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Abstract A new, rapid, nonassimilative technique is demonstrated for forecasting the ionosphere's
vertical total electron content (TEC) on time scales longer than 1 day. The approach uses a statistical
model constructed by regressing solar extreme ultraviolet irradiance and seasonal, diurnal, and geomagnetic
predictors at multiple lags against the 2‐hourly International Global Navigation Satellite Systems Service
observations, with a formulation that accounts for solar modulation of the seasonal oscillations and solar
and seasonal modulation of the diurnal oscillations. Solar irradiance inputs to the statistical model are
forecast at successive 2‐hr intervals from 1999 to 2015 using an autoregressive model of irradiance variations
during the prior 100 days. As the forecast time increment increases from 1 to 10 days, the average over the
globe of the mean absolute error of TEC observations and the forecasts increases from 2.5 to 3.2 TECU
(total electron content unit, 1 TECU = 1016 el/m2); the root‐mean‐square error increases from 3.7 to 4.8
TECU. Averaged over the equatorial ionization anomaly region (30°S–30°N) the mean absolute error of the
forecasts increases from 3.2 to 4.3 TECU and the root‐mean‐square error increases from 4.6 to 6.4 TECU.
The skill of the TEC forecasts at time increments of 3, 5, and 8 days ahead exceeds persistence by 9%,
13%, and 15% and climatology by 9%, 12%, and 10%, respectively. Forecast skill is higher in April than in July.
Long‐range, multiyear forecasts from 2018 to 2030 are demonstrated based on current expectations that solar
activity in cycle 25 will be comparable to that in cycle 24.

1. Introduction

Forecasting the future state of the ionosphere is a fundamental challenge for near‐space environment
research and operations. The U.S. National Space Weather Action Plan (SWAP, 2015) identifies one of six
overall goals as “Improve Space‐Weather Services through Advancing Understanding and Forecasting”.
In pursuit of this goal, the Space Weather Phase I Benchmarks (2017) cites the need for improvements in
forecasting lead time and accuracy, enhanced fundamental understanding of space weather and its drivers,
and improved predictive models, including of total electron content (TEC, defined such that 1 TECU [total
electron content unit, 1 TECU = 1016 el/m2] is the number of electrons in a column of 1 m2 cross‐sectional
area), especially during geomagnetic disturbances. Reliable specification and forecasting of TEC can help
mitigate uncertainties in precision timing and navigation (Filler et al., 2004), which impede space situational
awareness, single‐band high‐frequency radio operations, and satellite geolocation, with attendant societal
and military consequences (American Meteorological Society, 2011; Cannon, 2009).

Ionospheric TEC varies on time scales from minutes to decades as a result of geographically dependent
responses of the ionosphere and thermosphere to a range of different influences, primarily from the Sun.
Changes in the amount of solar extreme ultraviolet (EUV) radiation as the Earth spins and orbits the Sun
produce dominant diurnal and seasonal cycles. Intrinsic changes in solar EUV irradiance associated with
the Sun's rotation and changing magnetic activity produce additional cycles of approximately 27 days and
11 years. On shorter time scales of hours to days, eruptive events on the Sun can propel coronal mass ejec-
tions to Earth, altering geomagnetic activity and producing rapid and potentially large regional and vertical
redistributions of the extant electron density, itself dependent on the incoming solar radiation at a given
local time, season, and location (Fuller‐Rowell et al., 2000; Wood et al., 2016).

The total number of electrons in the ionosphere determines the time for radio waves to travel between earth‐
orbiting spacecraft and ground‐based receivers. Unspecified fluctuations in total electron density translate to
errors in transit time and distance such that an uncertainty of 1 TECU corresponds to a range error of
16.24 cm for the Global Positioning Satellite (GPS) L1 frequency 1,575.42 MHz (Jakowski et al., 2011).
Natural TEC variations in response to changes in incoming solar radiation are much larger than 1 TECU.
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Diurnal changes, for example, exceed 100 TECU in equatorial regions (e.g., Hawaii) during high solar activ-
ity and are tens of TECU at high latitudes (e.g., Weddell Sea). Diurnal cycles are themselves superimposed on
annual and semiannual oscillations (AO and SAO) with amplitudes that range from tens of TECU at high
solar activity to a few TECU during solar minima (Lean et al., 2016).

Current space weather operations provide near‐real‐time specification and 24‐hr forecasts of ionospheric
parameters, including TEC, by using ionospheric observations to adjust initial model‐based specifications.
The US‐TEC capability of the Space Weather Prediction Center (SWPC), for example, assimilates data into
an empirical model of TEC over the continental United States (Fuller‐Rowell et al., 2006); estimated uncer-
tainties in real‐time specification are 2 TECU during quiet geomagnetic conditions. The Global Assimilative
Ionosphere Model (GAIM) ingests multiple observations to specify total and vertical profiles of low‐latitude
andmidlatitude electron density (from 60°S to 60°N) in support of Air Force operations (Schunk et al., 2014);
GAIM's 24‐hr forecasts assume persistence of the diurnal cycle unaltered by either solar irradiance or
geomagnetic activity. The European Digital Upper Atmosphere Server uses ground‐based observations to
specify electron density peak heights and concentrations over Europe (Belehaki et al., 2006). Twenty‐four‐
hour forecasts incorporating models of solar wind impacts to estimate prospective geomagnetic influences
demonstrate improved forecast skill relative to persistence and climatology (Tsagouri, 2011; Tsagouri
et al., 2018).

There are, as yet, no operational forecasts of ionospheric TEC beyond 24 hr. Indeed, it is argued that mean-
ingful forecasts longer than a day or so ultimately require the use of coupled global‐scale physical models to
account for the multiple processes that facilitate the ionosphere's complex responses to changing solar and
geomagnetic inputs to the Earth system (Mannucci et al., 2015; Schunk et al., 2012). Such a capability is,
however, deemed insufficiently mature for operational application. With the goal of assessing current cap-
ability and identifying needed improvements in TEC specification, a recent community‐wide “challenge”
quantified differences from observations of eight ionospheric models during the December 2006 storm
event; the root‐mean‐square error (RMSE) ranged from 3 TECU at high latitudes to 13 TECU at low latitudes
(Shim et al., 2017).

Whatever the approach used to specify and forecast the ionosphere, metrics are crucial for comparing
different techniques and providing a baseline against which to measure future progress (Shim et al., 2017;
Tsagouri, 2011). This paper assesses the capability of a statistical model to forecast vertical TEC at all geogra-
phical locations (on a 72 × 71 longitude‐latitude grid) more than 1 day ahead. Whereas the persistence of the
diurnal cycle in TEC at a given location is the basis for forecasts less than 24 hr, on longer time scales of days
to months, both seasonal and solar cycles produce additional ionospheric variability. Given the solar EUV
irradiance and geomagnetic inputs for a particular time and day of year, the statistical model estimates
the corresponding TEC from parametrizations of the solar, seasonal, diurnal, and geomagnetic influences
detected in 17 years of TEC observations; near‐real‐time ionospheric observations are not needed. As such,
the approach provides a baseline against which to quantify advances in forecasting capabilities on longer
time scales, including extensions of current assimilative approaches.

Following an overview of the database of TEC observations derived from GPS signals and the statistical
model of TEC variability constructed from this database, section 2 quantifies the model performance during
1999 to 2015, the time period of estimation of the model parameters, and from 2016 to 2017 to independently
validate the model's performance using observations that were not used in the model's construction. The
specific metrics of model performance used are the RMSE, mean absolute error (MAE), and mean absolute
percentage error (MAPE) of the model and observations; the TEC observations used are the official product
of the GPS International Global Navigation Satellite Systems (GNSS) Service (IGS) Ionosphere Working
Group (Hernández‐Pajares et al., 2009). Section 3 develops and applies the forecast technique, determines
the RMSE, MAE, and MAPE metrics of the model's 1‐ to 10‐day forecasts, and evaluates the skill of the
model forecasts relative to forecasts made using persistence and climatology. Section 4 discusses the statis-
tical model's forecast capability and illustrates the plausibility of longer‐range forecasts. Section 4 also inves-
tigates the statistical model's ability to specify TEC disruptions by geomagnetic activity (which were not
included in the forecasts) by comparing the model's specification of TEC during the December 2006 storm
event with the community challenge results (Shim et al., 2017). Section 5 summarizes the 1‐ to 10‐day fore-
cast capability of the statistical model.
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2. Statistical Model of TEC Variability
2.1. IGS TEC Database

The IGS Ionosphere Working Group produces a database of geographical maps of vertical TEC derived from
GPS data (Hernández‐Pajares et al., 2009). The IGS TEC maps, each with 72 (longitude) × 71 (latitude) bins
and available at 2‐hr intervals since mid‐1998, are weighted means of maps produced at four GPS analysis
centers. As an official product of the IGS Working Group on the Ionosphere, the IGS TEC maps have been
tested and validated and are considered superior to any of the databases of TEC maps from individual cen-
ters. Weekly comparisons of the slant TEC for a small set of permanent IGS stations and external self‐
consistency checks validate the weighting scheme. TOPEX altimeter data provide routine validation of the
TECmaps after July 2001. Figure 1a shows the time series of globally averaged 2‐hr values obtained by sum-
ming over the longitude and latitude bins of each IGS TEC map, accounting for the (cosine latitude)
area factor.

An important aspect of GPS‐derived TEC observations that contributes to uncertainties in the IGS database
is that TEC is derived from ground‐based GPS receivers that are deployed primarily in the continental
Northern Hemisphere, with a lack of receivers over oceans and in the Southern Hemisphere (Hernández‐
Pajares et al., 2009; Jee et al., 2010). As well, the measured quantity is the TEC in a slant column between
the spacecraft and ground receiver, requiring algorithmic conversion to vertical TEC; the four analysis cen-
ters perform this conversion independently using different approaches.

Biases in absolute TEC among individual analyses are in the range 1 to 3 TECU (Hernández‐Pajares et al.,
2009). Consistent with this, comparisons of the IGS TEC database with the independent Massachusetts
Institute of Technology TEC database suggest an average error of 2 TECU (Shim et al., 2017).
Comparisons of GPS‐derived vertical TEC with direct altimeter data over oceans (where GPS receivers
are lacking) from the end of 2002 to the end of 2007 suggest that the upper bound of IGS TEC relative
error is 20% (Hernández‐Pajares et al., 2009). A more extensive comparison of TEC from 1998 to 2009
found that GPS‐derived TEC products reproduce the spatial and temporal variations in altimeter data
globally and seasonally quite well but not the detailed structure in equatorial regions and the Weddell
Sea (Jee et al., 2010). That study suggested that the current network of GPS ground receivers imposes fun-
damental limitations on deriving vertical TEC at high northern latitudes and at southern middle and high
latitudes, where differences from direct altimeter data can reach 50% or more, especially when solar
activity is low.

2.2. Statistical Model Description

A statistical model of TEC variability constructed using the IGS TEC observations from 1998 to 2015 spe-
cifies 2‐hourly TEC as functions of solar EUV irradiance, seasonal (annual, semiannual, terannual, and
biennial) and diurnal (diurnal, semidiurnal, and terdiurnal) oscillations and geomagnetic activity; solar
activity modulates the seasonal oscillations, and both solar activity and the seasonal oscillations modulate
the diurnal oscillations. Lean et al. (2016) provide details of the model formulation and describe regional
response patterns of TEC to individual variability components. The model, TECmod, estimates the
observed ionospheric TEC, TECobs, at Universal Time (UT), t, at a specified longitude, ∅, and
latitude, λ, as

TECobs ∅; λ; tð Þ ¼ TECmod ∅; λ; tð Þ þ R ∅; λ; tð Þ (1)

where R is the residual error, that is, temporal variability in TEC observations at each longitude and latitude
that the model does not capture. The corresponding globally integrated quantities are

TEC glob
obs tð Þ ¼ TEC glob

mod tð Þ þ R glob tð Þ (2)

Specifically, the model adds to the baseline (invariant) TEC, TEC0 (∅, λ), variations arising from solar activ-
ity, ΔTECsol (∅, λ,t), seasonal oscillations, ΔTECseas(∅, λ, t), diurnal oscillations, ΔTECdiur(∅, λ,t) and geo-
magnetic activity, ΔTECgeo(∅, λ, t), such that
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TECmod ∅; λ; tð Þ ¼ TEC0 ∅; λð Þ þ ΔTECsol ∅; λ; tð Þ þ ΔTECseas ∅; λ; tð Þ þ ΔTECdiur ∅; λ; tð Þ
þ ΔTECgeo ∅; λ; tð Þ (3)

The absolute scale of the model's TEC is that of the IGS database used to construct the model. As such, the
TEC of the baseline (invariant) ionosphere, TEC0 (∅, λ), has a global value ΣTEC0(∅, λ) cos(λ)/72Σ
cos(λ) = 9.5 TECU.

Figure 1. (a) The International Global Navigation Satellite Systems Service (IGS) 2‐hourly observations of global TEC
from mid‐1998 to the end of 2017. (b) The statistical model of global TEC variability reproduces the observations with
residuals that have a mean absolute error of 1.1 TECU and root‐mean‐square error of 1.6 TECU. The statistical model
calculates TEC using as inputs (c) the Sun's total EUV irradiance (at wavelengths less than 103 nm) and the geomagnetic
(d) ap and (e) Dxt indices. The statistical model is constructed from observations in the estimation period (1998 to 2015).
The subsequent two years (2016 and 2017) provide independent validation of themodel using observations not included in
its formulation. TEC = total electron content; TECU = TEC unit, 1 TECU = 1016 el/m2; EUV = extreme ultraviolet.
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The statistical model specifies the solar‐induced change in TEC, ΔTECsol, using values of solar EUV irradi-
ance summed over wavelengths less than 103 nm, E(t), at nsol = 11 lags according to

ΔTECsol ∅; λ; tð Þ ¼ ∑nsol
n¼1an ∅; λð Þ E t−τnð Þ−Emin½ � (4)

where Emin is the value of E at solar activity minimum and E(t− τn) is the EUV irradiance at a lag of τn days,
for lags at 0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 24, and 36 days. A model of irradiance variability developed from obser-
vations made by the Solar EUV Experiment on the Thermosphere Ionosphere Mesosphere Energetic and
Dynamics spacecraft specifies the daily solar EUV irradiance in terms of the Mg core‐to‐wing ratio and
the 10.7 cm radio flux (Lean, Woods, et al., 2011).

A combination of baseline (invariant) and solar‐modulated sine and cosine functions at four periods, Pseas, at
121.7, 182.6, 365.25, and 730.5 days, specifies seasonal TEC variability in the model, as

ΔTECseas ∅; λ; tð Þ ¼ ∑
nseas

n¼1
bn ∅; λð Þ sin 2πt

Pseas nð Þ
� �

þ cn ∅; λð Þ cos 2πt
Pseas nð Þ

� �� �

þ ∑
nseas

n¼1
dn ∅; λð Þ sin 2πt

Pseas nð Þ
� �

þ en ∅; λð Þ cos 2πt
Pseas nð Þ

� �� �
× E81 tð Þ−E81

min

� �
(5)

where nseas = 4 are the four periods of the seasonal oscillations and the sine and cosine terms permit deter-
mination of both the phase and amplitude of each. Amplitude modulation is prescribed as a linear function
of the 81‐day smoothed solar EUV irradiance E81(t) relative to its solar minimum value, E81

min:The periods
182.6 and 365.25 days correspond to the SAO and AO, the two largest peaks in the periodogram of daily aver-
aged global TEC. The periods 121.7 and 730.5 days correspond to smaller‐amplitude terannual and biennial
oscillations that are present in the residuals of the TEC data and in an initial model constructed with only the
SAO and AO cycles (Lean, Meier, et al., 2011).

To account for the modulation of TEC throughout the day by Earth's rotation and orbit, which alter the sub-
solar geographical location of incident solar EUV radiation, the statistical model includes ndiurn = 3 cycles
with periods, Pdiurn, at 0.33, 0.5, and 1 days. Both solar activity and the seasonal oscillations modulate the
three diurnal cycles, so that

ΔTECdiur ∅; λ; tð Þ ¼ ∑
ndiur

n¼1
f n ∅; λð Þ sin 2πt

Pdiur nð Þ
� �

þ gn ∅; λð Þ cos 2πt
Pdiur nð Þ

� �

þ ∑
ndiur

n¼1
hn ∅; λð Þ sin 2πt

Pdiur nð Þ
� �

þ in ∅; λð Þ cos 2πt
Pdiur nð Þ

� �� �
× E81 tð Þ−E81

min

� �

þ ∑
ndiur

n¼1
∑
nseas

m¼1
jnm ∅; λð Þ sin 2πt

Pdiur nð Þ
� �

× sin
2πt

Pseas mð Þ
� �

þ knm ∅; λð Þ
�

sin
2πt

Pdiur nð Þ
� �

× cos
2πt

Pseas mð Þ
� �

þ lnm ∅; λð Þ cos 2πt
Pdiur nð Þ

� �
× sin

2πt
Pseas mð Þ

� �

þmnm ∅; λð Þ cos 2πt
Pdiur nð Þ

� �
×cos

2πt
Pseas mð Þ

� ��

þ ∑
ndiur

n¼1
∑
nseas

m¼1
nnm ∅; λð Þ sin 2πt

Pdiur nð Þ
� �

× sin
2πt

Pseas mð Þ
� ��

þonm ∅; λð Þ sin 2πt
Pdiur nð Þ

� �
× cos

2πt
Pseas mð Þ

� �
þ pnm ∅; λð Þ cos 2πt

Pdiur nð Þ
� �

×

sin
2πt

Pseas mð Þ
� �

þ qnm ∅; λð Þ cos 2πt
Pdiur nð Þ

� �
×cos

2πt
Pseas mð Þ

� ��
× E81 tð Þ−E81

min

� �
(6)

The statistical model represents changes in TEC, ΔTECgeo, during ionospheric storms in response to
eruptive solar events using the 3‐hr ap index obtained from the U.S. National Geophysical Data
Center, lagged 0 and 0.5 days, and the Dxt index provided by the University of Oulu, Finland, lagged
1 day. Specifically,
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ΔTECgeo ∅; λ; tð Þ ¼ ∑n¼2
n¼1rn ∅; λð Þap t−τnð Þ þ r3 ∅; λð ÞDxt t−τ3ð Þ (7)

The ap index is an indicator of the general level of geomagnetic activity over the globe, derived from ground‐
based magnetometers. The Dxt index is based on the average value of the horizontal component of the
Earth's magnetic field measured at four near‐equatorial geomagnetic observatories (e.g., Verbanac et al.,
2010). The three different lags in the statistical model accommodate an initial ionospheric positive response
to geomagnetic activity within the first day after arrival of a coronal mass ejection at earth and a subsequent
negative phase beginning a day or so later (Mendillo, 2006; Wood et al., 2016). In reality, solar activity and
the seasonal and diurnal oscillations modulate to some extent the TEC response to geomagnetic activity,
since these longer time scale influences determine the overall level of ionospheric plasma upon which the
geomagnetic disturbance processes act (Mendillo, 2006). The present model, however, does not include these
additional modulated terms.

Multiple linear regression of the solar, seasonal, diurnal, and geomagnetic predictors against observed TEC
during the periodmid‐1998 to 2015 estimates the model's 139 coefficients, using linear least squares fitting to
minimize the sum of squares of the residuals, R(t), of the model and observations. Since the model is con-
structed at each longitude and latitude grid point (and separately for global TEC), the derived coefficients
at each latitude and longitude directly map the regional patterns of the individual responses. Lean et al.
(2016) describe and interpret these patterns of spatial TEC variability.

For a given day of the year, time of day, solar EUV irradiance at 11 specified lags, the geomagnetic ap index
at two lags, and the Dxt index at one lag, the statistical model calculates TECmod as an estimate of the
observed TECobs at a specified longitude, ∅, and latitude, λ, according to equation (3). Figure 1 compares
the model of global TEC with the IGS observations from 1998 to 2017 and shows the residuals of the obser-
vations and model; the correlation of the model with the observations is 0.99, and the standard deviation of
the residuals is 1.6 TECU. The standard deviation of themodel and observations averaged over all longitudes
and latitudes is 3.5 TECU. Also shown in Figure 1 are the model's EUV irradiance and
geomagnetic predictors.

2.3. Model Performance, Estimation Period (1998–2015)

The model's performance in the estimation period provides a baseline against which to assess its perfor-
mance in the subsequent validation period and the forecasts. Metrics of a model's performance relative to
n observations include (von Storch & Zwiers, 1999; Wilks, 1995) the RMSE, MAE, and MAPE. These quan-
tifies are determined numerically as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑n

k¼1 TECmodk−TECobskð Þ2
r

(8)

MAE ¼ 1
n
∑n

k¼1 TECmodk−TECobskj j (9)

MAPE ¼ 100
n

∑n
k¼1

TECmodk−TECobskj j
TECobsk

� �
(10)

where TECmod − TECobs are the model‐observation residuals, R (equation (1)).

Although the RMSE is widely used as a metric for assessing model performance (e.g, Shim et al., 2017), the
MAE is arguably preferable for quantifying differences of modeled and observed TEC. This is because posi-
tional range error depends directly on the number of electrons (in TECU) between a radio frequency emitter
and receiver. Whereas the MAE simply averages the absolute model‐observation residuals, the RMSE
depends not just on the magnitude of the residuals but also on “the distribution of error magnitudes (or
squared errors) and n1/2” (the square root of the number of residuals). For this reason, Willmott and
Matsuura (2005) argue that for assessing average model performance the MAE is superior to the RMSE,
but Chai and Draxler (2014) question the superiority of MAE over RMSE, noting that a combination of
metrics is “often required to assess model performance”.

Table 1 therefore lists numerical values for multiple metrics of model performance, specifically the RMSE,
MAE, and MAPE of the residuals of the statistical model and observations averaged over all latitudes and
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longitudes and for global TEC (in parenthesis). The performance metrics are calculated for the entire
estimation period (1998–2015) and for subepochs of relatively high (2000–2001), moderate‐to‐low (2005–
2006), and low (2008–2009) solar activity. Table 1 also lists the average values of solar EUV irradiance,
geomagnetic activity, and TEC during the individual epochs. Figure 2 shows the corresponding regional
distributions of the performance metrics (whose average values are those listed in Table 1) during the
entire estimation period (on the left) and for 2 years of relatively high solar activity (on the right). The
metrics are the correlation coefficient of the model and observations (Figures 2a and 2e), the RMSE
(Figures 2b and 2f), MAE (Figures 2c and 2g), and MAPE (Figures 2d and 2h).

Maximum differences between the model and observations occur at low latitudes (30–30°S) in the equatorial
ionization anomaly (EIA) region. During the estimation period, the maximum regional RMSE (Figure 2b) is
6.7 TECU (e.g., near Hawaii), and 2.7% of low‐latitude grid points (49 of 1,800) have RMSE between 6 and 6.7
TECU. The maximum regional MAE (Figure 2c) is 4.6 TECU, and 4.6% low‐latitude locations (82 of 1,800)
have MAE between 4 and 4.6 TECU. At latitudes higher than 30° the model specifies TEC with RMSE < 5
TECU and MAE < 3.3 TECU. Since absolute values of TEC maximize at low latitudes and become increas-
ingly smaller at higher latitudes (see, e.g., Lean et al., 2016, Figure 1) the regional pattern of the model per-
formance in terms of percentage, MAPE (Figure 2d), differs from the (similar) RMSE and MAE patterns.
MAPE is less than 19% at all northern latitudes and at southern latitudes lower than 30°; MAPE of up to
31% occur at high southern latitudes.

The performance metrics in Table 1 and Figure 2 demonstrate that when solar activity is higher than aver-
age, the RMSE andMAE of the statistical model and observations increase (Figures 2f and 2g) and theMAPE
decreases (Figure 2h) because TEC values are overall higher. Whereas the MAE averaged over the globe for
the entire estimation period is 2.4 TECU, it increases to 3.7 TECU during higher solar (2000–2001) and

Table 1
Metrics of the Performance of the Statistical Model Specification of Regional TEC Averaged Over the Globe and, in Parenthesis, of Global TEC, at Different Levels of
Solar Activity, Estimated Using All 2‐Hourly Values on All Days of the Specified Time Intervals and Months

Parameter

1998–2015 2000–2001 2005–2006 2008–2009 2016–2017

Model estimation
period

High solar
activity

Similar solar activity as model
validation

Low solar
activity

Model validation
period

EUV irradiance (mW/m2)
Daily 3.92 5.51 2.97 2.52 2.96
81‐day mean 3.92 5.52 2.97 2.52 2.96
F10.7 cm flux 118.4 180.6 85.9 69.8 83.0
ap index 10.6 14.0 11.0 5.4 10.5
Dxt index −12.1 −17.8 −12.5 −6.2 −15.7
TEC (TECU) 22.8 38.2 14.3 10.1 14.1

Correlation with observations 0.96 (0.99) 0.93 (0.97) 0.95 (0.94) 0.96 (0.92) 0.94 (0.95)

Root‐mean‐square error
(RMSE, TECU)

All months 3.6 (1.6) 5.1 (2.3) 2..0 (0.9) 1.3 (0.6) 2.3 (1.1)
April 4.0 (2.0) 6.4 (3.9) 2.2 (0.9) 1.4 (0.6) 2.7 (1.7)
July 2.6 (1.3) 3.9 (2.0) 1.7 (0.7) 0.9 (0.4) 1.8 (0.8)

Mean absolute error (MAE, TECU)
All months 2.4 (1.2) 3.7 (1.8) 1.4 (0.7) 0.9 (0.4) 1.7 (0.8)
April 2.7 (1.4) 4.8 (3.0) 1.6 (0.7) 1.0 (0.5) 2.1 (1.4)
July 1.8 (0.9) 2.8 (1.6) 1.2 (0.5) 0.7 (0.3) 1.4 (0.6)

Mean absolute percentage error
(MAPE, %)

All months 16 (15) 13 (11) 14 (13) 13 (11) 20 (22)
April 16 (17) 15 (15) 14 (13) 13 (12) 24 (39)
July 17 (26) 14 (20) 15 (19) 12 (18) 23 (31)

Note. The averages over the globe are numerical averages of themetrics of the performance of the regional statistical model constructed using equation (3) at each
of the model's 72 × 71 longitude‐latitude grid points. The global TEC metrics pertain to the performance of a separate statistical model of global TEC.
EUV = extreme ultraviolet; TEC = total electron content; TECU = TEC unit, 1 TECU = 1016 el/m2.
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Figure 2. Metrics of the statistical model's performance relative to International Global Navigation Satellite Systems
Service TEC observations are shown regionally during the 17‐year estimation period, including (a) the correlation of
the model and observations, (b) the root‐mean‐square error (RMSE), (c) the mean absolute error (MAE), and (d) the mean
absolute percentage error (MAPE). The metrics (e) correlation coefficient, (f) RMSE, (g) MAE, and (h) MAPE are deter-
mined separately for a 2‐year period of high solar activity (2000 and 2001). TECU = total electron content unit, 1 TECU =
1016 el/m2.
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decreases to 0.9 TECU during solar minimum (2008–2009). In addition to depending on location and solar
activity, the statistical model's ability to specify TEC also depends on season; the MAE of the observations
and model averaged over the globe (for the entire estimation period) is 2.7 TECU in April and 1.8 TECU
in July.

2.4. Model Performance, Validation Period (2016–2017)

Specification of TEC during the period 2016–2017 enables independent validation of the statistical model's
performance using observations that are not included in the regression that determines the model

Figure 3. Compared with the IGS observation during 2016 and 2017 are (a) global TEC and (b, c, d, e, and f) TEC at var-
ious geographical locations estimated using the statistical model constructed with observations in the estimation period
(1998–2015) and the EUV and geomagnetic inputs shown in Figure 1 during the validation period. IGS = International
Global Navigation Satellite Systems Service; TEC = total electron content; TECU = TEC unit, 1 TECU = 1016 el/m2;
EUV = extreme ultraviolet.
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coefficients. As Figure 1 shows, the time period of model validation is shorter than the estimation period
(2 instead of 17 years) and TEC absolute values are lower overall than on average because solar activity is
lower, nearing the approach to solar minimum conditions. Table 1 lists average values of solar EUV irra-
diance, geomagnetic activity, and TEC during the validation period for comparison with the
estimation period.

Figure 3 illustrates the observed and modeled values of TEC during 2016 and 2017, globally (Figure 3a)
and at separate locations spanning a range of latitudes, including Hawaii (Figure 3c) and the Weddell
Sea (Figure 3f). The modeled values are specified using the solar EUV irradiance and geomagnetic
activity shown in Figure 1 for the validation period. Figure 4 shows regional distributions of model
performance in the 2‐year validation period (analogously to those in Figure 2 for the estimation period),
specifically the correlation coefficient of the model and observations (Figure 4a), and the RMSE
(Figure 4b), MAE (Figure 4c), and MAPE (Figure 4d) of the residuals. To more appropriately compare
the performance of the model in the validation and estimation periods, Figure 4 also shows performance
metrics for the 2‐year interval 2005 to 2006 (in the estimation period) for which, as Figure 1 shows, solar
activity levels and global TEC values are comparable to those of the validation period (Table 1).

During the 2‐year validation period average solar and geomagnetic activity are both smaller than the average
over the entire estimation period but larger than during solar minimum (Table 1). As expected, the average
over the globe of the RMSE and MAE of the TEC model and observations in the validation period
(RMSE = 2.3 TECU, MAE = 1.7 TECU) are likewise smaller than during the entire estimation period
(RMSE = 3.6 TECU, MAE = 2.4 TECU) but larger than during solar minimum (RMSE = 1.3 TECU,
MAE = 0.9 TECU). As well, the patterns of the regional performance metrics during the validation period
are similar to those in the estimation period; the highest values of RMSE and MAE occur at similar low‐
latitude sites in the EIA, the lowest values at high latitudes and the highest MAPE in the Antarctic region
(Figures 2 and 4). These comparisons suggest that the model's performance during the validation period is
consistent overall with its performance in the estimation period. However the metrics averaged over the
globe in the validation period (RMSE = 2.3 TECU, MAE = 1.7 TECU) are somewhat larger than during
2005–2006 (RMSE = 2.0 TECU, MAE = 1.4 TECU) for which solar activity and geomagnetic activity are
comparable (but not identical). Whether these differences indicate a degradation of model performance in
the validation period (relative to the estimation period) or are the result of modest, but real, differences in
solar and geophysical conditions is unclear because the period 2016–2017 is too short to provide
unequivocal validation.

3. Model Forecasts

The statistical model represents variations in TEC in terms solar, geomagnetic, seasonal, and diurnal pre-
dictors, using multiple linear regression to establish the model coefficients (equations (3)–(7)). With the
model coefficients (an, bn … .rn) determined using TEC observations from 1998 to 2015, a forecast of TEC
at any time (past, present, or future) is possible providing the model inputs are known or estimated at
that time. For forecasting TEC on time scales of 1 to 10 days ahead, this requires forecasting solar
EUV irradiance and geomagnetic activity (using past and current observations, either of the indices
themselves, or other relevant geophysical quantities) which alter TEC directly and also modulate the sea-
sonal and diurnal oscillations. The sine and cosine functions that represent the seasonal and diurnal
changes (equations (5) and (6)) are explicit functions of time and depend also on the smoothed EUV irra-
diance (which on time scales of 1 to 10 days varies only minimally) and so are readily propagated for-
ward or backward.

Specifying t0 as the time at which a forecast is made andΔt as the time increment after to for which the TEC
is forecast, the model forecasts ionospheric TEC, TECfc at a specified longitude, ∅, latitude, λ, and time,
t0 + Δt, using equation (3), as

TECfc ∅; λ; t0 þ Δtð Þ ¼ TEC0 ∅; λð Þ þ ΔTECsol ∅; λ; t0 þ Δtð Þ þ ΔTECseas ∅; λ; t0 þ Δtð Þ
þ ΔTECdiur ∅; λ; t0 þ Δtð Þ þ ΔTECgeo ∅; λ; t0 þΔtð Þ (11)

where equations (4)–(7) provide the numerical expressions of the individual components. The ability of the
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Figure 4. Metrics of the statistical model's regional performance for the 2‐year validation period (2016 to 2017), including
(a) the correlation of the model and observations, (b) the root‐mean‐square error (RMSE), (c) the mean absolute error
(MAE), and (d) the mean absolute percentage error (MAPE). The metrics (e) correlation coefficient, (f) RMSE, (g) MAE,
and (h) MAPE are determined separately for a 2‐year period of comparable solar activity (2005 to 2006) in the estimation
period. TECU = total electron content unit, 1 TECU = 1016 el/m2.
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statistical model to forecast TEC 1 to 10 days into the future, for a range of solar activity conditions, is readily
assessed using the IGS database of 2‐hourly TEC observations, which extends over more than 18 years.
Forecasts of TEC are made using equation (11) at increments ofΔt = 1, 2, 3, 5, 8, and 10 days ahead, at fore-
cast times, t0, corresponding to the time of each 2‐hourly IGS observation, for the duration of the IGS data-
base. Solar EUV irradiance is projected forward to t0 +Δt using an autoregressive representation of the prior
100 days; the ap and Dxt indices are set to 0 at all times after t0 (i.e., they are not forecast, autoregressively or
otherwise). For comparison with the statistical model forecasts, TEC is also forecast assuming persistence, in
which the forecast at time t0 + Δt is equal to the observed value at t0 (at the same UT), and climatology, for
which the value at time t0 +Δt is equal to the average of the observed values (at the same UT) over the prior
10 days. Figure 5 illustrates the approach; shown are the IGS observations and the forecasts made using the
statistical model, persistence, and climatology for global TEC and TEC at five different locations (corre-
sponding to those in Figure 3) in two different 10‐day intervals. These are two explicit examples of the fore-
casts that are made at all geographical locations and at every 2‐hr interval of the available TEC database. One
example (Figure 5, left column) is at the beginning of 2002, during the estimation period when solar activity
is near maximum values; the other (Figure 5, left column) is at the beginning of the validation period, when
solar activity is more moderate.

3.1. Forecast Performance

The same metrics used in section 2 to assess the statistical model's performance in specifying TEC using
actual inputs are used in this section to assess the model's forecast performance using projected inputs.
Determined are the RMSE, MAE, and MAPE of the IGS TEC observations and the statistical model's fore-
casts of TEC at time increments Δt = 1 to Δt = 10 days ahead. For example, analogous to equation (9),
the MAE of n forecasts of TEC at time increment Δt ahead is

MAEΔt
fc ¼ 1

n
∑n

k¼1 TECΔt
fck
−TECobsk

			 			 (12)

where TECΔt
fck

is the forecast and TECobsk the observed value of TEC at time t0 + Δt. For the persistence
forecast

MAEΔt
pers ¼

1
n
∑n

k¼1 TECobsk−Δt−TECobskj j (13)

where TECobsk−Δt is the TEC observation at the time of the forecast (i.e., at t0). For the climatology forecast

MAEΔt
ciim ¼ 1

n
∑n

k¼1 TECobsk−Δt−TECobsk

		 		 (14)

where TECobsk−Δt is the average of 10 days of TEC observations prior to and including t0 (at the same UT).

Shown in Figure 6 are averages over the globe of theMAEs,MAEΔt
fc , of TEC forecasts atΔt= 1 toΔt= 10 days

(black solid lines) and, for comparison, of global TEC forecasts (black dashed lines) made using the statistical

model. Also shown areMAEΔt
pers for the persistence forecasts (magenta lines) andMAEΔt

clim for the climatology

forecasts (blue lines). TheMAEΔt in Figure 6a (left column) are determined using all 2‐hourly forecasts and
observations for all months of the 17 years from 1999 to 2015. TheMAEΔt in Figures 6b and 6c (left column)
are determined for all months during 2 years at high and moderate‐to‐low solar activity in the estimation
period, and the MAEΔt in Figure 6d are for the 2‐year validation period. Table 2 provides numerical values
of the RMSEΔt,MAEΔt, andMAPEΔt performance metrics averaged over the globe of the model's TEC fore-
casts at Δt = 3, 5, and 8 days head.

The MAEΔt are also evaluated separately for the months of April (Figure 6, middle column) and July
(Figure 6, right column). The motivation for assessing the model's performance in individual months (as
well as at different levels of solar activity) is that TEC exhibits significant seasonal variability, which the sta-
tistical model represents by oscillations at four periods (equation (5)). Global TEC values peak in March–
April and October–November, as a result of the SAO, and they are lowest in July, when the AO depresses
levels relative to December (Lean, Meier, et al., 2011). The MAEΔt shown in Figure 6 (middle and right
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columns) illustrate that themodel's performance is indeed seasonally dependent. For the entire period 1999–
2015 (Figure 6a) as well as for each of the three different epochs corresponding to high solar activity
(Figure 6b), moderate‐to‐low solar activity (Figure 6c), and the validation period (Figure 6d), the MAEΔt

are larger in April (middle column, when global TEC maximizes) than in July (right column, when global

TEC minimizes). Table 2 includes numerical values of the RMSEΔt
fc , MAEΔt

fc , and MAPEΔt
fc , performance

metrics for the statistical model's TEC forecasts in April and July.

As the forecast increment increases from Δt = 1 to Δt = 10 days, the MAEΔt
fc of the statistical model's TEC

forecast (determined over the 17 years from 1999 to 2015, Figure 6a) increases from 2.5 to 3.2 TECU. The

Figure 5. Forecasts of (a) global TEC and (b, c, d, e, and f) forecasts of TEC at individual geographical locations (specifi-
cally, those in Figure 3) made at the time indicated by the asterisks, using the statistical model (orange filled circles),
persistence (magenta filled circles), and climatology (blue filled circles) compared with the corresponding IGS observa-
tions (black filled circles) during two 10‐day intervals beginning in January 2002 (on the left column) and January 2016 (on
the right column). The solid black lines are the 2‐hourly IGS TEC observations. TEC = total electron content;
TECU = TEC unit, 1 TECU = 1016 el/m2; IGS = International Global Navigation Satellite Systems Service.
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MAEΔt
pers for the corresponding persistence forecast increases from 2.2 to 3.7 TECU and the MAEΔt

clim for the

climatology forecast increases from 2.5 to 3.4 TECU. Thus, the errors in the statistical model's forecasts are
smaller than the errors in the forecasts made using persistence at Δt = 3, 5, 8, and 10 days, comparable at

Figure 6. Compared are the mean absolute error of IGS observations and forecasts of TEC atΔt= 1 to 10 days made using
the statistical model (MAEΔt

fc , black), persistence (MAEΔt
pers, magenta), and climatology (MAEΔt

clim, blue) evaluated using
2‐hourly values for all months (left column), in April (middle column), and in July (right column) during (a) 1999 to 2015,
(b) 2000 to 2001, (c) 2005 to 2006, and (d) 2016 to 2017. The solid lines are the MAEΔtof the TEC forecasts averaged
over all geographical locations on the globe, and the dashed lines are for the global TEC forecasts. The averages over the
globe are numerical averages of the metrics of the performance of the regional statistical model constructed using
equation (3) at each of the model's 72 × 71 longitude‐latitude grid points. The global TEC metrics pertain to the
performance of a separate statistical model of global TEC. IGS = International Global Navigation Satellite Systems Service;
TEC = total electron content; TECU = TEC unit, 1 TECU = 1016 el/m2.

10.1029/2018SW002077Space Weather

LEAN 326



Δt= 2 days and larger atΔt= 1 day. Relative to forecasts made using climatology, the errors in the statistical
model's forecasts are smaller at Δt = 2, 3, 5, 8, and 10 days and comparable at Δt = 1 day.

For all forecasts, whether made using the statistical model, persistence, or climatology, the averages of
the MAEΔtover the globe (solid lines in Figure 6) are, as expected, systematically larger (by about a factor
of 2) than the direct forecasts of global TEC (dashed lines in Figure 6). This is because the statistical
model of globally integrated TEC variability, which has minimal diurnal variation and muted seasonal
variation, is more robust than the model at individual locations. As well, the MAEΔt of all the forecasts
are larger when solar activity is higher and smaller during solar minimum. For example, as the forecast

increment increases from Δt = 1 to Δt = 10 days, the MAEΔt
fc of the statistical model's forecast in the 2‐

year period of high solar activity (2000 to 2001, Figure 6) increases from 3.9 to 4.9 TECU, during
moderate‐to‐low solar activity (Figure 6c) from 1.5 to 2 TECU and during solar minimum from 0.95 to
1.1 TECU.

Also, independent of the forecast technique (whether using the statistical model, persistence, or climatol-
ogy), and of solar activity as well, the MAEΔt in Figure 6 (and the MAEΔtand RMSEΔt in Table 2) are larger
in April (when the SAO peaks in global TEC) and smaller in July (when global TEC is at its minimum value

for the year). For example, theMAEΔt
fc of the statistical model's TEC forecasts at Δt= 3, 5, and 8 days are 2.6,

2.7, and 3 TECU, respectively, when determined using all months from 1999 to 2015, Figure 6a) but increase
to 2.9, 3, and 3.3 TECU in April and decrease to 1.9, 2.1, and 2.4 TECU in July.

The MAEΔt of the forecasts have a distinct regional pattern that manifests irrespective of the value of the
forecast time increment, Δt, or of the forecasting approach. Shown in Figure 7 are the regional distributions

of MAEΔt
fc for the statistical model's Δt = 3‐ and Δt = 8‐day forecasts (Figures 7a and 7d), MAEΔt

pers for the

corresponding forecasts using persistence (Figures 7b and 7e), andMAEΔt
clim for the forecasts using climatol-

ogy (Figure 7c and 7f). The MAEΔt are uniformly larger in the low‐latitude EIA region, where TEC itself
maximizes, and where the MAE and RMSE metrics of the statistical model performance are also largest

(Figures 2 and 4). In some EIA regions, the MAEΔt
fc of the TEC forecasts Δt = 3 days ahead reach 5 TECU

and theMAEΔt
fc of the TEC forecasts Δt = 8 days ahead reach 6 TECU. But less regions in the EIA have these

higher values in the statistical model forecasts than in the persistence and climatology forecasts (compare
Figure 7a with Figures 7b and 7c for the 3‐day forecasts, and Figure 7d with Figures 7e and 7f for the 8‐

Table 2
Metrics of the Performance of the Statistical Model Forecasts of Regional TEC at Time Increments Δt = 3, 5, and 8 Days Ahead, Averaged Over the Globe, at Different
Levels of Solar Activity, Estimated Using All 2‐Hourly Values on All Days of the Specified Time Intervals and Months

Parameter

1999–2015 2000–2001 2005–2006 2008–2009 2016–2017
Model estimation

period
High solar
activity

Similar solar activity as model
validation

Low solar
activity

Model validation
period

Δt = 3, 5, 8 Δt = 3, 5, 8 Δt = 3, 5, 8 Δt = 3, 5, 8 Δt = 3, 5, 8

Root‐mean‐square error
(RMSEΔt

fc , TECU)

All months 3.8, 4.0, 4.4 5.3, 5.6, 6.2 2.2, 2.3, 2.6 1.3, 1.4, 1.5 2.6, 2.7, 2.8
April 4.2, 4,4, 2,8 6.0, 5.9, 6.2 2.5, 2.5, 2.7 1.4, 1,4, 1,5 3.1, 3.2, 3.5
July 2.8, 3.0, 3.5 3.9, 4.4, 4.8 1.8, 1.9, 2.4 0.9, 0.9, 1.0 2.0, 2.1, 2.3

Mean absolute error
(MAEΔt

fc , TECU)

All months 2.6, 2.7, 3.0 3.9, 4.1, 4.5 1.6, 1.7, 1.9 1.0, 1.0, 1.1 1.9, 2.0, 2.1
April 2.9, 3.0, 3.3 4.5, 4.5, 4.8 1.8, 1.9, 2.0 1.1, 1.1, 1.1 2.4, 2.5, 2.7
July 1.9, 2.1, 2.4 2.9, 3.1, 3.5 1.3, 1.4, 1.8 0.7, 0.7, 0.8 1.5, 1.6, 1.7

Mean absolute percentage error
(MAPEΔt

fc , %)

All months 18, 18, 20 15, 15, 16 17, 17, 19 14, 14, 15 23, 24, 25
April 19, 20, 22 16, 17, 19 17, 18, 19 14, 15, 16 30, 31, 33
July 19, 19, 22 15, 16, 17 17, 17, 21 13, 13, 14 24, 25, 26

Note. TECU = total electron content unit, 1 TECU = 1016 el/m2.
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day forecasts). As a result the RMSEΔt andMAEΔt averaged over low latitudes (30°S to 30°N) are smaller for
the statistical model forecasts than for the forecasts using persistence or climatology.

Table 3 lists numerical values for the RMSEΔt
fc , MAEΔt

fc , and MAPEΔt
fc of the statistical model forecasts, the

RMSEΔt
pers;MAEΔt

pers , and MAPEΔt
pers for the forecasts using persistence and the RMSEΔt

clim , MAEΔt
clim , and

MAPEΔt
clim for the forecasts using climatology, averaged over the globe and separately over low (30°S to 30°N) and

middle (60°S to 30°S, 30°N to 60°N) latitudes, determined for the estimation period. Averaged over 30°S to 30°N,

forecasts at Δt = 3 days made using the statistical model have MAEΔt
fc = 3.3 TECU compared with MAEΔt

pers

= 3.6 TECU using persistence and MAEΔt
clim = 3.8 TECU using climatology. For forecasts at Δt = 8 days,

MAEΔt
fc = 3.9 TECU for the statistical model, MAEΔt

pers = 4.7 TECU for persistence, and MAEΔt
clim = 4.5

TECU for climatology. More generally, the numerical values in Table 3 show that according to both the
RMSEΔt and MAEΔt metrics averaged over all latitudes and at low and middle latitudes, the errors of the
Δt= 3‐, 5‐, 8‐, and 10‐day forecasts using the statistical model are systematically smaller than the forecast errors

using persistence and climatology. Only for forecasts at Δt= 1 day do the RMSEΔt
fc and MAEΔt

fc of the statistical

model exceed the RMSEΔt
pers and MAEΔt

pers for the persistence forecasts.

Figure 7. The regional distributions of the mean absolute error of forecasts of TEC made at 2‐hr intervals for all months
from 1999 to 2015 at Δt = 3 days using (a) the statistical model, (b) persistence, and (c) climatology, and at Δt = 8 days
using (d) the statistical model, (e) persistence, and (f) climatology. The averages of the maps are the values at Δt = 3 and
Δt = 8 days in Figure 6a for all months. TEC = total electron content; TECU = TEC unit, 1 TECU = 1016 el/m2.
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3.2. Forecast Skill Score

To further quantify the statistical model's forecasting capability, skill scores are calculated by comparing per-
formance metrics of the statistical model's TEC forecasts with those for forecasts made using persistence and

climatology. For example, the skill scores of the statistical model'sMAEΔt
fc relative to persistence and clima-

tology are (Wilks, 1995), respectively,

SSMAEΔt
pers ¼ 1−

MAEΔt
fc

MAEΔt
pers

(15)

SSMAEΔt
clim ¼ 1−

MAEΔt
fc

MAEΔt
clim

(16)

where examples of the numerical values of MAEΔt
fc , MAEΔt

pers, and MAEΔt
clim are listed in Table 3. Figure 8

shows the model's SSMAEΔtskill scores averaged over the globe for TEC forecasts Δt = 1 to 10 days ahead,
and also the corresponding SSRMSEΔt skill scores, evaluated using RMSEΔt (Table 3) in place of MAEΔtin
equations (15) and (16). The skill scores are evaluated using all 2‐hr forecasts during the estimation period
(Figure 8a), during high solar activity (Figure 8b), moderate‐to‐low solar activity (Figure 8c), and for the vali-
dation period (Figure 8d). As expected from comparisons of the forecast performance metrics in the previous
section, in the estimation period (Figures 8a–8c) the skill scores of the statistical model's Δt = 3‐, 5‐, 8‐, and
10‐day TEC forecasts systematically exceed persistence and climatology. For example, the average over the
globe of the skill score of the statistical model'sΔt= 5‐day forecast is 12% and 11% relative to persistence and
climatology according to theMAEΔtmetrics and 15% and 13% relative to persistence and climatology accord-
ing to the RMSEΔtmetrics. Only for forecasts at time increment Δt = 1 day is the skill score of the statistical
model's forecast negative, indicating that at this shortest time increment errors in the statistical model fore-
casts during the estimation period averaged over the globe are larger than in the forecasts using persistence.
As Figure 8d shows, the skill of forecasts at incrementsΔt= 3, 5, 8, and 10 days ahead during the 2‐year vali-
dation period exceeds persistence but not climatology.

The skill scores of the statistical model's TEC forecasts depend on season. At all time increments fromΔt= 1
to Δt = 10 days ahead, forecast skill relative to both persistence and climatology is higher in April than in

Table 3
The Root‐Mean‐Square Error, RMSEΔt

fc , Mean Absolute Error, MAEΔt
fc , and Mean Absolute Percentage Error, MPAEΔt

fc , of TEC Observations and the Statistical Model
Forecasts at Time Increments Δt = 1, 3, 5, 8, and 10 Days Ahead, Averaged Over the Globe and at Low (30°S–30°N), Midnorthern (30–60°N) and Midsouthern (30–
60°S) Latitudes, Compared With Equivalent Metrics for Forecasts Made Using Persistence RMSEΔt

pers



, MAEΔt

pers;MAPEΔt
pers ) and Climatology RMSEΔt

clim

�
, MAEΔt

clim ,
MAPEΔt

clim) of the Observations, Estimated Using All 2‐Hourly Values During the Estimation Period (1999–2015)

Parameter

Statistical model Persistence Climatology

Δt = 1, 3, 5, 8, 10 Δt = 1, 3, 5, 8, 10 Δt = 1, 3, 5, 8, 10

Root‐mean‐square error (TECU)
Average over globe 3.7, 3.8, 4.0, 4.4, 4.8 3.5, 4.3, 4.7, 5.2, 5.6 3.8, 4.3, 4.6, 5.0, 5.1
30°S–30°N 4.6, 4.8, 5.0, 5.8, 6.4 4.4, 5.3, 6.0, 6.9, 7.4 5.0, 5.7, 6.2, 6.8, 7.0
30–60°N 3.3, 3.4, 3.6, 3.9, 4.4 3.1, 3.8, 4.1, 4.6, 4.9 3.4, 3.8, 4.1, 4.4, 4.5
30–60°S 3.3, 3.4, 3.6, 3.9, 4.2 3.1, 3.8, 4.2, 4.7, 5.0 3.4, 3.8, 4.1, 4.5, 4.6

Mean absolute error (TECU)
Average over globe 2.5, 2.6, 2.7, 3.0, 3.2 2.2, 2.8, 3.1, 3.5, 3.7 2.5, 2.8, 3.1, 3.3, 3.4
30°S–30°N 3.2, 3.3, 3.5, 3.9, 4.3 2.9, 3.6, 4.0, 4.7, 5.0 3.4, 3.8, 4.2, 4.5, 4.7
30–60°N 2.2, 2.3, 2.4, 2.6, 2.8 1.9, 2.4, 2.7, 3.0, 3.2 2.2, 2.4, 2.7, 2.9, 2.9
30–60°S 2.2, 2.3, 2.4, 2.6, 2.8 1.9, 2.4, 2.6, 3.0, 3.2 2.2, 2.4, 2.7, 2.9, 3.0

Mean absolute percentage error (%)
Average over globe 16, 18, 18, 20, 21 14, 17, 19, 20, 22 15, 17, 18, 19, 20
30°S–30°N 13, 13, 14, 15, 17 11, 14, 15, 17, 19 13, 14, 15, 17, 17
30–60°N 14, 15, 16, 17, 18 12, 15, 17, 18, 20 13, 15, 16, 17, 18
30–60°S 16, 17, 18, 20, 21 13, 16, 18, 20, 21 14, 16, 17, 19, 20

Note. TECU = total electron content unit, 1 TECU = 1016 el/m2.

10.1029/2018SW002077Space Weather

LEAN 329



July. Figure 9 shows the seasonal dependence of the statistical model's skill scores relative to both
persistence and climatology, based on both the RMSEΔt and MAEΔt performance metrics (determined
using the forecasts in the estimation period). For the Δt = 5 day forecasts in Figure 9d, for example, the
statistical model forecasts averaged over the globe exceed persistence by ~15% and climatology by ~20% in
April but only by ~5% in July.

As well as depending on season, the skill scores of the statistical model's TEC forecasts depend on geographi-
cal location. Figure 10 shows the regional distributions of the statistical model's 3‐ and 8‐day TEC forecast
skill scores relative to persistence and climatology in April (Figures 10a, 10b, 10e, and 10f) and July
(Figures 10c, 10d, 10g, and 10h). In April, the statistical model's forecast skill scores are positive over most
of the globe, in the range 10% to 40% relative to persistence and climatology, the exception being over a mod-
est area at high southern latitudes in the vicinity of the Weddell Sea where the skill score is as much as 40%
negative. In July, however, the statistical model's forecast skill scores are overall lower, exceeding persis-
tence and climatology only in the Northern Hemisphere and at low Southern Hemisphere latitudes, and
only by 10% or less, and underperforming relative to both persistence ad climatology over most high south-
ern latitudes, especially in an expanded area around the Weddell Sea.

4. Discussion
4.1. Model Forecast Skill

The statistical model of TEC variability, per se, is simple, straightforward, and concise; it specifies TEC with-
out the need for real‐time observations, using instead parameterizations of TEC variability associated with

Figure 8. Skill scores averaged over the globe of the statistical model forecasts at Δt = 1 to 10 days ahead relative to per-
sistence and climatology, estimated using all 2‐hr forecasts during (a) 1999 to 2015, (b) 2000–2001, (c) 2005–2006, and
(d) 2016–2017. The solid lines are skill scores pertaining to the root‐mean‐square error of the forecasts, SSRMSEΔt, and the
dashed lines are skill scores pertaining to the absolute mean error of the forecasts, SSMAEΔt.
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solar and geomagnetic activity and seasonal and diurnal oscillations in past observations. The fidelity of the
estimates of future solar EUV irradiance and geomagnetic activity that are input to the model are key
determinants of the model's ability to forecast TEC. Significant autocorrelation in the EUV irradiance
time series enables autoregressive projections of future values; the autocorrelation is ~1 at a lag of 1 day,
0.97 at a lag of 5 days, and 0.94 at a lag of 8 days. Using autoregressive forecasts of daily EUV irradiance
based on known values of the prior 100 days, the statistical model forecasts TEC at Δt = 3, 5, and 8 days

for t0 every 2 hr from 1999 to 2015 with RMSEΔt
fc = 3.8, 4.0, and 4.4 TECU and MAEΔt

fc = 2.6, 2.7, and 3

TECU averaged over the globe (Table 2); the increasing error of the forecasts at longer forecast time
increments mimics the decrease in the autocorrelation of the EUV irradiance at larger lags. The model's
geomagnetic inputs are not forecast because autocorrelation in the geomagnetic activity time series is
minimal; it is 0.28 at a lag of 1 day and <0.1 at lags of 5 and 8 days.

Figure 9. The skill scores averaged over the globe of the statistical model forecasts relative to persistence and climatology
for different months of the year for forecast time increments (a) Δt = 1, (b) Δt = 2, (c) Δt = 3, (d) Δt = 5 days, (e) Δt = 8,
and (f) Δt = 10 days ahead. The skill scores are evaluated using all forecast made during each month between 1999
and 2015. The solid lines are the skill scores pertaining to the root‐mean‐square error of the forecasts, SSRMSEΔt, and the
dashed lines are skill scores pertaining to the absolute mean error of the forecasts, SSMAEΔt.
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Figure 10. The regional distributions of the skill scores of the statistical model forecasts at Δt = 3 days relative to persis-
tence, SSMAEΔt

pers, in (a) April and (c) July and relative to climatology, SSMAEΔt
clim, in (b) April and (d) July. The regional

distributions of the skill scores of the statistical model forecasts at Δt = 8 days relative to persistence, SSMAEΔt
pers, in

(e) April and (g) July and relative to climatology,SSMAEΔt
clim, in (f) April and (h) July. The skill scores are for TEC forecasts

made at 2‐hr intervals throughout 1999 to 2015 in the specified month. The averages of the maps are shown as the
values for April (month 4) and July (month 7) for the forecasts at time increment Δt = 3 in Figure 9c and at Δt = 8 in
Figure 9e. TEC = total electron content.
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The skill scores of the statistical model's TEC forecasts at time increments Δt = 3, 5, 8, and 10 days ahead for
forecasts made at 2‐hourly intervals from 1999 to 2015 are positive relative to persistence and climatology.
This may be in part because changing solar EUV irradiance alters TEC on these times scales, so autoregres-
sive forecasts of future EUV irradiance improve the TEC forecasts. Larger‐than‐average forecast errors in
regions within the EIA, and also at high southern latitudes surrounding the Weddell Sea, may be the result
of meteorological influences from the lower atmosphere that the statistical model does not include. That
similar regionally inhomogeneous errors are present in the statistical model, persistence and climatological
forecasts suggests that the larger uncertainty (in absolute TECU) of forecasts in these regions may be because
TEC is inherently more variable, whether from additional influences that the model does not include or
from observational limitations of the IGS TEC database and hence more difficult to forecast at these loca-
tions. At high southern latitudes, in particular, the errors in the forecasts made using persistence and clima-
tology are smaller than in the statistical model forecasts. One explanation is that the larger uncertainties in
GPS‐derived TEC observations over the southern ocean and at high southern latitudes (due to the lack of
GPS ground receivers) preclude the statistical model parameterizations from properly capturing TEC varia-
bility in these regions; consistent with this, the statistical model specifications in the estimation period them-
selves have largest errors at high southern latitudes.

The statistical model performs less well in forecasting TEC during 2016 and 2017, the validation period, than
in the estimation period from 2005 to 2006, for which solar and geomagnetic activity are approximately com-
parable. One possible reason is that the model itself does not perform as well in specifying TEC during the
validation period as in the estimation period, from which the model was constructed. If so, the errors in the
statistical model forecasts determined for the estimation period may underestimate the actual errors (by 10%
to 40%, depending on season) when using the statistical model in epochs beyond the estimation period. A
second reason is that while solar and geophysical conditions in the validation period are comparable to those
in the estimation period from 2005 to 2006, they are not truly equivalent.

Rigorous validation of the model's forecast skill ultimately requires many more years of observations with
greater reliability over the entire globe and over a much wider range of solar activity. Figure 4d shows that
the largest MAPE of the observations and model in the validation period occur at high southern latitudes,
where TEC itself is lowest, the IGS observations least certain, and the model uncertainties therefore largest.
In global TEC, the largest differences between the model and observations in the validation period occur in
March and April 2016 when the observed global TEC (18.98 TECU) is 6% less than the modeled TEC (20.22
TECU); the MAPE of the forecasts in the validation period (Table 2) are correspondingly highest in April.
But whether the source of the differences lies with the model or the IGS observations is indeterminant;
the differences are within the likely uncertainty of the IGS TEC observations.

4.2. Forecasts on Time Scales of Months and Years

Forecasts of TEC are possible on time scales longer than 1 to 10 days ahead, given forecasts of the statistical
model's solar EUV irradiance and geomagnetic inputs. However, the autoregressive projections of the solar
EUV irradiance used for forecasting TEC atΔt = 1 toΔt = 10 days ahead become less useful on these longer
time scales; the autocorrelation of EUV irradiance at 90 days, for example, is 0.88, whereas at 5 days it is 0.97.
This reflects the physical solar processes by which solar activity alters EUV irradiance. The lifetimes of bright
active regions whose presence in the solar atmosphere increases EUV irradiance are typically weeks to a
month. Furthermore, the Sun's rotation means that an active region that emerges on the east limb of the
solar disc is present on the solar hemisphere projected to Earth for at most 13 days, with maximum effect
after 7 days when it is at the central meridian (i.e., projected directly to Earth). This is consistent with the
average skill of the statistical model forecasts relative to both persistence and climatology being highest at
5 to 8 days and decreasing thereafter. However, epochs in which large, long‐lived active regions return to
the hemisphere projected to Earth (typically during periods of high solar activity) may afford forecast skill
at 27 days; the autocorrelation of EUV irradiance increases from a local minimum of 0.91 at 14 days to a local
maximum of 0.96 at 27 days.

The National Oceanic and Atmospheric Administration SWPC issues projections of solar activity in future
months and years. A relationship between monthly sunspot numbers and monthly EUV irradiance enables
estimates of the EUV irradiance inputs to the statistical model of TEC variability using the sunspot numbers
that SWPC forecasts. Shown in Figure 11 are statistical model forecasts (green) of global TEC made using
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solar EUV irradiance inputs derived from the SWPC forecasts of the monthly sunspot number index of solar
activity for 2017 to 2019. The overlap of the TEC forecasts with the actual observations (black) indicates
overall good agreement.

The projections shown In Figure 11 of global TEC from 2020 to 2030 utilize the emerging expectation that
upcoming solar activity in cycle 25 will be comparable to that in cycle 24. This is based on recent observa-
tions that the polar fields during the current solar minimum appear very similar in strength to those in
the prior solar minimum. Since uncertainty in long‐range—monthly to yearly—TEC forecasts derives
directly from uncertainty in the solar activity forecasts themselves (which exceed 50%), the skill of the statis-
tical model's long‐range forecasts may be expected to increase with advances in forecasting future solar activ-
ity. Validation of the TEC projections in Figure 11 await future observations.

4.3. Statistical Model Representation of Geomagnetic Activity

In the statistical model's forecasts of TEC atΔt= 1 toΔt= 10 days ahead the indices ap andDxt are set to 0 at
times beyond the time, t0, at which the forecast is made. This is because the minimal autocorrelation of the
geomagnetic activity indices precludes their autoregressive forecasting. Current state‐of‐the‐art techniques
for forecasting geomagnetic activity utilize independent observations of coronal mass ejections and their per-
turbation of the ambient solar wind speed and density (e.g., Tsagouri et al., 2018). The SWPC does provide 3‐
day forecasts of ap; whether use of these forecasts improves the statistical model's TEC forecasts requires
further analysis analogous to that described here using the EUV irradiance forecasts, if independent ap
and Dxt forecasts are available over the past two decades.

A prerequisite for a model, whether empirical or physical, to forecast the ionosphere's response to geo-
magnetic activity is that the model properly specify the real‐time response. A community challenge
recently sought to quantify the capability of a suite of models to reproduce the TEC variations observed
during an ionospheric storm on 14–15 December 2006, using known (not forecast) geomagnetic activity.
Of the eight different models participating in the challenge (Shim et al., 2017, Table 1) one is an empirical
model (IRI), two are physics‐based ionospheric models (USU‐IFM and SAMI3), four are physics‐based
coupled ionosphere‐thermosphere models (TIE‐GCM, CTIPE, UAM, and GITM), and one is a physics‐
based data assimilation model (USU‐GAIM), each with different longitude‐latitude grid resolution and
height of the upper boundary for calculating TEC. One metric of model performance that the challenge
adopted is the RMSE of the change in TEC at the peak of the positive phase of the storm from prestorm
levels, averaged over the globe and over low to middle latitudes (in this case defined as 50°S to 50°N).
Among the seven nonassimilative models, this RMSE ranges from 6.8 to 10.3 TECU when averaged over
the globe and from 7.2 to 11.3 TECU when averaged over low to middle latitudes (Shim et al., 2017, Table
2b, Global RMSE column).

Figure 11. The time series of global TEC from Figure 1 is extended to future years 2019 to 2030 by inputting to the statis-
tical model estimates of monthly total EUV irradiance obtained from a parameterization of total EUV irradiance (Figure 1)
and sunspot numbers. The TEC values projected for 2017 to 2019 use the Space Weather Prediction Center forecasts of
monthly sunspot numbers for those years. TEC projections from 2020 to 2030 assume that solar activity in cycle 25 will be
similar to that in cycle 24. TEC = total electron content; EUV = extreme ultraviolet; IGS = International Global
Navigation Satellite Systems Service; TECU = TEC unit, 1 TECU = 1016 el/m2.
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Figure 12a shows the variations of the ap and Dxt indices during the
December 2006 storm and concurrent variations in TEC according to both
the IGS observations and specified by the statistical model globally
(Figure 12b) and at a specific site (30°S, 75°W, Figure 12c). Note that the
time series of both ap and Dxt in Figure 12a, and used for input to the sta-
tistical model to estimate the TEC changes in Figures 12b and 12c, are (as
in Shim et al., 2017) the actual observed values, not forecast values. While
an overall increase is evident in global TEC during the storm, approxi-
mately aligned with the peak in geomagnetic activity, the much larger
local TEC diurnal cycle at 30°S, 75°W obscures evidence for the accompa-
nying regional TEC change. For this reason, to quantify regional TEC
changes at the peak of the storm from pre storm levels, the challenge com-
pared simulated TEC values at the peak of the storm's positive phase with
prestorm levels 1 day prior. The dashed lines in Figure 12 identify these
specific times, as well as the time of the maximum negative phase of
the storm.

The comparisons in Figure 13 of the observations and statistical model's
specification of regional TEC 1 day prior to the storm (Figure 13a), dur-
ing the storm's peak positive phase (Figure 13b) and during the peak of
the negative phase (Figure 13c), serve to quantify the model's perfor-
mance during this particular geomagnetic storm, for comparison with
the model simulations in the community challenge. The difference of
the IGS observations and the statistical model specification in
Figure 13b (the positive phase “IGS minus Model” image) minus the dif-
ference of the IGS observations and statistical model specification in
Figure 13a (the prestorm IGS minus Model image) is equivalent to what
the community challenge denotes as the change in TEC at the peak of
the positive phase of the storm from prestorm levels. The corresponding
metrics for the statistical model are RMSE = 6.8 TECU for the differ-
ences averaged over the globe and RMSE = 8.1 TECU for the differences
averaged over low to middle latitudes (50°S to 50°N).

The metrics of the statistical model's performance in specifying TEC
changes during the December 2006 geomagnetic storm are comparable
to those of the better‐performing, nonassimilative models in the com-
munity challenge. This is consistent with the finding of the challenge
that the performance of the IRI model, also an empirical model con-
structed from observations, in specifying TEC changes during this
storm exceeds that of most nonassimilative physical models of the iono-
sphere. Shim et al. (2017) caveat this finding by noting that while an

empirical model such as IRI may perform comparably to physics‐based models in terms of some metrics
“they represent the average ionospheric conditions rather than storm time perturbations.” Perhaps more
importantly, the robust quantification of any model's representation of storm‐induced TEC changes
requires metrics assembled for multiple storms, not just a single event; this is in progress using the sta-
tistical model and IGS observations for dozens of storms since 1998, analogous to the metrics for the 14–
15 December 2006 storm.

5. Summary

Forecasts aremade of regional and global ionospheric TEC at time increments ofΔt= 1, 2, 3, 5, 8, and 10 days
ahead in 2‐hourly steps for the duration of the IGS TEC observations (1999 to 2017). The forecasts use a sta-
tistical model constructed from IGS observations from 1998 to 2015. In contrast to current operational cap-
abilities that assimilate extensive observations to specify near‐real‐time TEC, and forecast TEC up to 24 hr

Figure 12. (a) The ap and Dxt geomagnetic indices during the December
2006 storm event, which was the focus of a community “challenge”
designed to quantify extant model capability for specifying TEC changes
during, primarily, the positive phase of an ionospheric storm. Shown during
the corresponding time are the International Global Navigation Satellite
Systems Service observations and the statistical model determinations of
(b) global TEC and (c) regional TEC at 30°S, 75°W. Like the other
simulations in the community challenge, the statistical model
calculations utilized real‐time solar activity and geomagnetic inputs, not
actual forecasts of these inputs. TEC = total electron content; TECU = TEC
unit, 1 TECU = 1016 el/m2.
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ahead, the statistical model approach does not require real‐time observations, and it forecasts TEC on time
scales beyond 1 day. The solar EUV irradiance input to the model is determined from an autoregressive
representation of variability in the prior 100 days; the geomagnetic inputs, which are only minimally
autocorrelated, are not forecast.

TheMAE of the statistical model's regional TEC forecasts and IGS observations during 1999 to 2015 (the per-
iod for which the model parameters are estimated), averaged over the globe, increases from 2.5 to 3.2 TECU
as the time increment of the forecast increases from Δt = 1 to Δt = 10 days; the corresponding RMSE
increases from 3.7 to 4.8 TECU, and the MAPE increases from 16% to 21%. Averaged over just the low to

Figure 13. Compared are the IGS observations (left column) and the statistical model estimates (middle column) of
regional TEC, and their differences (right column), for (a) 1 day prior to the storm at 02 UT on 14 December 2006, (b) the
peak positive phase of the storm at 02 UT on 15 December 2006, and (c) the peak negative phase of the storm at 18 UT on
15 December 2006. The dashed lines in Figure 12 identify geomagnetic activity and global TEC at each of these three
times. TEC = total electron content; TECU = TEC unit, 1 TECU = 1016 el/m2; IGS = International Global Navigation
Satellite Systems Service.
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middle latitudes (30°S to 30°N) that encompass the EIA theMAEΔt
fc of the statistical model's forecasts increase

from 3.2 to 4.3 TECU as the time increment of the forecast increases from Δt = 1 to Δt = 10 days; the corre-

sponding RMSEΔt
fc increases from 4.6 to 6.4 TECU and the MAPEΔt

fc from 13% to 17%.

In the subsequent validation period (2016–2017) the metrics of the statistical model's forecasts are smaller
than for the entire estimation period because average solar activity is lower in 2016–2017 than in 1999–
2015. But the forecast metrics are nevertheless systematically larger than for a 2‐year period (2005–2006)
when solar activity is comparable to that of the validation period. For example, theMAE of the TEC forecasts

atΔt = 5 days ahead (averaged over the globe) isMAEΔt
fc ¼2.7 TECU for the estimation period, 2.0 TECU for

the validation period, and 1.7 TECU for 2005–2006. This suggests that forecast errors evaluated during the
estimation period may underestimate the actual errors (by 10% to 40%, depending on season) when using
the statistical model to forecast TEC in epochs beyond the estimation period. Robust validation of the statis-
tical model's forecast skill awaits metrics corresponding to forecasts made over a future solar cycle of IGS
TEC observations, not just 2 years at low solar activity.

The statistical model forecasts depend on solar activity, season of the year and geographical location. The
MAE and RMSE metrics that quantify absolute errors of the model's forecasts compared with observations

are larger when solar activity is higher; for example, MAEΔt
fc for the Δt = 5 day forecast increases from 1

TECU during low solar activity (2008–2009) to 4 TECU during high solar activity (2000–2001). Forecast

errors are larger during April than July; the MAEΔt
fc of the Δt = 5 day forecast (for 1999–2015) is 3 TECU

in April and 2 TECU in July. Regionally, maximum forecast errors occur at distinct locations within the
EIA and at high southern latitudes, which may correspond to sites of lower metrological influences that
the model does not include but that are also regions where the IGS TEC observations have largest
uncertainties.

Errors in the statistical model forecasts are generally smaller than the errors in forecasts made using persis-
tence and climatology of the IGS observations. Skill scores of the statistical model's forecasts averaged over
the globe (determined using 2‐hourly values in all months from 1999 to 2015) are positive relative to persis-
tence and climatology for all forecast time increments from Δt = 3 to 10 days and are comparable at
Δt = 2 days. Only for the Δt = 1‐day forecasts does persistence perform better than the statistical model.
And while errors in the statistical model forecasts are themselves larger, in terms of absolute TECU, in
April than in July the model nevertheless performs better than both persistence and climatology in
these months.

A key region where the statistical model's performance in both specifying and forecasting TEC is relatively
poor is at high southern latitudes, especially in the vicinity of the Weddell Sea; here the errors in the statis-
tical model forecasts are larger than forecasts made using persistence and climatology. This may because the
IGS observations themselves have large uncertainties at high southern latitudes, due to a lack of GPS ground
receivers, with the result that the model's statistical parameterizations of TEC's variability components are
least certain. This region also exhibits anomalous behavior traceable of dynamical motions possibly related
to influences from lower atmosphere meteorology, which the model does not include.

The statistical model forecasts are readily extended from time scales of days to months and years, given pro-
jections of the solar activity and geomagnetic activity inputs to the model. In particular, a parameterization
of monthly solar EUV irradiance in terms of sunspot numbers illustrates use of the SWPC forecasts of sun-
spot numbers for forecasting TEC in future years. Forecasts of geomagnetic activity are currently difficult
and uncertain (Mannucci et al., 2015); as they improve, their incorporation into the statistical model may
enable improved forecasts of TEC during ionospheric storms. Although geomagnetic activity forecasts were
not included in the forecasts of TEC, the ability of the statistical model to specify TEC changes in response to
the geomagnetic storm of December 2006 was demonstrated to be comparable to eight other models—both
statistical and physical—whose capabilities a community challenge recently quantified.

As the IGS database continues to lengthen, and the ability to forecast solar and geomagnetic activity
advances, the performance of the statistical model forecasts can continue to be validated and improved,
on multiple time scales. The metrics of the model performance evaluated for the database thus far provide
a baseline for future work quantifying the capability of forecasting ionospheric TEC more than 24 hr
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ahead, which is the limit of current operations. An additional prospect for improvements in forecasting
TEC variations beyond the demonstrated capability of the statistical model is inclusion of lower‐
atmosphere meteorology.
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