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ABSTRACT

The initial-state sensitivity and optimal perturbation growth for 24- and 36-h forecasts of low-level ki-

netic energy and precipitation over California during a series of atmospheric river (AR) events that took

place in early 2017 are explored using adjoint-based tools from the Coupled Ocean–Atmosphere Meso-

scale Prediction System (COAMPS). This time period was part of the record-breaking winter of 2016–17 in

which several high-impact ARs made landfall in California. The adjoint sensitivity indicates that both low-

level winds and precipitation are most sensitive to mid- to lower-tropospheric perturbations in the initial

state in and near the ARs. A case study indicates that the optimal moist perturbations occur most typically

along the subsaturated edges of the ARs, in a warm conveyor belt region. The sensitivity to moisture is

largest, followed by temperature and winds. A 1 g kg21 perturbation to moisture may elicit twice as large a

response in kinetic energy and precipitation as a 1m s21 perturbation to the zonal or meridional wind. In an

average sense, the sensitivity and related optimal perturbations are very similar for the kinetic energy and

precipitation response functions. However, on a case-by-case basis, differences in the sensitivity magnitude

and optimal perturbation structures result in substantially different forecast perturbations, suggesting that

optimal adaptive observing strategies should be metric dependent. While the nonlinear evolved pertur-

bations are usually smaller (by about 20%, on average) than the expected linear perturbations, the optimal

perturbations are still capable of producing rapid nonlinear perturbation growth. The positive correlation

between sensitivity magnitude and wind speed forecast error or precipitation forecast differences supports

the relevance of adjoint-based calculations for predictability studies.

1. Introduction

The ‘‘water’’ year spanning 1October 2016–30 September

2017 brought record or near-record setting rainfall across

much of California. The northern Sierra received an av-

erage of 94.7 in., breaking the previous record, set in the

1982/83 El Niño year, by more than 6 in., as detailed in a

NOAA report.1 This report also notes that while 83.6%

of California was in a drought state (with 21% in an ex-

ceptional drought state) at the beginning of the water

year, only 8% of California was in a drought state at the

end of the water year (and no area of California was in

an exceptional drought state). Much of the precipitation

occurred during January and the first three weeks of

February 2017. The storms during these twomonths had

enormous hydrological impacts, including mudslides

and widespread flooding, and were often accompanied

by high winds. A description of these storms and their

hydrological impacts is given in detail by the NOAA

California Nevada River Forecast Center.2

Much of the precipitation that fell during the January–

February 2017 period was associated with atmospheric

rivers (ARs), which are long corridors of strong horizontal

moisture vapor transport, and account for more than

90% of the water vapor transport outside of the tropics

(Zhu and Newell 1998; Ralph et al. 2004, 2017, 2018;
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Gimeno et al. 2014). When the moist air associated with

ARs is lifted over coastal mountains, they can be asso-

ciated with large amounts of precipitation and flooding

(Ralph et al. 2006;Dettinger et al. 2011; Lavers et al. 2011;

Neiman et al. 2011; Lavers and Villarini 2013; Ramos

et al. 2015). Hazards associated with land-falling ARs are

not limited to flooding, as they are often accompanied

by high winds. Waliser and Guan (2017) find ARs are

typically associated with a doubling of near-surface

wind speeds compared to all storm conditions. Despite

continuing advances in numerical weather prediction

(NWP) skill, there are still challenges associated with

short-term forecasts of ARs. Lavers et al. (2016a) find

that larger forecast uncertainty in integrated vapor

transport (IVT) in the NCEP Global Ensemble Fore-

cast System (GEFS) occurs with cyclonic conditions over

the North Pacific (associated with more frequent ARs

and extreme hydrological events over western North

America) than occurs during anticyclonic conditions.

Lavers et al. (2016b) find that an extreme forecast

index (EFI) based on IVT from the European Centre

for Medium-Range Weather Forecasts (ECMWF)

ensembles is not as skillful at predicting extreme pre-

cipitation events at short lead times as an EFI based di-

rectly on precipitation. DeFlorio et al. (2018) find that

the percentage of ECMWF ensemble members that

correctly capture an AR landfall within 250 km drops

below 75% within 48 h (their Fig. 4).

Given these impacts and associated forecasting chal-

lenges, ARs have been the subject of field campaigns

including CALJET, PACJET, and Calwater (Ralph et al.

2005, 2016) and the 2018 AR reconnaissance program

(Ralph 2018). In these field experiments dropsonde are

deployed from research aircraft to gather in situ in-

formation on the winds, temperature, and moisture

within theARs and in nearby regions of interest (Ralph

et al. 2017) for process studies, model verification and

validation, and forecast improvement. Lavers et al. (2018)

use the 2018 AR reconnaissance dropsondes assimilated

into the ECMWF Integrated Forecast System (IFS) to

evaluate AR structure representation and determine the

primary sources of errors in water vapor flux forecasts.

While the AR structure is generally well captured,

short-range forecast errors of water vapor fluxes are

about 22% of the mean observed flux. These errors are

related to uncertainties in winds (primarily) and moisture

near the top of the boundary layer.

Motivated by high socioeconomic impacts coupled

with continuing forecast challenges, we examine how

short-term forecasts of winds and precipitation over

California in January and February 2017 are sensitive to

changes in their initial states. For this task we use an ad-

joint method, which allows for the efficient calculation of

how a particular forecast measure (response function)

is sensitive to changes in the initial state (Errico 1997).

Adjoint and related singular vector techniques have been

applied to extratropical cyclones and baroclinic systems

in the context of simplified models (e.g., Farrell 1989;

Langland et al. 1995), dynamics and predictability studies

(e.g., Buizza and Palmer 1995; Gelaro et al. 2000;

Reynolds et al. 2001; Kleist and Morgan 2005), forecast

error sensitivity (e.g., Rabier et al. 1996), and targeted

observations (see review paper by Majumdar 2016). The

metric or response function (RF) in previous studies is

usually total energy or kinetic energy (KE). Exceptions

include the use of convective available potential energy

(Stappers andBarkmeijer 2011) and precipitation (Errico

et al. 2003; Mahfouf and Bilodeau 2007; Zhou and Cui

2015). As ARs are often associated with high winds

and intense precipitation, we consider both KE and

precipitation RFs.

This study is motivated in part by Doyle et al. (2014),

who use the forecast and adjoint system of the Navy

Coupled Ocean–Atmosphere Mesoscale Prediction Sys-

tem (COAMPS; Hodur 1997) to evaluate the sensitivity

of a rapidly intensifying Atlantic extratropical cyclone

to changes in the initial state. They find that forecasted

low-level KE of the storm is most sensitive to small

filaments of moisture within an AR, specifically along

the warm front and within the warm conveyor belt

(WCB; Carlson 1980; Wernli 1997). The WCB is the

region of sloped ascending air in the warm sector of

extratropical cyclones and typically flows northward

parallel to the cold front, ascending over the warm

front. Binder et al. (2016) find a moderate to strong cor-

relation between WCB strength and Northern Hemi-

sphere extratropical cyclone intensification. ARs (or

components of ARs) are often associated with strong

vapor transport found within WCBs (e.g., Cordeira

et al. 2013; Grams and Archambault 2016).

The importance of moisture transport in storm evolu-

tion has also been found using other techniques. Schäfler
and Harnisch (2015) find that changes to warm conveyor

belt inflow introduced through the assimilation of air-

borneDIALwater vapor data produce significant forecast

changes to low-level potential vorticity (PV) production,

tropopause height, and jet stream wind speed. Zhang

and Meng (2018) use ensemble-based sensitivity anal-

ysis (Torn and Hakim 2008, 2009) to identify the key

synoptic factors that impact precipitation during a heavy

rainfall event in southern China. They find that the fore-

cast skill and uncertainty of rainfall is mainly associated

with the characteristics of the low-level jet in regions of

strong moisture transport. Other ensemble-based sen-

sitivity analyses using a precipitation metric include

Schumacher (2011), Lynch and Schumacher (2014),
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Bednarczyk andAncell (2015), and Yu andMeng (2016).

Varied results in these studies indicate that forecast sen-

sitivity will be very case dependent. In addition, results

are sensitive to the choice of metrics for ensemble sen-

sitivity (e.g., Zheng et al. 2013; Chang et al. 2013; Smith

and Ancell 2017) and adjoint sensitivity and related sin-

gular vector techniques (e.g., Palmer et al. 1998; Errico

et al. 2003;Mahfouf and Bilodeau 2007; Doyle et al. 2019,

manuscript submitted to Mon. Wea. Rev.).

The purpose of this study is to 1) identify the regions

and variables in the initial state that have the greatest

potential impact on the 24–36-h forecasts of ARs along

the U.S. West Coast and 2) compare sensitivity based

on a KE RF to that based on a precipitation RF in a

systematic manner. We will use the COAMPS forecast

and adjoint system as was used for the Atlantic extra-

tropical cyclone study by Doyle et al. (2014) and will

consider both a lower-tropospheric KE RF and an ac-

cumulated precipitationRF (Doyle et al. 2019,manuscript

submitted toMon.Wea. Rev.). These findings can provide

guidance onwhere reducing analysis uncertaintymay have

the biggest impact on forecast error, and where capturing

that analysis uncertainty in ensemble design is most im-

portant. We will also be able to determine if these key

aspects of analysis uncertainty are different for forecasts

of winds versus forecasts of precipitation. Section 2 de-

scribes the methodology and systems used. Section 3

describes a case study. Section 4 describes the general

results based on the 7-week period of high-impact rainfall

events over California in January and February 2017. A

summary and conclusions is presented in section 5.

2. Methodology

a. Adjoint sensitivity and optimal perturbations

A detailed description of the adjoint sensitivity meth-

odology employed here is provided in Doyle et al. (2012).

The brief description provided here follows closely the

description in Reynolds et al. (2016). The sensitivity of a

forecast metric J (for model state xt at time t) to each

component of an earliermodel state (xt0) is represented as

J(x
t
)5 J[M(x

t0
)] , (1)

where J is theRF andM is the nonlinearmodel [see Errico

(1997) for a detailed description of an adjoint model]. The

gradient of J with respect to the initial model state is

›J

›x
t0

5MT ›J

›x
t

, (2)

whereM is the tangent linear model ofM and superscript

T denotes the transpose. We compute ›J/›xt through

differentiation of J with respect to the model state at

time t; Jmust be a differentiable and continuous function.

In this paper we make use of adjoint-derived optimal

perturbations (Errico and Raeder 1999; Rabier et al.

1996; Oortwijn and Barkmeijer 1995) to examine how

fast-growing perturbations impact precipitation and

winds over our area of interest. The production of these

optimal perturbations follows that used in Doyle et al.

(2012) and Doyle et al. (2014). Perturbations to the RF

J are expressed as

J0 5�
j

›J

›x
j

x0j , (3)

where ›J/›xj is the gradient of the RF with respect to

the jth initial-state component. The jth component of

the perturbation vector x0 is optimal when defined such

that

x0j 5
s

w
j

›J

›x
j

, (4)

for weights wj. The method for obtaining weights and

scaling parameter s is detailed inDoyle et al. (2014). The

scaling s (units of J21) is chosen such that the largest

perturbation of the water vapor, potential temperature,

or zonal wind speed at initial time does not exceed

1 g kg21, 1K, or 1ms21, respectively. These perturba-

tion magnitudes are chosen such that they are compa-

rable to or smaller than errors assigned to radiosonde

and dropsonde observations in the data assimilation

system [1K, 1.8m s21, and 10% relative humidity at

925 hPa (;1–1.5 g kg21)]. The optimal perturbations

are calculated for potential temperature, the Exner

pressure perturbation, mixing ratio, all wind speed

components, and microphysical species.

b. Forecast and adjoint system

The COAMPS forecast and adjoint system is described

in detail in Doyle et al. (2012). COAMPS (Hodur 1997) is

the nonhydrostatic mesoscale model used for diverse re-

search applications andU.S. Navy operational forecasting.

The atmospheric physical parameterizations include a

modified Kuo-type convective parameterization (Molinari

1985), modified version of Rutledge and Hobbs (1983)

cloud microphysical processes, a surface-layer parame-

terization (Louis et al. 1982), and prognostic TKE equa-

tion (Hodur 1997).

The COAMPS tangent linear and adjoint models are

described in detail in Amerault et al. (2008). Identical

physical parameterizations are used in the nonlinear,

tangent linear, and adjoint models, including ice-phase

microphysics. However, long- and shortwave radiative
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processes are ignored in the TLM and adjoint in order to

avoid highly nonlinear components of the physics (these

processes are included in the nonlinear forecasts). The

COAMPS forecast and adjoint systems have been used

for tropical cyclone (TC) predictability studies (Doyle

et al. 2011, 2012; Reynolds et al. 2016), targeted observing

for TCs (Reynolds et al. 2010), predictability studies of

severe extratropical TCs (Doyle et al. 2014), and to sup-

port the DEEPWAVE (Fritts et al. 2016), NAWDEX

(Schäfler et al. 2018), and 2018 ARs Reconnaissance

(Ralph 2018) field projects.

c. Experimental design

COAMPS forecasts are run out to 24h and 36h every

12h for the period including the intensive California

rainfall events in early 2017. The COAMPS forecasts are

run starting from initial conditions based on the NOAA

Global Forecast System (GFS) analyses every 0000 and

1200 UTC, starting at 0000 UTC 1 January–1200 UTC

19 February 2017. The horizontal resolution is approxi-

mately 36km and the domain extends to an altitude of

30km with 40 vertical levels. COAMPS is run in an un-

coupled mode with SSTs taken from the Navy Coupled

Ocean Data Assimilation (NCODA) system 3D-Var

analysis that remain fixed through the forecast in-

tegration. The choice to run COAMPS in uncoupled

mode with fixed SSTs mimics the setup of most current

operational regional forecast systems. However, op-

erational centers such as ECMWF, Met Office, and

Environment Canada are finding benefits in ocean cou-

pling for lead times as short as a few days (e.g., Smith et al.

2018). In future studies, we plan to examine both the

COAMPS adjoint sensitivity of AR forecasts to changes

in the fixed SST and to examine the impact of ocean

coupling onAR forecasts using the COAMPS interactive

ocean capability. The domain covers most of the central

and eastern North Pacific and western third of the con-

tiguous United States, with lateral boundaries at 88N,

578N, 1738E, and 1038W.Lateral boundary conditions are

provided by GFS forecasts. The RF box is centered over

the central-southern U.S. West Coast and adjoining

ocean region with lateral boundaries at 338N, 40.58N,

1258W, and 117.58W, and contains most of California,

including the coastal ranges and Sierra Nevada (de-

noted by the black rectangle in Fig. 1).

As noted in the introduction, ARs are often accom-

panied by strong, sometimes damaging winds as well as

intense precipitation. As such we are interested in in-

vestigating the differences between adjoint sensitivity

and related optimal perturbations for metrics that re-

flect both wind and rainfall. For the purpose of identi-

fying the sensitivity of the forecasted low-level wind

speeds to changes in the initial state, we use a KE RF.

The KE RF is defined as the KE in the RF box between

the surface and 1000m at the forecast final time (either

24 or 36 h). Given that we are interested in the sensi-

tivity of the forecast to changes in the initial state, the

optimization time (i.e., the forecast range over which

the adjoint calculation is performed) is equivalent to the

forecast length. To identify the sensitivity of forecasted

rainfall to changes in the initial state, we use a pre-

cipitation (PR) RF. The precipitation response function

differs from that of other typical response functions in

that J is a forecast metric that is accumulated over time,

rather than instantaneously. J can be defined as pre-

cipitation accumulated over any specified forecast time

interval. Here, the PR RF is defined as the total accu-

mulated precipitation within the RF box between 21h

and 24 h in the 24-h forecasts. The PR RF only pro-

vides meaningful results when the forecast has some

precipitation in the RF box over the later part of the

forecast. In the 36-h forecast, a longer (6 h) period of

precipitation accumulation (between 30 and 36h) is

chosen to compensate for the fact that precipitation

timing errors are more likely in 36-h forecasts than 24-h

forecasts.

In our comparisons, we are excluding the COAMPS

forecasts when precipitation does not fall in the RF

box. While the KERF cases are not subject to the same

constraint, we exclude the same dry cases from both the

KE and PR RF experiments so as to make a clean com-

parison between the two. The KE RF 24- and 36-h ex-

periments are denoted as KE24 and KE36 respectively.

The PR RF cases are likewise denoted as PR24 and

PR36. Table 1 describes these experiments and also

gives a list of the ‘‘dry’’ dates that are excluded from

the set. For this particular set up, given the fairly large

RF box and short forecast lead time, COAMPS has

at least some rainfall for all the significant rain events.

Most of the excluded cases occur during relatively dry

breaks between rain events as noted in the California

Nevada River Forecast Center’s analysis.3 The PR RF

does work for all of the most significant rain events

(e.g., dates with over 2 in. of 24-h precipitation in the

northern Sierra ending at 1200 UTC 4, 8, 9, 11, and

19 January, and 7, 9, 10, and 21 February). Nevertheless

it should be kept in mind that the PR RF is limited by

the fact that it will not work in cases where the nonlinear

forecast completely misses a rain event, which is more

likely at longer forecast lead times and for smaller RF

regions.An alternativemay be to consider anRF related

to precipitation, such as IVT. When comparing the two

RFs, we use the adjoint sensitivity-derived optimal

3 https://www.cnrfc.noaa.gov/storm_summaries/janfeb2017storms.php.
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perturbations, as the unit difference between the actual

sensitivity fields makes quantitative comparison diffi-

cult. The spatial patterns of the sensitivity and optimal

perturbations are the same.

As described in section 2a, an optimal perturbation is

constructed from each sensitivity pattern and propa-

gated forward in time using the COAMPS tangent

linear model. This optimal perturbation is also added

to the initial conditions and a subsequent ‘‘nonlinear-

perturbed’’ COAMPS forecast is produced. The non-

linear perturbation is defined as the difference between

the control forecast and this perturbed forecast. We

compare the nonlinear and linear perturbations to assess

the appropriateness of the tangent linear assumption.

From previous studies (Reynolds and Rosmond 2003;

Ancell andMass 2006) it is shown that smaller scales and

simulations at finer resolutions become nonlinear faster

than larger scales and simulations at coarser resolutions.

The choice of a 36-km resolution provides a good rep-

resentation of the ARs and synoptic-to-mesoscale vari-

ability while allowing for a reasonably good match

between nonlinear and linear perturbation growth (as

discussed in section 4). It is also of comparable resolu-

tion to that used in Doyle et al. (2012), Jung et al.

(2013), and Reynolds et al. (2016), and finer than the

O(100) km resolution or larger used in several previous

studies (e.g., Peng and Reynolds 2006; Kim and Jung

2009; Lang et al. 2012). However, it does not capture

finescale details in precipitation related to topography,

and we plan further studies using nested high-resolution

FIG. 1. Initial-time optimal perturbations and analysis fields for (a),(b) KE24 and (c),(d) PR24 for 1200UTC 6 Feb 2017. (a),(c) Control

analyzed 700-hPawater vapor (g kg21, gray shading), IVT (black vectors, greater than 300 kgm21 s21), SLP (green contours), and 700-hPa

water vapor optimal perturbation [contour interval (ci)5 0.05 g kg21, positive values red, negative values blue]. (b),(d) Analyzed 700-hPa

wind speed (m s21, gray shading), wind vectors (black vectors, greater than 12m s21), SLP (green contours), and 700-hPa optimal per-

turbation wind speed (wind speed of the perturbed analysis 2 wind speed of the control analysis, ci 5 0.01m s21, positive values red,

negative values blue). Straight black lines correspond to cross-sectional locations shown in Fig. 2.
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adjoint simulations to look at (e.g., flooding in specific

hydrological drainage basins).

3. Case study

While our primary purpose is to describe the general

characteristics of the KE and PR sensitivities, we start

with a case study to provide context for the general

results that follow. For the case study we have chosen a

date during a prolonged period of heavy rainfall over

California in early February 2017. It was during this

period that the Oroville Dam crisis occurred. The

Oroville Dam is on the Feather River in Northern

California, located at 39.548N, 121.498W. A timeline of

events is provided by California Department of Water

Resources report.4 Between 6 and 10 February 2017,

330mm of rain fell on the Feather River basin. The

main spillway was damaged on 7 February, leading to

the use of the emergency spillway, the rapid erosion

and potential collapse of which led to the evacuation of

188000 people on 12 February. Fortunately the weir as-

sociated with the emergency spillway did not collapse.

We consider the sensitivity-based optimal perturba-

tions for KE24 and PR24 initialized at 1200 UTC

6 February 2017. Figures 1a and 1c show the initial

optimal perturbations (with structures based on the

adjoint sensitivity) for the 700-hPa water vapor (red

and blue contours) superimposed upon the analyzed

700-hPa water vapor (gray shading), IVT (black vec-

tors), and SLP (green contours) for KE24 (Fig. 1a)

and PR24 (Fig. 1c). Figures 1b and 1d show the speed of

the 700-hPa wind optimal perturbations (red and blue

contours), superimposed on the analyzed 700-hPa wind

speed (gray shading), wind vectors (black vectors) and

SLP (green contours). The perturbations are very small

by construction, with max water vapor perturbations

less than 0.44gkg21 and max wind speed perturbations

less than 0.1ms21 (the maximum perturbations within

the full domain are less than 1gkg21, 1ms21, and 1K for

moisture, winds, and temperature, respectively). The

water vapor perturbations are generally within or on the

northern flank of the AR along the cold front and WCB

region. The PR24 perturbations extend farther to the SW

than the KE perturbations. This is consistent with Doyle

et al. (2014) who show that the rapidly intensifying

Atlantic extratropical cyclone Xynthia is most sensitive

to finescale filament structures in the low-level moisture

of an AR associated with the WCB. The wind speed

perturbations occur in similar locations, within and to

the north of the main wind speed maximum, although

the PR24 pattern has considerable amplitude to the

south of this feature as well. The largest wind speed

perturbations (and largest sensitivity) occur in the vi-

cinity of the WCB inflow region. There are also signifi-

cant moisture perturbations in the WCB inflow region,

but the largest moisture perturbations (and moisture

sensitivity) are in the ascent region of theWCB near the

junction of the warm and cold fronts. The wind pertur-

bations act to enhance the convergence associated with

the cold frontal wave in the vicinity of 318N, 1488W.

Meridionally oriented vertical cross sections are

shown at 1448W(the longitude with the largest vertically

integrated absolute value of moisture sensitivity for

KE24) for the water vapor sensitivity (red and blue

contours) superimposed on the relative humidity (gray

shading), potential temperature (green contours) and

TABLE 1. Description of the sensitivity experiments. Forecasts and adjoint sensitivities are run every 0000 and 1200 UTC from

0000 UTC 1 Jan 2017 to 1200 UTC 19 Feb 2017 with the exception of cases excluded because of no rain in the COAMPS forecast in the

response function domain.

Name Response function Optimization time Cases excluded

KE24 24-h forecast kinetic energy below 1000m 24 h 1200 UTC 5 Jan, 1200 UTC 15

Jan–1200 UTC 16 Jan, 1200 UTC

24 Jan, 0000 UTC 26 Jan, 1200 UTC

27 Jan–1200 UTC 31 Jan, 1200 UTC

4 Feb, 0000 UTC 12 Feb–1200 UTC

14 Feb, 0000 UTC 18 Feb

PR24 21–24-h forecast accumulated

precipitation

KE36 36-h forecast kinetic energy below 1000m 36 h 1200 UTC 5 Jan, 0000 UTC 12 Jan,

0000 UTC 15 Jan–1200 UTC 16 Jan,

1200 UTC 23 Jan, 0000–1200 UTC

25 Jan, 0000 UTC 27 Jan–0000 UTC

30 Jan, 0000 UTC 31 Jan, 0000 UTC

10 Feb, 0000 UTC 11 Feb–1200 UTC

13 Feb, 1200 UTC 14 Feb–0000 UTC

15 Feb, 0000 UTC 16 Feb

PR36 30–36-h forecast accumulated

precipitation

4 water.ca.gov/LegacyFiles/Oroville-spillway/pdf/2017/Lake%

20Oroville%20events%20timeline.pdf.
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water vapor (purple contours) in Figs. 2a,c. Both KE24

(Fig. 2a) and PR24 (Fig. 2c) indicate sensitivity near the

top and to the north of the AR as denoted by the an-

alyzed water vapor as well as vapor transport (not

shown). The moisture optimal perturbations tend not to

occur in regions where either the water vapor or relative

humidity is greatest, but rather where the relative hu-

midity gradient is large, in effect filling in some of the

relatively drier regions. Cross sections of temperature

and vertical velocity optimal perturbations (not shown)

look very similar to the moisture optimal perturbation

cross sections. The KE24 and PR24 perturbations are

broadly similar but differ in detail, with a larger positive

moisture perturbation to the south of the AR in the

PR24 case than in the KE24 case.

PV cross sections at 1548W (Figs. 2b,d, taken where

the vertical integral of the absolute value of the wind

sensitivity is a maximum) show that the PV perturba-

tions (red and blue contours) occur over and in be-

tween the relatively large values of PV (gray shading)

extending down from the upper troposphere to the

north, and the strip of high PV in the lower troposphere

to the south. As with the moisture perturbations, the PV

perturbations occur on the northern upper flank of the

AR within the cold front and WCB region. This is again

similar to the sensitivity results in Doyle et al. (2014)

FIG. 2. Vertical cross sections as a function of latitude for initial-time optimal perturbations and analysis fields for (a),(b) KE24 and

(c),(d) PR24 for 1200 UTC 6 Feb 2017. (a),(c) Control analyzed relative humidity (gray shading), water vapor (g kg21, purple contours),

potential temperature (K, green contours), and water vapor optimal perturbation (ci 5 0.1 g kg21, positive values red, negative values

blue) at 1448W. (b),(d) Analyzed potential vorticity [gray shading, PVU (1026 Km2 kg21 s21) values shown in key], water vapor (g kg21,

purple contours), potential temperature (K, green contours), and optimal perturbation potential vorticity (ci5 0.007 PVU, positive values

red, negative values blue) at 1548W.
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indicating that enhancing and connecting lower- and

upper-tropospheric PV anomalies will strengthen the

cyclone. The tripole PV perturbation pattern sloping

upward along the temperature contours resembles the

schematic cold front cross section in, for example,

Chagnon et al. (2013, their Fig. 11). Temperature op-

timal perturbations (not shown) confirm positive tem-

perature perturbations above and negative temperature

perturbations below the central PV maximum expected

from this paradigm. Lackmann (2002) finds that lower-

tropospheric PV maxima associated with a cold-front

contribute significantly to low-level jet strength in the

cyclone warm sector. Our results are consistent with

Lackmann (2002) in that strengthening the PVmaxima

through vertical alignment and diabatic heating will

strengthen the low-level jet and associated moisture

transport.

Figure 3 is similar to Fig. 1 and shows 12-h linearly

evolved optimal perturbations superimposed on the

12-h control forecast fields. Note the change in pertur-

bation contour intervals between Figs. 1 and 3, reflecting

substantial perturbation growth in the wind field. Wind

and moisture perturbations are concentrated near the

intersection of the AR/cold front and warm front, with

moisture perturbations extending southward into the

frontal wave at about 328N, 1438W. There are differ-

ences between the two cases, most notably the moisture

perturbations maximum at 348N, 1328W in the PR24 case

(Fig. 3c) missing from the KE24 case (Fig. 3a). Figure 4

shows the 925-hPa control forecast potential temperature

FIG. 3. 12-h evolved optimal perturbations and 12-h forecast fields for (a),(b) KE24 and (c),(d) PR24 valid at 0000 UTC 7 Feb 2017.

(a),(c) Control analyzed 700-hPa water vapor (g kg21, gray shading), IVT (black vectors, greater than 300 kgm21 s21), SLP (green

contours), and 700-hPa water vapor optimal perturbation (ci 5 0.1 g kg21, positive values red, negative values blue). (b),(d) Analyzed

700-hPa wind speed (m s21, gray shading), wind vectors (black vectors, greater than 12m s21), SLP (green contours), and 700-hPa

optimal perturbation wind speed (wind speed of the perturbed forecast 2 wind speed of the control forecast, ci 5 0.01 m s21,

positive values red, negative values blue). Straight black lines correspond to cross-sectional locations shown in Fig. 5.
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along with the 925-hPa temperature and 500-hPa Q-vector

divergence for both the control and perturbed 12-h fore-

casts. Q-vector (Hoskins and Pedder 1980) divergence

(convergence) is associated with quasigeostrophically

forced descent (ascent). The optimal perturbations have

evolved to strengthen the temperature gradient along the

cold front, more markedly for KE24 (Fig. 4a) than for

PR24 (Fig. 4b). Both KE24 and PR24 perturbation runs

have much stronger Q-vector divergence and implied

quasigeostrophically forced vertical motion (black con-

tours) as compared to the control forecast (red contours),

with the largest Q-vector changes indicating increased

ascent along the cold front. This first-order change to the

quasigeostrophic forcing was also found for dry singular

vectors in Reynolds et al. (2001), and suggest a mecha-

nism through which vertically confined initial perturba-

tions may influence lower and upper altitudes.

Cross sections taken at 1328W (Fig. 5) show that the

optimal perturbations have increased the wind speed in

the lower troposphere in the AR between 368 and 388N
by over 4m s21 (Figs. 4b,d). Substantial positive mois-

ture perturbations now extend toward the surface

(Figs. 4 a,c), whereas at initial time the perturbations

were mostly confined to between 700 and 500 hPa. The

increase in moisture and wind speed between 368 and
388N results in enhanced vapor transport in and on the

northern side of the AR. As at initial time, the pertur-

bations act to enhance moisture in subsaturated regions.

However, only PR24 has enhanced water vapor on the

southern flank of the AR (Fig. 5c), which is somewhat

remote from the dynamically active regions to the north

and west. The perturbation features common to both

KE24 and PR24 in the dynamically active regions on the

northern side of the front are constructed to increase both

wind speed and precipitation, while the feature unique

to PR24 is not designed to increase wind speed, but

will increase precipitation by enhancing IVT through

moistening.

The resulting linear perturbations at final time (Fig. 6)

show how the KE24 and PR24 perturbations enhance

the wind speeds and 21- to 24-h accumulated precipitation

fields. The 850-hPa wind speed and wind speed linear

perturbations in Figs. 6c,e show that PR24 and espe-

cially KE24 perturbations enhance the wind speed above

the control simulation substantially, especially on the

California coast north of San Francisco. The maximum

wind speed linear perturbation is 19ms21 in the KE24

case, and 11ms21 in the PR24 case, while the maximum

wind speed increases from 27.8ms21 in the control case

to 39.3ms21 in the KE24 case and 33.2ms21 in the PR24

case. Comparison of the blue (control) and green (per-

turbed) wind vectors show that the greatest change to the

winds is in terms of magnitude, but there is some di-

rectional changes as well, which, as demonstrated in

Hecht and Cordeira (2017), can have a substantial impact

on accumulated precipitation associated with land-falling

ARs. Both KE24 and PR24 enhance precipitation over

the coastal ranges (Figs. 6d,f) north of San Francisco

(by over 12.5mm in the KE24 case, and over 10mm in the

PR24 case), consistent with an increase in orographically

FIG. 4. 12-h evolved optimal perturbations and 12-h forecast fields for (a) KE24 and (b) PR24 valid at 0000 UTC 7 Feb 2017. Fields

shown are 925-hPa potential temperature (green contour, K), 925-hPa optimal perturbation temperature (K, shading), 500-hPaQ-vector

divergence for the control forecast (red contours), and perturbed forecast (black contours), ci 5 1 3 10214 Km22 s21, negative values

dashed, zero contour omitted.
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enhanced precipitation in this region of stronger onshore

flow. However, both the magnitude and extent of the

precipitation increase over the Sierra Nevada is con-

siderably larger in the PR24 case than in the KE24 case.

In the northern Sierra Nevada, the precipitation is in-

creased by 50% (from 20 to 30mm) in the PR24 case

(Fig. 6f). The nonlinear perturbations (not shown) are

22%–25% smaller than the linear perturbations for the

precipitation and 42%–42% smaller than the linear

perturbations for the max wind speed. We consider the

match between linear and nonlinear perturbations more

generally in section 4.Whilewehave focused on low-level

winds and precipitation, the perturbation impacts are

felt throughout the troposphere. Examination of per-

turbation PV at 200 hPa (not shown) indicates that

the evolved perturbations are acting to build the ridge

immediately downstream of the land-falling storm and

strengthen the PV gradient along the tropopause. This

behavior is consistent with an enhancement of WCB

outflow resulting in downstream ridge building as il-

lustrated in Grams and Archambault (2016) in their

study of extratropical transitions of TCs.

The forecast sensitivity to the initial state around the

edges of the AR and to analyzed PV features seen in

this case study are common to other cases examined for

this period, and also consistent with previous results

FIG. 5. Vertical cross sections at 1328W as a function of latitude for 12-h evolved optimal perturbations and 12-h forecast fields for

(a),(b) KE24 and (c),(d) PR24 valid at 0000 UTC 7 Feb 2017. (a),(c) Control analyzed relative humidity (gray shading), water vapor

(g kg21, purple contours), potential temperature (K, green contours), andwater vapor optimal perturbation (ci5 0.1 g kg21, positive values red,

negative values blue). (b),(d) Analyzed wind speed (gray shading, m s21, values shown in key), water vapor (g kg21, purple contours), potential

temperature (K, green contours), and optimal perturbation wind speed (wind speed of the perturbed forecast 2 wind speed of the control

forecast, ci 5 0.01m s21, positive values red, negative values blue).
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FIG. 6. 24-h forecast fields for the 1200UTC 6 Feb 2017 case (valid at 1200UTC 7 Feb 2017) for the (a),(b) control forecast, (c),(d) KE24

linear perturbed forecast, and (e),(f) PR24 linear perturbed forecast. (a),(c),(e) 850-hPa wind vectors (control winds in blue, perturbed winds

in green), wind speed (gray shading, m s21 values given in color bar), and wind speed perturbations (control forecast wind speed2 perturbed

forecast wind speed, ci 5 2 m s21, positive values red, negative values blue). (b),(d),(f) 21–24-h accumulated precipitation

(blue shading, mm values given in color bar) and precipitation perturbation (ci 5 2.5mm, positive values red, negative values blue).
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(e.g., Doyle et al. 2014; Reynolds et al. 2001). The im-

plications for predictability and adaptive observing ex-

periments are that it is important to minimize analysis

errors in and aroundARs at the top of the boundary layer

and in the inflow and ascent regions of WCBs, and to

account for this initial uncertainty in ensemble design for

forecasts of both winds and precipitation. Analysis and

forecast uncertainty near the top of the boundary layer is

found to be primarily responsible for water vapor trans-

port forecast uncertainty (Lavers et al. 2018), and signif-

icant uncertainty has been found in the inflow WCB

region (Schäfler et al. 2011), which in turn has a sub-

stantial impact on WCB evolution (Schäfler and Harnisch

2015).While the general sensitivity characteristics at initial

time are fairly similar, the resulting impacts are quite dif-

ferent. It is reassuring that the adjoint results display the

expected sensitivity to RF, but this also suggests that ap-

plications such as adaptive observation guidance should be

metric dependent. In section 4 we show that the general

characteristics for the entire January and February 2017

period are consistent with the case-study results.

4. General characteristics

a. Initial characteristics

Inspection of the average sensitivity characteristics can

provide guidance on where to focus adaptive observing

capabilities. Figure 7 shows the vertically averaged absolute

value of the moisture optimal perturbations (Figs. 7a,c,e)

and wind optimal perturbations (Figs. 7b,d,f) for KE24

(Figs. 7a,b), PR24 (Figs. 7c,d), and KE36 (Figs. 7e,f),

averaged for all cases. The choice of optimal perturba-

tions rather than sensitivity here means that days with

weaker or stronger sensitivity maxima contribute equally

to the average. Plots constructed based on sensitivity

rather than optimal perturbations (not shown) look

similar. The fields have been normalized by the domain

maximum value to facilitate comparison between panels.

The average Eady growth rate, calculated following

Hoskins and Valdes (1990) for the 300–1000-hPa layer,

are shown over the moisture optimal perturbation plots

(red contours in Figs. 7a,c,e). The average IVT is shown

over the wind optimal perturbation plots (blue vectors

in Figs. 7b,d,e). Also included are triangles and circles

showing the location of the maximum sensitivity for each

case (the circles indicate the 20 cases with the largest

sensitivity). In an averaged sense the KE and PR RF

patterns are very similar. The moisture optimal per-

turbation maxima are located along the longitude band

where the Eady growth rate is a maximum, consistent

with Buizza and Palmer (1995) and Reynolds et al.

(2001). The wind optimal perturbation maxima are

located slightly south of the moisture maxima, in the

latitudinal band associated with high IVT. The wind

sensitivity (as indicated by the optimal perturbations)

extends over a broader region than the moisture sen-

sitivity. The temperature results (not shown) are simi-

lar to the wind results. The large scatter in the black

circles and triangles illustrates the large case-to-case

variability in the location of the maximum, reflecting

large variability in synoptic patterns. Aircraft stationed in

Hawaii and the west coast of North America (as in the

CalWater and AR Recon field projects) are well-

positioned to sample the most frequent sensitive re-

gions, but there are cases that would be out of reach.

There does not seem to be any preferred geographic lo-

cation of the fastest growing cases (circles) as opposed to

the rest of the cases (triangles). As expected, the KE36

pattern extends farther westward than the KE24 pattern

(PR36 results, not shown, look very similar to the KE36

results). As detailed in section 4b, these average initial

locations and subsequent eastward progressions with

forecast time are consistent with lower-tropospheric

advective speeds.

Figure 8 shows the corresponding vertical cross sections,

averaged between 208 and 508N. The KE24 (Figs. 8a,b)

and PR24 (Figs. 8c,d) results are again very similar.

While both wind and moisture have maxima between

600 and 800 hPa, the wind patterns (Figs. 8b,e) are

more expansive in the vertical than the moisture pat-

terns (Figs. 8a,c), which are mostly restricted to below

500 hPa. C130 aircraft deploying dropsondes from an

altitude of 300 hPa, as in the AR Recon project (Ralph

2018) would sample the moisture-sensitive altitudes

well, and would cover much, but not all, of the wind-

sensitive altitudes. There is a distinct westward tilt with

height in the average pattern, reflecting, in part, the fact

that individual sensitivity structures tend to tilt westward

with height, against the shear. The upshear tilt with

height of rapidly growing perturbations has been found

in several previous studies (e.g., Kleist and Morgan

2005;Reynolds et al. 2001; Badger andHoskins 2001;Doyle

et al. 2014), and has often been related to the unshielding

of PV anomalies (Orr 1907; Farrell 1982). Comparing the

24-h optimization time (Figs. 8a,b) to the 36-h optimization

time (Figs. 8e,f) for the KF RF, the westward extension is

clear for both the moisture and wind fields. The maximum

moves farther westward for the wind field (about 108 lon-
gitude) than the moisture field (about 58 longitude). Some

of this offsetmay be due to the fact that thewind sensitivity

may be more centered on the WCB inflow region, where

the moisture sensitivity may be strongest in the WCB as-

cent region, as was seen in the case study (section 3).

To evaluate the relative magnitude of sensitivity to dif-

ferent variables, we show box-and-whisker plots (Fig. 9)
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FIG. 7. Vertically averaged optimal perturbations (gray shading, normalized by the domainmaximumvalue) for (a),(c),(e)moisture and

(b),(d),(f) wind for (a),(b) KE24, (c),(d) PR24, and (e),(f) KE36. Moisture panels in (a),(c),(e) also show Eady growth rate (red con-

tours, day21). The wind panels in (b),(d),(f) also show IVT (blue vectors, kgm s21). The locations of individual maxima are indicated by

triangles and circles (circles represent the 20 largest sensitivity cases).
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FIG. 8. Optimal perturbations (normalized by the domain maximum value) averaged between 208 and 508N for (a),(c),(e) moisture and

(b),(d),(f) wind for (a),(b) KE24, (c),(d) PR24, and (e),(f) KE36.
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FIG. 9. Box-and-whisker plots for the area-averaged vertically integrated sensitivity for the

(a) KERF and (b) PRRF to changes in the initial moisture q, temperature t, and winds (sensitivity

averaged foru and y). The range of values is given by the vertical lines, the 25%and 75%values are

given by the boxes, the median value is given by the thick horizontal line, and the average value is

given by the cross. Units arem2 s22 (g kg21)21 for KE24 q andKE36 q, m2 s22 (m s21)21 for KE24

uy and KE36 uy, andm2 s22K21 for KE24 t and KE36 t. Units are mm (g kg21)21 for PR24 q and

PR36 q, mm (m s21)21 for PR24 uy and PR36 uy, and mmK21 for PR24 t and PR36 t.
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for the area-averaged vertically integrated sensitivity

to moisture, temperature, and winds (average of the

u sensitivity and y sensitivity) for KE24 and KE36

(Fig. 9a) and PR24 and PR36 (Fig. 9b). Note that the

units for the different columns are different. The larger

sensitivity for the 36-h optimization time as compared

to the 24-h optimization time is consistent with po-

tential perturbation growth increasing with forecast

time. For the PR RF, this is also consistent with the

fact that we are considering accumulated precipitation

over a 6-h interval for PR36 and a 3-h interval for

PR24. For both RFs and optimization times, the largest

sensitivity is found for moisture, followed by temperature

and then wind. This means that a 1 gkg21 initial pertur-

bation in moisture in a sensitive region can result in a

larger change to forecasted winds or precipitation than a

1-K initial perturbation in temperature, and about twice

the change as a 1ms21 initial perturbation in either the

zonal or meridional wind. This supports the importance

of accuratemoisture analyses and appropriate accounting

for moisture uncertainty in ensemble design.

From both a general predictability standpoint, and

from an adaptive observation standpoint, it is of interest

to know if case-to-case variability in the magnitude of

sensitivity is similar for the KE and PR RFs. Figure 10

shows scatterplots of the domain-averaged vertically

integrated absolute values of the KE RF sensitivity

versus the PR RF sensitivity for moisture (Fig. 10a) and

winds (Fig. 10b).Temperature results not shown, are

similar. Despite the positive correlations (from 0.62 to

0.75), there are cases when the wind forecast is quite

sensitive but the precipitation forecast is not, and vice

versa. These results, taken together with the case study,

suggest that, if deploying adaptive observations to im-

prove short-term forecasts, the choice of both when and

where to deploy will be metric dependent. It may

therefore be advantageous to tailor adaptive observing

guidance to the type of hazard that is anticipated.

b. Evolution of optimal perturbations

We can use the sensitivity-derived optimal perturba-

tions to examine how the characteristics of these per-

turbations change as they evolve, both in a linear and

nonlinear sense. To examine the perturbation relative

growth and propagation eastward, Fig. 11 shows the

vertically integrated magnitude of the case-averaged

linear optimal perturbations, averaged from 208 to 508N,

as a function of longitude for KE RFs (Figs. 11a,b ) and

PR RFs (Figs. 11c,d). Water vapor perturbations are

shown in a and c, and wind speed perturbations are

shown in b and d. Different colors correspond to dif-

ferent forecast lead times, with the solid curves corre-

sponding to the 36-h optimization time cases and the

dashed curves corresponding to the 24-h optimization

time cases. The maxima for all sets of curves increases

with time and moves eastward at approximately be-

tween 138 and 168 of longitude per day, which at 358N is

approximately 13–17ms21. This is consistent with the

average zonal wind speed at 750 hPa at 358N between

1508W and the North American coast. The final-time

curves are a maximum within the longitudinal range

(1258–117.58W) of the RF box, as expected. While the

maximum values for the vertically integrated moisture

and wind perturbations are reached at 24 h for KE24

(dashed red curve in Figs. 11a,b) and 36h for KE36

(solid purple curve in Figs. 11a,b), they are reached at

18 h for PR24 (green dashed curve) and 30 h for PR36

(solid yellow curve) for water vapor (Fig. 11c).5 This is

consistent with the fact that accumulated precipitation

over the last 3–6 h of the forecast would be maximized

through large fluxes into the RF region during that pe-

riod. The regular growth and monotonic progression

eastward show that the final-time perturbations are not

occurring through remote excitation of an instability in

the RF box, as can happen in NWP perturbation ex-

periments (Ancell et al. 2018).

To illustrate how the optimal perturbations evolve in

the vertical, Fig. 12 shows the profiles of the linearly

evolving absolute value of the optimal perturbations

(averaged between 208–508N and 1708–1258W) as a

function of pressure for the 36-h optimization cases for

water vapor (Fig. 12a), wind speed (Fig. 12b), and

temperature (Fig. 12c). We normalize by the domain-

averaged values at initial time such that x-axis values

may be related to perturbation growth. In contrast to

Fig. 11, here the solid curves correspond to KE36 and

the dashed curves correspond to PR36. The 24-h opti-

mization time cases (not shown) are very similar to the

0–24-h curves for the 36-h optimization time cases.

Figure 12d shows RF box-averaged profiles for the wind

speed, water vapor, and horizontal vapor transport.

Both the initial and evolved profiles vary considerably

by field. Consistent with the height–longitude profiles

shown in Fig. 8 and the case study in section 3, the initial

moisture optimal perturbation profiles peak between

600 and 700 hPa, just above the maximum in horizontal

vapor transport between 750 and 900hPa, and taper off

sharply above 500hPa. The initial wind and tempera-

ture profiles peak at similar pressure levels, but taper off

much more gradually with height. As the moisture per-

turbations evolve, the altitude of the maximum pertur-

bation descends to approximately 850hPa, consistent

5 Values for water vapor for PR24 at 21 h (not shown) are

comparable to those at 18 h.

1886 MONTHLY WEATHER REV IEW VOLUME 147



with the level of maximum horizontal vapor transport.

The temperature perturbations evolve to have two max-

ima, in the mid- to lower troposphere and the tropopause

level, probably reflecting changes in the tropopause

height. The wind perturbations evolve to have a fairly

broad peak at approximately 350hPa, below jet level,

similar to previous findings (e.g., Buizza and Palmer

1995; Doyle et al. 2014). In an average sense, the profiles

of the optimal perturbations for KE36 (solid curves) and

PR36 (dashed curves) are very similar, although the

PR36 perturbation growth is for the most part slightly

faster. We have also included the domain averages of

FIG. 10. Scatterplot for the domain-averaged vertically integrated absolute value of KE RF

sensitivity (x axis) vs the PR RF sensitivity (y axis), for the 24-h optimization time (blue di-

amonds) and 36-h optimization time (red squares) to (a) moisture and (b) winds. Correla-

tion values are provided in key. Results for temperature (not shown) are similar. Units

arem2 s22 (g kg21)21 for KE RF moisture sensitivity, m2 s22 (m s21)21 for KE RF wind

sensitivity, mm (g kg21)21 for PRmoisture sensitivity, andmm (m s21)21 for PRwind sensitivity.
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the optimal perturbations at initial time (gray curves).

The fact that the gray curves are very close to zero rel-

ative to the black curves indicates the positive and

negative lobes of the initial sensitivity largely cancel

each other out when a domainwide average is taken.

This along with the rapid growth rate is evidence

that the perturbation evolution is produced through

dynamic and thermodynamic processes, not simple

advection.

The initial wind profiles in Figs. 11 and 12 are multi-

plied by a factor of 10 because themagnitude of the wind

perturbations at tau 0 are very small compared to the

magnitude of the wind perturbations at later forecast

times. This early rapid growth in the wind field is illus-

trated in Table 2, which shows the average growth rates

for different time intervals for the moisture, tempera-

ture, and wind components of the linearly evolved optimal

perturbations. From 0 to 6h, the moisture component of

the optimal perturbation has a relatively small growth

rate (less than 1.0day21), while the temperature com-

ponent growth rate is between 3.6 and 4.2day21, and the

wind component growth rate (averaged for the zonal and

meridional components) is very rapid (around 12day21).

This is indicative of a rapid initial adjustment in which the

moisture perturbation elicits a strong response inwinds and

temperature, and is consistent with the case study shown in

section 3. The growth rates become similar for the 6–24-h

forecast interval (1.15–1.34 day21 for moisture, 1.33–

1.56day21 for temperature, and 1.45–1.73day21 for winds).

Growth rates for all fields diminish during the 24–36-h

interval, and range from 0.71 to 0.84 day21 for all

fields. These growth-rate characteristics are similar to

those found for a TC–Kelvin wave case considered in

Reynolds et al. (2016).

FIG. 11. The vertically integrated magnitude of the case-averaged optimal perturbations, averaged from 208 to
508N, for (a),(c) moisture (g kg21) and (b),(d) winds (m s21) for the (a),(b) KE RF and (c),(d) PR RF. Different

forecast times are indicated by the different color curves as given in key. The solid curves correspond to the 36-h

cases and the dashed curves correspond to the 24-h cases. The 0-h wind curves are multiplied by a factor of 10. The

response function box lies between 1258 and 117.58W.
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While we have thus far focused on the linear evolution

of the perturbations, we also need to assess how these

perturbations, optimized under the tangent linear con-

straint, evolve in the full nonlinear model. Figure 13

shows the vertical profiles of the final-time absolute

value of the optimal water vapor (Fig. 13a), temperature

(Fig. 13b), zonal wind (Fig. 13c), and meridional wind

(Fig. 13d) perturbations averaged over the RF box for

KE36 (black) and PR36 (red), for the linear-evolved

(solid) and nonlinear-evolved (dashed) perturbations.

Comparison of the solid (linear) and dashed (non-

linear) curves indicates that the nonlinear moisture

FIG. 12. Vertical profiles of area-averaged absolute value of the optimal perturbations (normalized by the domain

average value at initial time) for the 36-h optimization cases for (a) moisture, (b) winds, and (c) temperature. Solid

curves are for the KERF and dashed curves are for the PR RF. Different forecast times in (a)–(c) are indicated by

the different color curves as given in the key in (a). The gray curves represent the 0-h area-averaged optimal

perturbations. The 0-h wind curves aremultiplied by a factor of 10. The lower right panel shows the average profiles

of wind speed (m s21, red), water vapor (g kg21, blue), and vapor transport (m g s21 kg21 black).
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perturbations are about 20%–25% smaller than the

linear moisture perturbations. For winds, the non-

linear perturbations differ from the linear perturba-

tions by less than 10% (the nonlinear perturbations

tend to be larger than the linear perturbations in the

upper troposphere, and smaller in the lower tropo-

sphere). For temperature, the nonlinear perturbations

are larger than the linear perturbations by about 10%–

20% in the lower troposphere and by as much as 30%

in the upper troposphere. For KE24 and PR24 (not

shown) the match between nonlinear and linear re-

sults is closer. An exact match between linear and

nonlinear perturbations is not expected given that the

forecast evolves nonlinearly and we have chosen a

dynamic period with very moist flow. However, these

diagnostics confirm that these optimal perturbations

derived from the adjoint are very effective at pro-

ducing rapid perturbation growth in the nonlinear

forecast system.

Also included in Fig. 13 are the vertical profiles of the

final-time linear perturbations averaged over the RF box

(indicated by the dotted curves). In contrast to the initial

time results shown in Fig. 12, the RF box-averaged

values at final time are a significant fraction of the av-

erage magnitude of the perturbations. The evolved

optimal perturbations enhance moisture in the lower

troposphere, especially for PR36. Both KE and PRRFs

show increased temperature through much of the tro-

posphere, but there is a more-pronounced warming in

the midtroposphere and a more-pronounced cooling in

the upper troposphere for the PR RFs than for the KE

RFs. This is consistent with more midlevel latent heat-

ing due to condensation in the PR cases. The enhanced

westerlies in the lower troposphere for the KE RFs are

consistent with an enhancement of the low-level wind

speed, given the prevailing westerly winds. The increased

low- and midlevel moisture and increased southerlies

and westerlies are consistent with orographically induced

precipitation enhancement over much of California.

Table 3 shows the nonlinear and linear low-level wind

speed and accumulated precipitation forecast pertur-

bations over the RF box averaged for all cases. Despite

the similarities in the average location of the KE and PR

RF initial optimal perturbations shown in Figs. 7 and 8,

the resulting changes to precipitation and wind forecasts

are substantially different. The KE RF optimal initial

perturbations are about twice as effective at producing

wind forecast changes as the PR RFs. The PR RF initial

optimal perturbations are in turn almost twice as effec-

tive at producing precipitation forecast changes as the

KE RFs. Table 3 also allows for a comparison of non-

linear and linear perturbation growth. Nonlinear aver-

age values for the wind field perturbations are between

78% and 86% as large as the linear values. For pre-

cipitation, the nonlinear values are 79% and 70% of the

linear values for KE24 and KE36, and 103% and 94%

for PR24 and PR36. Correlations between the magni-

tudes of the nonlinear and linear perturbations over all

the individual cases are 85%–87% at 24 h and 81%–82%

at 36h for the wind fields. The correlations for pre-

cipitation are comparably high at 24 h (84%–87%), but

drop off to 68%–74% for 36 h. The drop-off in the cor-

relation with optimization time is expected, as the linear

approximation becomes less appropriate in general as

optimization time is increased. These results indicate

that despite the tangent-linear assumption, these opti-

mal perturbations are very effective at producing fast

growing perturbations between two nonlinear forecasts

as well as capturing case-to-case variability in perturba-

tion growth.

c. Relationship to forecast error and forecast
uncertainty

The utility of using adjoint-based tools for applications

such as predictability studies and adaptive observations

is premised upon the concept that, on average, forecasts

that are very sensitive to initial condition perturbations

would tend to have larger forecast errors. Figure 14a

shows the mean absolute wind speed errors in the RF

region at final time (24 or 36 h) in the control COAMPS

forecast as verified by the GFS analysis compared with

the domain-averaged absolute value of the initial-time

wind sensitivity. The correlations are 0.64 for KE24

and 0.67 for KE36. Similar results (not shown) are found

for the temperature and moisture sensitivities. A per-

fect correlation between sensitivity and forecast error is

not expected. Forecast error may also be caused by

nonlinear growth of initial errors, model error, and the

potential presence of initially large but slow-growing

errors. In addition, the projection of the initial error

TABLE 2. Average growth rates (day21) of the optimal perturba-

tions for different forecast time intervals.

Time

intervals (h) KE24 KE36 PR24 PR36

Moisture 0–6 0.65 0.65 0.87 0.62

6–24 1.15 1.32 1.11 1.34

0–24 1.03 1.16 1.05 1.16

24–36 0.79 0.71

Temperature 0–6 4.21 3.59 3.69 3.93

6–24 1.34 1.45 1.56 1.46

0–24 2.05 1.98 2.1 2.08

24–36 0.83 0.84

Winds 0–6 12.44 11.97 11.94 12.27

6–24 1.46 1.60 1.73 1.62

0–24 4.21 4.19 4.28 4.28

24–36 0.78 0.78
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onto these fast growing structures will vary from day to

day. All these factors will contribute to day-to-day

forecast error variability. However, the positive corre-

lation does indicate that there is a general relationship

between larger forecast errors and larger initial-time

sensitivity, which is also found in Doyle et al. (2019,

manuscript submitted to Mon. Wea. Rev.). This is con-

sistent with the results of Reynolds et al. (2005) who

find a relationship between adjoint-based singular vec-

tor growth and forecast error total energy.

FIG. 13. Vertical profiles of the average absolute value of the final-time optimal perturbation in (a) moisture

(g kg21), (b) temperature (K), (c) zonal wind (m s21), and (d) meridional wind (m s21) averaged over the response

function box for KE36 (black) and PR36 (red) for the linear-evolved (solid) and nonlinear-evolved (dashed)

perturbations as denoted in key in (a). The average final-time linear optimal perturbations are shown with the

dotted curves.
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Performing the same calculation for precipitation

forecasts is problematic, as we expect the fairly coarse-

resolution simulations to miss many of the finescale

orographically forced observed precipitation features.

Instead, as a proxy for precipitation forecast uncertainty,

we calculate themean absolute difference between the 30–

36-h forecast accumulated precipitation with the 6–12h

forecast accumulated precipitation from the forecast

started the following day (such that the accumulation

periods are valid at the same time) for the PR36 cases.

This precipitation difference is strongly correlated

(0.73) with the domain-averaged vertically integrated

moisture sensitivity (Fig. 14b). A similar calculation for

PR24 yields a correlation of 0.81. Similar correlations are

found for wind and temperature sensitivity (not shown).

As mean absolute differences in precipitation will

tend to be larger with larger precipitation amounts, it

is of interest to consider these forecast differences

relative to the precipitation magnitude. Normalizing

the mean absolute difference by the forecasted pre-

cipitation amount reduces the correlations to 0.45 and

0.37 for PR24 and PR36, respectively. While the cor-

relations between the normalized precipitation un-

certainty and sensitivity are relatively small (though

still positive), the strong positive correlations between

the full precipitation uncertainty (measured by these

forecast differences) and sensitivity magnitude support

the relevance of these adjoint calculations for pre-

dictability studies and adaptive observing applications.

5. Summary and conclusions

We use the COAMPS forecast and adjoint system to

examine the sensitivity and related optimal perturbation

growth of 24- and 36-h forecasts of low-level KE and

precipitation over California to changes in the initial

state for the record-breaking precipitation period of

1 January through 20 February 2017. In a time-averaged

sense, the most sensitive regions as denoted by the op-

timal perturbations are very similar for precipitation and

low-level wind speed forecasts. The initial moisture and

wind sensitivity maxima are found upstream of the RF

box, near the latitude of the Eady baroclinicity maxi-

mum, and on the northern edge of the maximum IVT.

The sensitivity maxima occur between 800 and 500 hPa,

with a much sharper drop-off with height above that

level in moisture than in winds or temperature. Both

wind and precipitation forecasts are potentially twice as

sensitive to a 1 g kg21 change in moisture as to a 1ms21

change in zonal or meridional wind. These results sug-

gest that, in a time-averaged sense, the target regions

would be the same for forecasting precipitation, espe-

cially for orographically dominated precipitation events,

as for forecasting low-level wind speeds.

There is considerable variability, however, in the

structure and location of the optimal perturbations, on

both a day-to-day basis and between the KE and PR

RFs. The maximum 24-h sensitivity location can range

fromnorth ofHawaii towithin theRFbox itself. The case

study considered here (and others, not shown) indicate

that while the general sensitive regions are the same for

the KE and PR RFs, the details are different, and they

result in substantial differences in perturbation growth.

Also, while the correlation between the KE RF and PR

RF sensitivity magnitude is positive, there are cases

where the KE RF sensitivity is high and the PR RF sen-

sitivity is low, and vice versa. These results indicate that

the optimal deployment of adaptive observations, both in

terms of timing and location, would be metric dependent.

For the case study considered here, and others (not

shown), sensitivity is often in or near an approaching

AR and associated with the inflow and ascent regions of

theWCB. The initial moisture sensitivity is not where the

moisture is largest, but rather on the edges/boundaries

of the ARs in regions where the atmosphere is not satu-

rated. Thus, the optimal perturbations tend to add mois-

ture to the subsaturated regions of the AR, rather than

adding moisture to regions that are already saturated and

where additional moisture would just rain out. Wind and

temperature sensitivities result in PV optimal perturba-

tions that enhance and connect lower- and upper-level

high PV features. These findings are consistent with dy-

namic and thermodynamic theory that highlights the im-

portance of diabatic processes and PV alignment for

cyclone intensification (e.g., Kuo et al. 1991; Hoskins and

Berrisford 1988; Doyle et al. 2014), and the importance of

WCB strength for subsequent cyclone intensification and

downstream development (Schäfler andHarnisch 2015;

Binder et al. 2016; Grams and Archambault 2016).

These AR andWCB regions are also regions of significant

analysis uncertainty (e.g., Schäfler et al. 2011; Lavers et al.
2018), which may explain the correlation between sensi-

tivity magnitude and forecast error. While this study has

focused on identifying typical sensitivity characteristics

and the impact of RF choice, ongoing work is investigating

TABLE 3. Linear and nonlinear perturbation wind speed (m s21)

and precipitation (mm) averaged over the response function do-

main. Perturbation wind speed is averaged over 1000–850 hPa at

final time (either 24 h or 36 h). Precipitation is averaged over the

entire optimization period.

KE24 PR24 KE36 PR36

Linear wind perturbation 1.15 0.55 1.36 0.66

Nonlinear wind perturbation 0.95 0.47 1.06 0.54

Linear precipitation perturbation 0.35 0.71 0.60 1.19

Nonlinear precipitation perturbation 0.28 0.73 0.42 1.12
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the dynamic and thermodynamic mechanisms enabling

rapid perturbation growth.

The adjoint sensitivity technique is constrained by

the linearity assumption. While nonlinear perturbation

growth is typically smaller than the expected linear

perturbation growth, the nonlinear perturbations still

grow rapidly, supporting the relevance of this type of

analysis to predictability studies. This is particularly

FIG. 14. (a) Final-time mean absolute wind speed errors (m s21, averaged between 850 and

1000 hPa) vs the mean absolute vertically integrated KE RF wind sensitivitym2 s22 (m s21)21.

(b) 21–24 h vs 9–12 h (for 24-h optimization time) and 30–36 h vs 6–12 h (for the 36-h optimization

time) accumulated precipitation mean absolute differences (mm) vs the mean absolute vertically

integrated PRRFmoisture sensitivity [mm(gkg21)21]. Accumulated precipitation differences are

calculated for the same valid times. 24-h optimization times are denoted with blue diamonds and

36-h optimization times are denoted with red triangles. Correlation values are provided in key.
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encouraging as this is a moist adjoint, and nonlinearities

are prominent with moist processes. The positive correla-

tion between the magnitude of the sensitivity and forecast

wind errors, and forecast precipitation differences, is

further support for the relevance to NWP and adaptive

observation applications. However, these methods only

consider sensitivity of the forecast to changes in the initial

state, not changes to the observing system. Adaptive

observing methods should ideally take into account the

sensitivity of the analysis to the observing system (e.g.,

Langland and Baker 2004). Current studies are underway

examining the impact of AR Reconnaissance dropsonde

observations on the representation ofARs in the analyses

and on subsequent forecast errors.

While the method employed here quantifies the sen-

sitivity of short-term forecasts to initial perturbations, it

does not specifically identify analysis perturbations that

would improve the forecast. Klinker et al. (1998) and

Rabier et al. (1996) use adjoint techniques to identify

initial perturbations constructed to minimize forecast er-

rors, and it would be interesting to employ this technique

for AR applications. However, as these perturbations are

designed to minimize forecast error that is caused by both

model error and initial error, interpretation of these initial

perturbations is not straightforward (e.g., Isaksen et al.

2005; Reynolds 2007).

Given the expected sensitivity of forecasted precipitation

tomodel resolution, particularly in areas of complex terrain,

it would be interesting to consider the adjoint sensitivity

of land-falling ARS at convective-permitting resolutions

in conjunction with an observation impact study using

observations from a field project such as AR Recon or

NAWDEX. A study like this would address several rec-

ommendations in the targeted observation review paper

by Majumdar (2016) such as improving understanding of

socioeconomic impact of targeted observations, explor-

ing the potential for use with convective-scale models,

and assessing the role of DA methodology.
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