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1 Summary
Program analysis encompasses a body of techniques and tools that analyze code to predict
program behavior. It has important practical applications in improving programmer produc-
tivity and software quality, ranging from intelligent code editing, to finding harmful bugs
and security vulnerabilities, to proving the absence of entire classes of semantic errors at
compile-time, to proving rich functional correctness properties. However, the undecidable
nature of this problem, as well as practical challenges in analyzing complex real-world pro-
grams, lead any program analysis to make various approximations. These approximations in
turn hinder the accuracy, scalability, and usability of the program analysis at hand—and
ultimately inhibit the effective application of this technology on modern codebases.

In the early 2010’s, the increasing prevalence of open-source code repositories collectively
comprising billions of lines of code posed a tantalizing question: is it possible to leverage
them to address long-standing challenges that hinder program analysis technology? DARPA’s
timely program on “Mining and Understanding Software Enclaves” (MUSE for short) set
out to answer this question, dubbing the problem “Big Code”. Analogous to how Big Data
revolutionized the manner in which information is analyzed, processed, and extracted from
extremely complex and large data sets, could Big Code revolutionize “how software is built,
debugged, verified, maintained and understood”?

The Petablox project answered this question in the affirmative by demonstrating how to
fundamentally extend the prevalent deductive approaches to program analysis with statistical
and data-driven modes of reasoning. Specifically, the project developed:

1. A general framework for effectively balancing different tradeoffs in program analyses
based on combining logical and probabilistic reasoning [1–4].

2. Methodologies to enable designers of program analyses to automatically learn features,
weights, and probability distributions directly from source code [5–11];

3. Solver techniques for efficient and scalable inference and learning with formal guarantees
in aspects such as soundness and optimality [5, 12–14]; and

4. A framework for integrating results of program analysis tools into modern software
engineering workflows of continuous integration/delivery (CI/CD) [15].

These techniques and artifacts were developed in the setting of Datalog—a declarative,
constraint-based, logic programming language commonly used to specify program analyses—
and evaluated on large real-world codebases in C, C++, and Java. The main findings of our
evaluation are as follows:

1. We discovered over 100 new bugs and vulnerabilities in popular open-source C/C++
programs comprising millions of lines of code, such as the Linux kernel, the OpenSSL
encryption library, and the MIT Drake system [16] for robotics applications. Most of
these bugs were fixed within a week of reporting.

2. We demonstrated the versatility of our approach on different languages and correctness
properties: information leaks in malicious Android apps from the Symantec suite1,

1Developed as part of DARPA’s program on Automated Program Analysis for Cybersecurity (APAC).
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concurrency bugs in enterprise Java programs (from the Dacapo benchmark suite), and
memory safety for C programs (from Linux coreutils).

3. We demonstrated the practicality of the approach by integrating it into realistic static
program analysis toolchains including Clang Static Analyzer [17] based on symbolic
execution and the Sparrow static analyzer [18] based on abstract interpretation.

4. We demonstrated the feasibility of integrating our approach into continuous integra-
tion/delivery workflows on the dominant platform for software development, GitHub,
by deploying it as a service through an app on GitHub’s marketplace.

We open-sourced all the tools and datasets resulting from the project [19]. We disseminated
the research results through peer-reviewed papers as well as through papers that consolidated
and summarized them at the following international conferences and workshops: Theory
and Applications of Satisfiability Testing (SAT) [12], Computer-Aided Verification (CAV)
[20], Verification, Model Checking, and Abstract Interpretation (VMCAI) [21], Machine
Learning and Programming Languages (MAPL) [22], and Machine Learning for Programming
Languages (ML4PL) [23].

2
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2 Introduction
Program analyses are algorithms that discover a wide range of useful artifacts about programs,
including bugs, proofs, and specifications. Existing program analyses are expressed in the
form of logical axiom/inference rules that are handcrafted by experts. This logic-based
approach provides important benefits. First, logical rules are human-comprehensible, making
it convenient for analysis writers to express their domain knowledge. Secondly, the results
produced by solving logical rules often come with explanations (e.g., provenance information),
making analysis tools easy to use. Last but not least, logical rules enable program analyses
to provide rigorous formal guarantees such as soundness.

While logic-based program analyses have achieved remarkable success, they also harbor
significant limitations: they cannot handle uncertain knowledge and they lack the ability to
learn and adapt. Although the semantics of most programs are deterministic, uncertainties
arise in many scenarios due to the undecidable nature of the problem as well as practical
issues such as imprecise specifications, missing program parts, imperfect environment models,
and many others. Current program analyses rely on experts to manually choose their
representations which cannot be changed once they are shipped to end-users. However, the
diversity of usage scenarios prevents such fixed representations from addressing the needs
of individual end-users. Moreover, the analysis does not improve as it reasons about more
programs, and therefore is destined to repeat past mistakes.

We illustrate the challenges facing the conventional logic-based approach to program
analysis by means of a real-world example. Figure 1 shows the results of Clang Static
Analyzer [17], a state-of-the-art source code analysis tool for finding bugs in C, C++, and
Objective-C programs, applied to OpenSSL, a popular open-source encryption library written
in C. The vast majority of bug reports produced by the tool are false alarms, which hinders
the ability to find real bugs. For instance, when the Heartbleed buffer overread vulnerability
(CVE-2014-0160) was detected in OpenSSL in 2014, affecting as many as two-thirds of the
world’s web servers, the program analysis community conducted a post-mortem: how could
a fairly elementary coding error, traced to a single line of code, be overlooked by program
analysis tools in one of the most heavily scrutinized open-source applications? Andy Chou,
cofounder of Coverity [24], a static code analysis company (now part of Synopsys Inc.),
reported the following at that time [25]:

Program analysis is hard and approximations and trade-offs are absolutely manda-
tory. We’ve found that the best results come from a combination of advanced
algorithms and knowledge of idioms that occur in real-world code. What’s partic-
ularly insightful is to analyze critical defects for clues that humans might pick
up on but are hard to derive from first principles. These patterns form pieces
of evidence that can then be generalized and tested empirically to make the
analysis “smarter.” Our experience is that this is the only way to build analyses
that scale to large programs with low false positive rates, yet find critical defects.
Many program analysis problems are undecidable in general, and in practice NP-
complete problems and severe time/space/accuracy trade-offs crop up everywhere.
Giving the analysis intuition and developer “street smarts” is key to providing
high quality analysis results. The Heartbleed bug is a perfect example of this.

3
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A key insight to address the drawbacks of the purely logic-based approach to program
analysis lies in drawing from and innovating in methods based on machine learning and
artificial intelligence. This insight underlies Petablox—a general, flexible, and scalable
program reasoning framework. Petablox does not abdicate the logic-based approach; rather,
it fundamentally extends it with statistical and data-driven modes of reasoning. The important
features of Petablox are as follows:

• Petablox combines logical and probabilistic reasoning in program analysis, which
provides the best of both worlds, such as soundness guarantees on one hand and the
ability to adapt on the other.

• Program analyses are usually specified using axiom/inference rules that admit only
logical reasoning. Petablox enables incorporating probabilistic reasoning by attaching
weights to such rules.

• Petablox includes a set of learning and inference algorithms that achieve scalability and
accuracy by leveraging domain insights from program analysis, in particular, provenance
information in the form of derivations (i.e., proof trees).

• Petablox adopts and advances a broad range of ML and AI techniques from logical rule
learning (e.g. inductive logic programming), probabilistic graphical models (e.g. Markov
Logic Networks, Stochastic Logic Programs, and Bayesian Networks), to modern deep
learning, reinforcement learning, and transfer learning.

• Petablox enables analyses to automatically adapt to different scenarios and improve over
reasoning about similar programs by either mining useful knowledge (e.g. specifications
or analysis rules) from codebases or learning from user-provided feedback.

3 Methods, Assumptions and Procedures
This section is organized as follows. We set out by describing a general framework for
balancing analysis tradeoffs (Section 3.1). Next, we describe solver techniques we developed
for inference and learning that enable the framework to scale while providing formal guarantees
on soundness and optimality (Section 3.2). The primary contribution of our framework and
solver is a general approach that greatly outperforms even hand-tuned specialized solutions
to specific program analysis problems in metrics of accuracy, scalability, and usability.

We then proceed to show how to integrate machine learning into program analysis with
application to ranking analysis results either based on ground truth (Section 3.3) or relevance
to a code change (Section 3.4). The latter enables our approach to integrate analysis results
into CI/CD workflows which are prevalent in modern software development.

Lastly, we focus on two unsupervised learning approaches which are fully automatic and
do not require any labels. The first is an approach to statically find Application Programming
Interface (API) misuse bugs without needing any specifications (Section 3.6). The second
is an end-to-end deep learning approach for verification, synthesis, and bug-finding/repair
problems (Section 3.7).

5
Approved for Public Release; Distribution Unlimited.



3.1 A Framework for Balancing Analysis Tradeoffs

Constraint-based analysis [26] is a popular approach to program analysis. The core idea
underlying this approach is to divide a program analysis task into two separate steps:
constraint generation and constraint resolution. The former produces constraints from a
given program that constitute a declarative specification of the desired information about the
program, while the latter then computes the desired information by solving the constraints.
This approach provides many benefits such as separating the analysis specification from
the analysis implementation, and allowing to leverage sophisticated off-the-shelf constraint
solvers. Due to these benefits, the constraint-based approach has achieved remarkable success,
as exemplified by the numerous applications of solvers for SAT and Satisfiability Modulo
Theories (SMT).

Existing constraint-based analyses predominantly involve formulating and solving a
decision problem, which is ill-equipped to handle the tradeoffs involved in software analysis.
A natural approach to address this limitation is to extend the decision problem to allow
incorporating optimization objectives. These objective functions serve to effectively formulate
various tradeoffs while preserving the benefits of the constraint-based approach.

Maximum Satisfiability (MaxSAT) [27] is one such optimization extension of the Boolean
Satisfiability (SAT) problem. A MaxSAT instance comprises a system of mixed hard and soft
clauses, wherein a soft clause is simply a hard clause with a weight. The goal of a (exact)
MaxSAT solver is to find a solution that is sound, i.e., satisfies all the hard clauses, and
optimal, i.e., maximizes the sum of the weights of satisfied soft clauses. Thus, hard clauses
enable to enforce soundness conditions of a software analysis while soft clauses enable to
encode different tradeoffs.

Petablox embodies a MaxSAT based approach to balancing tradeoffs in software analysis.
We demonstrated the versatility of this approach using three diverse instantiations that
advance the state-of-the-art:

1. Automated verification with the goal of finding a cheap yet precise program abstraction
for a given analysis [1];

2. Interactive verification with the goal of overcoming the incompleteness of a given
analysis in a manner that minimizes the user’s effort [3]; and

3. Static bug detection with the goal of accurately classifying alarms reported by a given
analysis by learning from a subset of labeled alarms [2].

We next provide an illustrative overview of the approach using the static bug detection
instantiation from [2]. We implemented this instantiation in a tool named Eugene whose
architecture is shown in Figure 2. Specifically, we use the example of applying a static
datarace detection tool Chord [28] to a real-world multi-threaded Java program, Apache FTP
server [29], comprising 150KB of Java bytecode.

Figure 3 shows a code fragment from the program. The RequestHandler class is used to
handle client connections and an object of this class is created for every incoming connection
to the server. The close() method is used to clean up and close an open client connection,
while the getRequest() method is used to access the m_request field. Both these methods
can be invoked from various components of the program, and thus can be simultaneously

6
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Figure 2: Architecture of the Eugene static bug detection system.

Figure 3: Java code snippet of Apache FTP server (left) and simplified datarace detection
analysis specified in Datalog (right).

executed by multiple threads in parallel on the same RequestHandler object. To ensure
that this parallel execution does not result in any dataraces, the close() method uses a
boolean flag m_isConnectionClosed. If this flag is set, all calls to close() return without
any further updates. If the flag is not set, then it is first updated to true, followed by
execution of the clean-up code (lines 17–24). To avoid dataraces on the flag itself, it is
read and updated while holding a lock on the RequestHandler object (lines 12–16). All the
subsequent code in close() is free from dataraces since only the first call to close() executes
this section. However, note that an actual datarace still exists between the two accesses to
field m_request on line 9 and line 18.

We motivate the approach in Eugene by contrasting the goals and capabilities of a writer
of an analysis, such as the datarace detection analysis in Chord, with those of a user of the
analysis, such as a developer of the Apache FTP server.

The role of the analysis writer. The designer or writer of a static analysis tool, say
Alice, strives to develop an analysis that is precise yet scales to real-world programs, and

7
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is widely applicable to a large variety of programs. In the case of Chord, this translates
into a datarace detection analysis that is context-sensitive but path-insensitive. This is a
common design choice for balancing precision and scalability of static analyses. The analysis
in Chord is expressed using Datalog, a declarative logic programming language, and Figure 3
shows a simplified subset of the logical inference rules used by Chord. The actual analysis
implementation uses a larger set of more elaborate rules but the rules shown here suffice for
the discussion. These rules are used to produce output relations from input relations, where
the input relations express known program facts and output relations express the analysis
outcome. These rules express the idioms that the analysis writer Alice deems to be the
most important for capturing dataraces in Java programs. For example, Rule (1) in Figure 3
conveys that if a pair of program points (p1, p2) can execute in parallel, and if program point
p3 is an immediate successor of p1, then (p3, p2) are also likely to happen in parallel. Rule (2)
conveys that the parallel relation is symmetric. Via Rule (3), Alice expresses the idiom that
only program points not guarded by a common lock can be potentially racing. In particular,
if program points (p1, p2) can happen in parallel, can access the same memory location, and
are not guarded by any common lock, then there is a potential datarace between p1 and p2.

The role of the analysis user. The user of a static analysis tool, say Bob, ideally
wants the tool to produce exact (i.e., sound and complete) results on his program. This
allows him to spend his time on fixing the bugs in the program instead of classifying the
reports generated by the tool as spurious or real. In our example, suppose that Bob runs
Chord on the Apache FTP server program in Figure 3. Based on the rules in Figure 3, Chord
produces the list of datarace reports shown in Figure 4(a). Reports R1–R5 are identified as
potential dataraces in the program, whereas for report E1, Chord detects that the accesses
to m_isConnectionClosed on lines 13 and 15 are guarded by a common lock, and therefore
do not constitute a datarace. Typically, the analysis user Bob is well-acquainted with the
program being analyzed, but not with the details of underlying analysis itself. In this case,
given his familiarity with the program, it is relatively easy for Bob to conclude that the code
from line 17–24 in the body of the close() method can never be executed by multiple threads
in parallel, and thus reports R2–R5 are spurious.

The mismatch between analysis writers and users. The design decisions of the
analysis writer Alice have a direct impact on the precision and scalability of the analysis.
The datarace analysis in Chord is imprecise for various theoretical and usability reasons.

First, the analysis must scale to large programs. For this reason, it is designed to be path-
insensitive and over-approximates the possible thread interleavings. To eliminate spurious
reports R2–R5, the analysis would need to only consider feasible thread interleavings by
accurately tracking control-flow dependencies across threads. However, such precise analyses
do not scale to programs of the size of Apache FTP server, which comprises 130 KLOC.

Scalability concerns aside, relations such as mayAlias are necessarily inexact as the
corresponding property is undecidable for Java programs. Chord over-approximates this
property by using a context-sensitive but flow-insensitive pointer analysis, resulting in spurious
pairs (p1, p2) in this relation, which in turn are reported as spurious dataraces.

Third, the analysis writer may lack sufficient information to design a precise analysis,
because the program behaviors that the analysis intends to check may be vague or ambiguous.
For example, in the case of datarace analysis, real dataraces can be benign in that they do not
affect the program’s correctness [30]. Classifying such reports typically requires knowledge

8
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about the program being analyzed.
Fourth, the program specification can be incomplete. For instance, the datarace in report

R1 above could be harmful but impossible to trigger due to timing reasons extrinsic to Apache
FTP server, such as the hardware environment.

In short, while the analysis writer Alice can influence the design of the analysis, she cannot
foresee every usage scenario or program-specific tweaks that might improve the analysis.
Conversely, analysis user Bob understands the program under analysis, and can classify the
analysis reports as spurious or real. But he lacks the expertise to suppress the spurious bugs
by modifying the underlying analysis based on his intuition and program knowledge.

Closing the gap between analysis writers and users. Our approach aims to
empower the analysis user Bob to adjust the underlying analysis as per his demands without
involving the analysis writer Alice. Eugene achieves this by automatically incorporating user
feedback into the analysis. The user provides feedback in a natural fashion, by “liking” or
“disliking” a subset of the analysis reports, and re-running the analysis. For example, when
presented with the datarace reports in Figure 4(a), Bob might start inspecting from the
first report. This report is valid and Bob might choose to either like or ignore this report.
Liking a report conveys that Bob accepts the reported bug as a real one and would like the
analysis to generate more similar reports, thereby reinforcing the behavior of the underlying
analysis that led to the generation of this report. However, suppose that Bob ignores the first
report, but indicates that he dislikes the second report by clicking on the corresponding icon.
Re-running Chord after providing this feedback produces the reports shown in Figure 4(b).
While the true report R1 is generated in this run as well, all the remaining spurious reports
are eliminated. This highlights a key strength of our approach: it not only incorporates user
feedback but it also generalizes the feedback to other similar results of the analysis. Reports
R2–R5 are correlated and are spurious for the same root cause: the code from line 17–24
in the body of the close() method can never be executed by multiple threads in parallel.
Bob’s feedback on report R2 conveys to the underlying analysis that lines 17 and 18 cannot
execute in parallel. Eugene is able to generalize this feedback automatically and conclude
that none of the lines from 17–24 can execute in parallel.

3.2 Solver Techniques for Inference and Learning

Enabling the aforementioned instantiations of our framework on real-world programs necessi-
tates solving large MaxSAT instances comprising over 1030 clauses in a sound and optimal
manner, which is beyond the reach of existing MaxSAT solvers. We first illustrate how such
instances arise and then give an overview of the solver techniques developed in Petablox to
handle such instances.

Figure 5 shows a subset of the analysis’s input and output facts as well as a snippet of the
MaxSAT formula constructed for our running example from Figure 3. The input facts are
derived from the analyzed program (Apache FTP server) and comprise the next, mayAlias,
and guarded relations. In all these relations, the domain of program points is represented
by the corresponding line number in the code. Note that all the analysis rules expressed in
Figure 3 are hard rules since existing tools like Chord do not accept soft rules. However, we
assume that when this analysis is fed to our system, rule (1) is specified to be soft by analysis
writer Alice, which captures the fact that the parallel relation is imprecise. Our system
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E1: Race on field org.apache.ftpserver.RequestHandler. m_isConnectionClosed

org.apache.ftpserver.RequestHandler: 13 org.apache.ftpserver.RequestHandler: 15

Eliminated Races

R1: Race on field org.apache.ftpserver.RequestHandler.m_request

org.apache.ftpserver.RequestHandler: 9 org.apache.ftpserver.RequestHandler: 18

R2: Race on field org.apache.ftpserver.RequestHandler.m_request

org.apache.ftpserver.RequestHandler: 17 org.apache.ftpserver.RequestHandler: 18

R3: Race on field org.apache.ftpserver.RequestHandler.m_writer

org.apache.ftpserver.RequestHandler: 19 org.apache.ftpserver.RequestHandler: 20

R4: Race on field org.apache.ftpserver.RequestHandler.m_reader

org.apache.ftpserver.RequestHandler: 21 org.apache.ftpserver.RequestHandler: 22

R5: Race on field org.apache.ftpserver.RequestHandler.m_controlSocket

org.apache.ftpserver.RequestHandler: 23 org.apache.ftpserver.RequestHandler: 24

Detected Races

(a) Before feedback.

R1: Race on field org.apache.ftpserver.RequestHandler.m_request

org.apache.ftpserver.RequestHandler: 9 org.apache.ftpserver.RequestHandler: 18

Detected Races

E2: Race on field org.apache.ftpserver.RequestHandler.m_request

org.apache.ftpserver.RequestHandler: 17 org.apache.ftpserver.RequestHandler: 18

E3: Race on field org.apache.ftpserver.RequestHandler.m_writer

org.apache.ftpserver.RequestHandler: 19 org.apache.ftpserver.RequestHandler: 20

E4: Race on field org.apache.ftpserver.RequestHandler.m_reader

org.apache.ftpserver.RequestHandler: 21 org.apache.ftpserver.RequestHandler: 22

E5: Race on field org.apache.ftpserver.RequestHandler.m_controlSocket

org.apache.ftpserver.RequestHandler: 23 org.apache.ftpserver.RequestHandler: 24

E1: Race on field org.apache.ftpserver.RequestHandler. m_isConnectionClosed

org.apache.ftpserver.RequestHandler: 13 org.apache.ftpserver.RequestHandler: 15

Eliminated Races

(b) After feedback.

Figure 4: Race reports produced for Apache FTP server by Eugene. Each report specifies the
field involved in the race, and line numbers of the program points with the racing accesses.
The user feedback is to “dislike” report R2.
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Input facts:
next(18, 17) mayAlias(18, 17) guarded(13, 13)
next(19, 18) mayAlias(20, 19) guarded(15, 15)
next(20, 19) mayAlias(22, 21) guarded(15, 13) ...

MaxSAT formula:
w1 : (¬parallel(17, 17) ∨ ¬next(18, 17) ∨ parallel(18, 17)) ∧

(¬parallel(18, 17) ∨ parallel(17, 18)) ∧
w1 : (¬parallel(17, 18) ∨ ¬next(18, 17) ∨ parallel(18, 18)) ∧
w1 : (¬parallel(18, 18) ∨ ¬next(19, 18) ∨ parallel(19, 18)) ∧

(¬parallel(19, 18) ∨ parallel(18, 19)) ∧
w1 : (¬parallel(18, 19) ∨ ¬next(19, 18) ∨ parallel(19, 19)) ∧
w1 : (¬parallel(19, 19) ∨ ¬next(20, 19) ∨ parallel(20, 19)) ∧(

¬parallel(18, 17) ∨ ¬mayAlias(18, 17) ∨
guarded(18, 17) ∨ race(18, 17)

)
∧(

¬parallel(20, 19) ∨ ¬mayAlias(20, 19) ∨
guarded(20, 19) ∨ race(20, 19)

)
∧

w2 : ¬race(18, 17) ∧ ...

Output facts (before feedback):
parallel(18, 9) parallel(20, 19) race(18, 9) race(20, 19) ...
parallel(18, 17) parallel(22, 21) race(18, 17) race(22, 21)

Output facts (after feedback):
parallel(18, 9) race(18, 9) ...

Figure 5: MaxSAT-based formulation for static bug detection example.

automatically learns the weight of this rule to be w1 from training data. Given these input
facts and rules, the MaxSAT problem to be solved is generated by grounding the analysis
rules, and a snippet of the constructed MaxSAT formula is shown in Figure 5. Ignoring the
clause enclosed in the box, solving this MaxSAT formula (without the boxed clause) yields
output facts, a subset of which is shown under “Output facts (before feedback)” in Figure 5.
The output includes multiple spurious races like race(18, 17), race(20, 19), and race(22, 21).

As described in Section 3.1, when analysis user Bob provides feedback that race(18, 17) is
spurious, our approach suppresses all spurious races while retaining the real race race(18, 9). It
achieves this by incorporating the user feedback itself as a soft rule, represented by the boxed
clause ¬race(18, 17) in Figure 5. The weight for such user feedback is also learned during the
training phase. Assuming the weight w2 of the feedback clause is higher than the weight w1 of
rule (1)—a reasonable choice that emphasizes Bob’s preferences over Alice’s assumptions—the
MaxSAT semantics ensures that the solver prefers violating rule (1) over violating the feedback
clause. When the MaxSAT formula (with the boxed clause) in Figure 5 is then fed to the solver,
the output solution violates the clause w1 : (¬parallel(17, 17)∨¬next(18, 17)∨ parallel(18, 17))
and does not produce facts parallel(18, 17) and race(18, 17) in the output. Further, all the
facts that are dependent on parallel(18, 17) are not produced either. (This is due to implicit
soft rules that negate each output relation, such as w0 : ¬parallel(p1, p2) where w0 < w1, in
order to obtain the least solution.) This implies that facts like parallel(19, 18), parallel(20, 19),
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Figure 6: Architecture of our lazy grounding solver for solving large MaxSAT instances.
It scales by iteratively expanding a workset comprising a subset of clauses in the input
MaxSAT instance. Our bottom-up and top-down grounding techniques, and many others in
the literature, are instances of this framework.

parallel(22, 21) are not produced, and therefore race(20, 19) and race(22, 21) are also suppressed.
Thus, our approach is able to generalize based on user feedback.

We developed a series of solver techniques to solve MaxSAT instances in a manner that
is scalable while providing formal guarantees on soundness (respecting all hard rules) and
optimal (maximizing the weights of satisfied soft rules). The key insight underlying our
approach to scale is lazy grounding: iteratively expanding a subset of clauses while providing
guarantees. We next elaborate upon the general architecture (Section 3.2.1) followed by two
instantiations of it: bottom-up grounding (Section 3.2.2) and top-down grouding (Section
3.2.3). Finally, we discuss an incremental solving approach (Section 3.2.4).

3.2.1 Lazy Grounding Framework

Figure 6 shows the architecture of our lazy grounding framework. The framework, called
VOLT, is described in [12]. In each iteration, VOLT only grounds a subset of clauses in the
MaxSAT problem, and solves it using an off-the-shelf MaxSAT solver. VOLT provides a
common ground to compare and contrast different lazy grounding approaches for solving
large MaxSAT instances.

We cast four diverse approaches from the literature on information retrieval and program
analysis as instances of VOLT:

• SoftCegar [31], which grounds all the soft clauses upfront but lazily grounds the hard
clauses. In each iteration, this approach grounds all the hard clauses violated by the
current solution.

• Cutting Plane Inference (CPI) [32, 33], which is lazier than SoftCegar and grounds
no clauses upfront. In each iteration, both hard and soft constraints are checked for
violations, and any violated clauses are grounded. The algorithm terminates when no
new constraints are violated.

• A common approach, used in statistical relational learning tools like Alchemy [34] and
Tuffy [35], that relies on the observation that most ground facts are false in the final
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solution, and thereby most clauses are trivially true (since most clauses are Horn in
these applications). An active ground fact is one that has a value of true. In each
iteration, the clauses grounded are those containing at least one active fact as per the
current solution. Initially, only the input facts are considered active. The approach
terminates after a fixed number of iterations or after the weight of the satisfied clauses
is greater than a target weight.

• The AbsRefine approach [1] from the automated verification instantiation in Section
3.1, which tackles a central problem in program analysis of efficiently finding a program
abstraction that keeps only information relevant for proving properties of interest.

Furthermore, we demonstrated the effectiveness of VOLT under different state-of-the-
art MaxSAT solvers that were available from the top performers in Random, Crafted and 
Industrial categories of the 9th Max-SAT Evaluation [27]. In particular, the solvers we used 
were: CCLS2akms [36, 37], Eva500a [38], MaxHS [39], wmifumax [40], MSCG [41, 42] and 
WPM-2014-co [43].

Our evaluation results indicated that the MaxSAT instances generated by VOLT are 
many orders of magnitude smaller than the full MaxSAT instances. It was evident that any 
approach attempting to tackle problems of this scale needs to employ lazy techniques for 
solving such instances. We made the MaxSAT instances generated in our evaluation publicly 
available to facilitate future research.

3.2.2 Bottom-up Grounding

In [13], we developed a bottom-up grounding approach in the VOLT framework that  
strikes a balance between eager grounding and lazy grounding. Our key underlying idea 
comprises two complementary optimizations: eagerly exploiting proofs and lazily refuting 
counterexamples. To eagerly exploit proofs, our algorithm uses an efficient procedure to 
upfront ground constraints that will necessarily be grounded during the iterative process. On 
the other hand, to lazily refute counterexamples, our algorithm uses an efficient procedure to 
check for violations of constraints by the candidate solution to the set of ground constraints 
in each iteration, terminating the iterative process in the absence of violations. We showed 
that our algorithm achieves significant speedup over existing approaches without sacrificing 
soundness for real-world applications from program analysis and information retrieval.

3.2.3 Top-Down Grounding

In [14], we proposed a new optimization problem “Q-MaxSAT”, an extension of the MaxSAT 
problem. In contrast to MaxSAT, which aims to find an assignment to all variables in the 
formula, Q-MaxSAT computes an assignment to a desired subset of variables (or queries) 
in the formula. Many problems in diverse domains such as program reasoning, information 
retrieval, and mathematical optimization can be naturally encoded as Q-MaxSAT instances 
(see Figure 7).

We also developed an iterative algorithm for solving Q-MaxSAT. In each iteration, the 
algorithm solves a subproblem that is relevant to the queries, and applies a novel technique 
to check whether the partial assignment found is a solution to the Q-MaxSAT problem. If
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Figure 7: Example queries from two different domains motivating Q-MaxSAT.

the check fails, the algorithm grows the subproblem with a new set of clauses identified as
relevant to the queries. Our empirical evaluation showed that our Q-MaxSAT approach
achieves significant improvements in runtime and memory consumption over conventional
MaxSAT solvers on several Q-MaxSAT instances in real-world applications from program
analysis and information retrieval.

3.2.4 Incremental Solving

A special but common scenario concerns applications which pose a sequence of similar large
MaxSAT instances. For example, many applications involve a sequence of small updates
to a large instance (e.g., verification via abstraction refinement [1] or user interaction [2]).
Alternatively, MaxSAT-based solvers pose such sequences in order to scale to ever larger
instances (e.g., using bottom-up [13] or top-down [14] methods described above) or more
expressive theories (e.g., MaxSMT [44] and Markov Logic Networks [12, 45]). Instead of
solving each instance in the sequence from scratch, it is desirable to improve the efficiency of
MaxSAT solvers by reusing results computed across invocations on such instances.

In [5], we developed an incremental approach that targets an especially common case
in which the sequence of MaxSAT instances is constructed by adding hard or soft clauses.
Moreover, the new clauses are determined by the solution to the previous instance. We
adpated an unsat core-guided algorithm [46] which forms the basis of many popular MaxSAT
solvers. This algorithm solves a single MaxSAT instance by solving a sequence of SAT
instances until the underlying SAT solver finds a satisfying solution. Each SAT instance is
constructed using the unsat cores discovered in previous SAT instances. Since adding clauses
to the current MaxSAT instance does not invalidate existing unsat cores, a compelling idea
to improve the performance of solving the resulting MaxSAT instance is to reuse the existing
unsat cores.

Surprisingly, however, we observed that a naive implementation of this idea can fail to
yield performance benefits or, even worse, sharply curtain them. To address this challenge, we
propose a hybrid solving framework that alternates between the incremental algorithm and its
non-incremental version. In each iteration, our framework checks whether the current instance
may potentially benefit from reusing the cores learnt on previous instances. If the check
succeeds, it applies the incremental algorithm by reusing such cores. Otherwise, it discards
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Figure 8: Architecture and workflow of the Bingo alarm ranking system.

the cores learnt thus far and applies the non-incremental algorithm. We implemented this
approach in the Open-WBO MaxSAT solver [47] and evaluated it on 74 sequences generated
from diverse applications in program analysis and information retrieval. Together, these
sequences contain 669 MaxSAT instances, with an average of 10 million clauses per instance.
Our evaluation showed that our approach outperforms the baseline approaches significantly:
it yielded an average speedup of 1.8× per sequence over the non-incremental approach, and
it solved 19 more sequences than the naively-incremental approach.

3.3 Ranking Analysis Alarms via Bayesian Inference

A limitation of the above constrained optimization approach is that it casts static bug finding
as a classification problem of true alarms (real bugs) vs. false alarms (false positives), as
opposed to a ranking problem. In follow-up work, we formulated a continuous optimization
approach [4] that extends the discrete semantics of Datalog to the continuous semantics of
Bayesian networks. We thereby reduce the ranking problem to Bayesian inference. This also
enables to effectively incorporate user feedback into program reasoning: user-provided labels
on top-ranked facts serve as evidence to condition upon in re-ranking other deduced facts.
Figure 8 depicts the architecture of this approach implemented in a tool named Bingo for
arbitrary analyses specified in Datalog. Bingo enabled a reduction of over 50% in alarm
inspection effort for a variety of static analysis problems—finding malicious information leaks
in Android apps, finding concurrency bugs in large object-oriented programs in Java, and
finding memory safety vulnerabilities in low-level systems programs in C.

We next illustrate Bingo’s approach using the example from Figure 3. Consider the
following rule from the static datarace detection analysis in Datalog:

parallel(p1, p2) ∧ next(p3, p1) =⇒ parallel(p3, p2)

This rule is sound but incomplete. The incompleteness is evident by grounding it on the
following code fragment:

Thread 1: Thread 2:
if (num_threads == 1) // p1 x = x + 1 // p3

x = x + 1 // p2
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Figure 9: Conditional probability table for the incomplete analysis rule parallel(p1, p2) ∧
next(p3, p1) =⇒ parallel(p3, p2) with weight 0.9.

Although the antecedents of this rule, parallel(p1,p3) and next(p2,p1) hold, the consequent
parallel(p2,p2) does not hold because of the fact that Thread 1 only executes statement p2
when there is a single thread, indicated by the conditional num_threads == 1. While the
rule could be enhanced to handle such cases, however, in the limit this problem is undecidable
and therefore we will necessarily have analysis rules that are unsound or incomplete. Such
noisy rules in turn result in false alarms.

The key insight underlying Bingo is to quantify the inaccuracy in such analysis rules by
treating them probabilistically. For this purpose, we associate a weight w with each such
analysis rule—a real number between 0 and 1 which can be learnt from labeled data—and
attach a conditional probability distribution (CPD) with the rule, as shown in Figure 9.
This probabilistic rule is now interpreted as follows: whenever antecedents parallel(p1, p2) and
next(p3, p1) hold, the consequent parallel(p3, p2) is true with probability 0.9.

By attaching CPDs to each node in the derivation graphs of alarms produced by the
analysis, our approach views the derivation graph as a Bayesian network. Specifically, Bingo
performs marginal inference on the network to associate each alarm with the probability, or
belief, that it is a true datarace. The alarms are then reported to the user ranked by the
belief scores as shown in Figure 10 (a).

The user now inspects the top-ranked report R2 and classifies it as a false alarm. The
key idea underlying Bingo is that generalizing from feedback is conditioning on evidence.
By replacing the prior belief Pr(a), for each alarm a, with the posterior belief, Pr(a|¬R2),
Bingo effectively propagates the user feedback to the remaining conclusions of the analysis.
This results in the updated list of alarms shown in Figure 10 (b). Observe that the beliefs in
the closely related alarms R3, R4, and R5 drop (e.g. from 0.53 to 0.28 for R3), while the
belief in the unrelated alarm R1 remains unchanged at 0.30. As a result, the entire family of
false alarms drops in the ranking, so that the only true datarace R1 is now at the top.

In summary, Bingo integrates machine learning into the analysis computation itself,
in contrast to existing approaches which typically apply machine learning to post-process
analysis results. In doing so, Bingo is more generally applicable and generalizes user feedback
more effectively.
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(a) Before feedback.

(b) After feedback.

Figure 10: Race reports produced for Apache FTP server by Bingo. Each report specifies the
field involved in the race, and line numbers of the program points with the racing accesses.
The user feedback is to “dislike” top-ranked false alarm R1.
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Figure 11: An example of a code change between two versions of a C program shntool.

3.4 Integrating Analyses into CI/CD Environments

Programs often evolve by continuously integrating changes from multiple programmers. The
effective adoption of program analysis tools in this CI/CD setting is hindered by the need to
only report alarms relevant to a particular program change. The idea of ranking analysis
alarms via Bayesian inference can be used in this setting as well. However, the ranking
criterion is different: instead of ranking alarms by ground truth, they are ranked by relevance
to the code change.

We illustrate this scenario by means of a real-world example. Figure 11 shows an excerpt
from the audio file processing utility shntool, and highlights changes made to the code
between versions 3.0.4 and 3.0.5. Lines preceded by a ‘+’ indicate code which has been
added, and lines preceded by a ‘-’indicate code which has been removed from the new version.
The integer overflow analysis in the Sparrow static analyzer [18] reports two alarms in each
version of this code snippet, which we describe next.

The first alarm, reported at line 30, concerns the command line option “t”. This program
feature trims periods of silence from the ends of an audio file. The program reads unsanitized
data into the field info−>header_size at line 25, and allocates a buffer of proportional size at
line 30. Sparrow observes this data flow, concludes that the multiplication could overflow, and
subsequently raises an alarm at the allocation site. However, this data has been sanitized at
line 29, so that the expression header_size ∗ sizeof (char) cannot overflow. This is therefore
a false alarm in both versions. We will refer to this alarm as Alarm(30).

The second alarm is reported at line 45, and is triggered by the command line option
“c”. This program feature compares the contents of two audio files. The first version has
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Figure 12: Architecture and workflow of the Drake alarm ranking system.

source-sink flows from the untrusted fields info1−>data_size and info2−>data_size, but
this is a false alarm since the value of bytes cannot be larger than CMP_SIZE. On the other
hand, the new version of the program includes an option to offset the contents of one file by
shift_secs seconds. This value is used without sanitization to compute cmp_size, leading to
a possible integer overflow at line 42, which would then result in a buffer of unexpected size
being allocated at line 45. Thus, while Sparrow raises an alarm at the same allocation site
for both versions of the program, which we will call Alarm(45), this is a false alarm in the
old version but a real bug in the new version.

The central question we sought to answer in this work can be restated as follows: How do
we alert the user to the possibility of a bug at line 45, while not forcing them to inspect all
the alarms of the “batch mode” analysis, including that at line 30?

We developed a general solution for arbitrary analyses specified in Datalog. We imple-
mented it in a framework called Drake whose architecture is depicted in Figure 12. First, the
system extracts static analysis results from both the old and new versions of the program.
Since these results are described in terms of syntactic entities (such as source locations) from
different versions of the program, it uses a syntactic matching function to translate the old
version of the constraints into the setting of the new program. Drake then merges the two
sets of constraints into a unified differential derivation graph. These differential derivations
highlight the relevance of the changed code to the static analysis alarms. Moreover, the
differential derivation graph also enables us to perform marginal inference with the feedback
from the user as well as previously labeled alarms from the old version.

On a suite of 10 popular GNU utility C programs comprising 13K-112K lines of code each,
Drake could discover all 26 bugs, including four known CVEs, while requiring the developer
to inspect only 30 alarms on average per program, whereas the baseline batch approach
required inspecting 560 alarms on average.

3.5 Synthesizing Interpretable Analyses from Data

A key limitation to our approach thus far lies in the need for accurate analysis rules which
are hand-crafted by human experts. Poorly designed rules hinder metrics such as accuracy,
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Figure 13: Architecture of the ALPS tool for synthesizing Datalog programs.

scalability, and usability despite the use of machine learning. After all, these rules are akin
to the “features” in machine learning: poor features inhibit benefits such as trainability and
generalization that machine learning aims to provide.

In a series of works [6, 7, 48, 49], we developed scalable algorithms for automatically
synthesizing logical rules in the form of Datalog programs from input-output data. Besides
being interpretable, logical rules are amenable to efficient discovery via a variety of symbolic
and numeric reasoning algorithms, both in terms of time and data efficiency. This problem has
been studied in the field of Inductive Logic Programming (ILP) for three decades; however,
existing approaches cannot effectively handle expressive features (e.g. recursion and invented
predicates), do not provide formal guarantees in terms of fitting the given data, and require
syntactic bias mechanisms in the form of meta rules or templates. We next describe the
synthesis techniques we developed to address these challenges.

3.5.1 Combinatorial Search Approach

In [6], we proposed a combinatorial search approach to synthesize Datalog programs from
input-output data. Our key insight is that such programs in practice comprise rules that have
similar latent syntactic structure. Our approach exploits this insight via the Syntax-Guided
program Synthesis (SyGuS) paradigm [50], wherein the syntactic structure of the target class
of programs is leveraged to efficiently traverse the hypothesis space of programs. For this
purpose, our approach must address three key challenges: i) capture syntactic structure
effectively, ii) minimize the number of examples needed, and iii) explore the search space
efficiently We next elaborate upon each of these objectives. Figure 13 shows the overall
architecture of this approach implemented in a tool named ALPS.

To capture the syntactic structure of rule-based programs, we use meta-rules [51]—
templates that describe a set of possible rules that can appear in a program. The key
challenge is to obtain a set of meta-rules that is general enough to capture useful programs but
specific enough to enable efficient synthesis. We proposed a novel approach to systematically
generate meta-rules, taking advantage of domain knowledge.

To minimize the number of examples needed, ALPS aims to ask an oracle a small number
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of queries concerning the expected output on a given input. The oracle need only answer with
yes or no, rather than crafting elaborate examples and supplying them to the synthesizer.
ALPS uses an active learning technique, called query by committee (QBC) [52,53], to pick
an example that can prune the search space the most. In our setting, QBC takes as input
a committee formed by a set of consistent programs, and returns an example on which
the committee disagrees the most—the most controversial example. ALPs then prunes the
programs that disagree with the given label and repeat the process. However, it is infeasible
to apply QBC on the entire search space, which is prohibitively large.

To explore the search space efficiently and overcome the challenge in using QBC, APLS
uses a bidirectional synthesis strategy to maintain the most-general and most-specific programs
that are consistent with the given examples [54]. Intuitively, the most-general and most-
specific programs (defined through logical entailment) form a representative set of the search
space, allowing us to preserve exactness of the search. Moreover, this set is much smaller
than the size of the search space, making it an ideal committee. To incrementally update the
search space as examples are labeled, we defined efficient top-down and bottom-up refinement
operators that are guided by the given set of meta-rules.

We evaluated ALPS on a suite of 34 benchmarks from three domains—program analy-
sis, knowledge discovery, and database queries. The evaluation showed that ALPS could
successfully synthesize 33 of these benchmarks, and outperformed the state-of-the-art tools
Metagol [55] and Zaatar [5], which could synthesize only up to 10 of the benchmarks.

3.5.2 Numerical Relaxation Approach

In follow-up work [7], we took a fundamentally different approach to the problem of synthe-
sizing Datalog programs. Inspired by the success of numerical methods in machine learning
and other large scale optimization problems, and of the strategy of relaxation in solving
combinatorial problems such as integer linear programming, we extended the classical discrete
semantics of Datalog to a continuous setting named Difflog, where each rule is annotated
with a real-valued weight, and the program computes a numerical value for each output
tuple. This step can be viewed as an instantiation of the general K-relation framework for
database provenance [56] with the Viterbi semiring being chosen as the underlying space K
of provenance tokens. We then formalize the program synthesis problem as that of selecting
a subset of target rules from a large set of candidate rules, and thereby uniformly capture
various methods of inducing syntactic bias, including SyGuS [50], and template rules in
meta-interpretive learning [55].

The synthesis problem thus reduces to that of finding the values of the rule weights which
result in the best agreement between the computed values of the output tuples and their
specified values (1 for desirable and 0 for undesirable tuples). The fundamental NP-hardness
of the underlying decision problem manifests as a complex search surface, with local minima
and saddle points. To overcome these challenges, we devised a hybrid optimization algorithm
which combines Newton’s root-finding method with periodic invocations of a simulated
annealing search. Finally, when the optimum value is reached, connections between the
semantics of Difflog and Datalog enable the recovery of a classical discrete-valued Datalog
program from the continuous-valued optimum produced by the optimization algorithm.

A particularly appealing aspect of relaxation-based synthesis is the randomness caused by
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the choice of the starting position and of subsequent Monte Carlo iterations. This manifests
both as a variety of different solutions to the same problem, and as a variation in running
times. Running many search instances in parallel therefore enables stochastic speedup of the
synthesis process, and allows us to leverage compute clusters in a way that is fundamentally
impossible with deterministic approaches. We implemented Difflog and evaluated it on a suite
of 34 benchmark programs from the literature. We demonstrated significant improvements
over the state-of-the-art, even while synthesizing complex programs with recursion, invented
predicates, and relations of arbitrary arity.

3.5.3 Provenance-Guided Search Approach

In this work, published in [49], we developed a provenance-guided search approach to synthesize
Datalog programs. Query provenance [56,57] has emerged as a powerful mechanism to enable a
variety of tools that require meta-reasoning over Datalog programs, including debugging query
results [58], counterexample-guided abstraction refinement (CEGAR) in static analyses [1],
and confidence computation in uncertain and probabilistic databases [59]. The central insight
of this work was that provenance can also play a key role in program synthesis.

In most guess-and-check approaches to program synthesis, such as counterexample-guided
inductive synthesis (CEGIS) [60], the main challenge lies in identifying the reason for the
failure of a particular candidate solution. Formal models of query provenance form the ideal
template to structure such reasoning about failures.

Our approach, depicted in Figure 14, follows the CEGIS paradigm: in each iteration,
a SAT solver generates a candidate Datalog program, and a Datalog solver evaluates the
generated program to determine whether it meets the desired input-output specification.
In this context, our approach can also be regarded as an instantiation of the classic Davis-
Putnam-Logemann-Loveland algorithm DPLL(T ) for automated theorem proving [61], with
T being the theory of least fixed points.

A candidate Datalog program can fail to meet the desired specification in one of two ways:
either by producing an undesirable output tuple or by failing to produce a desirable output
tuple. Our approach handles both cases via additional constraints to the SAT solver in the
next CEGIS iteration. Constraints encoding an erroneous derivation of an undesirable output
tuple can be obtained directly via classical models of “why” provenance. However, reflecting
on the non-derivation of a desirable output tuple leads to difficult ontological questions. We
propose two new techniques to address this problem of “why-not” provenance: the first is a
version of the delta-debugging algorithm that significantly strengthens the constraints from a
non-derivation failure, and the second is a notion of co-provenance which identifies necessary
constraints before the occurrence of a non-derivation failure.

In summary, our approach leverages provenance information from the Datalog solver in
order to constrain the SAT solver in each CEGIS iteration. Conceptually, it constitutes a new
approach to boolean function learning, where the target concept is the formula which encodes
exactly the set of solutions to the synthesis problem. In practice, this provenance-guided
approach is central to scaling synthesis and reducing variability in synthesis time—problems
that plague existing approaches due to a large number of non-deterministic choices in the
search process.

We implemented our approach in a tool called Prosynth and demonstrated that it
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Figure 14: Message sequence chart depicting the interaction between the SAT solver and the Datalog 
solver in each CEGIS iteration of Prosynth. 
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Figure 15: Architecture and workflow of the APISan system.

significantly improves over existing approaches, including in synthesizing invented predicates,
reducing running times, and in decreasing variances in synthesis performance. In particular,
we compared Prosynth to two state-of-the-art approaches described above: ALPS and Difflog.
On a suite of 40 synthesis tasks from three different domains—program analysis, knowledge
discovery, and relational queries—Prosynth was able to synthesize the desired program in 10
seconds on average per task, taking only under a second each for 28 of them. In contrast,
ALPS timed out in one hour on six tasks and took 142 seconds on average for the rest.
Likewise, Difflog timed out on three tasks and took 136 seconds on average for the rest.
Finally, compared to Difflog, Prosynth exhibited much lower variability in running times
across 32 runs on each task; and for all but three tasks, the maximum running time of
Prosynth was lower than the median running time of Difflog.

3.6 Semantic Cross-Checking to Find API Misuse Bugs

We also explored combining logical and probabilistic reasoning in the setting of static bug
detection where specifications are missing. Specifically, we targeted the problem of finding
API misuse bugs in a fully automated manner [8]. We implemented this approach in a system
called APISan whose architecture and workflow is depicted in Figure 15.

APISan first builds symbolic contexts from existing programs’ source code and creates
a database. Then APISan infers correct usages of APIs, so-called semantic beliefs, in four
aspects: return values (e.g. return result of an API should be checked for NULL), arguments
(e.g. the size argument should be smaller or equal to the size of the buffer argument), causality
(e.g. an acquired lock should be released at the end of a critical section), and implied pre/post
conditions (e.g. verifying a peer certificate is valid only if the peer certificate exists). The
inferred beliefs are used to find and rank potential API misuses to be reported as bugs.

Figure 16 (a) shows a memory leak vulnerability found by APISan in OpenSSL 1.1.0. When
a crypto key fails to initialize, the allocated context (i.e., gctx) should be freed. Otherwise,
a memory leak will occur. APISan first inferred the correct usage of the API from (b) other
uses of the API, and extracted a checkable rule, called a semantic belief, under the proper
context (e.g., state: EVP_PKEY_keygen_init() -> rv <= 0 && EVP_PKEY_CTX_free()).
This newly found vulnerability was reported and fixed in the mainstream with the patch
we provided. In the above report, @FUNC indicates a target API, @CONS is a return value

24
Approved for Public Release; Distribution Unlimited.



Figure 16: A new bug discovered using APISan in OpenSSL.

constraint, and @POST shows an expected post-action following the API.

3.7 Deep Learning for Program Reasoning

The dramatic benefits of leveraging machine learning for program reasoning in the above
work inspired us to explore the ultimate form of continuous optimization: deep learning.
While deep learning has shown promise for relatively shallow program reasoning tasks such
as code completion, API prediction, and even type checking, an open question is whether it
can also overcome long-standing challenges in tasks that require deep semantic reasoning.
Our exploration led to the first successful formulations of such tasks using deep learning:
Code2Inv [9], a program verifier; Metal [10], a program synthesizer; and Hoppity [11], an
end-to-end bug-finding and program repair system.

The key insight is to leverage two kinds of state-of-the-art artificial neural networks:

• A Graph Neural Network (GNN), which embed programs into high-dimensional vectors
such that the distance between vectors is correlated with semantic equivalence of the
embedded programs. Graph neural networks do not require human-specified features;
they directly operate on graph-based program representations to capture rich structural
and semantic information in programs necessary for tasks such as verification, synthesis,
and repair.

• A Long Short-Term Memory network (LSTM), which takes a series of actions required
by the program reasoning task (verification/synthesis/repair) by using an attention
mechanism.

We illustrate the use of these neural networks in Hoppity whose architecture is depicted
in Figure 17. Hoppity’s neural network model is designed in a similar vein as a Neural
Turing Machine (NTM) [62]: it consists of an external memory implemented using a GNN
for embedding the given program and a central controller implemented using an LSTM
that makes a sequence of primitive actions (e.g., predicting type, generating patch, etc.) to
perform a fix. The multi-step decision process is implemented by an autoregressive model.
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function clearEmployeeListOnLinkClick (){
document.querySelector("a"). addEventListener("click",

function(event ){
document.querySelector("ul"). InnerHTML = "";

}
);

}

(a) InnerHTML should have been
innerHTML.

if (matches) {
return {

episode: Number(matches.groups.episode),
hosts: matches.groups.hosts.split (/([ ,&]+|\ sand\s)/).

map(el => S(el).trim ().s)
};

}

(b) Highlighted parentheses should have been re-
moved.

module.exports = function (grunt) {
grunt.initConfig ({

execute: {...}, copy: {...} , checktextdomain: {...}
wp_readme_to_markdown: {...}, makepot: {...}})

...
grunt.registerTask(’default ’,[’wp_readme_to_markdown ’

,’makepot ’,’execute ’,’checktextdomain ’])
};

(c) copy function should have also been included
in the highlighted list.

export default {
computed: {

level () {
return dictMap.skillLevel[

parseInt ((this.value === 0 ? 1 : this.value )/20)];
}

},...
}

(d) parseInt should have been removed because
=== implies this.value is an integer.

Figure 18: Example programs that illustrate limitations of existing approaches inculding
both rule-based static analyzers and neural-based bug predictors.

Crucially, our model differs from the standard NTM in how the memory is manipulated:
apart from the common read and write operations, the controller can also expand or shrink
the memory when adding or deleting nodes in the original graph.

As proof of concept, Hoppity targeted Javascript, a scripting language designed for
web application development, but the main ideas are easily applicable to other languages.
Javascript has been the most popular programming language on GitHub since 2014. Repairing
Javascript code presents a unique challenge as bugs manifest in diverse forms due to unusual
language features and the lack of tooling support. Therefore, the primary goal of our approach
was generality since it must be effective against a board spectrum of programming errors,
such as using wrong operators or identifiers, accessing undefined properties, mishandling
variable scopes, triggering type incompatibilities, among many others.

Another important novel aspect concerns our approach’s ability to deal with bugs that
are more complex and semantic in nature, namely, bugs that require adding or removing
statements from a program, which are not considered by prior works. Finally, compared
to automated program repair techniques [63–66] which require knowledge of bug location,
Hoppity is an end-to-end approach that including localizing bugs, predicting the types of fixes,
and generating patches. By training on 290,715 Javascript code change commits collected
from GitHub, Hoppity correctly detects and fixes bugs in 9,490 out of 36,361 programs.
Figure 18 shows four different bugs that Hoppity is able to correctly identify.

These preliminary results point to the vast potential of Big Code methods based on
deep learning to revolutionize program reasoning and provide significant value to regular
programmers and end-users of software.
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Figure 19: Result of applying Bingo to two different analyses and programs.

4 Results and Discussion
In this section, we elaborate upon the results of applying the techniques and tools developed
in Petablox to real-world settings in different programming languages (e.g. Java and C),
correctness properties (e.g. memory safety and API misuse), and developer environments
(e.g. batch mode vs. CI/CD mode). This section is organized as follows.

Section 4.1 presents the empirical results of our approaches for ranking analysis alarms,
which were described in Section 3.3.

Section 4.2 presents the empirical results of our approach for finding API misuse errors
without any specifications, which was described in Section 3.6.

Section 4.3 summarizes the findings of a comprehensive bug-finding assessment we con-
ducted in the wild to compare Petablox against state-of-the-art static bug-finding tools on a
common codebase.

Section 4.4 describes our experience integrating our system into the CI/CD build environ-
ment on the GitHub platform.

4.1 Ranking Analysis Alarms Using Bayesian Inference

We applied our Bayesian inference approach to ranking analysis alarms in batch mode
(Bingo [4]) and CI/CD mode (Drake [15]). We next present the results in each mode.

4.1.1 Batch Mode

In batch mode, our approach enabled a reduction of over 50% in alarm inspection effort for
a variety of static analysis problems—finding malicious information leaks in Android apps,
finding concurrency bugs in large object-oriented programs in Java, and finding memory
safety vulnerabilities in low-level systems programs in C.

Figure 19 shows the results of applying Bingo to two different analyses and programs. In
both plots, real bugs (red dots) rise in the ranking after the top-ranked alarm is labeled as
real or false (blue dots) in each round of interaction, depicting how the approach generalizes
user feedback.
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Table 1: Statistics of ten benchmark C programs analyzed by Drake in CI/CD mode.

The plot on the left shows the result of applying our approach to a static datarace
checker Chord [28] on Apache FTP Server [29], an open-source multi-threaded Java program
comprising 150KB of Java bytecode. On this program, the baseline checker produces 522
alarms, of which only 75 are true dataraces. In the interactive mode, however, the user is
able to discover all real dataraces within just 103 rounds of interaction. The false positive
rate effectively drops from 86% to just 27%.

The plot on the right shows the result of applying our approach to a static taint checker [67]
on a malicious Android app from the Symantec suite. The improvement trend in false positive
rate is similar.

4.1.2 CI/CD Mode

The improvement in accuracy is even more dramatic in CI/CD mode compared to batch mode.
We applied Drake in the Sparrow static analyzer [18] on bug-introducing code commits to 10
popular GNU utility C programs comprising 13K-112K lines of code each. Sparrow’s checkers
include an interval analysis for buffer overrun errors and a taint analysis for format-string and
integer-overflow errors. Statistics of the benchmark programs and code changes are shown
in Table 1. Drake could discover all 26 bugs, including four known CVEs, while requiring
the developer to inspect only 30 alarms on average per program, whereas the baseline batch
approach required inspecting 560 alarms on average.

Figure 20 shows a plot of the reduction in alarms using Drake over previous approaches,
including Bingo (batch mode described above) and Syntactic Masking, the dominant approach
in industry of syntactically masking alarms occurring in the older version of the program.
The absolute number of alarms in the new version of each benchmark is shown at the top.
Consider the case of the grep program. The program comprises 68K lines of code. When
grep’s program version changed from 2.18 to 2.19, only 7% of the code changed, and a
buffer-overrun vulnerability (CVE-2015-1345) was introduced which allowed attackers to
execute arbitrary code. Sparrow reports 913 alarms in the new version of grep. It includes
an alarm corresponding to this vulnerability but it is buried amidst a large number of false
alarms. Syntactic masking reports 22% of these alarms but misses the newly introduced bug
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Figure 20: Result of applying Drake to a suite of 10 benchmark C programs.

(such false negatives are indicated by the Jolly Roger icon in Figure 20). Bingo, our batch
mode interactive approach, is able to reveal the vulnerability in 53 rounds of interaction—a
significant improvement over syntactic masking since the user has to only inspect 6% of all
alarms by Sparrow. Lastly, Drake, our CI/CD mode interactive approach, is able to reveal
the vulnerability in only 9 rounds of interaction–a significant improvement over Bingo since
the user has to only inspect 1% of all alarms!

4.2 Checking API Misuse Errors Without Specifications

In [8], we applied APISan to popular C programs: Linux v4.5-rc4, OpenSSL 1.1.0- pre3-dev,
PHP 7.0, Python 3.6, and all 1,204 Debian packages using the OpenSSL library. Collectively,
the analyzed programs comprise 92 million lines of code.

APISan generated 40,006 reports in total, and we analyzed the reports according to ranks.
As a result, APISan found 76 previously unknown bugs: 64 in Linux, 3 in OpenSSL, 4 in
PHP, 1 in Python, and 5 in the Debian packages (see Table 2 for details). We created patches
for all the bugs and sent them to the mainline developers of each project. Of these, 69 bugs
were confirmed by the developers and patches for most of them were applied to the mainline
repositories.

All of the bugs we found had serious security implications: e.g., code execution, system
crash, Man-In-The-Middle attack, etc. For a few bugs including integer overflows in Python
(CVE-2016-5636) and PHP, we could even successfully exploit them by chaining ROP gadgets.
In addition, we found that the vulnerable Python module is in the whitelist of Google App
Engine and reported it to Google.
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Table 2: New bugs discovered by APISan in popular C programs.
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Table 3: Four representative bugs found in the MIT Drake system.

Bug Kind Module Link Tool High-Level Description of Bug
Null Dereference externals/ipopt [68] FB Infer A pointer is allocated memory de-

pending on a condition. But the
condition may not hold when the
pointer is accessed.

Null Dereference drake/multibody [69] APISan A xml attribute value is retrieved
and used. If the attribute does not
exist, null dereference can occur. By
testing, we confirmed it causes a
crash.

Buffer Underrun externals/ipopt [70] APISan An integer element is retrieved from
a priority queue and used as index
of a buffer. If the queue is empty,
the index can be -1.

Performance
Bug

drake/multibody [71] APISan The C++ idiom "move" to avoid
unnecessary copies is not used at a
point whereas it is almost always
used throughout the code.

4.3 MIT Drake Study

In June 2017, we conducted a comprehensive bug-finding assessment in the wild, comparing
Petablox against state-of-the-art static bug-finding tools on a common codebase. The codebase
we chose was MIT Drake [16], a large and complex system for robotic application, which
comprises 2.1M lines of C/C++ source code (1.97 million lines of Drake externals plus 138
thousand lines of Drake core). The goal was to run all tools, manually triage bugs found,
and evaluate both quantitative metrics such as false positive rates and qualitative aspects
such as the kinds and severity of bugs found.

We ran various checkers in the following four tools on the Drake codebase:

• APISan [8]: API misuse checkers in Petablox

• Facebook Infer [72]: Memory safety checkers

• MIT Kint [73]: Integer overflow checker

• Coverity [24]: Various bug pattern checkers

We were able to obtain results for only Petablox and FB Infer. Kint reported problems
compiling Drake that are easy but tedious to fix. Coverity is not free to download but it
is available as a free service for projects hosted on the GitHub platform (such as Drake);
however, we were unable to obtain the results from the service despite multiple attempts.

Our main findings were as follows:
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Figure 21: Screenshot of notifications on the analyzed project’s GitHub webpage.

Figure 22: Screenshot of reports produced upon completion of Petablox’s analysis.
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Figure 23: Screenshot of a sample Clang Static Analyzer report.

1. APISan and FB Infer were able to run successfully on the multi-million line codebase
of Drake. This attests to the suitability of these tools for analyzing large and complex
autonomous software systems.

2. Petablox found 1 performance bug, 2 buffer underrun bugs and 9 null dereference bugs,
while FB Infer found 138 potential null dereference bugs. Four representative bugs are
shown in Table 3.

Comprehensive details of our study and raw logs of APISan and FB Infer are available at
https://github.com/petablox/Drake-Analysis-June2017.

4.4 Technology Transition to GitHub

The Petablox project successfully demonstrated the ability to statically discover software
defects in large Java and C/C++ programs with high accuracy (i.e. low false-positive and
false-negative rates). In the final year of the project, we integrated the Petablox system into
a production platform for developers. As proof of concept, we targeted the GitHub platform,
a mature and widely-used platform that caters to an extensive body of open-source projects
and developers.

Specifically, we developed an app on GitHub’s marketplace that allows developers of
projects hosted on the GitHub platform to give permission to Petablox’s code analyzers to
1) access their source code, and 2) listen to code commit events. We also integrated the

34
Approved for Public Release; Distribution Unlimited.

https://github.com/petablox/Drake-Analysis-June2017


analyzers into GitHub’s build system called CI (Continuous Integration). The resulting
system triggers a run of the analyzers every time a developer commits code to the project
(called a “pull request” in Git parlance).

We demonstrate the working of this system by simulating the introduction of an actual
null dereference error that was introduced in the popular UNIX program tar when its version
changed from 1.27 to 1.28. Figure 21 shows a screenshot of notifications by the Petablox app
on the analyzed project’s webpage on GitHub. The notifications are triggered upon the pull
request committing the code change in tar.

The first message the developer receives is:

“BugDIFF has received your pull request. Another comment will be posted once
the analysis is complete”.

In the interim, Petablox runs Drake on the two program versions (tar 1.27 and tar 1.28)
on a remote server. Upon completion, the results of the analysis are posted via a second
message to the developer:

“4 bugs found in this pull request. Go to <url> to view the bugs”.

Figure 22 shows a screenshot of the analysis results when the developer follows the link
specified in <url> in the second message above. In this case, the underlying static analyzer
is Clang Static Analyzer [17]. Note that the null dereference error is among the four alarms
reported by Drake (it is the one with Bug Probability value of 0.81). Clicking on the “View
Alarm" link beside the alarm takes the developer to Clang Static Analyzer’s details of the
alarm, depicted in Figure 23. Upon inspecting the details of an alarm, the developer can
label the alarm as True or False (the default label is Unknown), which allows Petablox to
improve the ranking in future runs.

5 Conclusions
The Petablox project set out to address long-standing challenges of accuracy, scalability,
and usability in program analysis by leveraging Big Code. The project achieved this goal
by fundamentally extending the prevalent logical reasoning approach to program analysis
with statistical and data-driven modes of reasoning. It adopted and advanced a broad
range of ML and AI techniques spanning logical rule learning, probabilistic graphical models,
and modern deep learning. The approach was successfully demonstrated in a variety of
real-world settings—different programming languages, correctness properties, and developer
environments. The ideas conceived in this project have brought the vision of intelligent
programming systems for ensuring software quality a step closer to realization.
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