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ABSTRACT 

The development of a system for automatically and robustly translating between American Sign 
Language (ASL) and spoken English in real time on mobile devices holds the promise of enabling natural 
and spontaneous communication between Deaf ASL signers and English speakers anywhere and anytime. 
One key component of such a system is the automatic recognition of ASL signs, which is an active area of 
research in the academic community. A number of other system challenges remain in order to support 
deploying this technology on mobile devices that include addressing compute limitations and recognition 
robustness for acquired signals that are highly variable (e.g., sign variation, apparent pose angle) and poorly 
matched to existing training corpora. While several commercial companies have pursued the development 
of mobile translation systems, none of them has successfully commercialized such a system to date. This 
report investigates the technical feasibility of performing real-time translation between ASL and spoken 
English on mobile devices. An important aspect of this investigation is the identification of the key technical 
challenges in developing such a system and the development of a roadmap for addressing these challenges. 
In order to support the feasibility study detailed in this report, an extensive literature search has been 
completed, a number of rigorous experiments have been performed to characterize state of the art 
performance, and a prototype system has been developed.	
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EXECUTIVE SUMMARY 

This report summarizes a 12-month effort to evaluate the near-term feasibility of a portable device 
that will enable spontaneous, fluid communication between a Deaf American Sign Language (ASL) signer 
and an English speaker. Such a system would include components that are well understood (e.g., speech 
recognition and speech synthesis) and other components that are still largely in the active research domain. 
The focus of this report will be the unique ASL-related challenges fundamental to this system that are 
currently areas of active research, namely signing recognition, sign-sequence to/from English text mapping 
(i.e., ASL-English translation), and the problem of an ASL signing avatar. 

The desired system would ultimately address the following requirements: 

• Operate in a user-independent fashion across a broad range of environments 

• Accommodate natural continuous signing and user/dialect variability 

• Be applicable to a general range of conversational content as well as specific scenarios 

• Provide easy-to-use interactivity in real time via a portable, unobtrusive device platform  

Of course, the state of knowledge and technology will constrain these performance ideals in practice. 
However, with these overarching goals in mind, this report analyzes the current state of linguistic 
understanding of the ASL recognition and translation problems, the availability of appropriate data and 
software resources, the performance limits of the required machine learning algorithms, and the 
computational capacity and sensor capability of today’s hardware technology. The functional aspects of the 
problem that are feasible are then outlined as well as a roadmap for the eventual deployment of an 
operational ASL-English communication system consistent with this overall vision. 

In parallel with this overall feasibility analysis, the study included an additional effort to utilize 
currently available ASL resources to rapidly develop proof-of-concept systems with basic capabilities. 
Designed to illustrate the scope of present technology, three prototypes were produced and evaluated, each 
within a 3-month time frame that demonstrate fundamental elements of the overall concept. Specifically, 
the sub-problems addressed were: 

• Small-Vocabulary, Isolated-Signing: Recognizes a set of 50 ASL signs produced by the user 
one at a time.  

• Continuous Fingerspelling: Recognizes words spelled out by the user via a sequence of ASL 
alphabetic signs. The dictionary utilized incorporated over 10,000 entries. 
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• Scenario-Specific, Continuous-Signing: Recognizes sequences of ASL signs in the context of 
strong vocabulary and syntax constraints. 

These prototypes employed commercial hardware and software supplemented by MIT Lincoln 
Laboratory-produced algorithms to achieve reasonable performance in near real-time conditions. While 
limited in functionality, they successfully applied published methods acquired from the scientific literature 
and leveraged existing technologies developed in other contexts. For example, these prototypes:  

• Adapted deep neural network (DNN) image models trained for gesture recognition to effectively 
discriminate ASL handshapes 

• Exploited dynamic recognition and language modeling methods from the acoustic speech 
recognition field to identify ASL sign sequences 

• Utilized a commercially available image-depth camera to acquire video signals and track user 
body parts over time 

The prototypes demonstrate the current (and limited) state of the field. In order to achieve the more 
ambitious requirements of the envisioned device, there are a number of significant theoretical and technical 
challenges that must first be addressed. These challenges are summarized as follows:  

ASL Sign Recognition: There is a direct correspondence between the problems of sign recognition 
and speech recognition. While the signal modalities are clearly different (visual versus acoustic), once an 
appropriate feature parameterization is produced, sign recognition may be approached in a manner similar 
to speech recognition. As their input, speech recognizers employ a time-varying stream of feature vectors 
representative of the acoustic signal’s spectral content. With sign recognition, the feature data is descriptive 
of the hands’ shape, location, and motion and is supplemented by information representative of facial cues 
and other body gestures. Once a representative feature set is determined, the subsequent recognition 
methodology is agnostic to the underlying signal format. The three prototypes successfully leveraged this 
paradigm. In each case, the user’s hands and face were tracked in the video stream and the hands converted 
to a feature vector using a DNN pre-trained for gestures. The face was not used for inferring the ASL sign 
or grammar, though this signal will be important for future systems. The pattern recognition component 
was coopted directly from speech recognizer technology. 

Speech recognition has been studied for 50+ years (Juang et al 2005) and has only recently developed 
to the point where commercial systems are capable of accurately discerning casual, fluid speech in a user-
independent setting. While improvements continue to be made, issues such as dialect variation, poor signal 
quality, and unexpected vocabulary still constitute active research areas. The dramatic advances seen today 
are the direct result of two factors: increased computational resources and a dramatic growth in the 
availability of appropriate training and evaluation data. The DNNs that are being employed to great effect 
rely on dedicated machinery and hundreds of hours of transcribed speech captured in environments 
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representative of their eventual use cases and operating conditions. The research community has addressed 
this data sufficiency challenge through concerted data collection efforts over several decades. 

The path to utilizing speech recognition’s algorithmic methods for the sign recognition problem is 
technically straightforward, but is severely hampered by a lack of data for training and evaluation. There is 
a relative paucity of available ASL datasets, and what does exist is poorly matched to the requirements of 
the desired communications system. These datasets are typically limited in their vocabulary range and 
subject sizes, and consist of isolated signs acquired under controlled (studio) conditions. They have proven 
useful for the purposes of developing these prototypes, but are not suitable for applications involving 
continuous signing, generalized content, user variability, or ambient environments. 

One technical option to address recognition performance with limited available data is to leverage 
synthetic ASL datasets for augmenting the availability of training material. If successful, this would greatly 
reduce data collection requirements to that required for evaluation and seeding the synthesis process. 
Additionally, this low resource approach will have significant impact across a broad range of technical 
challenges faced by the USG that require the rapid response to potential threats where well-annotated 
datasets of sufficient size to support traditional approaches simply do not exist. 

ASL-English Translation: The problem of converting a sequence of recognized ASL signs to an 
appropriate English sentence (and its inverse), would appear to be a relatively straightforward application 
of machine translation (MT) technology. Modern MT systems typically rely on either statistical or neural 
net-based methods trained on a corpus consisting of parallel phrases (usually in the tens to hundreds of 
thousands) in each language. In this case, the availability of usable data is more encouraging, as a number 
of video broadcasts include ASL interpretation along with the closed-captioning text. While these streams 
are not as closely coupled as typically found in the bilingual text case, it does offer a promising approach 
to developing an effective ASL-English translation in the near to mid-term time frame. 

ASL Signing Avatar: Several incipient ASL signing avatars are available commercially and via 
academic institutions. While these vary in quality and scope, the underlying animation technology does 
exist and could be matured and adopted into the desired system (in some form) in the near-term.  

Developing the envisioned ASL-English communication system would have been impractical even a 
few years ago. Recent breakthroughs in the speech processing and computer vision domains, combined 
with newly available mobile devices that increasingly include advanced imaging sensors and high-
performance onboard computational ability, offer significant promise in addressing several important 
technical challenges. However, many technical and data-related issues remain and will need to be addressed 
in order to achieve the desired system functionality.  
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1. OVERVIEW 

This report details a 12-month study for exploring the feasibility of deploying a mobile real-time 
smartphone-based system to support a fluid conversation between a Deaf American Sign Language (ASL) 
signer and an English-speaking individual. The effort has the following components: 

• A pre-development literature search to leverage best practices and relevant corpora in the design 
of a prototype system. 

• Development of proof-of-concept prototype capabilities. 

 

 

Figure 1. Nominal ASL-English translation system architecture. Photos courtesy of BU ASLLVD dataset. 
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Figure 1 highlights the various components of the envisioned fully-interactive system. The Sign-to-
Speech track consists of modules for video signal acquisition, sign recognition, translation from sign 
sequences to English text, and finally, speech synthesis. The parallel Speech-to-Sign track reverses this 
process with audio capture and speech recognition, followed by English to sign translation and synthetic 
signing via an avatar. In practice, the system could function with a subset of the modules outlined below, 
using text-only output for instance. The green modules in the outline represent mature technologies (e.g., 
speech recognition, speech synthesis) which would be incorporated into the communication system, but 
will be treated as commodities for the purposes of this report.  

Section 2 provides a brief background of the ASL challenge, including highlights from the literature 
search component and a discussion of ASL sign composition and variation. Section 3 provides an overview 
of the lessons-learned from the development of the proof-of-concept prototype capabilities as they pertain 
to the feasibility of deploying a real system. This will include supporting experimental results and a 
discussion of potential mitigation approaches. Section 4 describes a systematic data-driven approach for 
supporting the mitigation approaches outlined in Section 4. Section 5 provides some concluding remarks 
and a roadmap for future work, and Section 6 provides an extensive bibliography aggregated during the 
course of this work. 
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2. BACKGROUND 

A broad range of estimates exist for the number of ASL signers in the United States that range from 
250K to 500K (Mitchell et al 2005) to 500K to 2 million (Lane et al 1996). In spite of the sheer number of 
ASL signers, it is not clear that a commercial system for translating between ASL and spoken English in 
real time on mobile devices has been successfully brought to market. It is not clear whether this is due to 
the technical challenges of the problem or the inability to find a potentially profitable market. For an 
excellent review of the state of the art (circa 2014) of automatic sign language technology, there is a 
comprehensive review article (Sahoo et al 2014). 

A number of companies have pursued the development, and in some cases the marketing, of ASL 
recognition capabilities. 

• MotionSavvy (http://www.motionsavvy.com/) is ostensibly moving toward a commercial release 
of its tablet-based system that leverages a Leap Motion detector (two visible and three infrared 
sensors). The Leap Motion-based system does support a level of mobility that is not available 
with the other discussed systems. It is not clear, though, whether the company is still actively 
working towards bringing their product to market. 

• SignAll (http://www.signall.us/) is developing a prototype for the commercial market, though it 
is not yet available for purchase, and few technical details are known beyond the fact that it uses 
three stationary standard video cameras, a depth camera, and a personal computer (SignAll 2018).  

• KinTrans (http://www.kintrans.com/) is a Kinect-based system being developed for two-way 
communication between English speaking and ASL signing individuals. 

• Microsoft Research (https://www.microsoft.com/en-us/research/blog/kinect-sign-language-
translator-part-1/) was actively involved with developing a Kinect-based ASL translator (Chai et 
al 2013, Chen et al 2013) with its Chinese academic partners in 2013. There is no evidence that 
Microsoft has actively pursued this area since then, though their Chinese academic partners from 
this earlier work have continued to publish in this technical area (Chai et al 2016, Lin et al 2014, 
Wang et al 2015, Wang et al 2016, Yin et al 2015, Zhou et al 2016). 

While some of these products have been marketed, it is not clear that there is an actual product for 
sale at the time this report was written for any of these systems. 

ASL is an independent language that uses spatial handshapes, hand positions and trajectories, palm 
orientation, and side information in the face and head (Benitez-Quiroz et al, Nguyen et al 2012) to 
communicate. To be clear, it is not a gesture-based version of spoken English, and therefore the technical 
challenges are analogous to translating across distinct languages where one of them happens to be gesture-
based. Structurally, it has greater similarity to Topic-Description languages such as Tagalog (Tatman 2017) 
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than to English’s Subject-Verb-Object structure. It also has its own unique structures such as mouth 
morphemes (Bickford et al 2006) and spatial pronouns (Huenerfauth et al 2010). 

Several video-based ASL 2D video corpora have been collected. The American Sign Language 
Lexicon Video Dataset (ASLLVD) (Athitsos et al 2008, Neidle et al 2008) has collected and annotated 
(e.g., start and stop times and handshapes) for an extensive set of about 3000 ASL signs from the Gallaudet 
Dictionary (Valli et al 2006). Four cameras (two frontal, one side view, and a frontal view of the face) were 
used for the data collections of one to six signers (single-session) per sign. 

Another video corpora was collected at Purdue’s Robotic Vision Laboratory (RVL) (Martinez et al 
2002). This Purdue RVL-SLLL contains fourteen signers of data collected under two lighting conditions. 
The content includes fingerspellings of English letters and numbers (1-20), as well as a number of 
handshapes, signs in isolation, and several paragraphs. 

An ASL motion capture dataset (Huenerfauth et al 2010, Lu et al 2012) has been collected, annotated, 
and analyzed to support technology improvements for generating ASL animations. The dataset supports the 
analysis of pronominal spatial reference points and inflected verbs. It includes extensive unscripted single-
signer passages from nine native signers. An extensive set of motion capture sensors are used for the data 
collect, including CyberGloves, a head-mounted eye tracker, an inertial/acoustic tracker, and a bodysuit. 
Another sensor being explored for translating sign language is an armband (Metz 2016) that can “read” 
nerve impulses sent to the hand which can be used for inferring finger configuration. 

There are not many canonical datasets available that are standards for evaluating systems on a defined 
protocol. The only one that has been found to date is the ASL Finger Spelling Dataset (Pugeault et al 2011) 
collected in the UK. It consists of 2D and depth images of static fingerspellings (no “j” or “z”) collected by 
a Kinect sensor where the hands have been detected and extracted. Five users were collected for the primary 
dataset, and a secondary dataset of nine users was also collected for the depth sensor. Unfortunately, the 
hand images are of relatively low resolution. A number of other investigators have also baselined their 
performance against this dataset (Dong et al 2015, Garcia et al 2016, Keskin et al 2011, Kuznetsova et al 
2013). A similar video image dataset of fingerspellings has been collected at Massey University (Barczak 
et al 2011) for five subjects under varying illumination, with more subjects potentially being released in the 
future. It is not as widely used as the UK dataset. 

Another noteworthy dataset is the RWTH PHOENIX Weather (https://www-i6.informatik.rwth-
aachen.de/~koller/RWTH-PHOENIX/) dataset (Koller et al 2015) that contains continuous German sign 
language content with annotations collected on German public television over a three-year period (2009-
2011) pertaining to weather.  

The computer vision domain has increasingly been dominated by performance breakthroughs 
leveraging deeply learned models (Krizhevsky et al 2012) since 2012. Combined with the availability of 
large annotated datasets such as ImageNet (Deng et al 2009) and large compute capabilities, these deep 
neural network (DNN) systems have become the standard tool for feature extraction in image and video. 
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Many of these DNN models are available publicly. For example, Deep Hand (Koller et al 2016a), a DNN 
trained on a million hand images for recognizing handshapes for Danish Sign Language, is publicly 
available.  

There are a number of other technical challenges relating to the automatic recognition of sign 
language. This includes the coarticulation problem (Channer 2012, Keane et al 2012) that occurs while 
transitioning from one sign to the next, and is analogous to the similar challenge in speech processing. Other 
specific problems include the handling of non-manuals (e.g., eyebrows, mouth morphemes, head 
tilt/squint), directional verbs, and positional signs (Cooper et al 2011, Tatman 2017). A number of excellent 
overviews of ASL linguistics are available (Stokoe 1960, Neidle et al 2000, Valli et al 2011). 

In many ways the automatic sign language recognition (ASLR) domain challenges has many 
similarities to challenges encountered during earlier periods of the automatic speech recognition (ASR) 
domain. ASR technology has actually been around for decades, since Bell Labs researchers built a speaker-
dependent digit recognizer in the 1950s (Juang et al 2005). Significant technical progress did not occur until 
the 1970s and 1980s, and the first successful commercial systems such as Dragon Dictate weren’t released 
until the 1990s. During the 1970s and 1980s, investigators improved the core technology to address issues 
such as larger vocabulary sizes, speaker independence, conversational-style speech, and noisy acoustic 
environments—which are analogs to many of the core ASLR challenges. An important driver of 
performance was the development of benchmark evaluations by NIST in partnership with DARPA (Pallet 
et al 2003). 

2.1 ASL SIGN VARIATION 

Information is conveyed in ASL through a number of channels: 

• Hand shape 

• Hand orientation 

• Hand location 

• Hand movement 

• Mouth shape and facial expression 
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The first four channels are generally considered phonemic in that changing them changes the 
word/concept being signed. For example, the signs “good” and “bad” differ only in the hand orientation 
used during part of the sign: 

 

Figure 2. ASL signs for “good” and “bad” differ only in hand orientation. Photos courtesy of SigningSavvy. 

The signs “paper” and “cheese” have the same handshape and orientation, but a different hand 
movement: 

 

Figure 3. ASL signs for “paper” and “cheese” differ only in hand movement. Photos courtesy of SigningSavvy. 
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The signs “mother” and “father” have the same handshape, orientation, and movement, but a different 
location relative to the body: 

 

Figure 4. ASL signs for “mother” and “father” differ only in sign location relative to the body. Photos courtesy of 
SigningSavvy. 

Finally, the signs “white” and “like” differ only in their handshape: 

 

Figure 5. ASL signs for “white” and “like” differ only in handshape. Photos courtesy of SigningSavvy. 
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To reliably distinguish signs, the ASL recognition system must be sensitive to differences in each of 
these phonemic features, yet be robust to signer and session variability. The system must also be robust to 
the narrative context of a sign, as a sign may be produced differently (with more dramatic movements, a 
different amount of repetitions, etc.) depending on exactly what is being said. Furthermore, there is a 
significant amount of dialectical variation in ASL, with some vocabulary items being signed completely 
differently in different cities. To be able to accurately perform recognition on ASL signers from different 
backgrounds, the ASL recognition system will eventually have to recognize multiple ways of signing the 
same word. 

Mouthshape and facial expression also convey a great deal of information. In some cases, a certain 
mouthshape is an intrinsic part of the sign, but does not necessarily convey any special meaning. In other 
cases, mouthshape is used in conjunction with a sign to convey other information, such as adverbial 
information (indicating that something is happening to a great extent, that it is being done sloppily, etc.), or 
information such as size and distance. A few examples follow: 

 

Figure 6. ASL “cha” mouthshape sometimes indicates that something is very big or tall. Photo courtesy of Ecampus 
ASL. 
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Figure 7. ASL “th” mouthshape can indicate that something is done clumsily or carelessly. Photo courtesy of 
Ecampus ASL. 

 

Figure 8. ASL “oo” mouthshape can be used to convey that something is very small. Photo courtesy of Ecampus 
ASL. 
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Figure 9. ASL “puffed” mouthshape sometimes means very fat, many, or long ago. Photo courtesy of Ecampus ASL. 

Mouthshapes did appear in the vocabulary list and training data. After further progress with 
continuous sign recognition, integrating mouthshape recognition could eventually help us provide improved 
translations, although distinguishing meaningless from meaningful mouthshapes could be challenging. 
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3. PROTOTYPE SYSTEMS DEVELOPMENT AND LESSONS LEARNED 

Over the past year, several ASL to English recognition prototypes have been developed, resulting in 
the proof of concept of a number of enabling technologies. This section provides an overview of these 
prototypes, reviews relevant performance results, and highlights promising paths forward for addressing 
technical gaps. 

3.1 SIGN TO ENGLISH 

In this subsection, an overview of the prototypes developed under this effort is provided, followed by 
a discussion of additional ASL experimental results, and finally several alternative technical approaches 
are highlighted, including the exploitation of synthetic ASL data and a DNN-based approach to the 
translation problem.  

3.1.1 Prototypes Overview 

The prototype hardware consists of a PC laptop and a Kinect 2.0 sensor. The Kinect includes both a 
high-quality imaging camera and a depth sensor. In addition to providing a 30 Hz video stream, the device 
outputs tracking data (specifically, 28 skeletal nodes) for up to six individuals. The laptop is integrated with 
the Kinect for real-time acquisition of the video-tracking data and performs all subsequent signal processing 
and user interface functions. For reasons of rapid development and testing, the prototype software is based 
on Matlab.  

Isolated ASL Sign and Fingerspelling Prototype Overview 

The user interface offers two distinct modes: discrete-word and fingerspelling sign recognition. The 
“Words” mode is illustrated in Figure 10. The left-hand panel displays buttons for the 50 signs currently in 
the prototype’s vocabulary. By clicking one of these buttons, a video sample of the corresponding sign is 
displayed in the lower-mid “Demo” window. The intention of this functionality is twofold. For non-signers, 
it introduces users to the mechanics of the sign. With experienced users, it is designed to enforce a modicum 
of uniformity as to how the specific sign is performed when a number of options/variants are available. The 
upper-mid window displays the live video along with status labels. “Tracking” indicates that the Kinect has 
recognized the user and is monitoring skeletal data. The user initiates recording by raising his hands to the 
shoulders and then lowering them to the waist. The sign is then performed and the recording stops when 
the hands are again lowered. The “Control” panel will then offer several options: “Preview” the recording, 
“Save” the recording, or “Recognize” the intended sign. The “Status” window shows the results of the 
recognition procedure with ranking scores delineated by signing dynamics and hand-shape estimation 
criteria. The best-guess word has its corresponding button highlighted.  



 

 

12 

 

 

 

With “Spell” mode (illustrated in Figure 11), the functionality is similar. While the left-hand panel 
has been replaced by letter illustrations, the procedure to initiate and stop recording is the same, as well as 
the resulting post-recording control functionality. Given the sequence of estimated letters, the recognizer 
now ranks the most likely words included in its 10,000+ entry lexicon. The results are displayed in the 
“Status” panel. 

We now summarize the two recognition methods utilized in the Prototype and present some analysis 
of their effectiveness. 

Figure 10. Prototype “Words” mode. Bottom picture courtesy of BU ASLLVD dataset. 
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Word Recognition: For the development of the 50-word recognizer, user sign were collected via the 
Prototype’s recording capability. Specifically, five users performed each of the 50 signs two times, for a 
total of 100 recordings per signer and 500 recordings in total. For each recording, the Kinect skeletal detail 
associated with the individual image frames was preserved. Word estimation was performed via a template 
matching procedure, i.e., an unknown test recording was compared to a set of pre-recorded examples of the 
50 words to be discriminated. The test-template scoring is based upon the fusion of two distinct criteria: 
The time-varying similarities of the user’s body configuration and the apparent hand gestures. The former 
utilizes the Kinect skeletal data and computes a similarity score by comparing the test and template elbow 
and hand positions over the course of the recording intervals. The final score is derived from a dynamic 
programming (DP) procedure. The hand gesture component is evaluated via a similar DP procedure, but 
with the inter-frame cost derived from the outputs of the Deep Hand DNN (Koller 2016a). Deep Hand is a 
publicly available neural network that has been trained (via ~1 million images) to recognize a set of 60 
distinct Danish sign-language gestures. It was adapted for these purposes without separate training by 
extracting intermediate data, rather than the final classifications, from the network. The test-template 
comparison is illustrated in Figures 12 and 13. In each of these, the top plots show the respective signers 
and their skeletal tracks. The bottom-left plot shows the optimal path through the Skeleton similarity matrix 
(i.e., Signer 1, frame i vs. Signer 2, frame j), the bottom-middle plot illustrates the path through Deep Hand 

Figure 11. Prototype “Spell” mode. 
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space, and finally the bottom-right plot is a fusion of the two similarity measures. In the first figure, the 
signers are producing the same word: “Beautiful.” This results in high similarity scores for both the skeletal 
and Deep Hand measures, as well as their fusion. In the second set of plots, the signs being generated are 
different: “Cheap” and “Cannot.” Correspondingly, the skeletal and Deep Hand similarities are significantly 
lower, indicating a poor match. 

 

 

Figure 12. Word Scoring: “Beautiful” vs. “Beautiful.” 
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Figure 13. Word Scoring: “Cheap” vs. “Cannot.” 

Employing the 50 words recorded from each of the five users, a series of experiments were performed 
to evaluate the effectiveness of the prototype test-template scoring procedure detailed above. A sub-sample 
of the results are provided in Table 1. In each case, a test signer’s videos were compared to various 
combinations of template videos. The “Top Score” column is the percentage of times the test signer’s true 
word was identical to the word associated with the best scoring template. “Top 5 Scores” indicates that the 
correct word was included in the top 5 ranked template scores. The results indicate that a distinct signer 
dependency is present. The prototype performs better with some signers compared to others, and when an 
individual’s first set of recordings are compared to his second, there is near perfect accuracy. In general, 
the scores improved when the template set was expanded to include all the available (non-tester) templates. 
Under these conditions roughly 60% of the test videos were identified correctly (top 1) while roughly 85% 
of the time a candidate video’s sign was in the top 5 scores. 
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Table 1 

Word Test-Template Scoring Analysis  

Note that random performance for the Top Scores is 2% and for the Top 5 Scores is 10%. 

Test Signs 

 

Template Top Score Top 5 Scores 

 

 

User 1 

User 1 (Cuts 2) 98% 100% 

User 2 52% 76% 

User 3 50% 80% 

All Others 64% 92% 

 

 

User 2 

User 1 54% 80% 

User 2 (Cuts 2) 92% 100% 

User 3 42% 74% 

All Others 56% 82% 

 

 

User 3 

User 1 46% 82% 

User 2 44% 80% 

User 3 (Cuts 2) 96% 98% 

All Others 60% 88% 

 

These results are very encouraging, especially since strictly isolated word recognition is rarely 
performed in practice. Usually, the word scoring procedure is incorporated into a language modelling 
scheme whereby estimation accuracy is greatly aided by a priori statistics derived from context and 
grammar. In light of these considerations, the “Top 5” scoring results are particularly relevant. Note that 
the random performance for the “Top Score” is 2% and for the “Top 5 Scores” is 10%. This means that the 
performance for the prototype system is significantly above random performance, and demonstrates the 
proof of concept for using the Deep Hand handshape recognition approach and the hand [trajectory] gesture 
as input features. 
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The Prototype currently employs the scoring procedure outlined above with a 500-recording template 
set. 

Continuous Fingerspelling Prototype Overview 

Spelling Recognition: Once again, a small set of each user’s signs was collected using the prototype. 
In this case, four signers provided input to the prototype while sequencing through the fingerspelled ABC’s. 
Each was input three times from slightly different orientations relative to the Kinect image camera. The 
videos were hand labelled and the Deep Hand features were computed for the individual frames. Two sets 
of input per signer were assigned to the Training set, while the third was designated to the Test set. These 
partitions resulted in roughly 8,000 training samples (225-390 samples/letter) and 3,000 testing samples 
(70-160/letter). The recognizer feature vector was derived from the three internal, fully-connected layers of 
the Deep Hand network along with hand position and motion data. After principle component analysis 
(PCA), the final feature vectors was roughly 300 dimensions. A number of classification techniques were 
explored, but in the end, a simple linear discriminator was found to be most effective with this data set. 

Figure 14 offers the Confusion Matrix associated with the Fingerspelling recognizer performance for 
each user. In this matrix, the columns represent the true letter (i.e., Target Class) while the rows correspond 
the recognizer’s estimate (i.e., Output Class). An ideal recognizer would therefore have a diagonal 
Confusion Matrix. The overall test accuracy is 75.7%, with a sizeable variation among letters. For instance, 
“B”, “V”, and “W” display 100% recognition accuracy while “P” is at only 34%. Where there are 
confusions, they tend to be intuitively reasonable (e.g., “M” is frequently confused with “S” and “N” which 
are very close in structure). 
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Figure 14. Finger Spelling Recognizer Confusion Matrix. 

Fortunately, when combined with a word lexicon, the 75% accuracy of the prototype fingerspelling 
recognizer for individual letters is not a hindrance to identifying specific words. To quantify this, a series 
of Monte Carlo experiments was conducted using a dictionary of the top-5000 most frequent words in 
English. The words were perturbed via the recognizer’s confusion matrix to model practical observations 
and then likelihood-ranked against the words in the lexicon. The top table in Figure 15 illustrates some 
examples of this process. Each row shows the original word, its perturbed observation, the most-likely 
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lexical entry associated with that observation, and finally, the rank of the true word. The lower table shows 
the overall results of this simulation. For three-letter words, the observed letter string is mapped to the true 
word 92.8% of the time and is in the top 5 words 99.6%. These values rise as the word length increases. 
With six-letter words, the word recognition rate is greater than 98%. Clearly, the illustrative examples in 
the top table (each with word rank > 1) are anomalous. 

 

Word 
Length 

Total 
Words 

Top 1 
Accuracy 

Top 2 
Accuracy 

Top 5 
Accuracy 

3 276 92.8% 
(0.4%) 

97.1% 
(0.7%) 

99.6% 
(1.8%) 

4 823 88.5% 
(0.1%) 

93.0% 
(0.2%) 

99.6% 
(0.6%) 

5 844 96.6% 
(0.1%) 

98.7% 
(0.2%) 

99.9% 
(0.6%) 

6 792 98.9% 
(0.1%) 

99.8% 
(0.2%) 

100% 
(0.6%) 

7 704 99.4% 
(0.1%) 

99.8% 
(0.3%) 

100% 
(0.7%) 

8 547 99.8% 
(0.2%) 

99.9% 
(0.4%) 

100% 
(0.9%) 

 

 Figure 15. Letter Recognizer vs. Lexicon Monte Carlo Simulation Results. The values in parenthesis correspond to 
random performance. 
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However, the situation is made somewhat more complicated by the fact that, in addition to incorrect 
letter observations, it is undetermined how many letters are being signed. In practice, both the letter quantity 
and content must be estimated simultaneously. To achieve this, the fingerspelling recognizer embedded in 
the prototype system applies a decoding approach that first smooths the frame-based observations by 
emphasizing motion-stable regions and then partitions and scores the estimates assuming a given word 
length. This procedure is made more robust by limiting the word-length possibilities to those consistent 
with the rank edit (Levenshtein) distance of the observed letters relative to the lexicon entries. 

The results in this section demonstrates the potential impact of a language [spelling] model has in 
addressing system performance for ASL recognition by exploiting the correlations across temporally 
adjacent content. In the above example, the fingerspelling had modest performance of about 75% accuracy. 
Leveraging a spelling model (as seen in the Figure 15), though, results in word accuracy rates significantly 
above 90%. 

Restaurant Prototype Overview 

A task-specific prototype was created for demonstrating automatic ASL recognition capabilities at 
the PacRim Conference (Leang et al 2017). The nominal setting for this prototype is a restaurant where two 
signing individuals—a waiter and a diner—engage in a dialogue with a constrained set of material. The 
dialogue options for the diner and waiter are as follows: 

Diner Dialog Options (FS corresponds to fingerspelling) 

I WANT WATER OJ(FS) MILK SODA BEER TEA COFFEE WINE 

READY 

MORE TIME 

I WANT SALAD FRENCH FRIES CHEESE BURGER STEAK FISH CHICKEN 

WITHOUT ONION TOMATO LETTUCE SALT PEPPER 

MORE KETCHUP MUSTARD (FS) MAYO(FS) DRESSING PICKLES 

NO MORE 

YES ALLERGIC PEANUTS DAIRY(FS) EGGS GLUTEN(FS) 

AWFUL BAD SO-SO GOOD VERY_GOOD NOT_GOOD TASTY EXCELLENT 
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CHECK PLEASE CREDIT_CARD CASH 

CALL-WAITER-OVER 

THANK-YOU 

FINE NO-PROBLEM 

 

Waiter Dialog Options (FS corresponds to fingerspelling) 

I WANT WATER 

I WANT OJ(FS) 

I WANT MILK 

I WANT SODA 

I WANT BEER 

I WANT CHEESEBURGER FRENCH FRIES 

I WANT CHEESEBURGER WITHOUT ONION FRENCH_FRIES 

ALLERGIC PEANUTS DAIRY 

ALLERGIC EGGS ALLERGIC 

I WANT SALAD WITHOUT DRESSING MORE MAYO 

 

This prototype leveraged context and a language model to improve system performance. Performance 
was significantly better on enrolled individuals than it was on unenrolled individuals. 

3.1.2 Additional ASL Classification Experiments 

During the period of performance, two ASL classification sub-problems were investigated using the 
ASLLVD dataset (Athitsos et al 2008, Neidle et al 2008):  

1. 26-class fingerspelling recognition  

2. 86-class word recognition 
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In machine learning, the performance of a classification algorithm depends on the quality of features. 
Classifiers trained directly on the raw data tend to perform poorly. Thus, high-performance classification 
pipelines usually include a separate stage dedicated to learn and extract features from the raw data. Feature 
engineering refers to the process of learning high-dimensional, characteristic representations for a 
discriminative task such as classification by running (unlabeled and unbiased) data examples. 

The goals of the ASL feature engineering include:  

1. Detailed micro hand gestures from frames of images; 

2. Geometric alignment related to location of hands with respect to signer’s anchor body part 
(e.g., face); and 

3. Dynamic changes over frames. 

Overall, the lack of relevant, labeled image frames makes the ASL classification a hard problem. As 
a remedy, a semi-supervised approach was used. In this semi-supervised approach, a large number of 
unlabeled images was used to learn the feature representation before training the ASL recognizers with 
labels. This approach relieves the small labeled dataset problem to a certain degree. However, in order to 
learn the ASL hand features from unlabeled examples, it require a good hand detector/tracker.  

We process ASL image frames using deep learning and body geometry measurements. First, a 
general-purpose deeply learned visual features is extracted using a pre-trained convolutional neural network 
(CNN). In particular, the 19-layer CNN trained by Oxford’s Visual Geometry Group (VGG-19) for 
ImageNet challenge (Simonyan et al 2014) is used. Each image containing an ASL signer is resized for the 
VGG-19 input specification and runs the feedforward path. The 1024-dimensional penultimate layer 
activation values serve as the feature for an image frame. These activations are grouped over multiple 
frames in time representing a sign (e.g., letter, word) by a technique called pooling before its application to 
classifiers. This general-purpose deep learning approach for ASL feature processing is illustrated in Figure 
16.  

 

 

Figure 16. General-purpose deep learning unit to extract visual features. Photos are courtesy of BU ASLLVD 
dataset. 



 

 

23 

Figure 17 illustrates an alternative deep learning scheme for ASL feature processing. A deep CNN 
specialized for hand gesture recognition is used, namely Deep Hand (Koller et al 2016a), developed by 
Human Language Technology & Pattern Recognition Group at Aachen University, Germany. Feature 
processing with Deep Hand is similar to that with VGG-19. The only difference is the leveraging of an 
automatic hand tracker to crop the hand region of a whole image frame. The cropped signing hand is then 
applied to the Deep Hand feedforward path. A 4096-dimensional penultimate layer activation of the Deep 
Hand CNN is used as the feature before pooling and classifiers. 

Note that the Deep Hand CNN (not to be confused with DeepHand, which is a pose estimation 
approach from Purdue University), was derived from a CNN trained (Szegedy et al 2014) on the ImageNet 
corpus. Deep Hand was retrained on a set of over 1 million hands corresponding to Danish Sign Language 
and this data has recently become available. There are a number of opportunities to improve on the Deep 
Hand model. This includes retraining a system more closely matched to ASL and smartphone-style use 
cases. This includes the inclusion of handshapes better matched to ASL as well as retraining the CNN to 
optimize computational performance. In addition, the 3D component of the signal could be included in the 
Deep Hand model to further improve performance. Finally, the nominal hand resolution into Deep Hand 
(227x227) is of much higher resolution than the hands in the available ASLLVD and RVL-SLLL datasets, 
where hands are seldom more than about 40 pixels across. 

 

 

Figure 17. Special-purpose deep learning unit to extract visual features focused on hands. Photos are courtesy of 
BU ASLLVD dataset. 

In Figure 18, the ASL geometric feature extraction is depicted. The baseline geometric features are 
extracted from the face-hands triangular measurements. The angles are computed by the law of sines from 
the centroids of the bounding boxes that face and hand trackers locate in an image frame. Alternatively, a 
Microsoft Kinect is used, which is a motion sensor specialized for measuring human gestures and depth 
information.  



 

 

24 

 

Figure 18. Face-hands triangular and other fine-grain body skeletal geometric measurements. Photos are courtesy 
of BU ASLLVD dataset. 

Key principle for ASL classification is to use lightweight classifiers. Most of computational 
complexity is pushed to feature processing based on deep learning. Another principle is to support multiple 
classifier algorithms. The following algorithms are considered: 

• Softmax regression 

• Support vector machine (SVM) 

• Dynamic time warping (DTW) 

Softmax regression is a generic multi-class classification algorithm popularly implemented at the 
output layer of neural nets. Softmax computes 1-vs.-all class likelihood ratios: 

𝑃(𝑦 = 𝑗|𝒙) = 	
𝑒𝒘,

-	𝒙

∑ 𝒘/
0	𝒙1

/23
 

 
where there are K total classes, wj is the trained softmax weight for class j. Therefore, the position with 
highest P( ) value gives the predicted class of a given input. 

Support vector machines (SVM) seek a hyperplane that maximally separates data points of different 
classes. Fundamentally, SVM is a binary classification framework. Similar to softmax, a 1-vs.-all binary 
SVMs for multi-class support is trained. 

Dynamic time warping (DTW), by itself, is not a classification algorithm. It gives a measure of 
similarity between two temporal sequences that vary in speed. DTW is popular in temporal pattern matching 
such as comparing video frames, audio clips, and other time-series data. For ASL classification, a DTW is 
used to compare templates that comprise sequence of features for a given letter or word. When an unknown 
input is acquired, the DTW cost is computed against all templates, and the predicted letter or word will be 
the one that matches a particular template with the smallest cost. 
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Additionally, class discriminating subspace approaches are used. In particular, principal component 
analysis (PCA) and Fisher’s linear discriminant analysis (LDA) are considered. Strictly speaking, PCA and 
LDA are not classification algorithms, but can be made helpful for discrimination. Feature vectors after the 
PCA and LDA subspace transforms often train a classification algorithm such as SVM more effectively 
than non-subspace transformed feature vectors. 

Our feasibility study includes two evaluation scenarios. In Scenario I, the classification performance 
of 26-way letter recognition is evaluated. In Scenario II, the classification performance of 86-way ASLLVD 
demo word recognition is evaluated. 

For the task of fingerspelling recognition, the Purdue University RVL-SLL dataset (Martinez et al 
2002) is used. The dataset contains video clips of fingerspelling done by 14 different signers for each 
English letter. Every signer has at least two sessions of complete 26-letter recordings. Due to the lack of 
frame-level annotations, the dataset was manually labeled frame-by-frame. Despite being laborious, this 
process is an important step in annotating the data, including identifying null states during the transitions 
between fingerspelling signs. 

To extract per-frame visual features, a pretrained deep convolutional neural networks (CNNs) was 
used. After experimenting with VGG and other popular CNN models, Deep Hand was chosen as the ideal 
option. The hand tracker is used to identify a cropped signing-hand subimage that is resized to 227x227 
according to the Deep Hand spec and compute its feedforward path to extract either 61x3 final softmax or 
4096-dimensional fully-connected layer output. After average pooling of the feature vectors, letter 
recognizers in 26-way softmax regression or 1-vs.-all linear SVMs are trained. 

We have cut the dataset into five folds. For softmax, rank-1 best-fold accuracy of 41% (random 
performance would be ~1%) was achieved. Linear SVMs have achieved 63%. With LDA over the CNN 
feature vectors the classification accuracy could be further improved by 4–7%. The use of Deep Hand has 
improved the previous accuracy result of 20% with VGG-19. Note that the use of a language (e.g., word 
spelling model) would further improve performance. 
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Figure 19. Confusion matrix for letter recognition task. 

Table 2 lists vocabulary for the word recognition task. This is an excerpt from the Boston University 
ASLLRP dataset (Athitsos et al 2008, Neidle et al 2008). 50 words were originally selected by the sponsor. 
Due to inconsistent data availability, the following expanded set of 86 words listed in the table was used: 

Table 2 

ASLLVD Words 

afraid again airplane+ all answer any appointment 

beautiful blue bore boss brown buy can 

cannot center chat++ cheap chemistry+ coat conflict-
intersection 

court cruel dark deaf deposit depress disappoint 

divorce down dress-clothes drink drunk dry earth 
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east eat+noon embarrass+ enough+ everyday excited+ family 

fly-by-plane football+ forget four free freeze Friday+ 

friend girl+friend give-up graduate grandfather grandmother green 

grow happen hard-of-
hearing have head heavy hello 

high home include-
involve keep know+-1h-neg learn leave-there 

left letter-mail like+-1h-neg look lousy marry medicine 

miss-assume price stand-up take-up ns-Boston ns-Chicago ns-Detroit 

ns-England-
English       

 
 

Our experimental methodology is similar to Scenario I. Once again, Deep Hand was used to extract 
visual features from hand-tracked frames. Average-pooled feature vectors are applied to train 1-vs.-all 
linear SVMs. The dataset was partitioned into five cross validation folds. For the best case, an accuracy of 
higher than 80% was achieved for all positive and negative examples on average. Note that a portion of the 
dataset for each isolated word is heavily unbalanced because it is one word against 85 others. This makes 
positive detection rate the most important metric. For positive examples, a rank-1 average accuracy of 37% 
is achieved. As previously discussed, a language model leveraging the correlations with neighboring signs 
would further improve this performance. 

This subsection has demonstrated the significant performance impact both by using a specialized 
DNN handshape classifier (Deep Hand), as opposed to a more general image classifier (VGG). It has also 
demonstrated the impact that various machine learning approaches have in further improvements to the 
baseline Deep Hand performance. As discussed, the Deep Hand approach, while making significant 
contributions to the effort, has the potential of further improvements. 

3.1.3 Translation of ASL to English 

General Discussion 
While the recognition component of the Sign to English processing chain will provide useful output 

to an English speaker, ASL and English are distinct languages, so having a MT capability for translating 
this content will provide improved communication. The technical details of a Direct DNN approach are 
discussed below. There are two available dataset approaches for supporting the translation problem. One 
option is to leverage the inclusion of closed-caption and ASL content in multimedia content such as in 
movies and on the Sign Language Channel (DPAN.TV: https://dpan.tv/). Another option is to leverage 
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parallel corpora that annotate both the English words and ASL glosses at the phrase level (Othman et al 
2012). These datasets, as well as the technical discussion below, support translation between ASL and 
English in both directions. 

Direct DNN Translation of ASL to English 
Sequence-to-sequence models were introduced relatively recently (2014) as a powerful new tool for 

end-to-end machine translation, quickly becoming state-of-the-art on many tasks (Cho et al 2014, Luong et 
al 2015). Building off of this success, the encoder-decoder model has been adapted and applied to a number 
of other tasks, including speech recognition (Chan et al 2015, Zhang et al 2016) image to markup language 
“translation” (Kanervisto et al 2016), and most recently speech-to-text translation (Kanervisto et al 2016). 
These papers have each contributed a number of new developments (convolutional LSTMs, multi-task 
learning, and more), requiring additional research to compare architectural choices on other domains and 
datasets. This approach would not necessarily require an intermediate recognition component to support 
translation capabilities. 

In neural machine translation, a bidirectional recurrent neural network (RNN), known as an encoder, 
is used by the neural network to encode a source sentence for a second RNN, known as a decoder, which 
is used to predict words in the target language. Attention allows the model to learn which source word(s) 
to translate at any step in the process, creating soft alignments between source and target that can be learned 
and modified as the model is trained. 
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Figure 20. Notional RNN architecture for direct translation of continuous ASL signing. Photo courtesy of Harvard 
natural language processing (NLP) github website. 

To translate American Sign Language (ASL) using neural machine translation architecture combines 
elements from speech and image-to-markup translation. Image-to-markup is a translation task using images 
as input, but without an element of temporal change, similar to text-to-text translation. Speech translation 
and recognition capture this element. This changes the nature and expected size of input sequences. Where 
in neural machine translation, input sequences are measured at the word-level and are typically up to 50 
words, speech and sign language require windowed input sequences at the frame-level. A sentence sequence 
may be an order of magnitude longer, which may require more data to model. To reduce temporal resolution 
while maintaining generalizability, (Weiss et al 2017) experimented with initial convolutional layers and 
striding on the speech translation task. These are additionally used by (Deng et al 2016) for image-to-
markup translation. 

Different encoder-decoder architectures have been tested for the tasks of speech recognition and 
translation. In particular, (Chan et al 2015, Weiss et al 2017, and Zhang et al 2016) have each contributed 
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different layer architectures designed to capture structural information about the input signal, while also 
reducing the amount of time and data needed to train systems. These include pyramidal encoders, 
convolutional and convolutional LSTM layers, residual connections within networks, and more. An initial 
exploration of these architectures has begun using encoder-decoder models with attention on a constrained, 
clean speech dataset (the Wall Street Journal corpus) where expected performance is well known, making 
it clear how well the models are doing. The next step is to apply them to Sign Language datasets where the 
input is sequences of image frames rather than speech frames. 

3.2 ENGLISH TO ASL 

An ideal option for the English to ASL communication channel is to include an ASL-signing avatar 
in addition to, or instead of, an English text translation of the spoken English content. To date, an 
OpenSource avatar option has not been identified. There are commercial (ProDeaf, http://prodeaf.net/en-
us) and academic (DePaul University, http://asl.cs.depaul.edu/) avatars, though no supported APIs 
(Application Programming Interface) are available for either system. The ProDeaf system is an active 
commercial product that was originally developed for Brazilian Sign Language, though ASL capabilities 
have since been added. It is unclear whether the DePaul system is anything more than a canned 
demonstration capability. 

3.3 MOBILITY-RELATED ISSUES 

There are several engineering and technical challenges to moving to a mobile ASL solution deployed 
on a smartphone. These include: 

• Signal acquisition 

• Computational 

• Broader variation in acquisition environment 

3.3.1 Smartphone-Based Signal Acquisition 

A few recently released smartphones have sensor configurations similar to the Microsoft Kinect 
sensor used for this effort. These sensor packages include a lower resolution 3D camera and a higher 
resolution 2D camera. The 3D signal is useful for the high confidence detection of the body configuration, 
particularly the position and orientation of the signer’s hands. The higher resolution 2D signal is important 
for supporting the DNN-based handshape recognition process. While the 3D signal was only used for 
body/hand detection, and not for sign recognition, for the MIT LL effort, it does have the potential for 
improving recognition performance, particularly for the mobile applications being considered here where 
increased viewing angle variation would be expected. 

The iPhone X, released in November 2017, includes a TrueDepth Camera and Sensor System that 
leverages infrared (IR) structured illumination to attain 3D images that they use for their internal face 
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recognition-based authentication process. Samsung Galaxy phones also have 3D image capability that 
leverages Google’s ARCore (replaces their discontinued Tango platform) that are primarily targeting the 
augmented reality domain. Intel also developed a smartphone with similar capabilities, but has discontinued 
those efforts in 2017. These smartphone-based capabilities can be repurposed to leverage these 3D 
capabilities, as well as the onboard high-resolution 2D cameras, to support the ASL signal acquisition 
challenge. 

3.3.2 Smartphone-Based Compute 

The ASL to English recognition process is computationally expensive, particularly for the DNN-
based handshape recognition process. There are several options for addressing these compute issues: 

• Retrain the DNN handshape recognizer to optimize effective computation. 

• Leverage AI chipsets that are increasingly available on smartphones for doing onboard 
computation 

• Leverage available communication channels to offload the extracted signal (or extracted features) 
to perform expensive computation operations on an external platform. 

The datasets that support the training of the Deep Hand DNN are now publicly available, which 
enables the retraining of the DNN. This retraining could be extended to include the 3D signal component 
with a smartphone-based data collect to further improve handshape recognition performance. 

We have investigated the GPU speedup option using a networked GPU. The first goal, with respect 
to processing time, was that each image takes less than 20 ms (0.020 seconds) to classify via deep neural 
network architecture. This is a first-step toward an ASL system that is operational in real time. This 
processing goal was achieved using a GPU-based remote server. The result is that a GPU remote server 
speeds processing time significantly compared to using CPUs local to the demo device (i.e., personal 
laptop) and this time can be further improved by distributing workload among multiple GPUs on a single 
server.  

One option for operating ASL technology on a small electronic device, such as a smartphone, tablet, 
or smartwatch, is that the computational processing is offloaded from the user device onto a remote server. 
This is because small electronic devices are not equipped with enough memory or processing speed to 
handle image classification in real time at scale. The best solution, and one that is often referred to in 
industry practice (such as with Google Translate or Siri), is to use an HTTP service. A CPU-based and 
GPU-based HTTP web service was constructed. With this webservice, each image is transmitted to a remote 
server that is hosting the DNN classifier. The image is processed and a result is returned to the client. The 
client could be a miniature electronic device, for example. 
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Table 3 

Characterization of CPU and GPU Performance 

 

 

 

 

 

PyCaffe 

(Python) 

Technique CPU 

Per Image 

CPU 

Full Set 

GPU 

Per Image 

GPU 

Full Set 

Non-parallel 

List comprehension 

0.119 26.67 0.025 5.76 

Non-parallel 

Multithreading 

0.114 25.56 0.840 189.96 

Parallel 0.117 26.36 0.595 133.38 

HTTP Server/Client  0.119 26.70 0.025 7.0 

MatCaffe 

(MATLAB) 

Non-parallel loop 0.116 26.13 -- --  

HTTP Server/Client 0.125 28.05 0.030 6.9 

 

Table 3 indicates various parallelization methods that were experimented with for the Python and 
MATLAB versions of Deep Hand image classification. The table shows time profiles for CPU and GPU 
on a per-image basis as well as a full-set of 400 images. It was found this task is not well suited to the 
parallelization libraries of Python and MATLAB because built-in parallelization in both languages adds 
significant overhead. While it may seem counterintuitive that parallelization libraries cause processing time 
to increase, it is a commonly observed phenomenon in computer science and occurs when the individual 
task itself is very fast and not memory intensive, but highly repetitive. The task of image classification is 
not memory intensive and is highly repetitive. Therefore, faster processing time are observed when each 
image is processed in a serial manner. Likewise, it is possible to induce parallelization at a systems level 
by setting up multiple GPUs on a server with a front-end load balancer to distribute images between 
multiple GPUs. For example, by sending 50% of the images to GPU #1 and simultaneously sending 50% 
of the images to GPU #2, the overall time for processing a set of images will be halved.  
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This section has demonstrated how GPUs can be leveraged to address the computational challenges 
to the ASL problem. This challenge has been particularly acute for the Deep Hand feature extraction 
process. Going forward, technology options include retraining the Deep Hand model to reduce its 
computational demands, leveraging the GPU compute capabilities resident on the smartphone, or 
leveraging a GPU that is networked to the smartphone. 

3.3.3 Smartphone-Based Signal Variation 

A handheld smartphone-based signal acquisition environment will result in a broader variation of 
sign variation than the controlled laboratory-style signal acquisition environments used by the ASL corpus 
collections done to date, including those done by MIT LL in the course of this work. This variation includes 
illumination environment, image backgrounds, potential occluders, and viewing angle. It is expected that 
the DNN-based handshape recognition approach should be robust to the illumination environment and 
image background.  

Occluders are always an issue for vision-based systems. Approaches to addressing these issues 
include developing approaches to recognize ASL content with partial information. A more promising 
approach, particularly for the short-term, is the use of a quality metric for ensuring the collected signal does 
not include occluded content.  

Viewing angle issues can be mitigated through the exploitation of the 3D signal and broader datasets 
matched to these conditions that may include newly collected data and synthetic data. Since there is minimal 
existing off-angle ASL content in existing corpora, use case-relevant off-angle smartphone content needs 
to be collected to seed a synthesis effort. This issue will be discussed in greater detail in the next section. 
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4. DATA-DRIVEN SYSTEM DEVELOPMENT 

The mobile smartphone-based ASL challenge is inherently a data-driven problem necessitating data 
collection matching the intended use cases for supporting performance evaluation. Additionally, other data 
sources such as other ASL content that is not well matched to the intended use cases can be used to support 
the development process, namely in increasing the effective amount of available training material. In cases 
where additional natural data cannot easily be collected, synthetically-augmented datasets are another 
promising approach, where millions of image variants can be created from seed images and parametric 
descriptions. 
4.1 SYSTEM CONCEPT 

A primary challenge to developing a mobile smartphone-based communication system between ASL 
and English is that there is no known dataset that matches these use cases. This is important since it is 
impractical to measure the performance of a prototype system on data not representative of its intended use 
to determine whether it is ready for technical transition to a deployed system. It also means that the 
numerous system design decisions made during the technology development process to address 
performance shortfalls are not practical without such a representative dataset. It is, for example, impractical 
to enlist users to evaluate systems through each step of the development process without having them on 
constant call. This approach also has the drawback of a system “tuned” to whatever user was used during 
the development and evaluation process. This was, for example, the performance challenge of the prototype 
system development process discussed in the previous section that had strong performance results for the 
system developer though significantly weaker performance for novel users. 

For the reasons stated above, many system development efforts leverage a development process that 
resembles Figure 21. During the technology development process (top box on right) development data is 
leveraged to internally train and evaluate both system components and the overall system. The development 
data that is used for evaluation should be matched to the intended use cases of the effort—unconstrained 
continuous ASL collected from a smartphone. All of the development data that is used for training does not 
necessarily need to be matched to the intended use cases. In the ASL case, for example, this train material 
could include synthetic data or ASL content that is leveraged from related corpora. Performance 
improvements are achieved through an iterative process of system design choices, retraining, and 
evaluation. Well-defined evaluation criteria can also support an informal apples-to-apples comparison of 
technology performance in published work. One risk of this approach is that over time, system performance 
can become overly tuned to the development dataset—particularly the development partition used for 
internal evaluation. Unfortunately, this performance frequently does not necessarily transfer to the 
operational domain. Ways to mitigate this issue include frequent refreshes of the development dataset with 
the infusion of new data, the intelligent partitioning of the development set leveraging techniques such as 
cross-validation, and the use of formal evaluation as discussed in the next paragraph. 
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Figure 21. Train-test partitioning of dataset. 

Formal technical evaluation can take many forms, but frequently involves the evaluation of systems 
on “freshly” revealed data. It supports an apples-to-apples performance comparison across many different 
systems being evaluated, as well as against the performance of previously evaluated systems. Formal 
evaluation also supports a decision process to determine whether the technology performance is sufficient 
to consider technology transition and user evaluation. Sometimes the evaluation is self-evaluated where the 
answer key annotations are shared with evaluation participants. More frequently, the results are evaluated 
by an evaluation coordinator where either results are submitted and evaluated or software is submitted, run, 
and the results evaluated. The results submission is popular due to its balance between maintaining the 
integrity of the evaluation and minimizing the labor involved with the evaluation. 

 

4.2 DATA ACQUISITION AND ANNOTATION 

Ultimately, the most valuable set of data for a data-driven approach is the data required for evaluating 
system performance. This data is indispensable both for supporting the regular “informal” internal 
evaluations of various system design decisions, as well as “formal” evaluations to determine whether the 
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technology performance has matured sufficiently to support technology transition and user evaluation. As 
previously discussed, no ASL datasets matching the mobile smartphone-based sensor collection model has 
been identified to date. Leveraging ASL datasets that do not match these use cases may positively impact 
the performance for a mobile ASL recognition or translation system in some cases. Best practice is to collect 
a small set of matched data which allows testing of how well machine learning approaches translate to real-
world conditions. 

The data acquisition and annotation process includes several tasks, including designing the actual 
data collect, building data collect tools, collecting data, annotating data, cleaning up and storing data. These 
processes are labor intensive in nature, with some modest costs also required for the necessary sensors 
(smartphones) and storage. Much of the cost (labor) is driven by the data collection and annotation tasks. 

A data collection methodology is suggested to mitigate the effective cost the data collect by mitigating 
the labor required for data collection and annotation. A smartphone-based app can be developed that will 
prompt the subject to sign a specified ASL phrase. The signer will then sign the prompted phrase that the 
smartphone will collect and automatically send to a central data repository with the associated annotation 
relating to the signer and phrase. Such a capability minimizes the primary costs to data collect—collection 
and annotation.  

A partnership with a University campus that has a strong Deaf community such as Gallaudet or the 
Rochester Institute of Technology (RIT) would provide an ideal venue for rapidly collecting content across 
a significant number of ASL signers. Leveraging these campuses may also significantly reduce the expenses 
for compensating subjects. These smartphones can be distributed to on-campus signers without the need 
for the data collection team to monitor the data collection. The actual data collection should occur across a 
broad range of indoor and outdoor collection conditions such as hallways, dorm rooms, and classrooms. 

Suggested phrases for the data collection are subject-verb-object sentences. These sentences will need 
to be developed as part of the data collection design to cover the ASL vocabulary targeted for the data 
collection.  

4.3 DATA PARTITIONING AND SUPPORTING EXPERIMENTS 

The purpose of the data collection is to support a development process that includes an evaluation 
component to ensure the effectiveness of the completed system. An annotated data collect matching the use 
cases is necessary to support both the technology development and formal technical evaluation components. 
A single data collect would support the development of both of these datasets. Prior to this data collect, it 
is suggested that a smaller subset of the data collect is first done to work out the data collection kinks and 
to determine requirements for the data collect. This pilot corpus could, for example, be limited to a subset 
of the ASL vocabulary. A discussion of several experiments to support this specific investigation is 
discussed below. 
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Evaluation against the formal technical evaluation content should be done sparingly to reduce the risk 
of over-tuning the system to this dataset. Alternatively, this material can be further partitioned with portions 
of the data revealed to the system developers over time. Older data can be pulled into the technology 
development dataset. Another alternative is to do further data collect to refresh the formal technical 
evaluation dataset to refresh the dataset and perhaps adapt to an evolving set of use cases. The training 
partition of the technology development dataset can be potentially augmented with synthetic data and/or 
other non-matched sign language datasets.  

Several experiments done on a smaller pilot data collect can refine the data requirement needs of the 
effort and identify promising paths for system development. Below is a list of experiments to consider. The 
first three, and particularly the first one, are important for determining the data requirements to developing 
an operational system: 

• Core data requirements experiment: A core question for system development is how much 
data is required to effectively train and evaluate an ASL system. Specifically, how many 
exemplars are required per sign. A performance tradeoff can be done to determine how many 
training examples per sign are necessary to achieve the required system performance. 

• Enrollment experiment: The data requirements can be potentially reduced through leveraging 
signer enrollment, though this process does place an added burden to the initial use of a fielded 
system. To support this experiment multiple sessions of ASL content will need to be collected 
for a meaningful subset of subjects. The sessions for a given signer should be done in different 
physical environments and on different days. Comparative performance results between using 
and not using one of these subjects’ sessions can be performed to determine the impact of subject 
enrollment.  

• Synthetic experiment: Leveraging synthetic ASL content has the potential of mitigating the data 
requirements for training, though not evaluating, an ASL system. An experiment is suggested 
that augments the training material with synthetic content to determine whether performance is 
meaningfully improved on the withheld evaluation content. Methods such as GAN and VAE, as 
discussed in the previous section, are well matched to generating synthetic material to improve 
recognition performance. It may be helpful to collect ASL content simultaneously from multiple 
smartphones from different viewing angles to support this experiment. 

• Neural translation experiment: Leveraging DNN approaches to generate translations from 
ASL to English using low-resource data (e.g., closed captioning) has the potential of mitigating 
data requirements, as discussed in the previous section. One challenge is that this content, largely 
captioned TV shows and movies (https://dpan.tv/) is not well matched to the mobile ASL concept. 
An experiment is suggested that leverages such content to determine the potential impact of this 
approach to moving directly to a translation system. 
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• ASL translation experiment: Since ASL is a distinct language, there is a translation problem in 
addition to the recognition problem. An experiment is suggested that characterizes how well ASL 
translation can be performed given the accurate (though perhaps noisy) recognition of ASL 
glosses. 

4.4 LEVERAGING SYNTHETIC DATA 

One of the most pernicious challenges to the ASL challenge is acquiring sufficient data matched to 
the expected use cases. One potential approach to addressing this challenge is by leveraging synthetic data. 
Given the availability of state-of-the-art algorithms, a data-driven approach is likely more promising than 
a physics-engine approach. Two promising data-driven DNN approaches are Generative Adversarial 
Networks (GAN) (Antoniou et al 2017) and Variational Autoencoders (VAE) (Kingma et al 2014, Rezende 
et al 2014). 

 

Figure 22. Generative Adversarial Network (GAN) architecture. Diagram courtesy of KDnuggets. 
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Figure 23. Variational Autoencoders (VAE) architecture. Diagram courtesy of Kevin Frans (kvfrans.com). 

In both of these approaches, both the synthesis of novel content and the training of the classifier 
model are generated concurrently. The objective is to generate models for “unseen” examples, though these 
examples need to be consistent with the available training material. For example, if a face model is 
generated from content of various faces at various pose angles, the system would begin learning how to 
repose a given face to poses corresponding to other faces. If, however, only male faces are included in the 
training set, this approach will have problems accurately modeling female faces. In the ASL case, this 
means that this approach would need to be seeded with sufficient training material that is consistent with 
the type and quality of data expected in the operational system. Examples include the various observation 
angles, the sensor signal type (2D/3D?), and the expected handshape sequences and trajectories expected 
for the target vocabulary.  

These synthesis approaches are consistent with similar approaches where collected data signals are 
perturbed or noise added to signals to extend the availability of training material (Lawson et al 2009, Harper 
2015). They provide a potential opportunity to increase the dynamic range of available data for a given 
ASL sign or broaden the acquisition environment conditions. 

4.5 CHALLENGE PROBLEMS 

The recognition and translation problems between ASL and English are challenging and multi-
faceted, requiring expertise in sensors, signal processing, machine learning, linguistics, and software 
engineering. For these reasons, it does lend itself to a public challenge problem, which is a good means of 
leveraging the efforts and expertise of a broad community of researchers for the modest cost of organizing 
and releasing ASL data content. The synthesis problem discussed above could be an interesting challenge 
problem in itself. 

One promising path for a challenge problem is to have an associated workshop at a prestigious 
conference in a related field. Several conferences to consider are: 
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• IEEE Computer Vision and Pattern Recognition (CVPR) 

• ACM Multimedia (http://www.acmmm.org) 

• Interspeech 

• International Conference on Language Resources and Evaluation (LREC) 

• Speech and Language Processing for Assistive Technologies (SPLAT) 
(http://www.slpat.org/events.php) 

o Often hosted at Interspeech or LREC 

Additionally, the SCALE (Summer Camp for Applied Language Exploration) program 
(https://hltcoe.jhu.edu/research/scale/), annually hosted by the Johns Hopkins University (JHU) Center of 
Excellence (COE), may be a good forum to consider for hosting a challenge where investigators from across 
the United States Government (USG), the National Laboratories, and academia can deeply engage with the 
problem domain.
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5. CONCLUDING REMARKS AND FUTURE ROADMAP 

This report summarizes a 12-month effort to evaluate the near-term feasibility of a portable device to 
enable spontaneous, fluid communication between a Deaf ASL signer and an English speaker. While such 
a capability would have been unthinkable only a few years ago, recent technical breakthroughs such as 
DNN-based object recognition and smartphones equipped with 2D/3D sensors and AI chipsets, provide the 
promise of successfully developing and deploying such a capability in the near future. Based on an 
extensive literature review, and experiments and prototypes developed during the course of this effort, a 
number of key findings regarding the feasibility of such technology were found as follows: 

• Recent DNN breakthroughs can effectively model handshapes that, coupled with hand 
trajectories, achieve encouraging isolated ASL sign and fingerspelling performance. The Deep 
Hand DNN model can be further improved to better match it with the considered use cases. 

• Language-model exploitation can significantly improve system performance over isolated sign 
recognition. Similar to the Automatic Speech Recognition (ASR) problem, the correlations 
between a signal and the temporally adjacent signals can be exploited to improve recognition 
performance. 

• A 2D/3D sensing capability adds significant performance improvements over a 2D sensing 
capability. The 3D component of the signal enables the robust detection and tracking of the hand 
and other body parts far superior to the 2D signal. This is a crucially important step for 
successfully extracting the hand subimage from the collected image prior to the subimage’s 
submission to the DNN handshape recognizer. While the 3D signal was not exploited for 
handshape recognition since a legacy DNN (DeepHand) system was exploited that was based on 
2D signal exploitation, it is expected that a retrained system additionally leveraging the 3D signal 
would have significant performance improvements. While a Microsoft Kinect sensor was used 
for the 2D/3D sensing capabilities, a number of smartphones such as the iPhone X have cameras 
with similar sensing capabilities. Additionally, the iPhone X has an AI chip that may support the 
requisite computational loading for achieving real-time or near real-time translation capabilities. 
Significant engineering is likely required to integrate the smartphone sensors and compute 
infrastructure. 

• While the English to ASL channel output could be potentially supported by a text output, an ASL 
signing avatar may be an attractive alternative for this communication channel. Several existing 
capabilities in academia and industry were discussed, though their current availability and 
performance in practice is uncertain. 

Going forward, the primary challenge is to attain suitable ASL recognition performance 
corresponding to the relevant use cases. While there are a number of technology gaps to address, the most 



 

 

44 

immediate challenge is the lack of annotated data matched to these use cases. The traditional approach to 
solving this challenge, as historically done with ASR, is the formal collection and annotation of datasets. 
One technical approach discussed was leveraging low-resource (e.g., closed-captioned) ASL content for 
bootstrapping a translation system. An alternative approach under consideration for continued 
investigation, as discussed in the Introduction and Section 5.4, is to leverage synthesized data to augment 
the availability of ASL data for the training process. If successful, this would greatly reduce the amount of 
data needed to be collected to only that data required for evaluation and for seeding the synthesis process. 
More importantly, the success of this approach would have great impact across a broad range of USG low-
resource applications with limited data availability.  

5.1 TECHNOLOGY CAPABILITIES AND DEPENDENCIES 

The following tables provide a high-level summary of technical capabilities and their 
interdependencies required for implementing a mobile ASL recognition and translation capability. This 
includes considered technical approaches and potential dependencies and requirements, as well as 
references to more detailed discussions later in the document. There are separate tables for the Sign to 
Speech, Speech to Sign, and Mobility-related hardware challenges. 
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Table 4 

Sign to Speech 
Capability Technical Approach Dependencies/Requirements 

Face/Head Extraction Onboard skeletonization • Leverage onboard capabilities if available.  
• Face detection capabilities are broadly 

available. Face detector 

Hand Extraction Onboard skeletonization 

Hand detector • Evaluate and train hand detector (see 
performance-related capability issues below).  

• 3D component of signal is important for 
effective performance. 

Feature Extraction DNN-based model  

(See Section 3.1) 

Compute (see mobility-related issues) 

Recognition 

(See Section 3.1) 

Sign model  

Performance degradation Language model 

Translation 

(See Section 3.1.3) 

Cross-Language model 

 

 

System 

Performance 

 

 

Retrain core classifiers 

(See Sections 3.1 & 4) 

 

Evaluation dataset matched to use case(s) and 

Train datasets leveraging any combination of the 
following: 

• Dataset(s) matched to use case(s) 
• Dataset(s) partially matched to use case(s) 
• Synthetic data (See Section 4.4) 

Leverage 3D sensor signal • Modest computational cost 
• Retrain core classifiers (see above) 
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Table 5 

Speech to Sign 
Capability Technical Approach Dependencies/Requirements 

Translation 

(See Section 3.1.3) 

See ASL to English 
translation 

 

User Interface 

 

Text  

Avatar Technology exists, but its availability is unclear. 

(See Section 3.2) 

 

Table 6 

Mobility-Specific Issues 
Capability Technical Approach Dependencies/Requirements 

Signal Acquisition 

(See Section 3.3.1) 

Leverage smartphone-
based sensors (newer 
versions have 2D/3D 
cameras) 

 

 

Compute 

(See Section 3.3.2) 

Leverage smartphone-
resident AI/GPU chip 

 

Leverage cloud solution Communication channel bandwidth, security, 
and latency 

Retrain classifiers to 
optimize computational 
performance 

See performance under ASL to English 
recognition and translation 
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