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Introduction 

The Automated Assessment of Postural Stability (AAPS) is an automated system for measuring balance 
deficits in warfighters in austere field environments. Its intended purpose is to assess balance deficits 
following concussion or lower extremity injuries and to provide context in making return-to-duty 
assessments. The system uses inexpensive commodity hardware to detect body movements, combined with 
a custom designed software suite that carefully measures those movements, compares them to ideal norms, 
and scores the results. AAPS was successfully designed to be operable by any minimally trained warfighter 
and does not require any medical or technical expertise to use. An extended AAPS (xAAPS) was also 
created that evaluates the quality of kinetic movements (such as lunges and high steps) instead of static 
balance poses. This work contributes to a growing body of knowledge in which inexpensive and ubiquitous 
off the shelf sensors can be used in developing field-usable tools that produce actionable biomedical data. 

The AAPS project began on September 15, 2015 and ran for four years (including a one-year no-cost 
extension). The award amount was for $1.36M. All work was performed at Temple University as a 
collaborative effort between the departments of Electrical & Computer Engineering and Physical Therapy. 
The goals of the project were all met and have been disseminated by a number of publications. 

Keywords 

motion tracking, balance assessment, Microsoft Kinect, concussion assessment 

Accomplishments 

What were the major goals and objectives of the project? 

The purpose of this project was to create a portable system for assessing balance in armed forces personnel 
that could be administered in austere field conditions by personnel with minimal training. Although there 
are many reasons for assessing an individual’s sense of balance, our project focused on balance deficits 
caused by concussion, traumatic brain injury, and musculoskeletal injury since these are especially relevant 
to fitness for duty.  

Our methodology was to use commodity off-the-shelf motion tracking technology to computerize a well-
known balance test called the Balance Error Scoring System (BESS). The motion tracking data is analyzed 
by a custom designed software tool running on a dedicated conventional Windows PC computer. Through 
an intelligent self-calibration process, the system is functionally “plug-and-play” meaning that the operator 
only has to turn on the camera and run the software in order to start the test; adjustments for lighting, 
background clutter, pixel resolution, camera tilt, and distance are all made automatically. The system 
prompts the subject to hold various poses and then it tabulates the resulting balance deficits. The BESS test 
requires subjects to hold a pose for 20 seconds at a time while a trained therapist counts infractions such as 
excessive sway, foot and hand movement, etc. There are three poses, each done once on firm ground and 
once again on a foam pad; error scores are capped at ten for each of the six pose-ground combinations.  

Using similar technological methods, an expanded system was built for tracking subjects during dynamic 
movements (in contrast to the static poses of the BESS test). This system tracks subjects as they perform 
movements associated with a standardized physical fitness test known as the Functional Movement Screen 
(FMS). The computer was trained to compare motion-captured movements against ideal benchmarks and 
to produce the same FMS score that is typically computed manually by a trainer or physical therapist. 



A significant part of this work was quantifying how accurately the commodity system could track motion. 
This information was necessary for eliminating systemic sensor biases during balance testing as well as 
quantifying uncertainty in our results. The calibration studies were performed by simultaneously tracking 
motion with our system (Kinect, Microsoft) and a state-of-the-art research-grade motion capture system 
(Vicon).  

The ability to use inexpensive commodity sensors to provide actionable biomedical information in austere 
settings has direct military relevance. One example is that personnel in the field need smart tools to assess 
warfighters for fitness to return to duty following injury.  Other examples may include assessment tools for 
measuring mental and physical acuity under various forms of duress such as combat/deployment traumatic 
stress, and deprivation of food, water, and sleep. The literature shows a clear focus on better understanding 
these issues; techniques such as the ones we have developed and promoted have a certain role in moving 
the field forward in the future. 

The work performed under this grant was organized into four Specific Aims. All aims, goals, and milestones 
were successfully met, and the work has been disseminated through numerous peer-reviewed publications. 

Aim 1: Develop the baseline AAPS system 

 Write image processing code in C/C++ 
 Develop user interface 
 Develop AAPS specifically for field use 

Aim 2: Calibrate AAPS and perform baseline evaluation 

 Healthy subject evaluation 
 Concussed subject evaluation 
 Musculoskeletal injury subject evaluation 

Aim 3: AAPS field evaluation 

 Evaluate use by non-clinician operators 
 Evaluate AAPS in field conditions 

Aim 4: Develop expanded xAAPS test 

 Determine dynamic movements to be measured by xAAPS 
 Modify existing AAPS software to handle dynamic movements 
 Evaluate xAAPS 

To maintain military relevance, our team received feedback from a Military Advisory Panel comprised 
primarily of directors and instructors of the Temple University Reserve Officer Training Corps. The study 
called for data collection from 145 human subjects: 50 healthy, 50 concussed, and 35 mild musculoskeletal 
injury AAPS subjects, and 10 healthy xAAPS subjects. 

What was accomplished under these goals? 

All proposed goals have been achieved. The AAPS and xAAPS systems have been built, calibrated, and 
tested extensively. Human data has been successfully collected and analyzed. And finally, new directions 
for military-relevant technology have been identified based on our work. The only aspect of the work that 
technically remains incomplete is recruitment of five male concussed subjects (out of the proposed 50). We 
observed that, especially among men, head trauma often goes undiagnosed and untreated, which increases 



the difficulty of identifying qualified human subjects. The reasons for this are well understood. Injured male 
subjects are often young and often lack health insurance, which discourages them from seeking medical 
care. Others seek to minimize the seriousness of their injuries in order to maintain a personal reputation of 
toughness. And still others seek to avoid the inconvenience of a medical interaction that won’t yield any 
perceived meaningful treatment. 

The initial three-year project duration was extended by one year in order to accommodate the outstanding 
human tests as well as a change in the motion capture sensor. In 2017, Microsoft discontinued production 
of the Kinect for Xbox. Although Microsoft replaced it with Azure Kinect, that device is primarily intended 
for cloud-based applications and is not properly suited for standalone applications such as AAPS and 
xAAPS.  Fortunately, we were able to identify a third-party motion capture and skeleton tracking device 
(Astra, Orbbec) to integrate into our system. The use of standardized body tracking application program 
interfaces (APIs) simplified this process. 

Details of the research performed under this grant can be found in the Products appendix at the end of this 
report. Our peer-reviewed journal and conference publications present this work in its most detailed form. 

The project was completed on budget, costing $1.36M. A cost breakdown includes 50% labor, 10% fringe, 
5% non-compensation, and 35% overhead.  

What opportunities for training and professional development has the project provided? 

This project proudly supported the technical development of a number of trainees. Specifically, a substantial 
portion of the work was performed by two postdoctoral fellows, Drs. Stephen Glass and Alessandro Napoli, 
both of whom performed technical and management tasks. Dr. Glass is now on the faculty of Physical 
Therapy at Radford University. Dr. Napoli is the lead rehabilitation engineer at Jefferson University 
Hospital in Philadelphia. This work also supported a doctoral student, Christian Ward, as well as numerous 
Masters’ and undergraduate level students. Dr. Ward is a staff scientist at Los Alamos National Labs, and 
the various other students have moved on to positions that include data scientists and defense contractors. 
In all cases, the technical development came primarily in the form of significant project responsibilities 
which often required attaining new skills such as programming, data analysis, and project management. 
Students were personally mentored by PIs Obeid and Tucker. Students were also exposed to research 
conferences such as the Military Health System Research Symposium (MHSRS) and the Conference of the 
IEEE Engineering in Medicine and Biology Society (EMBC) as part of their technical development. 

How were the results disseminated to communities of interest? 

We have disseminated our results through public talks, journal publications, and conference presentations 
(see the “Products” section below). We have been regular attendees at the MHSRS meeting in Orlando 
where we supplement our formal dissemination products with informal discussions with colleagues. 

What do you plan to do during the next reporting period to accomplish the goals and 
objectives? 

Nothing to report. 



Impact 

What was the impact on the development of the principal discipline(s) of the project? 

This work has contributed to a growing body of knowledge concerning the application of inexpensive 
commodity computer tools to military-facing biomedical issues. Nominally, the work we performed used 
the Microsoft Kinect to computerize the Balance Error Scoring System (the AAPS) and a 3D graphics 
engine to computerize the Functional Movement Screen (the xAAPS). However, more broadly speaking, 
this work has shown that any number of fitness or mental acuity screens can be computerized and enhanced, 
allowing them to be deployed in austere field conditions and operated by servicemembers without 
specialized medical training. In particular, this work has led to an understanding of how networks of 
biometric sensors (e.g. gait, motion capture, ECG, and galvanic skin response) can be integrated with 
immersive virtual reality to create multitask testing paradigms. Tests of this nature can simultaneously 
assess cognitive function, visual acuity, and decision-making ability under realistically stressful conditions; 
degree of difficulty can be controlled in real-time using biometric feedback. Although tests of such scope 
have been investigated by others, they are either performed under minimally realistic environments 
(marching in place in front of a television screen) or in large immobile lab environments such as the 
Computer-Assisted Rehabilitation Environment (CAREN). The work we have accomplished under this 
grant shows a potentially superior middle ground. The ubiquity of versatile third-party biometric sensors 
can be exploited to create tools that generate actionable results for military decision-makers. 

What was the impact on other disciplines? 

Nothing to report. 

What was the impact on technology transfer? 

Nothing to report. 

What was the impact on society beyond science and technology? 

Our goal has always been to create tools that allow the scientific community to better understand concussion 
and to help warfighters and athletes alike manage their concussive symptoms. Through our extensive data 
collection efforts, we have demonstrated the AAPS and xAAPS to several hundred individuals. Our 
observation has been that there is a great deal of enthusiasm for systems like ours that can be used to bring 
quantifiable performance results directly to the end-user as opposed to requiring a lab or clinic setting. 

  



Changes/Problems 

Changes in approach and reasons for change. 

Nothing to report. 

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or 
select agents. 

Nothing to report. 

Actual or anticipated problems or delays and actions or plans to resolve them. 

Nothing to report. 

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or 
select agents. 

Nothing to report. 

Changes that have a significant impact on expenditures. 

Nothing to report. 

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or 
select agents. 

Nothing to report. 
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Participants & Other Collaborating Organizations 

What individuals have worked on the project? 

Name: Iyad Obeid, PhD 
Project Role: co-Principal Investigator 
Identifier: https://orcid.org/0000-0002-5796-843X 
Person-Months: 11.3 
Contribution: Dr. Obeid contributed to project design and management, analyzed data, 

supervised data marshalling, wrote quarterly reports, and contributed to all 
technical publications. 

 
Name: Carole Tucker, PhD 
Project Role: co-Principal Investigator 
Identifier: https://orcid.org/0000-0002-9408-5898 
Person-Months: 10.2 
Contribution: Dr. Tucker contributed to project design and management, IRB preparation, human 

subject protocol design, data collection, and analysis, and all technical 
publications. 
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Project Role: Postdoctoral Fellow 
Identifier: https://orcid.org/0000-0002-4061-3747 
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Contribution: Was responsible for managing all aspects of the software organization and 
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graduate RAs and the undergraduates, contributed to data collection and analysis, 
and took a leading role on all technical publications. 

 
Name: Stephen Glass 
Project Role: Postdoctoral Fellow 
Identifier: https://orcid.org/0000-0001-6263-527X 
Person-Months: 27 
Contribution: Was responsible for managing all aspects of data planning, collection and analysis, 

including IRB development. He managed junior students and took a leading role 
in all technical publications. 

 
Name: Christian Ward 
Project Role: Graduate Research Assistant 
Identifier: https://orcid.org/0000-0001-5394-8135 
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Contribution: Provided software development and data analytics support; contributed to 

management of undergraduate students. 
 
Name: Nicholas Satterthwaite 
Project Role: Graduate Researcher 
Person-Months: 11.8 
Contribution: Code development and documentation 
 
  



Name: Victor Espinoza 
Project Role: Graduate Researcher 
Person-Months: 4.2 
Contribution: Code development and documentation 

Name: Anirvan Majumdar 
Project Role: Graduate Research Assistant 
Person-Months: 2 
Contribution: Code development and documentation 

Name: Zachary Kane 
Project Role: Undergraduate Researcher 
Person-Months: 4.1 
Contribution: Code development and documentation 

Name: Evan Stecco 
Project Role: Undergraduate Researcher 
Person-Months: 3.5 
Contribution: Code development and documentation 

Name: Orlena Roe 
Project Role: Undergraduate Researcher 
Person-Months: 3.3 
Contribution: Contributed to software testing and development of the graphical interface. 

Name: Elizaveta Ibeme 
Project Role: Undergraduate Researcher 
Person-Months: 2.1 
Contribution: Contributed to software testing and wrote software tools for data analysis. 

Name: Bhautik Amin 
Project Role: Undergraduate Researcher 
Person-Months: 1.2 
Contribution: Code development and documentation 

Name: Paula Oliveira 
Project Role: Undergraduate Researcher 
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Name: Lillian Veloso 
Project Role: Undergraduate Researcher 
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Project Role: Undergraduate Researcher 
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Contribution: Code development and documentation 



Name: Von Kaukeano 
Project Role: Undergraduate Researcher 
Person-Months: 0.6 
Contribution: Code development and documentation 

Name: Chad Martin 
Project Role: Undergraduate Researcher 
Person-Months: 0.6 
Contribution: Code development and documentation 

Has there been a change in the other active support of the PD/PI(s) or senior/key personnel 
since the last reporting period? 

Nothing to report. 

What other organizations have been involved as partners? 

Nothing to report. 

Special Reporting Requirements 

See Quad Chart in the Appendix 
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Abstract — The Balance Error Scoring System (BESS) is one 

of the most commonly used clinical tests to evaluate static 

postural stability deficits resulting from traumatic brain events 

and musculoskeletal injury. This test requires a trained operator 

to visually assess balance and give the subject a performance 

score based on the number of balance “errors” they committed. 

Despite being regularly used in several real-world situations, the 

BESS test is scored by clinician observation and is therefore (a) 

potentially susceptible to biased and inaccurate test scores and 

(b) cannot be administered in the absence of a trained provider.

The purpose of this research is to develop, calibrate and field test

a computerized version of the BESS test using low-cost

commodity motion tracking technology. This ‘Automated

Assessment of Postural Stability’ (AAPS) system will quantify

balance control in field conditions. This research goal is to

overcome the main limitations of both the commercially

available motion capture systems and the standard BESS test.

The AAPS system has been designed to be operated by a

minimally trained user and it requires little set-up time with no

sensor calibration necessary. These features make the proposed

automated system a valuable balance assessment tool to be

utilized in the field.

I. INTRODUCTION

Traumatic Brain Injury (TBI) is defined as brain damage 
generated by an external mechanical force. Such forces can be 
caused by rapid acceleration or deceleration, blast waves, 
crush, or impact or penetration by a projectile. TBI can lead to 
temporary or permanent impairment of cognitive, physical and 
physiological functions. TBI contributes to a substantial 
number of deaths and permanent disability and it is a 
contributing factor to a third of all injury-related deaths in the 
United States. About 75% of TBIs that occur each year are 
concussions or other forms of mild traumatic brain injury 
(mTBI) [1]. TBI can cause a vast series of symptoms and it can 
be challenging to diagnose given the number of confounding 
factors involved. This is especially true for traumatic events 
that need to be diagnosed in the field, such as in military or 
athletic play scenarios [2]. 

Concussion diagnostic and management decisions are 
based on many elements, including symptom presentation, 
physical examinations and specialized tests designed to detect 
deficits resulting from concussive injuries [3]–[5]. 
Consequently, concussion assessment requires a 
multidisciplinary team of professionals and a series of 
specialized tests [6]. With the increased attention on and 
recognition of concussive injuries, there is a need for new 
assessment tools that, combined with more traditional 
techniques, will help evaluate concussion injuries more 
accurately [7], [8]. For some time, balance testing has been 
used in clinical settings as a reliable and valuable assessment 
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tool to evaluate neurological functioning in subjects suffering 
from concussion  and musculoskeletal injuries [9], [10]. There 
is a need to move concussion testing from the clinic onto the 
field, into the locker room, or out into the military theater [10], 
[11]. In these cases, computerized systems are often limited by 
size, weight, portability, ease of setup and use, and ease of 
calibration. Furthermore, there is a demonstrated need for such 
systems to be operable by non-medical or non-expert 
personnel, such as coaches and ordinary military corpsmen. 
We have developed a system that addresses these issues: a 
computerized system for administering and scoring the BESS 
test in a wide array of non-clinic locations using an 
inexpensive commodity motion-capture system. 

II. MATERIAL AND METHODS

A. The BESS Test

The Balance Error Scoring System (BESS) is one of the
most commonly used clinical tests for assessing postural 
stability following concussion [12]. It measures standing 
posture and balance related impairments [11]–[13]. Patients 
hold three different poses on two different surfaces (firm and 
foam), for 20 seconds each with their hands on hips and eyes 
closed. The three stances are: double leg stance with feet flat 
on testing surface; single leg stance, with the subject standing 
on the non-dominant leg with the contralateral limb held at 
approximately 20° of hip flexion, 45° of knee flexion; tandem 
stance, with one foot placed in front of the other with heel of 
the anterior foot touching the toe of the posterior foot. The 
subject’s non-dominant leg is in the posterior position. A 
specially trained clinician observes the patient during each 
pose and records the number of balance “errors”. These errors 
include: 

 Moving the hands off the hips

 Opening the eyes

 Step, stumble or fall

 Abduction or flexion of the hip beyond 30°

 Lifting the forefoot or heel off the testing surface

 Remaining out of the proper testing position for longer
than 5 seconds

Because the BESS test is scored by clinician observation, it is 
potentially susceptible to biased and inaccurate test scores that 
could lead to inappropriate return to duty or play before 
adequate recovery from the traumatic event [8]. The BESS is 
further limited by the need for properly trained clinicians to 
simultaneously administer, score and interpret the test and to 
ensure patient safety. Such an expert examiner may not be 
readily available in field situations. Finally, the BESS only 
focuses on static postural balance tasks and lacks assessment 
of more dynamic postural tasks. Testing only for static stability 
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may not capture other important domains of balance, including 
dynamic or cognitive aspects [14]. 

B. The Automated Assessment of Postural Stability System 

The purpose of this research is to develop, calibrate and 
field test an Automated Assessment of Postural Stability 
(AAPS) system to quantify balance control in military field 
conditions. The AAPS’ objective is to evaluate postural and 
balance deficits due to concussion and musculoskeletal 
injuries commonly seen in active duty military personnel for 
return-to-duty assessment. The AAPS system has been 
developed in the C# programming language in the Microsoft 
Visual Studio 2015 programming environment and the .NET 
framework. The system includes a comprehensive graphical 
interface (GUI) to guide the operator and the subjects through 
the BESS test. It also provides user controls, data management 
features, a real-time display of the detected body and intuitive 
visual feedback on the AAPS tracking capabilities. 
Furthermore, the GUI has been designed to be user-friendly 
and its use only requires minimal training and experience. The 
current AAPS GUI is shown in Fig. 1. 

C. System Design 

The AAPS system utilizes an inexpensive Microsoft 
Kinect v2.0 motion capture sensor [15], [16] and a custom 
designed software suite for Microsoft Windows to objectively 
track kinemtics during the Balance Error Scoring System 
(BESS) test. Fig.2 displays the system workflow. Set-up time 
is minimal, and no additional calibration time is required. 
These features make the AAPS a valuable balance assessment 
tool to be utilized in the field. It only requires the patient to 
assume the right stance and the system starts extracting 
tracking information from the sensor data stream and uses a 
GUI to display the tracked skeleton. By using some simple 
visual feedback features, the system provides the user with 
information regarding the subject’s position, joints and eyes 
detection. This helps the non-trained user in positioning the 
subject for the test and guarantees that all the necessary 
parameters are tracked correctly before starting the test. 
During the test, in each frame, the AAPS extracts two types of 
data from the Kinect sensor: infrared camera videos, which 
will be saved in the computer memory for optional off-line 
analysis; and the subject’s joint location and eye data. These 
will be used, frame-by-frame, to build arrays containing the 
three metrics that will be then used to evaluate errors, namely 
relative joint distances, segment angles and eye state. After test 

completion, these metrics will be used to compute balance 
errors as explained in more detail in the next section. 

III. AAPS BALANCE ERROR ASSESSMENT 

Once the subject is in position, the test is started and the 
AAPS guides the user through the set of six stances and then 
automatically computes balance errors. The AAPS does not 
require baseline recordings for balance assessment. It only 
uses a few seconds worth of calibration data that are 
acquired right before the start of each BESS stance, with the 
patient standing still in the right test position. The 
calibration data are used to learn subject dependent features, 
such as body shape and postural characteristics. 
Furthermore, calibration data are necessary to compensate 
for any small fluctuations in joint tracking that may occur. 
This is necessary, since even when a subject stands as still 
as possible, the Kinect typically shows joint locations 
fluctuating to some small degree. In order to not erroneously 
flag such flutter as balance errors, a brief calibration 
recording is used to determine the mean and standard 
deviation of each joint location. During actual testing, only 
movements exceeding five standard deviations are flagged 
as balance errors. In order to detect a subject’s postural 
changes, three biometric measurements are used: joint 
distances, segment angles and eye status. These variables 
are computed in each video frame but error detection is 
performed on the output of a moving average filter with a 
window time duration of five frames. This filter was 
implemented to further stabilize the system error detection 
by reducing high frequency artifacts. The average of these 
metrics during calibration are compared to their 
corresponding actual values during testing to detect changes 
in postural stability. Equation 1 shows how the average 
distance calibration values are computed. 

�̂�𝑐𝑎𝑙 =
1

𝑁𝑐𝑎𝑙
∑ √

(𝑗𝑜𝑖𝑛𝑡1𝑥
(𝑓𝑟) − 𝑗𝑜𝑖𝑛𝑡2𝑥

(𝑓𝑟))
2

+

(𝑗𝑜𝑖𝑛𝑡1y(𝑓𝑟) − 𝑗𝑜𝑖𝑛𝑡2y(𝑓𝑟))2

𝑁𝑐𝑎𝑙
𝑓𝑟=1  

Equation 1 provides one calibration value for each biometric 

variable used. 𝑁𝑐𝑎𝑙  is the number of calibration frames used, 

𝑓𝑟 is the frame index, and 𝑗𝑜𝑖𝑛𝑡1𝑥
 and 𝑗𝑜𝑖𝑛𝑡1y are the 2-D 

coordinates of a joint of interest. 
After calibration, during postural testing, the metric 

variables are computed once per frame and the resulting 
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sequences {𝑑𝑓𝑟}
𝑓𝑟=1

𝑁
 stored in memory arrays (See Equation 

2). Error calculation is performed by comparing the average 
calibration values to the output of a moving average filter with 
a sliding window duration of five frames (see Equation 3). 

Sequence:  {𝑑𝑓𝑟}
𝑓𝑟=1

𝑁
      where 𝑓𝑟 is the video frame index

  𝑑𝑓𝑟 = √
(𝑗𝑜𝑖𝑛𝑡1𝑥

(𝑓𝑟) − 𝑗𝑜𝑖𝑛𝑡2𝑥
(𝑓𝑟))

2
+

(𝑗𝑜𝑖𝑛𝑡1y(𝑓𝑟) − 𝑗𝑜𝑖𝑛𝑡2y(𝑓𝑟))2
   

where {𝑑�̂�}𝑖=1

𝑁−𝑛+1
 is the moving average output window, 

where n is the number of frames in the moving average 
(default is 5). 

         𝑑�̂� =
1

𝑛
∑ 𝑑𝑓𝑟

1+𝑛−1
𝑓𝑟=1        (3) 

If the changes in distances and angles between the calibration 
and the actual values are larger than five times the standard 
deviation in the calibration data, then the AAPS system will 
detect an error. The error detection criterion is shown in 
Equation 4. 

𝑒𝑖 = |�̂�𝑖 −  �̂�𝑐𝑎𝑙| > 5 ∗ 𝜎𝑐𝑎𝑙        

where 

𝜎𝑐𝑎𝑙 =  √
1

𝑁𝑐𝑎𝑙
∑ (𝑑𝑓𝑟 − �̂�𝑐𝑎𝑙)2𝑁𝑐𝑎𝑙

𝑓𝑟=1     

At the end of a complete BESS test, the errors with respect 
to each condition and the error types are stored in a file 
together with patient, test information and video files 
corresponding to the scored tests. 

The automated system’s BESS scoring is based on the 
detection of four types of errors that are generated when: 1) the 
hands are off the hips; 2) the foot distance changes; 3) the 
angle between the center of the shoulders and the center of the 
hips becomes larger than 30°; 4) the subjects open their eyes.

IV. MAIN CHALLENGES OF A KINECT-BASED AUTOMATED 

BALANCE SYSTEM 

As a motion tracking system, the Kinect sensor has some 
clear limitations as compared to professional or clinical grade 

digital motion capture systems that make use of more 
sophisticated sensors and body markers. In this section, some 
of the main challenges are introduced: 

1) The Kinect sensor cannot stably detect foot positions 
on certain surfaces, especially during static testing. This is 
likely caused when the floor interferes with the infrared depth 
signal projected by the Kinect. This issue is being addressed 
by determining the optimal sensor height, angle, and distance 
from subject. 

2) The Kinect sensor can successfully detect subject’s 
trunk lateral movements from the vertical position, in the 
frontal plane. However, the sensor is not as effective when 
tracking trunk changes that occur in the transverse plane. The 
AAPS will account for this limitation by combining other joint 
positions to estimate 3-dimensional trunk movements. 

3) During the Tandem Stance, with the subject facing the 
Kinect, the sensor and the body tracking system have issues 
detecting the back leg that is hidden behind the other leg. Even 
though the information on the back leg is not available to the 
AAPS, our system will infer changes in the back leg position 
by using data derived from other joints. 

4) The eye gaze sensor tracking capabilities yield the best 
results when the subject’s eyes are aligned with the sensor’s 
color camera. This can be challenging when the sensor is 
placed at the height of the subject’s trunk. This issue can be 
solved by performing a series of face orientation computations 
to guarantee maximal eye detection accuracy during the test. 

An important implementation detail relates to the Kinect 
sensor, which provides a number of different data streams, 
such as both infrared and color videos, depth information, 
tracking data, and gesture and face recognition. These data 
require intensive real-time signal and image processing that is 
carried out on the computer video card using Microsoft 
proprietary algorithms. While the real-time data are valuable 
for the AAPS to perform accurately, the resulting 
computational burden makes the system performance 
unpredictable and unstable. A performance bottle neck arises 
as the computer handles this Kinect data in real-time while 
simultaneously running other system processes. Microsoft’s 
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Kinect libraries respond to limitations in computing power by 
automatically reducing the amount of information coming in 
from the various Kinect sensors by continually adjusting the 
framerate during run-time. In ideal conditions, the sensor 
returns data streams at 30 frames/second. However, during our 
testing, it was not unusual to see the frame rate drop below 10 
frames/second, even though the AAPS was tested on high-end 
laptops with late model quad-core processors and dedicated 
video cards. In order to account for this variability in frame 
rate, the AAPS is implemented using a series of timer variables 
that allow it to keep track of real-time system performance. 
Furthermore, the variable and non-controllable frame rate will 
affect the operation of the moving average, the filter time 
constant will depend on the frame rate. To compensate for 
such variability, the moving average size can be chosen 
dynamically and adapted to the instantaneous frame rate to 
keep the filter cut-off frequency constant. The system real-
time performance does not appear to be a main concern when 
performing static testing, but may become critical in the future 
when implementing dynamic balance testing. 

V. FUTURE WORK 

In future work, the AAPS system will be further expanded 
to introduce new functionalities. Namely, the AAPS will not 
only perform the BESS test, but it will also provide kinematic 
metrics that will better capture the examinee’s balance deficits 
by using time measures of performance and dynamic testing 
of performance during fundamental movements. Furthermore, 
the AAPS software suite will be expanded by integrating 
physiological data recorded from the examinee in real time, 
into the concussion battery of tests, while performing the 
automated tests. These data will be used to create personalized 
test scoring procedures and thus increase the system capability 
to evaluate cognitive and behavioral elements of the examinee. 
Moreover, assessing the examinee’s physical engagement and 
states will greatly improve the AAPS ability to account for 
suboptimal effort levels, that is a major concern in computer-
based testing for concussion assessment [10]. 

VI. CONCLUSION 

The proposed research presents an automated system for 

quantifying balance control deficits due to traumatic brain 

injury. The AAPS system consists of two components: a 

Microsoft Kinect motion sensor and a Windows laptop 

running a specifically developed software suite. The AAPS 

main goal is to perform the BESS test in filed conditions, with 

no prior calibration and no medical or experienced personnel 

needed. The AAPS provides reliable and repeatable balance 

assessment results that are important in managing the return 

to duty determination after traumatic brain events. 

This work has been demonstrated the validity of the AAPS 

for performing automated BESS tests. In this view, the set-up 

simplicity, robustness, test repeatability and the user-friendly 

approach of the AAPS make the system the perfect platform 

to develop the next generation of in the field concussion 

evaluation tests. 
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INTRODUCTION 

The Microsoft Kinect 2.0™ is a portable platform that allows for low-cost motion capture 

in field-based and clinical settings [1].  The sensor performs remarkably well as an out-of-the-

box technology, particularly considering its limitations as a single-camera, markerless system.  

These achievements notwithstanding, data from the Kinect™ are not readily comparable to 

conventional kinematics.  Specifically, the sensor generates joint displacement time histories 

without rigid body definitions or range of motion constraints.  These measurement errors tend 

to have large effects on any joint angles calculated by the user.  It is possible, therefore, that the 

quality of Kinect™ data could be improved for research purposes through the introduction of 

modeling constraints commonly applied in inverse kinematics.  Our purpose is to demonstrate 

the performance of Kinect-based inverse kinematics solutions in comparison with similar data 

acquired using standard laboratory technology. 

 

CLINICAL SIGNIFICANCE 

Applying modeling constraints to motion capture data acquired using low-cost sensors may 

increase the accuracy of clinical measurement techniques.  These methods could support 

diagnostics and clinical decision-making by enabling the collection of higher quality data. 

 

METHODS 

Eight participants (4 males/4 females, 25.6 ± 2.5 years, age, 170.8 ± 10.1 cm, 66.2 ± 12.8 

kg) performed trials of a series of commonly used clinical movement tests as data were 

captured using 1) a Qualisys Oqus motion capture system (Q), and 2) a Microsoft Kinect 2.0™ 

(K).  Inverse kinematics solutions were computed in OpenSim 3.3 using marker (Q) or joint 

center (K) trajectories.  Both analyses were conducted using the Vicon Plug-In-Gait model with 

segment/trajectory relationships (i.e. the “marker set”) modified to match the source of the data.  

Sagittal plane hip and knee angles were analyzed to compare performance between the two 

systems.  After resampling the raw data from the Kinect sensor (which samples at a variable 

rate), cross-correlation and RMS error were calculated on the synchronized signals. 

 

DEMONSTRATION 

Test DS HS FSTS ABL MIP 

Hip cor. 0.89 (0.27) 0.90 (0.06) 0.98 (0.01) 0.87 (0.13) 0.80 (0.11) 

Hip err. 22.89 (7.51) 14.82 (5.17) 23.40 (6.65) 22.98 (18.02) 23.25 (9.50) 

Knee cor. 0.89 (0.25) 0.89 (0.06) 0.99 (0.01) 0.90 (0.08) 0.86 (0.10) 

Knee err. 12.41 (8.64) 11.95 (3.45) 14.70 (18.62) 11.70 (5.16 16.00 (6.14) 

OHS = Overhead Squat, HS = Hurdle Stepping, FSTS = 5x Sit-to-Stand, ABL = Alternating 

Barbell Lunge, MIP = Marching in Place, corr. = correlation (r), err. = RMS error (deg.) 

 



Figure 1 shows hip flexion 

time series derived from both 

sensors during a representative 

trial of the Five Times Sit-to-

Stand test.  Kinect tracking of 

the sagittal plane hip and knee 

angles using inverse kinematics 

performs favorably in 

comparison with a gold-standard 

system.  We do note, however, 

that whereas temporal features of 

the signal are well preserved, the 

magnitude of angular 

displacements can be 

overestimated by the Kinect. 

 

 
Figure 1 

 

SUMMARY 

Our laboratory has recently shown that Kinect 2.0™ data is suitable for instrumenting 

simple field-expedient clinical tests [2].  With the present work, we expand on our automated 

scoring algorithm research to improve the quality of this sensor as a robust motion capture tool.  

These data show that accuracy of certain angular kinematics from low-cost sensors such as the 

Microsoft Kinect 2.0™ may approach gold-standard criteria with commonly used inverse 

kinematic modeling techniques.  The most substantial benefits likely derive from rigid body 

definitions and joint-specific range of motion limits, neither of which are applied to Kinect™ 

data.   

Our approach is implemented with openly available software (OpenSim) using a modified 

version of a familiar kinematic model, the Vicon Plug-In-Gait model.  This workflow could 

greatly benefit clinics and mobile laboratories requiring high quality data without the time and 

expense typical of multicamera systems.  In future work, we will demonstrate the performance 

of a Kinect-based inverse kinematics analysis in tracking complex, multiplanar movement 

during a variety of dynamic posture tasks. 
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Abstract—Impaired balance is a common indicator of mild
traumatic brain injury, concussion and musculoskeletal
injury. Given the clinical relevance of such injuries, especially
in military settings, it is paramount to develop more accurate
and reliable on-field evaluation tools. This work presents the
design and implementation of the automated assessment of
postural stability (AAPS) system, for on-field evaluations
following concussion. The AAPS is a computer system, based
on inexpensive off-the-shelf components and custom soft-
ware, that aims to automatically and reliably evaluate
balance deficits, by replicating a known on-field clinical test,
namely, the Balance Error Scoring System (BESS). The
AAPS main innovation is its balance error detection algo-
rithm that has been designed to acquire data from a
Microsoft Kinect� sensor and convert them into clinically-
relevant BESS scores, using the same detection criteria
defined by the original BESS test. In order to assess the
AAPS balance evaluation capability, a total of 15 healthy
subjects (7 male, 8 female) were required to perform the
BESS test, while simultaneously being tracked by a Kinect
2.0 sensor and a professional-grade motion capture system
(Qualisys AB, Gothenburg, Sweden). High definition videos
with BESS trials were scored off-line by three experienced
observers for reference scores. AAPS performance was
assessed by comparing the AAPS automated scores to those
derived by three experienced observers. Our results show that
the AAPS error detection algorithm presented here can
accurately and precisely detect balance deficits with perfor-
mance levels that are comparable to those of experienced
medical personnel. Specifically, agreement levels between the
AAPS algorithm and the human average BESS scores
ranging between 87.9% (single-leg on foam) and 99.8%
(double-leg on firm ground) were detected. Moreover,
statistically significant differences in balance scores were
not detected by an ANOVA test with alpha equal to 0.05.
Despite some level of disagreement between human and
AAPS-generated scores, the use of an automated system
yields important advantages over currently available human-

based alternatives. These results underscore the value of
using the AAPS, that can be quickly deployed in the field
and/or in outdoor settings with minimal set-up time. Finally,
the AAPS can record multiple error types and their time
course with extremely high temporal resolution. These
features are not achievable by humans, who cannot keep
track of multiple balance errors with such a high resolution.
Together, these results suggest that computerized BESS
calculation may provide more accurate and consistent
measures of balance than those derived from human experts.

Keywords—Mild traumatic brain injury, Concussion detec-

tion, Field-expedient balance test, Automated BEES, Auto-

matic balance error scoring detection, Kinect, Return-to-

duty evaluation, On-field automatic balance detection.

INTRODUCTION

The incidence of mild traumatic brain injury
(mTBI), concussion, and musculoskeletal injuries has
increased in the patient population of the Department
of Defense (DoD) and the Veterans Health Adminis-
tration (VHA) as a result of injuries in military and
combat operations.9,17,34 Such injuries cause a sub-
stantial number of deaths and can lead to temporary or
permanent disability. Despite their clinical relevance,
many injuries are still unreported and this matter is
further complicated by the limited sensitivity and reli-
ability of current on-field clinical tests.23,31 With the
increased attention on recognition of neuromuscu-
loskeletal injuries, there is a strong need for new
assessment tools to help evaluate these injuries onsite,
in non-clinical environments, more effectively and in a
timely manner.

In on-field situations, balance is a commonly used
indicator of mild traumatic brain injury (mTBI), con-
cussion, and musculoskeletal injury.14,16,32 To measure
balance, a number of standardized screening tools are

Address correspondence to Alessandro Napoli, Department of

Electrical & Computer Engineering, Temple University, Philadelphia,

PA 19122, USA. Electronic mail: a.napoli@temple.edu

Annals of Biomedical Engineering, Vol. 45, No. 12, December 2017 (� 2017) pp. 2784–2793

DOI: 10.1007/s10439-017-1911-8

0090-6964/17/1200-2784/0 � 2017 Biomedical Engineering Society

2784

http://orcid.org/0000-0002-4061-3747
http://crossmark.crossref.org/dialog/?doi=10.1007/s10439-017-1911-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10439-017-1911-8&amp;domain=pdf


becoming prevalent in sideline/on-field balance
assessment, replacing routine physical and clinical
exams.6,15,29 These on-field evaluations aim to provide
a relatively brief assessment for determining whether a
potentially injured service member or athlete is suit-
able to return to duty

The most commonly used clinical balance assess-
ment tool following concussion is the Balance Error
Scoring System (BESS).16,28 The BESS test measures
static postural stability and it is typically administered
by trained medical personnel who must observe and
count on a 0–10 scale, specific behaviors corresponding
to deficits in postural control while simultaneously
spotting the subject to prevent falls. The subject under
test is required to maintain balance with eyes closed
and hands on hips in three stance conditions: double-
leg, single-leg and tandem stance. Each stance is per-
formed on two surface types, hard ground (DS, SS,
TS) and on a foam pad (DF, SF, TS). The standard-
ized BESS defines the subject’s balance errors, which
must be counted:

� Moving the hands off the hips.
� Opening the eyes.
� Step, stumble or fall.
� Abduction or flexion of the hip beyond 30�.
� Lifting the forefoot or heel off the testing surface.
� Remaining out of the proper testing position for

longer than 5 s.

Although fast and inexpensive, the BESS test pre-
sents a series of limitations that are intrinsically related
to its subjective and manual scoring method. The
BESS has been reported to have modest and widely
ranging test sensitivity due to scoring inaccuracies and
observer bias.11,13 For instance, in Ref. 11 it has been
reported that the inter-rater and intra-rater minimum
detectible change for the total BESS score were
respectively 9.4 and 7.3 points. These changes are in
the same range as BESS score differences between
baseline and testing in concussed subjects. It has been
found that the average BESS score after concussion is
17 errors (range 15–19 errors), compared with ten er-
rors at baseline (range 8.4–12.7 errors).5 Further BESS
limitations are the need for properly trained medical
personnel to administer the test and its susceptibility to
fatigue and practice effects.5,18

Given these limitations, numerous research efforts
have aimed at improving balance evaluation for the
BESS test. Such efforts can be divided into two main
groups: (1) modifying and optimizing the human-based
version of the test to make it more sensitive and to
reduce the effects of fatigue and practice3,18,19,33; (2)
Instrumenting the BESS, using either inertial mea-
surement units2,20,21 or force platforms,1,8 to make the

test more reliable and accurate, and reduce variability
due to human bias.

MATERIALS AND METHODS

In order to overcome the BESS test limitations, we
developed the automated assessment of postural sta-
bility (AAPS) system to quantify balance control in
military field conditions. The AAPS’ objective is to
evaluate postural deficits due to concussion and mus-
culoskeletal injuries commonly seen in active duty
military personnel for return-to-duty assessment. The
AAPS system utilizes an inexpensive Microsoft Kinect
v2.0 motion capture sensor5,18 and a custom designed
software suite for Microsoft Windows to objectively
track kinematics during Balance Error Scoring System
(BESS) testing.

The AAPS system has been developed in the C#
programming language in the Microsoft Visual Studio
2015 programming environment and the .NET 4.5
framework. The system requires minimal set-up time
and no dedicated calibration time. Furthermore, it
includes a comprehensive graphical user interface
(GUI) to guide the operator and the subjects through
the BESS test. The GUI also provides user controls,
data management features, a real-time display of the
detected body and intuitive visual feedback on the
AAPS tracking capabilities. The system is user-friendly
and its use only requires minimal training and experi-
ence. These characteristics facilitate the AAPS’ inte-
gration and deployment in military practices. In
addition to collecting information regarding the sub-
ject’s joint positions and eye status (open/closed), the
system provides real-time visual feedback to the
operator. These characteristics help non-medical
operators to properly position the subject in the field of
view and guarantee that the necessary parameters are
tracked correctly before starting the test.27 The eye
status tracking feature has been implemented using a
face tracking library developed by Microsoft and
available via the Kinect SDK 2.0. The face tracking
combines HD color and infrared video streams to de-
tect the location and status of the subject’s eyes.25

This paper focuses on the balance error detection
algorithm that has been implemented in the AAPS
system to evaluate postural stability and provide a
reliable and automated BESS score starting from raw
Kinect sensor data. The algorithm has been designed
to track balance errors as they are defined in the BESS
standard.

This research was approved by the Temple
University Institutional Review Board. All subjects
provided written, informed consent prior to partici-
pating. A total of 15 healthy subjects (7 male, 8 female)
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each performed two complete BESS tests. Every trial
was simultaneously tracked by a Kinect 2.0 sensor and
a professional-grade motion capture system (Qualisys
AB, Gothenburg, Sweden). High definition (HD) vi-
deos with BESS trials were scored off-line by three
experienced observers. Further details regarding the
experimental setup can be found in Ref. 26.

The AAPS system can be divided into three oper-
ating blocks: the Kinect sensor that detects human
bodies using the depth data stream, the Microsoft
proprietary skeletal tracking algorithm that converts
the 3D camera images into 3D body joint coordinates,
and the AAPS software that processes these coordi-
nates and records balance errors. A top level block
diagram of the system is shown in Fig. 1.

The Microsoft KinectTM sensor is a low-cost, por-
table, and marker-less motion tracking system devel-
oped for video game applications. Despite being amass-
produced commodity, this 3D depth camera combined
with the Microsoft proprietary skeletal tracking algo-
rithm has the potential to be used as an alternative to
laboratory-grade motion tracking systems.

Over the past few years, numerous performance
comparisons between the Kinect and professional
motion tracking systems have been carried
out.7,10,22,24,30,35 It is not surprising that such an inex-
pensive off-the-shelf commodity item cannot reach the
levels of performance of professional-grade systems.
Consequently, some important signal processing chal-

lenges must be overcome when using Kinect in appli-
cations such as the AAPS. For instance, the Kinect
sensor frequently shows inaccuracies and oscillations
when tracking body joints in both static and dynamic
conditions. Such inaccuracies are affected by various
parameters such as room conditions and geometry, the
subject’s body type, their distance from the sensor,
and/or their clothing. Other types of tracking error can
be due to quantization noise or missing information in
the sensor data stream. Furthermore, the Kinect
skeletal tracking presents two types of inaccuracy due
to: (1) relatively small levels of white noise caused by
detection imprecisions; and (2) temporary spikes in
noise levels caused by joint tracking inaccuracies on a
frame-by-frame basis. In real-world applications, as a
result of these challenges, skeletal tracking can be
carried out with precision levels in the range of a few
centimeters.12,26 Thus, without a strict rigid body
model to be superimposed onto the Kinect raw data, it
is not possible to compensate completely for the sen-
sor-related errors.4 This work demonstrates how ded-
icated signal processing techniques can mitigate these
errors.

The first task of the AAPS software is to visualize
and store the Kinect sensor raw data output, which is
composed of HD video, infra-red video, three-dimen-
sional depth data, joint position and orientation.
Subsequently, as shown in Fig. 2, the AAPS extracts
human body joint coordinates and locates the floor
plane in real-time. The floor plane is used to identify
the position and tilt of the sensor with respect to the
subject. The joint coordinates are multiplied by a
rotation matrix to compensate for sensor tilt and
positioning. Next, the data frame rate is set to a con-
stant value of 30 frames per second using linear
interpolation. This is necessary because the Kinect
provides data at a variable frame rate that depends on
the instantaneous operating conditions of the acquisi-
tion computer (hardware/software) and data collection
environment conditions such as lighting, room geom-
etry, type and number of objects in the sensor field of
view. To further account for the potentially large
variability in the Kinect sensor frame rate (5–30 fps),
the AAPS software was designed to perform real-time
frame rate checks. If during a trial, the instantaneous
frame rate drops below a certain value (10 fps in this
application), an error message is displayed and the user
is notified that the acquisition needs to be repeated.
This is a fundamental feature in an automated system
to guarantee acceptable performance levels in any
condition. Based on our data collection sessions with
the AAPS system, the ideal value of 30 fps tends to
drop to 15 fps a few times per minute, while lower
values are less frequent and usually occur once every
50 trials.FIGURE 1. AAPS top level block diagram.
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Next the extracted body joint 3D coordinates are
filtered using a Savitzky–Golay filter. This is a
smoothing filter with minimal signal distortion that
operates by fitting low-order polynomial approxima-
tions to consecutive signal time windows using a least-
squares approach. A filter with a third order polyno-

mial approximation and a time window duration of
0.166 s was used. At a constant sampling frequency of
30 Hz, such a window length corresponds to selecting
five data points for each step of the least-squares
approximation. As discussed above, filtering Kinect
data with a smoothing filter is necessary to attenuate

FIGURE 2. Detailed block diagram of the AAPS error detection algorithm.
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the effects of the Kinect inaccuracy and variability in
estimating the joint positions of a tracked human
body, even when subjects stand perfectly still in the
sensor field of view. With the signal adequately
smoothed, body metrics are calculated on a frame-by
frame basis. The metrics that have been used in the
AAPS algorithm to detect balance errors during BESS
trials are listed in Table 1.

In order to detect errors in the subject’s pose during
balance trials, the algorithm uses a 1 s calibration
window to estimate the reference subject’s stance and
the current levels of noise in the Microsoft skeletal
tracking algorithm. The calibration is necessary to
assess data variability due to changes in both subject-
specific poses and sensor-specific body estimations.
Subsequently, the metrics are bandpass filtered (using a
second order Butterworth filter) between 0.15 and
3 Hz to emphasize signal components that are related
to subject motion and to minimize other sources of
variability (noise).

Additionally, sensor tracking inaccuracy is esti-
mated by measuring the standard deviation of the
noise in the calibration window. Specifically, the raw
metrics are band-pass filtered with a second order
band-pass Butterworth filter with passband set to 5–
15 Hz. This frequency range was selected to emphasize
the signal components that are mainly due to mea-
surement noise.

During the 20-s long BESS trials, the estimated
calibration stance and the current subject’s position are
continuously compared. The comparison is carried out
using a threshold that is set using the estimated stan-
dard deviation of the noise and the mean of the metric
obtained during calibration. Balance errors are flagged
each time the metrics cross such a threshold. Specifi-
cally, in the ith frame, a balance error Ei is detected if
the absolute difference between the calibration metric

Mcal and the current metric M̂i exceeds the threshold,
set to � times the estimated standard deviation rcal of
the noise. The list of the kinematic metrics (M) that

have been used to calculate the respective BESS errors
(Ei) is presented in Table 1.

Mathematically, three categories of balance errors
are detected:

(1) Unilateral single threshold errors estimated from
low-noise and unilateral metrics.

Ei ¼ M̂ni �Mncal

�
�

�
�>�n � rncal

� �

;

where the subscripts i, n and cal indicate respectively
the frame number, the type of metric and the calibra-
tion window.
(2) Bilateral errors estimated from low-noise bilat-

eral metrics. An error is detected if the threshold
is crossed on either side of the body.

Ei ¼
M̂nlefti

�Mnleftcal

�
�
�

�
�
�>�n � rnleftcal

� �

OR
M̂nrighti

�Mnrightcal

�
�
�

�
�
�>�n � rnrightcal

� �

where the subscripts left and right indicate from which
side of the body the metrics were derived.
(3) Double threshold errors to improve detection

performance, errors, that are estimated using
low-accuracy metrics, are detected using two
correlated metrics and corresponding thresh-
olds. An error is detected only if both metrics
cross the threshold.

Ei ¼ M̂ni �Mncal

�
�

�
�>�n � rncal

� �

and M̂mi
� M̂mcal

�
�

�
�>�m � rmcal

� �

where the subscripts n and m indicate different metrics.

The above error types can be combined for im-
proved balance detection precision. The different error
types detected on a frame-by-frame basis are then
converted into BESS scores, namely the total error
count per trial, with two important caveats: (1) at most
one error type can be detected within a pre-defined

TABLE 1. Calculated metrics extracted from Kinect raw data that are tracked during BESS tests.

Joints of interest Metric (M) Detected balance error (Ei)

Left hand—left hip 3D distance Hands off hips

Right hand—right hip 3D distance Hands off hips

Left elbow—left hip 3D distance Hands off hips

Right elbow—right hip 3D distance Hands off hips

Left knee—right knee 3D distance Foot movement

Left hip—left ankle 3D distance (single-leg stance) Hip flexion

Right hip—right ankle 3D distance (single-leg stance) Hip flexion

Ankles 3D position (tandem stance & single-leg stance) Foot movement

Frontal plane spine angle Angle Spine frontal motion

Sagittal plane spine angle Angle Spine sagittal motion
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time window (set to 2 s); (2) a BESS error is recorded
only if the infraction remains above the threshold for a
pre-defined time duration (set to 110 ms). A detailed
block diagram of the AAPS algorithm is shown in
Fig. 2.

In order to validate the results of the error detection
algorithm, we simultaneously collected data using a
Kinect sensor and a 12-Camera Qualisys system.
Qualisys data have been post-processed using Opensim
with a modified plug-in-gait model. After running in-
verse kinematics on the trajectory data, three-dimen-
sional body joint positions were derived. The Kinect
and Qualisys derived joint coordinate time series were
time-synchronized using a large movement performed
at the beginning of each trial and then fed into the
BESS error detection algorithm as described above.
Finally, scores obtained from the two systems were
compared against scores from three human experts
reviewing video footage of the BESS tests.

RESULTS

The AAPS algorithm was tested, using data derived
from both Qualisys and Kinect systems, on 15 healthy
subjects, each performing the BESS test twice. These
subjects’ balance was also evaluated by three expert
observers using the gold standard BESS method. In the
algorithm performance analysis, the average human
scores have been chosen as ground truth (Reference)
for the correct error count.

Figure 3 shows the differences in the scores obtained
using the different evaluation techniques: AAPS vs.
Reference, Qualisys vs. Reference, AAPS vs. Qualisys,
Human 1 vs. Reference, Human 2 vs. Reference, and
Human 3 vs. Reference. The comparison of AAPS vs.
Qualisys was carried out to investigate potential dif-
ferences in performance due to the two different optical
acquisition systems. Variations in scores have been
quantified by calculating the signed average difference
between each technique and the reference. Differences
can range between 210 and 10 points, where low error
levels are indicated by values close to zero. Standard
deviations are presented as error bars.

Table 2 reports the overall level of agreement for
the different groups, where values close to 100% (high
agreement) correspond to differences in BESS scores
close to zero. The values in the table are calculated by
taking the percentage complement of the normalized
absolute average differences in the scores. The absolute
differences were normalized using the BESS full scale
(10 points per trial).

To evaluate the statistical significance of the
observed score variations a multiple comparison one-
way ANOVA test was implemented (a set to 0.05). The

results are shown in Fig. 4, where the means (filled
circles) and 95% confidence intervals (horizontal lines)
of condition-based balance scores are presented. The
gray vertical dotted lines represent the 95% confidence
intervals with respect to the Reference group. No sta-
tistically significant differences were found between
any of the balance scoring methods and the Reference
(average human scores, in blue). The multiple com-
parison ANOVA results emphasize that although dif-
ferences in the scores are non-significant, the Kinect-
based AAPS reaches its lowest performance in the
single-leg on foam condition, as also highlighted by the
lowest agreement levels reported in Table 2.

Although single-leg on foam was identified as the
condition with lowest agreement levels between ob-
servers, there was no significant difference in perfor-
mance between the Kinect-based and the Qualisys-
based AAPS. This finding suggests that the AAPS
software algorithm provides satisfactory performance
levels using raw data from both motion capture sys-
tems; BESS error detection performance is not signif-
icantly affected by the acquisition hardware.

DISCUSSION

As shown in the RESULTS section, the ANOVA
analysis did not reveal any significant difference in the
scores. It is worth noting that the lowest AAPS per-
formance levels are detected in single-leg and tandem
stances on foam. In such conditions, despite the
Qualisys-based AAPS system performing more closely
to humans than the Kinect-based one, statistical
analysis shows no significant difference in perfor-
mance. This result demonstrates that the AAPS, built
around an inexpensive, general-purpose 3D single-
camera sensor, is viable for use in on-field applications.

The lowest agreements between both the AAPS
systems and human observers are seen in the single-leg
and tandem stances on foam condition. We hypothe-
size that lower agreement levels might be due to the
higher levels of subjective evaluation that this condi-
tion requires to detect BESS errors. Specifically, we
identified three main factors. First, the presence of the
foam complicates balance evaluation, because the foot
on which the subjects stand is partially obscured by the
foam. Secondly, this condition is arguably the most
challenging, and consequently more motion is ex-
pected. This results in multiple errors and subjects
having more difficulty to find and maintain their bal-
ance when trying to go back into the right position. In
these cases, we found that human observers tend to use
their ‘‘judgment’’ to count errors rather than strictly
relying upon the BESS rules for balance error count.
Finally, in single-leg on foam conditions, the auto-
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matic system seems to be operating at the limits of
agreement between humans and AAPS systems be-
cause of the low sensitivity of the BESS test. This
limitation has been reported in previous studies in
which the modest sensitivity of the BESS is explained
by the large variance in performance during the stances
on foam. Over 53% of the variance in errors can be
attributed to the single-leg and tandem conditions on
foam.21

The BESS only focuses on static postural control
tasks and lacks assessment of more dynamic postural
tasks. Thus, the choice of filtering the kinematic met-
rics between 0.15 and 3 Hz to emphasize relevant data

was deemed appropriate. The Kinect, and conse-
quently the AAPS capabilities will be tested at their
operational limit when introducing dynamic testing
with the aim of capturing ‘‘faster’’ human movements.
In such conditions, although the motion of large
human body segments rarely exceeds a few Hertz, the
filter high cut-off frequency needs to be increased to
avoid signal’s distortion and artifacts. However, based
on our preliminary data during dynamic trials, the
AAPS seems to perform at acceptable levels when
compared to the Qualisys lab-grade performance.

Testing only for static stability may not capture
other important domains of balance, including dy-

FIGURE 3. Means and standard deviations of the score differences calculated for each balance scoring method and grouped by
stance condition. Bottom: mean error values for each group and condition. The tested stance conditions are: double leg (DS),
single leg (SS) and tandem stance (TS) on firm ground; double leg (DF), single leg (SF) and tandem stance (TF) on foam pad. The
blue, orange, grey, yellow, light blue and green bars represent different balance evaluations derived respectively for AAPS vs.
Reference, Qualisys vs. Reference, AAPS vs. Qualisys, Human 1 vs. Reference, Human 2 vs. Reference, and Human 3 vs.
Reference.

TABLE 2. Average differences expressed as percentage of agreement between different balance evaluation systems in detecting
BESS scores, grouped by condition.

Percentage of agreement

Condition AAPS vs. Ref Qual vs. REF AAPS vs. Qual H1 vs. Ref H2 Vs. Ref H3 vs. Ref

DS 99.8 99.0 99.3 99.5 99.5 99.0

SS 98.1 93.1 95.0 99.5 99.0 99.5

TS 99.3 98.6 99.3 97.9 100.0 97.9

DF 99.8 99.8 100.0 99.8 99.8 99.5

SF 87.9 96.4 91.4 97.1 93.6 96.4

TF 93.8 96.9 90.7 95.5 99.0 94.5
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namic or multi-task postural control aspects.13 It is
worth noting that the AAPS capability of detecting
balance deficits had to be reduced to a single error
count number per trial for the purpose of the com-
parison presented here.

These limitations derive from human administration
of such testing protocols, wherein some information
(e.g., error type, time, and magnitude) must be sacri-
ficed in order to accommodate the capacity of a human
observer. We hypothesize that an improved automated
balance test, in which dynamic conditions and more
reliable proxy kinematic variables are used, can be
readily implemented by exploiting the existing capa-
bilities of the AAPS system. The use of such a system to
detect, track and quantify balance deficits in the field
will provide the opportunity to go beyond traditional

balance testing protocols that only rely on human vi-
sual observations reported with manual annotations.
This will facilitate more informed and data-driven
clinical decision making in non-clinical settings.

Despite some level of disagreement between human
and AAPS-generated scores, the use of an automated
system yields important advantages over currently
available human-based alternatives. A computer scor-
ing system is by definition deterministic, meaning that
it eliminates variability during repeated evaluations,
the same criterion does not apply to human scoring.
Moreover, the AAPS can record specific error types
with extremely high temporal resolution, it can detect
multiple error types on a frame-by-frame basis and
record their time course progression. These features
are not achievable by humans, who cannot keep track

FIGURE 4. Results of a multiple comparison ANOVA test on the BESS scores. BESS errors derived using the AAPS, the Qualisys
and three different human observers are compared to the average human scores, used as reference. Reference groups are in blue;
vertical dotted lines are 95% confidence intervals for the Reference group. None of the differences with respect to Reference are
statistically significant.
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of all those variables with such a high time resolution.
Together, these results suggest that computerized
BESS calculation may provide more accurate and
consistent measures of balance than those derived from
human experts.

Our results show that the AAPS error detection
algorithm presented here can accurately and precisely
detect balance deficits with performance levels that are
comparable to those of experienced medical personnel.
Specifically, our results show agreement levels between
the AAPS algorithm and the human average BESS
scores ranging between 87.9% (single-leg on foam) and
99.8% (double-leg on firm ground). In addition, sta-
tistically significant differences were not detected by an
ANOVA test with significance level set to 0.05.
Moreover, significant performance deficits were not
detected when the less expensive, portable and marker-
less AAPS was compared to a lab-grade system, with
agreement levels between the two different motion
capture systems ranging between 90.7% (tandem on
foam) and 100% (double-leg on foam). These results
underscore the value of using the Kinect-based AAPS,
which can be quickly deployed in the field and/or in
outdoor settings with minimal set-up time.

In future work, we plan on expanding the AAPS with
new features, such as introducing criteria to account for
balance error characteristics andfine-grained evaluation
of dynamic and static postural control strategies using
kinematic variables rather than trying to capture com-
plex motion performance with an arbitrary summary
scale. Such a system will also implement functional dy-
namic protocols that can be customized to a specific
subject and application. These new dynamic posture
screening tools combined with the ability to derive real-
time meaningful postural metrics will help us develop
innovative automated tools for more effective and
comprehensive on-field postural strategy assessment.
Furthermore, the AAPS capabilities will be tested in
clinical populations, such as individuals suffering from
low-extremity injuries and concussion.
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Abstract 

This work presents a fine-grained analysis of the performance and limitations of the Microsoft Kinect sensor 
for tracking human movement in the context of biomechanical research and clinical applications. Earlier 
work in this field has focused on scalar summary measures or ad-hoc metrics with respect to specific 
movements that do not generalize well across clinical applications. In this work, the performance of the 
Microsoft Kinect is compared to motion tracking from a concurrently sampled professional grade Qualisys 
motion capture system. Subjects performed a range of clinically relevant tasks such as Sit-to-Stand and 
Timed Up-and-Go. Captured data included both three-dimensional joint center displacements and joint 
angles as recorded from both systems. Kinect performance was measured using cross correlation 
coefficients (CCR), root mean squared error (RMSE) relative to the Qualisys gold-standard and a new 
summary metric (SM) that combines both. Our results show that the Kinect-based system provides adequate 
performance when tracking joint center displacements in time, with overall CCR=0.78, RMSE=3.35cm and 
SM=1.21. On the contrary, lower accuracy was measured when tracking joint angles, with CCR=0.58, 
RMSE=24.59 degrees, and SM=3.76. Although performance differences for various movements and 
motion planes have been found, the results suggest that the Kinect is a viable tool for general biomechanical 
research, with specific limits on what levels of performance can be expected under various conditions. 

 



1 Background 

Capturing three-dimensional movement (or kinematics) is a central laboratory technique in the study of 
human movement. Kinematic studies have played an instrumental role in the study of joint pathology, mild 
traumatic brain injury, ergonomics, and athletic performance. Despite the importance of this technique, 
standard data acquisition methods are subject to considerable limitations. Stereophotogrammetry and 
electromagnetic motion tracking, for instance, require expensive, stationary equipment and time-consuming 
procedures for system calibration and post-processing of data. In contrast, low-cost depth sensing cameras 
(also known as time-of-flight or RGB-D cameras) are available off-the-shelf and may represent viable 
alternatives to more complex and expensive 3D camera setups. These cameras are capable of capturing 
RGB color images augmented with depth data at each pixel, thus providing 3D images. Such images can 
be used to track human motion in real-time. Among these cameras, the Microsoft Kinect™ 2.0 provides a 
low-cost, portable, user-friendly alternative which holds the potential to substantially increase the 
accessibility of kinematic data. The main advantage of using the Kinect sensor over the commercially 
available alternatives lies in the proprietary Microsoft algorithm that performs body and joint detection in 
real-time and that can be exploited using the Microsoft Software Development Kit (SDK) [1] available to 
.NET developers.  

The performance of the Kinect™ 2.0 as a tool to evaluate kinematic variables, as compared to current 
standard methods, is a subject of great interest. Although several studies have been published in this area, 
the general trend has been to compare motion capture (MOCAP) systems based on scalar summary 
measures a selected metric. Examples from previous work include excursion range [2]–[5], mean or peak 
displacement [4], [6]–[11] or timing of discrete signal events [4], [5], [9], [11]–[15].  While such metrics 
are commonly studied in biomechanics, they do not adequately quantify the temporal structure of the signals 
under comparison, and are thus limited in terms of the generalizability of their results. To date, three 
laboratories have presented a more thorough treatment of Kinect 2.0 time series data in comparison to an 
existing standard. These studies still present certain limitations which restrict broader generalizability [16]–
[19]. 

The first study [19] was based on a composite signal, namely, total body center of mass, which represents 
a weighted sum of body segments derived from the Kinect joint center time dynamics. As a weighted sum, 
this output suppresses the variability inherent to the underlying time series data. Another study [17] reports 
measures of signal agreement measured as Intraclass Correlation Coefficients (ICC)  between Kinect 2.0 
sensors and an OptoTrak system (Northern Digital Inc., Waterloo, Canada). This investigation analyzed the 
consistency between the systems in each dimension for nearly all the joint center data natively exported 
from the Kinect. While this approach offers an appropriate comparison of the two systems, the results are 
specific to gait, a primarily sagittal plane movement pattern, and therefore represent a relatively narrow 
range of the human motion repertoire. Finally, a pair of studies [16], [18], by a third group, quantifies Kinect 
signal error by its 3D L2 norm distances from a ground truth signal as given by a 3D professional-grade 
MOCAP system. While they were able to classify individual data points as outliers vs. inliers based on error 
magnitude, information regarding the dimension and direction of signal offset is lost when using the 3D 
distance. As a result, this approach is not suitable for identifying systematic, direction-specific errors such 
as those noted by other investigators[6].  Additionally, their approach, which collapsed analyses across six 
tested movements, may obscure any relationships between the Kinect and ground truth signals that are 
specific to a given experimental condition or movement. 

Considering these limitations and the expanded use of Kinect based systems in quantitative kinematic 
studies, a more thorough evaluation of Kinect 2.0 raw data performance as a MOCAP tool and its validation 
against a gold-standard 3D system is needed. The overarching goal of this research is the development of a 
system to collect reliable, valid kinematic data using low-cost sensors. The applications of such a 
technology are wide-reaching and may involve physical medicine clinics, athletics settings, and home 



entertainment, as well as other research domains in which kinematic data are not commonly acquired owing 
to prohibitive costs. The specific aim of this study was to identify limitations (and, ultimately, corrective 
measures) in Kinect 2.0 performance as an off-the-shelf technology for a flexible and multi-purpose 
MOCAP system. To that end, we have validated the Kinect against a professional three-dimensional motion 
capture system with 12 IR-cameras (Qualisys AB, Gothenburg, Sweden) over a range of dynamic 
movements and clinical tests that can be used as broad indicators of functional movement. In addition to 
this Kinect-vs-gold standard comparison, we present raw data from a second Kinect 2.0 sensor positioned 
alongside the first. These data provide an indication of reliability between Kinect 2.0 sensors. We acquired 
data from four healthy subjects and calculated results for point kinematics and joint angles, the latter of 
which are derived independently for the Kinect data using both quaternions and trigonometry applied to the 
joint positions. 



2 Body Segment Orientation 

The Microsoft Kinect 2.0 senses depth using an infrared camera sensor. A proprietary on-board algorithm 
locates bodies within the depth image and extracts parameters that describe the positions of up to six bodies 
in three-space in real time. For each tracked body, Kinect produces two data streams. The first is “joint 
location”, which tracks the three-dimensional coordinates of 25 joints. The Kinect estimates three 
dimensional coordinates on a frame-by-frame basis using a probabilistic model that compares data from the 
depth image to a comprehensive database of human poses [20] [21]. These measurements are in meters and 
are measured relative to an origin that is represented by the sensor camera itself. The second stream is “body 
segment orientation,” in which the orientation and rotation of each segment relative to its parent, (e.g. 
forearm relative to upper arm) can be represented numerically by a quaternion. These real-time data streams 
are both complicated by the fact that the sampling rate varies between 5 and 30 frames per second according 
to instantaneous demands on the computer’s processor. 

A quaternion is a 4-tuple that represents the orientation and rotation of an object in three dimensions relative 
to some parent coordinate axis. Specifically, quaternion 𝑢 can be expressed as 

𝑢 = 𝑢 + 𝑢௫𝑖 + 𝑢௬𝑗 + 𝑢௭𝑘 = 𝑀 cos(𝛼) + 𝑀𝒖 sin(𝛼) = 𝑀𝑒𝒖ఈ 

If 𝑣 is some other quaternion, then 𝑣 can be rotated around unit quaternion 𝑢 (eg. 𝑀 = 1) by 2𝛼 radians 
using the following transform:𝑣௧ = 𝑢𝑣𝑢∗. Although the Kinect produces a stream of “body segment 
orientations”, these measurements must be numerically manipulated to yield clinically relevant kinematic 
data.  

In some cases, this calculation is straightforward. For example, elbow angle can be calculated by simply 
calculating the angle between the quaternions of the upper arm and forearm as 

𝜃 = cosିଵ ൬
𝒖 ⋅ 𝒗

|𝒖||𝒗|
൰ 

In other cases, the transformation from quaternion orientations to clinical kinematic data requires projecting 
body segments into the three cardinal planes (mediolateral, vertical, and anteroposterior).  

Kinect quaternion mathematics are complicated by two main factors. The first is that all Kinect quaternions 
are defined with respect to their “parent segment” quaternion, and the second is that quaternions do not 
describe anatomically significant angles. Specifically, each Kinect quaternion is defined so that its y-axis 
points to its “child segment” quaternion, while the z-axis is normal to both the y-axis and the body segment. 
The x-axis is normal to both the previous axes. Since the root joint is the lower spine, all relative orientations 
can be re-referenced to this initial orientation by consecutive parent/child multiplication along the 
quaternion body chain, using Hamilton products, as follows: 

𝑞3 = 𝑞1 ∗ 𝑞2 − 𝑞1௭ ∗ 𝑞2௭ − 𝑞1௬ ∗ 𝑞2௬ − 𝑞1௫ ∗ 𝑞2௫ 

𝑞3௫ = 𝑞1 ∗ 𝑞2௫ + 𝑞1௭ ∗ 𝑞2௬ − 𝑞1௬ ∗ 𝑞2௭ + 𝑞1௫ ∗ 𝑞2 
𝑞3௬ = 𝑞1 ∗ 𝑞2௬ − 𝑞1௭ ∗ 𝑞2௫ + 𝑞1௬ ∗ 𝑞2 + 𝑞1௫ ∗ 𝑞2௭ 

𝑞3௭ = 𝑞1 ∗ 𝑞2௭ + 𝑞1௭ ∗ 𝑞2 + 𝑞1௬ ∗ 𝑞2௫ − 𝑞1௫ ∗ 𝑞2௬ 
 
where q1 and q2 are the parent and child quaternions, respectively, and q3 is the quaternion that represents 
the orientation of the child segment. 

The second step necessary for deriving meaningful joint angles is that segment orientations expressed using 
quaternions must be converted into Euler angles. Specifically, the position of a limb in three-space may be 
considered as the result of one or more rotations in each of the cardinal planes. The values of the rotation 
angles and the accuracy of the conversion relative to the original quaternion depends on the order of rotation 



as well as the joint in question and even the movement being performed [25]. The conversion can be 
performed using each one of 12 possible combinations of the three axes of rotation, also known as rotation 
sequences. In this work, we chose the rotation sequences for each movement and joint that are most 
commonly used in biomechanics [22]–[24].   

In addition to computing joint angles from the Kinect’s quaternion stream, they can also be derived directly 
from the three dimensional joint locations. Specifically, the location of two joints in 3D space defines a 
body segment orientation. Following standard practice [26], [27], the angle of each body segment is 
calculated relative to the normal of the floor, giving what is defined as an absolute angle. The absolute 
angles can then be differenced to compute joint angles (also called relative angles).  

𝛩௧ =  𝛩௧ ௦௧ − 𝜃ௗ ௦௧ 

where each segment’s absolute angles in the frontal and sagittal planes can be calculated respectively as: 

Θୱୣ୫ୣ୬୲௧
= atan൫𝑦ௗ௦௧ − 𝑦௫ 𝑥ௗ௦௧ − 𝑥௫⁄ ൯

Θୱୣ୫ୣ୬୲௦௧௧
= atan൫𝑧ௗ௦௧ − 𝑧௫ 𝑦ௗ௦௧ − 𝑦௫⁄ ൯

where x, y, and z are the coordinates of the joint centers that define a body segment. We compared joint 
angles computed using this method with those derived from the quaternion measurements to determine 
whether there were any systematic biases or errors across subjects or movements. 



3 Methods 

Four subjects (three males, mean age 23) performed a series of movements while being simultaneously 
tracked by two immediately adjacent Kinect 2.0s and a professional-grade motion capture system (Qualisys 
AB, Gothenburg, Sweden). The two Kinects were used to evaluate inter-unit accuracy, and motion tracking 
results from both systems were compared to the gold standard Qualisys system. The movements and the 
recording paradigm were specifically designed to facilitate the quantification of errors in tracking joint 
angles and limb locations relative to all three cardinal planes of the body axis: mediolateral, vertical, and 
anteroposterior. 

Subjects wore tight-fitting shorts and an (optional) upper body garment that allowed for placement of 
reflective markers in accordance with the Qualisys MOCAP full-body plug-in-gait marker set [28]. This 
included 39 markers, placed on the head, arms, wrists, trunk, pelvis, legs and feet. All acquisitions were 
performed in a dedicated motion tracking laboratory which houses a 12-camera Oqus passive marker 
measurement system. Before each session, the Qualisys system was calibrated and then the two Kinect 
sensors were placed on tripods between 2m and 4m in front of the subject. The exact Kinect sensor locations 
were determined by following the manufacturer recommendations and by verifying that the subject was 
completely and optimally in the field-of-view, thus, optimizing the performance of the proprietary body 
tracking algorithm. The experimental setup is shown in Figure 1. 

 

Figure 1: Experimental capture volume block diagram. Oqus cameras 
are represented by black boxes along the perimeter. The Kinect is 

labeled “Sensor.” 



The four subjects were asked to perform two trials each of a series of different moving postures. Each trial 
was preceded with a large movement such as a T-pose or an overhead reach to facilitate time-
synchronization of the Qualisys and Kinect systems; these movements were not scored or otherwise 
included in the results. Three subjects performed a battery of standard clinical tests of dynamic posture, 
whereas the fourth subject performed the stereotyped postures in which movement was intentionally 
restricted to a single plane. 

Table 1: Dynamic Postures 

Standard Posture/Movement Primary Plane Notes 

 Sit-to-stand Sagittal  five repetitions 

 Timed up-and-go Sagittal / Transverse  stand; walk to marked position ~3m away; walk 
back 

 Alternating barbell lunges Sagittal  ten repetitions 

 Overhead squats Sagittal / Frontal  five repetitions 

 Marching in place Sagittal  20 seconds 

 Time to stabilization Sagittal / Frontal  Forward hop with unilateral landing 

Stereotyped Posture/Movement Primary Plane Notes 

 Shoulder Flexion/Extension Sagittal 

 Right arm start extended at 0 
 Right arm flex to 90 
 Right arm flex to 180 
 Right arm extend to 90 
 Right arm extend to 0 
 Repeat on left side 

 Shoulder Ab/Adduction Frontal 

 Arms raised laterally (abducted) to “T” position 
 Arms raised laterally to overhead position 
 Arms lowered laterally (adducted) to “T” 

position 
 Arms lowered laterally to starting position 
 Repeat once 

 Hip Ab/Adduction Frontal 

 Right leg raised laterally (hip abducted) to ~45 
 Right leg lowered laterally (hip adducted) to 0 
 Left leg raised laterally to ~45 
 Left leg lowered laterally to 0  
 Repeat once 

 
Combined Hip/Knee 
Flexion/Extension 

Sagittal 

 Right hip and knee flexed (e.g. “high knee” 
stepping) 

 Right hip and knee extended to starting position 
 Left hip and knee flexed 
 Left hip and knee extended to starting position 
 Repeat once 

 
Combined Arm 
Ab/Adduction & Elbow 
Flexion/Extension 

Frontal / Sagittal 

 Arms raised laterally to “T” position 
 Elbows flexed 90 to “goal post” position 
 Elbows flexed maximally 
 Elbows extended to “goal post” position 
 Elbows extended to achieve “T” position 

 Trunk Leans Sagittal / Frontal 

 Lean left 
 Return to starting position 
 Lean right 
 Return to starting position 
 Lean backward 
 Return to starting position 
 Lean forward 
 Return to starting position 



 

Body movement was tracked with the two systems simultaneously. The benchmark Qualisys was controlled 
via proprietary data acquisition software (“Qualisys Track Manager”). In order to convert the marker 
locations to angular kinematics, the trajectories were mapped offline onto a subject-specific rigid body 
model using the freely available OpenSim software tool. [29] In contrast, the two Kinects tracked body 
motions in 3D using single-camera sensors, Microsoft’s proprietary body tracking algorithm [12], and a 
custom-designed software tool that converted the Kinect raw data into comma-separated-variable files for 
offline analysis. [30] These CSV files stored three-dimensional joint center trajectories, the three-
dimensional orientations of 25 joints, and the Kinect-estimated floor plane quaternion. The data acquisition 
and processing pathway is summarized in Figure 2. 

 

 

Figure 2: Signal Processing Block Diagram 

 

Note that, while the Qualisys data were acquired at a constant frame rate of 120 fps, the Kinect data were 
acquired at a variable frame rate that depended heavily on the available computational and memory 
resources in the acquisition computer during run-time. Although the Kinect nominally collected data at 30 
fps, instantaneous drops to 10-15 fps were not uncommon. For the purpose of data analysis, all Kinect data 
was upsampled to 120fps to match the Qualisys data. 

Hardware limitations made it impossible to time-align the data streams using an electronic trigger during 
acquisition. Instead, data from the systems were temporally aligned by first de-trending them and then by 
cross-correlating them to assess the time lag that maximized their similarity [13]. To facilitate time 
synchronization, each pose was preceded by a large alignment movement, either an arms-open T-pose or an 
eccentric or concentric overhead press. The presence of a large alignment movement before each posture 



allowed the cross-correlation method to work robustly; temporal alignments were manually reviewed and 
found to be accurate to within a single frame. The alignment movement also served the dual purpose of 
initiating Kinect body tracking, which requires movement for optimal body detection. 

After synchronization, data from both systems were low-pass filtered to reduce noise and acquisition 
artifacts. Since human movements are rarely faster than a few hundred milliseconds (eye blinks are typically 
100-150ms) [31], motion capture systems do not need frequencies higher than a few Hertz. In this work, as 
in other manuscripts of this nature, all data was low-pass filtered using a 15th order Butterworth low-pass 
filter with a 3 dB cut-off frequency of 6.3 Hz [2], [32]. Finally, in order to calculate joint displacement and 
compare Qualisys and Kinect data, movement from each joint was zeroed relative to its initial position. 



4 Results 

In order to validate the Kinect-based MOCAP system, we compared its performance to a gold standard 12-
camera 3D Qualisys system, that was used to concurrently evaluate subjects’ movements. Subsequently, 
the similarity between the two sets of data was assessed by measuring both the cross-correlation values and 
the average absolute errors between corresponding time series, joint by joint and motion by motion, to 
elucidate any systematic biases that appear in some dimensions but not others. Since no statistical difference 
(Student’s t-test, p>0.05) was found between measurements from the two side-by-side Kinect sensors, we 
report only their average measurements. Three separate error metrics were used to describe the performance 
of the Kinect system relative to the benchmark Qualisys system. First, we calculated cross-correlation 
coefficients, which effectively describe how much information one signal can yield about another, but that 
is generally blind to errors of constant or near-constant offset or bias. Secondly, we calculated the root-
mean-squared errors (RMSEs) between the various output signals. RMSE measures constant or near 
constant differences between signals but is blind to signal correlation. Finally, we propose a novel 
“summary measure” which seeks to combine the cross-correlation and RMSE errors in a manner that is 
relevant to the context of Kinect-based motion tracking. 

When comparing data between the two adjacent Kinect sensors, small deviations were noted between the 
two. However, these differences were not statistically significant (Student’s t-test, p>.05). For brevity, only 
the mean values between the two sensors are presented here. 

Figure 3 shows representative joint center displacements of head, the middle of the spine, left hip, and right 
hip, as measured for a single subject during a sit-to-stand test; data from both Qualisys and Kinect are 
displayed. This figure illustrates similarities between the joint displacement data from the two motion 
capture systems. This figure also underscores the need for multiple similarity metrics, since it is possible to 
have a high cross correlation but also a high root mean squared error. The poorest cross-correlation scores 
were generally obtained with respect to those axes along which the observed motion was negligible 
(mediolateral in the case of sit-to-stand).  Note also that, in general, tracking between the two systems was 
less robust in the anteroposterior plane (representing ‘depth’ away from the Kinect sensor), than in the 
vertical plane. A more detailed summary of these results is seen in Tables 2 and 3, and in the Appendix. 

Figure 4 shows representative joint angles (lumber extension, and hip flexion – left and right) for the same 
sit-to-stand trial as depicted in Figure 3. In the case of joint angles, we compare two sets of data to the 
Qualisys gold standard (blue traces). The first is joint angles derived from the Kinect quaternion data stream 
(red traces), whereas the second is joint angles derived directly from the Kinect’s 3D joint coordinates 
(orange traces). We compare the Kinect-derived joint angles to each other as well as to the Qualisys 
benchmark. In general, the two Kinect-derived measures correlated strongly against one another and against 
the benchmark, although offsets and scale factors tended to negatively impact the RMSEs. Again, a more 
detailed summary of these results is seen in Tables 4 and 5, and in the Appendix. 

A “summary metric” was devised that would combine the cross-correlation (CC) and RMSE errors into a 
single meaningful number. The metric was defined as the ratio of RMSE to cross-correlation value. Ideal 
trials with high cross-correlation (close to one) and low RMSE (close to zero) would score well (close to 
zero) on this scale, whereas less accurate measurements would score worse (larger values). Since the 

resulting metric lacks meaningful scale (which complicates interpretation), we chose to normalize the  
ோெௌா


  

quotient by an arbitrary constant 𝑈 as follows:   

𝑆𝑢𝑚𝑚𝑎𝑟𝑦 𝑀𝑒𝑡𝑟𝑖𝑐 =
𝑅𝑀𝑆𝐸

𝐶𝐶
∗

1

𝑈
 



where 𝑆𝑢𝑚𝑚𝑎𝑟𝑦 𝑀𝑒𝑡𝑟𝑖𝑐 is the 
ோெௌா


 quotient calculated for the i-th measurement and normalized by 

𝑈, that is given by: 

𝑈 =
𝑅𝑀𝑆𝐸

𝐶𝐶

where 𝑅𝑀𝑆𝐸 was different for displacement-based and joint angle measures; and respectively chosen 
equal to 3 cm and 15 degrees. 𝐶𝐶 was set to 0.75. 

We chose 𝐶𝐶 equal to 0.75 for the cross-correlation in order to make sure that the signals under 
observation had similar (linear) time-courses and the 𝑅𝑀𝑆𝐸 errors were chosen on the basis of 
previously reported data [33]. According to these arbitrary units and our own analysis, it was determined 
that summary measures ranging between 0 and 2 were ‘good’, values between 2 and 4 were approaching 
their limit of usability, and values greater than 4 were considered to represent measurements that Kinect 
cannot accurately capture. 



 

  

Figure 3: Head, spine middle, left and right hip joint center displacements in cm as derived from both MOCAP systems Qualisys 
(yellow) and Kinect (blue), during a sit to stand test. The displayed signals are for a single subject and a single trial. Values in 

the lower left corner of each plot show the cross-correlation coefficients and the root mean squared error calculated between the 
Qualisys and the Kinect displacements over time. ML = Mediolateral, VT = vertical, AP = anteroposterior 



 

  

 

 

Figure 4: Joint angles for trunk extension, left and right hip flexion/extension. The blue, red and orange lines display joint 
angles derived using respectively Qualisys, Quaternion and coordinate data. The numbers show correlation coefficients 

between the different pairs of data  



Table 2: Errors in tracking joint displacement. Errors are averaged over all trials of all 12 movements. AP = anteroposterior, 
VT = vertical, ML = mediolateral 

 correlation  error  summary metric 
 AP VT ML Average  AP VT ML Average  AP VT ML Average 

head 0.93 0.98 0.93 0.95  3.85 4.99 5.58 4.80  1.59 1.32 0.72 1.21 

spine top 0.73 0.78 0.68 0.73  3.17 2.42 1.75 2.45  0.68 0.69 0.35 0.57 

spine mid 0.72 0.86 0.73 0.77  3.44 2.54 1.67 2.55  0.65 1.37 0.45 0.82 

spine base 0.81 0.97 0.86 0.88  4.74 4.48 2.99 4.07  2.69 1.65 0.68 1.67 

left shoulder 0.91 0.98 0.95 0.95  3.54 4.61 5.33 4.49  1.13 0.81 0.74 0.89 

right shoulder 0.69 0.54 0.67 0.63  2.97 2.90 1.47 2.45  1.27 0.72 0.58 0.86 

left elbow 0.66 0.54 0.70 0.63  3.45 3.37 1.41 2.74  1.84 1.16 0.96 1.32 

right elbow 0.75 0.77 0.68 0.73  3.08 2.51 1.73 2.44  1.35 1.23 1.02 1.20 

left wrist 0.94 0.71 0.88 0.84  2.57 2.12 1.27 1.99  1.02 1.28 1.54 1.28 

right wrist 0.62 0.60 0.63 0.62  7.30 3.70 1.82 4.27  0.94 1.19 1.42 1.18 

left hand 0.78 0.87 0.75 0.80  3.22 2.82 1.94 2.66  1.01 1.38 1.67 1.35 

right hand 0.80 0.62 0.75 0.73  2.19 2.49 1.23 1.97  0.92 1.25 1.41 1.20 

left hip 0.96 0.82 0.90 0.89  6.23 4.97 2.76 4.66  1.03 1.50 0.93 1.15 

right hip 0.84 0.97 0.88 0.89  4.34 4.70 3.26 4.10  1.01 0.98 0.77 0.92 

left knee 0.84 0.68 0.84 0.79  3.50 2.82 1.19 2.51  0.95 2.03 0.39 1.12 

right knee 0.83 0.65 0.79 0.76  3.34 3.19 1.24 2.59  0.96 1.60 0.33 0.97 

left ankle 0.50 0.47 0.56 0.51  5.28 2.96 1.88 3.37  0.93 1.63 0.53 1.03 

right ankle 0.52 0.46 0.59 0.52  4.41 3.48 1.95 3.28  1.12 1.92 0.45 1.16 

left foot 0.93 0.98 0.95 0.96  3.50 4.86 5.30 4.55  2.59 2.81 0.75 2.05 

right foot 0.94 0.98 0.93 0.95  3.81 5.36 6.08 5.08  2.35 3.34 0.75 2.14 

  

  



Table 3: Errors in tracking joint displacement. Errors are averaged over all trials of all 20 tracked body points. AP = 
anteroposterior, VT = vertical, ML = mediolateral 

  
Movement 

correlation  error  summary metric 
AP VT ML  AP VT ML  AP VT ML 

sit to stand 0.85 0.84 0.67  4.30 4.51 2.63  1.46 1.38 0.90 

timed up and go 0.97 0.75 0.83  10.13 4.41 5.07  2.64 2.36 1.61 

alternating barbell lunges 0.92 0.80 0.87  9.50 5.40 2.18  2.64 2.49 0.66 

overhead squats 0.78 0.86 0.61  4.27 5.72 1.86  1.49 1.70 0.90 

marching in place 0.88 0.80 0.92  2.17 2.05 1.86  0.62 0.63 0.50 

time to stabilization 0.93 0.89 0.87  6.15 3.54 3.84  1.72 1.04 1.10 

shoulder ab/adduction 0.60 0.75 0.65  1.24 1.98 0.98  0.66 0.93 0.34 

shoulder flexion/extension 0.66 0.65 0.64  1.95 3.02 1.10  0.70 1.32 0.59 

hip ab/adduction 0.71 0.78 0.95  1.85 2.61 2.85  0.84 0.88 0.75 

combined hip/knee flexion/extension 0.85 0.87 0.97  1.58 2.24 3.88  0.50 0.64 1.00 

combined arm ab/adduction 0.49 0.55 0.56  1.46 4.09 1.76  1.51 1.71 0.60 

sagittal/frontal trunk leans 0.78 0.59 0.84  2.16 3.21 3.10  0.85 2.84 0.91 

 

  



Table 4: Errors in tracking joint angles. Errors are averaged over all trials of all 12 movements. KQ = Kinect Quaternions, K3D 
= Kinect 3D-derived joint angles, QS = Qualisys, flxn = flexion, addn = adduction, extn = extension. 

correlation error summary metric 
KQ 
vs 
QS 

K3D 
vs 
QS 

KQ 
vs 

K3D 

KQ 
vs 
QS 

K3D 
vs 
QS 

KQ 
vs 

K3D 

KQ 
vs QS 

K3D 
vs QS 

KQ 
vs 

K3D 

arm flxn L 0.42 0.48 0.45 60.5 46.2 57.2 14.3 9.4 9.8 

arm flxn R 0.40 0.48 0.53 77.9 54.3 52.7 13.1 8.3 6.5 

arm addn L 0.65 0.77 0.77 41.9 22.3 26.5 4.1 1.7 2.4 

arm addn R 0.64 0.75 0.75 47.7 27.7 29.4 5.3 2.1 2.4 

elbow flxn L 0.64 0.38 0.36 27.8 41.7 28.5 2.3 6.0 4.7 

elbow flxn R 0.69 0.44 0.42 27.5 41.3 25.3 2.0 6.8 10.4 

hip flxn L 0.70 0.78 0.92 14.4 13.1 4.1 1.8 1.3 0.3 

hip flxn R 0.71 0.71 0.98 13.7 14.4 2.6 2.5 1.9 0.2 

hip addn L 0.36 0.35 0.64 6.2 6.8 9.4 4.4 1.5 2.7 

hip addn R 0.30 0.30 0.68 5.0 7.9 4.5 1.6 2.7 1.5 

knee flxn L 0.69 0.71 0.88 19.8 18.0 5.8 1.9 1.4 0.3 

knee flxn R 0.66 0.68 0.97 21.0 19.7 4.0 2.3 2.5 0.1 

knee addn L 0.25 0.40 0.45 22.0 10.0 20.8 2.9 1.5 2.3 

knee addn R 0.57 0.44 0.70 12.5 12.3 18.3 1.7 1.8 1.5 

lumbar extn 0.38 0.51 0.40 38.0 19.9 25.2 6.1 4.4 4.5 



Table 5: Errors in tracking joint angles. Errors are averaged over all trials of all 15 joint angles. KQ = Kinect Quaternions, 
K3D = Kinect 3D-derived joint angles, QS = Qualisys, alt = alternating, flex = flexion, ext = extension, sag/front = 

sagittal/frontal. 

 correlation  error  summary metric 
 

KQ 
vs QS 

K3D 
vs QS 

KQ 
vs 

K3D 

 KQ 
vs QS 

K3D 
vs QS 

KQ 
vs 

K3D 

 KQ 
vs QS 

K3D 
vs QS 

KQ 
vs 

K3D 
Movement Task 

sit to stand 0.67 0.67 0.65  33.1 22.7 29.5  3.2 2.2 3.5 
timed up and go 0.43 0.50 0.54  34.6 30.8 22.3  7.1 5.2 4.3 

alt. barbell lunges 0.58 0.53 0.71  64.4 57.8 38.1  5.9 6.4 4.6 
overhead squats 0.65 0.55 0.64  43.5 39.3 29.1  3.8 5.0 4.3 

marching in place 0.62 0.61 0.62  15.4 13.3 9.7  1.5 1.8 1.4 
time to stabilization 0.57 0.57 0.61  28.8 17.0 25.4  3.1 1.8 2.8 

shoulder ab/adduction 0.42 0.41 0.70  14.4 14.7 13.0  4.0 4.5 7.0 
shoulder flex/ext 0.33 0.36 0.73  16.1 11.6 11.0  5.0 3.6 1.3 
hip ab/adduction 0.68 0.74 0.74  15.2 11.5 11.3  1.9 0.9 1.3 

comb. hip/knee flex/ext 0.59 0.65 0.75  18.6 12.5 14.4  2.3 1.3 1.8 
comb. arm ab/adduction 0.35 0.33 0.65  31.2 26.1 23.7  8.7 7.3 3.2 
sag./front. trunk leans 0.57 0.65 0.60  33.4 27.5 24.1  6.6 2.6 4.2 

 

For compactness sake, Tables 2-5 summarize errors by averaging over either movement or limb/joint. A 
full presentation of all error combinations can be found in the Appendix. Those errors are presented in the 
interest of investigators seeking to optimally calibrate their own Kinect-based motion tracking systems. To 
simplify data interpretation, the values in Tables 10 and 11 are color-coded. Green values indicate that the 
Kinect-based performance was good (values ranging between 0 and 2). Yellow values indicate that the 
performance is approaching the limit of usability, with values ranging between 2 and 4. Red values indicate 
those conditions where the Kinect-based MOCAP yielded poor performance, with values larger than 4. 

In the tables above, for purposes of presentation, we averaged the performance metrics across movements. 
This allows a single value to represent how well the Kinect-based MOCAP was capable of evaluating each 
joint both in terms of displacements and in terms of joint angles. Additionally, in the case of the joint 
displacement, we averaged metrics across joints and then across the three axes to identify which axis 
captured the motions with the highest accuracy. Because averaging obscures performance characteristics 
which may be meaningful in certain applications, the data are also presented in their original, uncollapsed 
form in the appendices. 



5 Discussion  

The overall finding of this work has been that data from the Kinect compare favorably to the gold-standard 
Qualisys tracking system, given the limitations of the Kinect hardware. This work has quantified, for the 
first time, the specific limitations of a Kinect-based motion tracking system for general applications with 
respect to a set of representative clinical movement tests. Furthermore, whereas others have quantified 
Kinect’s limitations either through global summary metrics or by collapsing data across movement planes, 
this work presents more fine-grained performance comparisons. Specifically, this data is critical for 
investigators who need to know the precision that can be expected when using Kinect to track motion in 
real-world settings. 

One of the most relevant aspects of this work is to fully evaluate the potential of a Kinect-based multi-
purpose MOCAP that can be useful in clinical settings. This motivated our choice to analyze system 
performance with respect to different clinically relevant motions, and to keep the results grouped by 
movement. One important finding was that some motions were better captured than others, regardless of 
which metrics were used in quantifying error. One hypothesis to explain the movement-based differential 
in tracking performance is that certain movements may be similar to those that Microsoft used when 
designing and calibrating the Kinect for video game play. Tables 3 and 5 show that certain motions such as 
hip ab/adduction, marching in place, hip/knee flexion/extension, time to stabilization and sit to stand 
movements yielded the highest agreement between Qualisys and Kinect. This finding suggests that a 
Kinect-based MOCAP system can be used more confidently when investigating the above-mentioned 
motions. Identifying the limitations of such a system is valuable for all those investigators and medical 
professionals in need of carrying out motion analysis studies using light-weight and low-cost equipment. 

Another relevant observation was that there were key differences when joint angles were calculated from 
Kinect’s quaternion stream versus being derived from the Kinect 3D coordinates. Specifically, the 3D 
coordinate approach was generally superior when tracking arm ab/adduction, hip flexion/extension and 
ab/adduction, knee flexion/extension and ab/adduction. In theory, the 3D coordinate approach should only 
work when the Kinect’s global reference system is aligned with the subject’s anatomical planes (e.g. for 
movements such as jumping jacks where the limbs remain in the frontal plane). To overcome this limitation, 
joint locations can be recomputed relative to a local rotated frame prior to computing joint angles. With this 
correction, only elbow flexion angles were better computed using quaternions than the 3D coordinate 
trigonometric method (see Tables 4 and 5). 

Lower performance in the quaternion approach can be due to multiple concurrent factors. First, the Kinect 
sensor shows frequent errors and oscillations in evaluating joint orientations during motion. Without a strict 
rigid body model to be superimposed onto the Kinect raw data, it is not possible to compensate for such 
sensor errors. Secondly, when allowing the subjects to move in 3D space without constraining their 
movements to specific planes, the conventional kinematic angles cannot be easily derived from quaternions 
without choosing a three-axial rotation sequence. The difficulty of selecting an appropriate rotation 
sequence based on joint and motion type is a well-known problem in biomechanics; recommended rotation 
sequences for various joints have been defined [22]–[24], [34]. However, these sequences are defined 
relative to local reference coordinate systems that do not exist when using quaternions. It is therefore not 
unexpected that the same rotation sequences used as standard practice in biomechanics research are not 
optimal when used with Kinect quaternions. We evaluated all possible Kinect quaternion rotation sequence 
combinations and chose those that yielded the joint angles most closely approximating the gold-standard 
Qualisys kinematics. The identified rotations were then applied at a given joint irrespective of the 
movement being tested. 

Kinect-based motion capture is not flawless, as emphasized by our results. Inaccuracies are mainly due to 
a combination of hardware and software limitations. From a hardware perspective, the Kinect camera is 
based on a combination of low-cost commodity sensors, such as a single depth sensor. With respect to 



software, the Microsoft body tracking algorithm is designed for gaming performance and generalization 
rather than tracking accuracy. The Microsoft tracking algorithm aims to detect people in the sensor field of 
view irrespective of their pose and body type. Consequently, for the sake of performance and usability, the 
Kinect system was devised to minimize the body model constraints necessary and to choose speed over 
accuracy. For instance, to reduce the computational time necessary to track joints, the sensor depth data 
stream is always processed in real-time and on a frame-by-frame basis. Although computationally efficient, 
it allows for predicted joint locations to jump from frame to frame depending on instantaneous sensor 
measurements. Consequently, it does not enforce rigid body constraints, which are a core assumption of 
most biomechanics studies. 

We hypothesize that Kinect-based motion tracking could be improved by third-party algorithms which 
combine sensor data with various real-world constraints such as fixed anatomy and range of motion. 
Contemporary processor speeds should be in line with the types of processing demands that are necessary 
to implement these improvements within reasonable time frames. The combination of a low-cost, portable, 
expedient sensor with high-performance data modeling could yield systems whose performances are 
acceptable in most medical, sports, fitness and rehabilitation applications. 

Although the number of subjects in this study may be a limitation, we expect that the broad extent of the 
movements evaluated in this work would contribute more variability to motion capture performance than 
would differences between subjects. Because the focus of this study was to evaluate Kinect performance 
for non-specific purposes, inter-subject variability was of less interest than variability in fine-grained body 
tracking behavior across a range of movements.  In future work, we intend to build on our present findings 
with group-based investigations to confirm the viability of the Kinect for observing clinically relevant 
movement features.  This will require a more narrowly focused scope with depth in sample size as opposed 
to experimental conditions.   



6 Conclusion 

The Kinect-based motion capture system can consistently track the 3D displacement of joint centers with 
high precision and acceptable accuracy levels. Specifically, our results show that the Kinect-based MOCAP 
and the Qualisys system reached high levels of agreement when tracking joint displacements, with average 
overall cross-correlation coefficient of 0.78, root mean squared error of 3.35 cm and a combined metric of 
1.21. On the contrary, lower agreement levels were achieved when tracking joint angles with cross-
correlation coefficient of 0.58, root mean squared error of 24.59 degrees and a summary metric of 3.76. 

This is a promising finding, considering the ease of setup, use and cost of a Kinect-based system. The 
overall analysis of displacement tracking performance showed that some segments/joints are tracked with 
less accuracy, particularly the foot/ankle complex. Also, the accuracy levels are axis dependent, with the 
highest accuracy recorded along the mediolateral direction. Furthermore, the overall data analysis indicated 
a motion-dependent tracking accuracy, with timed up-and-go, alternating barbell lunges and combined arm 
ab/adduction yielding the lowest performance and largest errors. Despite some of the Kinect precision 
limitations, the displacement data were consistently within a threefold difference from the precision and 
accuracy levels that we used to normalize the performance metrics. 

The data presented here suggest that Kinect-based motion capture systems may be viable alternatives to 
professional three-dimensional capture systems for certain applications. Our data can be used by other 
investigators to understand the limits of out-of-the-box Kinect motion capture accuracy with respect to 
various movements and planes of motion. We hypothesize that, with the addition of certain body 
constraints, Kinect-based tracking systems could be valuable tools in applications such as medicine, sports, 
rehabilitation and fitness. 
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8 Appendix 

Table 6: Average Cross-Correlation Coefficients of Joint Center Displacements measured across two separate trials from four 
different subjects (each subject repeated the tests twice) and grouped by movement types. 

 SIT TO STAND TIMED UP AND GO 
ALTERNATING 

BARBELL LUNGES 
OVERHEAD SQUATS 

MARCHING IN 
PLACE 

TIME TO 
STABILIZATION 

JOINT DISP AP VT ML AP VT ML AP VT ML AP VT ML AP VT ML AP VT ML 

head 0.99 0.99 0.92 0.98 0.98 0.76 0.98 0.98 0.93 0.98 0.99 0.83 0.98 0.98 0.99 0.99 0.97 0.94 

spine top 0.97 0.99 0.37 0.99 0.97 0.88 0.98 0.98 0.87 0.78 0.85 0.49 0.56 0.65 0.91 0.89 0.96 0.79 

right 
shoulder 

0.56 0.39 0.65 0.95 0.21 0.85 0.83 0.17 0.65 0.72 0.58 0.33 0.96 0.90 0.92 0.89 0.73 0.91 

left shoulder 0.99 0.99 0.95 0.98 0.98 0.81 0.98 0.99 0.95 0.97 0.99 0.90 0.98 0.98 0.98 0.99 0.97 0.99 

right elbow 0.97 0.99 0.34 0.99 0.97 0.88 0.98 0.98 0.86 0.69 0.90 0.54 0.80 0.37 0.92 0.88 0.95 0.77 

left elbow 0.71 0.40 0.68 0.97 0.31 0.90 0.79 0.14 0.89 0.71 0.62 0.48 0.96 0.93 0.95 0.83 0.87 0.75 

right wrist 0.48 0.97 0.36 0.90 0.97 0.77 0.94 0.99 0.85 0.78 0.87 0.37 0.53 0.23 0.81 0.88 0.79 0.66 

left wrist 0.91 0.99 0.83 0.98 0.98 0.93 0.95 0.99 0.94 0.86 0.89 0.72 0.94 0.53 0.96 0.99 0.97 0.91 

right hand 0.97 0.99 0.75 0.98 0.98 0.89 0.95 0.99 0.95 0.84 0.91 0.64 0.88 0.68 0.94 0.94 0.93 0.89 

left hand 0.92 0.99 0.34 0.98 0.98 0.64 0.94 0.98 0.91 0.53 0.91 0.58 0.71 0.74 0.94 0.96 0.98 0.91 

spine mid 0.91 0.98 0.53 0.99 0.98 0.78 0.90 0.99 0.87 0.69 0.97 0.52 0.81 0.78 0.95 0.92 0.98 0.85 

spine base 0.95 0.99 0.56 0.98 0.98 0.70 0.97 0.98 0.91 0.76 0.97 0.50 0.97 0.95 0.96 0.97 0.95 0.95 

right hip 0.93 0.99 0.76 0.98 0.98 0.79 0.93 0.98 0.88 0.70 0.97 0.39 0.97 0.95 0.97 0.97 0.96 0.96 

left hip 0.97 0.98 0.78 0.98 0.97 0.97 0.98 0.99 0.96 0.98 0.97 0.79 0.93 0.87 0.93 0.99 0.92 0.95 

right knee 0.94 0.62 0.87 0.98 0.30 0.84 0.98 0.85 0.88 0.91 0.84 0.91 0.99 0.93 0.88 0.92 0.82 0.77 

left knee 0.95 0.61 0.88 0.98 0.37 0.93 0.97 0.87 0.94 0.94 0.84 0.89 0.99 0.88 0.94 0.92 0.86 0.91 

right ankle 0.54 0.45 0.55 0.90 0.11 0.81 0.71 0.17 0.62 0.43 0.59 0.42 0.82 0.80 0.67 0.89 0.53 0.77 

left ankle 0.41 0.51 0.49 0.93 0.07 0.82 0.74 0.09 0.76 0.32 0.61 0.24 0.81 0.82 0.74 0.73 0.74 0.74 

right foot 0.99 0.99 0.93 0.98 0.98 0.75 0.97 0.98 0.91 0.98 0.99 0.78 0.98 0.98 0.99 0.99 0.96 0.96 

left foot 0.99 0.99 0.95 0.98 0.98 0.81 0.98 0.99 0.93 0.98 0.99 0.88 0.98 0.99 0.99 0.99 0.97 0.99 

 
                                    

 SHOULDER 
AB/ADDUCTION 

SHOULDER 
FLEXION/ 

EXTENSION 
HIP AB/ADDUCTION 

COMBINED 
HIP/KNEE FLEXION/ 

EXTENSION 

COMBINED ARM 
AB/ADDUCTION 

SAGITTAL/FRONTAL 
TRUNK LEANS 

JOINT DISP AP VT ML AP VT ML AP VT ML AP VT ML AP VT ML AP VT ML 

head 0.96 1.00 1.00 0.98 0.99 0.99 0.90 0.98 0.94 0.91 0.99 0.95 0.75 0.94 0.95 0.77 0.98 0.93 

spine top 0.15 0.95 0.60 0.35 0.90 0.12 0.68 0.70 0.97 0.89 0.85 0.96 0.60 0.54 0.32 0.94 0.07 0.87 

right 
shoulder 

0.37 0.59 0.33 0.42 0.36 0.34 0.84 0.87 0.94 0.86 0.93 0.94 0.29 0.31 0.36 0.54 0.42 0.84 

left shoulder 0.89 1.00 1.00 0.99 0.99 0.99 0.78 0.97 0.98 0.85 0.98 0.99 0.69 0.94 0.96 0.82 0.98 0.96 

right elbow 0.16 0.95 0.50 0.52 0.80 0.15 0.50 0.81 0.97 0.85 0.92 0.98 0.67 0.45 0.29 0.94 0.18 0.93 

left elbow 0.34 0.53 0.33 0.31 0.24 0.35 0.86 0.91 0.91 0.81 0.98 0.98 0.12 0.20 0.28 0.53 0.34 0.94 

right wrist 0.55 0.19 0.30 0.20 0.33 0.45 0.52 0.14 0.94 0.42 0.53 0.98 0.28 0.45 0.35 0.91 0.76 0.69 

left wrist 0.92 0.78 0.76 0.96 0.31 0.75 0.91 0.53 0.96 0.95 0.35 0.99 0.89 0.66 0.77 0.98 0.55 0.99 

right hand 0.32 0.54 0.69 0.75 0.25 0.41 0.61 0.36 0.97 0.89 0.46 0.99 0.90 0.25 0.66 0.59 0.12 0.26 

left hand 0.80 0.97 0.67 0.68 0.91 0.85 0.73 0.83 0.97 0.94 0.94 0.99 0.22 0.35 0.17 0.97 0.90 0.98 

spine mid 0.24 0.97 0.20 0.56 0.94 0.60 0.45 0.60 0.97 0.92 0.84 0.99 0.27 0.54 0.48 0.93 0.78 0.98 

spine base 0.70 0.99 0.99 0.94 0.98 0.97 0.65 0.98 0.96 0.94 0.98 0.99 0.14 0.91 0.83 0.79 0.98 0.96 

right hip 0.73 0.99 0.99 0.98 0.98 0.98 0.65 0.96 0.97 0.95 0.98 0.99 0.39 0.89 0.93 0.89 0.96 0.92 

left hip 0.96 0.49 0.84 0.97 0.77 0.87 0.90 0.42 0.96 0.96 0.86 0.99 0.86 0.69 0.82 0.99 0.90 0.99 

right knee 0.62 0.80 0.64 0.52 0.33 0.77 0.92 0.86 0.95 0.88 0.93 0.94 0.33 0.42 0.13 0.95 0.09 0.96 

left knee 0.46 0.84 0.59 0.66 0.61 0.63 0.94 0.87 0.94 0.91 0.97 0.97 0.43 0.31 0.51 0.93 0.10 0.98 

right ankle 0.39 0.34 0.27 0.30 0.24 0.44 0.22 0.87 0.90 0.63 0.94 0.94 0.18 0.25 0.28 0.18 0.26 0.37 

left ankle 0.45 0.16 0.24 0.25 0.17 0.23 0.46 0.92 0.90 0.55 0.98 0.97 0.06 0.08 0.16 0.36 0.44 0.41 

right foot 0.97 1.00 1.00 0.98 0.99 0.99 0.91 0.98 0.95 0.93 0.99 0.96 0.90 0.95 0.96 0.75 0.97 0.92 

left foot 0.96 1.00 1.00 0.99 0.99 0.99 0.79 0.97 0.97 0.91 0.98 0.99 0.74 0.95 0.97 0.90 0.98 0.97 



 

Table 7: Average Cross-Correlation Coefficients of Joint Angles measured across the same trials used in Table 6 and grouped by 
movement. 

 SIT TO STAND TIMED UP AND GO 
ALTERNATING 

BARBELL LUNGES 
OVERHEAD 

SQUATS 
MARCHING IN 

PLACE 
TIME TO 

STABILIZATION 

JOINT ANGLES 
KQ 
vs 
QS 

K3D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3D 
vs 
QS 

K3D 
vs 
KQ 

arm flexion r 0.50 0.56 0.50 0.13 0.26 0.19 0.41 0.41 0.87 0.41 0.24 0.58 0.32 0.62 0.40 0.30 0.46 0.61 

arm flexion l 0.86 0.44 0.44 0.19 0.65 0.15 0.67 0.49 0.72 0.58 0.43 0.26 0.56 0.70 0.45 0.47 0.48 0.33 

arm adduction r 0.62 0.61 0.50 0.22 0.68 0.21 0.93 0.98 0.93 0.75 0.81 0.86 0.65 0.95 0.65 0.47 0.48 0.58 

arm adduction l 0.44 0.61 0.60 0.18 0.70 0.24 0.70 0.74 0.85 0.69 0.70 0.89 0.81 0.92 0.87 0.46 0.58 0.61 

elbow flexion r 0.64 0.67 0.49 0.82 0.51 0.57 0.82 0.46 0.43 0.83 0.55 0.41 0.56 0.41 0.36 0.90 0.38 0.46 

elbow flexion l 0.63 0.65 0.36 0.72 0.23 0.36 0.69 0.32 0.24 0.69 0.36 0.41 0.55 0.37 0.53 0.76 0.55 0.45 

hip flexion r 0.98 0.98 1.00 0.91 0.90 0.93 0.62 0.64 1.00 0.94 0.95 1.00 0.92 0.92 1.00 0.82 0.80 0.99 

hip flexion l 0.98 0.98 1.00 0.89 0.90 0.94 0.66 0.65 0.99 0.92 0.94 0.99 0.93 0.93 1.00 0.87 0.90 0.97 

hip adduction r 0.69 0.42 0.57 0.27 0.35 0.40 0.20 0.27 0.61 0.45 0.13 0.22 0.40 0.54 0.44 0.28 0.54 0.54 

hip adduction l 0.40 0.56 0.80 0.34 0.43 0.50 0.16 0.24 0.73 0.35 0.36 0.86 0.51 0.47 0.53 0.39 0.31 0.27 

knee flexion r 0.96 0.96 1.00 0.47 0.47 1.00 0.90 0.93 0.96 0.75 0.76 1.00 0.84 0.85 1.00 0.85 0.86 0.99 

knee flexion l 0.96 0.96 1.00 0.50 0.54 0.94 0.92 0.93 1.00 0.74 0.74 1.00 0.79 0.80 0.99 0.86 0.92 0.94 

knee adduction r 0.87 0.53 0.58 0.56 0.41 0.63 0.43 0.27 0.58 0.77 0.22 0.17 0.64 0.32 0.62 0.50 0.39 0.65 

knee adduction l 0.25 0.59 0.25 0.11 0.36 0.31 0.27 0.36 0.53 0.20 0.36 0.39 0.55 0.13 0.30 0.32 0.36 0.20 

lumbar extension 0.33 0.56 0.66 0.19 0.11 0.75 0.35 0.21 0.24 0.69 0.65 0.58 0.25 0.15 0.16 0.28 0.46 0.53 

  
                                    

 
SHOULDER 

AB/ADDUCTION 

SHOULDER 
FLEXION/ 

EXTENSION 
HIP AB/ADDUCTION 

COMBINED HIP/ 
KNEE FLEXION/ 

EXTENSION 

COMBINED ARM 
AB/ADDUCTION 

SAGITTAL/FRONTAL 
TRUNK LEANS 

JOINT ANGLES 
KQ 
vs 
QS 

K3D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3D 
vs 
QS 

K3D 
vs 
KQ 

arm flexion r 0.22 0.30 0.83 0.96 0.90 0.90 0.60 0.81 0.57 0.45 0.53 0.42 0.11 0.23 0.31 0.40 0.49 0.25 

arm flexion l 0.17 0.23 0.76 0.91 0.75 0.82 0.33 0.80 0.57 0.20 0.44 0.29 0.11 0.08 0.40 0.05 0.23 0.21 

arm adduction r 0.96 0.97 0.96 0.27 0.35 0.98 0.98 0.98 0.99 0.95 0.96 0.97 0.13 0.35 0.62 0.78 0.82 0.79 

arm adduction l 0.98 0.89 0.89 0.38 0.43 0.98 0.95 0.97 0.98 0.88 0.97 0.94 0.56 0.90 0.62 0.78 0.87 0.78 

elbow flexion r 0.28 0.14 0.09 0.35 0.12 0.22 0.72 0.71 0.74 0.68 0.57 0.52 0.74 0.18 0.23 0.97 0.57 0.57 

elbow flexion l 0.21 0.13 0.19 0.51 0.10 0.42 0.79 0.65 0.55 0.55 0.33 0.29 0.69 0.59 0.24 0.84 0.24 0.22 

hip flexion r 0.26 0.36 0.98 0.24 0.22 0.96 0.91 0.91 1.00 0.85 0.76 0.97 0.36 0.36 0.98 0.71 0.74 0.98 

hip flexion l 0.68 0.67 0.96 0.20 0.39 0.86 0.95 0.95 1.00 0.45 0.83 0.78 0.31 0.40 0.94 0.55 0.86 0.66 

hip adduction r 0.13 0.14 0.94 0.03 0.06 0.91 0.68 0.49 0.68 0.17 0.23 0.88 0.25 0.26 0.99 0.09 0.17 0.96 

hip adduction l 0.15 0.13 0.60 0.13 0.28 0.73 0.59 0.68 0.78 0.59 0.29 0.85 0.18 0.22 0.73 0.55 0.24 0.32 

knee flexion r 0.48 0.46 0.94 0.07 0.08 0.91 0.87 0.88 1.00 0.72 0.83 0.96 0.21 0.23 0.99 0.79 0.89 0.95 

knee flexion l 0.52 0.40 0.66 0.15 0.38 0.40 0.90 0.88 1.00 0.84 0.86 0.94 0.36 0.25 0.74 0.72 0.86 0.88 

knee adduction r 0.59 0.28 0.69 0.28 0.35 0.97 0.37 0.48 0.64 0.84 0.83 1.00 0.17 0.25 0.91 0.87 0.88 0.99 

knee adduction l 0.17 0.21 0.55 0.22 0.26 0.77 0.13 0.47 0.29 0.24 0.49 0.90 0.34 0.28 0.74 0.17 0.92 0.17 

lumbar extension 0.46 0.79 0.42 0.22 0.65 0.15 0.40 0.40 0.27 0.37 0.77 0.51 0.75 0.39 0.25 0.26 0.97 0.30 

  



Table 8: Average Errors in Kinect-based MOCAP Joint Center Displacement estimation across two separate trials from four 
different subjects (each subject repeated the tests twice) and grouped by movement types 

 SIT TO STAND TIMED UP AND GO 
ALTERNATING 

BARBELL LUNGES 
OVERHEAD SQUATS MARCHING IN PLACE 

TIME TO 
STABILIZATION 

JOINT DISP AP VT ML AP VT ML AP VT ML AP VT ML AP VT ML AP VT ML 

head 4.8 4.1 8.3 7.2 4.5 8.5 8.4 8.5 1.9 3.2 4.2 1.6 3.3 2.2 3.6 3.5 3.2 6.7 

spine top 7.7 3.4 1.3 5.8 3.8 2.8 7.8 3.4 2.0 5.6 7.4 3.7 1.7 0.8 1.7 3.2 1.4 2.0 

right shoulder 2.3 2.3 0.8 11.2 2.2 2.6 10.3 3.0 3.4 2.8 4.4 1.1 1.5 4.3 0.8 2.7 2.5 1.1 

left shoulder 3.9 3.8 8.3 8.7 5.0 10.6 7.7 8.0 2.7 3.0 4.1 0.9 3.0 2.2 4.2 3.3 3.2 9.5 

right elbow 7.1 2.6 1.3 5.3 4.2 3.2 7.4 4.5 2.1 5.7 7.8 3.7 1.5 0.9 1.6 3.5 1.1 2.1 

left elbow 1.9 2.4 0.4 11.8 2.4 3.3 10.8 3.1 2.0 2.1 4.7 1.0 1.1 4.1 0.8 8.8 12.5 4.0 

right wrist 17.8 8.5 0.8 23.9 6.5 3.7 8.4 6.5 2.4 8.9 9.9 1.2 1.6 0.7 1.5 18.0 1.3 2.5 

left wrist 2.8 5.3 0.6 6.1 3.9 2.0 8.3 2.5 1.0 3.0 4.2 0.7 0.6 0.4 1.1 3.2 2.8 2.4 

right hand 2.7 5.9 0.7 6.7 4.8 2.4 5.3 2.6 1.1 2.7 4.2 0.9 0.9 0.5 1.2 2.8 2.8 2.1 

left hand 2.5 3.7 1.2 7.7 3.7 4.0 10.4 4.6 1.1 3.5 7.2 4.3 1.8 1.3 1.0 3.4 1.8 2.3 

spine mid 2.5 4.9 1.5 8.4 4.4 5.4 9.9 2.9 1.5 3.9 3.8 1.3 2.4 1.1 0.9 4.5 2.1 2.2 

spine base 5.2 2.4 2.7 6.5 4.3 8.1 10.4 12.0 2.2 8.9 6.8 2.3 4.9 2.0 3.6 3.1 2.3 2.2 

right hip 3.4 3.0 5.7 7.3 5.2 8.6 11.4 11.8 1.7 11.3 4.8 2.8 4.6 3.5 3.3 2.1 2.8 5.3 

left hip 3.7 16.2 0.5 22.1 9.6 3.5 10.5 6.5 2.2 2.4 16.5 0.6 0.8 0.2 1.8 25.0 3.6 4.2 

right knee 3.2 2.8 0.6 7.3 2.7 2.6 10.2 4.5 3.1 3.6 4.6 1.7 2.5 2.4 1.0 2.8 5.2 1.3 

left knee 3.8 2.9 0.6 7.4 2.8 3.0 12.0 5.3 1.5 3.6 5.4 2.1 2.4 2.3 0.8 4.9 3.6 2.1 

right ankle 2.4 3.7 1.0 15.2 3.5 3.5 12.8 3.9 3.9 2.7 3.7 1.7 2.1 3.3 1.6 4.5 2.8 2.4 

left ankle 2.2 3.5 0.6 16.0 2.3 4.2 12.7 3.3 2.9 2.9 4.4 1.3 1.9 3.0 1.5 16.7 8.3 5.7 

right foot 3.1 4.5 8.9 8.0 6.2 8.9 8.1 6.1 2.2 2.7 3.2 2.6 2.6 3.0 2.6 3.8 3.5 7.2 

left foot 3.0 4.3 6.8 9.8 6.3 10.8 7.0 5.1 2.5 2.9 3.0 1.7 2.4 2.8 2.4 3.0 4.0 9.6 

                   

 
SHOULDER 

AB/ADDUCTION 
SHOULDER 

FLEXION/EXTENSION 
HIP AB/ADDUCTION 

COMBINED HIP/KNEE 
FLEXION/EXTENSION 

COMBINED ARM 
AB/ADDUCTION 

SAGITTAL/FRONTAL 
TRUNK LEANS 

JOINT DISP AP VT ML AP VT ML AP VT ML AP VT ML AP VT ML AP VT ML 

head 1.6 3.2 3.3 5.6 10.5 2.6 1.5 2.2 6.5 1.7 1.8 7.1 1.5 12.6 6.4 3.9 3.0 10.5 

spine top 0.8 1.4 0.3 0.7 0.7 1.2 0.7 1.6 2.0 1.0 1.7 2.1 1.3 0.8 0.6 1.9 2.7 1.3 

right shoulder 0.5 1.4 0.2 0.3 1.1 0.1 2.2 5.7 0.7 1.1 5.3 6.2 0.2 1.0 0.1 0.6 1.4 0.4 

left shoulder 1.6 2.8 2.1 3.9 5.8 2.9 1.0 3.5 5.4 1.6 1.9 4.7 2.0 12.9 5.0 2.9 2.0 7.6 

right elbow 0.8 1.8 0.3 0.7 0.9 1.2 0.8 1.1 1.7 1.1 1.7 1.8 1.2 0.9 0.6 1.8 2.6 1.4 

left elbow 0.5 1.5 0.1 0.2 1.0 0.1 2.3 4.0 0.7 1.1 2.3 3.8 0.3 0.7 0.2 0.5 1.7 0.3 

right wrist 1.2 3.5 0.4 0.8 1.3 0.5 0.8 1.5 2.6 2.0 1.2 1.7 1.7 1.2 0.2 2.5 2.4 4.4 

left wrist 1.2 0.5 0.3 0.5 0.6 0.6 0.5 0.4 2.5 2.7 0.8 2.5 0.4 0.3 0.4 1.5 3.9 1.3 

right hand 0.8 2.1 0.4 0.7 0.7 0.5 1.0 0.6 2.2 1.0 1.4 1.6 0.8 0.7 0.2 0.9 3.5 1.5 

left hand 0.8 1.5 0.6 1.3 2.1 0.9 0.9 1.4 2.9 1.7 1.2 3.2 2.7 1.3 0.6 1.8 3.9 1.1 

spine mid 1.6 2.3 0.5 1.1 1.1 0.7 1.4 1.3 2.5 1.1 1.5 2.3 2.6 1.2 0.4 1.8 3.7 1.0 

spine base 2.9 2.9 2.1 4.7 3.7 2.0 1.6 2.2 3.0 2.0 2.9 2.5 2.2 6.8 3.6 4.4 5.3 1.4 

right hip 1.7 2.1 1.5 2.0 4.8 1.1 1.3 3.6 1.9 2.1 2.6 2.1 2.9 7.2 2.9 2.0 5.0 2.2 

left hip 1.0 0.4 0.5 1.0 0.2 0.4 2.2 0.5 4.3 1.7 0.6 8.4 0.5 0.2 0.3 3.7 5.0 6.4 

right knee 1.1 2.0 0.4 1.5 3.3 0.3 3.8 3.8 1.0 1.6 2.8 2.1 0.8 0.9 0.2 1.5 3.3 0.7 

left knee 1.1 1.7 0.3 0.6 1.2 0.4 2.9 3.6 1.1 1.4 1.9 1.7 0.7 0.7 0.2 1.1 2.7 0.5 

right ankle 1.2 2.0 0.5 1.1 1.7 0.5 4.1 5.7 1.0 1.9 5.6 6.6 3.0 3.4 0.2 1.9 2.4 0.5 

left ankle 0.8 1.1 0.3 1.0 1.2 0.2 4.6 2.7 1.0 1.9 2.8 4.2 0.9 1.5 0.1 1.7 1.5 0.6 

right foot 2.0 2.6 3.2 6.7 12.2 3.5 1.7 2.8 7.5 1.4 2.0 7.5 1.4 13.7 7.9 4.0 4.7 11.0 

left foot 1.4 2.9 2.2 4.7 6.1 2.3 1.6 4.1 6.7 1.7 2.7 5.6 2.0 13.8 5.2 2.5 3.4 8.0 

 

  



Table 9: Average Errors in Joint angles measured across the same trials as Table 8 and grouped by movement. 

 SIT TO STAND 
TIMED UP AND 

GO 
ALTERNATING 

BARBELL LUNGES 
OVERHEAD 

SQUATS 
MARCHING IN 

PLACE 
TIME TO 

STABILIZATION 

JOINT ANGLES 
KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

arm flexion r 97 52 92 52 41 72 171 152 37 164 102 77 17 20 22 89 10 93 

arm flexion l 88 12 77 66 25 58 140 184 91 97 126 83 38 17 30 68 12 61 

arm adduction r 85 37 53 33 13 35 89 62 37 98 65 52 10 7 8 42 10 47 

arm adduction l 52 6 50 37 8 40 141 108 34 81 61 38 9 6 7 51 6 49 

elbow flexion r 37 54 32 31 43 17 61 94 54 31 50 32 16 16 9 37 52 18 

elbow flexion l 33 70 37 34 54 24 67 90 71 32 24 37 19 22 10 33 65 34 

hip flexion r 4 4 1 7 7 3 33 32 1 9 10 2 13 12 1 27 32 5 

hip flexion l 9 8 3 11 11 4 28 34 9 13 12 4 18 17 3 13 8 5 

hip adduction r 4 12 8 5 11 7 6 9 5 6 14 10 4 5 2 5 17 14 

hip adduction l 5 15 16 7 10 14 8 9 12 9 21 18 6 4 8 5 5 5 

knee flexion r 12 13 3 37 38 3 36 21 17 26 26 4 14 14 2 8 7 2 

knee flexion l 16 14 5 28 29 6 18 18 9 28 23 9 16 14 4 9 9 3 

knee adduction r 7 16 22 26 31 18 11 26 31 8 16 21 9 15 13 7 7 12 

knee adduction l 25 13 29 32 32 22 21 18 25 19 14 28 22 13 13 22 5 22 

lumbar extension 22 15 14 113 109 11 135 11 138 31 28 20 19 18 13 15 10 11 

                   

 
SHOULDER 

AB/ADDUCTION 

SHOULDER 
FLEXION/ 

EXTENSION 

HIP 
AB/ADDUCTION 

COMBINED 
HIP/KNEE 
FLEXION/ 

EXTENSION 

COMBINED ARM 
AB/ADDUCTION 

SAGITTAL/ 
FRONTAL TRUNK 

LEANS 

JOINT ANGLES 
KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

arm flexion r 32 50 30 14 16 22 20 16 30 42 16 49 127 97 52 109 81 56 

arm flexion l 29 53 70 46 15 50 34 16 35 30 19 37 51 48 53 39 28 42 

arm adduction r 10 10 7 18 19 8 13 8 11 21 10 14 82 33 52 71 60 29 

arm adduction l 9 8 6 17 17 7 16 9 11 27 8 19 32 11 24 32 20 31 

elbow flexion r 8 11 15 9 10 11 14 20 12 22 28 14 28 70 59 37 48 29 

elbow flexion l 8 8 12 7 8 7 17 18 12 23 33 17 26 54 49 33 55 33 

hip flexion r 10 11 1 11 12 1 14 15 1 11 12 1 9 10 1 15 16 13 

hip flexion l 11 10 1 12 11 1 17 16 2 15 11 5 9 9 2 16 10 10 

hip adduction r 5 5 0 5 5 1 4 4 2 5 5 1 5 5 0 6 4 4 

hip adduction l 4 1 5 4 1 4 6 3 8 6 4 7 4 3 6 9 5 11 

knee flexion r 22 22 1 23 24 2 15 16 2 14 13 2 20 20 1 26 25 9 

knee flexion l 21 19 2 23 21 3 19 16 3 16 11 6 21 19 4 24 23 14 

knee adduction r 14 6 19 13 5 17 11 5 15 16 7 15 14 6 16 14 10 19 

knee adduction l 21 2 20 21 3 19 18 3 16 18 6 15 18 3 17 25 10 24 

lumbar extension 13 6 7 18 7 10 10 7 8 14 4 14 23 6 20 44 19 37 



Table 10: Normalized summary metric of accuracy in evaluating joint displacement accuracy in a Kinect-based MOCAP in 
comparison with a gold standard 3D Qualisys system. 

  SIT TO STAND TIMED UP AND GO 
ALTERNATING 

BARBELL LUNGES 
OVERHEAD SQUATS 

MARCHING IN 
PLACE 

TIME TO 
STABILIZATION 

JOINT DISP AP VT ML AP VT ML AP VT ML AP VT ML AP VT ML AP VT ML 

head 1.0 4.1 0.2 5.7 2.5 0.9 2.7 1.6 0.6 0.6 4.3 0.2 0.2 0.1 0.5 6.3 1.0 1.1 

spine top 0.8 1.3 0.2 1.6 1.0 0.5 2.2 0.6 0.3 0.9 1.2 0.2 0.2 0.2 0.3 0.8 0.7 0.7 

right shoulder 0.7 1.3 0.7 2.1 1.1 1.7 2.8 0.7 0.4 1.4 1.0 0.6 0.7 0.4 0.2 1.2 0.5 0.7 

left shoulder 0.7 0.9 0.9 2.0 0.9 1.7 2.8 1.2 0.3 1.7 2.0 1.9 0.6 0.5 0.3 0.9 0.5 0.6 

right elbow 0.9 0.8 1.9 1.9 1.3 2.7 3.0 3.0 0.5 4.0 1.2 1.8 1.2 0.9 0.9 0.5 0.7 1.4 

left elbow 1.4 0.6 1.2 1.7 1.1 3.0 2.7 3.1 0.6 2.9 1.8 1.2 1.2 0.5 0.9 0.8 0.6 0.6 

right wrist 1.0 1.0 2.2 2.2 1.3 3.3 2.0 2.0 0.7 0.8 1.0 0.3 0.8 0.6 1.1 0.8 0.8 2.4 

left wrist 1.2 1.0 2.3 1.8 1.1 2.8 2.1 2.2 0.5 0.8 1.1 0.5 0.9 0.6 0.9 0.9 0.8 1.8 

right hand 0.8 1.1 1.8 2.5 1.6 3.3 1.8 1.3 0.7 0.7 0.7 0.5 0.6 0.7 0.6 0.8 1.0 2.4 

left hand 0.8 1.1 2.4 2.0 1.6 3.0 2.1 1.6 0.6 0.7 0.8 0.8 0.7 0.8 0.7 1.0 0.9 1.9 

spine mid 0.7 1.5 0.2 1.7 1.2 0.7 1.4 0.7 0.3 0.8 1.2 0.3 0.3 0.2 0.3 0.7 0.8 0.6 

spine base 9.4 2.2 0.5 6.7 1.7 1.2 2.2 1.6 0.7 2.8 2.9 0.8 0.7 0.7 0.5 5.1 0.4 1.0 

right hip 1.8 0.6 0.9 1.3 1.1 0.9 1.9 1.2 0.6 2.1 2.2 1.7 0.5 0.6 0.4 1.0 0.3 0.7 

left hip 2.0 0.9 0.9 1.5 1.0 0.8 2.0 0.9 0.6 1.8 2.2 1.9 0.7 0.3 0.5 0.9 0.4 0.7 

right knee 1.0 1.2 0.2 1.9 1.9 0.8 3.1 1.5 0.4 1.0 1.6 0.6 0.6 0.6 0.2 1.3 1.0 0.6 

left knee 0.8 1.1 0.2 1.9 2.9 0.8 2.6 1.3 0.9 1.0 1.4 0.5 0.6 0.6 0.3 0.8 1.6 0.4 

right ankle 0.7 1.5 0.2 3.1 2.0 0.9 3.4 5.6 0.6 0.8 1.9 0.5 0.3 1.1 0.2 2.7 3.6 1.3 

left ankle 1.0 1.6 0.3 3.0 3.3 0.8 3.1 4.5 1.3 1.0 2.0 1.1 0.4 1.2 0.2 0.8 0.9 0.3 

right foot 1.4 1.7 0.3 4.3 9.2 1.3 4.3 9.5 1.0 2.3 1.8 1.4 0.6 0.9 0.5 5.8 2.8 2.0 

left foot 1.1 2.1 0.5 4.2 9.3 1.1 4.7 5.6 1.7 1.6 1.7 1.2 0.7 1.0 0.6 1.3 1.3 0.8 
                   

Average per 
axis 

1.5 1.4 0.9 2.6 2.4 1.6 2.6 2.5 0.7 1.5 1.7 0.9 0.6 0.6 0.5 1.7 1.0 1.1 

Average 1.2 2.2 1.9 1.4 0.6 1.3 
                   

  
SHOULDER 

AB/ADDUCTION 
SHOULDER 

FLEXION/EXTENSION 
HIP 

AB/ADDUCTION 
COMBINED HIP / KNEE 
FLEXION/EXTENSION 

COMBINED ARM 
AB/ADDUCTION 

SAGITTAL / 
FRONTAL TRUNK 

LEANS 

JOINT DISP AP VT ML AP VT ML AP VT ML AP VT ML AP VT ML AP VT ML 

head 0.3 0.2 0.1 0.3 0.1 0.1 0.6 0.3 1.1 0.4 0.2 2.1 0.1 0.1 0.1 0.9 1.4 1.6 

spine top 0.3 0.2 0.1 0.1 0.4 0.2 0.1 0.2 0.6 0.7 0.6 0.6 0.1 0.1 0.1 0.4 1.8 0.3 

right shoulder 1.6 0.6 0.6 0.5 0.3 0.3 0.8 0.6 0.6 0.3 0.4 0.6 2.5 0.6 0.2 0.5 1.2 0.2 

left shoulder 0.3 0.4 0.2 0.5 0.6 0.3 0.3 0.4 0.7 0.4 0.3 0.8 3.0 0.9 0.8 0.5 1.1 0.3 

right elbow 0.6 0.5 0.4 0.5 1.2 0.3 0.5 0.9 0.5 0.6 0.7 0.5 1.9 2.1 0.8 0.5 1.3 0.6 

left elbow 1.1 0.7 0.5 1.3 1.0 0.5 0.6 0.6 0.8 0.5 0.8 0.6 6.6 1.9 1.2 1.4 1.3 0.4 

right wrist 0.5 0.7 0.5 1.0 1.5 0.7 0.3 0.9 1.4 0.5 0.5 1.2 0.7 3.5 1.3 0.9 0.5 2.0 

left wrist 0.4 0.8 0.8 1.4 2.7 0.6 0.4 0.6 1.7 0.5 0.4 1.9 0.5 3.4 1.7 1.3 0.8 2.8 

right hand 0.4 0.7 0.5 1.2 1.5 0.6 0.5 1.1 1.7 0.5 0.7 1.4 0.7 3.7 1.3 0.7 0.9 2.1 

left hand 0.5 0.6 0.8 1.7 3.1 0.9 0.5 0.7 2.0 0.4 0.5 2.0 0.4 3.7 2.1 1.4 1.2 3.0 

spine mid 0.6 1.0 0.2 0.2 0.7 0.3 0.4 0.5 0.6 0.3 0.7 0.4 0.2 0.7 0.1 0.4 7.3 1.4 

spine base 0.5 4.5 0.4 1.0 1.0 0.3 0.4 2.7 0.7 1.2 0.6 0.4 1.5 0.7 0.1 0.7 0.8 1.6 

right hip 1.6 0.5 0.2 0.3 0.3 2.0 0.4 0.3 0.4 0.3 0.5 0.5 0.5 0.5 0.5 0.5 3.7 0.4 

left hip 1.4 0.4 0.1 0.5 0.2 3.7 0.3 0.6 0.5 0.3 0.5 0.5 0.5 0.4 0.5 0.5 10.4 0.4 

right knee 0.6 0.5 0.1 0.2 0.5 0.2 0.8 1.0 0.3 0.4 0.5 0.4 0.4 0.8 0.1 0.3 8.0 0.1 

left knee 0.5 0.6 0.2 0.7 2.6 0.1 1.0 1.1 0.3 0.4 0.7 0.6 0.6 0.6 0.4 0.4 9.7 0.2 

right ankle 0.4 0.7 0.1 0.2 1.8 0.1 0.7 1.1 0.2 0.3 0.6 1.0 0.7 1.8 0.2 0.3 1.3 0.1 

left ankle 0.3 0.6 0.2 0.2 0.8 0.2 0.7 1.6 0.2 0.3 1.4 1.6 0.1 0.8 0.1 0.3 0.8 0.1 

right foot 0.5 2.8 0.3 0.9 4.5 0.3 2.6 0.7 0.3 0.9 0.7 1.1 3.3 4.4 0.3 1.2 1.0 0.4 

left foot 0.8 1.6 0.4 1.3 1.6 0.3 4.8 1.6 0.3 0.8 1.5 1.8 5.7 3.8 0.1 4.1 2.4 0.4 
                   

Average per 
axis 

0.7 0.9 0.3 0.7 1.3 0.6 0.8 0.9 0.7 0.5 0.6 1.0 1.5 1.7 0.6 0.9 2.8 0.9 

Average 0.6 0.9 0.8 0.7 1.3 1.5 

  



Table 11: Normalized summary metric of accuracy in evaluating joint angle accuracy in a Kinect-based MOCAP in comparison 
with a gold standard 3D Qualisys system. 

 SIT TO STAND TIMED UP AND GO 
ALTERNATING 

BARBELL LUNGES 
OVERHEAD 

SQUATS 
MARCHING IN 

PLACE 
TIME TO 

STABILIZATION 

JOINT ANGLES 
KQ 
vs 
QS 

K3
D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

arm flexion r 9.9 4.8 9.0 17.9 6.8 14.1 20.1 17.9 2.3 16.3 16.4 7.4 3.2 1.8 3.3 13.7 1.5 7.1 

arm flexion l 5.3 1.9 9.1 18.8 1.7 19.8 10.5 18.6 6.7 8.7 14.7 19.6 3.7 1.3 3.8 6.9 1.6 
10.
1 

arm adduction r 6.9 3.0 5.8 6.7 1.0 7.0 4.8 3.2 2.0 5.6 3.2 3.7 1.0 0.4 0.7 4.3 1.3 3.8 

arm adduction l 5.9 0.6 4.4 9.1 0.8 7.7 9.7 7.1 2.1 6.1 4.0 2.9 0.8 0.3 0.6 5.4 0.7 3.9 

elbow flexion r 3.1 4.2 3.8 1.4 3.0 1.4 3.5 11.8 6.9 1.7 3.2 3.2 1.4 2.3 2.0 2.0 6.7 2.1 

elbow flexion l 2.9 5.4 5.4 1.8 8.6 3.0 4.6 15.2 13.4 1.8 2.2 3.3 1.9 3.3 1.2 2.2 6.0 3.9 

hip flexion r 0.6 0.6 0.1 2.4 2.6 0.2 2.6 1.6 1.0 1.4 1.4 0.2 0.7 0.7 0.1 1.1 1.2 0.2 

hip flexion l 0.7 0.7 0.3 2.2 2.0 0.5 1.3 1.4 0.4 1.5 1.4 0.4 1.0 0.8 0.2 0.7 0.5 0.3 

hip adduction r 0.4 2.5 1.9 1.6 3.4 1.6 1.4 5.8 2.8 0.7 9.3 7.6 0.5 1.5 0.6 1.0 1.4 1.1 

hip adduction l 3.0 1.8 4.2 11.3 3.0 2.6 3.6 2.8 2.7 3.8 4.1 3.1 1.4 2.3 1.5 2.2 0.8 3.0 

knee flexion r 0.6 0.6 0.2 2.4 2.6 0.2 2.1 2.0 0.1 1.4 1.4 0.2 0.8 0.8 0.1 1.1 1.2 0.2 

knee flexion l 0.7 0.7 0.2 2.2 2.0 0.4 1.4 1.8 0.5 1.5 1.4 0.4 1.0 0.9 0.1 0.7 0.5 0.2 

knee adduction 
r 

0.4 2.3 2.0 1.4 2.7 1.9 1.6 1.7 0.9 0.6 7.3 7.9 0.6 1.2 0.8 0.7 1.2 1.2 

knee adduction l 3.2 1.8 5.2 4.9 2.8 3.9 3.0 1.8 1.1 3.0 3.6 3.7 1.1 3.1 1.6 2.0 1.0 4.1 

lumbar 
extension 

3.9 1.6 1.1 23.0 35.6 0.7 18.4 2.5 26.8 2.7 2.1 1.7 3.8 5.7 3.9 2.7 0.9 1.1 

                   

Average per 
axis 

3.2 2.2 3.5 7.1 5.2 4.3 5.9 6.4 4.6 3.8 5.0 4.3 1.5 1.8 1.4 3.1 1.8 2.8 

Average 2.9 5.6 5.6 4.4 1.5 2.6 

                   

 
SHOULDER 

AB/ADDUCTION 

SHOULDER 
FLEXION/ 

EXTENSION 

HIP 
AB/ADDUCTION 

COMBINED HIP / 
KNEE FLEXION/ 

EXTENSION 

COMBINED ARM 
AB/ADDUCTION 

SAGITTAL / 
FRONTAL TRUNK 

LEANS 

JOINT ANGLES 
KQ 
vs 
QS 

K3
D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

KQ 
vs 
QS 

K3
D 
vs 
QS 

K3
D 
vs 
KQ 

arm flexion r 12.2 13.7 2.3 1.0 1.1 1.5 3.1 1.0 4.0 4.6 2.1 6.2 46.9 27.0 5.7 8.8 5.1 
15.
3 

arm flexion l 11.9 21.3 8.2 3.6 1.4 4.6 6.0 1.5 3.9 8.8 3.3 8.9 29.2 39.0 8.4 57.8 6.7 
14.
5 

arm adduction r 0.8 0.7 0.5 6.4 4.5 0.4 1.0 0.5 0.6 1.1 0.5 0.7 22.9 6.4 1.9 1.9 1.0 1.5 

arm adduction l 0.7 0.7 0.7 3.5 3.1 0.4 1.3 0.5 0.9 1.5 0.5 1.0 2.9 0.8 1.7 2.5 1.0 2.2 

elbow flexion r 1.6 14.6 85.0 1.9 7.8 3.6 1.6 2.5 1.5 1.6 2.8 1.8 2.1 18.5 10.6 1.9 4.3 2.8 

elbow flexion l 3.3 3.4 3.2 0.8 5.5 1.0 1.4 2.2 1.6 2.0 4.9 3.5 2.0 2.8 9.8 2.4 12.1 6.7 

hip flexion r 1.7 1.7 0.1 14.4 7.3 0.1 0.9 0.9 0.1 0.9 0.8 0.1 2.7 2.6 0.1 1.1 1.1 0.2 

hip flexion l 1.4 1.7 0.2 6.5 2.6 0.4 0.9 0.7 0.2 1.5 0.7 0.4 1.6 1.8 0.2 1.5 1.0 0.5 

hip adduction r 3.6 2.4 0.5 4.6 3.2 0.4 0.9 0.6 0.5 1.2 0.9 0.4 2.6 0.9 0.4 1.4 0.8 0.5 

hip adduction l 11.7 0.4 1.2 3.8 0.4 0.8 4.2 0.2 1.8 2.4 0.5 0.8 2.1 0.4 0.9 3.7 0.7 9.2 

knee flexion r 3.5 2.7 0.0 8.5 11.3 0.1 1.0 1.0 0.1 0.8 0.8 0.1 4.6 4.2 0.0 1.2 1.2 0.4 

knee flexion l 1.8 1.8 0.1 5.2 2.1 0.2 0.8 0.7 0.1 1.4 0.7 0.3 4.7 3.7 0.1 1.4 1.0 0.6 

knee adduction 
r 

1.0 0.5 0.7 7.3 2.2 0.5 0.8 0.5 1.0 1.1 0.5 0.5 2.0 0.7 0.5 3.3 1.1 0.4 

knee adduction l 2.4 0.7 1.1 3.0 0.5 0.8 3.6 0.2 1.5 3.3 0.8 0.8 2.6 0.4 0.8 3.0 0.6 3.3 

lumbar 
extension 

1.6 0.5 1.0 4.6 0.7 4.1 1.2 0.8 1.4 2.6 0.2 1.4 2.3 1.0 6.6 6.4 0.9 4.5 

                   

Average per 
axis 

4.0 4.5 7.0 5.0 3.6 1.3 1.9 0.9 1.3 2.3 1.3 1.8 8.7 7.3 3.2 6.6 2.6 4.2 

Average 5.1 3.3 1.4 1.8 6.4 4.4 
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Introduction 
 Concussion and mTBI continues to account for a substantial proportion of the military 
healthcare burden.1  Concussion is commonly associated with balance deficits, which are likely 
related to impaired processing of sensory information.2  These deficits, in turn, have the 
potential to impact activities of daily life, job performance, and risk of re-injury as balance is 
considered a foundational component of nearly all motor behaviors.  Impaired balance may 
present clinically as increased postural sway, particularly in the absence of posture-relevant 
sensory information.   

It has been reported in athletics and in the armed services that women are concussed at 
comparable rates,3 experience more severe concussion-related symptoms and limitations, and 
have longer recovery times when compared with men.4  Despite these discrepancies in 
epidemiology, data concerning female-specific neuromotor effects of concussion/mTBI are 
lacking.5,6  This poses unnecessary additional risk to brain-injured women as clinical 
assessment and decision-making may disproportionately rely on knowledge that was developed 
through the observation of male research subjects. 
 Previous work has demonstrated sex differences in movement behaviors7 as well as the 
relevance of these differences to injury and injury recovery.  It is reasonable therefore to 
suspect that the postural control effects of concussion/mTBI in females are distinct and should 
be considered separately.  The purpose of this research was to identify neuromotor deficits 
(specifically, balance) between service-age healthy women (CTRL) and women with a history 
of concussion/mTBI (mTBI).  We hypothesized that that history of concussion would be 
associated with increased postural sway motion and velocity.  
 
Methods 

Thirty-one healthy women and 24 women with a history of concussion/mTBI were 
performed 3 20-second balance trials.  Procedures for balance testing were based on the 
modified Balance Error Scoring System (BESS8) protocol and featured 1 trial each of Double 
Leg (DS), Single Leg (SS), and Tandem (TS) stance.  Each testing condition required subjects 
to stand barefoot with eyes closed and hands-on-hips.  DS was performed in bilateral stance, SS 
was performed standing on the non-dominant limb with a slight bend in the hip and knee of the 
non-standing leg, and TS was performed with feet inline heel-to-toe (non-dominant limb 
behind dominant limb).  Participants were instructed 1) to remain as motionless as possible 
throughout a given trial, and 2) to return to the testing pose quickly should the testing position 
be lost. 

Video, infrared, and depth data were acquired using a Microsoft Kinect 2.0™ at a 
variable frame rate (maximum 30 Hz, not under direct control of the user).  These raw data are 
used to estimate 3D joint center time histories through an on-board classification algorithm.  
Joint center displacement histories were stored to a local machine running a custom C# 
software interface.  This data was used then used offline to define segment end points, from 



which the 3D center of mass (COM) displacement time series was estimated using established 
methods. 

Mean velocity (VEL) and standard deviation (SD) of displacement were used to 
summarize COM motion for each trial in the anteroposterior (AP) and mediolateral (ML) 
directions.  Group performance (CTRL vs. mTBI) was then compared using one-sided Welch’s 
independent samples t-tests for each outcome/stance combination.  The a priori significance 
level was α = 0.05. 

Results 
Significant group effects were observed (CTRL < mTBI) in the DS condition for all 

outcomes (VELML: CTRL = 0.93 ± 0.72 cm/s, mTBI = 2.83 ± 2.77 cm/s, t = -3.17(25.41), p < 
0.01; VELAP: CTRL = 1.55 ± 2.58 cm/s, mTBI = 3.21 ± 2.64 cm/s, t = -2.07(40.44), p < 0.02; 
SDML: CTRL = 0.49 ± 0.50 cm, mTBI = 1.79 ± 1.88 cm, t = -3.18(25.50), p < 0.01; SDAP: CTRL 
= 0.89 ± 1.72 cm, mTBI = 1.89 ± 1.60 cm, t = -1.97(39.14), p < 0.03). 

Significant group effects were observed (CTRL < mTBI) in TS condition for VELML 
(CTRL = 2.51 ± 0.95 cm/s, mTBI = 4.55 ± 3.71 cm/s, t = -2.38(21.50), p < 0.01) and SDML 
(CTRL = 1.60 ± 0.78 cm, mTBI = 3.53 ± 3.40 cm, t = -2.47(21.01), p < 0.01). 

No effects were observed in the SS condition (p > 0.05). 

Conclusion 
These data support the conclusion that, relative to healthy female controls, postural 

control in women with a history of concussion/mTBI is characterized by increased variability 
and velocity of the COM.  The effects we report appear to be specific to the DS and TS 
conditions.  The null finding in the SS condition was unexpected as, among the three, this 
stance is frequently associated with the poorest balance outcomes.8  While this pattern of 
findings may be anomalous, it is also possible that single leg postural control is not effective in 
discriminating healthy controls from previously concussed individuals in this population.  
Previous research has demonstrated sex differences in baseline/uninjured balance outcomes 
wherein females were observed to have better postural control than males using similar 
experimental tasks.9  This could suggest that factors related to sex contribute to the presently 
observed pattern of group effects (healthy vs. concussion/mTBI history), which may be 
unexpected owing to underrepresentation of females in prior work.  If the effects we report are 
true, post brain-injury balance testing in women may be more appropriately limited to DS or TS 
conditions. 

Further research is warranted to investigate sex-specific effects of concussion/mTBI on 
balance behaviors prospectively and in direct comparison with comparable male samples.  
Future work should also consider mechanisms that might account for differential baseline and 
post-injury behaviors between men and women, such anthropometrics and lower extremity 
alignment. 
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INTRODUCTION 

Mild Traumatic Brain Injury (mTBI) can lead to temporary or permanent impairment of 
cognitive, physical and physiological functions and it represents a contributing factor to a 
substantial number of deaths and permanent disability [1]. 

mTBI is best detected when the evaluation of possible exposure is carried out in the field, at 
the earliest opportunity. The Balance Error Scoring System (BESS), which is a brief and easily 
administered test of static balance, has been devised to detect balance deficits, arising from 
concussion and musculoskeletal injuries, in the field [2]. The BESS presents four main 
limitations: 1) it requires the presence of a trained (clinical) observer to score the test; 2) the test-
to-test reliability can be biased by the manual scoring system; 3) A visually scored test can result 
in under-reporting some of the symptoms; 4) The BESS test only measures static posture. To 
address these limitations, we have developed the Automated Assessment of Postural Stability 
(AAPS) system, that is an easy to set-up, computerized and quantitative system for automatically 
administering and scoring the BESS test in a wide variety of non-clinic locations using 
inexpensive off-the-shelf devices [3], [4]. 

Furthermore, in order to provide a more comprehensive concussion evaluation tool we are 
developing the expanded AAPS (xAAPS) to introduce the evaluation of dynamic balance tasks. 
The xAAPS capability of evaluating coordinated dynamic movements will potentially provide 
more salient feedback for assessing concussion and suitability for return to duty than using static 
balance measures alone. 
 
METHODS 

The xAAPS system consists of two hardware components: a Windows laptop and a Microsoft 
Kinect 2.0 device, paired with a custom-developed Windows software application. The xAAPS 
software has been designed and developed to be user-friendly and to guide the operator through 
all the necessary steps to correctly administer the testing protocols. At the end of each trial, the 
xAAPS automatically evaluates, displays and stores the balance scores in under a minute. The 
xAAPS features a custom developed balance evaluation method based on computer classification 
algorithms that convert the subject’s three-dimensional joint center positions (as derived from 
the Kinect sensor) into balance metrics. These metrics are equivalent to Functional Movement 
Screening (FMS) [5] scores assigned by an experienced observer. The FMS consists of seven 
movement patterns scored on a scale of 0-3 points, where 0 means pain and 3 a perfect execution. 
The current version of xAAPS focuses on continuous multi-repetition versions of the first three 
of the seven FMS assessments: Deep Squat (DS), Hurdle Step (HS) and In-line Lunge (ILL). 

In order to validate the performance of the xAAPS scoring algorithm, we asked 26 young 
adults (12 male / 14 female) to perform the three FMS movements while their kinematic data 
were captured with the xAAPS system. To obtain reference data for comparison, video 
recordings of the movement tests were scored by an experienced observer. Those scores were 
then used as labels for the dataset when training the xAAPS classification algorithm. 



More specifically, the xAAPS extracts 3D joint coordinates from the Kinect data stream. The 
Kinect generates these data at a variable sampling frequency, which is then resampled off-line to 
a constant rate of 30 fps. Subsequently, the resampled joint position time series are low-pass 
filtered with a fifth order Butterworth with cutoff frequency set at 2Hz to reduce measurement 
noise. The next step in the signal processing cascade is to extract features that can be successfully 
used to train a set of classification algorithms. For each trial, a total of 27 kinematic features are 
extracted and used to evaluate each trial quality. The extracted features range from commonly 
used kinematic metrics, such as range, mean and standard deviation of velocity, acceleration and 
jerk of the Center of Mass (COM) trajectory, to more complex features such as spectral power, 
coefficient of variation and continuous relative phase variability [6] of the COM. Dynamic Time 
Warping (DTW) distances of COM and Principal Component Analysis (PCA) of the joint 3D 
displacement time series [7] were also used as features. Next, we trained a set of gold-standard 
classification algorithms such as, Decision Trees, Support Vector Machine (SVM), k-Nearest 
Neighbors (k-NN) and Ensemble Bagged Trees. These classifiers’ predictive performance was 
assessed using a 3-fold cross-validation approach. Finally, for each movement type, the optimal 
combination of features and classification algorithms were identified. 
 
RESULTS 
The xAAPS can successfully score the three FMS movements (HS, ILL and DS), with scoring 
performance well above random classification levels, that given the distribution of our sample 
population, are 57.1%, 42.3% and 67.7%, respectively. Specifically, the xAAPS displayed the 
best scoring performance for DS trials, using a SVM classifier with a cross-validated prediction 
accuracy of 92.3%. The HS assessment accuracy was 84.6% using a Decision Tree algorithm 
and finally accuracy of 69.2% was measured for ILL using an Ensemble Bagged Tree 
approach. Furthermore, qualitative analysis of kinematic data time series, indicates that the 
xAAPS lower performance for ILL trials is due to larger inaccuracies of the Kinect body 
tracking algorithm when detecting the lower-extremity movements for ILL motion. 
 
CONCLUSION 
Our laboratory has recently shown that Kinect 2.0™ data is suitable for instrumenting simple 
field-expedient clinical static postural stability tests such as the BESS [3]. With the present work, 
we present the xAAPS, an expanded version of the reliable and quantitative Automated 
Assessment of Postural Stability (AAPS). The statistical performance of the innovative xAAPS 
algorithms in predicting the human-assigned FMS scores for three movements, namely HS, ILL 
and DS, as performed by 26 subjects, shows that the xAAPS can be a valuable in-field expedient 
to evaluate dynamic balance, without the need of human scorers. 

Furthermore, despite the current version of the system being optimized for three specific 
movements, the feature extraction and classification algorithms have been designed to be 
flexible, easily adjustable and re-trainable for the evaluation of further motion types and different 
clinical testing protocols. 
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The balance error scoring system (BESS) is a human-scored, field-based balance test used in cases of suspected concussion.
Recently developed instrumented alternatives to human scoring carry substantial advantages over traditional testing, but thus far
report relatively abstract outcomes thatmay not be useful to clinicians or coaches. In contrast, the automated assessment of postural
stability (AAPS) is a computerized system that tabulates error events in accordance with the original description of
the BESS. This study compared AAPS and human-based BESS scores. A total of 25 healthy adults performed the modified
BESS. Tests were scored twice each by 3 human raters and the computerized system. Interrater (between human) and intermethod
(AAPS vs human) agreement (interclass correlation coefficient2,1) were calculated alongside Bland–Altman limits of agreement.
Interrater analyseswere significant (P < .01) and demonstrated good to excellent agreement. Intermethod agreement analyseswere
significant (P < .01), with agreement ranging frompoor to excellent. Computerized scoreswere equivalent across rating occasions.
Limits of agreement ranges for AAPS versus the human average exceeded the average limits of agreement ranges between human
raters. Coaches and clinicians may consider a system such as AAPS to automate balance testing while maintaining the familiarity
of human-based scoring, although scores should not yet be considered interchangeable with those of a human rater.

Keywords: kinematics, clinical biomechanics, motion analysis, motor behavior, sports medicine

Static postural control assessed during quiet standing is com-
monly used as an indicator of injury and recovery status in cases
of suspected concussion or mild traumatic brain injury.1,2 Quantita-
tive assessment of postural control is perhaps best achieved through
laboratory-grade instrumentation and testing protocols,3,4 but such
methods are seldom used for wide-scale or field-based testing due to
their prohibitive cost and lack of accessibility. Where laboratory
methods are impractical, field-based tests may be used in their place.

The balance error scoring system (BESS)5 and its variants
(eg, modified BESS6 [mBESS]) are among the most familiar field-
based tests of balance. Although these methods address the feasi-
bility limitations associated with laboratory-based measurement,
the quantity and quality of data that can be captured by humans
are limited and inherently subjective. Such limitations pose a
logistical barrier to the effective use of BESS tests as screening
tools, particularly in high-volume settings where human resources
are limited.7,8 An automated scoring system relying on portable,
low-cost instrumentation could overcome these limitations while
maintaining applicability for field and clinical use.

To date, instrumented alternatives to standard BESS or
mBESS9–14 testing have produced novel, signal-based outcomes
representing scales, which are (1) unfamiliar to most end users
and (2) not directly comparable to the more common BESS scores.
To address these issues, we developed the automated assessment
of postural stability (AAPS). This system automates BESS admin-
istration and scoring using a low-cost, mass-produced sensor to
quantify 3-dimensional kinematic motion.15 Importantly, the

outcomes generated by our system are the same as those made
familiar by nearly 20 years of clinical and scientific use of the
BESS5—specifically, error counts per testing condition.

The purpose of this research was to study the agreement of the
AAPS system with standard clinician-based scoring of the BESS.
To characterize AAPS performance in reference to the criterion
of scoring by trained observers, we examined interrater (human vs
human) and intersystem (AAPS vs human) agreement. We hypoth-
esized that (1) interrater agreement of (human) BESS scoring
would range from good (interclass correlation coefficient [ICC] =
.6 to .75, the upper portion of Fleiss’ “fair to good” range) to
excellent (ICC > .75) as reported in previous work16 and (2) inter-
method agreement (AAPS vs human BESS scoring) would simi-
larly range from good to excellent. Finally, we additionally sought
to determine whether AAPS could be considered interchangeable
with humans as a method for scoring BESS tests.

Methods
Subjects

A total of 25 healthy participants (13 females: 25.57 [3.13] y,
167.64 [6.72] cm, 67.13 [17.21] kg; 12 males: 24.77 [3.81] y,
180.34 [6.22] cm, 84.87 [14.89] kg) were recruited to participate
in this study. The protocol was approved by the Temple University
institutional review board. All participants provided written, in-
formed consent prior to participating.

Procedures

The mBESS—excluding the double-leg stance trials—was admin-
istered and scored in accordance with previously published pro-
cedures.6,17 This mBESS was specifically chosen considering the
lack of information gained from the double-leg standing conditions
with this population.6,18 Testing was performed in a quiet room
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with minimal distractions. Participants completed each of the con-
ditions in the following order: (1) single-leg stance/stable surface
(Single-Stable), (2) tandem stance/stable surface (Tandem-Stable),
(3) single-leg stance/foam surface (Single-Foam), and (4) tandem
stance/foam surface (Tandem-Foam). All trials were 20 seconds in
duration and were performed with hands on hips and eyes closed
facing the sensor. Single-leg trials were performed on the nondomi-
nant limb, while the dominant limbwas held in 20° of flexion at both
the hip and knee. Tandem trials were performed with feet positioned
in-line (heel-to-toe) with the nondominant limb placed in the back.

Participants were provided standard instructions to maintain
each of the testing positions to the best of their ability for each trial
and to reassume the testing position as quickly as possible should
they commit an error. The standard following errors were used in
scoring: (1) removing the hands from the hips, (2) opening the eyes,
(3) step, stumble, or fall, (4) flexion/abduction of the hip in excess
of 30°, (5) lifting/moving of the feet, and (6) remaining out of the
testing position for more than 5 seconds.5

Instrumentation

All testing was conducted in view of a Microsoft Kinect 2.0™
(Microsoft Corp., Redmond,WA) gaming device secured to a tripod
and placed 1.37 m above the ground and facing the participant at
a distance of 3.00 m. The Kinect 2.0™ integrates depth, color,
and infrared data streams to render 3-dimensional joint positions
usingMicrosoft’s proprietary algorithm at a maximum frame rate of
30 Hz. The exact sampling frequency cannot be controlled directly;
however, data collection for a given trial was terminated if the frame
rate dropped below 12 Hz.

The Kinect™ sensor was interfaced with a Dell Latitude PC
(Dell, Inc. Round Rock, TX) (Windows 10 64-bit, 2.6-GHz Core i7
processor, 8-GB RAM, and 500-GB solid-state drive) through a
customized C# application developed using the Microsoft Kinect
SDK 2.0 libraries.15 Each raw BESS trial video was 26 seconds in
duration. A 20-second interval for testing was identified beginning
with the time stamp of the first frame in which the participant met
all the conditions of the required stance position (eg, eyes closed,
hands on hips, vertical alignment, and proper foot placement). This
frame, and the corresponding time, was identified manually for
each video by S.M.G. Once these frames were identified, a
truncated video and .csv time series file were generated for human
and computer scoring, respectively.

Outcomes

The Kinect™ video data were evaluated twice by each of 3 human
raters who were experienced with BESS test administration: 2
physical therapists (each with >10 y of experience, including BESS
experience deriving from research, instruction, and musculoskeletal
screening) and 1 personal trainer (>10 y of experience, with >5 y of
experience scoring and analyzing the BESS for research). Prior to
the initial video viewing, the 3 raters conferred to review the BESS
scoring criteria. Rating sessions were separated by a minimum of
2 weeks and raters were blinded to (1) each other’s scores and
(2) their own scores from the first rating sessions.

All trials were also scored twice by the AAPS system. The
AAPS-based automated error detection used Kinect® joint position
and eye data, exported as .csv files, to determine whether move-
ments related to any error categories exceeded a baseline threshold
established over a 1-second pretest observation window. Thresh-
olds were defined by 3-dimensional distances between the left and

right centers of the wrist, elbow, ankle, and knee joints; frontal/
sagittal trunk and hip angles; and left and right forefoot segments.
(For further technical details regarding automated error tabulation,
please see our previous work.15)

Statistics

We calculated interrater (between human) and intermethod (human
vs AAPS) correlation coefficients (ICC2,1 for absolute agreement)19

using the psych20 package in R-3.4.1 (The R Foundation, Vienna,
Austria). For intermethod ICC, the average score among the 3 raters
was used for the human component of the analysis. ICCs were
interpreted using the following guidelines modified from Fleiss16:
.00 to .40 (poor), .40 to .59 (fair), .60 to .74 (good), and .75 to 1.00
(excellent). Finally, we calculated Bland–Altman 95% limits of
agreement21 (LOA) for AAPS versus the human average and com-
pared it to the average of 3 between-human LOA ranges (1 vs 2,
2 vs 3, and 1 vs 3) to assess whether AAPS can be used inter-
changeably with human BESS rating. For the latter, human scores
were averaged across day prior to determining LOA.

Results
With 2 exceptions, BESS score agreement between human raters
was excellent (ICC > .75). The 2 exceptions were Single-Foam on
day 1 and Tandem-Foam on day 2, for which agreement was good
in both cases. All interrater agreement analyses reached the thresh-
old for statistical significance (Table 1).

Table 1 Interrater and Intermethod ICCs

Condition ICC (CI95) Fdf P value LOA

Between human
day 1

SS .86 (.76 to .93) 20.4924, 48 <.001* −2.16 to 1.73

TS .77 (.56 to .89) 14.3823, 46 <.001* −1.24 to 0.86

SF .78 (.61 to .89) 14.0123, 46 <.001* −3.19 to 2.13

TF .65 (.44 to .81) 7.1224, 48 <.001* −3.75 to 2.79

Total .83 (.68 to .92) 19.7922, 44 <.001* −6.91 to 4.12

Between human
day 2

SS .96 (.92 to .98) 68.8024, 48 <.001* −1.14 to 0.87

TS .86 (.74 to .93) 19.1123, 46 <.001* −0.94 to 0.77

SF .73 (.54 to .86) 8.8923, 46 <.001* −3.10 to 2.77

TF .79 (.64 to .90) 12.4623, 46 <.001* −2.58 to 2.15

Total .86 (.75 to .94) 20.4821, 42 <.001* −5.24 to 3.97

AAPS vs human
average

SS .81 (.63 to .91) 9.9824, 24 <.001* −2.54 to 1.96

TS .44 (.06 to .71) 2.5224, 24 <.01* −1.89 to 1.67

SF .38 (−.02 to .68) 2.2123, 23 <.03* −4.21 to 4.94

TF .72 (.47 to .87) 6.1124, 24 <.001* −3.10 to 2.74

Total .74 (.47 to .88) 6.4821, 21 <.001* −7.23 to 6.77

Abbreviations: CI, confidence interval; ICC, interclass correlation coefficient;
LOA, limits of agreement; SF, Single-Foam; SS, Single-Solid; TF, Tandem-Foam;
TS, Tandem-Solid. Note: BESS score agreement between human raters for day 1
(top) and day 2 (middle). Agreement for AAPS versus human raters is shown on
the bottom, where human rater scores are collapsed across day and rater.
*Indicates statistical significance.
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Intermethod agreement was excellent for Single-Solid, good
for Tandem-Foam and the total BESS score, fair for Tandem-
Stable, and poor for Single-Foam. All intermethod agreement
analyses reached the threshold for statistical significance (Table 1).

Finally, LOA ranges for AAPS versus the human average
exceeded the average LOA ranges between human raters. Dispa-
rities in LOA ranges were greatest in the Single-Foam condition
and least in the Tandem-Stable condition (Table 1). For visualiza-
tion, we present Bland–Altman plots for AAPS versus the human
average alongside the 2 most consistent human raters in our data set
for the stable conditions (Figure 1) and foam conditions (Figure 2).

Discussion
The purpose of this research was to study the agreement of an
automated BESS scoring system (AAPS) with the existing standard
of human observation. We found similar interrater agreement for
BESS item and total scores as has been reported previously.5,22

By comparison, our intermethod analyses suggest that agreement
between human-derived and AAPS-derived BESS scores was lower
than that between human raters, with 2 of the conditions (Single-
Foam and Tandem-Stable) failing to reach the hypothesized “good”
level of AAPS-Human agreement (ICC). Finally, although we are
encouraged by these initial findings and the qualitative similarity of
the aggregate data (Supplementary Data [available online]), 95%
LOA ranges suggest further work is required before our system
can be considered interchangeable with a human rater for purposes
of registering BESS error behaviors in clinical settings.

Efficient collection of high-quality data has been identified as a
major concern for organizations conducting large-scale medical or
preparticipation exams.7,8,23 Although not a replacement for a
trained human BESS scorer, AAPS is 100% consistent in arriving
at error scores and catalogs behavior in far greater detail than is
possible through human observation. Thus, a system such as ours
could be used to automate balance testing procedures in large-scale
organizations, potentially increasing testing efficiency, while at the
same time addressing limitations related to interrater or intrarater
measurement consistency.24

In addition to automating the BESS, the present system does so
with less abstraction than other methods in which kinematic
features are used as a correlate of BESS scores.10,13 That is,
AAPS quantifies balance performance in the original BESS unit
of error counts as opposed to a novel metric. The intention with this
strategy was to present the clinician or researcher with information
that is not only intuitively meaningful but which is readily com-
pared with previously published normative data.25 Creating such a
system, however, requires finding a balance between the relative
strengths of human and machine observation.

The BESS was originally designed to provide a tool that could
be used by humans to assess balance in nonlaboratory settings.5 As
a human-friendly tool, there are some areas in which the scoring
criteria favor human intuition. For example, humans may be able to
separate a single prolonged error frommultiple distinct errors using
intuition that cannot currently be coded. This bias in favor of
human intuition comes at the cost of limitations on human focus
and multitasking. The BESS scoring criteria do not require the

Figure 1 — Bland–Altman limits of agreement plots in stable stance conditions for (1) AAPS versus the human average collapsed across day and rater
(left), and (2) for rater 1 versus rater 2 (right), which represents the highest level of between-human agreement observed in our data set. Here, rater 1 and
rater 2 scores are averaged across day. AAPS indicates automated assessment of postural stability.
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observer to log simultaneous error events, error event types, or
times of error occurrence. Arguably, this is not because such
information is unimportant, but rather because it is not feasibly
monitored by a human. So, although there may be limits to how
precisely an automated system can distinguish errors from non-
errors, the user has access to information that is more consistent and
more descriptive (eg, error type, time of occurrence, and magni-
tude) than human judgment.

The results of this study are limited to the sample of balance
participants used for our analyses. Further work will be required to
cross-validate the error detection algorithm with different samples.
Another limitation concerns the content of the errors detected.
Because BESS trial scores from human raters present only the total
error count, we cannot determine the extent to which our algorithm
registers the same error events observed by a human rater. This
limitation is currently being addressed with the development of a
real-time annotation program, which will aid human raters in
producing labeled trials.

In conclusion, the AAPS system provides a low-cost method
of quantifying balance performance, requiring only a laptop and a
Kinect™ for administration. (Future releases will support use with
other RGB-D sensors.) It is currently available for research use.
AAPS can be applied to automate balance test administration in
high-volume screening settings or others in which human rating is
inefficient and/or cost-prohibitive, although error scores from the
current algorithm are not yet interchangeable with BESS scores
from a trained human rater. Forthcoming work from our laboratory

will describe the system’s additional features, as well as robustness
to sources of noise that might be encountered during field use.
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