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Abstract

Robust tools for characterizing nonlinear dynamical systems are indispensable in the devel-
opment of in-space thrusters and other technologies of interest to the Air Force Research
Laboratory. Although combustion can be easily simulated, the difficulty of experimentally
observing a large number of chemical species complicates traditional methods for identifying
system dynamics and ascertaining reaction rate coefficients. We utilize the attractor recon-
struction procedure from convergent cross mapping to reconstruct the complete behavior of
a continuously stirred hydrogen-oxygen tank reactor model from time-lagged observations
(shadow manifolds) of individual species. Having demonstrated that a shadow manifold
can effectively capture the information present in the entire attractor, we describe a novel
optimization metric for data-driven parameter inference that only requires knowledge of a
single observable. The proposed method infers parameters by minimizing the Wasserstein
distance between binned shadow manifolds of a given reference data set and trial solutions.
We demonstrate the superiority of our metric over standard approaches and present proof-
of-concept results for reaction coefficient inference.
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Chapter 1

Introduction

The Rocket Propulsion Division of the Aerospace Systems Directorate at the Air Force
Research Laboratory (AFRL) is tasked with advancing novel technologies for rocket and
satellite propulsion, fuels and propellants, and system analysis. As such, the Rocket Propul-
sion Division dedicates much of its basic research efforts toward high pressure combustion,
energetic material design and synthesis, and modeling and simulation of propulsion experi-
ments. Since accurate knowledge of chemical reactions is key for modeling and simulation
of in-space combustion, the Division is highly interested in methods for characterization and
calibration of the nonlinear dynamics ubiquitous in chemical reaction networks.

1.1 The Proposed Problem

The governing equations of chemical kinetics are well understood, and chemical reactions can
be modeled with relatively simple ordinary differential equations. The primary challenge of
modeling combustion and other chemical reactions lies in identifying a physically correct set
of parameters for these equations. Traditional model calibration techniques require complete
and precise measurements of the entire reaction in order to determine correct parameters.
However, many of the chemical species that participate in combustion reactions are short-
lived and only exist in minute quantities, making them difficult to access experimentally.
Moreover, complex reaction mechanisms involve a very large number of species, further im-
peding experimental measurement. Due to these observational difficulties, model coefficients
for most combustion reactions remain poorly known.

Recently researchers at AFRL have become interested in applying convergent cross mapping
(CCM) to study noisy, chaotic systems that are difficult to measure experimentally. CCM
was initially developed for detecting causality in complex ecosystem population dynamics by
checking for the existence of convergent maps between time-lagged observations of different
system observables [18]. However, the existence of convergent bijective maps between time-
lagged observations of one observable and all other observables in a given system indicates
that the first time-lagged signal has captured the information necessary to describe the entire
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system. Thus, CCM can be adapted to create a powerful method for reconstructing noisy and
chaotic data from limited observations. Indeed, AFRL researchers have already successfully
employed it in Hall-effect thruster (HET) research for fusing time-varying measurements
from multiple spatially-distributed probes into a unified reconstruction [5] and for model
calibration for high-dimensional HET systems [12].

Although preliminary results indicate that CCM-derived techniques work surprisingly well
for high-dimensional dynamical systems such as those exhibited by HET dynamics, CCM has
only been comprehensively tested for “toy” problems with a small number of state variables.
Thus, the goal of our project was to provide an intermediate step between these extremes
by exploring the applicability of CCM-derived techniques to intermediate-scale nonlinear
dynamics. In particular, we considered data from a 10-state hydrogen-oxygen reactor model.

1.2 Our Solution and Approach

We proposed two numerical algorithms: the first reconstructs the complete behavior of a
dynamical system from a small set of observations, and the second performs model fitting
using limited data. We also developed Python implementations of both procedures.

Our attractor reconstruction algorithm utilizes theorems from dynamical systems theory and
information theory to reconstruct one time-dependent signal from another, granted that the
two signals represent dynamically coupled observables. Sequentially, the algorithm accepts
two time series as inputs, splits them into training and testing data sets, estimates an optimal
time lag and embedding dimension, creates time-lagged embeddings (shadow manifolds) of
the training data sets, constructs maps between the training shadow manifolds, and uses
those maps to reconstruct one testing time series from the other. Since we only considered
simulated time series, both testing time series were always known. Therefore, our algorithm
concludes by evaluating the quality of the reconstruction against the actual time series.

Our parameter inference algorithm extends the attractor reconstruction algorithm to find a
set of parameters that results in the closest possible “fit” between a mathematical model and
a given reference data set. The algorithm accepts a reference time series and a mathematical
model as inputs. First, the algorithm creates a shadow manifold from the reference time
series. Next, the algorithm iterates over some set of potential parameter values. Each
iteration of the process simulates the model, creates a shadow manifold from the trial time
series, bins the shadow manifold as a probability distribution function (PDF), and evaluates
the discrepancy between the reference and trial PDFs. After an initial arbitrary parameter
guess, every subsequent iteration uses gradient descent to repeat the process with a new,
better parameter set until a discrepancy of zero is achieved.

We demonstrated the success of both methods on simulated hydrogen-oxygen reaction data.
Using the open source Cantera package [4], we generated time series data for hydrogen-
oxygen combustion in a zero-dimensional continuously stirred tank reactor (CSTR) model.
We considered a range of input parameters (e.g. mass inflow rate, temperature, pressure,
etc.) and perturbed the mass inflow and piston boundary conditions. Subsequently, we
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confirmed the applicability of our attractor reconstruction algorithm across all scenarios and
analyzed how distance between species within the reaction network affects reconstruction
quality. Finally, we attained proof-of-concept parameter inference results: our empirical
parameter inference method recovered a number of the preset parameter values in Cantera.

Our techniques enable robust fusion of experimental and modeling studies of combustion,
thereby providing AFRL with a tool for accurate calibration of in-space propulsion systems.
Although we demonstrated the success of these algorithms for simulated hydrogen-oxygen
reactions, the methods and tools presented in this report can be applied to a wide range
of coupled dynamical systems. We believe that our work provides an important addition
to the existing body of CCM research and would serve to guide future investigations into
data-driven algorithms at AFRL.

1.3 Report Overview

Our report is organized in the following fashion:

Chapter 2 presents the mathematical background necessary for the methods we describe.
We begin by introducing relevant concepts from dynamical systems theory and explaining
Takens” Theorem, which serves as the basis for CCM. Next, we present the rudiments of
information theory, which we later employ for estimating an optimal time lag. We also
briefly present key notions from optimal transport theory and define the Wasserstein metric,
which is essential in our parameter inference method.

Chapter 3 explains hydrogen-oxygen chemistry and the setup of our zero-dimensional CSTR
model. For the purpose of this project, we sought a steady state reaction and then perturbed
the input boundary conditions to create a variety of oscillatory behavior. Hence, we created
a Cantera reactor model to represent such a system and allow for various perturbations and
initial conditions.

Chapter 4 details the justification, requirements, and implementation of our attractor re-
construction and parameter inference algorithms. We first summarize the CCM technique,
and then explain how our attractor reconstruction algorithm adapts CCM to reconstruct
one time series from another. Complete attractor reconstruction from a single observable,
in turn, facilitates our method for empirical parameter inference. This chapter also explains
the challenges and limitations of the described approaches.

Chapter 5 presents the results of our research. First, we share the variety of system dynamics
produced through manipulation of our reactor model. Second, we show examples of high-
quality and lower-quality time series reconstructions, explaining the factors that determine
reconstruction quality. Lastly, we portray the response surface for reaction coefficients and
demonstrate several examples of successful parameter recovery by our process.

Chapter 6 concludes the report with a summary of our key observations and contributions.
Additionally, we discuss the difficulties we encountered, possible routes for future research,
and potential improvements to the proposed algorithms.

15
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Chapter 2

Mathematical Background

This chapter presents the mathematical background necessary to understand the methods
applied to the problems introduced in Chapter 1. Chemical reaction networks can be treated
as dynamical systems, and we develop some tools generically applicable to certain dynamical
systems that we will use to analyze chemistry. We begin with the foundations of topology
required to discuss dynamical systems theory, and proceed to an exposition of the result that
forms the backbone of our algorithm: Takens’ Theorem.

At several stages in our project, we have encountered arbitrary parameters in our algorithms
that have no canonical means of selection. There exists a selection criteria for one such
parameter that involves information theory, which we introduce at a basic level in the section
following the discussion of topology and dynamical systems.

Lastly, we discuss optimal transport theory, which becomes relevant in model calibration
as we compare two probability distributions generated by our parameter reconstruction al-
gorithm. In particular, we utilize the Wasserstein distance as a metric to quantify the
discrepancy between a reference solution and our trial solution (where we perturb some pa-
rameter to generate each given trial solution). The Wasserstein distance can be thought of
as the minimum cost it takes to convert one probability density function into another, the
minimum cost of moving the “mass” of one distribution to the other.

2.1 Dynamical Systems Theory

Definition 2.1. A dynamical system is a tuple (7, M, ®) with T" an open subset of R, M
a smooth manifold, and ® : T" — M a continuous function.

For our purposes, a smooth manifold can be thought of as a space that is locally isomorphic
to R™ at each time for some fixed n. For example, an ordinary sphere S? would be a 2-
manifold as a sphere appears locally flat when you “zoom in” far enough. In this case, when
describing the state space of some deterministic system as a manifold, it is best to think of
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M as R"™ itself, an ambient space that encodes all possible values of n state variables that
completely define the state of the system.

Definition 2.2. The state of a dynamical system is the smallest set of variables (called
state variables or observables) such that the knowledge of these variables at ¢ = ¢, together
with the input for t > ¢y completely determines the behavior of the system for any time
t >t

As should be familiar from ordinary physical situations, many dynamical systems evolve
toward some end state. For example, a damped harmonic oscillator (as in a pendulum
where drag is present) will eventually lie motionless, and will never leave this state without
some external perturbation. For an arbitrary dynamical system, we consider a more general
limiting case:

Definition 2.3. An attractor of a dynamical system (7', M, ®) is a subset A of M such
that

o If O(t) € A, then ®(t+7) € Aforall 7> 0

e There exists a neighborhood of A called the basin of attraction for A denoted B(A)
such that if ®(t) € B(A) for any time ¢, then ®(¢) will eventually be in A. That is,
there exists Ty € T such that for ¢t > Tp, ®(t) € A.

e Ais maximal, that is, there is no nonempty subset of A having the first two properties.

An attractor can be a finite set of points, a curve, a manifold, or even a set with a fractal
structure, in which case it is referred to as a strange attractor.

Definition 2.4. A dynamical system exhibits chaos if it satisfies all of the following prop-
erties:

e Contains dense periodic orbits, that is, every point is arbitrarily close to a point of a
periodic orbit

e [s hypersensitive to the initial condition of the system, in that points arbitrarily close
to one another will eventually be far apart

e [s topologically transitive, that is, points in any neighborhood will eventually wind up
in any other neighborhood

As an example of a dynamical system that exhibits chaos, we consider the Lorenz system
[13]. The Lorenz system was originally proposed for modeling atmospheric convection, but
is now typically used for providing an example of a smooth but chaotic broadband.

Definition 2.5. The three-equation Lorenz system is defined by

%gzaw—x%
%%Zx@—Z%—%
% =xy — [z.

18

Distribution Statement A: Approved for Public Release; Distribution is Unlimited. PA Clearance Number 20032



Figure 2.1: The Lorenz system simulated with initial condition (zo,yo,20) = (1,1,1) and
parameter values (o, p, 8) = (10,28,8/3) for 0 < t < 50.

In all following examples where we employ the Lorenz system, we use the initial condition
(%0, Y0, 20) = (1,1,1) and base parameter values (o, p, 3) = (10,28,8/3), which produce a
chaotic attractor. Figure 2.1 displays the Lorenz attractor generated from this parameter
set.

It is often useful to consider the dimension of an attractor, which is easy to define when
an attractor has the structure of a manifold, and slightly more complicated with strange
attractors; Takens” Theorem utilizes the commonly used box-counting or Minkowski-
Bouligand dimension, though other measures for fractal dimension are often used.

Definition 2.6. Suppose N(¢) is the number of boxes (generalized cubes) required to cover
a set S lying in R", where € is the spacing of a grid. Then, the box-counting dimension
of S is given by
log N
dim(S) = lim log N(€)

0t log %

A motivating example for this definition is the unit square. If we pick ¢, = % to be the
sequence along which we take the above limit, it is clear that n? small squares can fit in the
unit square. Hence,

log n?

dimgquare = lim =2

n—oo 10g71

as we would expect.
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Figure 2.2: n? squares of side length % can fit in the unit square, and dimgquare = 2 accurately
captures the growth rate of the number of squares as % decreases

Hence, the box-counting dimension for a set estimates the rate of growth of the number of
boxes needed to cover the set as the grid of boxes grows finer. This dimension agrees with
intuitive ideas of dimension, and extends to fractals and other sets that we would not be
able to classically assign a dimension. An example of this is the Koch Snowflake.

AN SRR N ¥

Figure 2.3: First four iterations of the Koch Snowflake. The limit of these figures is the true
fractal. Image from https://en.wikipedia.org/wiki/File:KochFlake.svg used under
CC BY-SA 3.0.

The Koch Snowflake is generated iteratively; the beginning state is an equilateral triangle,
and then the following rule is applied infinitely many times: take each line segment and
replace the middle third with two legs of an equilateral triangle as seen in Figure 2.3. The
limiting figure of this process is the fractal Koch Snowflake, and we can find its box-counting
dimension (note that the fractal here is only the boundary, the interior set will have dimension
2 as usual). The “boxes” we need here are line segments, and we can see that each step, the
number of line segments is multiplied by a factor of 4, with each length multiplied by %, SO
it is easy to see that

log 4

dimgoen = g3~ 1.2619

The dimension of a set not being a positive integer is classically meaningless, but is well-
defined via box-counting; the thrust of this is that we are always able to assign a dimension
to an attractor. We are now ready to state Takens’ Theorem:

Theorem 2.1. (Takens” Theorem) Let A be a compact attractor of dimension D belonging to
a dynamical system (T, M, ®), and let x : A — R be smooth. Then the shadow manifold
consisting of all vectors of the form

x(t)

x(t —7)

ot — (B — 1)7)
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living in RY is diffeomorphic to A, where E > 2D is the embedding dimension and T is
the delay time.

In Theorem 2.1, x : M — R can be thought of as an observable for the dynamical system
lying on the attractor. A compact attractor here can be thought of as one that can be
contained in a ball of finite radius. A diffeomorphism is an isomorphism of smooth manifolds;
equivalently, a diffeomorphism is a smooth function with a smooth inverse. The definition
of smooth varies with context; since it does not matter too much here, we will take smooth
to mean C'*°.

As we will discuss shortly, Takens’” Theorem provides the theoretical backbone for CCM. In
particular, let A, denote the shadow manifold for an observable z on the attractor A. Since
A, = A for any observable x, we have the following diagram:

R
IR

The transitivity and invertibility of isomorphisms ensures that the shadow manifolds of any
two observables in a system satisfying the conditions of Takens’ Theorem are diffeomorphic
to each other, allowing us to reconstruct the time series for one variable from the time series
of another.

2.2 Mutual Information

In theory, the shadow manifold is diffeomorphic to the original attractor for any value of 7
and sufficiently large embedding dimension F, but in practice, with finite data, the choice
of 7 determines the goodness of fit of a reconstruction. Algorithms for finding good values
of 7 depend on information theory, which we will briefly explore here.

Definition 2.7. The surprisal of an event x is given by
I(x) = —log P(x)

where P(z) is the probability of the event, and the suprisal is always positive and larger for
rare events.

Note that the surprisal of an event grows dramatically larger as its rarity increases, hence,
surprisal can be regarded as a metric of the surprise of an observer upon measuring some
event.

The entropy H(X) of a signal X is the expected value of surprisal, e.g
H(X)=E[l]==)_ Pilogh

where the sum is replaced by an integral as necessary. The sum is (in theory) taken over all
possible outputs or (in practice) taken over a certain binning of all possible outputs of the
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signal. The units of entropy are nats if the logarithm is taken in base e, bits in base 2, or
dits in base 10.

Entropy is the expected value of surprisal, hence, informally, it is the expected amount of
surprise in a signal.

Definition 2.8. Given two signals X and Y, the mutual information between them
M(X,Y) is given by

MX,Y)=3" Pla.y)log %

where P(z,y) is a joint probability distribution over X and Y, and Px(z) is a single variable
distribution, e.g,

Px(z) =Y _ P(x,y)

where the sums are replaced by integrals as necessary.
The mutual information of two signals measures their dependence on each other, and is
related to entropy in that

M(X,Y)=H(X)+ H(Y)—-H(X,Y)

where H(X,Y) = —3%_ > P(x,y)log P(z,y) is the joint entropy of X and Y. The defini-
tion of M(X,Y) in terms of entropy is easier to motivate: mutual information tells us how
much information we lose when we look at two variables together as opposed to looking at
them individually. For example, the mutual information of two signals is 0 if and only if they
are identical; moreover, one can show using Jensen’s inequality and the concavity of logx
that M(X,Y) > 0, and as such, M(X,Y) is a good metric for the similarity of two signals.

2.3 Wasserstein Distance

As will be explained below, one of the goals of our project is to infer a set of coefficients
which govern the rates of various chemical reactions. Doing so will require the use of optimal
transport theory, which we will develop now. Here we define the Wasserstein metric and its
advantages to our project.

Definition 2.9. Given a set E of events and a set X of subsets of E which satisfies:

e Fell

e Y is closed under complement.

e > is closed under countable union.
We call the pair (E,Y) a o-algebra. A probability measure on (F,) is a function
v : X — [0,1] such that
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e For A€ X, v(A)
o y(F)=1.

1—~(A).

A probability measure is merely a general and rigorous formulation for assigning probabilities
to events and combinations of events. In our formulation, the probability for a pair of
points will correspond to the amount of mass transported between the points up to a total
normalization factor.

Definition 2.10. Let x4 and v be probability density functions defined on X and YV
respectively. A transport plan from p to v is a probability measure v € I'(u, v) where

L(p,v) = {7[v(X,A) = v(A) and y(Y, B) = u(B)}

Let ¢: X XY — R define the transportation cost from a point x € X to a point y € Y,
then the pt" Wasserstein Distance between p and v is

1

p

W (p,v) = ( inf / C(x,y)pdv(x,y)>
vel(wv) J x xy

The problem of optimal transport is to evaluate W (u,v). In practice, ¢(x,y) can be given

by any metric (i.e. must be positive definite, symmetric, obey the triangle inequality, etc.)

Informally, the Wasserstein distance between two probability density functions (PDFs) is
the minimum cost of transporting the “mass” of the first distribution to the second. The
cost function in our use case will be the Euclidean distance between points, and in general
serves as a generic metric that must obey the usual criteria (positive definiteness, symmetry,
subadditivity).

Interpreting W (u, v) is perhaps easier when one considers the discrete limiting case: consider
X ={x1,--,z,} and Y = {y1, -,y } where z;,y; € R" and d;; is the Euclidean distance
between z; and y;. Each point x; and y; has a “mass” associated to it, and we want to
move the appropriate amount of mass from the z; to each y;, while minimizing the total
mass-distance. Mathematically, this is

Injn_EE: 2{:‘iijqu
i

where ;5 is the amount of mass moved from z; to y;.

The idea of our inquiry is that we can produce PDFs from reconstructed time series data,
then, for any given reaction, produce a PDF from a set of rate coefficients. Then using
the Wasserstein metric and optimal transport tools to optimize those coefficients to match
the “experimentally produced” PDF. This is advantageous over curve-fitting techniques for
several reasons:

1. To find rate coefficients using curve-fitting algorithms, we would need time series data
for the rate of a certain reaction, where all we have (and all we could reasonably
expect to obtain from an experiment) is the time series for the mole concentration of
each species.
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2. Using CCM, we can infer rate coefficients of species that are far removed in the re-
action chain from our test species (e.g transients that do not appear at significant
concentrations).
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Chapter 3

Chemical Background

Our project is established in providing an intermediate step between high dimensional and
low dimensional systems. Hydrogen-oxygen chemistry can be represented by a dynamic sys-
tem and allows us to observe the application of CCM techniques in that transition. Hydrogen-
oxygen combustion is an exothermic reaction and one of the few “clean burning” reactions.
This is of increasing interest to AFRL and so we discuss the reaction mechanism and the
chemistry behind it. Additionally, we discuss our setup in the Python interface of the Can-
tera software [4] for a CSTR model, which includes the manipulation of input reservoirs of
individual reactants as a perturbation to our system. Here we detail the assumptions our
model makes and the processes it represents.

3.1 Hydrogen-Oxygen Combustion

Combustion can be defined as a high temperature exothermic reaction between a fuel and an
oxidant. For the purposes of developing an intermediate-scale model, we will be working with
a common combustion example of hydrogen, H,, as the fuel and oxygen, O, as our oxide,
which reacts to form water and energy. Generally, combustion is a series of elementary
reactions forming a complex reaction network. It requires a temperature high enough to
ignite our elements. In comparison to other fuels, hydrogen has a lower ignition energy
and also burns faster than natural gases. Hydrogen also has a wider lammability range in
comparison to other hydrocarbon fuels.

Most often, the use of this reaction alludes to the fuel for rocket engines. As one of the few
nonpolluting fuels that are plentiful in the environment, hydrogen has become extensively
favored as a reactant. An acceptable and common concern is the backfire of the combustion
resulting in the complete destruction of entire fueling systems [3]. It is difficult to fully
observe what is occurring in an experiment due to lab technology limitations. Researchers
are only aware of the destruction once it has already occurred. A common way to reduce
backfire is to reduce the temperature of the residual gases.
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3.2 Cantera Reactor Setup

Cantera is a chemical software used through Python to model chemical kinetics reactions
[4]. In our case we use it to simulate hydrogen-oxygen combustion, since it is a simple, well-
understood combustion reaction that typifies more complex forms of combustion. Cantera
is able to calculate states that would be hard to assess experimentally, such as equilibrium,
reaction rates, the pre-exponential factor, molarity of each species, etc. It is a software that
can replicate a reaction and is able to attain calculations. Cantera begins by setting the
solution of gases that will be “fed” into the reactor. There are various parameters that can
influence the reaction that can be added to the program, for example temperature, pressure,
volume, etc. Cantera is also able to add more complex parameters, such as having a wall
or a piston in the reaction. We use Cantera to obtain data in our reaction by having a file
that contains each species and time produced by Cantera. We are then able to use this data
to reconstruct other species. We first simulate the chemical reaction to generate data, and
then use that data to test our algorithms.

As the dynamics of chemical reactions are governed by a system of ordinary differential
equations, a reaction network can be treated as a dynamical system. In our case, the rate
of a given reaction is given by the Generalized Arrhenius equation

—EBq
k= AT"e*sT

where kg is the Boltzmann constant, 7' the temperature, and E, the activation energy.
The reaction network we chose was hydrogen-oxygen chemistry, which has several crucial
advantages for our project. There are 8 chemical species, leading to a dynamical system
of dimension at least 8 (in fact, the parameters of temperature and pressure make our
system at least 10-dimensional). The various reactions in this network are relatively well-
understood. There are 21 elementary reactions contributing to the overall reaction network
for hydrogen-oxygen combustion. The species are Hy, Os, H,O, HO,, H,O,, OH, O, and
H™. Hydrogen-oxygen combustion is used to fuel rocket engines as it produces a relatively
high amount of energy for a low ignition energy.

Our Cantera reactor setup, as seen in Figure 3.1, consists of several reservoirs of individual
reactants with separate mass flow controllers to allow for separate perturbation of the influx
of each reactant. For example, consider a sinusoidal input perturbation of the following form:

. c t<t,
m(t) = .
c+ Asink(t—t,) t>t,

where ¢, is the time when the perturbation turns on and () is the mass flow rate. Input
perturbations are reflected in the behavior of the system dynamics.

In a CSTR all mass inflow is immediately homogenized into the reactor mixture. The
reactants enter through a mass flow controller (MFC) to the reactor. A valve is present to
facilitate outflow of reactants and products, governed by a valve coefficient, which is the
ratio of mass influx to the reactor against pressure drop across the valve. Also, the value
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feeds into an infinite reservoir of gas held at a fixed composition, temperature, and pressure.
We are then able to produce data with arbitrary initial conditions and perturbations for
analysis through our techniques. The reactor models we produce using this Cantera setup
are presented in Chapter 5. In the following chapter, we discuss our chosen algorithm
methods and the process we take for implementation.

Environment

H, Reservoir
—MFC—

Reactor Valve—

MF
05 Reservoir =BG

Figure 3.1: Reservoirs of Hy and O, feed into the continuously stirred reactor via MFCs. The
reactor has a valve that facilitates the outflow of reactants and products into the environment.
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Chapter 4

Algorithms and Implementation

In this Chapter we describe data-driven approaches for attractor reconstruction and param-
eter inference in coupled dynamical systems, and explain how we applied these methods to
simulated hydrogen-oxygen combustion data.

Attractor reconstruction facilitates characterization of the complete behavior of a dynamical
system from a limited set of observables. The method we describe adapts the underlying
procedure of convergent cross mapping in order to predict any unknown time series in a given
dynamical system from any known time series in the same system and historical values of
the unknown time series. As implemented, our algorithm accepts two time series as inputs,
splits them into training and testing datasets, reconstructs the testing portion of each time
series from the shadow manifold of the other time series, and evaluates the quality of the
two reconstructions. We provide both MATLAB® (MathWorks™, R2019a) and Python 3.7
implementations of the phase space reconstruction algorithm.

Attractor reconstruction justifies our method for parameter inference. We assume that suc-
cessful reconstruction of all time series constituting the attractor of a given dynamical system
from some shadow manifold My indicates that My contains the information necessary to
describe all observations of the system. If attractor reconstruction succeeds, model calibra-
tion algorithms can solely consider a shadow manifold of a single time-dependent observable
instead of attempting to work with the presumably more complicated system manifold. Con-
sequently, we extend the attractor reconstruction algorithm summarized above to propose a
novel optimization metric for data-driven parameter inference.

Generally speaking, any empirical method for parameter inference seeks to minimize the
“distance” between a known reference solution and generated trial solutions from a mathe-
matical model. The parameter set yielding the smallest possible distance is the correct one.
Our parameter inference method adheres to this standard process, but employs an innova-
tive measure of distance between dynamical systems. The optimization metric we describe
offers several advantages over existing approaches. As already noted, our metric only re-
quires knowledge of a single observable, thus allowing for parameter inference from limited
observational data. Moreover, we demonstrate that the approach we describe remains robust
to noise and chaos while providing a meaningful sense of “closer” even for data that are very
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“far” in state space. We provide a Python 3.7 implementation of our parameter inference
algorithm.

4.1 Introduction to Convergent Cross Mapping

CCM was developed as a technique for distinguishing between causality and correlation in
complex systems such as those exhibited in ecological settings [18]. The method succeeds
in identifying causal networks for nonseparable weakly connected dynamical systems, where
earlier approaches such as the Granger causality test [11] fail.

Intuitively, CCM tests whether two time series belong to the same dynamical system by
evaluating the skill with which they are able to reconstruct each other. For example, consider
two (not necessarily coupled) observables X, Y and their corresponding shadow manifolds
M, My . We have two cases:

Presence of causality: Without loss of generality, suppose that X causes Y. Then Y
contains information about X and hence the two state variables belong to the same
dynamical system. By Theorem 2.1 bijective maps between My and My exist. CCM
first employs a numerical algorithm to find maps between My and My, and then those
maps are used to reconstruct My from My. Finally, an estimated time series of X is
obtained from My. The reconstructed time series of X should converge to its original
time series as the size of the “library” of data used to construct the cross maps (the
time series length) increases. Therefore, when X causes Y the shadow manifold of Y
can be used to reliably approximate a time series of X.

Absence of causality: Suppose that construction of convergent cross maps between the
shadow manifolds of X and Y fails. This implies that no diffeomorphism exists between
the two manifolds My, My, and therefore by the contrapositive of Theorem 2.1 we have
that X and Y do not belong to the same dynamical system. It can be concluded that
X and Y are not causally coupled.

Instead of using CCM to detect causality, the algorithms we describe assume mutual causality
between state variables. CCM begins with state variables whose coupling or lack thereof is
unknown, but our approach only applies to systems where all state variables are already
known to be coupled. Under this assumption, Theorem 2.1 implies that diffeomorphisms
exist between the shadow manifolds of any two state variables. The present methods hinge
on the existence of such bijections between the shadow manifolds of state variables in a given
dynamical system.

4.2 Attractor Reconstruction

Figure 4.1 provides a brief overview of the attractor reconstruction process. In what follows,
we explain each step of the algorithm precisely.
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Input: time series X (¢), Y (¢) Split each of X(¢),Y(t) into
of coupled state variables X, Y training and testing datasets

s . Y
Create F-dimensional shadow {Estimate optimal time lag T and}

uemitelds Mibe i el e leg optimal embedding dimension E
7 from the testing datasets

v
Construct maps between training

Mx, My by interpolating
between nearest neighbors

Use the maps to reconstruct
MX from the testing My .
Similarly reconstruct My

from the testing Mx

Calculate the Pearson correlation ' —
coefficient p between 4—[ Find X(2),Y(?) f'rom
X (), X(t) and Y (1), Y (2) Mx, My, respectively

Figure 4.1: Flowchart of our attractor reconstruction algorithm.
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Consider a smooth, real dynamical system (7', M, ®) with attractor dimension D that satisfies
the criteria for Theorem 2.1. Let X,Y be any two state variables of (T, M, ®), and let
X (t),Y (t) be finite time series of equal length for X and Y, respectively. Our phase
space reconstruction algorithm takes X (¢),Y (¢) as inputs and is comprised of the following
consecutive stages:

4.2.1 Split data into training and testing

If the length of X (¢) is not even, the algorithm discards the first data points of both X (¢)
and Y (t) before proceeding further!. If the input time series length is already even, no
data is discarded. Henceforth, we use the notation X (¢),Y (¢) to denote the (potentially
shortened) even-length versions of the input time series.

Subsequently the algorithm splits each time series X (¢),Y (¢) in half. Our implementation
of the algorithm allows using the first half of the time series for training and the second half
for testing, or the second half of the time series for training and the first half for testing. By
default, our algorithm uses the first halves of X (¢) and Y (¢) for training, and the second
halves for testing.

4.2.2 Estimate optimal lag and embedding dimension

Although Theorem 2.1 holds for any value of time lag 7 as long as the embedding dimen-
sion E is high enough, on a practical level the choices of 7 and E significantly impact the
performance and quality of phase space reconstruction.

For an illustration, consider Figure 4.2. Clearly, setting 7 = 0.12 seconds results in a
shadow manifold that appears much more similar to the Lorenz attractor than the shadow
manifold created when 7 = 5.6 seconds. Since our algorithm constructs maps between
shadow manifolds via numerical interpolation, it will succeed more readily if the shadow
manifolds of X (¢) and Y (¢) closely resemble each other. Therefore, we want to find a value
of 7 that is sufficiently small to capture local behavior while remaining large enough to
capture global behavior. Such values of 7 will result in a “nice” shadow manifold, as in
Figure 4.2b. The method proposed in [7] attempts to use mutual information to find this
balance for 7, so we adapt it in our algorithm. Our method sweeps through a range of
possible time lags with a step size equal to the time series step size, and returns the smallest
7 at which the average mutual information between X (¢) and X (¢ —7) stops decreasing. See
Figure 4.3 for an example of the algorithm output.

Although the time lag 7 produced by the above method usually results in an excellent
reconstruction, the algorithm we employ does not always find the best possible value of 7.
More consequentially, the algorithm sometimes fails entirely. When a time series X (¢) is
excessively noisy or stochastic, increasing the time lag 7 would always decrease predictive

1Since X (t) and Y (t) are of equal length, one can equivalently check if the length of Y (¢) is even.
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(a) 7 = 5.6 seconds. (b) 7 = 0.12 seconds.

Figure 4.2: Shadow manifolds of the Lorenz attractor constructed from the X time series
with embedding dimension £ = 3. The two figures differ only in choice of 7.

0.64 -
First local minimum
0.62 - T=2.2

0.60

0.58

Mutual Information in nats

0.56

0.54

Figure 4.3: Mutual information between an observable X (¢) and its time lag X (t — 7) with
respect to the time lag value 7.
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power. In this case, the mutual information between X (¢) and X (¢ — 7) would exhibit no
local minima.

According to Theorem 2.1, an embedding dimension £ = 2D + 1 will be sufficiently high
to ensure diffeomorphism between shadow manifolds of X,Y. However, in practice a much
lower embedding dimension will often suffice. We want to minimize the computational time
of our algorithm to ensure scalability to high-dimensional dynamical systems, so we estimate
the minimum embedding dimension. To do this, we employ the algorithm described in [2].

Our algorithm estimates an optimal time lag 7 and an optimal embedding dimension F
twice. The same procedure is used both times, but on different datasets. We find 7y from
the training portion of X (¢) and find 7y from the training portion of Y (¢). Similarly, we
find Fx from the training portion of X (¢) and Ey from the training portion of Y (¢). Later
on, 7x and Ex are used when reconstructing the testing portion of Y (¢) from X (t), while
7y and Ey are used when reconstructing the testing portion of X (¢) from Y ().

4.2.3 Construct training shadow manifolds

By definition, the shadow manifold My of X (t) is the set of all vectors of the form

()

x(t—7)

2t — (B —1)7)

living in R®. The shadow manifold My of Y (¢) is constructed analogously.

4.2.4 Construct maps

Once the training shadow manifolds My and My are created, maps are numerically con-
structed between them by building a library of points on My with their corresponding points
on My . That is, our algorithm associates each point on the training portion of My with the
point on the training portion of My that has the same timestamp. Since My, My have the
same number of data points, this results in a bijection between the two shadow manifolds.

4.2.5 Reconstruct testing shadow manifolds

For an unknown input point x on My, the k-nearest neighbors algorithm finds the closest
neighbors of x on Mx. Then the weighted mean of corresponding points on My is taken
to find the approximate point ¢y corresponding to x. Essentially, we build a library of cor-
respondence between My and My and then “interpolate” between known input points of
training My to find output points, which together constitute My. My is created similarly,
except we begin with an input point y on My and then “interpolate” between known input
points of training Mx.
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4.2.6 Reconstruct testing time series

After My is created the procedure restricts it to the first dimension, producing a 1-dimensional
time series. In other words, we remove the lags of each vector to flatten the manifold back
into a single dimension. This yields the reconstructed time series X (t). Similarly, our algo-
rithm flattens My to create the reconstructed time series Y(t)

4.2.7 Output correlation coefficients

In practice, our algorithm for attractor reconstruction would be employed for studying dy-
namical systems whose complete attractor manifold is unknown. However, complete time
series of all observables are always known in the proof-of-concept simulations we examine.
In this project our goal is to evaluate the success of the described algorithm by comparing
the reconstructed testing time series X (¢) to the original testing time series X (t).

We evaluate the success and quality of our reconstructions by calculating the Pearson corre-
lation coefficient p between X (¢) and X (t) after subtracting the mean of each one. Since the
Pearson correlation coefficient is a measure of linear independence, the correlation coefficient
between a dataset and its mean is often high. Therefore, a reconstruction algorithm that
performs little better than the approximation achieved by taking the mean of the original
data would still yield “good” correlation coefficients. In order to provide more meaningful
and sensitive correlation values, we instead compute

(X (0. X M) =p (X O = (X 0)X0) - (X 1)

where (X (t)) and (X (¢)) denote the arithmetic means of X (¢) and X (t), respectively.

4.3 Parameter Inference

Figure 4.4 provides a brief overview of the general parameter inference process we followed
for this project. Since system identification is not the focus of our work, we assume that the
dynamics of the system in question are already understood; that is, the governing equations
for which we seek to find parameters are known. Each iteration of the parameter inference
process begins by running the known mathematical model with a set of values for the un-
known input parameters 5 to produce a trial solution ;4 (t). The generated trial solution
is then compared to the reference solution Z,.s (¢). In particular, the algorithm uses some
optimization metric ¢ to calculate a measure of discrepancy between @4 (t) and Ty (t). If
the optimization metric, also known as a cost function, yields a discrepancy value below a
predefined convergence criterion €y, we conclude that the current parameter values are suffi-
ciently optimal. Otherwise, the model simulations are redone with a new set of parameters
and the discrepancy between the new trial solution and the reference solution is computed.
This iterative process is repeated until a E is found such that € (Zyef (t) , Tiriar (1)) < 0.
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Figure 4.4: Flowchart of our parameter inference process.

The optimization metric we describe takes a time series from the trial solution and a time
series from the reference data as inputs, and returns a measure of discrepancy between them.
The method requires that both time series represent the same state variable. For example,
when inferring parameters for hydrogen-oxygen chemistry we might use an Oy time series
from the trial solution and an O, time series from the reference data. The function is
comprised of two steps. First, we create a shadow manifold representation of each input
time series and bin it as a normalized probability distribution function to create what we
refer to as a shadow manifold probability distribution function (SM-PDF). Next, we compute
the Wasserstein distance between the two SM-PDFs. This distance constitutes the output
of our cost function. In what follows, we explain each step of the process in detail.

4.3.1 Construction of Shadow Manifold Probability Distribution
Function (SM-PDF)

Figure 4.5 provides an overview of the process for constructing SM-PDFs.

First, our method calculates an optimal time lag 7 and embedding dimension E for the given
time series as described in 4.2.2. Then, the algorithm uses these calculated values of 7, E' to
construct a shadow manifold from the time series as described in 4.2.3. Note that although
Figure 4.5 displays a 2-dimensional shadow manifold for illustration, higher dimensions may
be used as deemed necessary by the algorithm for estimating E.
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Figure 4.5: This figure provides a high-level overview of the process for constructing a shadow
manifold probability distribution function (SM-PDF).

Next, we use the numpy.histogramdd function from the NumPy Python library to bin
the shadow manifold into a discrete PDF. The numpy.histogramdd function computes the
multidimensional histogram of an array using given values for bin edges. To ensure that
SM-PDF's can be accurately compared when computing the Wasserstein distance between
them in the following step, we use a constant number of bins for each dimension across all
iterations of the parameter inference process. However, more must be said on the choice of
bin edges, since some binning schemes can result in falsely similar SM-PDFs.

We consider two methods for selecting the bin edges: dynamic framing and static framing.
Dynamic framing uses the minimum and maximum values along each dimension of every
shadow manifold to define the bin edges for that particular manifold. This approach recal-
culates the bin edges for each iteration of the parameter inference process and is generally
a poor choice because it is susceptible to outliers. Since the multidimensional binning grid
must include all data from the shadow manifold, a single point that is removed from the
bulk of the manifold in state space might affect the level of detail captured by the binning.
Additionally, dynamic framing can create very similar SM-PDF's for shadow manifolds that
are far apart in state space. As an illustration of this problem, Figure 4.6a displays a pair of
2-dimensional shadow manifolds of the temperature time series from two different Cantera
simulations. When shown on the same coordinate system, the two shadow manifolds are
clearly distinct. However, when binned using the dynamic framing method and plotted on
top of each other (Figure 4.6b) the two SM-PDFs now appear indistinguishable. In this case,
any distance metric between the two SM-PDFs would falsely yield a value close to zero.

To avoid the issues stemming from dynamic framing, we instead employ a single, static
frame for all iterations of the parameter inference process. That is, our algorithm sets
constant bin edges and uses them for every iteration of the parameter inference process.
Static framing avoids the pitfalls of dynamic framing, but can only be used when all shadow
manifolds fall within the set bin edges. In general, finding a suitable set of bin edges to
capture every possible shadow manifold for the given observable is an open problem. Trial
solution shadow manifolds can drastically change position in state space when sweeping over
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Figure 4.6: (a) Two shadow manifolds that, although similar in shape, are located far apart
in state space when plotting on the same coordinate system. (b) Associated probability
distribution functions of shadow manifolds plotted on a single set of axes.

a range of parameters, potentially moving outside of the pre-set bin edges. If this happens,
the trial solution SM-PDF will not capture the entire shadow manifold and any metric of
discrepancy between the reference SM-PDF and the trial SM-PDF will fail to provide any
useful information. This problem can be easily resolved, however, if the trial solutions are
known to be bounded. For hydrogen-oxygen chemistry, all species state variables represent
mole fractions and hence fall in the range [0,1]. Consequently, all n-dimensional shadow
manifolds created from time series of species densities will be bounded by an n-dimensional
unit hypercube. In this project we only used species time series for the parameter inference
process, and set the bin edges along each dimension to [0, 1].

4.3.2 Computation of Wasserstein Distance W,

Having represented the behavior of the entire system by binned SMs, the final step is to
identify an appropriate measure for the discrepancy between the SM-PDF of the reference
data and the SM-PDF of the current trial solution. We use optimal transport tools to find the
Wasserstein distance. In particular, we use ot.emd2 from the Python Optimal Transport
library to return the Wasserstein distance between two PDFs (passed as numpy.ndarray
objects flattened to vectors) given a distance matrix (which itself can be calculated using
an arbitrary metric). The minimum of the Wasserstein metric across some sample space is
used to obtain the optimal set of parameters to reproduce the reference solution.

38

Distribution Statement A: Approved for Public Release; Distribution is Unlimited. PA Clearance Number 19XXX



4.3.3 Parameter Inference

With a robust framework for constructing and evaluating reconstructions in place, we em-
ployed various techniques to infer parameters of our systems. The basic method involves
generating time-series data for a trial set of parameters and comparing the resulting SM-
PDF with the SM-PDF for a reference solution, corresponding to the ground truth. The
difficult step in this procedure is to infer a new set of parameters after a given run.

As typically implemented, parameter inference algorithms employ an optimization scheme
to choose a new set of parameters after every iteration that failed to achieve a sufficiently
low value from the cost function. The most popular optimization schemes involve some
variant of machine learning or genetic algorithms, which must be chosen depending on the
topological properties of the given dynamical system and cost function. In this project we
employed two basic methods: brute force and gradient descent.

For the former, the method is simple: we iterate over some region of parameter space at
some spacing, say +50% of the known parameters, and look for the minimum of W;. This
strategy was applied to some success (as we will discuss in Chapter 5), but has the obvious
drawback of being extraordinarily slow. In particular, the problem scales extremely poorly
with dimension, e.g, the time complexity is exponential in dimension.

The latter method is also fairly well-understood: we evaluate W, at a point in parameter
space, as well as at some of this base point’s neighbors, and pick our new point in the
direction of steepest descent. We employed this algorithm as well to great success, although
it has certain drawbacks in determinacy with respect to the brute force method. Our results
within this area serve as a proof of concept, and the gradient descent methods we used are
far from optimal.
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Chapter 5

Results

In hydrogen-oxygen combustion all species densities are coupled to varying degrees through
temperature and belong to the same dynamical system. Therefore, our motivating example
satisfies the coupling criterion explained in Section 4.2 and is hence suitable for the proposed
algorithms.

We applied our attractor reconstruction and parameter inference technique to various time
series data with a variety of input perturbations. First, we note the system’s sensitivity to
various setups and conditions.

An intermediate goal was to construct bidirectional convergent cross maps between various
species densities and temperatures. Since combustion is a series of elementary reactions that
are often favored one way for producing trace amounts of a species, we analyzed the impact
this has on our reconstructed time series data. Additionally, we found that reconstruction
quality is impacted by the distance in the reaction network as well as the heat released during
the reaction.

Finally, we demonstrate the success of our method for parameter inference by predicting
reaction rate constants for the reaction mechanism of hydrogen-oxygen chemistry.

5.1 Hydrogen-Oxygen Dynamics

As mentioned in Section 3.2, we are able to manipulate the following parameters within our
model for hydrogen-oxygen combustion in Cantera:

e Pressure

e Temperature

Initial ratio of hydrogen to oxygen

Mass inflow rate

Angular frequency of sinusoidal perturbations
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e Amplitude of perturbation
e Time at which the perturbation begins

Here we generalize the behavior observed in the reaction dynamics from changes in the initial

conditions.
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Figure 5.1: (a) A low pressure system of 7998 Pascals, a temperature of 770 Kelvin, and
no input perturbation. There is natural oscillatory behavior between the reactions. (b) A
high pressure system of 124236 Pascals and 770 Kelvins. In this system, both Hy and O, are
being perturbed with a sinusoidal function immediately.

We observed that low pressure systems usually require a high temperature in order to ig-
nite the reactants and produce a combustion reaction. Consider Figure 5.1a as an example
where our low pressure of 7998 Pascals and high temperature of 770 Kelvin lead to consis-
tent combustion. We are able to observe natural oscillatory behavior without an artificial
perturbation.

On the contrary, high pressure systems drive the reaction towards a steady state rapidly.
For example, as seen in Figure 5.2b, an initial reaction occurs and the input perturbation
becomes apparent beyond the steady state. A sufficiently high enough temperature is still
required in a high pressure system in order to ignite the reactants and initiate the reaction.
Consider Figure 5.2a where the temperature is too low to produce a reaction. And so, in
turn we observe a trivial equilibrium where no reactions occur.

We also considered a variety of input perturbations. To begin, we started with a low-
frequency sinusoidal perturbation of the mass flow rate of our limiting reactant: oxygen. For
example, consider Figure 5.2b. The input perturbation is apparent in the time series data
since the reaction follows a sinusoidal movement. We found that in systems with both input
reservoirs of Hy and Oy being perturbed by a sinusoidal function, the system immediately
entered oscillatory behavior past a rapidly reached steady state. In Figure 5.1b, observe that
the system dynamics follow the same period and behavior.
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Figure 5.2: (a) A high pressure system of 13300 Pascals and a low temperature of 650 Kelvin.
The input perturbation of Oy begins past 450 seconds. (b) A high pressure system of 13300
Pascals and a temperature of 770 Kelvin with an input sinusoidal perturbation of the O,
mass flow rate past 420 seconds.
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Figure 5.3: (a) Time series data for a pressure perturbation. The piston motion begins past
350 seconds and thus we observe the oscillatory behavior of pressure past the initial increase
of pressure. (b) A system with an initial pressure of 119970 Pascals and a temperature of
770 Kelvin. The piston motion begins past 350 seconds and thus we observe a shift in the
behavior of the system.

If we increase the frequency for the perturbation of the mass flow rate then the reaction
should become faster and result in decreased wavelengths. We expected this to then pull
apart the reaction time scales, pushing the slower chemistry off equilibrium. However, the
faster we perturbed the mass flow rate, the lower the resulting amplitude became. We tried
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the same process with perturbing O, and Hy but the same results followed. Therefore, mass
inflow perturbation did not achieve its intended goal.

Mole Fractions in CSTR Mole Fractions in CSTR
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Figure 5.4: (a) Time series data with the Lorenz system output immediately being put in
as the input perturbation in a system of 9730.9 Pascals and a temperature of 887 Kelvin.
(b) Time series data with the Lorenz system output immediately being put in as the input
perturbation in a system of 119970 Pascals and a temperature of 770 Kelvin.

In our search for interesting behavior, we also implemented a piston-pulsed wall in the reactor
model. This causes a perturbation that drives the pressure in a sinusoidal manner as seen
in Figure 5.3a. However, this method did not produce interesting behavior (Figure 5.3b).

We also designed a reactor model in which the inflow of the reactants uses the Lorenz system
time series to set the mass inflow rate. This is intended to create chaotic behavior. Figure
5.4 demonstrates two reactions in which the Oy mass inflow rate is set by the X time series
output of the Lorenz system.

5.2 Time Series Reconstructions

The CCM technique is used to evaluate the degree to which different species population time
series data from a hydrogen-oxygen reaction are coupled and thus can be reconstructed from
other observed times series data from the system. We use the modified Pearson correlation
coefficient p* between the original time series X (¢) and the reconstructed time series X (t)
in order to determine the effects of the application 4.2.7. A correlation of 1 implies there is a
perfect relationship between our two variables. And so, we would like to achieve a correlation
coefficient of 1 or a value close to that. Allow us to emphasize that we are not evaluating the
correlation between both observed time series data. Rather, we are evaluating the goodness
of fit of our reconstruction against our testing data of the original time series data.
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Consider the time series data from a reactor model with a sinusoidal input perturbation
of Oy in a high pressure system. For this reconstruction, we consider species X (t) to be
H, and species Y (t) to be Oy. The direct application of CCM to the data set provided
reconstructions of Hy and O,, as seen in Figure 5.5, initially produced a fairly low Pearson
coefficients of p* = —0.42963 and p* = 0.093599 for Hy and O, respectively. As these values
are far from 1, it implies a lack of relationship between our X and Y or more specially,
that our reconstruction is a bad fit of our original time series data. However, we found that
discarding the data before a steady state is reached in the reaction will result in less noise
and a high correlation reconstruction. For the purposes of this data, we discard 50000 data
points before splitting our data set. The reconstruction of the time series vastly improves as
seen in Figure 5.6. We hypothesize that the initial system reaction before the steady state
impacts the k-nearest neighbors aspect of the algorithm and thus accounts for variation that
is not present in the remaining time series.

Original H2 ozaosll, = 7 7 Foriginal 02
0.5024 —Reconstructed H2 —Reconstructed 02
0.2495 B
 0-5022 1 02494 :
K] 1=)
C = T
v % 0.2492F
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= = 0.2491
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0.5014 0.2489F
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(a) (b)

Figure 5.5: (a) Reconstruction and original time series of Hy using the first half of the full
data set as training data. This is a high pressure system of 126635 Pascals and temperature
of 770 Kelvin. (b) Reconstruction and original time series of Oy using the first half of the full
data set as training data. This is a high pressure system of 126635 Pascals and temperature
of 770 Kelvin.

We continued to apply the technique to various other data sets and observed continued
success. For example, on a nonlinear time series data set from a model with low pressure, we
see that despite increased noise, we are able to reconstruct O,. However, our reconstruction
of Hy seen in Figure 5.7b does not have as high of correlation. Since the species are closely
related within the reaction network, we assume that the poor reconstruction quality stems
from a sub-optimal choice of 7 or E.

Consider a system in which the Lorenz output values are fed as a perturbation into our
hydrogen-oxygen model. This system produced interesting results as seen in Figure 5.8. The
Hy reconstruction consistently provided variation to accurately represent the original time
series. In this case, the reaction does not fully demonstrate the relationship between Hy and
O, as coupled. Again, this may imply a non-optimal 7 or E for this reconstruction.
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Figure 5.6: (a) Reconstruction and original time series of Hy using the first half for training
after discarding the first 500 seconds. This is a high pressure system of 126635 Pascals and
temperature of 770 Kelvin. p* = 0.99166. (b) Reconstruction and original time series of Oy
using the first half for training after discarding the first 500 seconds. This is a high pressure
system of 126635 Pascals and temperature of 770 Kelvin. p* = 0.99817.
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Figure 5.7: (a) This plot is the reconstruction of Hy and the original times series data of
H; for a low pressure system of 7998 Pascals and temperature of 770 Kelvin. p* = 0.85668.
(b) This plot is the reconstruction of Oy and the original times series data of Oy for a low
pressure system of 7998 Pascals and temperature of 770 Kelvin. p* = 0.88191.

We reconstructed all ninety possible pairings of observables for a low pressure Lorenz sys-
tem where oxygen was perturbed with Lorenz output. During this process, we found that
pressure, Oy, HOo, Hy, Oo, OH, O, and H reconstruct other species well, while temperature,
Hy and H,O do not as shown by the Pearson correlation coefficients in Table 5.1.

We will begin discussing the species that constructed other species well. In Figure 5.8, the
two reconstructions consisting of Hy from HO, and HyO from H,,0,. Looking at Figure
5.8a we can see that HOy + H «— Hs + O, which has an energy release of about 5, has
a high correlation coefficient of 0.99. This agrees with what we know of the close causal
relationship between Hy, and HO,. Next, consider Figure 5.8b where the species are related
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Temperature Pressure H2 H (0] 02 OH H20 HO2 H202

Temperature 1 0.99096214  0.67713799 0.95102556  0.99248812 0.93373808 0.99678087 0.67789841 0.93747772 0.96162824
Pressure 0.94153736 1 0.56781647 0.90522579 0.9419758  0.98899 0.95535412  0.56881688 0.97801161 0.9315285
H2 0.4121609 0.9693973 1 0.84458815 0.97385279  0.99359548 0.96386741 0.99123315 0.9944405  0.96432019
H 0.84223121 0.9856382  0,66155668 1 0.97132263 0.93952494 0.97178042 0.66338885 0.94450914 0.98638581
O 0.9396447 0.9873007  0.7878483  0.8924923 1 0.9495714  0.995776 0.787724 0.9494535  0.9490924
02 0.45576688 0.97792911  0.89434755 0.86979136 0.96283131 1 0.95717667 0.8942072  0.99305316 0.96670665
OH 0.96755346 0.98796414  0.75721249 0.90793334 0.99484636 0.94667778 1 0.75711415 0.94983763 0.95516958
H20 0.41087832 0.96937296  0.99122481 0.84485469 0.97379792 0.99360393 0.96379534 1 0.99445187  0.96439178
HO2 0.35604134 0.97445267 0.93974018 0.86823654 0.96622923 0.99511197 0.95769995 0.93970326 1 0.97235453
H202 0.64726225 0.98174168 0.72530366 0.97682331 0.9578301  0.96335408 0.95631881 0.72638712 0.96999542 1

Table 5.1: This is a table of all the Pearson correlations from the all the possible reconstruc-
tions for a Lorenz-perturbed low pressure system. The z-axis value is the original time series
species and the y-axis value is the reconstruction. Thus, the reconstruction of temperature
from pressure has Pearson coefficient p* = 0.94153736.

by the reactions HyOy + H +— Hy0 + OH and Hy + Oy + OH +— HyO + HO,. This proves
the notion that HyO5 and HyO are directly related causing a high Pearson correlation of
0.96.
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Figure 5.8: (a) Reconstruction of Hy from the original time series data of HO, for a Lorenz
low pressure system of 9730.9 Pascals and temperature of 887 Kevin. p* = 0.99. (b)
Reconstruction of HyO from the original time series data of HyOq for a Lorenz low pressure
system of 9730.9 Pascals and temperature of 887 Kevin. p* = 0.96.

Continuing our well-constructed species, we will analyze reconstructions of temperature
from OH and O from pressure (Figure 5.9). Looking at Figure 5.9a we can see that H +
OH +— H50, which has a energy release of about 436 thus showing OH results in change
of temperature, results in a high Pearson correlation of 0.99. Next in 5.9b we see that pres-
sure and O must be related because of the high Pearson correlation of 0.98. We found that
pressure reconstructs all species well, showing that a change in pressure affects the reactions.
This is consistent with theory because at high or low pressures reactions might have little
energy, leading to higher-quality reconstructions from pressure than from temperature.

Now we will be switching focus on the species that did not reconstruct others well (Figure
5.10). Here the two reconstructions consist of H from Hy and O5 from temperature. Looking
at Figure 5.10a we can see that Hy <— 2 H, which has a energy gain of about 436 showing
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Figure 5.9: (a) Reconstruction of temperature from the original time series data of OH for a
Lorenz low pressure system of 9730.9 Pascals and temperature of 887 Kevin. p* = 0.99. (b)
Reconstruction of O from the original time series data of pressure for a Lorenz low pressure
system of 9730.9 Pascals and temperature of 887 Kevin. p* = 0.98.

that the reaction is not favorable, results in a low Pearson correlation of 0.66. Next in Figure
5.10b we see HOg + H <— Hjy + O, which as shown above has a release of 5, hence implying
that the reverse will have a gain of 5. This reaction will effect temperature very slightly, so
the reconstruction yields a low Pearson correlation of 0.45.
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Figure 5.10: (a) Reconstruction of H from the original time series data of Hy for a Lorenz
low pressure system of 9730.9 Pascals and temperature of 887 Kevin. There is a correlation
of 0.66. (b) Reconstruction of O from the original time series data of temperature for a
Lorenz low pressure system of 9730.9 Pascals and temperature of 887 Kevin. There is a

correlation of 0.45.

Upon further investigation, we calculated the respective energy release for each reaction
that did not produce a high quality reconstruction by temperature. We did this in order
to see whether the species that were not reconstructed well by temperature participated in
reactions whose energy/heat release is favorable. We will be focusing in on Oy, HOy, HyO,
H, and H5O, since these were not reconstructed well by temperature.
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The results discovered: O breaks Hy bond turning H, into H, which is not favorable for
Hy thus not releasing energy to affect temperature. HoO remains HyO throughout all the
reactions that H,O is reacting in, thus resulting in no energy release from H,O. Hy0O,
reactions have the same bond energy of two hydrogen-oxygen bond and one oxygen-oxygen
bond resulting in no energy release. O, reacts with H, where H breaks the oxygen double
bond releasing the energy from the reaction, which not very favorable to begin with. HO4
reacts with O or H, which enables the reaction thus resulting in the energy release for O or
H. Thus, these species do not release energy into the reaction so temperature is not being
affected in their reactions. This causes them to be reconstructed less effectively than other
species from temperature.

Next, we analyzed why Hy and HsO cannot reconstruct other species well. H,O does not
affect other reactions resulting in the decreased ability to reconstruct other species. Hs
only reacts in two reactions and is created as a product in four thus it will not be able to
reconstruct species that are not affected by Hy. Therefore, Hy and HyO cannot reconstruct
as successfully as the other species.

We have been able to provide consistently favorable correlation coefficients for the recon-
structions for most species. With the construction of bidirectional cross maps proving suc-
cessful between closely related species in our reaction network, we move into a metric to
infer parameters.

5.3 Parameter Inference

Using the methods detailed in Chapter 4, we were able to infer parameters of chemical
reaction simulations in various setups. First, as a test case, we attempted to recover one
parameter (the initial ratio of Hy to Og) by uniformly sampling the underlying space and
evaluating test distributions against the reference solution (corresponding to Hy:Oy = 2:1).
We also evaluate the Ly distance between PDFs X and Y given by

> (X (bin) — Y (bin))?

bins

Overall, the plot for W; is much better behaved than the plot for Ls. In particular, W,
has one true minimum (corresponding to the reference solution) in this plot, whereas Ly
has many local minima away from the true solution. The global minimum of both plots
corresponds to the reference solution, but the presence of many false local minima in the Lo
metric would make this distance much worse than W for gradient descent methods, which
will be discussed in greater detail below. In this test and in the following test, we employ a
“brute force” search, where we run simulations over some range of phase space and compute
the distance for each test from the reference solution.

In the next test, we altered two of the Arrhenius parameters (A and n) for a certain reaction
in our reaction network and evaluated the Wasserstein distance between each test solution
and the reference solution to produce the following plot.
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Figure 5.11: Parameter inference with the initial ratio of Hy:O5 being altered to test for
ground truth

As in the previous test case, the true global minimum corresponding to the reference solution
was correctly identified, and the plot appears relatively smooth which bodes well for gradient
descent methods; however, in this case, there was more than one local minimum in our data.
As is evident from Figure 5.12, the parameter n has a much more dramatic effect on the
Wasserstein distance, and there are points along fixed n where various values of A are local
minima of W;. We suspect this is indicative of the fact that A affects the dynamics far less
than n, which will lead to issues in inferring A and other parameters that have vanishing
effects on dynamics.

Finally, we implemented a gradient descent search along the Wasserstein metric in order
to infer a full set of parameters at once. The basic procedure is as standard: for a given
point in phase space, we calculate the Wasserstein distance of the PDFs (with respect to a
reference solution) corresponding to all of the neighbors of our point, and choose our next
point in phase space to head in the direction of steepest descent. This method (as seen in
Figure 5.13) converges to a full triple of Arrhenius parameters (A, n, E,) much more quickly,
with 10 — 15 iterations, than the brute force method. The drawback of this method is that
it will not find the “true” global minimum, as identifying this exact point in phase space is
impossible without the step size and initial point conspiring to allow this to happen.

Moreover, we have found, as above, that it is much harder to predict the parameter A than
n or E,. For example, for a given setup with reference parameters (A,n, E,) = (2.2 X
10%6, —2,0), g