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ABSTRACT 

Classical computing faces a significant challenge. Field effect transistor technology is reaching the 
fundamental limits of scaling and no proposed replacement technology has yet demonstrated even 
comparable performance. A transformational device based on new physical phenomena could provide a 
new route to continued improvement in microelectronic power and performance. Two-dimensional 
transition metal dichalcogenides (TMDs) possess a number of intriguing electronic, photonic, and excitonic 
properties. This proposal focuses on their Valleytronic properties, which are truly unique to this new class 
of materials. Due to a lack of inversion symmetry and strong spin-orbit coupling, 2D TMDs possess 
individually addressable valleys in momentum space at the K and K' points in the first Brillouin zone. This 
valley addressability opens the possibility of using electron and hole momentum states as a completely new 
paradigm in information processing. Manipulating the K and K' momentum states could permit classical 
computation at a small fraction of the energy cost incurred by traditional field effect transistors.  

The Valleytronic Logic Gate Line program began to explore the viability of creating a classical logic 
gate which would provide a PPA (power, performance, area) advantage over silicon CMOS. It was not 
within the scope of funding to build a logic gate and test it experimentally. Instead, some basic valleytronic 
material parameters were measured and using that information an analysis was performed of the power and 
speed of a notional gate design. Section 1 provides an introduction to valleytronic principles, Section 2 
describes the measurements, Section 3 describes the performance projections, Section 4 summarizes the 
results of the project and Section 5 lists references and Lincoln and MIT external presentations from this 
work in FY19. 



 

 

iii 

TABLE OF CONTENTS 

  Page 
 

Abstract ii 
List of Illustrations iv 

1. INTRODUCTION TO VALLEYTRONICS 1 

2. VALLEYTRONIC MATERIALS MEASUREMENTS 9 

2.1 Valley Lifetime 9 
2.2 Arbitrary Valley State Initialization 10 
2.3 Valley Polarization Imaging 16 
2.4 Effect of Temperature 18 

3. VALLEYTRONIC LOGIC PERFORMANCE ANALYSIS 21 

4. SUMMARY 23 

5. REFERENCES AND PRESENTATIONS 25 

  



 

 

iv 

LIST OF ILLUSTRATIONS 

 Figure  Page 
 No. 

1 TMD crystal structure and Brillouin zone. From [2]. 2 

2 Number of relevant publications per year with "Valley" or "Valleytronic" in the title from  
the Compendex and Inspec databases. 2 

3 Anomalous motion perpendicular to an applied magnetic field (Valley Hall Effect) caused  
by finite and contrasting Berry curvature. From [9]. 6 

4 Three methods of control of the valley state: optical, electrostatic, and magnetic. Courtesy  
Kin Fai Mak, from the 2017 Valleytronics Workshop. 6 

5 Experimental setup for valley lifetime. 9 

6 Valley-selective change in reflectance. 10 

7 Experimental setup for polarization measurements: (a) measurement configuration for σ- 
detection, (b) measurement configuration for σ+ detection. 12 

8 Circularly polarized Si Raman measurements: (a) first-order Si Raman intensity as a function  
of laser polarization angle—blue squares = σ+ detection, red squares = σ- detection; (b)  
difference between experimental data and model calculation. 14 

9 Simultaneously acquired MoS2 PL and Si Raman: (a) spectra with σ+ excitation and detection  
of σ+ PL (blue) and σ- PL (red); (b) expanded view of data in (a) showing Raman peaks. 15 

10 σ- PL emission in two spectral bands. 16 

11 Images of a monolayer MoS2 single crystal: (left) white light optical image, (middle) PL  
intensity map, and (right) P+ polarization map. 17 

12 Images of merged monolayer MoS2 single crystals: (left) white light optical image, (middle)  
PL intensity map, and (right) P+ polarization map 17 

13 Images of merged MoS2 crystals: (left) white light optical image, (middle) PL intensity map,  
and (right) P+ polarization map. 18 

14 Images of a monolayer MoS2 single crystal: (left) white light optical image, (middle) P+ 
polarization map at room temperature, and (right) P+ polarization map at 77 K. 19 

15 CNOT gate. From Wikipedia. 21 



 

 

1 

1. INTRODUCTION TO VALLEYTRONICS 

This section is largely reproduced from a recent publication by Vitale et al [1]. 

When atoms brought together in close proximity form a crystal, the electrons of the constituent atoms 
interact with each other and with the atoms themselves, giving rise to distinct bands of energy that determine 
the electronic properties of the crystalline material. In semiconducting crystals, the bonding electrons 
populate a filled band of allowed states known as the valence band, and are separated from an unfilled band 
of higher energy known as the conduction band by an energy gap that contains no allowed states (the band 
gap). For some semiconductors, regions of minimum energy can appear in the conduction band that are 
indistinguishable from one another except for the direction of the crystal axes along which the energy band 
is oriented. Therefore, when carriers are excited across the band gap from the valence band into these 
minima in the conduction band, they will possess the same energy (be energy degenerate), but will have 
differing crystal momenta depending on the orientations of the axes. We refer to these minima as valleys, 
and to devices exploiting the fact that electrons, holes, or excitons (hereafter particles) are present in one 
valley vs. another as valleytronic devices. Selectively populating one momentum-distinguishable valley vs. 
another—creating a valley polarization—is the key enabling feature of valleytronics. 

The localization of a particle to a region of momentum space yields a new index by which to 
characterize it, namely, the valley pseudospin. This is in addition to the discrete spin index normally 
associated with a particle. Though energy-degenerate valleys are present in many periodic solids, it is 
usually impossible to address or manipulate particles in one valley independently from another as the valley 
state of a particle does not strongly couple to an applied external force. Therefore, it is impractical to 
construct useful valleytronic devices out of most materials. This is in contrast to spintronics, for example, 
where the electron spin is readily manipulated by magnetic fields through the electron spin magnetic 
moment or (less easily) by electric fields through spin-orbit coupling. For valleytronics to be useful, it is 
also of paramount importance that the particles populating a valley reside there for long enough to perform 
a desired function.  

In some materials, anisotropy of the particle mass along different crystal orientations can result in 
valley polarization under an applied field; preferential scattering occurs from one valley to another. This 
has been shown in diamond, aluminum arsenide, silicon, and bismuth at cryogenic temperatures. However, 
these materials still lack a strong coupling between the valley index and an external field. It is not possible 
to selectively initialize, manipulate, and read out particles in a specific valley, so we do not consider these 
materials in our discussion of valleytronics.  

Fortunately, a class of materials does exist in which the valley pseudospin can be more readily 
addressed. In stark contrast to all other materials, 2D materials such as graphene and monolayer 
molybdenum disulfide possess valleys at the inequivalent K and K' points in the Brillouin zone (Figure 1), 
which exhibit strong valley-selective interactions with applied electric and magnetic fields. The isolation 
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and investigation of these materials were seminal events in the field of valleytronics. As one can see in the 
histogram of publications in the field in Figure 2, the isolation of graphene in 2004 catalyzed new research 
in valley physics, but investigations into the optical properties of transition metal dichalcogenide (TMD) 
monolayers in 2010 caused an explosion in the number of valleytronic publications.  

Figure 1. TMD crystal structure and Brillouin zone. From [2]. 

Figure 2. Number of relevant publications per year with "Valley" or "Valleytronic" in the title from the Compendex 
and Inspec databases. 
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The following discussion explains why some fundamental symmetries of monolayer materials are 
critical to valley addressability; it is largely based on published work in references [3–5]. We first elaborate 
on these symmetries and some valley-related concepts to clarify them for the reader.  

In order to selectively couple to distinct valley states, it is necessary that there exist physical quantities 
that can distinguish between them. One such quantity is the Berry curvature, Ω. The Berry curvature 
describes the geometric properties of the electronic bands, and is central to the understanding of band 
topology-related effects. When describing the motion of electrons in crystal lattices, the semiclassical 
equations of motion are typically used, in which an electron is treated as a Bloch wave that can propagate 
through the crystal and the mean velocity is proportional to the gradient of the electronic energy of the 
band. The periodicity of the lattice is taken into account (by the Bloch form of the electron wavefunction), 
as well as the response of the carriers to applied electric and magnetic fields. However, an additional 
contribution exists that is sometimes ignored—an anomalous velocity can appear that is proportional to the 
Berry curvature of an electronic band and is established transverse to the applied electric field. This is of 
fundamental importance, as it can allow valley currents and related phenomena to manifest in materials 
with non-vanishing Berry curvature. 

Another physical quantity that can be used to distinguish valley states is the orbital magnetic moment, 
m. Intuitively, it can be regarded as due to the self-rotation of an electron wavepacket. It is particularly 
useful since one can use it to discriminate between valley states in ways similar to experiments that exploit 
the spin magnetic moment of a charge carrier (for example, a magnetic field can differentiate between spin 
up and spin down states since they have opposite magnetic moments). The Berry curvature and orbital 
magnetic moment and one’s ability to use them to distinguish valley states can vanish, however, if two 
types of symmetry simultaneously exist in a crystal—time-reversal symmetry and inversion symmetry. 

In general, time-reversal symmetry refers to the symmetry of a system under a reversal of the sign of 
the time, whereas spatial inversion symmetry refers to symmetry under a reversal of the direction of all the 
coordinate axes. These simple symmetries have far-reaching consequences. Pseudovectors such as the 
Berry curvature and the orbital magnetic moment do not change sign under spatial inversion. Therefore, 
one cannot use a pseudovector such as the Berry curvature to distinguish between valleys if inversion 
symmetry and time-reversal symmetry are simultaneously present, as it would vanish identically. The K 
and K' points in hexagonal 2D materials are time-reversed images of one another, so in general, physical 
qualities that have odd parity under time reversal are good candidates to distinguish valley states. If the 
Berry curvature and orbital magnetic moment are non-equivalent at the K and K' points, one can, in 
principle, distinguish between the valleys using electric and magnetic fields, respectively. This is shown 
below.  

The semiclassical equations of motion for Bloch electrons under applied electric and magnetic fields 
with non-vanishing Berry curvature are 

�̇�𝒓 =
1
ℏ
𝜕𝜕𝐸𝐸𝑛𝑛(𝒌𝒌)
𝜕𝜕𝒌𝒌

− �̇�𝒌 × 𝛺𝛺𝑛𝑛(𝒌𝒌) 
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ℏ�̇�𝒌 = −𝑒𝑒𝑬𝑬 − 𝑒𝑒�̇�𝒓 × 𝑩𝑩 

where Ω can be defined in terms of the Bloch functions: 

𝜴𝜴𝒏𝒏(𝒌𝒌) = 𝛻𝛻𝒌𝒌 × 𝐴𝐴𝑛𝑛(𝒌𝒌) 

𝐴𝐴𝑛𝑛(𝒌𝒌) = 𝑖𝑖 ∫ 𝑢𝑢𝑛𝑛∗ (𝒓𝒓,𝒌𝒌) 𝛻𝛻𝒌𝒌𝑢𝑢𝑛𝑛(𝒓𝒓,𝒌𝒌) 𝑑𝑑3𝒓𝒓   

An is the Berry connection and un is the periodic part of the Bloch electron wavefunction in the nth energy 
band. The Berry curvature can also be written as  

𝜴𝜴𝑛𝑛(𝒌𝒌) = 𝑖𝑖
ℏ2

𝑚𝑚2�
𝑷𝑷𝑛𝑛,𝑖𝑖(𝒌𝒌) × 𝑷𝑷𝑖𝑖,𝑛𝑛(𝒌𝒌)

�𝐸𝐸𝑛𝑛0(𝒌𝒌) − 𝐸𝐸𝑖𝑖0(𝒌𝒌)�2𝑖𝑖≠𝑛𝑛

 

where 𝐸𝐸𝑛𝑛0(𝒌𝒌) is the energy dispersion of the nth band and 𝑷𝑷𝑛𝑛,𝑖𝑖(𝒌𝒌) = 〈𝑢𝑢𝑛𝑛|𝑣𝑣|𝑢𝑢𝑖𝑖〉 is the matrix element of the 
velocity operator. By demanding that the equation of motion must remain invariant under the system 
symmetry, one can see that with time-reversal symmetry, 𝜴𝜴𝑛𝑛(𝒌𝒌) = −𝜴𝜴𝑛𝑛(−𝒌𝒌), and with inversion 
symmetry 𝜴𝜴𝑛𝑛(𝒌𝒌) = 𝜴𝜴𝑛𝑛(−𝒌𝒌). Thus, only when inversion symmetry is broken can valley-contrasting 
phenomena manifest. From the equations of motion, we see that if an in-plane electric field is applied in a 
2D crystal, then a non-zero Berry curvature results in an anomalous electron velocity perpendicular to the 
field, and the velocity would have opposite sign for electrons in opposite valleys. 

The broken inversion symmetry also allows the existence of the orbital magnetic moment. The 
electron energy dispersion in the nth band is modified to 

𝐸𝐸𝑛𝑛(𝒌𝒌) = 𝐸𝐸𝑛𝑛0(𝒌𝒌) −𝒎𝒎𝒏𝒏(𝒌𝒌) ∙ 𝑩𝑩 

where the quantity m is the orbital magnetic moment, given by 

𝒎𝒎(𝒌𝒌) = 𝑖𝑖
𝑒𝑒ℏ

2𝑚𝑚2�
𝑷𝑷𝑛𝑛,𝑖𝑖(𝒌𝒌) × 𝑷𝑷𝑖𝑖,𝑛𝑛(𝒌𝒌)
𝐸𝐸𝑛𝑛0(𝒌𝒌) − 𝐸𝐸𝑖𝑖0(𝒌𝒌)

𝑖𝑖≠𝑛𝑛

 

Finite m is responsible for the anomalous g factor of electrons in semiconductors, which manifests 
itself in a shift of Zeeman energy in the presence of a magnetic field. 

The existence of finite orbital magnetic moment also suggests that the valley carriers will possess 
optical circular dichroism, i.e., they will exhibit different properties upon illumination with right- or left- 
circularly polarized light [6–8]. Though optical circular dichroism is also present in systems with broken 
time-reversal symmetry, it should be understood that the underlying physics in valleytronic materials is 
quite different and the dichroism is present even when time-reversal symmetry is maintained. One effect of 
the orbital magnetic moment is valley optical selection rules. [4]  
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As a specific example, the 2H phase of many 2D transition metal dichalcogenides lack inversion 
symmetry and, as a result, exhibit contrasting Ω and m between the K and K' valleys. The 𝒌𝒌 ∙ 𝒑𝒑 Hamiltonian 
at the band edges in the vicinity of K and K' is given by 

𝐻𝐻� = 𝑎𝑎𝑎𝑎�𝜏𝜏𝑧𝑧𝑘𝑘𝑥𝑥𝜎𝜎𝑥𝑥 + 𝑘𝑘𝑦𝑦𝜎𝜎𝑦𝑦� +
∆
2
𝜎𝜎𝑧𝑧 

where a is the lattice spacing, t is the nearest neighbor hopping integral, τz = ±1 is the valley index, σ is the 
Pauli matrix element, and Δ is the band gap. In this case, the Berry curvature in the conduction band is 
given by  

𝜴𝜴𝑐𝑐(𝑘𝑘) = −𝒛𝒛�
2𝑎𝑎2𝑎𝑎2𝛥𝛥

(4𝑎𝑎2𝑎𝑎2𝑘𝑘2 + ∆2)3/2 𝜏𝜏𝑧𝑧 

Because of the finite Berry curvature with opposite signs in the two valleys, an in-plane electric field 
induces a Valley Hall Effect for the carriers (Figure 3). Note that the Berry curvature in the valence band 
is equal to that in the conduction band, but with opposite sign.  

The orbital magnetic moment has identical values in the valence and conduction bands: 

𝒎𝒎(𝑘𝑘) = −𝒛𝒛�
2𝑎𝑎2𝑎𝑎2𝛥𝛥

4𝑎𝑎2𝑎𝑎2𝑘𝑘2 + ∆2
𝑒𝑒
2ℏ

𝜏𝜏𝑧𝑧 

Non-zero m implies that the valleys have contrasting magnetic moments (through τz = ±1) and 
therefore it is possible to detect valley polarization through a magnetic signature. The orbital magnetic 
moment also gives rise to the circularly polarized optical selection rules for interband transitions. The Berry 
curvature, orbital magnetic moment, and optical circular dichroism η(k) are related by 

𝜂𝜂(𝒌𝒌) = −
𝒎𝒎(𝒌𝒌) ∙ 𝒛𝒛�
𝜇𝜇𝐵𝐵∗ (𝒌𝒌) = −

𝜴𝜴(𝒌𝒌) ∙ 𝒛𝒛�
𝜇𝜇𝐵𝐵∗ (𝒌𝒌)

𝑒𝑒
2ℏ

∆(𝒌𝒌) 

where 𝜇𝜇𝐵𝐵∗ = 𝑒𝑒ℏ/2𝑚𝑚∗ and ∆(𝒌𝒌) = (4𝑎𝑎2𝑎𝑎2𝑘𝑘2 + ∆2)1/2 is the direct transition energy, or band gap, at k. At 
the energetic minima of the K and K' points, we have full selectivity with (𝒌𝒌) = −𝜏𝜏𝑧𝑧 . The transition at K 
couples only to σ+ light and the transition at K' couples only to σ-. This selectivity allows the optical 
preparation, control, and detection of valley polarization (Figure 4). 
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Figure 3. Anomalous motion perpendicular to an applied magnetic field (Valley Hall Effect) caused by finite and 
contrasting Berry curvature. From [9].  

Figure 4. Three methods of control of the valley state: optical, electrostatic, and magnetic. Courtesy Kin Fai Mak, 
from the 2017 Valleytronics Workshop. 

In summary, if the Berry curvature has different values at the K and K' points, one can expect different 
particle behavior in each valley as a function of an applied electric field. If the orbital magnetic moment 
has different values at the K and K' points, one can expect different behavior in each valley as a function of 
an applied magnetic field. Contrasting values of Ω and m at the K and K' points give rise to optical circular 
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dichroism between the two valleys, which allows selective excitation of photons with right- or left-helicity. 
In order to have contrasting values of Ω and m while maintaining time reversal symmetry, it is necessary 
that the material exhibit a lack of spatial inversion symmetry. Though spatial inversion symmetry can be 
induced in gapped graphene, by biasing the substrate underlying bilayer graphene, for example, monolayer 
2D transition metal dichalcogenides meet this requirement without the need to externally introduce a band 
gap or symmetry breaking, and therefore TMDs appear to be the most promising candidates for useful 
valleytronic applications.  
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2. VALLEYTRONIC MATERIALS MEASUREMENTS 

2.1 VALLEY LIFETIME 

To perform a useful function, valley-based phenomena must persist over timescales long enough to 
complete a computational transaction. In this section, we assess valley lifetime through time-resolved 
measurements performed by Nuh Gedik’s group at in the MIT Department of Physics. Valley lifetime is 
here interpreted to mean how long a particle rests in one valley, say K, before scattering to the opposite 
valley.  

The experimental setup is shown in Figure 5. A circularly polarized probe beam tuned to the WS2 A 
exciton resonance is continuously monitored to measure the reflectivity of the sample. A circularly 
polarized sub-band-gap pump beam creates a valley-selective population of excitons. The sub-band-gap 
excitation is effective due to the optical Stark effect, which will not be described on detail here. When the 
pump and probe are co-circularly polarized, a significant change in reflection occurs (Figure 6); when they 
are cross-circularly polarized, no change in reflectance is observed. The decay in the co-circularly polarized 
reflectance signal is a measure of valley polarization lifetime. For this ML WS2 sample, the valley lifetime 
is approximately 0.2 ps.  

Figure 5. Experimental setup for valley lifetime. 
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Figure 6. Valley-selective change in reflectance 

This is a useable but nevertheless fairly short lifetime for practical purposes. The Gedik group is 
continuing to work on ways to increase valley lifetime by reducing substrate and environmental interactions 
using hBN capping layers above and below the monolayer WS2. Additionally, they are evaluating 
heterostructures of WS2 and WSe2 to study the valley lifetime of interlayer excitons, which should be 
substantially longer due to greater physical separation between the electron and hole.  

From the magnitude of the Stark shift measured and the experimental laser field intensity, an effective 
exciton dipole moment of 50 Debye is estimated. 

2.2 ARBITRARY VALLEY STATE INITIALIZATION 

Though we have focused on particles in the K and K′ states initialized by circularly polarized light, 
it should be possible to generate arbitrary superpositions of these states by linear or elliptically polarized 
states. Creating and manipulating states at any location on the Bloch sphere is a requirement for universal 
gate-based quantum computing. For classical computing, it may be very convenient to operate on states 
that are linearly polarized, as these states possess a static dipole moment and thus may be more easily 
operated upon by external fields to enable gate operations and information transport. 

It has been well established that the K and K' valley states can be selectively initialized with σ+ and 
σ- excitation. Since linearly polarized light is a coherent superposition of σ+ and σ-, linearly polarized 
photons should initialize a coherent superposition of K and K', i.e., states on the equator of the Bloch sphere. 
A few linearly polarized photoluminescence experiments have been consistent with this assertion. 
However, single-point experiments that compare the PL intensity in just two polarizations are not entirely 
convincing as systematic errors may bias the measured polarization. This is particularly important as we 
explore the persistence of valley effects at room temperature where the valley polarization may be much 
less than one. Here we explore the creation of arbitrary superposition states by rotating the excitation 
through more than one complete revolution around the Poincaré sphere showing that the measured PL is 
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consistent with initialization of any valley polarized state from the poles of the Bloch sphere through several 
elliptically polarized states, to the equator, and then back again. To confirm that our results are not artifacts 
of systematic polarization biases, we quantitatively correct our measurements with simultaneous polarized 
Raman spectroscopy of the underlying silicon substrate. 

Photoluminescence polarization is defined as 

𝑃𝑃+ =
𝐼𝐼+ − 𝐼𝐼−
𝐼𝐼+ + 𝐼𝐼−

 

𝑃𝑃− =
𝐼𝐼− − 𝐼𝐼+
𝐼𝐼+ + 𝐼𝐼−

 

where P+ indicates σ+ excitation, P- indicates σ- excitation, I+ is the intensity of the σ+ component of the 
photoluminescence, and I- is the intensity of the σ- component of the photoluminescence. In principle, P+ = 
P-, but experimentally that is not always observed. Photoluminescence polarization has been measured for 
all four of the canonical transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. However, for 
each material, the reported results span a wide range from a few percent polarization to nearly 100% 
polarization. The variation is attributable to differences in sample quality, experimental conditions, and 
instrumentation errors. To reduce variation caused by inconsistent technique, we propose a method to 
correct raw polarized photoluminescence data to account for experimental non-idealities in the incident and 
detection light paths. We then demonstrate use of this method to measure small differences in room 
temperature valley polarization across spatially resolved 2D images. 

To convincingly demonstrate that the polarization of the emitted photoluminescence is highly 
correlated to that of the incident excitation source, it is critical that both be known with high confidence. 
Polarization-resolved measurements at arbitrary angles can be difficult as optical elements, such as mirrors, 
do not perfectly persevere polarization at all angles of incidence and across the entire wavelength range of 
interests. To correct for systematic errors, we measure polarization resolved Raman scattering from the 
underlying silicon wafer, acquired simultaneously with the photoluminescence from the MoS2 film. The 
Raman matrices for crystalline silicon are well known and the scattering intensity as a function of incident 
laser polarization for the first-order Raman mode can be easily calculated. Since the incident and emitted 
light for the Raman scattering and photoluminescence follow the same optical path, any experimentally 
measured deviation from the expected Raman signal can be applied as a correction to the polarization-
resolved photoluminescence. This method is expected to be general for any material that can be grown on 
or transferred to a silicon substrate. 

The experimental system is shown in Figure 7. A Renishaw InVia Raman microscope is used for all 
photoluminescence and Raman measurements. The microscope is coupled to a Montana Instruments 
Cryostation 2 for all measurements below room temperature. A 632.8 nm HeNe laser is used for excitation 
because it is close to the MoS2 A exciton transition. MoS2 samples were grown by CVD on SiO2/Si(100) 
substrates. 
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Figure 7. Experimental setup for polarization measurements: (a) measurement configuration for σ- detection, and 
(b) measurement configuration for σ+ detection. 

Silicon wafers with or without MoS2 were oriented such that the [010] direction was aligned with the 
Y-axis of our coordinate system (as defined in Figure 7) and the [001] direction was aligned with the Z-
axis. The X-axis is normal to the (100) surface. This orientation allows for convenient use of the usual 
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silicon Raman matrices without need for coordinate transformation. In a typical experiment, the laser linear 
polarizer is rotated through 260° (limited by the motorized mounts) and data are collected with and without 
the HWP in place to collect the two orthogonally polarized components.  

A 3×3 matrix Jones formalism is used to describe the system. For the experimental system shown in 
Figure 7, the measured Raman scattering light intensity is given by 

 
where Io is the laser intensity and C is a constant that accounts for Raman cross section and optical losses. 
es, HWP, QWP, BS, M2, M1, and ei are the matrices for the analyzing linear polarizer, half wave plate, 
quarter wave plate, beam splitter, mirrors, and laser linear polarizer. Rj are the Raman matrices. Three 
Raman matrices contribute to the first-order Raman mode (F2g) in silicon at 520 cm-1.  

 

               
The broad Raman feature in the silicon spectrum at 950–1000 cm-1 is due to the second-order modes, with 
scattering matrices 

 

   
From these equations, the expected Raman signal intensities can be calculated for any orientation of the 
optical elements (via the Jones matrices) or silicon crystal orientation (by coordinate transformation of the 
Raman matrices).  

The normalized Raman scattering signal intensity was measured as a function of laser angle. 
Figure 8a shows a polar plot of the two orthogonal components of the signal measured by inserting or 
removing a half wave plate to rotate the scattered light by 90°. The model prediction described above is 
shown as solid lines. Figure 8b shows the lack of fit between the collected data and the model. The residuals 
are less than 5% and represent the systematic polarization distortions. We correct the subsequent measured 
PL intensities at every laser excitation angle using the data in Figure 8b. We estimate the residual error in 
the PL measurements due to systematic distortions to be less than 2%.  
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Figure 8. Circularly polarized Si Raman measurements: (a) first-order Si Raman intensity as a function of laser 
polarization angle—blue squares = σ+ detection, red squares = σ- detection; (b) difference between experimental 
data and model calculation. 

Figure 9 shows the combined photoluminescence and Raman spectra from a monolayer MoS2 sample 
on a SiO2/Si wafer under σ+/σ+ and σ+/σ- excitation/measurement conditions. The Raman modes of the Si 
substrate and the MoS2 are discernable. Note that the Si Raman signal is maximum in the σ+/σ- and σ-/σ+ 
configurations and minimum in the σ+/σ+ and σ-/σ- configurations, which is in agreement with the model. 
Though Raman modes of MoS2 are present, though we chose not to use this signal for polarization 
assessment as it is difficult to deterministically align the MoS2 crystal orientation in the system.  
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Figure 9. Simultaneously acquired MoS2 PL and Si Raman: (a) spectra with σ+ excitation and detection of σ+ PL 
(blue) and σ- PL (red); (b) expanded view of data in (a) showing Raman peaks. 

The MoS2 σ- PL component as a function of laser angle is shown in Figure 10. The PL is rotated by 
90° compared to the Raman scattering signal. In this case, we replace Rj with a matrix PL representing PL 
emission, which in the case of near-resonant excitation is simply the identity matrix. 
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As expected, the σ- PL is emission is a maximum when the excitation is σ- and in a minimum when 
the excitation is σ+. Importantly, the σ- PL measurement agrees with the proportion of the excitation that 
is σ-. This is consistent with the generation of valley superposition states at arbitrary elliptical polarization. 
Unlike the Raman signal, the PL intensity does not go to zero due to thermalization of excitons between 
the two valleys resulting in a background contribution PLu, which is independent of the incident 
polarization. The normalized model becomes  

𝐼𝐼 =  𝑃𝑃𝑃𝑃𝑈𝑈 +  𝑃𝑃𝑃𝑃𝑉𝑉� ∣ 〈𝒆𝒆𝒔𝒔 ∣ 𝑯𝑯𝑯𝑯𝑷𝑷 ∣ 𝑩𝑩𝑩𝑩 ∣ 𝑴𝑴𝟐𝟐 ∣ 𝑸𝑸𝑯𝑯𝑷𝑷 ∣ 𝑷𝑷𝑷𝑷 ∣ 𝑸𝑸𝑯𝑯𝑷𝑷 ∣ 𝑴𝑴𝟐𝟐 ∣ 𝑩𝑩𝑩𝑩 ∣ 𝑴𝑴𝟏𝟏 ∣ 𝒆𝒆𝒊𝒊〉 ∣
𝟐𝟐 

𝒋𝒋

 

Fitting this equation to the data in Figure 10 suggests a room temperature valley polarization of 10% in 
this sample of CVD MoS2.  

Figure 10. σ- PL emission in two spectral bands. 

2.3 VALLEY POLARIZATION IMAGING 

For any practical classical information processing application, devices must support integration at 
densities comparable to conventional microelectronics (currently tens of devices per square micron). For 
consistent device-to-device operation, valleytronic effects must be uniform from the sub-micron scale to 
the length scale of the fabricated microchip (~1 cm). In this section, we explore the spatial homogeneity of 
valley initialization from the 0.5 µm scale to the 10 µm scale, limited by the wavelength of excitation and 
the size of our MoS2 crystalline domains, respectively. Here we consider the spatial uniformity of CVD 
monolayer MoS2 samples grown by Jing Kong’s group in the MIT Department of Materials Science. 
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Valley polarization measurements to date have focused on single-point measurements within a 
crystalline domain or averaged across a sample. Here we present maps of valley polarization acquired with 
submicron resolution to investigate spatially inhomogeneous effects. A valley polarization map of a single 
MoS2 crystal in the σ+/σ+ excitation/measurement configuration is given in Figure 11. The mean valley 
polarization of this crystal is 10%. The standard deviation across the crystal is 3%, though the distribution 
is not completely random. The valleytronic properties are expected to be influenced by crystal defects, 
edges, and domain boundaries. 

Figure 11. Images of a monolayer MoS2 single crystal: (left) white light optical image, (middle) PL intensity map, 
and (right) P+ polarization map. 

The polarization map of a non-triangular monolayer single crystal of MoS2 is shown in Figure 12. 
From the PL image, it appears this crystal is the result of several smaller triangles that merged together as 
they grew, as there is evidence of lower PL along grain boundaries (Figure 12, middle). The valley 
polarization image does not resolve a decrease in valley polarization at these boundaries (Figure 12, right); 
however, the overall valley polarization is lower at 5%. This suggests that the presence of grain boundaries 
has an adverse impact on the valley properties.  

Figure 12. Images of merged monolayer MoS2 single crystals: (left) white light optical image, (middle) PL intensity 
map, and (right) P+ polarization map 
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Figure 13 shows the valley polarization of a completely merged area. Based on the MoS2 Raman 
peaks, this area is mostly monolayer MoS2, but the single domains have grown together into a continuous 
film. The PL in Figure 13 (middle) shows distinct areas of low PL, which we suspect are regions where the 
domains have overgrown one another and represent bilayer regions. This is supported by the valley 
polarization map in Figure 13 (right), which shows zero valley polarization in the overlapped regions, 
consistent with bilayer MoS2.  

Figure 13. Images of merged MoS2 crystals: (left) white light optical image, (middle) PL intensity map, and (right) 
P+ polarization map. 

2.4 EFFECT OF TEMPERATURE 

The main application of this work is general purpose computing that will by necessity be performed 
at room temperature. However, there may be niche applications for cryogenic computing, so we evaluated 
the valley polarization behavior at cryogenic temperatures as well. As shown in Figure 14, the valley 
polarization increases from 10% at room temperature to 25% at 77 K. Even at 77 K, however, there is 
distinct non-uniformity in valley polarization across the crystal. 



 

 

19 

Figure 14. Images of a monolayer MoS2 single crystal: (left) white light optical image, (middle) P+ polarization map 
at room temperature, and (right) P+ polarization map at 77 K. 
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3. VALLEYTRONIC LOGIC PERFORMANCE ANALYSIS 

Using the above data, we can begin a PPA analysis of a valleytronic logic gate. Consider a notional 
CNOT gate that is logically equivalent to a reversible XOR gate with two inputs and two outputs 
(Figure 15). The inputs and outputs are optical. The information carrier is a valley exciton where the 
momentum index of the exciton represents the 0 or 1 state. One input (Y) is an exciton initialized as 0 or 1. 
The other input is an optical control pulse (X): if present (1), the control pulse rotates the exciton input from 
the 0 state to the 1 state. If the control pulse is not present (0), the exciton is unchanged. Readout occurs 
optically by measuring the chirality of the photoluminescence photon emitted when the exciton recombines.  

Figure 15. CNOT gate. From Wikipedia. 

We will calculate the energy cost of an inverting gate operation, X=1. Initializing the input Y will 
require energy Ei, given by 

𝐸𝐸𝑖𝑖 =
𝑛𝑛𝑒𝑒𝑥𝑥𝑐𝑐𝐸𝐸𝑔𝑔
𝑓𝑓𝑖𝑖

=
𝑛𝑛𝑒𝑒𝑥𝑥𝑐𝑐𝐸𝐸𝑔𝑔
𝛼𝛼𝑃𝑃

 

where nexc is the number of excitons required to generate an output well above the noise floor, Eg is the band 
gap of the TMD material, fi is the initialization efficiency, α is the absolute absorption of the TMD, and P 
is the polarization fidelity. 

State evolution is performed by applying a control pulse that rotates state X through a phase evolution 
of –iωt. For a phase shift ∆φ=π/2 within a time τ, we need to induce an energy splitting between the 0 and 
1 states: 
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∆𝐸𝐸 = ℏ𝜔𝜔 = ℏ
∆𝜑𝜑
𝜏𝜏

 

As an example, using the measured valley lifetime of 0.2 ps for τ, the required energy splitting is 5.16 meV. 
The electric field of the laser control pulse can be related to the energy splitting by  

∆𝐸𝐸 = �̂�𝑑 ∙ 𝐸𝐸�⃗ = 𝑑𝑑|𝐸𝐸| 

where fc is the control pulse efficiency, �̂�𝑑 is effective electric dipole of the exciton, 𝐸𝐸�⃗  is the laser field, and 
for the right-hand expression, the laser polarization has been aligned in the same plane as the exciton dipole. 
Laser pulse energy is 

𝑃𝑃𝐿𝐿𝜏𝜏 = 𝐼𝐼𝐿𝐿𝐴𝐴𝜏𝜏 = �
𝑐𝑐𝜀𝜀𝑜𝑜
2

|𝐸𝐸|2� 𝐴𝐴𝜏𝜏 

where PL is the laser power, IL is the laser intensity, and A is the illuminated area. Substituting for |𝐸𝐸|, we 
find get an expression for the control pulse energy 

𝐸𝐸𝑐𝑐 = 𝐴𝐴𝜏𝜏
𝑐𝑐𝜀𝜀𝑜𝑜
2
�
∆𝐸𝐸
𝑑𝑑
�
2

= 𝐴𝐴
𝑐𝑐𝜀𝜀𝑜𝑜
2𝜏𝜏

�
𝜋𝜋ℏ
2𝑑𝑑
�
2

 

From this equation, we see that the control pulse energy decreases with valley lifetime and is quadradically 
sensitive to the effective exciton dipole moment.  

For the purposes of this calculation, we will assume that the output exciton converts to a photon with 
unity yield, which is then routed to a photodiode and a charge storage register. Readout efficiency fr is a 
function of the waveguide attenuation αW and waveguide length L: 

𝑓𝑓𝑟𝑟 = 10−𝛼𝛼𝑤𝑤𝐿𝐿 

The total energy cost of the inverting gate operation is now given by 

𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡 =
1
𝑓𝑓𝑟𝑟

(𝐸𝐸𝑖𝑖 + 𝐸𝐸𝑐𝑐) =
1
𝑓𝑓𝑟𝑟
�
𝑛𝑛𝑒𝑒𝑥𝑥𝑐𝑐𝐸𝐸𝑔𝑔
𝛼𝛼𝑃𝑃

+ 𝐴𝐴
𝑐𝑐𝜀𝜀𝑜𝑜
2𝜏𝜏

�
𝜋𝜋ℏ
2𝑑𝑑
�
2

� 

Using the data from Section 2 and some literature values, one can evaluate this expression. We take, αw = 
1 dB/cm, L = 10 µm, nexc = 10, Eg = 1.8 eV, α = 0.01, P = 10%, A = 1 µm2, τ = 0.4 ps, and d = 50 Debye. 
The energy per CNOT operation is 6.112 fJ, and is nearly equally split between the initialization and control 
pulse energy demands. By comparison, the active switching energy of a CMOS transistor is approximately 
equal to CV2, which for a six-transistor XOR gate in a 0.9V 14 nm technology is equal to ~0.053 fJ.  
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4. SUMMARY 

Foundational measurements to inform valleytronic computing applications were performed on 
monolayer MoS2 at MIT LL and on WS2 at MIT campus. At MIT LL, a technique to obtain precise Raman-
corrected valley polarization measurements was developed. We determined with a relatively high degree 
of precision that valley state initialization is robust not just at the K and K' points, but at any superposition 
states around the Bloch sphere. In addition, we are able to perform accurate valley polarization imaging at 
the micron scale, which we believe to be the first measurements of their kind at both room temperature and 
at cryogenic temperatures. From these measurements, we derive: 1) the appropriate length scale that can be 
supported by future valleytronic devices, and 2) a practical value for valley polarization. On campus, 
ultrafast valley polarization spectroscopy and Optical Stark Effect were performed on monolayer WS2. 
From these measurements, we derive the timescale for valley logic operations and the effective dipole 
moment of the excitons. 

We derived an expression for the switching energy of a logical valleytronic CNOT gate. Using the 
above-measured parameters, we estimate that using currently available technology, the energy cost will be 
approximately 6.1 fJ per valleytronic logic gate operation. This is more than 100× larger than the switching 
cost of a commercial 14 nm CMOS logic gate with similar functionality. At the current state of the art, 
valleytronic logic is not competitive with CMOS power consumption.   

The development of valleytronic logic devices is still in its infancy, however. Key parameters in the 
device performance model include the effective dipole moment, polarization fidelity, and the valley 
lifetime. Orders of magnitude improvement are possible in the dipole moment and valley lifetime, and as 
much as a 10× in valley polarization. There are several active areas of research to improve those parameters, 
including: heterostructures of TMD layers to allow robust interlayer excitons, improved synthesis 
techniques to reduce valley scattering centers, and suspended structures to remove substrate coupling. At 
this time, it is recommended to continue following the field for improvements in the key material parameters 
identified in this work. 
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