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Abstract 

When an external load is applied, snow will continue to deform in time, or 
creep, until the load is removed. When using snow as a foundation mate-
rial, one must consider the time-dependent nature of snow mechanics to 
understand its long-term structural performance. In this work, we develop 
a general approach for predicting the creep behavior of snow. This new ap-
proach spans the primary (nonlinear) to secondary (linear) creep regimes. 
Our method is based on a uniaxial rheological Burgers model and is ex-
tended to three dimensions. We parameterize the model with density- and 
temperature-dependent constants that we calculate from experimental 
snow creep data. A finite element implementation of the multiaxial snow 
creep model is derived, and its inclusion in an ABAQUS user material 
model is discussed. We verified the user material model against our ana-
lytical snow creep model and validated our model against additional ex-
perimental data sets. The results show that the model captures the creep 
behavior of snow over various time scales, temperatures, densities, and ex-
ternal loads. By furthering our ability to more accurately predict snow 
foundation movement, we can help prevent unexpected failures and ex-
tend the useful lifespan of structures that are constructed on snow.  

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
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1 Introduction 

1.1 Background 

When building structures on snow foundations, one has to consider the 
time-dependent deformation of the snow under loading. If a long-term load 
from a permanent structure or installation is applied, the snow will creep, 
or deform, at a time-dependent rate. The rate of deformation can depend 
on, for example, the current microstructure, density, and temperature of 
the snowpack (Theile et al. 2011; Salm 1982; Mellor and Smith 1966). Gen-
erally, the creep of snow to a constant external loading or stress is de-
scribed in three stages. First, there is a primary regime that contains the 
instantaneous elastic response of the snow to a loading and a subsequent 
nonlinear time-dependent decelerating strain rate. In the next regime, the 
secondary regime, the strain rate of the snow becomes constant in time. 
Lastly, in the tertiary regime, the strain rate of the snow increases until 
failure. See Haehnel (2017) for an example of a typical uniaxial creep curve 
with constant loading and Salm (1982), Mellor (1975, 1964), and Shapiro et 
al. (1997) for a review of the mechanics of snow, including creep.  

Most often, structures placed on snow foundations will encounter the first 
two regimes of creep (primary and secondary). The deformation of the 
foundation during primary and secondary creep is most relevant during 
shorter-term loading, while the strain in the secondary regime typically 
dominates most of the deformation for long-term loading. In our work, the 
general model for creep deformation of snow foundations combines the 
features of primary and secondary creep to predict snow foundation defor-
mation under short- and long-term loading. 

Two common approaches model the mechanics of snow at the macro-
scopic scale. The first, rheological models, usually consist of spring-dash-
pot systems connected in series or parallel to represent the linear viscoe-
lastic behavior of snow. Examples of rheological models include the two-
parameter Maxwell (Bartelt and Christen 2007; Teufelsbauer 2011) and 
Kelvin-Voigt models (Kozin et al. 2013); the three-element model (Kelvin-
Voigt model with an elastic spring in series); and a four-parameter Burgers 
material model (Yoshida 1955) that consists of a linear spring, a viscous 
damper, and a spring and damper in parallel. Each unit of the rheological 
models (e.g., springs, dashpots, and combinations thereof) is assembled in 
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a specific way to capture the mechanics of snow. Mellor (1975) further re-
views the different rheological approaches. The second modeling ap-
proach, microstructure-based techniques, explicitly resolve the porous mi-
crostructure of the snow and develop the constitutive response of the snow 
based on its representative microstructure (Chandel et al. 2014; Köhle and 
Schneebeli 2014; Srivastava et al. 2016).  

Other methods to model snow include the discrete element method 
(Ghaboussi and Barbosa 1990), which represents snow grains as discrete 
rigid particles and defines their interactions by local particle-to-particle 
contact laws (Vedachalam et al. 2011; Johnson and Hopkins 2005; 
Hagenmuller et al. 2015). Our work leverages the rheological modeling ap-
proach to represent the viscoelastic response of snow in the primary and 
secondary regimes of creep.  

Mellor and Smith (1966) lead initial attempts to model the creep of snow 
and ice, developing models for the secondary regime of creep (constant 
strain rate) and assuming the behavior to follow an Arrhenius relation 
with activation energies for secondary creep depending on apparent den-
sity. Navarre et al. (2007) presented a three-dimensional model of snow 
deformation, based on a nonlinear viscous constitutive model, with the pa-
rameters of the model depending on the density and temperature of the 
snow. Chandel et al. (2007) developed a rheological model for snow creep 
by using a four-parameter Burgers model. The model parameters were de-
pendent on the density and were determined from creep experiments on 
snow, but the model did not include the temperature dependence of these 
parameters. Teufelsbauer (2011) developed a two-dimensional model of 
the long-term creep of alpine snow packs and treats the snow as a com-
pressible viscous fluid.  

Haehnel (2017) formulated a more general model for creep of dense snow 
(440–890 kg/m3) under a static applied load by extending the formulation 
by Mellor and Smith (1966). The Haehnel (2017) model was developed to 
apply only to the primary and secondary regimes of creep during founda-
tion settlement on snow. Potentially restricting its application, it presented 
two independent models to simulate the first two regimes of creep instead 
of a unified model that could span both regimes. 

To understand snow foundation settlement, it is advantageous to develop 
a combined model that spans the response from primary to secondary 



ERDC/CRREL TR-20-4 3 

creep. Frequently, foundation applications span the transition from pri-
mary creep deformation to secondary creep over the operational life span, 
and a model that captures the transition will better characterize overall 
foundation performance. Because tertiary creep indicates the beginning of 
foundation failure, models need not cover this creep regime.  

1.2 Objective 

In this work, we develop a rheological model for snow creep that is based 
on the four-parameter Burgers model and extend the model by accounting 
for the temperature and density dependence of snow in our parameteriza-
tion. Therefore, our approach considers long-term foundation perfor-
mance for a range of snow temperatures and densities characteristic of po-
lar regions.  

1.3 Approach 

We begin this report by presenting the development of our multiaxial 
snow creep model and its implementation into a commercial finite ele-
ment code. A one-dimensional version of our model is derived in section 
2.3, and we estimate the values for the parameters used in our model by 
minimizing the difference between our simulation results and experi-
mental uniaxial snow creep data (Meussen et al. 1999; Chandel et al. 2007; 
Mellor and Smith 1966). In section 3, we verify our finite element imple-
mentation against analytical snow creep values; and section 4 presents our 
modeling results in comparison with experimental data. Lastly, section 5 
provides some additional discussion and conclusions. 
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2 Computational Methods 

2.1 Snow constitutive model 

The model developed in this work is based on the four-parameter Burgers 
rheological model that consists of an elastic spring with modulus 𝐸𝐸0, a 
damper with viscosity 𝜇𝜇0, and a Kelvin unit with a spring and damper in 
parallel. See Figure 1 for an example of the one-dimensional Burgers model.  

Figure 1.  One-dimensional Burgers model. 

 

The rheological Burgers model captures the primary and secondary creep 
behavior of snow. Note that our work does not consider material failure, so 
this report models only the primary and secondary regimes of creep. In the 
primary regime, there is an initial elastic strain response, modeled with 
the spring constant 𝐸𝐸0, and an unrecoverable time-dependent strain re-
sponse modeled with the combination of the single damper and the Kelvin 
unit. After a time dependent on the values of the model parameters, sec-
ondary creep dominates, and the strain response is determined mostly by 
the behavior of the damper with viscosity 𝜇𝜇0. Most approaches to modeling 
the creep of snow calibrate these parameters against experimental data. 
See Chandel et al. (2007) for an example.  

In our approach to modeling snow creep, we extend the Burgers model to 
three dimensions and assume the model parameters are dependent on the 
temperature and density of the snowpack at any given time. We base our 
multiaxial extension of the Burgers model on models of ice by Xu et al. 
(2019), Duddu and Waisman (2012, 2013), and Londono et al. (2016). The 
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model can be broken down into three strain contributions: a time-inde-
pendent recoverable elastic strain, a time-dependent recoverable delayed 
strain, and a time-dependent, unrecoverable viscous strain. Assuming 
small strain and summing all strain contributions, the total strain is 

 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑑𝑑 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑣𝑣 , (1) 

where the superscript e stands for elastic, d stands for delayed, and v 
stands for viscous. The strain 𝜀𝜀 is a second-order tensor, and the subscripts 
i and j refer to components of the tensor. Throughout the manuscript, we 
will use tensor notation, sometimes referred to as Einstein notation. Note 
that when there are repeated indices (e.g., 𝜎𝜎𝑘𝑘𝑘𝑘), the quantity is summed. 
For example, 𝜎𝜎𝑘𝑘𝑘𝑘 = 𝜎𝜎11 + 𝜎𝜎22 + 𝜎𝜎33 if k has 3 components. The Cauchy 
stress of the snow is a function of the elastic strain and is defined as  

 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒 , (2) 

where 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖 is the fourth-order elasticity tensor given by 

  𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖 = 𝜆𝜆(𝜌𝜌,𝑇𝑇)𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑖𝑖 + 𝜇𝜇(𝜌𝜌,𝑇𝑇)�𝛿𝛿𝑖𝑖𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑘𝑘�. (3) 

The elastic material parameters 𝜆𝜆 and 𝜇𝜇 are referred to as Lamé parame-
ters, and 𝛿𝛿𝑖𝑖𝑖𝑖 is the identity tensor. The Lamé parameters are functions of 
the usual modulus of elasticity, E, and Poisson’s ratio, 𝜈𝜈, that are used to 
define elastic materials. Note that in our modeling approach, the Lamé pa-
rameters are functions of the density, 𝜌𝜌, and temperature, 𝑇𝑇. That is be-
cause we define our elastic modulus to be a function of those two variables. 
Section 2.3.1 will discuss the functional form of the elastic modulus.  

The delayed elastic strain is usually defined in rate form and is given by  

  𝜀𝜀̇𝑑𝑑𝑖𝑖𝑖𝑖 = 𝐴𝐴(𝜌𝜌,𝑇𝑇) �3
2
𝐾𝐾(𝜌𝜌)𝑆𝑆𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑖𝑖𝑖𝑖𝑑𝑑�, (4) 

where A is a density- and temperature-dependent constant, K is a density-
dependent constant defined from experimental data, and  

 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖 −
1
3
𝜎𝜎𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 (5) 

is the deviatoric stress tensor. Inspired by the work of Haehnel (2017) and 
Mellor (1964), we extend the work of Ohno et al. (1985) and Karr and Choi 



ERDC/CRREL TR-20-4 6 

(1989) and modify the parameter A to have an Arrhenius relationship with 
density and temperature:  

 𝐴𝐴(𝜌𝜌,𝑇𝑇) = 𝐴𝐴0(𝜌𝜌) exp �− 𝑄𝑄(𝜌𝜌)
𝑅𝑅𝑅𝑅

�, (6) 

where 𝐴𝐴0 is a density-dependent constant found from experimental data, R 
is the gas constant, and T is the temperature of the snow foundation. The 
density-dependent activation energy, Q, is also found using experimental 
data as discussed in section 2.3.2. 

The time-dependent, unrecoverable viscous strain is also usually defined 
in rate form as 

 𝜀𝜀�̇�𝑖𝑖𝑖𝑣𝑣 = 3
2
𝐵𝐵(𝜌𝜌,𝑇𝑇)𝑆𝑆𝑖𝑖𝑖𝑖 �

3
2
𝑆𝑆𝑘𝑘𝑖𝑖𝑆𝑆𝑘𝑘𝑖𝑖�

𝑛𝑛−1
2  

, (7) 

where B is a density and temperature-dependent constant and n is a vis-
cous-strain exponent we set to be equal to one (𝑛𝑛 = 1) as did Haehnel 
(2017). Parameter B takes on a form similar to that of equation (6):   

 𝐵𝐵(𝜌𝜌,𝑇𝑇) = 𝐵𝐵0(𝜌𝜌) exp �−𝑄𝑄(𝜌𝜌)
𝑅𝑅𝑅𝑅

�, (8) 

where 𝐵𝐵0 is a density- and temperature-dependent constant that is de-
fined using experimental data as explained in section 2.3.3. Note that for 
the density-dependent constants, defined above, we use a temporally con-
stant density since our method currently does not allow the density to 
change in time.   

Assuming a rate form, the Cauchy stress in the snow is defined as 

 �̇�𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖�𝜀𝜀�̇�𝑘𝑖𝑖 − 𝜀𝜀�̇�𝑘𝑖𝑖𝑑𝑑 − 𝜀𝜀�̇�𝑘𝑖𝑖𝑣𝑣 �, (9) 

where the definitions for the strain rates have been defined previously. We 
will use this definition for the stress rate in the snow to create our finite el-
ement implementation in the next section.  
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2.2 Finite element implementation 

We implemented our snow creep model in the commercial finite element 
software ABAQUS by creating a user material model subroutine (see Ap-
pendix A for the Fortran code). Given the current state of the simulation at 
a particular time (e.g., strain, temperature, etc.), the subroutine requires 
the user to define an increment in stress and a material tangent modulus 
over the given time increment. Using the rate form of the Cauchy stress 
shown in equation (9) and assuming the response of the material is linear 
over a given time increment, we can multiply the stress rate by the time in-
crement ∆𝑡𝑡 to define an increment in stress, 

 ∆𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖�∆𝜀𝜀𝑘𝑘𝑖𝑖 − ∆𝜀𝜀𝑘𝑘𝑖𝑖𝑑𝑑 − ∆𝜀𝜀𝑘𝑘𝑖𝑖𝑣𝑣 �, (10) 

with the definitions for the delayed and viscous-strain increments given by  

 ∆𝜀𝜀𝑘𝑘𝑖𝑖𝑑𝑑 = 𝐴𝐴(𝜌𝜌,𝑇𝑇)∆𝑡𝑡 �3
2
𝐾𝐾(𝜌𝜌)𝑆𝑆𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑖𝑖𝑖𝑖𝑑𝑑�, (11) 

 ∆𝜀𝜀𝑘𝑘𝑖𝑖𝑣𝑣 = 3
2
𝐵𝐵(𝜌𝜌,𝑇𝑇)∆𝑡𝑡𝑆𝑆𝑖𝑖𝑖𝑖 �

3
2
𝑆𝑆𝑘𝑘𝑖𝑖𝑆𝑆𝑘𝑘𝑖𝑖�

𝑛𝑛−1
2  

. (12) 

The tangent modulus is easily found by taking the derivative of the incre-
ment in stress by an increment in strain. Therefore, the tangent modulus 
was found to be 

 Π𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖 = 𝜕𝜕∆𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕∆𝜀𝜀𝑘𝑘𝑙𝑙

= 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖. (13) 

Appendix A shows the full snow creep model, including the implementa-
tions of the stress increment and tangent modulus. 

2.3 Model parameter estimation 

To estimate the parameters of the snow creep model laid out in the previ-
ous sections, we compare our model to uniaxial constant stress creep tests. 
We use three different data sets from Chandel et al. (2007), Meussen et al. 
(1999), and Mellor and Smith (1966). To compare with the experimental 
data, we simplify our uniaxial model to one dimension and solve for the to-
tal strain rate: 

 𝜀𝜀̇(t) = �̇�𝜎(𝑡𝑡)
𝐸𝐸(𝜌𝜌) + 𝐴𝐴(𝜌𝜌,𝑇𝑇)(𝐾𝐾(𝜌𝜌)𝜎𝜎(𝑡𝑡) − 𝜀𝜀𝑑𝑑) + 𝐵𝐵(𝜌𝜌,𝑇𝑇)𝜎𝜎(𝑡𝑡)𝑛𝑛. (14) 
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Assuming a constant stress rate in time, 𝜎𝜎(𝑡𝑡) = 𝜎𝜎0, we can analytically in-
tegrate the strain rate to define the time-dependent total strain: 

 𝜀𝜀(𝑡𝑡) = 𝜎𝜎0
𝐸𝐸(𝜌𝜌) + 𝐾𝐾(𝜌𝜌)(𝜎𝜎0(1 − exp(−𝐴𝐴(𝜌𝜌,𝑇𝑇)𝑡𝑡)) + 𝐵𝐵(𝜌𝜌,𝑇𝑇)𝜎𝜎0𝑛𝑛𝑡𝑡. (15) 

This analytical equation is used to compare the creep strain with the ex-
perimental data sets and to calculate model parameters. Section 2.3.3 de-
tails calculating the model parameters. Additionally, we use experimental 
data sets to define the density-dependent elastic modulus (section 2.3.1) 
and activation energy (section 2.3.2). 

2.3.1 Elastic properties of snow 

Because of the microscale structure of snow, the apparent or measured 
elastic modulus can change with density. In our model, we assume the 
elastic modulus (i.e., Young’s modulus) of snow has a power-law relation-
ship with density: 

 𝐸𝐸(𝜌𝜌) = 𝐸𝐸1𝜌𝜌𝐸𝐸2, (16) 

where 𝜌𝜌 is density and 𝐸𝐸1 and 𝐸𝐸2 are constants that are determined from 
experimental data.  

Mellor (1975) collected from numerous experiments values for the Young’s 
modulus of dense coherent dry snow. To calculate our elastic material con-
stants, we used a subset of the Mellor (1975) experimental data that was 
collected using pulse propagation or flexural vibration at high frequencies 
at temperatures of −10°C to −25°C. Using a least-squares fitting routine to 
match the experimental data, we calculated 𝐸𝐸1 = 1.99884211 × 10−6 and 
𝐸𝐸2 = 5.307 with an 𝑅𝑅2 value of 0.99. Figure 2 shows the experimental 
Young’s modulus data and the model results. 
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Figure 2.  Density-dependent elastic modulus model plotted against 
experimental elastic modulus data. 

 

2.3.2 Activation energy 

We follow the work of Mellor and Smith (1966) and assume that the creep 
of snow is a thermally activated process that follows an Arrhenius rela-
tionship. Mellor and Smith performed snow creep tests with snow of var-
ying densities, at different temperatures, and with different applied loads. 
Assuming a functional form of the creep strain rate, they calculated an ac-
tivation energy as a function of density. See Mellor and Smith (1966) for 
the table of density-dependent activation-energy values. Based on their 
data, we assumed the activation energy followed a power-law relationship 
with density: 

 𝑄𝑄(𝜌𝜌) = 𝑄𝑄1𝜌𝜌𝑄𝑄2, (17) 

where 𝑄𝑄1 and 𝑄𝑄2 are constants that we calculated based on the data. T0 
find the constants, we performed a least-squares fitting with the data and 
found values of 𝑄𝑄1 = 1145.23 and 𝑄𝑄2 = −0.69 with an 𝑅𝑅2 value of 0.93.  

Figure 3 shows the snow creep activation-energy model compared with the 
activation-energy data. Note that the activation-energy model comes into 
the snow creep model through equations (6) and (8). 
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Figure 3.  Snow creep activation energy as a function of density. 

2.3.3 Empirical constants 

To complete the parameterization of the model, we calculated the values 
for 𝐴𝐴0(𝜌𝜌), 𝐵𝐵0(𝜌𝜌), and 𝐾𝐾(𝜌𝜌) seen in equations (6), (8), and (4) that best fit 
experimental data. We used the uniaxial unconfined snow creep compres-
sion tests from Meussen et al. (1999), Chandel et al. (2007), and Mellor 
and Smith (1966) as our experimental data sets to estimate model parame-
ters. The works by Meussen et al. (1999) and Chandel et al. (2007) both re-
ported creep strain results that included nonlinear effects for different 
combinations of compressive axial load, snow density, and temperature 
while Mellor and Smith (1996) reported constant compressive strain rate 
results characteristic of the secondary creep regime.    

We assumed a power-law functional form for the constants 𝐴𝐴0(𝜌𝜌), 𝐵𝐵0(𝜌𝜌), 
and 𝐾𝐾(𝜌𝜌) seen in the following equations: 

𝐴𝐴0(𝜌𝜌) = 𝐴𝐴01𝜌𝜌𝐴𝐴02, (18) 

𝐵𝐵0(𝜌𝜌) = 𝐵𝐵01𝜌𝜌𝐵𝐵02, (19) 

𝐾𝐾(𝜌𝜌) = 𝐾𝐾1𝜌𝜌𝐾𝐾2, (20)
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where 𝐴𝐴01, 𝐴𝐴02, 𝐵𝐵01, 𝐵𝐵02, 𝐾𝐾1, and 𝐾𝐾2 are constants found from fitting to ex-
perimental data. We first used the strain and strain-rate predictions from 
our creep model and a least-squares fitting routine to find the values for 
the parameters in the previous three equations that best fit the experi-
mental data.  

Figures 4, 5, and 6 show model results using parameters estimated from a 
least-squares fitting to the experimental data. As seen in the figures, the 
creep model captures the response of the snow quite well from the initial 
nonlinear strain response through a constant secondary creep-like strain 
rate. Although, the model does not capture the strain rate as well for the 
Mellor and Smith (1966) data set for a density of approximately 550 kg 
m−3. This strain-rate response is characteristic across all temperatures at 
that density tested but does not follow the overall trend of the strain rate, 
where it is expected to be more or less linear. From the least-squares fit-
ting to the experimental data, we collected all of the estimated values for 
𝐴𝐴0(𝜌𝜌), 𝐵𝐵0(𝜌𝜌), and 𝐾𝐾(𝜌𝜌) as a function of density. 

Figure 4.  Creep-model predictions (solid line) of strain against the experimental 
data set from Meussen et al. (1999) (asterisks) for a variety of snow densities 

and external loads. The snow temperature was −20°C for all samples.   
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Figure 5.  Creep-model predictions (solid line) of strain against the 
experimental data set from Chandel et al. (2007) (asterisk) for a variety of 

snow temperatures. The snow density was 450 kg m−3, and the external load 
was 15 kPa for all samples.   

 

Figure 6.  Secondary-creep-model predictions (solid line) of strain rate 
against the experimental data set from Mellor and Smith (1966) (asterisk). 

The external load was 49.1 kPa for all samples. 
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The Figures 7, 8, and 9 display the data from the fitting, indicated with as-
terisks, for 𝐴𝐴0(𝜌𝜌), 𝐵𝐵0(𝜌𝜌), and 𝐾𝐾(𝜌𝜌). The strain-rate data from Mellor and 
Smith (1966) is representative of long-term viscous strain from secondary 
creep only. Therefore, we calculated values for only the constant 𝐵𝐵0(𝜌𝜌) in 
the viscous-strain model that fit the data. Using the power-law models 
from equations (18), (19), and (20), we once again performed a least-
squares fitting to find values for 𝐴𝐴01, 𝐴𝐴02, 𝐵𝐵01, 𝐵𝐵02, 𝐾𝐾1, and 𝐾𝐾2 that best fit 
the data. As seen from the figures, there is a fair amount of scatter in the 
data. That is reflected in the 𝑅𝑅2 values calculated from the least-squares 
fitting. For the 𝐴𝐴0 model, the 𝑅𝑅2 value was 0.23; the 𝐵𝐵0 model value was 
0.44; and finally, the K model value was 0.19. We would expect this large 
amount is scatter in the data because we are combining parameters from 
three different data sets. We would also expect some amount of uncer-
tainty in the experiments and our model that is not being accounted for 
here in this deterministic approach. Nonetheless, our power-law models 
capture the overall trend in the parameters 𝐴𝐴0(𝜌𝜌), 𝐵𝐵0(𝜌𝜌), and 𝐾𝐾(𝜌𝜌).  

Figure 7.  Parameter values for the delayed-elastic-strain model determined from 
least-squares fitting to experimental data (asterisks). The solid line shows the 

power-law model for A0 that best fits the data.  

 



ERDC/CRREL TR-20-4 14 

Figure 8.  Parameter values for the viscous-strain model determined from least-
squares fitting to experimental data (asterisks). The solid line shows the power-

law model for B0 that best fits the data. 

 

Figure 9.  Parameter values for the delayed-elastic-strain model determined from 
least-squares fitting to experimental data (asterisks). The solid line shows the 

power-law model for K that best fits the data. 
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Additional snow creep data would help illuminate the effectiveness of the 
modeling approach and the choice of functional form for the empirical pa-
rameters. Table 1 shows the values calculated from the fitting of the empir-
ical parameter models. 

Table 1.  Empirical model parameters calculated from least-squares fitting of experimental 
creep compression data. 

𝑨𝑨𝟎𝟎𝟎𝟎 𝑨𝑨𝟎𝟎𝟎𝟎 𝑩𝑩𝟎𝟎𝟎𝟎 𝑩𝑩𝟎𝟎𝟎𝟎 𝑲𝑲𝟎𝟎 𝑲𝑲𝟎𝟎 
4.804 × 1063 −20.11 3.693 × 1076 −27.80 4.808 × 1018 −9.39 

 
The parameterized snow creep model was implemented as an ABAQUS 
user material model. The next section discusses the ABAQUS model verifi-
cation. 
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3 Finite Element Model Verification 

The snow creep model laid out in the previous sections was implemented 
in an ABAQUS user material model. Appendix A provides the user mate-
rial model in its entirety. The ABAQUS implementation is based off of the 
equations in the finite element implementation discussion in section 2.2. 

To verify that our creep-model implementation in ABAQUS was correct, 
we compared our simulation results to the one-dimensional analytical 
creep strain seen in equation (15). The ABAQUS model was a single finite 
element model with symmetric boundary conditions to ensure a uniaxial 
response. A creep stress of 15 kPa was applied in all simulations at a snow 
temperature of −9°C. We varied the snow density from 450 kg m−3 to 
850 kg m−3 in increments of 100. Figure 10 and Figure 11 show the results, 
which compare well with the analytical results as expected. Note that the 
results were split into two figures to easily see the comparison against the 
analytical model. Given small enough load steps, the ABAQUS results 
should converge to the analytical model.  

Figure 10.  Simulation results compared to analytical snow creep model for 
densities of 450 kg m−3 and 550 kg m−3. 
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Figure 11.  Simulation results compared to the analytical snow creep model for 
densities of 650 kg m−3, 750 kg m−3, and 850 kg m−3. 

 

 



ERDC/CRREL TR-20-4 18 

4 Results 

4.1 Uniaxial snow creep 

To validate our creep modeling approach, we tested our method against 
two experimental data sets from Theile et al. (2011). They performed two 
uniaxial compressive creep tests on snow at a temperature of −11°C with 
cylindrical samples. The first test, referred to as Sample 1 in Figure 12, had 
an initial density of 205 kg m−3 and was compressed with a 2 kPa load 
while the second test, referred to as Sample 2 in Figure 12, had an initial 
density of 270 kg m−3 and was compressed with a 10 kPa load. The authors 
measured and reported the initial density and final density after compres-
sion for each sample.  

Figure 12.  Snow creep model (solid line) compared with two uniaxial compressive creep 
tests (asterisks) from Theile et al. (2011) shown on a log-log scale.  

Our model needs to use a temporally constant density as our method cur-
rently does not allow the density to change in time. For both Samples 1 
and 2, we chose to use the final densities in our analysis, which were 
240 kg m−3 and 345 kg m−3, respectively. For validation simulations, we 
used the model parameters outlined in the previous sections and the den-
sity, temperature, and compressive loading values for each snow sample. 
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In general, the snow creep model is set up such that the only inputs are the 
density and temperature of the snow and the boundary conditions (e.g., 
external compressive load). Figure 12 compares the modeling results to 
the two snow sample data sets. As the figure shows, the model matches the 
overall trend in the strain data well, even predicting the total strain to-
wards the end of the experiment fairly well. Considering contributions of 
uncertainty to the model and experiment, it is unrealistic to expect the 
model to match the data exactly when using a deterministic approach. For 
example, see the scatter in replicate samples 3.1, 3.2, and 3.3 presented in 
Theile et al. (2011). Also, since we used the final time density, it is unsur-
prising that the error between our model and the data is the smallest to-
wards the end of the experiment.  

4.2 Secondary snow creep 

To continue our validation efforts, we compared the strain-rate response of 
our model against the experimental results from Mellor and Smith (1966).  

They tested cylindrical snow samples in uniaxial compression for a num-
ber of densities (436 kg m−3 through 832 kg m−3), temperatures (−1°C 
through −35°C), and applied compressive loads (49.1 kPa and 98.1 kPa). 
Figure 13 shows the experimental results, displayed as asterisks, of the 
strain rate plotted against temperature. Test durations were on the order 
of 115 days; and we expected, based on the level loading and time, that 
most of the strain in the snow would be due to secondary creep effects. 
Therefore, we chose to use a subset of our model, the viscous-strain model, 
seen in equation (7) to compare with the experimental results. Note that 
the uniaxial version of equation (7) is 

 𝜀𝜀̇𝑣𝑣 = 𝐵𝐵01𝜌𝜌𝐵𝐵02 exp �−𝑄𝑄1𝜌𝜌𝑄𝑄2

𝑅𝑅𝑅𝑅
� 𝜎𝜎𝑛𝑛, (21) 

where all constants have been defined previously. Using our snow creep 
model, we simulated the snow creep experiments of Mellor and Smith 
(1966) (Figure 13). As the figure shows, we matched the overall trend in the 
data quite well with the exception of the tests at a density of 531 kg m−3. It 
is hard to say why the model does not capture the response of the snow at 
that density for these experiments. There could be an issue with those ex-
periments or there is some physical mechanism that operates at that snow 
density that the model does not capture. In any case, the model captures 
the secondary snow creep results of Mellor and Smith (1966) well. 
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Figure 13.  Secondary-creep-model predictions (solid line) of strain rate against the 
experimental data set from Mellor and Smith (1966) (asterisks). 
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5 Discussion and Conclusions 

In this report, we developed a general model for the creep behavior of 
snow. This new approach spans both the primary and secondary regimes 
of creep known to be induced when loading snow foundations. We based 
our model initially on the uniaxial rheological Burgers model but extended 
that implementation to three dimensions and changed the parameteriza-
tion to have density- and temperature-dependent constants as both have 
strong influences over the creep of snow. Minimizing the misfit between 
our model predictions and experimental data of snow creep, we estimated 
the parameters of our model that best describe the creep strain data. Addi-
tionally, we presented a finite element implementation of our model and 
the method to include it in an ABAQUS user material model. We verified 
the user material model against an analytical version of our creep model 
and validated our creep model against additional experimental creep data 
sets. The results showed that our model can match the data well over dif-
ferent time scales, temperatures, densities, and external loads. 

Depending on the duration of loading of a snow foundation, the majority 
of straining could be due to primary creep or to a combination of primary 
and secondary mechanisms. Besides the magnitude of loading, the tem-
perature and density of the snow influence the time at which the strain 
transitions from primary to secondary creep. For example, under a uniax-
ial load of 15 kPa, a snow temperature of −30°C, and a density 650 kg m−3, 
our model predicts a transition to secondary creep at approximately 
1.5 days. Putting this in context, the snow foundation for the Greenland 
Telescope is expected to deform according to secondary-creep theory 
based on the loading time (Haehnel 2017). Although, during a telescope 
pointing operation, which lasts about 8 hours, the load on the snow foun-
dation can increase; and primary-creep straining could be induced. 
Knowledge of the transition from primary to secondary creep can help bet-
ter understand snow foundation performance. 

While our modeling approach shows promise, future work will need to 
consider sources of uncertainty (e.g., from both the model and the experi-
ments) to more accurately estimate snow foundation creep. For example, 
we parameterize our model using experimental data sets, which in gen-
eral have some scatter that we are not accounting for. Furthermore, addi-
tional snow creep data is needed to help identify sources and amounts of 
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uncertainty in our model formulation and model parameters. Finally, ad-
ditional validation against field data will increase the robustness of the 
modeling approach.  

The model developed in this work can estimate snow foundation creep 
with knowledge of only the snow density, temperature, and external load. 
The uniaxial creep equation shown in equation (15) can provide a good es-
timate of snow foundation deformation in situations where uniaxial defor-
mation is a safe assumption. In more complicated situations, where more 
complex structures are placed on snow, the user material model can be 
used in combination with the finite element software ABAQUS to estimate 
both snow deformation over time and the foundation’s performance. As 
interests in the Arctic and Antarctic increase (militarily, commercially, or 
otherwise), the need for infrastructure built on snow foundations will in-
crease as well. The model we developed to estimate snow creep defor-
mation is needed to build safe and long-lasting structures.  
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Appendix A: ABAQUS User Material Model 

Below is the FORTRAN ABAQUS user material model that we created to 
model snow creep.  

C ---------------------------------------------------------------------- 
C     ABAQUS UMAT for Snow Mechanics (Creep) 
C 
C     Author: Devin T. O'Connor 
C     Institution: Cold Regions Research and Engineering Laboratory 
C     Last updated: 23 September 2019 
C ---------------------------------------------------------------------- 
 
      SUBROUTINE UMAT(STRESS, STATEV, DDSDDE, SSE, SPD, SCD, RPL, 
     1 DDSDDT, DRPLDE, DRPLDT, STRAN, DSTRAN, TIME, DTIME, TEMP, DTEMP, 
     2 PREDEF, DPRED, CMNAME, NDI, NSHR, NTENS, NSTATV, PROPS, NPROPS, 
     3 COORDS, DROT, PNEWDT, CELENT, DFGRD0, DFGRD1, NOEL, NPT, LAYER, 
     4 KSPT, KSTEP, KINC) 
 
      INCLUDE 'ABA_PARAM.INC' 
 
      CHARACTER*8 CMNAME 
 
      DIMENSION STRESS(NTENS), STATEV(NSTATV), DDSDDE(NTENS, NTENS), 
     1 DDSDDT(NTENS), DRPLDE(NTENS), STRAN(NTENS), DSTRAN(NTENS), 
     2 PREDEF(1), DPRED(1), PROPS(NPROPS), COORDS(3), DROT(3, 3), 
     3 DFGRD0(3, 3), DFGRD1(3, 3) 
 
C ---------------------------------------------------------------------- 
C     Local variables and arrays 
C ---------------------------------------------------------------------- 
C     E - Elastic modulus 
C     Q - Activation energy 
C     K - Delayed elastic strain constant 
C     A - Delayed elastic strain constant 
C     B - Viscous strain constant 
C     STRESS_TR - Trace of the stress tensor 
C     STRESS_DEV - Deviatoric stress 
C     STRESS_DEV_SQ_LEN - Devatoric stress inner product 
C     STRESS_VM -  Von Mises stress 
C     STRAIN_A_INC - Delayed elastic strain increment 
C     STRAIN_A_OLD - Delayed elastic strain from previous solution 
C     STRAIN_V_INC - Viscous strain increment 
C ---------------------------------------------------------------------- 
 
      INTEGER K1, K2 
 
      REAL*8 E, Q, K, A, B, STRESS_TR, STRESS_DEV, STRESS_DEV_SQ_LEN, 
     1 STRESS_VM, STRAIN_A_INC, STRAIN_A_OLD, STRAIN_V_INC 
 
      DIMENSION STRESS_DEV(NTENS), STRAIN_A_INC(NTENS), 
     1 STRAIN_A_OLD(NTENS), STRAIN_V_INC(NTENS) 
 
C ---------------------------------------------------------------------- 
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C     User input constitutive model properties 
C ---------------------------------------------------------------------- 
C     PROPS(1) - RHO (Snow density) 
C     PROPS(2) - T (Snow temperature) 
C ---------------------------------------------------------------------- 
 
C ---------------------------------------------------------------------- 
C     User defined constitutive model properties 
C ---------------------------------------------------------------------- 
C     E_1 - elastic modulus constant 1 
C     E_2 - elastic modulus constant 2 
C     Q_1 - activation energy constant 1 
C     Q_2 - activation energy constant 2 
C     K_1 - Delayed elastic strain constant K 1 
C     K_2 - Delayed elastic strain constant K 2 
C     A0_1 - Delayed elastic strain constant A0 1 
C     A0_2 - Delayed elastic strain constant A0 2 
C     B0_1 - Delayed elastic strain constant B0 1 
C     B0_2 - Delayed elastic strain constant B0 2 
C     NU - Poisson's ratio 
C     R - Gas constant 
C     N - Viscous strain exponent 
C ---------------------------------------------------------------------- 
 
      REAL*8 RHO, T, E_1, E_2, Q_1, Q_2, K_1, K_2, A0_2, B0_2, NU, R, N 
      REAL*16 A0_1, B0_1 
 
      RHO = PROPS(1) 
      T = PROPS(2) 
 
      E_1 = 1.99884211D-6 
      E_2 = 5.30708127 
      Q_1 = 1.14522618D3 
      Q_2 = -0.690446294 
      K_1 = 4.80783132D18 
      K_2 = -9.39216585 
      A0_1 = 4.80353109D63 
      A0_2 = -20.1133237 
      B0_1 = 3.6928674D76 
      B0_2 = -27.797909 
      NU = 0.3 
      R = 1.985877534D-3 
      N = 1.0 
 
C ---------------------------------------------------------------------- 
C     State variables 
C ---------------------------------------------------------------------- 
C     STATEV(1) - Delayed elastic strain component 11 
C     STATEV(2) - Delayed elastic strain component 22 
C     STATEV(3) - Delayed elastic strain component 33 
C     STATEV(4) - Delayed elastic strain component 23 
C     STATEV(5) - Delayed elastic strain component 13 
C     STATEV(6) - Delayed elastic strain component 12 
C 
C     For plane strain or axisymmetric elements 
C     ----------------------------------------- 
C     STATEV(1) - Delayed elastic strain component 11 
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C     STATEV(2) - Delayed elastic strain component 22 
C     STATEV(3) - Delayed elastic strain component 33 
C     STATEV(4) - Delayed elastic strain component 12 
C ---------------------------------------------------------------------- 
 
C ---------------------------------------------------------------------- 
C     User Defined Field Snow Density 
C ---------------------------------------------------------------------- 
 
C     Override constant density with user defined field 
C     To override uncomment RHO definition below 
 
C      RHO = PREDEF(1) 
 
C ---------------------------------------------------------------------- 
C     Define old delayed elastic strain from pervious step 
C ---------------------------------------------------------------------- 
 
      DO K1 = 1, NTENS 
        STRAIN_A_OLD(K1) = STATEV(K1) 
      END DO 
 
C ---------------------------------------------------------------------- 
C    Elastic modulus 
C ---------------------------------------------------------------------- 
 
      E = E_1*RHO**E_2 
 
C ---------------------------------------------------------------------- 
C    Activation Energy 
C ---------------------------------------------------------------------- 
 
      Q = Q_1*RHO**Q_2 
 
C ---------------------------------------------------------------------- 
C    Experimentally determined constants 
C ---------------------------------------------------------------------- 
 
      K = K_1*RHO**K_2 
 
      A = A0_1*RHO**A0_2*EXP(-Q/(R*T)) 
 
      B = B0_1*RHO**B0_2*EXP(-Q/(R*T)) 
 
C ---------------------------------------------------------------------- 
C    Stress based constants and arrays 
C ---------------------------------------------------------------------- 
 
C     Trace of the stress tensor 
      STRESS_TR = 0.0 
      DO K1 = 1, NDI 
        STRESS_TR = STRESS_TR + STRESS(K1) 
      END DO 
 
C     Deviatoric stress 
      DO K1 = 1, NDI 
        STRESS_DEV(K1) = STRESS(K1) - STRESS_TR/3.0 
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      END DO 
      DO K1 = NDI+1, NTENS 
        STRESS_DEV(K1) = STRESS(K1) 
      END DO 
 
C     Deviatoric stress inner product (sig_mn * sig_mn) 
      STRESS_DEV_SQ_LEN = 0.0 
      DO K1 = 1, NDI 
        STRESS_DEV_SQ_LEN = STRESS_DEV_SQ_LEN + STRESS_DEV(K1)**2 
      END DO 
      DO K1 = NDI+1, NTENS 
        STRESS_DEV_SQ_LEN = STRESS_DEV_SQ_LEN + 2.0*STRESS_DEV(K1)**2 
      END DO 
 
C     Von Mises stress 
      STRESS_VM = (3.0/2.0*STRESS_DEV_SQ_LEN)**0.5 
 
C ---------------------------------------------------------------------- 
C     Linear isotropic stiffness tensor 
C ---------------------------------------------------------------------- 
 
      DDSDDE(:, :) = 0.0 
      DO K1 = 1, NDI 
        DO K2 = 1, NDI 
          DDSDDE(K1, K2) = NU*E/((1.0+NU)*(1.0-2.0*NU)) 
        END DO 
        DDSDDE(K1, K1) = (1.0-NU)*E/((1.0+NU)*(1.0-2.0*NU)) 
      END DO 
      DO K1 = NDI+1, NTENS 
        DDSDDE(K1 ,K1) = 0.5*E/(1.0+NU) 
      END DO 
 
C ---------------------------------------------------------------------- 
C     Delayed elastic strain increment 
C ---------------------------------------------------------------------- 
 
      DO K1 = 1, NTENS 
        STRAIN_A_INC(K1) = A*DTIME*(3.0/2.0*K*STRESS_DEV(K1) - 
     1                              STRAIN_A_OLD(K1)) 
      END DO 
 
C ---------------------------------------------------------------------- 
C     Viscous strain increment 
C ---------------------------------------------------------------------- 
 
      DO K1 = 1, NTENS 
        STRAIN_V_INC(K1) = 3.0/2.0*B*DTIME*STRESS_DEV(K1)* 
     1                     STRESS_VM**(N-1) 
      END DO 
 
C ---------------------------------------------------------------------- 
C     Update stress 
C ---------------------------------------------------------------------- 
 
      DO K1 = 1, NTENS 
        DO K2 = 1, NTENS 
          STRESS(K1) = STRESS(K1) + DDSDDE(K1, K2)*(DSTRAN(K2) - 
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     1      STRAIN_A_INC(K2) - 
     2      STRAIN_V_INC(K2)) 

        END DO 
      END DO 

C ---------------------------------------------------------------------- 
C     Update state variables (delayed elastic strain) 
C ---------------------------------------------------------------------- 

      DO K1 = 1, NTENS 
        STATEV(K1) = STRAIN_A_OLD(K1) + STRAIN_A_INC(K1) 
      END DO 

      RETURN 
      END 
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