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ABSTRACT

Geolocation of communications signals is an important capability in many
civilian, commercial, and defense applications. In many scenarios, the communica-
tions signals of interest are wideband and observed in the presence of background
interference. Adaptive processing on multiple sensors can cancel background inter-
ference and obtain copy and parameter estimates of the signal of interest. Current
wideband approaches for localization with multiple sensors primarily use cross cor-
relation, which is relevant when the signal of interest and interference are of similar
powers. In this report, several new localization approaches are developed to be able
to operate in disparate power regimes through the use of adaptive cancellation. The
approaches described efficiently handle delay spread through the use of frequency
channelization. A particular iterative demodulation approach also handles Doppler
spread due to relative sensor movement.
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1. INTRODUCTION

As low cost sensors and small platforms such as unmanned aerial vehicles (UAVs) are becom-
ing more ubiquitous, there is interest in understanding how using swarms of such platforms can
enable or enhance performance in DoD missions. One application of significant interest is signal ge-
olocation. A swarm of small platforms surrounding the signal of interest provides a better detection
and geolocation geometry than any single platform based solution can provide, particularly at high
altitudes. New signal processing challenges arise with distributed swarm geolocation architectures,
and solutions to these challenges are the focus of this report.

Consider the example shown in Figure 1 of a swarm of UAVs, flying over a dense urban area,
looking for a particular wideband WiFi or cellular signal. As these frequency bands are reused
by many devices, the UAVs see significant co-channel interference, which increases with the sensor
coverage region and platform altitude. The spacing and movement of the UAVs creates delay
and Doppler frequency shift on the signals at the sensors, requiring complicated signal processing
approaches. In this report, several signal processing approaches are developed and analyzed to
address these challenges including Adaptive Event Processing (AEP), Multiple Signal Classification
(MUSIC), and iterative demodulation.

Figure 1. A rescue scenario where UAV sensors are trying to locate signals in the presence of interference.
Each UAV in the distributed array collects and stores digital samples before returning to a hub where adaptive
beamforming techniques are used to estimate the location of the signals.
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The approaches described herein are important not only in enabling wideband geolocation in
congested RF environments but also in contested RF environments where receivers are expected to
be actively jammed.

The organization of this report is as follows. Section 2 formulates the geolocation problem and
covers the simple cases where maximum likelihood (ML) solutions can be derived. Section 3 gives
an overview of the multiple signals approaches. Section 4 describes the traditional cross correlation
approach and the effect of communications signals sidelobes. Section 5 explains two architectures
for dealing with delay spread. Sections 6,7, and 8 describe the beamforming approaches that use the
frequency channelization architecture. Section 9 shows the application of the proposed approaches
in simulations, and Section 10 concludes the discussion.
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2. PROBLEM FORMULATION

The geometry of the geolocation problem covered in this report is described in Figure 2, where
K sensors sensors at locations xk, k = 1, . . . ,K moving with linear velocity ẋk attempt to locate a
source at location x0 that emits a signal s(t) . The ability to estimate source position depends on a
variety of factors, including signal duration, relative source powers, sensor geometry, signal overlap
in time, and noise level at the sensors. Discussed herein are beamforming techniques for estimating
the source position using primarily time difference of arrival (TDOA) techniques. Algorithms and
architectures are developed to handle the presence of other signals, termed as interferers. It is
assumed that the sensors can be synchronized in time and frequency using accurate clocks, but not
necessarily in phase due to each having its own phase locked loop (PLL). The locations and velocity
of the sensors are assumed to be known through the use of a positioning system such as Global
Positioning System (GPS). The raw sensor measurements are assumed to be available at a central
location, as this is key to the beamforming techniques to be discussed. The source is not assumed
to be cooperative or coordinated with the sensors; however, techniques for communications signals
with known waveforms are presented.

Figure 2. Geometry of the geolocation problem showing a source to be located using possibly moving sensors.
Sample data from the sensors is processed at a central location to produce geolocation and waveform estimates
of the source.

Consider the continuous-time communications waveform s(t) transmitted at the source as
obtained by pulse-modulation of a discrete sequence b[n], e.g. representing BPSK, and frequency-
modulated to the carrier frequency f0

s(t) = ej2πf0t
B−1∑
n=0

b[n] p(t− nTc) (1)

where p(t) is a band-limited pulse waveform with unit energy, Tc is the pulse spacing in time, and
B is the number of pulses.
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The discrete-time received waveform at each of the k = 1, . . . ,K sensor platforms, after
down-conversion and sampling is

zk[l] = ake
jφke−j2πf0τk(tl) s(tl − (ts + τk(tl))) + νk(tl) (2)

where the receive times are tl = l Tr at samples l = 0, 1, . . . , L− 1, ts is the unknown start time of
the source transmission and νk is complex white Gaussian noise that is uncorrelated from platform
to platform and has the same variance σ2 (i.e., ν ∼ CN (0, σ2I)). The terms sensor and platform are
used interchangeably throughout this document. The differences in signal-to-noise (SNR) between
platforms are captured in ak, which represents real amplitude scaling. An unknown waveform phase
φk captures transmit phase, down-conversion, antenna and phase due to the receiver.

The time-varying delays from the source to the sensors, τk(t) is described in detail in the next
section.

2.1 LINEAR MODEL FOR DELAY

The time-varying delay from user to the platform depends on motion, and results in a tran-
scendental equation due to possible change in the platform position from the time transmission
starts at the source to when it arrives at the platform

τk(t) =
1

c
‖xk(t)− x0(t− τk(t))‖ (3)

quasi-static
≈ 1

c
‖xk(t)− x0(t)‖ (4)

where xk(t) is the platform position and x0(t) is the source position. Solving for τ is possible as
shown in Appendix 1. However, when the source motion is relatively small over a time window of
interest, the quasi-static approximation that source position does not depend on the time-varying
delay leads to (4). In particular, for linear velocity, the approximation leads to a delay, Doppler
interpretation of the time-varying delay.

Consider sensors moving from a starting position xk with a fixed velocity vector vk over the
measurement interval. The source is assumed to be stationary with position x0

1

τk(t) =
1

c

∥∥∥∥∥∥∥xk − x0︸ ︷︷ ︸
,∆x0

+vk · t

∥∥∥∥∥∥∥
=

1

c
‖∆x0‖

√
1 + 2vTk

∆x0

‖∆x0‖2
· t+

‖vk‖2

‖∆x0‖2
· t2

t<<1
≈ 1

c
‖∆x0‖

√
1 + 2vTk

u0

‖∆x0‖
· t

√
1+x≈x

2
+1

≈ 1

c
‖∆x0‖︸ ︷︷ ︸
τk

+
1

c
vTk u0︸ ︷︷ ︸
τ̇k

·t (5)

1 A similar analysis for moving sources and moving sensors also arrives at linear models.
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where ∆x0 is the distance vector from the source to sensor k, and u0 , ∆x0
‖∆x0‖ is direction vector

from the source to the sensor, and vTk u0 is the component of the velocity in the direction of the
source.

Throughout the document, a linear model for delay is used, as it allows for sums and differ-
ences of delays also to be expressed as linear in time.

τk(t) = τk + τ̇k · t (6)

where τ̇k is unit-less and can be related to differential Doppler

δ̇ =
1

c

dRange

dt
=
λc
c

Doppler

fcδ̇ = Doppler

where λc is the wavelength at the center frequency fc.

2.2 NOTATION

Defining the receive waveform without noise and without the amplitude and phase scaling rk,
Eqn. (2) can be written as

zk[l] = ake
jφk e−j2πf0 c τk(tl) s(tl − (ts + τk(tl)))︸ ︷︷ ︸

rk,l

+νk(tl) (7)

= ake
jφk︸ ︷︷ ︸

,bk

rk,l(θ) + νk(tl) (8)

where the waveform without noise is parametrized by θ containing the source parameter of interest
x0 and unknown nuisance parameters

θ =
(
ts, a1, a2, . . . , aK , φ1, φ2, . . . , φK︸ ︷︷ ︸

real nuisance parameters

,x0

)
(9)

=
(
ts, b1, b2, . . . , bK ,x0

)
(10)

In vector notation, the 1× L samples over time for each platform can be written as

zk = bkrk(θ) + νk, (11)

where

zk =


zk(t0)
zk(t1)

...
zk(tL−1)


T

, νk =


νk(t0)
νk(t1)

...
νk(tL−1)


T

, rk(θ) =


rk,0(θ)
rk,1(θ)

...
rk,L−1(θ)


T

(12)
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Finally, the observations from the K different platforms can be stacked in a K × L matrix
form to allow for a compact notation of the entire KL measurements

Z =

 z1
...

zK

 =

 b1r1(θ)
...

bKrK(θ)

+

ν1
...

νK

 (13)

2.3 MAXIMUM-LIKELIHOOD ESTIMATOR (KNOWN SINGLE SIGNAL)

For the observation model (11) with complex Gaussian noise, the probability distribution
conditioned on the unknown parameters can be written as

p(z1, . . . , zK |θ) =
(
πσ2

)−LK K∏
k=1

e−
1
σ2
‖bkzk−rk(θk)‖2 (14)

where θk = (x0, ak, φk). When the signal s(t) is known, the received signals rk can be computed for
a given (time-varying) delay, and the maximum likelihood (ML) estimator reduces to a correlator.
This can be shown by solving for the unknown amplitudes and phases by maximizing the likelihood,
and completing squares in the likelihood function to simplify. Details of this calculation are shown
in the next section for the two signal case.

θML = arg max
θ

p(Z|θ) (15)

xML = arg max
x0

{ K∏
k=1

exp
( 1

dk σ2

∣∣zkrHk ∣∣2︸ ︷︷ ︸
correlator

)}
(16)

Assuming that the delayed signals at each sensor have approximately the same norm d ≈ dk =
‖rk‖2,

xML = arg max
τ (t),ts

{ K∑
k=1

∣∣zkrHk (τk(t), ts)
∣∣2} (17)

where τ (t) = (τ1(t), . . . , τK(t)) are the (time-varying) delays for a hypothesis x0 position, and the
argument of rk has been called out explicitly. The same result has been obtained for the continuous
time case with delays only in [1, Eqn.(21)], and is well known.

2.4 MAXIMUM-LIKELIHOOD ESTIMATOR (KNOWN TWO SIGNALS)

When two signals are present, the parameter estimates for the signals must be determined
jointly since the signals may be correlated. Consider the received signal written in terms of samples,
and in vector form as

zk[l] = bk,1 r1k,l + bk,2 r2k,l + νk(tl) (18)

zk = bk,1 r1k + bk,2 r2k + νk (19)
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Writing the sum of the signals in matrix form will allow for a simple expression for the ML estimate

zk = βkSk + νk (20)

where r1, r2 are signals from different sources, possibly using the same pulse waveform, same
symbol rate, and same preamble bits, and

βk = [bk,1 bk,2] (21)

Sk =

[
r1k
r2k

]
(22)

The joint likelihood for the parameters θ =
(
ts,1, b1,1, b2,1, . . . , bK,1,x0,1, ts,2, b1,2, b2,2, . . . , bK,2,x0,2

)
for both signals is

p(z1, . . . , zK |θ) =
(
πσ2

)−LK K∏
k=1

e−
1
σ2
‖zk−bk,1r1k(θk)−bk,2r2k(θk)‖2

=
(
πσ2

)−LK K∏
k=1

e
− 1
σ2

tr

{(
zk−β Sk

)(
zk−β Sk

)H}
(23)

where tr{·} is the trace of a matrix, or the sum of the diagonal entries.

The ordinary least-squares problem for the unknown complex scalars β can be solved by
completing the square. Similar derivation can be found in [2] and [3, p.109]

tr

{(
zk − β Sk

)(
zk − β Sk

)H}
= tr

{
(β Sk − zk) (β Sk − zk)

H
}

= tr
{(

β − zkS
H
k (SkS

H
k )−1

)
(SkS

H
k )
(
β − zkS

H
k (SkS

H
k )−1

)H
− zkS

H
k (SkS

H
k )−1Skz

H
k + zkz

H
k

}
= tr

{(
β − zkS

H
k (SkS

H
k )−1

)
(SkS

H
k )
(
β − zkS

H
k (SkS

H
k )−1

)H
− zk

[
I− SHk (SkS

H
k )−1Sk

]
zHk
}

= tr

(β − zkS
+
k

)
(SkS

H
k )
(
β − zkS

+
k

)H︸ ︷︷ ︸
quadratic term

+zkP
⊥
Sk

zHk

 (24)

where P⊥Sk =
[
I− SHk (SkS

H
k )−1Sk

]
∈ C2×2 is the projection matrix for the null-space of Sk, and

the pseudo-inverse is defined as

S+
k = SHk

(
Sk SHk

)−1 ∈ CL×2 (25)

The derivation assumes that the cross-correlation matrix between the reference signals (SkS
H
k ) has

full rank of two, so that its inverse exists.
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From (24), the optimal estimate for β that zeros out the quadratic term in the trace is

β̂ = zk S+
k = zk SHk

(
Sk SHk

)−1
(26)

Plugging in this estimate into (24) reduces the maximum likelihood estimate to minimizing the
sum of the residuals between the measurements and the model for each hypothesis position

{x0,1,x0,2}ML = arg min
{ K∑
k=1

zkP
⊥
Sk

zHk

}
(27)

A more intuitive way to write the result is

{x0,1,x0,2}ML = arg max
τ1(t),ts,1,τ2(t),ts,2

{ K∑
k=1

∥∥∥∥zkSHk (SkSHk )− 1
2

∥∥∥∥2}
(28)

where the dependency of the signal template matrix Sk on the hypothesis position can be called
out explicitly

Sk(ts,1, τ1k(t), ts,2, τ2k(t)) (29)

The metric involves the whitening term
(
SkS

H
k

)− 1
2 applied to the signal matrix before correlating

with the sensor measurements. Comparing (28) with (17), it is possible to see how the two signal
case simplifies to the one signal case. When the two signals are uncorrelated leading to a diagonal(
SkS

H
k

)− 1
2 , the ML solution separates into independent solutions for each signal.

Because of the complexity of the search for multiple signals that are correlated 2, the maximum
likelihood approach has often been replaced with cross-correlation approaches, and more recently
subspace approaches.

2.5 MAXIMUM LIKELIHOOD ESTIMATOR (UNKNOWN SINGLE SIGNAL, NO
DOPPLER)

It is easier to work with Gaussian signals in continuous time when considering unknown
signals. The ML estimate for TDOA geolocation for discrete time was first described in [5] where
the term direct position determination (DPD) technique was coined. The DPD technique jointly
solves for position using the sensor measurements and differs from conventional two-step techniques
that estimate delay and then solve for position. As a result, for sparse sensors, the transfer of
sensor measurements introduces a communication overhead or bandwidth expansion of K. A more
thorough continuous-time analysis for real signals is shown in [1] using Fourier series.

It is assumed here that the signal duration is sufficiently short, so that Doppler frequency
shift induced by the motion of the sensors or the source, is negligible. A significant Doppler shift

2 An approach for considering one signal at a time is presented in [4, Sec.3.2.2].
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destroys the assumption of independent frequency components that makes the analysis in this
section possible.

Consider the continuous time receive model due to a transmitted signal s(t) going through a
channel hk(t) particular to each sensor, and noise νk(t) added at each sensor

zk(t) =

∫ ∞
−∞

s(t− ζ)hk(ζ) dζ + νk(t) (30)

where the integral represents convolution of the signal with the channel. In the frequency domain,
the equivalent relationship is

zk(ω) = s(ω)hk(ω) + νk(ω) (31)

where by an abuse of notation, it will be clear whether the signals, channel, and noise are time
domain or frequency domain based on their arguments.

Model the signal and noise as zero-mean circularly symmetric complex Gaussian variables,
independent over frequency with covariance

E {s(ω)s∗(ω)} , S(ω) (32)

E {νk(ω)ν∗l (ω)} , σ2
1k,l (33)

where 1k,l is the indicator function that evaluates to one when k = l, the noise power σ2 is flat,
and the signal power S which varies over frequency will later be assumed to be flat. The received
signal is then Gaussian with covariance

E {zk(ω) z∗l (ω)} = S(ω)hk(ω)h∗l (ω) + σ2
1k,l (34)

Consolidate the K sensor spectra and channel response correlations as

z =

 z1(ω)
...

zK(ω)

, h =

 h1(ω)
...

hK(ω)

, H(ω) = h(ω)h(ω)H (35)

where the fact that H is rank one will enable simplification in the likelihood.

The joint probability density for all sensors observations at a given frequency is

p (z(ω)|H(ω), S(ω)) = π−K |Σ(ω)|−1 exp
{
−z(ω)HΣ(ω)−1z(ω)

}
(36)

where the ensemble covariance matrix from (34) is

Σ(ω) , S(ω)H(ω) + σ2I (37)

and I is the K ×K identity matrix.
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Using the matrix inversion lemma, the term in the exponent can be computed as

σ2z(ω)HΣ−1z(ω) = z(ω)H

(
I−

S(ω)
σ2 h(ω)h(ω)H

1 + S(ω)
σ2 ‖h(ω)‖2

)
z(ω) (38)

= ‖z(ω)‖2 −
S(ω)
σ2

∥∥z(ω)Hh(ω)
∥∥2

1 + S(ω)
σ2 ‖h(ω)‖2

(39)

where the determinant of the ensemble covariance due to Sylvester’s determinant identity is

|Σ(ω)| = K
(
S(ω) ‖h(ω)‖2 + σ2

)
(40)

The log likelihood can then be expressed as

log p (z(ω)|H(ω), S(ω)) = −K log(π)− log
(
K
(
S(ω) ‖h(ω)‖2 + σ2

))
− 1

σ2

(
‖z(ω)‖2 −

S(ω)
σ2

∥∥z(ω)Hh(ω)
∥∥2

1 + S(ω)
σ2 ‖h(ω)‖2

)
(41)

Due to the independence across frequency, the log likelihoods are additive and the maximum
likelihood solution is computed as

max
H(ω)

∫
log p (z(ω)|H(ω), S(ω)) dω (42)

where the integral is over the bandwidth of the signal. Retaining the relevant terms of the likelihood,
the expression to be maximized is

max
h(ω)

∫
log
(
S̃(ω) ‖h‖2 + 1

)
+

1

σ2

S̃(ω)
∣∣hH(ω)z(ω)

∣∣2
1 + S̃(ω) ‖h(ω)‖2

dω (43)

where S̃(ω) = S(ω)
σ2 is the normalized signal power.

Consider a gain and delay model without multi-path for the channel

hk(t) = gk1(t− τk(x0))→ hk(ω) = gke
−jωτk(x0) (44)

where τk is the hypothesis delay for sensor k, but gk is a unknown complex gain scalar, and 1

is used here as the Dirac-delta function instead of the indicator function. It may be possible to
impose a line-of-sight model to obtain gk for a given hypothesis position, but such an approach is
sensitive to the gains and antenna at each sensor, and so is not adopted here. The relevant term
in the likelihood that involves the correlations between the sensors is∣∣hH(ω)z(ω)

∣∣2 =
∑
k

∑
l

g∗k gl e
jω(τk(x0)−τl(x0))zk(ω)z∗l (ω)︸ ︷︷ ︸

,Γk,l(ω,x0)

(45)

= gHΓ(ω,x0) g (46)

10



where the K × K matrix Γ(ω,x0) depends on frequency and source position, but the unknown
gains of the channel are fixed over frequency. Since the source position is unknown, x0 is treated
as a source position hypothesis to be tested.

A simplification that is particularly useful is when the signal of interest has a flat spectrum
over some known bandwidth B. In this case, the maximization can be written as

max
g
−2πB log

(
1 + S̃ ‖g‖2

)
+

1

σ2

S̃ gHΓ(x0) g

1 + S̃ ‖g‖2
(47)

where Γ(x0) =
∫

Γ(ω,x0)dω is the pairwise sensor correlations integrated over frequency. It may
be possible to show that this maximization is monotonic in the eigenvalue problem for Γ(x0). A
simpler route is to consider the maximization in two steps as follows

max
α
−2πB log(1 + S̃α) +

1

σ2

S̃

1 + S̃α

(
max

g,‖g‖2=α
gHΓ(x0) g

)
(48)

= max
α
−2πB log(1 + S̃α) +

1

σ2

S̃

1 + S̃α

(
αλmax {Γ(x0)}

)
(49)

where the maximization of the norm gHΓ(x0)g subject to a linear constraint has been recognized as
an eigenvalue problem and λmax is the largest (principal) eigenvalue. Finally, using simple calculus,
the maximization over the constraint α yields

α =
λmax
σ2 − 2πB

S̃
(
λmax

(
1− 1

σ2

)
+ 2πB

) (50)

where the requirement that α > 0 for arbitrarily and without loss of generality σ2 ≥ 1 implies that
the solution is valid when

λmax

σ2
> 2πB (51)

Comparing the elements of Γ(x0) with (34) for the gain and phase channel model, the diagonals
are the sum of signal and noise power at each sensor

diagonals Γk,k(x0) :E
{∫

ω
‖zk(ω)‖2 dω

}
= 2πB

(
S |gk|2 + σ2

)
(52)

Since these entries are least as large as σ2 ≥ 1, the integration over frequency (which multiples by
2πB ) guarantees (51). The off-diagonal elements of Γ(x0) can be shown to have a sinc , sin(x)/x
shape

off-diagonals Γk,l(x0) :E
{∫

ω
ejω(τk(x0)−τl(x0))zk(ω) z∗l (ω)dω

}
= 2πB Sgk g

∗
l sinc (πB δk,l(x0)) (53)
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where δk,l(x0) = (τk(x0)− τl(x0)) − (τk(x0,true)− τl(x0,true)) evaluates to zero at the true source
position, maximizing the sinc at one.

Although the ML solution computed here involves plugging α from (50) into (49), the principal
eigenvalue of Γ(x0) can often itself be used as the metric due to monotonicity arguments. Summa-
rizing the result, for a given hypothesis position and corresponding delays, the principal eigenvalue
represents how well the observed signals can be aligned across sensors and across frequency using
a complex scalar at each sensor

xML = arg max
x0

λmax {Γ(x0)}

Γk,l(x0) ,
∫
ejω(τk(x0)−τl(x0))zk(ω)z∗l (ω)dω

(54a)

(54b)

The principal eigenvector emax {Γ(x0)} is the value of the complex scalar alignments and may also
account for any mismatched sensors by giving them less weight in the metric.

Efficiently implementing the proposed metric for discrete-time signals would involve comput-
ing the Fast-Fourier Transform (FFT) over a block of samples L, and introducing a linear phase
ramp for each sensor based on the hypothesis position. For this purpose, define the the FFT of the
hypothesis shifted observations as

(Zx0)k,m , zk(ωm)ejωmτk(x0) (55)

where ωm = 2πm/L is the discrete frequency, and (Zx0)k,m is the m-th FFT bin for sensor k. Then,
the discrete form of the correlations matrix, with entries written out is

Γ(x0) = Zx0Z
H
x0

(56)

=
L−1∑
m=0


‖z1(ωm)‖2 z1z

∗
2 e

jωm(τ1(x0)−τ2(x0)) . . .

z∗1z2 e
jωm(τ2(x0)−τ1(x0)) ‖z2(ωm)‖2

...
. . .

‖zK(ωm)‖2

 (57)

where the terms zk are functions of ωm but not shown in the expression (57) for compactness.
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3. UNKNOWN MULTIPLE SIGNALS OVERVIEW

The primary concern of this report is source position estimates in the presence of interference,
that is, the multiple signals scenario where some of the signals are unknown. In this section, various
approaches are proposed and briefly described. The rest of the report goes into extensive detail on
the approaches and gives some salient examples. Many of the approaches are simply a function of
the covariance matrix Γ(x0).

1. Cross Correlation The traditional approach for addressing unknown multiple signals is cross
correlation. The approach has widespread use, and is sometimes referred to as a radiometer for
the two-element case where it has been used as a constant-false-alarm rate (CFAR) detector.
The approach is to take the sum of the magnitude of the upper (or lower) off-diagonal elements
in the matrix Γ(x0) and divide by its trace, leading to (in the mean) a sinc response in the
geolocation metric

E
{∑

k

∑
l>k |Γk,l(x0)|

}
E {
∑

k |Γk,k(x0)|}
=
S
∑

k

∑
l>k gkg

∗
l sinc (πB δk,l(x0))

Kσ2 + S
∑

k |gk|
2 (58)

The resolution of the technique is often thought to be 1
B since the sinc response drops to

zero when τk,l(x0) is shifted from the true position by 1
B . However, the side-lobes of the

sinc should be considered, and, as is shown in Section 4, the side-lobes of a signal due to
cyclostationarity of the communications waveform limit resolution when multiple signals are
present.

2. Wideband AEP Referring to the ML approaches, one way to treat the multiple signal scenario
is to whiten the measured covariance in (37), so that the whitened measurements can then
be treated the same way as in the single signal scenario, leading to a eigenvalue metric for
combining the whitened covariances over frequency. A background covariance without the
signal of interest can be measurerd either before the signal of interest turns on or after the
signal of interest turns off. In the framework of detection, this leads to an approach called
adaptive event processing (AEP) [3, p.112-114]. Stationarity of the background is important
here as changes in the estimated covariances would lead to a false contrast.

Consider the example shown in Figure 3, where the traditional cross correlation approach would
provide better estimates for signal 1 and signal 2 when computed in the absence of the larger,
interference signal. A detection approach could be used to find the start and end of signals, allowing
for better intervals for computing cross correlation. In the whitening approach, a background
covariance estimated using a sliding window could be used to remove the interference signal.

3. Wideband MUSIC An alternative to whitening approaches is to consider a wideband ana-
logue to the narrowband MUSIC direction finding approach. Here, an estimate of the signal
subspace and a hypothesis signal model at each frequency are used to separate the signals
simultaneously present (instead of processing an optimal interval of the time measurements).
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Figure 3. Example scenario for differing power signals turning on and off at different times. A cross-
correlation technique using the entire time interval may fail due to a large interference signal; whereas,
better time intervals are possible. Alternatively, since the time interval has on and off transitions, a sliding
whitening detector can be used to estimate delay.

Consider a covariance estimate for each frequency (instead of the covariance estimate inte-
grated over frequency) obtained through frequency channelization instead of through an FFT.
Each frequency channel has time samples to allow for an estimate of the spatial covariance
and corresponding signal and noise subspaces. Then, a MUSIC metric for each channel would
consider distance from a modeled steering vector evaluated at the channel center frequency
to the estimated signal subspace. Combining the distance metric over the frequency channels
while accounting for a unknown gain and phase at each sensor (fixed over frequency) results
in a eigenvalue problem very similar to (54a).

4. Wideband Demod/Remod For communications signals with a known preamble, the entire
waveform could be estimated through adaptive beamforming focused using the preamble in a
minimum mean-squared error (MMSE) sense. Since the waveform in this setting is partially
known, it is possible to use symbol decisions and the known modulation to iteratively update
the beamforming over time to account for Doppler, and in some cases to account for new
signals appearing in the environment. Two well-established approaches for beamforming to
mitigate delay spread across the sensors are space-time adaptive processing (STAP) using time
taps [6, Fig.22] and using frequency channelization [6, Fig.39]. In this report, the frequency
channelization architecture is pursued due to a simple efficient implementation.
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4. CROSS CORRELATION APPROACH

Despite the need for long sequence lengths to obtain delay estimates for signals of differing
powers, cross correlation techniques are widely used in geolocation. Algebraic techniques [?, 7–
10] rely on delay estimates obtained from cross correlation peaks, whereas imaging techniques
evaluate a likelihood over a hypothesis position grid. The algebraic techniques or so-called two-step
techniques have been shown to be worse in performance at low SNRs compared to so-called direct
positioning techniques [1, 11]. Since algebraic techniques rely on approximations or assumptions
to convert the nonlinear geolocation problem to linear or quadratic form, they typically need an
extra sensor measurement in order to provide a solution. Imaging techniques are often used for
2-dimensional search due to tractability. These techniques also allow for multiple sources to be
located simultaneously without the necessity of pairing the delay estimates as is needed for the
algebraic techniques.

Consider the cross-correlation approach in more depth by examining the ambiguity function
of a waveform, and its sidelobes. The ambiguity function for the waveform, or more generally,
the cross-ambiguity function (CAF) between the signal s1(t) and the signal s2(t) is the correlation
between these signals as they are shifted in time and frequency. The CAF ρ(τ, ν) where τ is the
relative time delay and ν = f2 − f1 is the relative frequency offset is defined as

ρ(τ, ν) = 〈s1(t+ τd) exp(j2πf1(t+ τd)), s2(t) exp(j2πf2t)〉 (59)

= exp(j2πf1τd) exp(j2πf2τ)

∫ ∞
−∞

s1(t+ τd) s
∗
2(t− τ) exp(j2π(f1 − f2)t) dt (60)

= exp(j2πf1τd) exp(j2πf2τ)

∫ ∞
−∞

s1(t) s∗2(t− τ) exp(−j2πνt) dt (61)

|ρ(τ, ν)|2 =

∣∣∣∣∫ ∞
−∞

s1(t) s∗2(t+ τ) exp(j2πνt) dt

∣∣∣∣2 (62)

For a given signal s(t), the ambiguity function is maximized at zero delay and zero frequency
offset. At delays greater than one symbol length, extrema in the ambiguity function contribute
to a side lobe level (that potentially prevents other signals from being detected and estimated).
Primarily, the side lobe level depends on the correlation between the samples of the discrete sequence
b[n], as will be shown next for delays only. A result in this setting is that the maximum of the
correlation of random binary sequences tends to

√
B, where B is the sequence length [12].

Consider the delay only autocorrelation of a BPSK signal with random bits b[n] ∈ {−1, 1}

max|τ |>Tc

∣∣∣∣∫ s(t) s∗(t+ τ)dt

∣∣∣∣ (63)

= max|τ |>Tc

∣∣∣∣∣
∫
ej2πf0t

∑
n

b[n] p(t− nTc) · e−j2πf0(t+τ)
∑
m

b[m] p∗(t+ τ −mTc)dt

∣∣∣∣∣ (64)

= max|τ |>Tc

∣∣∣∣∣
∫ ∑

n,m

b[n] b[m] p(t− nTc) p∗(t+ τ −mTc)dt

∣∣∣∣∣ (65)
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For bandlimited pulses, the integral is maximized at delays τ that are multiples of the symbol rate.
Making use of the result for random binary sequences, for the unit energy pulse, the side lobe level
at τ = kTc then becomes bounded as

B
1−ε
2 < max

∣∣∣∣∣∑
n

b[n] b[n+ k]

∣∣∣∣∣ < B
1+ε
2 (66)

where ε > 0 depends on the sequence and in particular ε = 0 (the bound is tight) for Barker
sequences.

Consider two overlapping signals A1s1(t) + A2s2(t − t2) and the corresponding peaks and
sidelobes in the ambiguity function resulting from self terms and cross terms. Expressions for the
correlation due to frequency offset are hard to obtain, so the focus here is on delay

ρ(τ) =

∣∣∣∣∫ (A1s1(t) +A2s2(t− t2)
)(

A∗1s
∗
1(t+ τ) +A∗2s

∗
2(t− t2 + τ)

)
dt

∣∣∣∣ (67)

Based on the single signal bound, the relevant maximum terms are

self terms: |A1|2B1, |A2|2B2 (68)

sidelobe terms: |A1|2
√
B1, |A2|2

√
B2,

∣∣∣A1A
∗
2

√
overlap between B1, B2

∣∣∣ (69)

cross term:
∣∣∣A1A

∗
2

√
overlap between B1, B2

∣∣∣ (70)

For the smaller signal (arbitrarily, A2 < A1) to appear above the sidelobe of the larger signal,
assuming both are persistent B1 = B2 = B and completely overlapped, the sequence length

has to satisfy
√
B >

A2
1

A2
2
. For example, a 10 dB larger power signal would require B = 2 ∗

(10 dB + 5 dB margin above sidelobes) = 30 dB implying a sequence of length B=1000 for both
signals.

4.1 RESISTIVE COMBINING METRIC

Cross-correlation techniques can be sensitive to differences in magnitude of the pairwise cor-
relations, so that in the multiple signals setting, some lower power signals are obscured. An em-
pirically validated technique that was found to be robust [13, 14], [15, Eqn.13] in the narrowband
angle of arrival context as well as the TDOA context is to use resistive combining of the pairwise
correlations, akin to minimum variance distortionless response (MVDR). The MVDR spectrum is
computed as

P (θ) =
1

[spatial vector(θ)]H (spatial covariance)−1 [spatial vector(θ)]
(71)

where θ is the parameter of interest, taken to be θ = (x, y) position in the TDOA context. For
combining over pairwise correlation images, the vector of interest is a just an indicator function for
a particular x, y position (coming from a set of delays evaluated for the position). Then, treating
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each pairwise correlation as independent of the other pairs, the covariance over the delays for a
particular x, y position is just the sum of the pairwise correlations. As a result, the MVDR pixel
value P for position x, y is obtained from the correlation pixel value Pk,q for the sensor pair k, q as

P (x, y) =
1∑K

k=1

∑K
q=k+1 (Pk,q(x, y))−1

(72)

where in the denominator, the inverse of the covariance has along its diagonal the inverse of each
pixel due to the assumption of independence.

The effect of resistive combining compared to linear combining of the pixels, defined as

P (x, y) =
K∑
k=1

K∑
q=k+1

Pk,q(x, y) (73)

is that linear combining tends to be dominated by the sensors with the highest received powers,
while resistive combining tends to favor agreement among all the sensors.

4.2 COMPUTATION

Computation of the CAF can be done efficiently for discrete time sequences using a FFT [16].
Since circular convolution is equivalent to multiplication in the FFT domain, zero padding the
input samples up to the desired lag achieves linear convolution using an FFT. A variety of frequency
weightings have been suggested to determine time delay in a ML sense [17]. These generalized cross
correlation (GCC) techniques can be implemented directly in the FFT domain.
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5. WIDEBAND ARCHITECTURES FOR HANDLING DELAY SPREAD

Before describing in more depth the wideband AEP, MUSIC and demod / remod approaches, a
discussion is presented here on how the delay model (44) is affected by delay spread over bandwidth
and Doppler spread due to motion.

Treating the continuous time signal as independent in each frequency allowed breaking up
the maximum likelihood solution into parts that can then be combined in a optimal way through
the eigenvector of the covariance Γ(x0). For discrete time signals of finite duration, and signals not
necessarily completely overlapped, the analysis is not as straight-forward.

For discrete-time signals, frequency resolution is limited to one over the duration of the signal,
which may be unknown, along with an unknown start time. Fine frequency resolution may not be
desirable in the multiple signals setting due to finite sample and low SNR issues in estimating a
spatial covariance per frequency. Such covariance estimation is fundamental to the beamforming
techniques outlined in Section 3. It is often sufficient to channelize in frequency to the extent that
the signals can jointly be assumed to be narrowband. Some clarity on the definition of narrowband
based on the achievable null depth is provided in 5.1.

Doppler frequency shift due to relative motion of the sensors, and any motion of the signals,
is mitigated by considering short time segments over which the carrier phase does not vary sig-
nificantly. Iterative demodulation of communications signals and carrier tracking are found to be
effective means of handling Doppler over longer time periods.

When multiple signals are present, determining an architecture that can effectively beamform
towards the signal of interest is a complicated algebraic problem in general. When time taps
(frequency taps) are used to align a particular signal, other signals become misaligned, and so on.
Because time delay and frequency offset do not commute, a non-commutative algebra where the
order of operations is taken into account is used to determine the number and placement of time
and frequency taps [18]; this detailed discussion is beyond the scope of this document.

5.1 NULL DEPTH

In this section, some arguments are presented for the number of frequency channels needed
to achieve a given null depth. The achievable null depth of the proposed beamforming techniques
is related to the eigenvalue spread in Γ (ω,x0). The basis for the arguments are that parameter
estimates for a secondary signal of x dB lower power than a primary signal could be obtained when
the covariance containing only the primary signal has a second eigenvalue that is at least x dB
smaller than the primary eigenvalue.

Consider extending the narrowband analysis for arrays in [19] to the sparse sensors problem.
For sensors and signals that are not moving (no Doppler), eigenvalue spread is caused by the
product of delay spread and channelized bandwidth. Narrower frequency bins and smaller delay
spreads cause less eigenvalue spread and lead to lower null depths. A simple and experimentally
verified model for eigenvalue spread is a single zero bandwidth signal splitting into two equal-power
zero bandwidth signals, as shown in Figure 4.
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Figure 4. Signal over bandwidth b is modeled as a zero bandwidth signal (i.e., tone) splitting into two zero
bandwidth signals at frequencies ±κ relative to the center. The split frequency κ is selected so that the original
signal and the two tones have the same variance over frequency.

In a given frequency channel m, the spatial covariance formed from the signal measurements
ym over the K sensors and L time samples when a split occurs is

yyH = Sv1v
H
1 + Sv2v

H
2 + σ2I (74)

where 2S is the power of the signal before the split, and v1,2 are the steering vectors associated
with split. The eigenvalues of the covariance yyH can be shown to be

λ1,2 = KS (1± |φ|) + σ2 (75)

where |φ| is the cosine of the angle between the two vectors v1 and v2

|φ| , vH1 v2

‖v1‖ ‖v2‖
(76)

The ratio of second eigenvalue to the first eigenvalue can be defined as the achievable null
depth

null depth ,
λ2

λ1
≈

(S>>σ2)

1− |φ|
1 + |φ|

(77)

For the zero bandwidth signal pair, choose a frequency offset ±κ from the center of the bin
that retains the variance over frequency [19, Eqn.22] compared with a signal that occupies the full
channelized bandwidth of b. For a flat spectrum over this channelized bandwidth, this leads to a
variance over frequency of b2/12 which can be equated to the κ2 variance of the split

κ2 =
b2

12
(78)

For the narrowband signals, the steering vectors v1,2 are due to the delay model for the channel,
and their cosine angle depends on the difference between the true delay and the delay due to the
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hypothesis position x0

v1,2 = ej(ωm±2πκ)(τ (x0)−τ (x0,true)) (79)

|φ| = 1

K

∣∣∣∣∣∑
k

ej((ωm+2πκ)−(ωm−2πκ))δ

∣∣∣∣∣ (80)

where δk(x0) = τk(x0) − τk(x0,true). The cosine angle depends on the sensor positions, source
position, and hypothesis position through the delays.

Assume that the delays are bounded as (τ (x0)− τ (x0,true)) ∈ (− δmax
2 , δmax

2 ) where δmax is
called the delay spread. A simple upper bound on the cosine angle assumes that the delay is at
the maximum value δmax

2 for half the sensors and at negative this value for the other half. Another
meaningful value for the cosine angle assumes that the delays are spaced uniformly at an interval
of δmax

K over the delay spread

|φ| =
1

K

∣∣∣∣∣∑
k

ej(2π 2κ)δk

∣∣∣∣∣
≤ cos

(
2π

b√
3

δmax

2

)
(81)

=
uniform

1

K

∣∣∣∣∣∣
sin
(

2π b√
3
δmax

2

)
sin
(

1
K 2π b√

3
δmax

2

)
∣∣∣∣∣∣ (82)

where the ratio of sin(·)/sin(·) produces a periodic sinc (Dirichlet) function with maximum of K.
Figure 5 shows the predicted null depth as a function of the delay bandwidth product b δmax. For a

null depth of -20 dB, the prediction is that 1
10

th
to 1

5

th
sample split is required either through time

of frequency taps. There is not a strong dependence of the null depth on the number of sensors K
(and in fact the null depth is worse as the number of sensors increases), the way it is shown here.
In reality, as the number of sensors increases, a portion of the sensors, and their associated delay
spread could be used to accomplish the task of nulling, assuming that there are enough degrees of
freedom available when multiple signals are present.

The approach considered here for delay spread does not readily extend to Doppler spread
where the steering vectors v vary over time. While justification is not provided here [18, Eqn.14],
an argument can be made that the effect of Doppler spread can be determined by replacing the
delay bandwidth product in the sinc or cos expressions with

b δmax → T fcδ̇max = T · differential Doppler (83)

where T is the integration time. For many scenarios of interest, the delay bandwidth product
exceeds the time doppler product and becomes the dominant concern for null depth.

5.2 FREQUENCY CHANNELIZATION VS. TIME TAPS

Consider the rescue scenario shown in Figure 1 where K = 10 sensors are spaced over a one
kilometer region. In order to locate signals 20 dB below the highest power signal, the bandwidth
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Figure 5. Expected null depth based on eigenvalue ratio for worst case of two sensor groups, and case of
K = 10 sensors spread so that the delay spread is uniform.

that could be treated as narrowband is b = 60 kHz, using the nulldepth characterization in Figure 5.
For a signal of analog bandwidth 1 MHz sampled at 2 MSamples/sec (MSps), this implies discrete-
time processing using N > 32 frequency channels. Alternatively, the frequency channelization may
be substituted with N time taps based on the alternation theorem for filter design.

For Doppler, consider a typical speed of 10 m/s for the UAVs, and a carrier frequency of
1 GHz. Assume that a burst of 1 ms is to be coherently integrated. Since the delay bandwidth
product of 1/5 is much larger than the time Doppler product of 1/30, the effect of delay spread
dominates. However, for a 6 ms burst, both delay spread and Doppler have equal effect.

Both the frequency channelization architecture, and the time taps architecture have been
used to address signals that are wideband in the sense of delay bandwidth product for desired
null depths. Figure 6 shows both architectures for the problem of beamforming, where the KN
optimal complex weights w are used to combine the samples from the sensors and over time taps
or frequency taps.

To make the discussion in this section more concrete, consider the least-squares 3 problem of
determining STAP weights to recover the known signal samples spre (e.g., a preamble or template)
from the measurement matrix Z, (K × L)

wopt = arg min
w

∥∥wHZ− spre

∥∥2
=
(
ZZH

)−1
ZsHpre (84)

where the computation of the weights involves inversion of the K×K covariance matrix ZZH , and
ZsHpre is an estimate of the amplitude and phase reponse of signal across the sensors. The sample

3 often used synonymously with minimum mean squared error (MMSE) beamforming

22



(a)

(b)

Figure 6. (a) architecture using time taps known as Space-Time Adaptive Processing (STAP). (b) archi-
tecture using frequency channelization. While the STAP architecture looks simpler in terms of applying the
weights, computation of the weights involves matrix decomposition that is more computationally efficient in
the frequency channelization architecture.
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covariance ZZH estimate improves with the number of samples, and L > 3 ∗K is a rule of thumb
for low signal-to-interference ratio loss [20], [21, Ch.9].

Based on the preceeding null depth discussion, the performance of the beamforming can be
improved for wideband signals through time taps or frequency channelization. In the time taps
setting, the beamforming problem of interest includes delayed versions of the measurements in the
minimization, but the form of the solution remains the same

Z̃ =


Z

∆1Z
∆2Z

...
∆NZ

 (85)

where ∆δ is a delay of δ applied to the measurements from each sensor (rows of Z). The uniform
sample delays of δ = (1, 2, . . . , N) allow for a N time taps filter w(n) to account for delay spread.
Adding the delayed samples then requires a KN ×KN matrix inverse, along with sufficient time
samples (both reference waveform and measured) to estimate the entries of the larger covariance
matrix.

Alternatively, in a frequency channezilation architecture, the weights are obtained for each
frequency by channelizing both the template and the measurements. At first glance, the sample
requirement for covariance estimation in each frequency appears to be larger due to (1) the chan-
nelization filters, as the first channelization-filter-delay samples do not contribute (2) lower SNR
in each frequency (3) no beneficial effect from 1/N reduction in the size of the covariance matrix,
since the sample rate is downsampled by the same amount. However, it was observed empirically
that the time taps architecture generally needed more samples in order to perform the same level
of beamfofrming as the frequency channelized architecture. A possible reason for the discrepancy
is shown in Figure 7. The correlation between frequency channels, i.e., the cross terms, is not
computed in the frequency channelization approach; whereas, the STAP time taps architecture
implicity computes all of the cross correlations.

5.2.1 Computational Complexity

In the STAP time taps architecture, the weights w are typically computed by QR decomposi-
tion of a KN ×L matrix of samples requiring on the order of (KN)2 multiples per step for L steps,
where L is the integration time during which signals are expected to be stationary. On the other
hand, computing the L independent QR decompositions of the K × L matrix for each frequency
requires K2N multiplies per step for L steps. The computational complexity is reduced by 1/N ,
allowing the frequency-channelization approach to scale for larger delay spreads.

One way to improve the performance of the time taps architecture is to exploit the redundancy
in the symmetric block-Toeplitz structure of the STAP covariance matrix. Let the data matrix Z be
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Figure 7. Structure in the covariance matrix of the samples from the perspective of frequency channeliza-
tion. The naive STAP time taps architecture computes all elements of the matrix; whereas, the frequency-
channelized architecture assumes that the cross terms are zero.

appended with zero columns so that integer sample delays can be expressed as a matrix operation.

Z ←
[

Z 0K×1 . . . 0K×1

]
(86)

Z̃ =


Z

ZS
ZS2

...
ZSN

 (87)

where S is the delay by one sample shift matrix

S =


0 1 0 . . . 0
0 0 1 . . . 0

. . .

0 0 0 . . . 1
1 0 0 . . . 0

 (88)

Then, the covariance matrix of time lags can be expressed as

Z̃Z̃H =


ZZH Z

(
SH
)
ZH Z

(
SH
)2

ZH . . . Z
(
SH
)N

ZH

Z (S) ZH ZZH Z
(
SH
)
ZH . . . Z

(
SH
)N−1

ZH

Z (S)2 ZH Z (S) ZH ZZH . . . Z
(
SH
)N−2

ZH

...
...

...
. . .

...

Z (S)N ZH Z (S)N−1 ZH Z (S)N−2 ZH . . . ZZH

 (89)

where the Toeplitz block symmetric structure is observed, and all block entries are related to the
first row or column. A Levinson inversion algorithm could then be used to efficiently determine the
matrix inverse. However, such an approach operates in the power domain and encounters the issue
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of doubling bit depth. Redundancy could also be exploited in the time domain avoiding the issue
of bit depth [22], [23, Chapter 7], but this approach is not simple to understand. Furthermore,
using the structure of the covariance can lead to gains in performance, as shown in [24] for the
AEP detector.

5.2.2 Filter Bank Design

Finite-impulse response (FIR) filter banks, often obtained from frequency modulating a pro-
totype baseband FIR filter h(n) to a passband, may be used to break up a wideband signal into
frequency components (a process called analysis) and stitch back frequency components to produce
a wideband copy (a process called synthesis). The received signals from each of the sensors passes
through a separate analysis filter bank. Adaptive beamforming of the narrowband signals is then
performed, and the result is synthesized to allow for waveform recovery and bit decisions.

Figure 8. Block diagram of analysis h(n) and synthesis g(n) filter bank for adaptive processing of K sensors.
NFFT channels are adaptively processed at a downsampled rate and interpolated to create a single output
stream. Here each branch corresponds to a different frequency band, whereas in Figure 6b, each branch is a
different sensor. However, both figures are depicting a frequency channelized architecture.

Several approaches to design of the analysis and synthesis filter banks were considered and
evaluated for reconstruction error. The design parameters included the length of the filters, the
oversampling rate (multiplier on the critical downsampling of 1/NFFT), and the number of frequency
channels NFFT. The equivalent polyphase implementation of the processing in Figure 8 is shown
in Figure 9.

For the chosen quadrature mirror filters (QMF) approach [25], the analysis and synthesis
filters are the same up to a phase. The filter design approach considered was originally designed
for cosine-modulated filter banks, but shown to be a form of complex-exponential modulation [26,
Eqn.2,Appendix]. The baseband filter h(n) = g(n) is modulated as

hm(n) = h(n)e
j 2πm
NFFT

n
(90)
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Figure 9. Polyphase implementation of analysis h(n) and synthesis g(n) filter bank for adaptive pro-
cessing of K sensors. Downsampling achieved by shifting samples in the sample buffer forward by
NFFT/oversampling rate. Analysis filter is reshaped into a (NFFT × polyphase taps) matrix and dot mul-
tiplied with the sample buffer and added, before taking an FFT.

The filter design optimization starts with h(n) initialized as a Parks-McClellan equiripple FIR filter,
and iteratively minimizes the reconstruction error through a quadratic minimization with linear
constraints [25, Eqn. 40].

The residual error from analysis and synthesis of a BPSK signal (802.11b 11-chip Barker
spread BPSK was used as an example) is shown in Figure 10. The residual is defined as the
least-squares error between the original signal and the reconstructed signal. Based on the desired
residuals below 30 dB, an oversampling rate of 2 was selected. Figure 11 shows the impulse response
for a NFFT = 16 band prototype filter h(n) with 4 polyphase taps.

5.3 FREQUENCY CHANNELIZATION NOTATION

Define the output of each passband filter as yk,m(n) where m is the frequency index, k is the
sensor index, and n is the sample index.

yk,m(n) = (hm ~ zk)

(
NFFT

2
· n
)

(91)

where ~ represents convolution, and the result is downsampled by NFFT
2 in the time index for the

chosen oversampling rate of 2. Convolution with the filter produces samples at the passband, which
are effectively shifted to complex baseband through the downsampling operation. There is typically
a demodulation term ejπk(n−1) that evaluates to a spectrum flip for odd k, but is not needed due
to multiplying by the conjugate modulation term for reconstruction. In the same way as for the
wideband samples, define the data matrix of samples over time for a particular frequency as

Ym =


y1,m(0) y1,m(1) . . . y1,m(L̄)
y2,m(0) y2,m(1) . . . y2,m(L̄)

...
yK,m(0) yK,m(1) . . . yK,m(L̄)

 (92)
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where L̄ is the number of samples at the downsampled rate (compared to L samples at the wideband
sample rate). Note that the frequency channelization (and similarly reconstruction) introduce a
sample delay, which for the proposed filters is the number of polyphase taps. It is important to
account for these delays when considering the demod/remod approach to be presented.

It is convenient to refer to the collection of matrices over all frequencies as

Y = {Y1,Y2, . . . ,YNFFT
} (93)
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Figure 10. Residual from signal analysis and synthesis of a spread BPSK signal using number of frequency
channels NFFT, polyphase taps as indicated, and either oversampling by 2 (i.e. downsampling of NFFT

2 ) or
oversampling by 4. The analysis and synthesis filters are the same for these QMF designs, and the total
number of taps is NFFT ∗ polyphase taps.
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Figure 11. Designed prototype filter for N = 16 frequency channels that uses 4 polyphase taps to achieve
−55 dB residual error (see Figure 10) in the reconstruction for an oversampling rate of 2.
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6. WIDEBAND AEP

Compared to adaptive detection using a template matched filter (e.g. via the least-squares
metric (84)), adaptive event processing (AEP) detection techniques can offer computational benefits
since a search over frequency offsets between sensors and for the source center frequency can be
avoided 4. The AEP approach to detection and geolocation can be developed for the wideband
context by starting with the narrowband detection problem, where the signal model is [3].

Z = XAT + N (94)

where X is the K ×J matrix of sensor responses, A is the J ×S matrix of symbols, T is the S×L
matrix of time samples, and N is complex additive white Gaussian noise. For change detection,
the unknown signal turn on is modeled as

T =
[
0 . . . 0 1 . . . 1

]
Z =

[
Zq

old looks

Zp
new looks

]
(95)

where the observations are partitioned into old looks Zq (where an unknown signal is absent) and
new looks Zp (where the unknown signal is present). Note that the unknown waveform samples
are modeled by A in this case.

The corresponding generalized likelihood ratio test (GLRT) [27], [3, Eqn.8] can be shown to
be a ratio of determinants maximized over the unknown signal response vectors 5.

GLRT (Z,T) = max
X


∣∣∣XH

(
ZqZ

H
q

)−1
X
∣∣∣∣∣∣XH (ZZH)−1 X
∣∣∣
L

(96)

When there is a single new signal, J = 1, X is a vector and the determinants becomes scalars. This
leads to the eigenvalue solution

GLRT (Z,T) = λmax

{(
ZZH

) (
ZqZ

H
q

)−1
}

= 1 + λmax

{(
ZpZ

H
p

) (
ZqZ

H
q

)−1
}

(97)

where the argument {·} is a contrast matrix or whitened covariance matrix. The corresponding
estimate of the response vector X from the eigenvalue solution is

X = emax

{(
ZZH

) (
ZqZ

H
q

)−1
}

= emax

{(
ZpZ

H
p

) (
ZqZ

H
q

)−1
}

(98)

Implementation of the AEP approach may involve diagonal loading to account for ill-conditioning
in the covariance matrices. Trace is commonly used as a computationally efficient approximation
of the max eigenvalue.

4 A comparison of these techniques in terms of performance is not presented here.
5 The dependency on A, and on the covariance of the noise E

{
NNH

}
in the numerator and denominator of original

maximum likelihood expression is eliminated due to the maximization over these unknown parameters, which leads
to the generalization of the ML detector.
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Using the frequency-channelized architecture to break up the wideband detection problem
into N independent narrowband components, the wideband detection statistic becomes a product
of likelihoods (see notation in Section 5.3)

Wideband GLRT (Y,T) =
N∏
m=1

(
1 + λmax

{
Rp,mR−1

q,m

})
(99)

where Rp,m = Yp,mYH
p,m (similarly Rq,m) is the covariance matrix of the channelized measurements

in the m-th band, and the corresponding response vectors can be collected into a K ×N matrix

V =

 | | |
X1 X2 . . . XN

| | |

 (100)

6.1 GEOLOCATION

An experimentally validated approach for geolocation is to obtain time correlation estimates
using just the phase differences between response vectors, which should vary linearly over frequency
according to the channel model (44). The correlation estimate between sensors k and l at time lag
τ is

ρk,l(τ) =
N∑
m=1

Vk,mV∗l,m
|Vk,m| |Vl,m|

ejωmτ (101)

where Vk,m is the k-th sensor and m-th frequency channel, and ωm is the channelized center
frequency. The operation can be implemented using an inverse-FFT (IFFT) for sample delays and
uniformly-spaced frequency channelization. The effect of the normalization in the denominator is
to remove the channel gain (which is constant over frequency) but primarily to account for any
frequency varying effects due to whitening. For time estimates, such phase only techniques, called
Phase Transform (PHAT), have been suggested along with other GCC techniques to deal with
waveform irregularities [17].

Once the pairwise cross correlations have been computed, resistive combining can then be
used to produce a geolocation image. The performance of the geolocation depends on the ability
to estimate delays using the N response vectors that sample the receive bandwidth. Section 5.1
discussed the issue of eigenvalue spread in each frequency, which is one issue that determines the
choice of N . A more basic requirement is that the number of frequency channels needs to larger
than the delay spread in samples for any pair of sensors for the signal of interest. This is just a
sampling requirement in frequency in order to estimate delay.
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6.2 ADJACENT FREQUENCIES

One way to include the effect of adjacent frequencies in the detection statistic and response
vector estimate is to form the GLRT (96) using m−1,m,m+1 frequency channels 6, but restrict the
response vector X to have zeros in the neighboring m− 1,m+ 1 components. Define the appended
measurements

Ỹq =

 Yq,m−1

Yq,m

Yq,m+1

 (102)

and form Υq = (ỸqỸ
H
q )−1 for the numerator, and similarly Υ = (ỸỸH)−1 for the denominator

in the GLRT expression. The GLRT statistic can then be formed by taking the central portion of
the inverses corresponding to the m-th frequency,

GLRT adjacent (Y,T) = λmax

{(
[Υ](m,m)

)−1
[Υq](m,m)

}
(103)

where the operator [ · ](m,m) picks the K ×K central matrix of the 3K × 3K matrix containing the
m − 1,m,m + 1 adjacent frequencies. Such an approach allows for detection and response vector
estimation using fewer samples and may help with Doppler.

6 The number of neighbors could be more depending on the expected correlation between frequencies present in
the waveform and due to the channel.
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7. WIDEBAND MUSIC

In the narrowband context, the multiple signal classification (MUSIC) problem [28] is to
recover the sensor response(s) and corresponding direction of arrival(s) (DOAs) of source(s) simul-
taneously present in the estimated spatial covariance modeled as

Rm = YmYH
m = VmPmVH

m + σ2
mI (104)

where m is the index for the frequency channel, Vm is the K × S matrix of sensor responses for S
sources, Pm is a S × S diagonal matrix of source powers, and σ2

m is the noise variance.

When the number of sources is known, the covariance can be decomposed into signal and
noise subspaces through eigenvalue decomposition

Rm = Es,mΛs,mEH
s,m + En,mΛn,mEH

n,m (105)

where Es,m is the K × S matrix of signal eigenvectors with corresponding eigenvalues on the
diagonals of Λs,m and similarly for the noise subspace. Assuming that the eigenvalues in the noise
subspace are all approximately the same

Rm = Es,m (Λs,m − γI) EH
s,m + γI (106)

Traditionally, the largest gap in the eigenvalues is assumed to separate the signal and noise eigen-
values (and corresponding eigenvectors), and γ is estimated as the average of the bottom K − S
eigenvalues.

The MUSIC metric is the distance between the modeled narrowband sensor response vector
and the estimated signal subspace

Φm(x0) =
∥∥vm(x0)HEs,m

∥∥2

= vm(x0)HEs,mEH
s,mvm(x0) (107)

where vm = ejωmτ (x0).

For the gain and delay model (44), a metric for consideration is to average the narrowband
metric over frequency, maximizing over the unknown complex gains g

Φ(x0) = max
‖g‖=1

1

N

N∑
m=1

(vm � g)H Es,mEH
s,m (vm � g) (108)

= max
‖g‖=1

1

N
gH

[
N∑
m=1

diag (vm)H Es,mEH
s,m diag (vm)

]
g (109)

where � represents element-wise multiplication. In this form, maximizing over g is recognized as
an eigenvalue problem with g as the largest eigenvector of the matrix in brackets, and the metric
as the largest eigenvalue [5, Eqn.13-14]

Φ(x0) = λmax

{
N∑
m=1

diag (vm)H Es,mEH
s,m diag (vm)

}
(110)
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When the channel has differential Doppler shifts across the sensors, the MUSIC metric may
be modified 7 [29] to account for the expected differential Dopplers at a given hypothesis position
x0. This allows for the signal of interest to be focused but causes any other signals present to
be unfocused, leading to eigenvalue spread in each frequency channel, and poor resolution in the
metric. When Doppler is present, methods other than eigenvalue gap may be needed to identify
subspaces that are useful to the overall metric.

7 Applying the differential Doppler for each position before frequency channelization requires more computation
compared to applying the differential Doppler for each position after channelization and before eigenanalysis.
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8. WIDEBAND DEMOD/REMOD

The frequency-channelized wideband beamforming approach including a demodulation and
remodulation step has an implementation that is difficult to describe, and involves iteration. The
approach starts with a known preamble spre(n) that is frequency channelized, along with the wide-
band data to be demodulated.

sm,pre(n) = (hm ~ spre)

(
NFFT

2
· n
)

(111)

The assumption is that a detection process (either matched filter or AEP) has already been per-
formed to frequency and time shift the preamble waveform, and apply differential time and fre-
quency shifts to the data to achieve the initial synchronization.

In each frequency, the beamforming weights are computed on the synchronized preamble and
the adjusted data according to

wopt
m = arg min

wm

∥∥wH
mYm − sm,pre

∥∥2
=
(
YmYH

m

)−1
YmsHm,pre (112)

Over the entire bandwidth of the signal, the relative complex scaling of the weights recovers the
wideband signal spre(n). Whereas it is common to normalize the weights by setting the complex
gain of an arbitrary reference sensor to one, no weight normalization is needed here due to the
knowledge of the preamble.

In each frequency, the weights are applied to samples forward in time from the preamble to
recover new (unknown) channelized symbols. The channelized symbols are reconstructed using the
synthesis filter, so that symbol decisions can be made. Then, channelizing the symbol decisions
provides an update to the preamble waveform in each frequency

sm,pre(n)←
[
sm,pre(n) channelized symbol decisions

]
(113)

Over the course of the demod/remod iterations, careful attention has to be paid to the
delay due to analysis and synthesis. Once the entire waveform has been recovered, the maximum
likelihood techniques covered in Section 2 may then be used for geolocation.
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9. SIMULATIONS

In this section, two scenarios are presented, and a subset of the geolocation techniques is
evaluated.

9.1 FOUR 802.11b SOURCES EXAMPLE

Consider the geometry and scenario shown in Figure 12 where ten sensors are in a 2 km box
that contains four 802.11b sources transmitting (also called transmitters here) at different power
levels, different start times and for different duration. The sensors are located 30 meters above a flat
ground where the sources are located. The sensors are moving with random velocity components
chosen with standard deviation of 10 m/s in the x, and y directions and zero z velocity.

(a) Positions of four sources and ten sensors

(b) Relative powers and duration of the sources

Figure 12. Geometry and setup of an example detection and geolocation problem for Wifi signals.

Figure 13 shows a comparison of the frequency-channelized AEP detector (103) with AEP
detectors using time taps. The 415-tap AEP detector has uniform time taps, whereas the 4-tap
AEP detector uses genie knowledge of the delays for the four signals to place sparse taps. The
frequency channelized AEP detector using adjacent frequencies is able to detect transmitter 2,
whereas the 415-tap AEP detector does not. Although the sparse taps approach is based on genie
knowledge, this example shows the possible utility in using cross-correlation peaks to pick taps,
particularly with signals of similar power and when only two signals are present.
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Figure 13. Comparison of time-taps AEP vs. sparse taps AEP vs. frequency-channelized AEP for detection
of four 802.11b sources using a ten element sparse array. The dashed lines indicate the start of a burst, and
the power of the user – either 0 dB,0 dB,-5 dB, or -10 dB. The 415 time-taps AEP = 4150 × 4150 covariance
took two days to run using 12 processors, but achieves no better performance than using sparse taps placed at
the known signal delays. The frequency-channelized AEP is able to pick up both the start and end of signals.
The time-taps AEP is sample starved, since the covariance is developed using 4224 independent samples,
whereas 3*(10 sensors * 415 taps) is typically necessary for good beamforming performance.

Figure 14 shows the cross-correlation resistive combining geolocation image when the signals
have the same power compared to when the signals have different powers [0 dB,0 dB,-5 dB, -10 dB]
corresponding to transmitters 1-4. The signal from transmitter 4 at 10 dB below the highest power
signals from transmitters 1-2 is not located. Figure 15 shows the geolocation image obtained from
using the correlation estimates from the AEP detection approach (101). Again, the -5 dB source
is located, but the -10 dB source does not produce a large peak in the geolocation image. In the
AEP approach, the detection also produces a time of arrival (and potentially an end time) that
could help with signal copy or selecting intervals of the data to process.

For this example, the wideband MUSIC approach fails due to the presence of a large differ-
ential Doppler spread. Since the center frequency of the signal is 2.9 GHz, the computed spread of
more than 100 Hz is too large for the signal duration of 8 to 30 ms.

The demod/remod approach was not implemented for the 802.11b signal. For the Barker-
spread signal, such an approach involves despreading based on the preamble synchronization. How-
ever, even with moderate bit errors, a recovered waveform is able to locate the smallest source.

9.2 BALLOONS EXAMPLE

Consider the geometry and scenario shown in Figure 16 where ten high-altitude balloons,
30 km above ground level (AGL), are in a 100 km diameter circle that contains two 100 kHz
bandwidth quadrature phase-shift keying (QPSK) sources on the ground transmitting at two power
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Figure 14. Comparison of cross-correlation resistive combining performance when the signal powers are the
same vs. when the signal powers are 0 dB,0 dB,-5 dB, or -10 dB for transmitters 1-4, respectively.

levels, two different start times and for two different durations. The balloons are moving with
random velocity components chosen with standard deviation of 10 m/s in the x, and y directions
and zero z velocity. The ultra high frequency (UHF) signals have a center frequency of 300 MHz,
and the transmit power for the higher power transmitter 1 is 100 mW.

Figure 17 shows a comparison of three geolocation approaches: cross-correlation resistive
combining, MUSIC, and demod/remod. Whereas the cross-correlation approach has sidelobes
from transmitter 1 above the level of transmitter 2, both the other beamforming approaches are
able to locate transmitter 2, which is 10 dB lower in power. The advantage of the demod/remod
approach is that it recovers the QPSK symbols, which can be used for verification, with 9% bit
errors, in this example. Since the center frequency of the signal is 300 MHz, the Doppler spread is
not significant for the signal duration.

41



Figure 15. Correlation estimates from frequency-channelized AEP used to produce a resistively combined
geolocation image. The -10 dB power signal does not have a strong peak, but the -5 dB power signal is
located.

(a) Positions of two sources and ten sensors

(b) Relative powers and duration of the sources

Figure 16. Geometry and setup of an example detection and geolocation problem involving balloons at 30 km
above the ground.
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Figure 17. Comparison of three geolocation approaches for a balloon scenario, where cross-correlation fails,
but the beamforming approaches are successful.
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10. CONCLUSION

The topic of gelocation in the presence of interference has been introduced, and several beam-
forming approaches have been described. Implementation of these approaches and application to
simulated data shows their utility. Although the focus of the treatment here has been on TDOA,
some of the approaches extend to frequency difference of arrival (FDOA). Detailed analysis of the
performance of the approaches and their applicability in different operating regimes requires further
study.
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A QUADRATIC EQUATION FOR TIME DELAY

Squaring both sides of the delay equation (3), a quadratic equation can be obtained for cτ
when linear motion is considered

c2 τ(t)2 = ‖xk(t)− x0(t+ τ(t))‖2

= ‖(vk · t+ xk)− (v0 · (t+ τ) + x0)‖2

=

∥∥∥∥∥∥(vk − v0)︸ ︷︷ ︸
vd

·t+ v0 · τ + (xk − x0)︸ ︷︷ ︸
xd

∥∥∥∥∥∥
2

0 = (|v0|2 − c2)︸ ︷︷ ︸
a2

τ2 + 2
(
vTd v0t+ vT0 xd

)︸ ︷︷ ︸
a1

τ + 2vTd xdt+ |xd|2 + |vd|2 t2︸ ︷︷ ︸
a0

(A.114)

where xk = xk(t = 0) is the position of the platform at time zero, similarly x0 = x0(t = 0), and
xd , xk − x0, similarly vd , vk − v0 represent the differences in position and velocity. The two

solutions are obtained from the quadratic formula as τ∗ = (2a2)−1
(
−a1 ±

√
a2

1 − 4 a2 a0

)
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GLOSSARY

AEP Adaptive Event Processing

BPSK Binary Phase Shift Keying

CAF Cross Ambiguity Function

DOA Direction of Arrival

DPD Direct Position Determination

FDOA Frequency Difference of Arrival

FIR Finite Impulse Response

FFT Fast Fourier Transform

GCC Generalized Cross Correlation

GLRT Generalized Likelihood Ratio Test

GPS Global Positioning System

IFFT Inverse Fast Fourier Transform

LL Lincoln Laboratory

MIT Massachusetts Institute of Technology

ML Maximum Likelihood

MMSE Minimum Mean-Squared Error

MUSIC Multiple Signal Classification

MVDR Minimum Variance Distortionless Response

PHAT Phase Transform

PLL Phase-Locked Loop

QMF Quadrature Mirror Filter

QPSK Quadrature Phase-Shift Keying

RF Radio Frequency

SINR Signal-to-Interference-and-Noise Ratio

SNR Signal-to-Noise Ratio

STAP Space-Time Adaptive Processing

TDOA Time Difference of Arrival

UAV Unmanned Aerial Vehicle
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