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Stable intrinsic localized modes in microelectromechanical cantilever structures and related studies:  

Final Report to the Army Research Office on the STIR Grant (W911NF1410202) 

Surajit Sen, PI 

Professor, Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260-1500, 

Phone: (716) 907 4961, Email: sen@buffalo.edu 

Abstract 

Protection of humans from large, finite time perturbations is an important area of research. Hence it is of interest 

to develop systems that are thin, light-weight and capable of absorbing large accelerations. An area of special 

interest concerns highly nonlinear systems which possess a rich variety of dynamical responses. This study 

focused on whether it is possible to convert any incident perturbation into localized excitations. The study 

explored the dynamics of a weakly nonlinear system with quadratic and quartic on-site and inter-site potentials 

where the linear pieces are significantly stronger than the nonlinear pieces that have been introduced by Sievers 

and coworkers. The system is realized by a micromechanical cantilever structure. We showed that the Sievers 

system can trap excitations that are in a specific amplitude and frequency window. We have studied whether 

breathers form from noisy perturbations in the Fermi-Pasta-Ulam system which consists of masses interacting via 

a quadratic and a quartic potentials. Turns out that only weak breathers form from such perturbations. Our work 

suggests the emergence of highly localized excitations when synchronized or nearly synchronized perturbations 

from two ends meet in granular chains with soft centers. Similar physics is also seen in preliminary studies on 

Fermi-Pasta-Ulam chains. 

1. Introduction 

Protection of humans, equipment and 

machinery from high amplitude, short 

duration perturbations is an important area 

of basic and applied research. It is hence of 

significant interest to develop thin, strong 

and light mass materials for purposes of 

protection from impacts.  

One can then ask whether it would be 

possible to make systems which would be 

very thin, very light, non-brittle and at the 

same time capable of damping sudden large 

changes in acceleration. While developing 

such materials has been a challenging 

journey, woodpeckers provide an inspiring 

example of what may someday be possible!  

Typically, woodpeckers peck on wood about 20-22 times per second. Such rapid impacts can result in accelerations 

~ 1200g [1].  However, woodpeckers don’t get brain damage! An acceleration change of 1200g is a good order of 

magnitude larger than the protection that the best helmets can provide [2,3]. Studies show that the woodpecker 

skulls are thin and lightweight and have almost no bulk fluids (Fig. 1) [1,4,5]. Their skulls also have dense plate-

Fig. 1 (left): Great spotted woodpecker on the left and the Eurasian 

Hoopoe on the right; Fig. 1 (right): Woodpecker’s head and skull 

bones on the left (a,c) and Hoopoe’s head and skull bone on  the 

right (b,d) [From L. Wang, et al. PLOS One 6(2011)e26490]. 
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like structures and have low porosity [5]. How exactly do these skulls 

absorb such large acceleration changes is presently unclear.  

While one way to build highly impact absorbing structures may be to 

mimic the woodpecker skull itself, we feel there may be other and more 

scalable ways to do so. One possibility is by invoking the very special 

properties of strongly nonlinear systems, which allow pulse 

transformation/disintegration on very short distances unlike linear or 

weakly nonlinear systems [6-9]. 

Special features of nonlinear many body systems: Many body systems 

with strongly nonlinear interactions are special because they exhibit a rich 

variety of ways to propagate energy through them [6-11]. These systems 

can admit the propagation of non-dispersive bundles of energy as 

compression pulses or solitary waves [12] and dilation pulses or anti-

solitary waves, localized excitations or breathers [10-11], and localized or 

collective harmonic or acoustic oscillations or phonons. The existence of 

any or all of these dynamical quantities depends upon the system 

properties, the boundary conditions and the nature of the perturbations (e.g., amplitude, duration) effected onto the 

system [12,13]. The complex nature of the possible 

excitations also provides unique opportunities to 

control propagation and localization.  

Why 1D matters: Ours and many other studies 

suggest that strongly nonlinear one dimensional 

systems are truly special [9,13]. Some of their 

behavior are translated into 2-D and 3-D systems 

[15,16], but many of the non-dispersive properties 

of the purely nonlinear entities such as solitary 

waves and breathers may not hold up very well in 2 

or 3D systems except in special cases. It is hence 

desirable to place arrays of 1D chains to construct 

higher dimensional systems. 

Using the geometry and the simplicity of the 1D 

systems would hence in principle be best to explore 

how to convert incident perturbations into energetic 

breathers. However, making breathers out of 

incident perturbations is a challenging task.  

Fig. 2: The microelectromechanical 

(MEM) cantilever system in one of 

Sievers’ studies with two different 

overhangs relating to a diatomic 

system (From [17-18]).  

Fig. 3: Intrinsic localized modes precipitated in a driven-

dissipative Sievers system (see Eq. 2 in Sec. 2), similar to 

what has been seen experimentally [24]. 
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Intrinsic Localized Modes/Unseeded Breathers with 

High Frequency Driving: Thus far, robust breather-

like structures [10,11], referred to in the literature as 

intrinsic localized modes or ILMs, have been seen by 

Sievers and by several other groups following a 

recipe pioneered by Sievers [11,17-23]. Their driven-

dissipative system is the one described by a potential 

energy function which consists of an inter-site 

coupling between the masses, which has both 

quadratic and quartic springs along with an on-site 

potential well which also exhibits both quadratic and 

quartic terms. In experiments, these systems can be 

realized by cantilever structures (Fig. 2). In all of 

Sievers’ works, the magnitudes of the quartic 

interactions, inter-site and on-site, are two orders of 

magnitude less than those of the corresponding 

harmonic terms. These systems hence are weakly 

nonlinear systems.  

Much of Sievers’ works have been done with small systems, 

typically the cantilever structures being ~ 50μm in size [17]. 

The ILMs can form when the system is driven at sufficiently 

high frequencies (how high depends of course on the 

dimensions of the system) (see Fig. 3). 

Seeded and Unseeded Breathers: Breather formation can be 

extremely robust in many body systems with quadratic and 

quartic inter-site interaction potentials (i.e., a form of the 

Fermi-Pasta-Ulam systems) provided the breathers are 

initially seeded by stretching one or more bonds (Fig. 4). 

However, breather formation is weak when initiated by any 

form of random perturbations in such systems. No 

significant spontaneous breather formation exists in driven-

dissipative FPU systems [25]. Whatever breather formation 

we have seen are for limited ranges of the harmonic and quartic spring couplings and the breathers are very low 

energy and short lived. In short, something special is needed to reliably make energetic breathers out of arbitrary 

excitations. In addition to the above studies in Fermi-Pasta-Ulam [6-8] and so called Sievers systems [17-23], 

precompressed diatomic granular chains, when sufficiently excited, can also precipitate ILM formation in much the 

same way as in the works of Sievers and coworkers [26].  

Fig. 4: A 6000 particle FPU system is studied where a 

breather has been seeded by stretching the center bond. We 

plot kinetic energy (in color) as functions of space and 

time. Kinetic energy is plotted on a log scale. Breathers 

decay here by simultaneously emitting solitary and anti-

solitary waves, which in turn generate more such waves. In 

a smaller system wall effects lead to shorter breather 

lifetimes. 

Fig. 5: A compression pulse moving right and a 

dilation pulse moving left collide at particle 50 in 

this space-time plot of energy propagation in an 

FPU chain to precipitate a metastable breather. 

Dark lines depict higher kinetic energy [27]. 
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Breathers made to order?: Given the difficulty in spontaneously generating energetic breathers out of random 

perturbations in the various systems, it is 

important to see whether there are indirect 

ways of enhancing breather generation and 

thus increasing energy trapping. As we shall 

see below, our studies suggest that breathers 

tend to be initiated when a large amount of 

potential energy ends up at a site or a group of 

sites.  A possible way to achieve this would be 

in regions where solitary waves or solitary and 

anti-solitary waves collide such that the region ends up 

getting squeezed. Specifically, we see that breathers 

form in the Fermi Pasta Ulam systems when two 

opposite propagating waves, one a solitary wave or a 

compression pulse and one an anti-solitary wave or a 

dilation pulse, both carrying equal energies, collide 

(Fig. 5) [27].  

Breather formation is more enhanced when two solitary 

waves collide in granular chains where the collision 

region has a few soft grains [28]. Such granular chain 

systems can be best realized via use of elastic spherical grain alignments where the centers can be made quite 

deformable (Figs. 6 and 7) (in this context see Refs. [14] and [29]). Similar behavior is also seen in Fermi Pasta 

Ulam chains when two opposite propagating solitary waves collide in the middle and the middle region carries 

nonlinear springs that are stiffer than that elsewhere [25]. Our pilot studies hence suggest that it may be possible to 

precipitate breathers out of a variety of different forms of excitations provided that the right forms of interactions, 

the right interplay of time scales and the right geometric criteria can be realized [25].  

2. Results from the STIR Study 

It is meaningful to consider the problem of breather formation for the simplest possible nonlinear many body 

systems. The first one is the classic system introduced by Fermi, Pasta and Ulam (FPU) in 1955 given by the 

Hamiltonian below [6-8], 

���� = ∑ ��
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+ ∑ [
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��,���

�
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where ��, ��,  �,���, !�,��� represent the particle momenta, masses, and strengths of the quadratic and quartic inter-

site couplings, respectively and " represents the number of particles in the system. Here and below �� denotes the 

displacement from the equilibrium position. A version of the FPU-type system, but with added on-site potentials 

can be realized using cantilever structures and it was invoked by Sievers and coworkers, which we refer to as the 

Sievers system. The Sievers system is described as follows [17-18] 
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Fig. 6: Elastic grains placed between two soft end walls with 6 

soft grains in the center. 

Fig. 7: Two colliding solitary waves make a central 

breather in a non-dissipative granular chain with soft 

central impurities. In a dissipative system, the center 

will act as an energy sink [28]. 
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where the on-site (+
,�, +��) and inter-site (+
,�,���, +�,�,��� ) quadratic and quartic couplings are present. Thus, the 

Sievers system provides the capability to pin excitations at specific sites. Further, the parameter space available can 

be quite vast.  

Both systems can be experimentally realized in precompressed granular metamaterials or laminate systems made 

from plates and o-rings. Additional modifications corresponding to changes in the onsite potential can be easily 

added in these systems, such as those introducing strong nonlinearity and effective dissipation with a unique 

capability for tuning by the initial precompression. These mechanical systems can be tuned into linear elastic, 

weakly nonlinear, strongly nonlinear or purely nonlinear responses depending on the initial precompression and the 

amplitude of the disturbance [6]. The simplest of these is the Hertz system discussed in Sec. 2, which consists of an 

alignment of elastic spheres and is described below. For simplicity we describe the Hertz system below [see also, 

30-32], 

�,$&-. = ∑ ��
	


��
+ ∑ [/�,���022 − ��� − �����3

4
	]�

���
�
��� ,    (3) 

where 22 is the diameter of each spherical grain in the alignment and /�,��� is a function of the Young’s modulus 

and the Poisson ratio and refers to the prefactor associated with the Hertz potential which is the second term on the 

right hand side in the above equation [33].  Note that there is no interaction between the elastic spheres in the Hertz 

system when grain-grain contact is broken or ��� − ���� > 22) and the interaction between the adjacent grains is 

intrinsically nonlinear. When the grains are pre-compressed in the Hertz system, the grains there may no longer lose 

contact so easily and have oscillations about some mean positions. Such a system carries the presence of the 

harmonic component as well as nonlinear terms, both coming from the expansion of the Hertzian potential about 

strain caused by initial compression [6,13]. In this case the granular chains or the metamaterials assembled from 

plates and o-rings are essentially weakly nonlinear FPU systems for relatively small amplitudes of the perturbations 

[6,30-32]. 

In all dynamical many body systems at late enough times, 

on average, only a part of the total energy is kinetic and the 

rest is potential. Virial theorem dictates how much of the 

total energy is kinetic and how much is potential [13]. In 

systems with quadratic potentials, half the system is kinetic 

and half is potential. In nonlinear systems, the amount of 

kinetic energy exceeds the amount of potential energy. By 

how much kinetic energy exceeds the potential energy can 

depend on a number of parameters such as the strengths of 

the various terms in the potential energy function, the 

amplitude of the perturbation and the boundary conditions.  

If a lot of potential energy can somehow end up in a region 

of a strongly nonlinear system, it would be difficult for it to 

quickly disperse off that energy to satisfy the virial theorem 

globally. Our studies reveal that fairly long lived (metastable) breathers emerge only when a significant amount of 

potential energy somehow ends up in a specific site [34,35,36].  

Fig. 8: The lifetime (67) of a seeded breather in 

the center of a FPU system is shown to grow as 

number of elements (") increases. 
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As alluded to in Sec. 1, nowhere is the issue of excess potential energy leading to stable breathers better seen than 

in the case of a seeded breather for the FPU system. To seed a breather, one can stretch a bond or two adjacent 

bonds at some location in a linear chain, for simplicity’s sake say at the center. All the system’s energy cannot 

rapidly leak out of the high energy bond(s). In fact, in many of these systems bonds can only leak energy via 

emission of solitary and anti-solitary wave pairs (see Fig. 4 above). These waves eventually bounce off the 

boundaries and perturb the breather itself, ultimately destabilizing the breather and leading to its demise into an 

equilibrium-like phase [36]. In the presence of strongly harmonic terms, phonons also appear as part of the leakage 

process [34,35]. However, it is somehow not easy for a breather to quickly convert its energy into phonons [34,35]. 

The upshot is that the breather lives for a span of time. For systems with just the right conditions, the breathers can 

live for very long times. In general, the larger a system, farther the walls and longer the breather may be able to 

survive (see Fig. 4). Such breathers can also be initiated in the Sievers system and possibly in the compressed Hertz 

system though the compressed Hertz system (grain or o-ring based) has not been exhaustively investigated. 

However, it is not necessarily of great interest to seed a breather if one is to make use of breathers to trap incident 

energy where the incident energy can be from arbitrary sources and 

across arbitrary times. 

Breathers can be excited in the Sievers-type discrete systems by 

driving the system at some specific high optical band frequency 

window and allowing the additional energy to dissipate at an 

appropriate rate such that there is long term energy balance in the 

system alluded to in Sec. 1 [18]. In the system’s natural units, the 

quadratic couplings are significantly stronger than the nonlinear 

couplings, i.e., when excited, these systems have weakly nonlinear 

interactions and an abundance of phonons [25]. Sievers and 

coworkers have worked mostly with diatomic systems though some 

monatomic system work has been done as well [18]. The existence 

of some high frequency response in these systems is needed. When 

these systems are excited by driving at high enough frequencies for 

long enough intervals, enough energy ends up in high frequency 

vibrations, which in turn can get localized in space while 

surrounded by a phonon bath. The phonon bath presumably 

suppresses the leakage of the ILMs thereby giving the structure 

some stability. In experiments, and simulations driven dissipative 

systems are typically needed to sustain ILMs. We will specifically 

differentiate ILMs and breathers because as we shall see in Sec 2 

below, ILMs may be a specific type of breathers.    

However, even this approach is not of much practical use when it comes to trapping just about any form of the 

frequency spectrum of the incident energy. Thus, we are left with limited choices on how to directly initiate breather 

formation from any form of incident perturbation. 

One hope when it comes to the Sievers and FPU-type systems is whether it is possible to precipitate breathers out 

of the right range of system constants and the right perturbations which are not necessarily high frequency and 

within a well-defined window. There indeed are parameter regimes and perturbation types where one finds breathers 

forming in some situations. However, in no case that we have thus far identified are we able to find direct 

Fig. 9: The figure from Sievers’ work 

shows the driving frequency behavior in 

time (upper panel), ILM (or breather) 

formation in real time and space (middle 

panel) ad a typical drift of an ILM (lower 

panel). 
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precipitation of energetic breathers from random perturbations [25]. Ultimately, these studies suggest that there 

may not be any direct way to generate energetic breathers from arbitrary perturbations. So we turned our attention 

toward using the help of solitary and anti-solitary waves as an intermediate step to generate breathers out of random 

perturbations. And this, as we shall see below, turns out to be a promising avenue to explore.   

Although the FPU model was introduced in 1955 [6], there is only a relatively modest amount of understanding of 

how solitary and anti-solitary waves form, propagate and collide in these systems [27]. We have performed 

extensive analyses on the formation and propagation of solitary and anti-solitary waves in the FPU systems (which 

was originally introduced strictly to explain mechanism of thermlization/heat conduction using weakly nonlinear 

interaction). We find that in the strongly nonlinear regime, head on collisions between solitary and anti-solitary 

waves can lead to the formation of breathers in the vicinity of the collision regime (Fig. 5) [27]. Nevertheless, while 

these breathers can be stronger than those that are precipitated out of random perturbations in the FPU and Sievers 

systems, it may still not be easy to make breathers with significant amounts of energy. However, the study of the 

collision of solitary and anti-solitary waves suggested a new avenue to pursue – is it conceivable then that one can 

use solitary wave collisions to generate breathers? If so, can one make those breathers stick? And can one precipitate 

breathers with significant energies?  

Hertz systems are simpler in the sense that the grains interact only when in contact. However, when the grains 

gently touch one another, the repulsive force is intrinsically nonlinear in nature, even nonlinearizable, which makes 

their behavior dramatically different from classical weakly nonlinear FPU system. If the granular chain is kept in a 

compressed state with some 

preloading, then a harmonic force 

is invoked in addition to the 

nonlinear force component, both 

due to the Hertz interaction, 

making its behavior similar to 

FPU system. At zero or very low 

preloadings, any delta function 

perturbation initiated at the edge 

of the chain becomes a solitary 

wave. Further, our earlier work 

has shown that these solitary 

waves can be rather sticky when 

they interact with very soft walls 

[14].  

These findings raise an intriguing possibility. What if we can initiate two solitary waves from the two ends of a 

granular chain and make them collide in a central region made up of soft grains and trap the energy for a while?  

Our preliminary studies show that indeed such solitary wave collisions can precipitate breathers in granular chains 

[28]. We have done some pilot studies on collision between solitary waves in FPU chains where the central region 

contains springs with large spring constants. The experimental and theoretical investigations of the co-PI strongly 

suggest that similar results are to be anticipated for the more versatile and tunable discrete metamaterial assembled 

system of o-ring and plate periodic alignments, with sufficiently rigid o-rings [25,30-32,40]. Our successes hence 

suggest that there is indeed a way to make breathers at will and possibly out of arbitrary perturbations provided the 

Fig. 10: A granular chain is shown where there are 3 central soft grains with 

a hard and a soft grain to each side of the central grains. Here we see the 

formation of two breathers in the center. These preliminary studies were not 

optimized to trap maximum energy. Also dissipative effects have been 

ignored. Observe the cold spot in the center (the blue line) [28]. 



8 

 

system is designed right and this is what we will pursue in the proposed research section below. The simulational 

and phenomenological research will be largely pursed by the PI. In addition, experimental work on the highly 

tunable and strongly nonlinear o-ring based systems would be carried out by the co-PI. 

3. Outcomes 

William J Falls and Yoichi Takato defended their PhD theses during the period of the STIR Grant. Dr Falls is now 

an assistant professor at Erie Community College of the SUNY and Dr Takato is a Research Associate at the 

Okinawa Institute of Science and Technology in Okinawa, Japan. The papers published and under consideration 

during the grant period reflect a part of what was accomplished. The complete summary of the actual project work 

has been captured in this document. Published work included analyses of solitary waves and breathers in Fermi-

Pasta-Ulam systems, of how solitary waves get temporarily localized near soft walls in Hertz systems, of possible 

interactions between nanoscale grains, of the nature of cratering in impacts on 3D beds with the most recent 

manuscript (under preparation) being on a pilot study of how granular chains with soft centers may help localize 

any incident energy. We have also carried out studies on how to localize energy in Fermi-Pasta-Ulam systems and 

a detailed paper is being completed now. The work has been geared to not just solve the problem at hand but do so 

in an encompassing way by exploring issues such as miniaturization, fundamentals such as the relationships 

between solitary waves and breathers and the formal theoretical underpinnings that tie the two, and even on how 

impacts damage a surface.  

In the next stage, we are looking forward to solving this localization problem and that is precisely the focus of the 

newly submitted proposal. 
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