(x): DU2 CU G

g0 L Ts: 2 4 8 2 4 8 2 4 8

R
E

C
F

1 -44.1 -58.6 -48.8 -43.6 -55.8 -58.6 -42.8 -45.1 -46.1

2 -49.9 -60.1 -61.1 -47.7 -59.0 -72.7 -45.3 -46.7 -47.2

4 -50.8 -59.4 -86.8 -48.5 -59.8 -77.9 -46.8 -47.3 -47.5

8 -50.8 -74.3 -76.8 -48.5 -59.8 -80.4 -47.3 -47.6 -47.7

R
E

C
P

1 -44.1 -58.6 -48.8 -43.6 -55.8 -58.6 -42.8 -45.1 -46.1

2 -49.9 -60.3 -57.3 -47.7 -59.5 -72.7 -45.0 -46.7 -47.2

4 -50.8 -64.9 -65.6 -48.5 -59.8 -78.7 -46.5 -47.3 -47.6

8 -50.8 -71.1 -85.0 -48.5 -59.8 -80.4 -46.9 -47.5 -47.7

R
C

F

1 -44.1 -58.6 -48.8 -43.6 -55.8 -58.6 -42.8 -45.2 -45.9

2 -49.9 -60.1 -56.0 -47.7 -59.0 -72.7 -45.2 -46.8 -47.3

4 -50.8 -60.3 -75.1 -48.5 -59.8 -77.9 -46.9 -47.4 -47.6

8 -50.8 -71.4 -82.8 -48.5 -59.8 -80.4 -47.4 -47.6 -47.7

R
C

P

1 -44.1 -58.6 -48.8 -43.6 -55.8 -58.6 -42.8 -45.2 -45.9

2 -49.9 -60.3 -57.3 -47.7 -59.5 -72.7 -45.0 -46.7 -47.1

4 -50.8 -64.9 -74.9 -48.5 -59.8 -78.7 -46.5 -47.3 -47.5

8 -50.8 -71.1 -69.9 -48.5 -59.8 -80.4 -46.9 -47.5 -47.6

Table B.10: CW-StoWGe EFTE optimized cost function values for various combinations of pa-
rameters and initializations for a desired Super-Gaussian spectrum with a roll-off factor of 4 (n= 4)
and is oversampled by a factor of 4 with respect to its 3 dB bandwidth (K = 4)
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Rectangular (K = 2)
PX(x): DU2 CU G

g0 L Ts: 2 4 8 2 4 8 2 4 8

R
E

C
F

1 -47.5 -38.3 -42.5 -43.9 -45.7 -47.9 -41.3 -41.9 -42.2

2 -50.7 -48.5 -48.0 -44.4 -46.4 -48.4 -42.1 -42.3 -42.4

4 -52.3 -54.4 -52.7 -44.6 -46.4 -48.4 -42.4 -42.4 -42.5

8 -43.1 -49.6 -49.6 -44.6 -46.4 -48.4 -42.5 -42.5 -42.5

R
E

C
P

1 -47.5 -38.3 -42.5 -43.9 -45.7 -47.9 -41.3 -41.9 -42.2

2 -52.1 -51.0 -49.6 -44.6 -46.3 -48.4 -42.1 -42.3 -42.4

4 -52.4 -52.5 -55.8 -44.6 -46.4 -48.4 -42.4 -42.4 -42.5

8 -52.9 -53.0 -52.9 -44.7 -46.4 -48.4 -42.4 -42.5 -42.5

R
C

F

1 -47.5 -38.3 -42.5 -43.9 -45.7 -47.9 -41.3 -41.8 -42.1

2 -50.7 -47.1 -51.6 -44.4 -46.4 -48.4 -42.2 -42.4 -42.4

4 -52.3 -53.2 -50.5 -44.6 -46.4 -48.4 -42.4 -42.5 -42.5

8 -52.9 -55.8 -51.3 -44.6 -46.4 -48.4 -42.5 -42.5 -42.5

R
C

P

1 -47.5 -38.3 -42.5 -43.9 -45.7 -47.9 -41.3 -41.8 -42.1

2 -52.1 -51.0 -49.3 -44.6 -46.3 -48.4 -42.1 -42.3 -42.4

4 -52.4 -51.0 -55.8 -44.6 -46.4 -48.4 -42.4 -42.4 -42.5

8 -52.9 -53.6 -54.6 -44.7 -46.4 -48.4 -42.4 -42.5 -42.5

Table B.11: CW-StoWGe EFTE optimized cost function values for various combinations of pa-
rameters and initializations for a desired rectangular spectrum is oversampled by a factor of 2 with
respect to its absolute bandwidth (K = 2)
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Rectangular (K = 2)
PX(x): DU2 CU G

g0 L Ts: 2 4 8 2 4 8 2 4 8

R
E

C
F

1 -38.3 -46.2 -41.2 -38.1 -41.3 -43.0 -37.8 -38.7 -39.1

2 -40.0 -48.8 -47.2 -39.5 -41.5 -43.3 -38.8 -39.3 -39.4

4 -40.3 -49.7 -52.3 -39.7 -41.7 -43.3 -39.3 -39.4 -39.5

8 -40.3 -44.1 -52.7 -39.7 -41.7 -43.3 -39.4 -39.5 -39.5

R
E

C
P

1 -38.3 -46.2 -41.2 -38.1 -41.3 -43.0 -37.8 -38.7 -39.1

2 -40.0 -49.0 -44.4 -39.5 -41.6 -43.3 -38.7 -39.2 -39.4

4 -40.3 -49.6 -50.1 -39.7 -41.7 -43.3 -39.2 -39.4 -39.5

8 -40.4 -50.1 -49.9 -39.7 -41.7 -43.3 -39.3 -39.5 -39.5

R
C

F

1 -38.3 -46.2 -41.2 -38.1 -41.3 -43.0 -37.8 -38.8 -39.0

2 -40.0 -48.8 -48.2 -39.5 -41.5 -43.3 -38.7 -39.3 -39.4

4 -40.3 -49.7 -50.2 -39.7 -41.7 -43.3 -39.3 -39.4 -39.5

8 -40.3 -50.1 -52.8 -39.7 -41.7 -43.3 -39.4 -39.5 -39.5

R
C

P

1 -38.3 -46.2 -41.2 -38.1 -41.3 -43.0 -37.8 -38.8 -39.0

2 -40.0 -49.0 -48.2 -39.5 -41.6 -43.3 -38.7 -39.2 -39.4

4 -40.3 -49.6 -50.1 -39.7 -41.7 -43.3 -39.2 -39.4 -39.5

8 -40.4 -50.1 -50.3 -39.7 -41.7 -43.3 -39.3 -39.5 -39.5

Table B.12: CW-StoWGe EFTE optimized cost function values for various combinations of pa-
rameters and initializations for a desired rectangular spectrum is oversampled by a factor of 4 with
respect to its absolute bandwidth (K = 4)
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