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Abstract
Laser-driven ion acceleration has been an active research area in the past two decades with the
prospects of designing novel and compact ion accelerators.Many potential applications in science and
industry require high-quality, energetic ion beamswith low divergence and narrow energy spread.
Intense laser ion acceleration research strives tomeet these challenges andmay provide high charge
state beams, with some successes for carbon and lighter ions. Herewe demonstrate the generation of
well collimated, quasi-monoenergetic titanium ionswith energies∼145 and 180MeV in experiments
using the high-contrast (<10−9) and high-intensity (6 10 W cm20 2´ - )Trident laser and ultra-thin
(∼100 nm) titanium foil targets. Numerical simulations show that the foils become transparent to the
laser pulses, undergoing relativistically induced transparency (RIT), resulting in a two-stage
acceleration process which lasts until∼2 ps after the onset of RIT. Such long acceleration time in the
self-generated electric fields in the expanding plasma enables the formation of the quasi-
monoenergetic peaks. This work contributes to the better understanding of the acceleration of heavier
ions in the RIT regime, towards the development of next generation laser-based ion accelerators for
various applications.

1. Introduction

Generation of high-intensity ion beams driven by short pulse lasers has emerged as an important area of laser–
plasma research [1–3] due to the unique properties of intense short duration ion beams, which can be used for
fast isochoric heating of densematter [4–6]. For example, reaching thewarmdensematter [7] conditions is
relevant to laboratory astrophysics [8–10], geophysics [11, 12] and ion fast ignition of thermonuclear fuel targets
[13–15]. Over the past 20 years, therewas notably tremendous effort to understand the underlying physics of
proton and light ion acceleration.However, there are limited efforts toward understanding laser acceleration of
heavier ions [16–19], despite their potential for numerous applications in industry,medical and defense fields
including generation of x-ray and gamma-ray radiation, nuclear reactions, and radiation effects inmaterials
[20–23]. Still, the set of laser and target parametersmost amenable to accelerate heavy ions is yet to be optimized,
motivating the exploration of new accelerationmechanismsmore suitable to producemonoenergetic/narrow-
band and low-emittance heavy ion beams.

Themost-studied accelerationmechanism, TargetNormal SheathAcceleration (TNSA) [24–26], is very
robust andwas shown to generate reproducible exponential energy spectrumof light-ions originating from the
contaminants located at the target rear-side. Yet, thismechanism is inefficient in accelerating low-divergent and
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narrow energy band ions, as well as ions heavier than carbon.With the recent development of high-power lasers,
several newmechanisms have been identified. Two of themost promising advanced ion acceleration
mechanisms are Radiation Pressure Acceleration (RPA) [27–31] andRelativistically Induced Transparency
(RIT) [32–38]. RPA can potentially producemonoenergetic ion beams of higher energy thanTNSA (E Imax

2~
for non-relativistic regimeRPA compared to E Imax

1 2~ for TNSA [3], where Emax is themaximum ion energy
and I is the laser intensity) by driving forward a slab of plasma like a piston.Unfortunately, at the required
ultrahigh intensities to trigger RPA as themain accelerationmechanism (I>1022W cm−2), the ultra-thin
target does not easily remain flat and opaque. First, the unwanted energy preceding themain pulse ionizes the
target front surface, causing a plasma to expand into vacuum.Due to this expansion, the areal density of the
target decreases, eventuallymaking it transparent for radiation and effectively terminating the RPA.Using a
circularly polarized laser [39] and plasmamirrors for reduced absorption and better laser contrast can relax
some of these issues and reduce the intensity threshold to trigger RPA. Then, when the tightly-focusedmain
pulse ( 10 W cm20 2> - ) interacts with the ultra-thin foil, finite size spot effects and transverse expansion of the
plasma can also cause themaximumelectron density to rapidly decrease [28, 40].Moreover, because of the
increased electron inertia due to relativistic effect, the plasma frequency decreases below the laser frequency,
allowing light to propagate further inside the target and causing the occurrence of RIT [34]. The onset for this
transparency regime [41, 42] is limiting the foil boost for the RPAmechanism, but can however lead to efficient
ion acceleration via volumetric heating of the electrons as the target becomes transparent, therefore efficiently
accelerating ions from the bulkmaterial volume. Acceleration of ions after transparency onset played an
important role in explaining observed high energy aluminum ions at the same laser facility as this work [35].
Here the transparency onset also leads to the development of self-organizing field structures at the target rear-
sidewhen the laser breaks through the target, that we further identify in our simulations to play amajor role in
accelerating the heavier titanium ionswith low divergence and narrow spectral peaks.

Here we report on the acceleration of nearly collimated and quasi-monoenergetic titanium ions in two
populations: (i) along target normal at≈0°±1° and (ii) off-axis at≈11°±1°, yielding respectively Ti20+ ions
peaking at∼145MeV andmultiple lower ionization states (mostly Ti15+ andTi18+)peaking at a slightly higher
energy of∼180MeV. The underlying ionization and accelerationmechanisms forming the on- and off- axis
peaks are investigated using 2Dparticle-in-cell (PIC) simulationswith particle trackingmethods.We obtained
similar energy and directionality as in the experiment with a similar optimum for the 100nm thickness. The
simulation results reported here show that the ionization and acceleration processes are divided into two stages.
Before the laser breaks through the target, thefields at the target rear-side are those of TNSA. After the laser
breaks through, ions can be rapidly ionized to higher charge states (20+) by the laser field and be progressively
accelerated by self-generated persisting fields for a longer time (∼2 ps after the TNSA stage), yielding also an
energy and an angular squeezing of ions. Thismechanism,which results in formation of quasi-monoenergetic
ions, relies on the long acceleration time of relatively heavy titanium ions and has not been reported in the
literature for lighter ions [32, 35, 36].

2.Methods and results

2.1. Laser system and ion diagnostics
The experiment was performed using theNd:glass Trident laser delivering 75 J during 650 fs at 1.054 μm
wavelength. The laser pedestal drops below the detection threshold<10−9 nearly 50 ps before themain pulse
and is 10−8 nearly 10 ps before themain pulse [35, 43]. The laser contrast is undoubtedly crucial for efficient
heavy-ion acceleration fromultra-thin targets [44]. In [35], the authors show that the Trident laser contrast was
good enough to preserve the integrity of a 250 nm carbon foil (same linear density as a 60 nm titanium foil) and
carbon spectral peakswere generated via a similar RIT-enhancedmechanism. The expansion of a low-density
plasma in front of the targetmaymove the critical density ahead by a fewmicrons and expedite the transparency
of the target by a few tens of fs, albeit probablywithoutmodifying drastically the characteristics of the
acceleration and spectral peak formation discussed here for a 100 nm titanium foil. The laser is focused by an f/3
off-axis parabola to a 4.5 μmfocal spot (FWHM) at normal incidence onto a ultra-thin foil of titaniumof
different thicknesses (60, 80, 100 and 140 nm). The ions created by the interaction of this laser with the target
were collected by iWASP [45] andThomson Parabolas spectrometers [46, 47] (figure 1(a)). The iWASP is
composed of a slit coupledwith amagnetic field parallel to it, allowing themagnetic deflection depending on the
q/A and energy of the ions at different angles. It was placed 1 cm away from the rear side of the target and provide
angular information concerning the ions accelerated by the laser-target interaction between−22.5° and+22.5°.
TwoThomson Parabolas (TP)were placed at 0° and 11° attached to the chamberwall collecting ionswithin a
solid angle of 3.4×10−8 steradians (sr). The alignment angle error can be estimated as±1°. The TP comprises

2

New J. Phys. 21 (2019) 103005 J Li et al



an electric field coupledwith amagnetic field allowing the deflection of ions depending of their energy and
charge overmass ratio q/A. This yields a parabolic deflection of the particles depending of their energy, that is
between 10 and 700MeV formid-Z ions. The resolution of the TP depend of the energy dE≈E3/2 of the
detected particles [48], which can be approximate asΔE/E≈10−4 for a particle of 100MeV energy. Ions
parabolic traces are collected by an Image Plate (IP) giving a signal output in photostimulated light (PSL)which
is calibrated for protons and light ions such as carbon or heliumbut not for heavier ions such as titanium.Details
on the diagnostics and data analysis are given in the supplementary note 1, available online at stacks.iop.org/
NJP/21/103005/mmedia.

Figure 1. Summary of the experimental results using the≈120 TWTrident laser focused to peak intensities of∼6×1020 W cm−2

onto titanium foils of thicknesses from60 to 140nm. (a) Schematic of experiment setup. Twodiagnostic configurationswere used:
(Configuration 1) twoThomsonParabolas (TP) located at respectively≈0°±1° and≈11°±1° from target normal,measuring the
energy spectra of collected ions depending on their q/A ratio. (Configuration 2) an ionwide-anglemagnetic spectrometer (iWASP)
giving angularly resolved ion energy spectra. Both instruments used image plate (IP) as detectors. (b)Ti20+ spectra obtained for the
different titanium target thicknesses. An optimumboth in terms of accelerated energy and ion number is obtained for the 100nm
thickness. (c)Raw iWASP result showing concentration of titanium ions close to 0° and 11°. The vertical axis on the left shows the
energy of ions given the charge q and atomicmassA. Ion spectra in energy-to-mass ratio (MeV/amu) corresponding to various ion
species at target normal (d) and at 11° from target normal (e), for 100nm target thickness. Quasi-monoenergetic peaks of ions are
observed both on-axis and off-axis. A clear predominance of Ti20+ ions are observed on-axis (peaking at 145±10 MeV)while
multiple ionization states are observed off-axis (Ti15+ andTi18+) peaking at 180±20 MeV. The details of the rawTP results,
including these quasi-monoenergetic peaks, aremarked in figure 2 of the supplementary note 1. The gray shaded region starting at
5.3 MeV/amu corresponds to datawhere traces having q/A difference of�0.02 have overlapping signal.
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2.2. Two populations of quasi-monoenergetic and near-collimated titanium ions
Infigures 1(c)–(e), we show the iWASP result obtained for 100nm thickness and the resulting spectra onTP at
0° and 11° from target normal. The iWASP signal clearly shows the emission of ions both on- and off- target axis.
The off-axis population shows a peak around 11°, wherewe accordingly positioned our secondTP. It is worth
noting that the dark lobes infigure 1(c) at∼±7° do not correspond to the off-axis titanium ions infigure 1(e).
They aremore likely low-energy impurities since they change significantly with target thickness, as shown in
figure 1 of supplementary note 1. Infigures 1(d), (e), we present the ions energy spectra in energy per nucleon
(MeV/amu) for TP traces corresponding to different ratios of ion charge q to ion atomicmassA, as shown in the
rawTPdata on top of eachfigure for on-axis and off-axis respectively, with a focus on high-yield titanium ions
accelerated from the target bulk. The acceleration of protons and other contaminants (C,O) are not discussed in
this paper, as it results from alreadywell-studiedmechanisms in literature both for TNSA andRIT/BOA
mechanisms [32–34]. However, the part of the ion spectrawith an energy per nucleon greater than 5.3 has to be
regardedwith caution since nearby traces separated by a difference in q/A of 0.02 start to overlap. Therefore,
nearby contaminant traces can contribute to the extracted signal, and as a result it is difficult to distinguish both
populations on the image plate (IP) detector. The transition to the area of the spectrumwhere impurity traces are
overlapping, at≈5.3 MeV/amu, is highlighted in gray on thefigures. In this article, wewill discuss the peaks
pointed by the arrows infigures 1(d) (e). Indeed, they correspond to peakswhich have been identified further in
simulations and belongs to a part of the spectrumwhere the nearby traces are distinguishable with no
overlapping issue. In addition, the presence of Ti17+ andTi19+ traces near the peaks, which cannot correspond
to any contaminant, confirms the presence of titanium ions in this part of the spectrum. The part at energies
>5.3 MeV/amumay also contain some pronounced peaks of titanium ions.However, they do not appear in
simulations and the species are not conclusively identified from the experimental data due to overlapping of the
traces.More information about species discrimination is given in the supplementary note 1.

The unfolded on-axis spectra (figure 1(d)) reveals quasi-monoenergetic titanium ionswith a clear
predominance of Ti20+ ions, peaking strongly at 145±10MeVwith a less pronounced peak at 220±20MeV.
Other ionization states identified from the other traces barely emerge from the noise. The off-axis lines
(figure 1(e)) correspond tomultiple titanium ionization states (from15+ to 20+)with a peak at a slightly higher
energy of 180±20MeV for Ti15+ andTi18+ and at 220±20MeV for Ti17+. The energies of these peaks
approximately agreewith the iWASP results infigure 1(c).

The different behaviors observed between the ionization states and energy of on-axis and off-axis ions are
remarkable and indicate that the electromagnetic fields experienced by the two ion populations are effectively
different. In particular, the uniquemonoenergetic spike of Ti20+ observed on-axis suggests that all the ions are
strongly ionized by the opticalfield of the laser to Ti20+. Surprisingly, for off-axis ions, despite having a slightly
higher energy, the ionization levels and yields are lower. To the extent that the ionizing and accelerating fields are
the same, this seems atfirst glance contradictory.Wewill show later based on numerical simulations that both
on- and off-axis ions experience similarfields, but the off-axis ions are effectively accelerated for longer time and
therefore achieve higher kinetic energies.

Infigure 1(b), we present on-axis acceleration of Ti20+ ions for different target thicknesses used in the
experiment (60, 80, 100 and 140 nm) . It appears that the energy and number of the accelerated Ti20+ ions are
significantly higher for the 100nm thickness with respect to other thicknesses. Indeed, we observed very poor
acceleration of titanium ions in our experimental detection range (100–200MeV) for both 60 and 80nm
thicknesses, although a clear quasi-monoenergetic peak similar to that of 100nm is still observed at 140nmat
∼110MeV, with about half number of ions. Further, wewill focus on the optimum100nm thick target for the
analysis of the acceleration processes.We discuss other thicknesses and discrepancies found between
simulations and experiment in supplementary note 3.

2.3. Numericalmodeling
2.3.1. Particle-in-cell simulations
The 2-dimension particle-in-cell (PIC) simulationswere performedwith EPOCHcode [49]. The simulation
domain is a rectangle with the size of 120 μm (longitudinal) by 40 μm (transverse), as shown infigure 2(a). The
titanium foil with thicknesses of 60, 100 or 140nm is initially located 30 μmaway from the left boundary. The
initial number density of titanium atoms is 5.64×1028 m−3 (the density of solid titanium). The contaminant
layers with carbon, hydrogen and oxygenwere put on both sides of the target with thickness of 10 nmand
number density of 4.6×1028 m−3, corresponding to theCHmaterial with density 1 g cm−3. The laser pulse
withwavelength of 1 μm is launched at the left boundary at time t=−750 fs and propagates along the
longitudinal direction (from left to right) focused at the surface of the target foil located at x=0 μm.The spatial
and temporal profiles of the laser pulse are bothGaussianwith the full width at halfmaximum (FWHM) of
4.5 μmand 650 fs. The peak laser intensity is 6×1020 W cm−2 on the focal plane at y=0when the target is
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absent, and the peak reaches the target front surface at t=0 fs.We use 200 cells per wavelength along both
longitudinal and transverse directions with 100 neutral particles in each cell with non-zero density at the
beginning of the simulation. The boundary conditions of the simulation domain are open for bothfields and
particles. Thefield ionization packages, including barrier suppression (BSI), ADK tunneling andmultiphoton
ionization, are turned on in the simulations tomodel the ionization process of the laser-solid interaction. It is
worth noting that the ADK tunnelingmodel is based on earlier work by Perelomov, Popov andTerent’ev
[50–52].

2.3.2. The onset of RIT
In the interaction of laser pulses with ultra-thin foils, the target transparency condition [53] can be given by
a n l ne c0 p l= ( ), where a I0.85 10 m W cm0

2 18 2 2l m= -( )) is the dimensionless amplitude of the laserwith
intensity I andwavelengthλ, ne is the electron density, l is the target thickness, and n m ec e0 0

2 w= is the critical
density of the incident laser.Here ò0,me, e,ω0 respectively stand for the vacuumpermittivity, themass and
charge of an electron, and the frequency of the incident laser. For our physical conditions, n 1.1 10 me

30 3» ´ -

is calculated from solid titanium ion density and ionization state of 20+, n 1 10 mc
27 3= ´ - for the incident

laserwithλ=1 μm, a0=21 for the peak laser intensity I=6×1020 W cm−2.With these parameters we
obtain l=6nmusing the transparency condition formula [53], suggesting our targets with thicknesses from60
to 140nm should be opaque in the beginning of the interactionwith high plasmadensity ne. However, they can
become transparent due to the rapid drop of ne caused by target expansion during the pulse duration of
hundreds of femtoseconds. Figures 2(b), (c) show the longitudinal component of the laser Poynting vector near
the target locations for the 100nm targetwhen it becomes transparent to the laser. The contour of ncgá ñ
describes the effective critical density for the laser due to relativistic effects, where gá ñ is the average Lorentz
factor of local plasma electrons. Beyond the ncgá ñ boundary, the laserfield evanescently decays. At t=−200 fs,
the laserfield can penetrate through a plasmawith density nc, but drastically drops beyond ncgá ñ (figure 2(b)). By
t=−150fs, the laser has propagate further, as the plasmadensity drops below ncgá ñ . By this time the plasma
density has decreased by∼100 times compared to the initial density,making it possible for the laser to propagate
through amuch thicker target than the 6nmmentioned above. The onset time of RIT varies for different target
thicknesses (figures 2(b)(d)). For 60 and 140nm targets, RIT occurs at t=−250 fs and−50 fs respectively.

2.3.3. The ionization processes
The EPOCHfield ionization package calculates the probabilities offield ionization for each ion based on the the
electric field strength at the ion position [54]. The ionization process additionally depends on the exposure time
of each ion to the electric fields. In the characteristic time scale of a few hundreds of femtoseconds in our
simulations, the relation of the ionization states of titanium ions and the externally applied electric fields is
studied and discussed in supplementary note 2.

Prior to RIT, titanium atoms on the rear side are ionized and accelerated via TNSA. The electric field
structures for the three targets are shown infigures 3(a)–(c). They have broad similarities in terms of amplitude
and spatial characteristics, with thefield strength in this stage of typically∼2.5×1012 V m−1, with some local
strong peaks at∼1×1013 V m−1. According to our discussion in supplementary note 2, an electric field of
∼2.5×1012 Vm−1 corresponds to a stable ionization state of Ti12+ in the time scale of hundreds of
femtoseconds, while∼1×1013 Vm−1 results inmultiple ionization states above Ti13+. Consequently, the
titanium ions on the target rear side should be dominated by Ti12+ ionswith some higher ionization states, but
inmuch smaller numbers. This is illustrated in the ionization state distributions presented infigures 3(d)–(f).

Figure 2. (a) Schematic setup in 2DPIC simulations of laser-irradiated ultra-thin targets. The box represents the full simulation
domain. The target foil is shown by the red bar. Note that thefigure is not drawn to scale. (b)–(d)The laser Poynting vector and the
contours of classic critical density nc and relativistically adjusted critical density ncgá ñ at time=(b)−200fs and (c)−150fs for
100nm target, (d)−200fs for 60nm target. The laser peak reaches the target foil at t=0 fs.
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After the targets become transparent, the titanium ions located at the target center on the rear side are
exposed directly to the laser electric field. The peak electric field of the laser pulsewhen the target is not present is
6.7×1013 Vm−1.With this electricfield, the ionization state should saturate at Ti20+ [supplementary note 2],
as shown infigures 3(g)–(i). The transition fromTi12+ ions to Ti20+ after the laser breaks through the targets is
also demonstrated infigures 3(d)–(f). This qualitatively explains the energy spectra of titanium ions in
figures 1(d), (e)where on-axis titanium ions are dominated by Ti20+, while the off-axis ions exhibit lower
ionization states such as Ti15+ andTi18+.

2.3.4. The acceleration processes
We study the acceleration of the ions in quasi-monoenergetic peaks for the 100nm thick target, asmeasured in
the experiment and shown infigures 1(d)–(e). The PIC simulationwith 100nm target at the end of the
simulation (t=1750 fs) shows quasi-monoenergetic Ti20+ ions at 145MeV and a smaller peak at 230MeV,
near target normal direction (on-axis,−1°>θ>−3°) infigure 4(a). It also shows a peak at 225MeV along the
off-axis direction (−8°>θ>−10°) infigure 4(d). Both fairly agrees with the experimental results for the ions
accelerated in the on- and off-axis directions. Here the angle θ is defined as p parctan y xq = ( ), where py and px
are the transverse and longitudinalmomenta of the accelerated ions. Particle tracking analysis was performed to
follow how andwhen these ions are accelerated. Specifically, we tracked the Ti20+ ionswithin narrow energy
ranges (132 to 159MeV for on-axis, and 216 to 231MeV for off-axis) and angle ranges (−1°>θ>−3° for on-
axis and−8°>θ>−10° for off-axis) at the end of the simulation. In total there are 9430 and 1850 ions in the

Figure 3. (a)–(c): Snapshots of the longitudinal electric fieldEx at t=−350 fs in the range of x=−10 to 30 μmand y=−20 to
20 μmfor (a) 60nm, (b) 100nm and (c) 140nm thick targets. Note that the target location is x=0 μmat the beginning. The
normalization factor E 6.7 10 V m0

13 1= ´ - in the colormap is the peak laser electricfield in the focal planewhen the target is not
present. (d)–(f): Number distributions of different ionization states of titanium ionswith positive longitudinalmomentum (d) at
t=−350 and−250fs for 60nm, (e) at t=−350 and−150fs for 100nm and (f) at t=−350 and−50fs for 140nm targets. (g)–(i):
Space distribution of the laser Poynting vector and the scatter plot of Ti12+ andTi20+ ions at (g) t=−250fs for 60nm target, (h)
t=−150fs for 100nm target and t=−50fs for 140nm target, which are the timeswhen the targets undergo RIT. The color-
coding of the ions indicates the ion energy.
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chosen energy and angle ranges for on- and off-axis peaks at t=1750fs respectively, and all of these ions are
tracked through the entire simulation. The tracked information ismapped in the phase spaces of time, energy
and angle infigure 4. Their locations in the simulation domain at different timeswill be presented infigure 5.

The energy histories of the tracked on- and off-axis ions infigures 4(b), (e) clearly illustrate two acceleration
stageswith a transition from t=−100 to−50 fs, which is about 50–100 fs after the occurrence of RIT. In the
first acceleration stage, all the tracked ions are located close to the target rear side and accelerated by the strong
TNSA sheathfield, resulting in the first steep slopes of the first stage and yielding significant energy gains of
85–140MeVon average, as shown by the solid curves inwhite background regions offigures 4(b), (e).

Immediately after the onset of RIT, the laser drills a ‘channel’ in the plasma and an energetic electron beam is
formed along the channel propagating to the target rear side [35]. Oscillating longitudinal electric fields [55, 56]
Ex are generated in the channel, as shown in figure 5(a). The tracked on-axis ions are located in and are affected
by these fields between t=−150 and 550 fs. The amplitude of these fields (∼1012V m−1) are comparable to the

Figure 4.Energy spectra of the Ti20+ ions along (a) on-axis (−1° to−3°) and (d) off-axis (−8° to−10°) directions for 100 nm thick
target. Thewhite background color in (a), (d) shows the energy range of 2–5.3 MeV/amu for titanium ions. This range corresponds to
thewhite regions in the experimental spectra offigures 1(d), (e), withinwhich ions have enough energy to be detected and traces at
different q/A are well separated. The distributions of the tracked ions on the (b)–(c) on-axis (145 MeV) and (e)–(f) off-axis (225 MeV)
peaks in (a), (d) in two phase spaces: (b), (e) time and energy and (c), (f) time and angle. The solid lines in (b), (e) are the averaged
energy among all the tracked on- and off-axis ions. The dashed lines are from individual ionswhich are chosen to approximately
represent the energy spread limits of all the tracked ions. In (b)–(c) and (e)–(f), thewhite background color represent thefirst TNSA
acceleration stage. The gray and green colors correspond to the second acceleration stage, inwhich the gray colormarks the timewhen
the on-axis ions are located in the oscillatingExfields.

Figure 5. Space distribution of the longitudinal electricfield Ex and scatter plots of all the tracked on- (green circles with dark green
edge) and off-axis (gray circles with black edge) ions in space at t=(a) 150fs and (b) 1250fs. Note that the space ranges and color
scales in (a) and (b) are different. (c) Longitudinal electricfieldEx averaged transversely between y=−1 μmand y=1 μmobtained
from simulations (red) and calculations (black) from the electron pressure gradient at time=1250fs. The Exfields in the threefigures
have been temporally averaged in one laser period.
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TNSA sheathfield in thefirst stage, but they contribute to only a small amount (∼10MeV=7%) of the total
energy gain of 145MeVof the on-axis ions, as shown by the solid curve in the gray background region of
figure 4(b). The reason is that theseEx fields oscillate over amuch shorter period (100–200 fs) than the entire
duration of 700fs (from t=−150 to 550 fs).

The off-axis ions are not affected by the oscillating Exfields since they leave thefields region between y=−3
and 3 μmafter t=50–150fs , as shown in figure 5(a). Consequently, they are still accelerated by the Exfields in
the expanding plasma and gain energymore efficiently than the on-axis ions. During this period from t=−150
to 550fs, the off-axis ions gain∼37MeV=17%of the off-axis final energy 225MeV (the gray region in
figure 4(e)). In contrast to the on-axis ions, the off-axis ions aremore effectively accelerated during this period,
while the acceleration of on-axis ions is inhibited. This difference suggests longer effective acceleration time for
off-axis ions than on-axis ions, which can cause higher energy of the off-axis ions, as observed in the
experiments. Onemay notice that a deceleration phase can be observed right after t=250fs. It results from the
negative longitudinal electric field caused by the local electron pressure gradient in the expanding plasma. This
mechanismof generating electric field is also responsible for the ion acceleration in the late stage, as we discuss in
the following paragraphs.

From t=550 fs to the endof the simulation at t=1750 fs [the light greenbackground regionsoffigure4(b)(e)],
both theon- andoff-axis ions gain∼50MeV fromthe self-generated electricfield,which is referred to as ‘remaining
field’, as shown infigure5(b). The generationof the remaining electricfield canbe roughly explainedby the local
electronpressure gradientwith the assumptionof thermal equilibrium.At t=550 fs, the laser intensity hasdecreased
to∼10%of thepeak value.This valuedrops to∼1%later at t=1000fs.Without the strong laser pump, thephysics in
the expandingplasmacanbedescribedby aplasma free expansionmodel, inwhich the electricfieldon the electrons

aremainly generatedby the electronpressure gradient Ex
P

e n

n T

e n
e

e

e e

e
= - » -- 

∣ ∣
( )

∣ ∣
,whereTe andPe are respectively the

electron temperature andpressure in space.Wecalculated theExfield along x axis averaged transversely between
y=−1μmand1μmat t=1250 fs, and the results agreewellwith the electricfieldobtaineddirectly fromthe
simulation (figure 5(c)), especially in the regionof x<40μmwhere the trackedparticles are located.

The remaining electric field is about 10 timesweaker than the TNSAfield in thefirst stage. However, we
observed infigures 4(b), (e) comparable energy gains for both stages. Estimates can bemade as follows.We
assume Ex is 2×1011 V m−1, one order ofmagnitude smaller than the TNSA sheathfield in thefirst stage, and a
Ti20+ ionmoving along thefield direction is injected in the fieldwith initial energy of 100MeV, or velocity of
2×107 m s−1. After 1ps, the energy gain of the Ti20+ ion is 95MeV, the same order as the energy gain in the
simulations. The somewhat lower energy gain obtained in simulation is certainly caused by the temporal decay
ofEx, which is not taken into account in our simple estimate. Yet, we showed that although the remaining
electric field is weak, it can significantly contribute to the ion energy gain.

2.3.5. The formation of the quasi-monoenergetic peaks
The quasi-monoenergetic peaks for the 100nm thick target are formed in the late stage of the simulation after
t=1000fs. The formationmechanisms can be inferred from the time evolution of angular and energy
distributions of the tracked titanium ions. The energy spread of the tracked on-axis ions does not changemuch
after t=1000fs (figure 4(b)), but their angular spread decreases significantly from30° at t=1000fs to 2° at
the end of the simulation (figure 4(c)). This angular accumulation results from the squeezed py of these ions
caused by the transverse electric fieldsEy, as demonstrated infigure 6(a). Besides thefilaments structure of Ey
near y<5 μmcaused by the beams of ions and electrons (figure 6(b)), in the regionwith y 5 mm>∣ ∣ , the
tracked on-axis ionswith negative py (blue circles) aremainly located in positive Ey (red background), and
vice versa. This results in a significant transverse focusing effect on the titanium ions. The time evolution of the
Eyfields is plotted infigure 6 of the supplementary note 4, which shows that the global collimating fields at
y 5 mm>∣ ∣ are temporally stable. TheEy fields can be caused by the transverse electron pressure gradient. As
discussed in the last section, the electric fields in the late stage are remaining electric fields that can be explained
by the pressure gradient of the electrons. Figure 6(b) shows the density distribution of electrons at t=1250fs.
In the regionwith x∼30 μmand y 5 mm>∣ ∣ , the plasma density is higher on the sides but lower for smaller y.
This transverse density gradient contributes to transverse electron pressure gradient and the collimating Ey
fields.

The angular and energy spreads of the tracked off-axis ions show the opposite features to the on-axis ions. In
the angular space (figure 4(f)), the off-axis ions have small angular spread (∼5°) very early after the TNSA stage,
and theEyfields on the off-axis ionsmainly have positive components (gray circles with black edge in
figure 6(a)), which cannot collimate ions. In the energy space, their energy spread decreases significantly from
60MeV to 16MeV (figure 4(e)) after t=1000fs, suggesting an energy squeezing effect. This effect is illustrated
infigure 5(b) that the Ex fields on the off-axis ions include both positive and negative components (∼1011 V m−1
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near x∼40 μmand y∼−10 μm ), and the negative Ex fields can slow down the faster Ti ions and squeeze the
ions in energy.Within the peak formation time scale of 500fs, the negative field E 1 10 V mx

11 1= - ´ - can
reduce the energy of 250MeVTi20+ ions by∼30MeV,which is approximately half the energy spread change for
the off-axis ions after t=1000fs. The negative Exfields are generated in the region x>40 μmand y<−5 μm
by the negative electron density gradient in the same region (figure 6(b)). Due to the squeezing effect, these ions
accumulates in the energy space after t=1000fs and form the off-axis quasi-monoenergetic peak.

3.Discussion and conclusion

The twomechanisms discussed above rely on the long acceleration time (∼2 ps) of titanium ions in the
remainingfield of the second stage, which is themost significant difference between the acceleration of titanium
ions and lighter ions including carbon, hydrogen and aluminum [32, 35, 36] in previous research. The lighter
ions leave the target too early to benefit from a second stage because they are rapidly ionized to high charge states;
ions from surface impurities are further disadvantaged by their location. Thus, they are not so strongly affected
by the remaining field compared to heavier ions such as titanium. In particular, previous experiments with
similar laser parameters have shown that the target aluminumatoms are ionized to high charge states early so
that they can be initialized as Al11+ (close to fully-ionized) in the PIC simulations [35]without losing essential
physics. By contrast, the titanium ions are only about half-ionized (Ti12+) before the onset of RIT in our study.
This difference limits the speed of the titanium ions and prolongs their acceleration duration, which enables the
peak formationmechanisms in the late stage.

In this article, we demonstrate the generation of high-quality, high charge state titanium ion beams, which
are importantmarkers for the advancement of the field of laser-accelerated ions. PIC simulations indicate a two-
stage acceleration of the ions before and after the onset of RIT. These ions are first accelerated through the TNSA
mechanism and are further boosted by the self-generated persisting electric field in the expanding plasmafor a
longer time beyond the laser pulse duration (∼2 ps after the TNSA stage), causing the formation of the quasi-
monoenergetic peaks observed in the simulation andmeasured experimentally. The results show the important
role of the self-generated fields in the ion beamgeneration. First, even after the laser-target interaction, ions can
still be accelerated efficiently by the self-generated fields and gain comparable energy to that achieved during the
interaction. Second, thesefields can squeeze the ion beams in both energy and angle to significantly improve the
ion beamquality. Thesefindings could be applied in future ion acceleration experiments on the numerous high-
power laser facilities being constructed presently. As amatter of fact, considering lasers with intermediate pulse
duration from500–1000fs andmulti-petawatt power, we expect enhanced acceleration in both stages, i.e.
higher sheath field for thefirst TNSA stage and higher electron pressure gradient for the second stage.Moreover,
higher power lasers allow for thicker targets to trigger the RIT onset near the laser pulse peak, thereby relieving
from the demanding high contrasts needed to preserve the target integrity. It is noteworthy that for RPA
mechanisms at higher power,more stringent contrasts ratios would conversely be needed.
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