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Abstract

Motivation: Antibiotic resistance constitutes a major public health crisis, and finding new sources

of antimicrobial drugs is crucial to solving it. Bacteriocins, which are bacterially produced anti-

microbial peptide products, are candidates for broadening the available choices of antimicrobials.

However, the discovery of new bacteriocins by genomic mining is hampered by their sequences’

low complexity and high variance, which frustrates sequence similarity-based searches.

Results: Here we use word embeddings of protein sequences to represent bacteriocins, and apply a

word embedding method that accounts for amino acid order in protein sequences, to predict novel

bacteriocins from protein sequences without using sequence similarity. Our method predicts, with a

high probability, six yet unknown putative bacteriocins in Lactobacillus. Generalized, the representa-

tion of sequences with word embeddings preserving sequence order information can be applied to

peptide and protein classification problems for which sequence similarity cannot be used.

Availability and implementation: Data and source code for this project are freely available at:

https://github.com/nafizh/NeuBI.

Contact: idoerg@iastate.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The discovery of antibiotics ranks among the greatest achievements

of modern medicine. Antibiotics have eradicated many infectious

diseases and enabled many medical procedures that would have

otherwise been fatal, including modern surgery, organ transplants

and immunosupressive treatments. However, due to the prevalent

use of antibiotics in healthcare and agriculture, antibiotic resistant

bacteria have been emerging in unprecedented scales. Each year, 23

000 people in the US alone die from infections caused by antibiotic

resistant bacteria (Centers for Disease Control and Prevention, US

Department of Health and Human Services, 2013). One strategy to

combat antibiotic resistance is to search for antimicrobial com-

pounds other than antibiotics, and which may not be as prone to re-

sistance. A promising class of such compounds are the peptide-based

antimicrobials known as bacteriocins (Guder et al., 2000; Willey

and van der Donk, 2007). Bacteriocins comprise a broad spectrum

of bacterial ribosomal products, and with the increased sequencing

of genomes and metagenomes, we are presented with a wealth of

data that also include genes encoding bacteriocins. Bacteriocins gen-

erally have a narrow killing spectrum making them attractive anti-

microbials that would generate less resistance (Riley and Wertz,

2002).

Several computational tools and databases have been developed

to aid discovery and identification of bacteriocins. BAGEL (van

Heel et al., 2013) is a database and a homology-based search tool

that includes a large number of experimentally verified annotated

bacteriocin sequences. BACTIBASE (Hammami et al., 2010) is a

similar tool, which also contains predicted sequences. AntiSMASH

(Weber et al., 2015) is a platform for genome mining for secondary
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metabolite producers, which also includes bacteriocin discovery.

BOA (Bacteriocin Operon Associator) (Morton et al., 2015) identi-

fies possible bacteriocins by searching for homologs of context

genes: genes that are associated with the transport, immunity, regu-

lation and post-translational modification of bacteriocins.

RiPPquest (Mohimani et al., 2014) is an automated mass spectrom-

etry based method towards finding Ribosomally synthesized and

posttransationally modified peptides (RiPPs) which may include

bacteriocins. Recently, MetaRiPPquest (Mohimani et al., 2017)

improved upon RiPPquest by using high-resolution mass spectrom-

etry, and increasing the search space for RiPPs. However, bacterio-

cins are still hard to identify using standard bioinformatics methods.

The challenge in detecting bacteriocins is twofold: first, a small

number of positive examples of known bacteriocin sequences, and

second, bacteriocins are highly diverse in sequence, and therefore

challenging to discover using standard sequence-similarity based

methods (Fig. 1).

To address these challenges we present a novel method to iden-

tify bacteriocins using word embedding. We represent protein

sequences using Word2vec (Mikolov et al., 2013). Using this repre-

sentation, we use a deep Recurrent Neural Network (RNN) to dis-

tinguish between bacteriocin and non-bacteriocin sequences. Our

results show that a word embedding representation with RNNs can

classify bacteriocins better than current tools and algorithms for bio-

logical sequence classification.

2 Materials and methods

2.1 The representation of proteins with word

embedding vectors
Word embedding is a set of techniques in natural language process-

ing in which words from a vocabulary are represented as vectors

using a large corpus of text as the input. One word embedding tech-

nique is Word2vec, where similar vector representations are

assigned to words that appear in similar contexts based on word

proximity as gathered from a large corpus of documents. After

training on a large corpus of text, the vectors representing many

words show interesting and useful contextual properties. For ex-

ample, after training on a large corpus of English language docu-

ments, given vectors representing words that are countries and

capitals, Madrid
�������!

� Spain
�����!

þ France
�������!

will result in a vector that is simi-

lar to Paris
�����!

, more than other vectors in the corpus (Mikolov et al.,

2013). This type of representation has led to better performance in

downstream classification problems, including in biomedical litera-

ture classification (Chen et al., 2018; Minarro-Giménez et al.,

2014), annotations (Duong et al., 2018; Zwierzyna and Overington,

2017) and genomic sequence classifications (Dutta et al., 2018; Du

et al., 2018; Mejia Guerra and Buckler, 2017; Zhang et al., 2018).

The training for generating the vectors can be done in two ways:

the continuous bag of words (CboW) model, or the skip-gram model

(Mikolov et al., 2013). We adapted Word2vec for protein represen-

tation as in (Asgari and Mofrad, 2015), using the skip-gram model.

Instead of the common representation of protein sequences as a col-

lection of counts of n-grams (also known as k-mers) using a 20 letter

alphabet, we represent protein sequences using embeddings for each

n-gram, covering all possible amino-acid n-grams (we used n¼3,

leading to 203 ¼ 8000 trigrams). Each trigram is a ‘word’, and the

8000 words constitute the vocabulary. The Uniprot/TrEMBL data-

base (Apweiler et al., 2004) constitutes the equivalent of the docu-

ment corpus.

The skip-gram model is a neural network where the inputs and

outputs of the network are one-hot vectors with our training in-

stance input word and output word. A one-hot vector is a Boolean

vector of the size of the vocabulary (8000 in our case, six in Fig. 2),

in which only the entry corresponding to the word of choice has a

value of True. We generated the training instances using a context

window of size 65, where we took a word as input (in this case, a

word is a trigram), and used the surrounding words within the con-

text window as outputs. The process is explained in Figure 2. At the

end of the training, a 200 dimensional vector for each trigram was

generated by the neural network. The goal of this training was to

have the 200 dimensional vectors capture information about the

Fig. 1. Inset: sequence similarity network for all of the bacteriocins present in the BAGEL dataset. Each node is a bacteriocin. There exists an edge between two

nodes if the sequence identity between them is � 35% using pairwise all-versus-all BLAST. The bar chart shows cluster sizes
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surroundings of each trigram that they are representing. In this fash-

ion, we capture the contextual information for each trigram in our

corpus of protein sequences. The size of the vector is a hyper-

parameter which we decided upon based on the final supervised

classification performance. Vectors of sizes 100, 200 and 300 were

generated, and size 200 was chosen (Fig. 3). Similarly, context win-

dow sizes of 3, 5 and 7 were tested, and size 5 was chosen.

2.2 Word2vec with a recurrent neural network
Taking the word-embedding representation for each trigram pre-

sent in a protein sequence, we used a Recurrent Neural Network

(RNN) to take all trigram embedding vectors as its input to repre-

sent a protein sequence (Fig. 4). Since RNNs share the same

weights for all inputs in a temporal sequence, we took advantage

of this architecture by using an embedding vector of size 200 for

Fig. 2. A simplified example showing representation learning for trigrams with skip-gram training. For simplicity, in the example, the vocabulary comprises of 16

words, the context window is 62 (in our study, the vocabulary size was 8000 and the context window 65). (a) For each sequence in the TrEMBL database we cre-

ated 3 sequences by starting the sequence from the first, second and third amino acid as in (Asgari and Mofrad, 2015). This makes sure that we consider all of the

overlapping trigrams for a protein sequence. A protein sequence, is then broken into trigrams, and training instances (input, output) are generated according to

the size of the context window for the subsequent step of training a neural network. (b) The neural network architecture for training on all of the instances gener-

ated at (a). The diagram shows training on the instance where MKL is input, and IGP is output which is the first instance generated at (a). At the end of the train-

ing, for each trigram a dense word vector of size 200 is produced (center, purple circles). (Color version of this figure is available at Bioinformatics online.)

Fig. 3. We represented each protein sequence with the overlapping trigram

counts present in that sequence. This leads to a size 8000 sparse vector. The

vector was reduced to a vector of size 200 using Singular Value

Decomposition. We used the size 200 vector as the baseline representation

Fig. 4. We used embedding vectors of each individual overlapping trigram

present in a protein sequence as input into a Recurrent Neural Network. XðtÞ

is the input at time step t. In our case, at each time step t, input is the embed-

ding vector of the trigram at that time step. hðtÞ is the hidden state at time

step t. It contains information from the previous inputs as well as the current

input. This works like the memory of the network, and because of its mechan-

ism, modern RNNs can preserve information over long ranges unlike trad-

itional models like hidden Markov models. U, V, W are weights of the

network. As they are being shared over all the inputs, this greatly reduces

the number of parameters of the network helping towards generalization.

At the end of the sequence, the network produces a prediction y of whether

the sequence is a bacteriocin or not. In practice, we used a bidirectional RNN

(not shown in figure)
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each overlapping trigram in a protein sequence. By using the

embedding vectors of overlapping trigrams as temporal inputs to

an RNN, we preserved the order of the trigrams in the protein se-

quence. Regarding the architecture of the RNN, we used a two-

layer Bidirectional RNN with Gated Recurrent Units (GRU) to

train on our data. Our hyper-parameters of number of neurons,

network depth and dropout (Srivastava et al., 2014) rate were

determined with nested cross-validation. Since we had a small

dataset, we used a dropout rate of 0.5 for the first layer, and 0.7

for the second layer. Both layers had 32 GRU units. We used a

fixed number of 100 epochs for training which was also decided by

nested cross-validation. For optimization, the Adam (Kingma and

Ba, 2014) method was used.

2.3 Comparing with baseline methods
We compared the performance of our method with four baseline

methods: (i) a simple trigram representation, (ii) an averaged word-

embedding representation, (iii) BLAST (Altschul et al., 1997) and

(iv) HMMER3 (Eddy, 2011).

We used a trigram representation of sequences in bioinformat-

ics to understand the gain of accuracy, if any, of using word

embedding over simple trigram based representation. To imple-

ment the simple trigram representation, we created an 8000 size

vector for each sequence where the indices had counts for each oc-

currence of a trigram in that sequence. In this representation, the

order of the trigrams is not preserved. Since the vector is sparse,

we used truncated Singular Value Decomposition (SVD) to acquire

the most importance features, and reduce the size of the vector. We

tried vector sizes of 100 and 200, and used 200 as it led to better

classification performance. We then used these vectors with a sup-

port vector machine (SVM), logistic regression (LR), decision tree

(DT) and random forest (RF), to classify genes into bacteriocins

and non-bacteriocins.

We also used an averaged word-embedding representation, and

evaluated its performance with SVM, LR, DT and RF. We summed

the embedding vectors for each overlapping trigram in a sequence,

and divided the sum by the length of the sequence. We then used

this new mean embedding vector that is representative of the whole

protein sequence with supervised learning algorithms.

We compared the performance of our method with BLAST, the

method of choice for sequence similarity search and, by proxy, de-

termination of gene and protein function. We use BLAST to see if

machine learning based, alignment free methods do indeed improve

performance over alignment based methods to identify potential

bacteriocins. We used a 35% sequence identity score as a threshold

to assign a bacteriocin label to a protein sequence. This threshold

was used to increase BLAST’s recall even at the expense of precision,

and was based on the finding that 35% ID is the ‘Twilight Zone’ of

protein sequence alignments below which one cannot unambiguous-

ly distinguish between true and false sequence alignment, using pro-

tein structure as a standard (Rost, 1999).

We also compared our performance with another popular align-

ment based method, HMMER3, which constructs profile hidden

Markov models or pHMMs from multiple sequence alignments. In

turn, the pHMMs serve as an accurate tool for sequence searching.

Here we used bacteriocin pHMMs which we constructed using

BOA (Morton et al., 2015). BOA uses the BAGEL (van Heel et al.,

2013) dataset, and its homologs (BLAST e-value < 10�5) against

GenBank (Benson et al., 2014) bacterial database to build

bacteriocin-specific pHMMs. We used the HMMSearch functional-

ity provided by HMMER3, and use the pHMMs from BOA to

measure performance against our test set in terms of precision, recall

and F1 score.

2.4 Building the training dataset
We used 346 experimentally determined bacteriocin sequences of

lengths � 30aa from the BAGEL database as our positive bacteri-

ocin training samples. For the negative training set, we used sequen-

ces from the Uniprot-Swissprot (Boutet et al., 2016) database. We

took all the bacterial protein sequences from this database and used

CD-HIT (Fu et al., 2012) with a 50% identity threshold to reduce

redundancy. Then, for the primary negative training set, we took

346 sequences that had the keywords ‘not anti-microbial’, ‘not anti-

biotic’, ‘not in plasmid’ and that had the same length distribution as

our positive bacteriocin sequences. We also generated two addition-

al negative datasets following the same steps as above, with no over-

lap in the sequences between the three sets. Because identical length

sequences were already exhausted by the first negative set, the length

distribution of the second and third negative sets are somewhat dif-

ferent than the positive bacteriocin set. Figure 5 shows the length

distribution of the positive, and all three negative datasets.

2.5 Identifying genomic regions for novel putative

bacteriocins
To search for genomic regions with a higher probability of contain-

ing novel bacteriocins, we took advantage of the known proximity

of context genes whose products assist in the transport, modification

and regulation of bacteriocins. Many bacteriocins have some or all

of four types of context genes in proximity (de Vos et al., 1995;

McAuliffe et al., 2001) (Fig. 6). Having an experimentally verified

set of fifty-four context genes from (Morton et al., 2015), we now

aimed to expand it. To do so, we collected the annotation keywords

for these context genes from the Refseq database,

We ran BLAST using all 1294 (54 experimentally verified and

1240 newly found) putative context genes against the whole bacteria

RefSeq database (Pruitt et al., 2006) and we collected hits with an

e-value � 10�6. We separated all the hits by organism, arranged

them by co-ordinates and identified 50 kb regions in the whole

(a) (b)

(c) (d)

Fig. 5. Sequence length distributions for the positive bacteriocin set, primary

negative set, 2nd and 3rd negative sets respectively. Mean lengths of training

sets were 63.57aa (with the primary negative set), 63.53 (with second nega-

tive set) and 70.92 (with third negative set). See text for details
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genome that have contiguous hits. We then ran our method on the

ORFs that were not identified as conext genes, to see if we could

identify new bacteriocin genes within these regions.

We used the following software tools in this study: Keras

(Chollet et al., 2015), Scikit-learn (Pedregosa et al., 2011), Gensim

(�Rehů�rek and Sojka, 2010), Matplotlib (Hunter, 2007), Jupyter

notebooks (Kluyver et al., 2016), Biopython (Cock et al., 2009),

Numpy and Scipy (Walt et al., 2011).

We then took all the genes with similar keywords to our experi-

mentally verified context gene set surrounding the BAGEL bacterio-

cins within a region of 625kb. After running CD-HIT (Li and

Godzik, 2006) to remove redundancy, we had 1240 new putative

context genes.

2.6 Datasets
We performed 10� cross-validations on the three datasets we built

where the datasets consist of positive bacteriocins from BAGEL, and

the three negative datasets we built from Uniprot Swissprot

database.

The cross-validation itself was done 50 times with different ran-

dom seeds for all cases except for the RNN, BLAST and HMMER

for which it was done 10 times due to computational time demand.

For BLAST, a 35% sequence identity score was used as a threshold

for calling a result positive. We used the same cross-validation folds

for BLAST as other algorithms where we BLASTed the test set

against the training set. For HMMER, an e-value of < 10�3 was

used as the threshold for deciding if a sequence is bacteriocin. The

reported results are the mean of 10� nested cross-validation done

50 times (10 times for RNN, BLAST and HMMER), and the stand-

ard error is from those 50 (10 for RNN, BLAST and HMMER)

mean values.

3 Results

Supplementary Table S1 and Figure 7 show a comparison of

Word2vec, trigram representation, BLAST and HMMER for pre-

dicting bacteriocins using the primary bacteriocin dataset in terms

of precision, recall and F1 score.

Precision (Pr) Recall (Rc) and F1 are defined as:

Pr ¼ TP

TPþ FP
; Rc ¼ TP

TPþ FN
; F1 ¼ 2� Pr�Rc

PrþRc

where TP: True Positives, FP: False Positives, FN: False Negatives.

W2vþRNN provides the best recall, and F1 score. HMMER and

BLAST have better precision scores, which is expected as they only

predict true positives by e-value and sequence identity respectively

but they have high false negative rate. Using a simple trigram repre-

sentation, SVM and LR perform similarly but with lower precision,

recall and F1 score than w2vþRNN. Using mean Word2vec repre-

sentation as input, LR, DT and RF provides similar or worse F1

score than the performances of those supervised methods with a sim-

ple trigram representation. Only mean Word2vec representation as

input to an SVM shows a competitive performance against

W2vþRNN. Still, the difference in F1 between mean w2vþSVM

and Word2vecþRNN was statistically significant and shows

that Word2vecþRNN performs better (one sided t-test,

P ¼ 5:48� 10�8).

Figure 8 shows the precision-recall curves for w2vþRNN, aver-

aged Word2vec representation with SVM, LR, RF. Also, simple tri-

gram representation with SVM (trigramþSVM), trigramþLR,

trigramþRF and BLAST. RNN has the largest area under the curve.

W2vþSVM is competitive with w2vþRNN as was also seen in

Figure 7. The curve for HMMER could not be shown as we need a

confidence value for each prediction which HMMER does not

provide.

Supplementary Tables S2 and S3 show the performance differen-

ces using the two other training datasets. The length distribution of

the protein sequences in the positive and negative sets are different

as mentioned in Section 2. Looking at Supplementary Table S2, the

improvement in the w2vþRNN and the trigram based methods is

evident, as well as the precision of HMMER. We assume the length

disparity between the positive and negative sequences have helped in

correctly classifying bacteriocins. Surprisingly, the precision of

BLAST has decreased compared with its precision in the primary

bacteriocin dataset. The performance of HMMER has largely

remained the same over the different negative sets, with its predic-

tions remaining more or less the same because of its low false posi-

tive rate. Supplementary Table S3 shows the performance

comparison for the third bacteriocin dataset. The length disparity

between positive and negative sequences for the third dataset is even

greater than the second bacteriocin dataset. SVM, LR, DT and RF

have all improved performance. SVM’s precision is comparable to

that of w2vþRNN. RNN still has the best recall and F1 score. In

contrast, BLAST’s performance has significantly decreased indicat-

ing that somehow the length disparity is causing problems in identi-

fying true bacteriocins. Just like the second bacteriocin dataset,

HMMER’s performance remains almost the same with a slight im-

provement on the precision score.

After evaluating all the methods, we trained the best performing

method, w2vþRNN on the whole dataset with the same hyper-

parameters, and this final trained RNN was used to find new bacter-

iocins in the 50 kb genomic regions that are that were identified

based on context genes and are suspected of containing bacteriocin

genes.

3.1 Results on 50 kb chromosomal stretches
We applied our trained w2vþRNN model on the sequences identi-

fied from the 50 kb regions (see Section 2) to predict putative bacter-

iocins. The w2vþRNN model predicted 119 putative bacteriocins

with a probability of � 0:99. Figure 9 shows three of our predicted

bacteriocins in their genomic neighborhood in Lactobacillus. We

found several context genes surrounding these predicted bacterio-

cins, supporting our hypothesis that these bacteriocin predictions

are valid.

4 Discussion

We developed a machine learning approach for predicting bacterio-

cins, a group of bacterial toxins which are challenging to discover

using sequence similarity as they are, in many cases, non-

homologous. Our approach does not require sequence similarity

searches, and has discovered several putative bacteriocins with a

high probability. The Word2vec representation takes advantage of

Fig. 6. Bacteriocins with context genes. After de Vos et al. (1995)
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the large volume of unlabeled bacterial protein sequences available,

and can be used in other machine learning tasks in computational

biology to represent protein sequences for discovering functional

similarities that cannot be discovered from sequence similarity. We

used the embedding vectors for each overlapping trigram in a pro-

tein sequence, and used them as input in a temporal order for an

RNN, and with heavy regularization, it performed well. We hy-

pothesize that the unsupervised step helped transfer important infor-

mation through the trigram vectors such that the RNN’s task was

made easier. Another reason we used RNN, is that we can represent

each protein sequence as overlapping trigrams. As a result, vectors

of size 200 representing each subsequent trigram can be fed into the

RNN without dramatically increasing the feature space as opposed

to SVM or Logistic Regression. For SVM or LR we would have

needed to find another way to represent a protein sequence from its

overlapping trigram vectors, so that its feature size does not over-

power the number of training sequences available to us. For ex-

ample, in the work by Asgari and Mofrad, (2015), the researchers

summed up all the overlapping trigram vectors to represent a protein

sequence. In this paper, we averaged the overlapping trigram vectors

to represent a protein sequence, and used that as a baseline. We also

built three different datasets using different sets of negative bacteri-

ocin examples. All the methods except w2vþRNN and averaged

w2vþSVM struggled to identify true bacteriocins in the primary

bacteriocin dataset where the length distribution for positive and

negative bacteriocins is exact. This is also the reason we used the pri-

mary bacteriocin dataset as the final dataset to train our RNN

model before applying it to find novel bacteriocins in Lactobacillus.

Compared with the primary bacteriocin dataset, the other methods

except BLAST and HMMER have had improved performance as the

differences in length distribution of positive and negative sequences

increased in the second and third bacteriocin dataset. The BOA

study (Morton et al., 2015) supplied us with pHMMs that were

built using many sequences including the BAGEL dataset, and used

with HMMER. Yet tested against the BAGEL sequences,

HMMER’s precision is high but the recall remained low compared

with w2vþRNN.

Despite the training set being small, with proper regularization

our RNN model provides a better precision than all the other

Fig. 7. Mean F1 scores of different algorithms with both Word2vec (w2v) and baseline representations. Error bars (using standard error) are too small to be

shown. W2v þ RNN (blue, rightmost bar in each grouping) provides the best F1 score. See Supplementary Table S1 for mean and standard errors values. (Color

version of this figure is available at Bioinformatics online.)

Fig. 8. Mean precision-recall curves of one run of 10� cross validation for

Word2vec with RNN, Support Vector Machine (SVM), Logistic Regression

(Log-reg), Random Forest and BLAST. Number in legend is area under the

curve. w2vþRNN performs better than all the other methods

(a)

(b)

(c)

Fig. 9. Context genes found surrounding the predicted bacteriocins

within 625kb range. (a) Lactobacillus acidophilus NCFM (Locus: NC_006814,

putative bacteriocin: YP_193019.1, immunity: YP_193020.1, regulator:

YP_193018.1, transporters: YP_193025.1, YP_193026.1). (b) Lactobacillus

helveticus R0052 (GenBnk: NC_018528, putative bacteriocin: YP_006656667.1,

immunity: YP_006656674.1, regulator: YP_006656666.1, YP_006656664.1,

YP_006656671.1). (c) Lactobacillus helveticus CNRZ32 (GenBank ID:

NC_021744, putative bacteriocin: YP_008236084.1, regulators:

YP_008236086.1, YP_008236087.1, transporters: YP_008236082.1,

YP_008236080.1, YP_008236079.1)
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methods except BLAST and HMMER, and better recall than all

other methods. We argue that word embedding and RNN can be

used to boost the prediction powers of machine learning models in

sequence-based classification problems in biology. Our models also

provide us with an associated confidence score, which is useful for

experimentalists who wish to apply this method towards genome

mining. We chose a threshold of 0.99 for RNN to provide the list of

putative predictions. Although our training set is balanced in terms

of bacteriocins and non-bacteriocins, the number of bacteriocin

sequences in the microbial sequence universe is much lower. Finally,

we provide six protein sequences that our model predicted to be bac-

teriocins, with a probability of � 0:99, where we could also find pu-

tative context genes. We also provide a set of total 119 sequences

predicted by w2vþRNN with a probability of greater than 0.99.

None of these sequences could be detected against known bacterio-

cins when we used BLAST against the nr database with an e-value

�10�3.

Historically, the use of bioinformatics prediction methods has

favored high precision over high recall, as a large number of false

positive findings can be costly for experiments that verify predic-

tions. However, there are cases where a high recall method is appro-

priate. For example, with the need to cast a wider net in identifying

potential drug candidates, driven by decrease drug scanning costs.

By employing a high recall method and choosing an appropriate ac-

curacy threshold, experimentalists can calibrate the precision/recall

trade off needed to optimize the functional testing of novel peptides.

Protein classification tasks are typically based on some form of se-

quence similarity as an indicator for evolutionary relatedness.

However, in many cases non-orthologous replacements occur, where

two non-homologous proteins perform the same function. Non-

orthologous function replacements have been detected using natural

language processing (Verspoor et al., 2012), genomic context methods

(Enault et al., 2005; Huynen et al., 2000; Overbeek et al., 1999) and

other combined methods (Franceschini et al., 2013). However, such

methods require associated metadata or contextual genomic informa-

tion. Here we present a solution to find functionally similar non-

orthologs that does not require gathering these metadata, but does re-

quire a dataset of positive and negative examples. We therefore rec-

ommend that word embedding be explored for function classification

involving dissimilar biological sequences.
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�Rehů�rek,R. and Sojka,P. (2010) Software framework for topic

modelling with large corpora. In Proceedings of the LREC 2010 Workshop on

New Challenges for NLP Frameworks. ELRA, Valletta, Malta, pp. 45–50.

Riley,M.A. and Wertz,J.E. (2002) Bacteriocins: evolution, ecology, and appli-

cation. Annu. Rev. Microbiol., 56, 117–137.

Rost,B. (1999) Twilight zone of protein sequence alignments. Protein Eng.,

12, 85–94.

Srivastava,N. et al. (2014) Dropout: a simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res., 15, 1929–1958.

van Heel,A.J. et al. (2013) Bagel3: automated identification of genes encoding

bacteriocins and (non-) bactericidal posttranslationally modified peptides.

Nucleic Acids Res., 41, W448–W453.

Verspoor,K.M. et al. (2012) Text mining improves prediction of protein func-

tional sites. PLoS One, 7, e32171.þ.

Walt,S. v d. et al. (2011) The numpy array: a structure for efficient numerical

computation. Comput. Sci. Eng., 13, 22–30.

Weber,T. et al. (2015) antismash 3.0 a comprehensive resource for the genome

mining of biosynthetic gene clusters. Nucleic Acids Res., 43, W237–W243.

Willey,J.M. and van der Donk,W.A. (2007) Lantibiotics: peptides of diverse

structure and function. Annu. Rev. Microbiol., 61, 477–501.

Zhang,R. et al. (2018) Predicting ctcf-mediated chromatin loops using

ctcf-mp. Bioinformatics (Oxford, England), 34, i133–i141.

Zwierzyna,M. and Overington,J.P. (2017) Classification and analysis of a large

collection of in vivo bioassay descriptions. PLoS Comput. Biol., 13, e1005641.

2016 M.-N.Hamid and I.Friedberg


