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RefSeq database growth influences the
accuracy of k-mer-based lowest common
ancestor species identification
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Abstract

In order to determine the role of the database in taxonomic sequence classification, we examine the influence of
the database over time on k-mer-based lowest common ancestor taxonomic classification. We present three major
findings: the number of new species added to the NCBI RefSeq database greatly outpaces the number of new
genera; as a result, more reads are classified with newer database versions, but fewer are classified at the species
level; and Bayesian-based re-estimation mitigates this effect but struggles with novel genomes. These results
suggest a need for new classification approaches specially adapted for large databases.
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Introduction
Fundamental questions of a metagenomic survey are (i)
what microbes are present in each sample, (ii) how abun-
dant is each organism identified in a sample, (iii) what role
might each microbe play (i.e., what gene functions are
present), and (iv) how do the previous observations
change across samples and time. Specifically, there have
been numerous studies highlighting the utility of metage-
nomic datasets for pathogen detection, disease indicators,
and health [1, 2]. Addressing each of these fundamental
questions is predicated on the ability to assign taxonomy
and gene function to unknown sequences.
Several new tools and approaches for taxonomic identi-

fication of DNA sequences have emerged [3–5], in
addition to community-driven “bake-offs” and bench-
marks [6]. k-mer-based classification methods such as
Kraken or CLARK [3, 7] are notable for their exceptional
speed and specificity, as both are capable of analyzing
hundreds of millions of short reads (ca. 100–200 base
pairs) in a CPU minute. These k-mer-based algorithms
use heuristics to identify unique, informative, k-length
subsequences (k-mers) within a database to help improve
both speed and accuracy. A challenge for k-mer-based

classification approaches is that closely related species and
strains often contain many identical sequences within
their genomes. This challenge is typically addressed by
assigning the query sequence with the lowest common an-
cestor (LCA [8]) of all species that share the sequence. A
comprehensive benchmarking survey indicated that
Kraken offered the best F1 score (a measure considering
both precision and recall) among the k-mer-based taxo-
nomic classifiers evaluated at the species level [9].
Bracken, a Bayesian method that refines Kraken results, is
capable of estimating how much of each species is present
among a set of ambiguous species classifications by prob-
abilistically re-distributing reads in a taxonomic tree [10].
We thus selected Kraken and Bracken as representative
tools from the genre of k-mer-based classification
methods. The focus of this study was not to examine a
specific software tool, but rather to evaluate the perform-
ance of a representative k-mer-based method given data-
base variability over time.
Available k-mer-based methods for taxonomic identifi-

cation and microbiome profiling rely on existing refer-
ence databases. While several investigations have
examined the influence of contamination in specific
database releases and identified idiosyncrasies specific to
a release [11, 12], no study has examined the specific in-
fluence of perhaps the most popular database from
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which to build classification databases, the repository of
sequenced, and assembled microbes (RefSeq), across
various releases of the database. Additionally, metage-
nomic classification and profiling tools are commonly
compared to each other using simulated datasets on a
fixed database, with leave-one-out analysis, but never
compared to each other across recent trajectories in
database growth. The aim of this study was to elucidate
the influence of RefSeq database growth over time on
the performance of taxonomic identification using
k-mer-based tools.
We measured the growth of the bacterial fraction of

the RefSeq database in terms of both size and diversity.
As the database grew, we found that fewer species-level
classifications were attained while the fraction of
genus-level classifications increased. This is a conse-
quence of the LCA approach, whereby a shared se-
quence is assigned to the lowest common ancestor
among the set of matching taxa. Thus, while we only
evaluated Kraken and Bracken in this study, the
challenges of RefSeq database growth stretch beyond
k-mer-based classification methods and are likely to
affect other LCA-based approaches.

Results
RefSeq database growth and diversity
Since its first release in June 2003, bacterial RefSeq, on
average, has doubled in size (giga base pairs, Gbp) every
1.5 years, with the number of unique 31-mers in the
database growing at a similar rate. A more recent re-
lease, bacterial RefSeq version 89 (released 7/9/2018), to-
taled nearly 938 Gbp of sequence data. The number of
observed species in RefSeq doubled nearly every 3 years
(Fig. 1a), while the number of observed genera has not
doubled in nearly 6 years (last doubling event was in
September 2012). This gap in species and genus growth,
albeit expected given the hierarchical nature of tax-
onomy, has led to a steady increase in the ratio of
species-to-genera over time (Fig. 1b), growing from
below two species to every one genus (version 1) to
nearly eight species to every one genus (version 89).
There is also a general, though fluctuating, decrease in
the ratio of strains-to-species (Fig. 1b), declining from
eight strains to one species (version 1) to approximately
three strains to one species (version 89).
Simpson’s index of diversity is a metric with values be-

tween zero and one that reports the probability that two
individuals randomly selected from a sample will not be-
long to the same taxonomic unit. Samples with high
Simpson’s index of diversity (i.e., closer to one) may be
considered more diverse than those with low values (i.e.,
closer to zero). The diversity for each version of the bac-
terial RefSeq was measured at the species and genus
levels (Fig. 1c). The diversity of species tended to

increase as the database grew (though it appears to have
plateaued recently), while the diversity of genera peaked
in November 2013, where it then declined and has not
returned since. We suspect this is due to recent sequen-
cing efforts that have focused on a handful of pathogenic
species for outbreak detection [13].
Every release of the bacterial fraction of the RefSeq

database resulted in more bases in the database.
However, three releases resulted in fewer observed
species and several resulted in decrease in species-
and genus-level diversity (Fig. 1). Some of these shifts
can be explained by the restructuring of RefSeq at
certain releases. Versions 57–59 (Jan–Mar 2013) of
RefSeq included drastic expansions of bacterial ge-
nomes as more microbial genomes that represent
complete or draft assemblies from novel isolates and
clinical and population samples were added during
this period. Indeed, the addition of clinically relevant
bacteria was substantial and led to the most abundant
genera changing from Bacillus prior to the expansion
to Pseudomonas and Streptomyces post-expansion. Re-
lease 65 (May 2014) saw the creation of the “archaea”
and “bacteria” classifications, breaking apart what was
once the “microbial” classification.

Taxonomic classification over time with a simulated
metagenome
Kraken’s own simulated validation set of ten known ge-
nomes was searched against nine versions of bacterial
RefSeq (1, 10, 20, 30, 40, 50, 60, 70, 80) and the Mini-
Kraken database (4GB version) (Fig. 2). The accuracy of
each Kraken run depends on the RefSeq version used in
the search (Fig. 2; Table 1). Correct genus-level classifi-
cations increased as RefSeq grew, but correct
species-level classifications peaked at version 30 and
tended to decline thereafter (Fig. 2). The decrease in cor-
rect species classifications is due to more closely related
genomes appearing over time in RefSeq, making it diffi-
cult for the classifier to distinguish them and forcing a
move up to the genus level, as that is the lowest com-
mon ancestor (LCA). Overall, misclassified species-level
calls were consistently rare, as reads were misclassified
at the species level an average of 7% of the time (Table 1;
Fig. 2). The fraction of reads classified at any taxonomic
level, regardless of accuracy, increased as RefSeq grew
over time (Fig. 3). However, the fraction of species-level
assignments (again, regardless of accuracy) peaked at
RefSeq version 30 and began to decline thereafter, while
the fraction of genus-level classifications began to
increase.
Bracken was used to re-estimate the abundances of

classifications made by Kraken when searching the simu-
lated reads against eight bacterial RefSeq database ver-
sions (1, 10, 20, 30, 40, 50, 60, 70). Bracken first derives
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Fig. 1 (See legend on next page.)
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probabilities that describe how much sequence from
each genome is identical to other genomes in the data-
base. This step requires searching a Kraken database
against itself with Kraken, which could not be performed
for the MiniKraken DB (as there is no FASTA file for
this database) or bacterial RefSeq version 80 (as it would
require extensive computation for a database that size).
Bracken was able to re-estimate species abundances for
95% of the input data using RefSeq version 70, while
Kraken only classified 51% of reads at the species level.
Because Bracken may probabilistically distribute a single
read’s classification across multiple taxonomy nodes, its
performance must be measured in terms of the pre-
dicted abundances. Bracken typically included the cor-
rect species in its re-estimation, but sometimes included
incorrect species in the abundance estimation (on aver-
age, 15% of reads were associated with a genome outside
of the ten knowns).

Taxonomic classification of difficult to classify genomes
over time
The challenging nature of classifying sequences belong-
ing to the Bacillus cereus sensu lato group has been pre-
viously documented [14, 15]. The B. anthracis species
within this group is a well-defined monophyletic sub-
clade of the larger B. cereus group, and the base of the
B. anthracis clade is commonly denoted by a single non-
sense mutation in the plcR gene [16] which is conserved
in all known B. anthracis genomes and has been shown
to confer a regulatory mutation essential for maintaining

the pXO1 and pXO2 plasmids that carry the virulence
factors characteristic of anthrax [17]. However, not all B.
anthracis strains cause disease in humans, such as B.
anthracis Sterne (missing the pXO2 plasmid), and some
B. cereus strains do cause anthrax-like disease [18], com-
plicating a precise species definition. Thus, it is not sur-
prising that accurate species-level classification within
this group has proven challenging for k-mer-based
methods, especially methods not based on phylogenetic
evidence. To demonstrate how difficult sequences from
this group have been to classify over time, simulated
reads were created for two Bacillus cereus strains. The
first, B. cereus VD118, is a strain available in RefSeq ver-
sion 60 and beyond, and the second, B. cereus
ISSFR-23F [19], was recently isolated from the Inter-
national Space Station and is not present in any of the
RefSeq releases tested. While sharing a relatively high
average nucleotide identity (ANI) with B. anthracis
(98.5%), it phylogenetically places outside of the B.
anthracis clade and lacks both the pXO1 and pXO2
plasmids, in addition to other biologically relevant fea-
tures. Once again, we observed that as bacterial RefSeq
grows over time, the number of genus-level classifica-
tions made by Kraken increases (Fig. 4). While the num-
ber of genus-level calls made by Kraken increases over
time, the number of unclassified and misclassified spe-
cies calls decreases (most commonly B. anthracis, B.
thuringensis, and B. weihenstephanensis).
Bracken made species-level predictions for all reads no

matter which version of bacterial RefSeq was used

(See figure on previous page.)
Fig. 1 The diversity of genera has decreased in the majority of releases since November 2013. a The number of observed species has outpaced
the number of observed genera, which has in turn outpaced the number of families as RefSeq has grown. b The ratio of strains-to-species has
tended to decrease while the ratio of species-to-genera has tended to increase as RefSeq has grown. c Simpson’s diversity index of species in
bacterial RefSeq has tended to increase every release (appearing to have plateaued recently), while Simpson’s diversity of genera tended to
increase until November 2013, where it has tended to decrease
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Fig. 2 Fraction of correct species classifications (right) decreases in more recent RefSeq database versions and instead are classified at the genus
level (left). Kraken classification results of simulated reads from known genomes against nine versions of the bacterial RefSeq database and the
MiniKraken database. Misclassifications at the genus and species levels remain consistently low across database versions
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(Fig. 4). However, the increased rate of species-level pre-
dictions came at the cost of accuracy, as Bracken correctly
identified B. cereus VD118 and B. cereus ISSFR-23F an
average of 72% and 29% of the time, respectively, across
RefSeq versions 1 through 70. The fraction of reads
assigned to each Bacillus species varied substantially from
each database tested.

Taxonomic classification over time with real
metagenomes
While simulated metagenomes offer the ability to meas-
ure the accuracy of sequence classification, they lack the
ability to generate the degree of diversity present in real
metagenomic sequences. To understand the trends of
taxonomic classification of sequences from real meta-
genomes, we used Kraken to classify four metagenomes
against nine versions of bacterial RefSeq (1, 10, 20, 30,
40, 50, 60, 70, 80).
The two metagenomes constructed from human fecal

and oral microbiome samples (Fig. 5a, b) exhibited trends
similar to those seen in the simulated datasets: a decrease
in unclassified reads and an increase in species-level

Table 1 Fractions of unclassified (FNR or false-negative rate),
percent correctly classified (TPR or true-positive rate), and
percent misclassified (FPR or false-positive rate.) simulated reads
from ten genomes using Kraken against different versions of
bacterial RefSeq

Genus Species

Release Date FNR TPR FPR TPR FPR

1 2003-06-30 0.62 0.38 0.00 0.29 0.08

10 2005-03-06 0.53 0.46 0.01 0.38 0.07

20 2006-11-05 0.49 0.49 0.01 0.40 0.08

30 2008-07-07 0.25 0.74 0.00 0.60 0.07

40 2010-05-07 0.22 0.77 0.00 0.54 0.08

50 2011-11-08 0.21 0.78 0.01 0.52 0.07

60 2013-07-19 0.03 0.96 0.00 0.57 0.09

70 2016-03-03 0.03 0.95 0.01 0.42 0.09

80 2017-01-09 0.03 0.94 0.01 0.28 0.08

Fig. 3 Species-level classifications decreased, and genus-level classifications increased, as bacterial RefSeq grew. Fraction of simulated reads
classified at different taxonomic levels, regardless of accuracy, using Kraken against ten databases. The circles below indicate when each
genome’s species/strain is in a database. Although the MiniKraken database contains all 10 genomes, it yields results comparable to bacterial
RefSeq version 40
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Fig. 4 The fraction of reads classified among Bacillus species varied depending on which RefSeq version was used. a Classifying B. cereus VD118
reads with Kraken (left) and Bracken (right) against different versions of RefSeq. Species-level classifications varied, and the fraction of unclassified
reads decreased with Kraken, as the database grew. Once B. cereus VD118 appeared in the database (ver. 60), Bracken correctly classified every
read. b Species-level classifications decrease with Kraken as RefSeq grows using real reads from an environmental Bacillus cereus not in RefSeq.
Fraction of B. cereus ISSFR-23F reads classified using Kraken ver. 1.0 (left) and Bracken ver. 1.0.0 (right) against different versions of bacterial RefSeq.
Bracken classification pushed all reads to a species-level call, though these classifications were often for other Bacillus species
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Fig. 5 Species-level resolution increased and then tended to decrease in human-associated metagenomes amidst RefSeq growth. Fraction of
metagenomic reads classified at different taxonomic levels, regardless of accuracy, using Kraken against nine bacterial RefSeq databases. The
human oral metagenome (a) exhibited patterns seen in the simulated metagenome (Fig. 3): an increase in species-level classifications, followed
by an increase in genus-level classifications. The human gut metagenome (b) exhibited a different trend, as species- and genus-level
classifications fluctuated and classifications at the family level, and beyond, increased
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classifications, followed by a decrease. Additionally, two
environmental metagenomes, one from soil and one from
oceanic surface water, showed small and steady decreases
in the number of unclassified sequences. While only a
fraction of the sequences from the soil metagenome were
classified (12%), less than half of them were species classi-
fications, whereas the aquatic metagenome produced small,
but consistent, increases in the fraction of species
classifications.

CPU/memory performance over time
Historical bacterial RefSeq versions were recreated
and used to build Kraken databases with default set-
tings. While most databases were constructed with
ease and in less than a day, version 70 required
500 GB of RAM and 2 days (using 64 cores from a
single machine containing four E7-8860v4 CPUs and
three terabytes of memory), while version 80 required
ca. 2.5 TB of RAM and ca. 11 days (using 64 cores
from the same machine). Given this trend, future re-
leases will likely require over 4 TB of RAM and
weeks of computation to build, putting into question
the feasibility of building and profiling k-mer data-
bases on future RefSeq versions. Recent studies [20]
have suggested alternative approaches for database
construction that would help to circumvent future
computational bottlenecks.

Discussion
The results of our study support three conclusions: (i)
the diversity of the bacterial RefSeq database is dynamic,
and we are in the midst of an unprecedented period of
novel species expansion; (ii) the database composition
strongly influenced the performance of a taxonomic
classification method that relied on LCA; and (iii) the
Bayesian method, Bracken, helped mitigate some of the
effects, but struggled with novel genomes that had close
relatives in the database.

Database influences on k-mer-based taxonomic
classification
Using Bracken, the majority of Bacillus cereus ISSFR-
23F-simulated reads were not correctly assigned to B.
cereus but were more frequently misassigned as Bacillus
anthracis or Bacillus thuringiensis (Fig. 4b). This, in
part, is not surprising as two of the three species in this
group, B. cereus and B. thuringiensis, have no clear
phylogenetically defined boundary, though B. anthracis
is phylogenetically distinct from other genomes within
this group (B. cereus, B. thuringiensis). Furthermore, any
two genomes within the Bacillus cereus sensu lato group
are likely to be over 98% identical [10]. Given that
k-mer-based methods are not phylogenetically grounded,
but rather based on sequence composition, they are

susceptible to misidentification in clades where the tax-
onomy is in partial conflict with phylogeny, such as the
Bacillus cereus sensu lato group. One clear example of
misidentification within this group was the false identifi-
cation of anthrax in public transit systems [21, 22]. Im-
proved methods continue to be developed to mitigate
these false positives, such as Kraken HLL [23], which re-
duces false positives by assessing the coverage of unique
k-mers found in each species in the dataset.
Another observation worth highlighting is that the

fraction of simulated reads classified as one of the
three B. cereus sensu lato species varied across data-
base versions (Fig. 4), with the exception of B. cereus
VD118, which was present in RefSeq releases 60 and
70 (Fig. 4a). The variation in species classifications
across database versions indicates that even when
using the same tools to analyze the same dataset, the
conclusions derived from this analysis can vary sub-
stantially depending on which version of a database
you are searching against, especially for genomes be-
longing to difficult to classify species (i.e., require
phylogenetic-based approaches).

Imperfect data
The genomic data deluge has helped to expand public
repositories with a broader and deeper view of the
tree of life but has also brought with it contamination
and misclassification [24]. Numerous cases of contam-
ination in public databases are well-documented [25],
and databases that continue to harbor these contami-
nants represent an additional confounding factor for
k-mer-based methods. While several custom tools
have been built to deal with imperfect data [26], there
is a need for database “cleaning” tools that can pre-
process a database and evaluate it for both contamin-
ation (genome assemblies that contain a mixture of
species) and misclassified species and strains (ge-
nomes that are assigned a taxonomic ID that is in-
consistent with its similarity to other genomes in the
database). The misclassification issue often is in the
eye of the beholder; species have been named based
on morphology, ecological niche, toxin presence/ab-
sence, isolation location, 16S phylogenetic placement,
and average nucleotide identity across the genome.
This, coupled with an often ambiguous species con-
cept in microbial genomes due to horizontal gene
transfer and mobile elements [27, 28], brings into
question the reliance on the current taxonomic
structure for assigning names to microbes sequenced
and identified in metagenomic samples. To avoid er-
rors due to inconsistencies in the database, classifica-
tion databases could derive their own hierarchical
structure directly from the genomic data, based off of
a consistent measurement such as marker gene
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similarity or average nucleotide identity, rather than
taxonomy, and then map back the internally derived
hierarchy to widely used taxonomic names [29, 30].

Generalizability of our findings
We studied the effects of database growth on both simu-
lated and real metagenomic datasets using Kraken, a
k-mer-based sequence classification method. We also in-
vestigated whether Bayesian re-estimation of Kraken re-
sults using Bracken helped to mitigate the consequences
of this recent “species surge” and allow for species-level
assignment. While we only tested one k-mer-based clas-
sification tool, it is clear that LCA-based assignment (in-
dependent of k-mers) plays a central role in the
increased number of genus-level classifications using re-
cent versions of the RefSeq database. There exist several
other tools that apply LCA-based approaches on other
databases used for metagenome classification and profil-
ing, such as 16S-based or signature-based tools. An in-
teresting avenue of future work will be to investigate
how generalizable these observations are by testing these
effects on other databases (e.g., SEED [31], UniProt [32])
and classification approaches (e.g., MetaPhlan [29],
MEGAN [8]). Furthermore, as sequencing technologies
change, the increased prevalence of long read (e.g., Pac-
Bio and Nanopore) and other emerging technologies
(e.g., Hi-C [33], 10x [34]) may present new opportunities
and challenges to the taxonomic classification of un-
known DNA sequences.

Conclusion
Our findings demonstrate that changes in RefSeq over
time have influenced the accuracy of two widely used
taxonomic classification and profiling methods. Despite
recent progress in k-mer-based methods for metagen-
ome profiling and classification, the majority of these
tools apply LCA taxonomic assignment and, as a result,
are sensitive to changes in strain-to-species and spe-
cies-to-genera ratios. Bayesian re-estimation ap-
proaches are helpful for species- or strain-level
prediction but can result in false positives in the pres-
ence of unknown species and are computationally pro-
hibitive with larger databases. To reduce the number of
unknowns, which can confound existing tools, greater
effort should be made to increase the taxonomic
breadth of sequenced microbes to better represent the
full spectrum of microbial diversity. Lastly, alternative
approaches to traditional k-mer-based LCA identifica-
tion methods, such as those featured within Kra-
kenHLL [23], Kallisto [35], and DUDes [36], will be
required to maximize the benefit of longer reads
coupled with ever-increasing reference sequence data-
bases and improve sequence classification accuracy.

Methods
Acquisition of bacterial RefSeq database versions 1
through 80
FASTA files of previous versions of bacterial RefSeq are not
publically available for download. Therefore, sequences
from previous versions of bacterial RefSeq were acquired
using custom scripts (https://github.com/dnasko/refseq_
rollback). Briefly, the process involved downloading the
current bacterial RefSeq release (ver. 84 as of the date of
the beginning of the analysis) FASTA files (ftp.ncbi.nlm.
nih.gov/refseq/release/bacteria) and concatenating them
into one file. Then, the catalog file associated with the de-
sired version is downloaded (ftp.ncbi.nlm.nih.gov/refseq/re
lease/release-catalog/archive), which contains the identifiers
for sequences present in that version of bacterial RefSeq.
Sequence identifiers in that version’s catalog file are pulled
from the current RefSeq FASTA file and written to a new
file. Using the refseq_rollback.pl script, any version of bac-
terial RefSeq can be created. For this study, only versions 1,
10, 20, 30, 40, 50, 60, 70, and 80 were recreated.

Taxonomic classification of simulated datasets
Two simulated read datasets were used to test Kraken
and Bracken performance with different versions of the
bacterial RefSeq database. The first simulated dataset
was downloaded from the Kraken website (ccb.jhu.edu/
software/kraken) and was previously used in the Kraken
manuscript as a validation set [3]. Briefly, this simulated
dataset was composed of 10 known bacterial species:
Aeromonas hydrophila SSU, Bacillus cereus VD118, Bac-
teroides fragilis HMW 615, Mycobacterium abscessus
6G-0125-R, Pelosinus fermentans A11, Rhodobacter
sphaeroides 2.4.1, Staphylococcus aureus M0927, Strepto-
coccus pneumoniae TIGR4, Vibrio cholerae CP1032(5),
and Xanthomonas axonopodis pv. Manihotis UA323.
Each genome had 1000 single-end reads (101 bp in size)
for a total of 10,000 reads. We selected this dataset as it
has been widely used as a benchmark for other k-mer-
based classification methods [3, 7] and represents a
breadth of species. This simulated read dataset was clas-
sified against each of the recreated bacterial RefSeq data-
bases using Kraken ver. 1.0 with default settings.
Two Bacillus cereus genomes were used to test the

ability to classify reads from genomes not in the bacter-
ial RefSeq database. The first, B. cereus VD118, is not
present in RefSeq until version 60 and beyond, and the
second, a novel B. cereus genome, B. cereus ISSFR-23F
[19], is never present in any of the RefSeq versions
tested. Simulated reads for B. cereus VD118 were pulled
from the 10-organism simulated dataset, while real reads
from the sequencing of B. cereus ISSFR-23F were down-
loaded from the SRA (SRR3954740) and 10,000 random
reads were selected using a script (“pick_random_
reads.pl” in github.com/dnasko/refseq_rollback/). We
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decided to use these genomes as they are members of
the B. cereus sensu lato group, containing a collection of
species that are known to be challenging for k-mer
methods to distinguish between [21, 22]. These datasets
were classified with Kraken (ver. 1.0) and Bracken (ver.
1.0.0) [10] both with default settings (Bracken “read-
length” set to 101).

Taxonomic classification of real metagenomic datasets
To assess classification trends in real metagenomic data,
two shotgun metagenomes were used: a fecal metagen-
ome (SRS105153) and oral metagenome (SRS050029)
from the Human Microbiome Project [37]. Additionally,
a soil (SRR5381886) [38] and aquatic (ERR315857) [39]
metagenome were analyzed to provide some environ-
mental insights. Reads from these metagenomes were
downloaded from the NCBI sequence read archive
(SRA) and quality filtered using Trimmomatic ver. 0.23
(leading:20, trailing:20, slidingwindow:4:30 minlen:40)
[40]. Filtered reads from only the left pair were then
classified using Kraken ver. 1.0 with default settings.

Running Bracken on Kraken output
Bracken (ver. 1.0.0) was run on the output of each Kra-
ken search (except for release 80 and KrakenMiniDB).
Default parameters were used except for “read-length,”
which was set to 101.

Bacterial RefSeq diversity metric calculations
Diversity metrics were calculated for every version of
bacterial RefSeq (1–89) by parsing the catalog files for
each version. The “dump_taxonomy_species.pl” script in
the refseq_rollback repository was used to convert the
NCBI taxonomy ID on each line to its species name.
Using this file, an operational taxonomic unit (OTU)
table was constructed at the species- and genus-levels
using the “create_otu_table.pl” in the refseq_rollback re-
pository. The OTU table was imported to QIIME1 (ver.
MacQIIME 1.9.1-20150604) [41]. Diversity metrics
(Simpson, Shannon, Richness) were calculated using the
“alpha_diversity.py” script and plotted using the R base
package. Counts and diversity metrics from RefSeq ver-
sions 57, 58, and 59 were excluded from the analysis, as
these versions proved to be outliers. This was due to a
reorganization of the bacterial RefSeq collection in these
versions (for further reading, see the section “CPU/
memory performance over time” in the release notes for
these versions, e.g., “RefSeq-release57.txt”).
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