
AFRL-RH-FS-TR-2020-0001

Multimodal-Multifunctional Image
Fusion for Morphological and

Functional Evaluation of the Retina

Edward A. Pier
Oceanit

Joel N. Bixler
711th Human Performance Wing

Airman Systems Directorate
Bioeffects Division

Optical Radiation Bioeffects Branch

2 January 2020

Final Report - June 2014 to March 2020

Distribution A: Approved for public release;
distribution is unlimited. TSRL-PA-2020-
0143. The opinions expressed on this docu-
ment, electronic or otherwise, are solely those
of the author(s). They do not represent an en-
dorsement by or the views of the United States
Air Force, the Department of Defense, or the
United States Government.

Air Force Research Laboratory
711th Human Performance Wing
Airman Systems Directorate
Bioeffects Division
Optical Radiation Bioeffects Branch
JBSA Fort Sam Houston, Texas 78234

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of
contents or reconstruction of this document.

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the
Defense Technical Information Center (DTIC) (http://www.dtic.mil).

(AFRL-RH-FS-TR-) has been reviewed and is approved for publication in
accordance with assigned distribution statement.

"Multimodal-Multifunctional Image Fusion for Morphological and Functional Evaluation of the
Retina"

2020 - 0001

Digitally signed by SHORTER.PATRICK.D.1023156390
Date: 2020.02.10 07:46:18 -06'00'

MILLER.STEPHANI
E.A.1230536283

Digitally signed by
MILLER.STEPHANIE.A.1230536283
Date: 2020.03.22 11:38:38 -05'00'

PATRICK SHORTER, Major, USAF
Chief, Optical Radiation Bioeffects Branch

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD–MM–YYYY)

02-01-2020 Final Report June 2014 to March 2020

Multimodal-Multifunctional Image Fusion for Morphological
and Functional Evaluation of the Retina

FA8650-16-C-6678

H0LY

Edward A. Pier, Joel N. Bixler

Air Force Research Laboratory Oceanit
711th Human Performance Wing 828 Fort Street Mall
Airman Systems Directorate Suite 600
Bioeffects Division Honolulu, HI 96813
Optical Radiation Bioeffects Branch

Air Force Research Laboratory
711th Human Performance Wing
Airman Systems Directorate
Bioeffects Division
Optical Radiation Bioeffects Branch

711 HPW/RHDO

AFRL-RH-FS-TR-2020-0001

Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on
this document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the
views of the United States Air Force, the Department of Defense, or the United States Government.

Oceanit has developed RetinaView, a suite of tools for multi-modal retina image analysis and data fusion. RetinaView
includes tools for data management, image display, image registration, image fusion, and specialized display of OCT and
hyperspectral data. Its key innovations include: a relational database-backed data manager that presents as a reorderable
file system, curved en face slicing of OCT volumes, and an optimization of thin plate spline warps so they can be
computed in real time.

Retina Multi-Modal Image Fusion

U U U U 22
Joel N. Bixler

210-539-8172

This Page Intentionally Left Blank

TABLE OF CONTENTS

Section Page
List of Figures . i
1.0 INTRODUCTION . 1
2.0 VIPA AND PYTHA . 1
2.1 VIPA . 2
2.2 VIPA’s Capabilities . 4
2.3 Pytha, a Python Wrapper for VIPA . 4
3.0 DATA MANAGEMENT AND THE FILE BROWSER 5
4.0 INGESTING DATA AND THE ARCHIVE MANAGER 7
5.0 IMAGE VIEWER . 10
6.0 WARPER . 11
7.0 ALIGNER . 13
8.0 COMBINER . 14
9.0 SPECTRAL VIEWER . 16
10.0 OCT SLICER . 16
11.0 FEATURE FINDER . 17
LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 19

LIST OF FIGURES

Page
Figure 1 VIPA’s graphical development environment, known as “The Plumber” 2
Figure 2 The File Browser . 6
Figure 3 The Archive Manager . 8
Figure 4 The Ingest Wizard . 9
Figure 5 The Ingester . 9
Figure 6 The File Info window . 10
Figure 7 The Image Viewer . 11
Figure 8 The Warper . 12
Figure 9 The Warper Refiner . 12
Figure 10 The Aligner . 14
Figure 11 The Combiner . 15
Figure 12 The Spectral Viewer . 16
Figure 13 The OCT Slicer . 17
Figure 14 The Feature Finder. 18

i
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

1.0 INTRODUCTION
Researchers and clinicians have a broad range of imaging techniques available to evaluate
the health of the eye. These include conventional fundus imaging, Scanning Laser Oph-
thalmoscopy (Scanning Laser Ophthalmoscopy (SLO)), Optical Coherence Tomography
(Optical Coherance Tomography (OCT)), as well as multi- and hyperspectral imaging.
Additionally, various forms of visual function testing can produce spatially resolved data.

Previously, each instrument manufacturer provided proprietary processing, analysis, and
display software, but there was no openly available, general purpose tool that could fuse
data from all sources and modes. The proliferation of proprietary tools created the fol-
lowing problems:

• Users were denied the synergy that comes from integrating different modes of anal-
ysis.

• It was difficult to customize proprietary software to use new data types or algo-
rithms.

• Duplicated software development effort drove up the cost of imaging systems.

To address this need, Oceanit developed RetinaView, a cross-platform suite of tools ded-
icated to multi-modal retina image analysis and fusion. We describe RetinaView in detail
in the following sections.

2.0 VIPA AND PYTHA
Oceanit has faced a similar challenge with aerial reconnaissance imaging. There too, each
sensor manufacturer produces its own analysis and display software, making data fusion
difficult. Oceanit addressed this problem by creating a Versatile Image Processing Ar-
chitecture (Versatile Image Processing Architecture (VIPA)), which is a general purpose
platform for image analysis designed to fuse heterogeneous data. VIPA consists of pro-
cessing modules that act as sources, sinks and processors of data. Developers link these
modules in an intuitive graphical environment (see Figure 1) to create applications.

Much of the functionality needed for aerial reconnaissance (e.g. noise suppression, fea-
ture enhancement, image registration, data fusion, input/output, and display) is also useful
for ocular imaging, so we used VIPA to provide the underlying image processing func-
tionality for RetinaView. However, VIPA follows a stream-oriented paradigm that is not
conducive to the kind of event-based programming required for building user interfaces.
We therefore developed a Python wrapper for VIPA, known as “Pytha”, to provide this
functionality. We describe VIPA and Pytha below.

1
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

Figure 1. VIPA’s graphical development environment, known as “The Plumber”

2.1 VIPA

A software platform for analyzing and fusing ophthalmic data has the following require-
ments:

• Sensor agnostic — It must isolate hardware characteristics and data storage for-
mats from its internal representation of information.

• Extensible — Processing and registration of ocular images is the subject of ongoing
research. The system must accommodate new algorithms, imaging modes and data
formats for it to remain relevant into the future.

• Parallelizable — Image processing is compute intensive, and future advances will
only increase this burden. The software must be scalable to take advantage of mul-
tiple processors and massively parallel graphics processing units.

• Software Reuse — There is significant commercialization potential in licensing the
software to equipment manufacturers to reduce their software development costs.
To achieve these savings the software must allow existing components to be repur-
posed for each manufacturer’s needs.

• Rapid Prototyping — Software must serve, not restrict the user. The best way to
achieve this is to place the software in users’ hands and receive practical feedback

2
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

throughout the development cycle. It must be possible to create working prototypes
quickly with low enough cost to discard those that prove impractical.

These requirements demand a paradigm shift in software development methodology.
Conventional programming languages are cumbersome for image processing, because
they concentrate on low level pixel-by-pixel details. For this reason Oceanit has devel-
oped a Versatile Image Processing Architecture (VIPA). VIPA was designed from the
ground up to address the requirements listed above.

VIPA replaces traditional detail-intensive line-by-line text-based coding with a high level
graphical development environment. Developers assemble reusable software modules
into processing pipelines, through which images and other information flow. This modu-
lar design has several benefits.

VIPA’s modularity makes it instrument agnostic, because input and output are isolated
in modules that translate data file formats to and from VIPA’s internal representations.
Adding a new format only requires a new swappable module. VIPA has a rich set of
internal image data types, supporting color and grayscale images with floating point or
integer pixels of various bit depths. VIPA is not limited to images. It handles numbers,
text, booleans, vector graphics, sound and more. Developers can add new data types to
address a nearly unlimited problem space.

VIPA’s modularity also makes it extensible. With traditional text-based programming,
adding new functionality requires significant effort. With VIPA, a developer simply adds
a new module that is then guaranteed to interoperate with all existing modules. VIPA
modules can wrap well-tested and reliable third party and legacy code, saving consider-
able effort.

VIPA’s modularity promotes software reuse. All modules communicate using a uniform
protocol, so developers can reassemble modules written for one purpose to solve new
problems.

VIPA is an excellent rapid prototyping tool. Its high level structure relieves the developer
of pixel level details, and its graphical development environment provides an intuitive
visualization of data flow and powerful debugging tools, such as performance indicators
and module level tracing. Developers can create VIPA applications in minutes that would
take days using traditional text-based programming.

VIPA is parallelizable. It represents processing threads with “Pump” modules, which
developers can use to take advantage of multiprocessor hardware. They do not need to
worry about race conditions, synchronization, thread lock and other issues that plague
conventional multithreaded programming.

3
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

2.2 VIPA’s Capabilities

We list some of VIPA’s functionality below.

• Input/Output — VIPA can read and write all standard video formats and most still
image formats used in computer graphics. Additional formats are easy to add.

• Data display — VIPA has a graphics display module that can show multiple images
with line art and text overlays. Users can pan and zoom using intuitive gestures.

• Color — VIPA handles color and monochrome images and has modules for split-
ting images into Red/Green/Blue, and Hue/Saturation/Value color planes. It can
match colors using a perceptually accurate color distance and create false color
images.

• Transforms — VIPA has extensive support for spatially transforming images.
It treats transforms as data that users can create, manipulate, combine and dis-
play. VIPA supports affine transforms, homolographic transforms, camera distor-
tion transforms, thin plate splines and more.

• Registration — VIPA can register images using a number of techniques. These
include area-based techniques, such as phase correlation, and feature-based tech-
niques, which find and match distinctive features in a pair of images.

• Pixel value manipulation — VIPA can apply a broad range of linear and non-linear
operations to adjust brightness, contrast, and color balance.

• Computer vision — VIPA combines the OpenCV computer vision library with the
TensorFlow machine learning platform and custom algorithms to extract semantic
information from images. For example, edge detection and object recognition can
trace blood vessels in the eye, identify layers in OCT data and find other features
due to disease or injury.

2.3 Pytha, a Python Wrapper For VIPA

While VIPA’s modular, stream-oriented approach to data processing makes it possible to
construct sophisticated applications quickly, it is not well suited to event-based program-
ming, such as loading a file in response to a user request. VIPA’s “Plumber” graphical
development environment provides this level of user interaction, but it is not appropriate
for end-users, because it exposes too much low level functionality. Therefore, an end-user
application, such as RetinaView, requires a hybrid of VIPA and a traditional programming
language. We therefore created a set of Python bindings for VIPA, known as “Pytha”.

Python is a modern, high-level scripting language. It is designed for rapid development
and data analysis – features that dovetail well with VIPA. Python ranks among the top

4
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

four in most assessments of programming language popularity and is currently on the rise
as many top university computer science programs are beginning to use it as their core
teaching language.

Pytha can do the following:

• Load VIPA applications. Developers can create VIPA applications using the
Plumber and then integrate these into Python programs. Python can load multi-
ple applications and run them at the same time or separately in response to external
events or program states.

• Start, stop and reset VIPA applications. VIPA applications have a discrete lifes-
pan that ends when the data sources reach end of stream. Some data sources have
no end and therefore run indefinitely. The Plumber provides buttons to start an ap-
plication, stop it at an arbitrary time, and reset the application to the beginning of
the stream. Pytha can also perform these actions. For example, a Python program
could wait for the user to specify an input file before starting VIPA processing.
Then if the user specifies a subsequent input file, the Python application could stop
and reset the VIPA processing and then restart it after changing the input.

• Set module parameters. Pytha can adjust module parameters at runtime.

• Integrate Python and VIPA GUI components. Python has bindings for the Qt
Graphical User Interface (GUI) library used by VIPA. Developers can create GUI
components on the Python side and place them in the same layout with VIPA GUI
components. For example, a Python-controlled file menu could be used to set a
VIPA input filename module parameter.

• Pass data between Python and VIPA. This is accomplished by a pair of modules.
One passes data to an arbitrary Python callback function, and the other requests
data from a callback. This is particularly useful for saving and reloading the state
of a VIPA program (e.g. the warp transform between a pair of images) in response
to a user request.

3.0 DATA MANAGEMENT AND THE FILE BROWSER
RetinaView is designed to work with large archives of retina imaging data. Data man-
agement is a significant challenge for any data collection or analysis effort. The typical
approach is to define a file system directory structure. This has two main advantages: the
data are organized hierarchically for efficient searching, and file systems are familiar to
everyone and easy to navigate. The main draw-back of this approach is that one static
directory structure may not fit everyone’s needs. For example, the data collector might
prefer a chronological organization, while the data analyzer might prefer grouping by
characteristics of the images themselves.

5
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

A more sophisticated approach is to use a relational database to store image metadata.
This frees the data from a static, pre-defined organization, and lets users regroup the
data on the fly by querying the database. The down side of relational databases is that
they require the user to learn a query language, like SQL. While SQL is familiar to most
computer science majors, it is an unwelcome annoyance to most researchers.

Figure 2. The File Browser

RetinaView takes a hybrid approach that uses a relational database on the back end, but
presents a user interface that resembles a file system browser (see Figure 2). The unique
feature of the RetinaView file browser is that users can rearrange the simulated file system
hierarchy on the fly.

The core of RetinaView’s database is a single table with one row per file and columns
that list the metadata associated with each file. RetinaView places no restrictions on the
number of columns, their names, or content, so the user can customize this table to meet
the needs of a particular study or dataset.

The user interface presents icons that represent individual files. For images these are
thumbnails of the image itself. For other file types (e.g. text files), it uses representative
graphics. A file system directory structure maps onto an ordered list of database columns.
For example, at the top level of the hierarchy, we might organize the data by imaging
mode (Fundus, OCT, etc.), and then at the next level we might organize it by subject ID.
Users construct this list by selecting columns from a “combo box” GUI element. They

6
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

can then edit this list with mouse gestures, dragging to rearrange elements or clicking to
truncate the list.

Users navigate the hierarchy in the familiar way, by double clicking directory icons to
open them and using buttons to move up in the hierarchy or go back to a previous di-
rectory. In terms of the database, a particular directory corresponds to a set of specific
column values. These values are displayed at the top of the file browser in the file system
hierarchy editor.

One of the main purposes of RetinaView is to register and combine sets of images. The
File Browser indicates pairs of registered images using colored lines. By default the icons
are grouped to minimize the lengths of these lines. The user can also choose to display
the icons in raster order, sorted by any of the remaining columns.

The File Browser serves as the central access point for all of the RetinaView tools. Users
can open a file using its default tool by double clicking on it. They can also use a specific
tool by right-clicking on an icon and selecting the tool from a context menu. This behavior
mimics standard operating system file browsers.

Users can also select groups of files by clicking on them. A left click selects a single file.
A control-click toggles the selection state of a particular file, and a shift-click selects the
clicked file and every image registered with it. A set of buttons on the left hand side of
the File Browser lets the user combine the selected files in various ways.

4.0 INGESTING DATA AND THE ARCHIVE MANAGER
Datasets in RetinaView are organized into “archives”. Each archive has its own file prop-
erty table, meaning it can have its own set of metadata. To appear in the RetinaView File
Browser, an archive must be “ingested”. Ingesting a dataset, consists of creating the file
property table and generating the image icon thumbnails.

Because the metadata can be different for each archive, RetinaView uses a plugin archi-
tecture for ingesting data. Users can supply Python code that follows a simple API for
specifying the properties of a particular image. RetinaView comes with a number of plu-
gins written for RHDO laser lesion datasets and a generic plugin that extracts only simple
information about file format, etc.

Because imaging datasets can be large, RetinaView does not copy ingested files into
dedicated disk storage. The idea is that the data are already archived in a way that was
convenient for the data collector and is accessible to the data analyzers, typically on a
shared file system.

Because RetinaView does not control the file storage, there is always a danger that the data
could be moved so that RetinaView could no longer locate it. To address this problem,

7
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

RetinaView identifies files by their cryptographic hashes. This way we associate metadata
with the file itself and not its location in the file system. Should the data be moved,
RetinaView could recover by searching the modified file system and recomputing the
hashes. As an added benefit RetinaView can also identify redundant copies of the same
file and file corruption that happens after ingest.

Figure 3. The Archive Manager

The user initiates a new ingest via the Archive Manager (see Figure 3), which can be
launched from the File Browser. The Archive manager allows the user to “attach” to an
archive that was previously ingested by a different user, “detach” an archive to no longer
include it in the local list of available archives but still leave it available for others, and
“remove” an archive, deleting its database tables and any generated files but leaving the
original data intact.

While archive data may be located on a network shared file system, different users may
not necessarily mount this file system the same way. Therefore, RetinaView provides
a mechanism for specifying a different file system path prefix for a previously ingested
archive. The Archive Manager’s “Find Data” button initiates this process.

The parameters for an ingest are specified by the Ingest Wizard (see Figure 4), which steps
the user through a series of input pages. The user specifies the directories to recursively
search for data, the name of the archive, the directory in which to store generated files,
and the Uniform Resource Locator (URL) of a database server. This allows users to create
archives locally or for sharing with others. Finally, the user selects the ingest plugin.

After entering the ingest parameters, RetinaView presents the Ingester (see Figure 5),
which lists the ingested files, displays the generated thumbnails, and indicates progress.

After ingest, users can edit the metadata for a file by opening it with the File Info tool
(see Figure 6). Users can also associate free-form text notes with each file and add new

8
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

Figure 4. The Ingest Wizard

Figure 5. The Ingester

columns to the file properties table.

9
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

Figure 6. The File Info window

5.0 IMAGE VIEWER
The most basic thing to do with an image is display it. The Image Viewer (see Figure 7)
handles this. Users can adjust the brightness and contrast using the sliders on the right
and can pan and zoom using mouse gestures.

Users can also mark regions of interest and distance-measuring rulers on the image. Re-
gions of interest can be drawn free-form, as circles, or pixel by pixel. Users can select and
drag existing regions of interest. Users can also save these markings to disk and reload
them later. If a pair of images are registered, then markings created on one image will
automatically be transformed to the other.

10
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

Figure 7. The Image Viewer

6.0 WARPER
The key feature of RetinaView is the ability to fuse images taken with a broad range of
instruments. To do this it must be able to register images related by arbitrarily complex
transforms. RetinaView’s primary tool for registering images is the Warper (see Figure 8).
The Warper displays a pair of images with the second (top) image transformed by a thin
plate spline warp. A slider at the bottom controls the transparency of the top image and a
button on the left allows the user to “blink” between the two images.

A thin plate spline is a mathematical technique for interpolating smoothly in two dimen-
sions between a set of arbitrarily placed points. The warper allows the user to place and
move these control points with mouse gestures. Typically, the user places control points
on prominent features in the top image and then drags the control point to the correspond-
ing feature in the bottom image.

Thin plate splines are computationally expensive. Ordinarily, a typical computer would
not be able to display updates to the warp in real time as the user drags control points.
RetinaView deals with this by approximating the warp with a piecewise set of affine
transforms. This approximation can speed up the transform by a factor of a hundred or
more.

11
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

Figure 8. The Warper

Figure 9. The Warper Refiner

A button on the left of the Warper triggers the Warp Refiner (see Figure 11), which uses
phase correlation to optimize the placement of the control points. Phase correlation is
a Fourier Transform-based technique that finds the optimal horizontal and vertical shift
between a pair of images. It is computationally efficient and robust against noise, but it
only works with images related by a translation. As long as the warp is roughly correct,

12
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

the transform in the local neighborhood of a control point is well approximated by a
translation.

The result of the phase correlation calculation is an image where each pixel corresponds to
a possible translation. The pixel brightness indicates the similarity of the original images
after applying that translation. The Warp Refiner shows these correlation images so that
the user can judge the quality of the resulting refinement. When phase correlation fails,
the correlation image shows no clear bright spot. In this case the user may want to remove
or replace the offending control point.

Users can save warps to external files or into the images’ archive. Warps saved to the
archive are indicated by connecting lines in the File Browser and can be used to transform
regions of interest and other markings in the Image Viewer. Users can also load warps
from disk or from the archive.

7.0 ALIGNER
The Warper is a powerful tool for registering arbitrary pairs of images, but it is only semi-
automated. RetinaView can also use phase correlation to register large sets of images
automatically with the Aligner (see Figure 10). As described in the previous section,
phase correlation is limited to images related by a translation. It is mostly useful for sets
of images taken in a time series with a single instrument, such as RHDO’s hyperspectral
imager.

The first step in using the Aligner is to specify the sets of images that it is to work on
in the File Browser. The user constructs a directory structure and then navigates to a
particular directory in that structure. The Aligner will then operate on each bottom level
subdirectory of the current directory. This allows the user to arbitrarily select and group
the data according to its metadata.

For each set of N images there are N(N − 1) pairs of images to which phase correlation
can be applied. It takes a minimum of N −1 pairs to determine the registration between
any two images, because the transforms can be chained, but additional transforms can be
used to improve the accuracy of the overall solution by doing a least-squares fit.

There are two problems with computing every possible transform. First, it can be compu-
tationally prohibitive for large N. Second, while images adjacent in time may be related
by small translations, the accumulated drift between images far apart in time may be large
enough that the transform is not well approximated by a translation. In this case phase
correlation may fail or produce inaccurate results.

The Aligner uses the following strategy. First, it computes the warps between adjacent
images. It then computes a first approximation of the global transform between all images
and extracts the set of all images whose transform is less than some maximum size. From

13
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

Figure 10. The Aligner

this set it selects 1000 images for additional phase correlation calculations. Finally, it
recomputes the global transforms from all N + 999 pairs. This gives an accurate solution
with a computation time that scales linearly with N.

The Aligner shows the correlation image for each pair and a plot indicating the pairs that
it has considered. It also shows the global progress through the image sets. It saves the
resulting warps to the archive. Note that a translation is just a warp defined by a single
control point.

8.0 COMBINER
The Combiner (see Figure 11) fuses images that have been registered with the Warper or
the Aligner. There are many ways to combine images, so the Combiner has a pluggable
architecture that can accommodate additional fusion algorithms in the future. The current
ways of combining images are:

• Average — This individually computes the average of the red, green, and blue
color channels of the images and recombines the result into a single color image.
The main advantage of averaging images is that it reduces noise. To maintain the
full benefit of this noise reduction, the Combiner saves the average as a losslessly

14
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

compressed TIFF image with 16 bits per color channel. These images are large, so
the user can export them from the File Browser as 8 bit per channel JPEG or PNG
images for display.

• Video — This produces an MPEG4 video showing the images in sequence. This
can be useful for showing change over time.

• Color Mapped — If the archive has a “wavelength” metadata column, then the
Combiner can create a color image with the red, green and blue color channels
computed as weighted averages. The weight depends on the wavelength in such a
way as to mimic the color response of the human eye. This is useful for hyper- and
multispectral data.

• Cube — This produces a three dimensional data structure with each layer of the
cube corresponding to a different image. The resulting cubes can be displayed with
the Spectral Viewer described below.

Figure 11. The Combiner

The user starts the Combiner from the File Browser by first selecting a set of images and
then clicking the appropriate button for the desired algorithm.

15
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

9.0 SPECTRAL VIEWER
The Spectral Viewer (see Figure 12) displays hyperspectral datasets that have been com-
bined into a cube. On the left the Spectral Viewer contains an embedded Image Viewer.
By default the Image Viewer displays one of the images used to create the cube. The user
can then mark regions of interest in this image, and the Spectral Viewer will plot their
averaged spectra on the right.

Figure 12. The Spectral Viewer

The user can display other images by dragging them from the File Browser onto the Image
Viewer, as long as the image is registered to the cube. A common practice is to display a
low noise average or color mapped image instead of the default image.

The user can save the spectra to a text file by clicking the button under the plot.

10.0 OCT SLICER
Optical Coherence Tomography (OCT) is a 3D imaging technique that has become the
workhorse of ophthalmology. Many clinicians (particularly retina specialists) now forego
the traditional fundus camera for a combined SLO/OCT imager. RetinaView has an OCT
Slicer tool (see Figure 13) for displaying this OCT data.

The traditional way to view OCT data is to display individual B-scans (vertical slices into
the retina) and allow the user to scroll through the scans. The OCT Slicer provides this
capability along with the ability to slice along the other two Cartesian axes to provide
transverse and en face views. However, the retina is curved, so a flat en face slice is of
limited usefulness. To compensate, the OCT Slicer can also slice along curved slices that

16
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

Figure 13. The OCT Slicer

mimic the curvature of the anatomical layers of the retina. Oceanit has been awarded a
patent for this visualization technique. The user can choose between the Inner Limiting
Membrane (ILM) and Retinal Pigment Epithelium (RPE) layer shapes. The user can also
display a 3D rendering of intersecting B-scan and curved en face slices. The position of
the slices is controlled with sliders.

The user can save slice images. One possible use case is to extract a slice just below the
ILM that shows the blood vessels. This image can then be registered with other modalities
using the Warper.

The OCT Slicer reads Heidelberg Spectralis “vol” files. These files contain the imaging
data plus Three Dimensional (3D) voxel scaling data and the ILM and RPE layer shapes
used for curved slicing.

11.0 FEATURE FINDER
RetinaView has preliminary support for using machine learning to detect features within
images. The Feature Finder uses TensorFlow, which is Google’s widely used open source
platform for training and evaluating neural nets. Users must separately install The Ten-
sorFlow C API from https://www.tensorflow.org/install/lang c . It is available for Linux,
Windows and MacOS.

17
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

Figure 14. The Feature Finder.

The Feature Finder is currently designed to run a specific machine learning model that is
trained to detect laser lesions in fundus images. It first flattens the image by subtracting
a 200 pixel Gaussian-smoothed version of each color channel. It then divides the im-
age into a series of overlapping 150x150 pixel “thumbnails” and evaluates the model on
each. If the model indicates that a laser lesion is present in a given thumbnail, then the
FeatureFinder marks the image with a a green circle (see Figure 14).

While we have demonstrated 95% or better accuracy with our laser lesion detection
model, false positives are inevitable, given the large number of thumbnails in a typical
fundus image. The Feature Finder therefore includes a slider that lets the user interac-
tively adjust a confidence threshold. This lets the tool support a range of use cases, from
an agressive check for anything resembling a lesion to a conservative check that is not
likely to cause unnecessary alarm.

While this project has come to completion, future, separately funded work could gen-
eralize the Feature Finder to accomodate user-supplied TensorFlow models and pre-
processing algorithms.

18
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS
3D Three Dimensional

GUI Graphical User Interface

ILM Inner Limiting Membrane

OCT Optical Coherance Tomography

RPE Retinal Pigment Epithelium

SLO Scanning Laser Ophthalmoscopy

URL Uniform Resource Locator

VIPA Versatile Image Processing Architecture

19
Distribution A: Approved for public release; distribution is unlimited. TSRL-PA-2020-0143. The opinions expressed on this

document, electronic or otherwise, are solely those of the author(s). They do not represent an endorsement by or the views of the
United States Air Force, the Department of Defense, or the United States Government.

