Project Report
LSP-267

Exact Subgraph Matching using
Massively Parallel Graph Exploration
and Linear Algebra:

FY19 Information,

Computation & Exploitation
Line-Supported Program

V. Gleyzer
E.K. Kao

18 November 2019

Lincoln Laboratory g

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LEXINGTON, MASSACHUSETTS

This material is based upon work supported by the Under DISTRIBUTION STATEMENT A. Approved for public
Secretary of Defense for Research and Engineering under release. Distribution is unlimited.

Air Force Contract No. FA8702-15-D-0001.

This report is the result of studies performed at Lincoln Laboratory, a federally funded research and
development center operated by Massachusetts Institute of Technology. This material is based upon
work supported by the Under Secretary of Defense for Research and Engineering under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the Under
Secretary of Defense for Research and Engineering.

© 2019 Massachusetts Institute of Technology

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb
2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-
7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S.
Government may violate any copyrights that exist in this work.

Massachusetts Institute of Technology
Lincoln Laboratory

Exact Subgraph Matching using Massively Parallel
Graph Exploration and Linear Algebra:
FY19 Information, Computation & Exploitation
Line-Supported Program

V. Gleyzer
Group 102

F.K. Kao
Group 104

Project Report LSP-267
18 November 2019

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Lexington Massachusetts

This page intentionally left blank.

ABSTRACT

Exact subgraph matching, which is a well-studied algorithmic kernel that is
critical for many scientific and commercial applications, is an NP-complete problem.
Over the years, multiple heuristic-based and approximation-based techniques have
been proposed to help alleviate this complexity. In order to apply these techniques
for analysis of graphs that contain millions to billions of edges, distributed systems
have provided computational scalability through search parallelization. One recent
approach for leveraging computational parallelism is through the linear algebra
formulation using the matrix multiply operation, which provides a mechanism for
performing parallel graph traversal. Benefits of this approach are: 1) a mathematically
precise and concise representation, and 2) the ability to leverage specialized linear
algebra accelerators and optimized libraries for high-performance analysis of large
graph datasets.

In this paper, we design a multi-stage, linear algebra representation and method-
ology for exact subgraph matching. This formulation provides a stateless discovery
mechanism to explore the graph starting at multiple vertices simultaneously and
performing this exploration in a massively parallel fashion. We present a prelim-
inary analysis of the approach and demonstrate key advantages of the proposed
formulation.

iii

This page intentionally left blank.

ACKNOWLEDGMENTS

The authors would like to thank Michael Yee, Paul Monticciolo, Sanjeev Mohindra, William
Song and Robert Bond for their invaluable support and feedback.

This page intentionally left blank.

TABLE OF CONTENTS

Abstract

Acknowledgments

List of Figures

INTRODUCTION

1.1 Notation

1.2 Matrix-Based Graph Traversal
1.3 Related Work

14 Contributions

ALGORITHM DESCRIPTION

2.1 Component Detection

2.2 Component Enumeration

2.3 Multi-Component Join

DISCUSSION

3.1 Efficient Stateless Representation of Potential Matches
3.2 Component Size Considerations

3.3 Hop-Sequence Order

3.4 Utilizing State from Multiple Components

3.5 Leveraging Attributes

3.6 Symmetry-Breaking for Larger Query Graphs
EVALUATION

4.1 Simulating Realistic Graph Topologies

4.2 Evaluation over Graph Density

4.3 Evaluation over Vertex Degree Distribution

4.4 Evaluation over Strength of Community Structure
SUMMARY

References

vii

Page

111

ix

W N = = =

© 00 O Ot

13
13
13
14
15
15
15

17
17
18
20
22

25
27

This page intentionally left blank.

10

11

12

13

14

15

LIST OF FIGURES

Algorithm overview.

Example hop-sequences for components which can be traversed without a
multi-component join.

Visualization of the individual hops taken on the query graph @ for Algorithm
2. Crossed out arrows indicate invalid paths which can be traversed as part
of each operation.

Complete enumeration example for all path starting at vg. (NOTE: Other
paths ignored for illustration purposes)

Visualization of the join operations and steps described in Algorithm 5.

Example of hop-sequence that can be supported only with a multi-component join.

Baseline simulated data graph for evaluation, with density parameter s = 0.3,
Power-Law exponent o = —0.3, and 5 times more within-community edges
than between-community edges.

Growth on the number of edges and matches as the density parameter increases.

Number of partial products and density of the densest walk matrix as the
graph gets denser.

Fraction of partial paths completed and the compression scale at the densest
walk matrix as the density parameter increases.

The number of edges and component matches as the Power-Law exponent
increases to have more high degree vertices.

Number of partial products and density of the densest walk matrix as the
Power-Law exponent increases to have more high degree vertices.

Fraction of partial paths completed and the compression scale at the densest
walk matrix as the Power-Law exponent increases to have more high degree
vertices.

The number of edges and component matches as the strength of community
structure increases.

Number of partial products and density of the densest walk matrix as the
strength of community structure increases.

ix

Page

10
12

18
19

19

20

21

21

22

22

23

LIST OF FIGURES

(Continued)
Figure
No. Page
16 Fraction of partial paths completed and the compression scale at the densest
walk matrix as the strength of community structure increases. 23

1. INTRODUCTION

Given a directed, labeled query graph @ and a data graph G, exact subgraph matching can
be defined as finding all non-induced subgraphs, S, of G that are isomorphic to @ and for which
corresponding vertices and edges of () and S share the same attribute values. Subgraph matching
is a key kernel found in applications such as bioinformatics, social media analysis and financial
transaction analysis. Although general subgraph isomorphism, and by extension subgraph matching,
is known to be an NP-Complete problem [1], many parallel, heuristic and approximate algorithms
have been proposed to help analyze practical real-world datasets.

In this paper, we demonstrate a subgraph matching algorithm which heavily leverages matrix-
based graph traversal for identifying matches. Our key motivation for this approach is the availability
of sparse linear-algebra libraries [2,3] that are mapped and optimized for execution of linear algebra
primitives on an array of large distributed systems, including a specialized sparse-linear algebra
accelerator proposed in [4], as well as traditional high-performance processing systems. These
capabilities can enable analysis of graph datasets that would be intractable using alternative
methods.

1.1 NOTATION

For parsimony, both the data graph, GG, and the query graph, @, are defined as binary, unlabeled,
directed graphs.! We use V(G) to represent the vertices of the data graph, and analogously V(Q)
to represent the vertices of the query graph. We also define the following functions and operators
for any matrix M of real values:

1. find(M) which is a the non-zero entry selector function that returns two vectors, r and c,
where r contains the row indices and ¢ contains the column indices of all non-zero values of
the matrix M;

2. the | M| operator which binarizes the matrix M:

LMJ _ {1 mij#o

0 otherwise’

3. the NIM operator which returns the upper-triangular part of a square matrix, excluding the
diagonal:

= M s .
0 otherwise

1.2 MATRIX-BASED GRAPH TRAVERSAL

The data graph, G has N vertices. Its edges are represented by an N x N binary adjacency
matrix A, where each non-zero element a;; indicates the presence of an edge from vertex ¢ to vertex

L Support for vertex and edge labels are discussed in more detail in Section 3

J. Wy is defined to be a N x N walk matrix, where each element w;; indicates the number of paths
from vertex i to vertex j after k steps. Following these definitions, W can be computed using the

powers of the adjacency matrix,

and can be expressed recursively using

I k=20
Wi = . (2)
W1 A k>1

With I being equal to the identity matrix, each row, w;., in Wy represents an independent k-hop
breadth-first-search (BFS) traversal of the graph starting at vertex i. This formulation provides a
mechanism to explore the graph starting at multiple vertices simultaneously and performing this
exploration in a massively parallel fashion.

1.3 RELATED WORK

Because of mathematical rigor and inherent parallelism, there has been recent interest in
leveraging linear algebraic primitives to define and implement graph algorithms [5-12]. From the
perspective of exact pattern matching, however, most previous work has focused specifically on
triangular queries [8,10] or cycles [13]. This paper leverages this work as a starting point and
expands the linear algebra approach to define an end-to-end algorithm to support enumeration of
arbitrary subgraph queries.

Subgraph matching is a NP complete problem; therefore, various approaches utilize different
fundamental primitives in an attempt to address the inherent complexity. Many successful algorithms,
such as presented in [14-17], leverage tree-based backtracking techniques with different heuristic
methods to quickly prune the search space. These approaches have been demonstrated to work well
on a single, shared-memory processing system. However, since the tree search requires substantial
communication for traversal of the graph, which can be distributed across tens of thousands
of processors, these techniques have not been successfully implemented to analyze large-scale,
distributed datasets. There has been recent work to help address these challenges, such as [18,19].
Since the main focus of this paper is to define a linear algebra formulation, we will leave a more
rigorous comparison to how well these techniques compare to our approach for future work. However,
one of the benefits of the linear algebra primitive is the ability to leverage inherent matrix parallelism
to lower communication requirements for multi-path traversal.

An alternative approach for performing subgraph matching is utilizing a database join-based
primitive [20-22]. The query graph is treated similar to a standard database query and is decomposed
into multiple small subgraphs or subqueries. Based on an optimization strategy and an execution
plan, these components are individually enumerated to find partial matches, and are subsequently
joined in a specific order to find complete matches for the original query graph. The join order of
the components can have a considerable effect on the number of intermediate results, and therefore
has significant impact on the overall runtime of the algorithm. Because of the inherent similarity
between matrix multiplication and a database join operation, the approach presented in this paper

will be able to leverage many concepts introduced by the database community, including join-order
optimization and general query planning.

Pruning techniques, such as the ones presented in [23] generate a set of attribute and topological
constraints based on the requirements defined by the query graph. Then, utilizing these constraints
to pre-filter the original graph, they can potentially eliminate a substantial portion of the vertices,
thus, dramatically reducing the subgraph search space. These approaches are complimentary to
the work proposed in this paper since they can be implemented using a pre-processing and filtering
step which can be a prerequisite to any exact graph matching algorithm. Furthermore, since most
of these constraints (e.g., topological constraints) require explicit traversal of the graph, they can
potentially be accelerated using the same massively parallel traversal primitives presented in this

paper.

1.4 CONTRIBUTIONS

e Designed an end-to-end linear algebra representation and methodology for exact subgraph
matching by joining detected subgraph components

e Developed efficient and massively parallel walks on graph to detect subgraph components,
using matrix-matrix multiplies

e Integrated symmetry-breaking and revisit-detection techniques into the parallel walks to
remove invalid paths from consideration

e Demonstrate the advantages of the proposed subgraph component detection, over a range of
realistic graph topologies

This page intentionally left blank.

2. ALGORITHM DESCRIPTION

As illustrated in Figure 1, the algorithm is divided into two phases: planning and execution.
During the planning phase, the data and the query graphs are analyzed in order to identify the best
execution plan. Specific tasks include:

1. decomposition of the query into multiple smaller subgraphs, which we will refer to as compo-
nents,

2. proposal of the join order with which these partial matches are combined, and

3. analysis of symmetry and generation of symmetry-breaking constraint for all intermediate
steps.

@ Execution
Phase

@ a b (©)

Planning Forward Backward JComponent
Phase » Detection Enumeration Join

Figure 1. Algorithm overview.

Even though planning plays a critical role in subgraph matching algorithms, the work associated
with this phase is typically several orders of magnitude smaller than the actual execution. In this
paper, our main focus is to develop a linear algebra framework to accelerate the subgraph matching
execution while leveraging all relevant techniques utilized for traditional query planning and
optimization, similar to the ones proposed in [20-22,24]. Since these techniques are secondary to
our thesis, we will refer the reader to the references for further details.

The ezxecution phase is responsible for incrementally searching and joining components until
all of the subgraphs matching the query graph are found. The phase consists of three steps:

1. component detection : performs parallel walks to detect components and stores state necessary
to reconstruct enumeration for valid matches;

2. component enumeration : identifies and enumerates all of the vertices participating in the
component matches found in the detection step;

3. multi-component join : joins newly found components with enumerated partial matches from
previous iterations according to the execution plan.

Algorithm 1 Top-level Pseudocode

Output: R: enumerated result set
Input: Q: query graph, A: data graph adjacency matrix
R+
P + generateQueryPlan(Q, A)
for all p € P do
W < component Detection(p, A)
C < component Enumeration(W, A)
R < componentJoin(R,C)
end for

As illustrated by Algorithm 1, this procedure is repeated until the entire execution plan (i.e.,
all individual steps p) has been completed. Note, for the sake of clarity, we will assume that the
execution plan is implicitly available during all steps of the execution.

2.1 COMPONENT DETECTION

In order to avoid enumerating every partial match during the graph traversal, we propose to
utilize a matrix-based forward search for 2, 3 or 4-vertex components. As we will demonstrate in
Section 4, the number of enumerated paths for a single component can be significantly smaller than
the total number of explored paths, and thus, by performing an efficient look-ahead operation, we
can lower the overall cost of the subsequent enumeration step.

2-vertex 3-vertex 4-vertex
b

Figure 2. Example hop-sequences for components which can be traversed without a multi-component join.

Several components that can be detected using this matrix-based search are depicted in
Figure 2. For example, Algorithm 2 provides a specific implementation for a directed, 4-node
cycle query component illustrated in Figure 3. This example contains several key ideas, which are
introduced in the subsequent subsections, that can be leveraged to detect all 4-node components
except a 4-clique subgraph. This limitation is further addressed in Section 3.

Algorithm 2 Detection of directed 4-cycle component

Output: Wj: walk matrices
Input: A: data graph adjacency matrix; Wy: diagonal matrix with 1s indicating all of the starting

vertices
Wy =N(Wp - A)
Wy =N(W7 - A)

Waper = (|[Wa] - (Ao AT)) o W)
W3 =N(Ws - A) — Wapen
W4 = diag(Wg : A)

Query graph a) W, -+ A b) w,- A
b
/’ a b a b c
0= a \> . ®- >0 o‘—x;o— -0
d c) W, - A d) diag(W; * A)
o a b ¢ d a b ¢ d
Symmetry constraints: ° _ 50 @—>0—>0—>0
a<b, a<c, a<d %o v X, A

Figure 3. Visualization of the individual hops taken on the query graph @Q for Algorithm 2. Crossed out arrows
indicate invalid paths which can be traversed as part of each operation.

2.1.1 Basic Graph Traversal

Matrix multiplication of the walk matrices, W}, by the adjacency matrix or its transpose
allows the walk to progress forward and traverse all of the outgoing or incoming edges, respectively.
As such, Wy initializes the starting vertices for each parallel exploration and contains all of the
candidates for the query graph vertex a. This approach mirrors the rudimentary walk primitive
introduced Eq. 2. However, even though the basic matrix multiplication provides a way to perform a
massively parallel walk, by itself, it does not define a mechanism to filter or discriminate degenerate
or redundant paths. The ability to filter these paths early can potentially have significant impact on
the runtime performance, since traversing these paths requires both communication and processing
resources.

2.1.2 Cycle removal

As mentioned earlier, simple BFS walks, such as the ones described by Eq. 2, do not discriminate
between the paths that are taken. So, paths, such as cycles, are continuously traversed. For example,
given a graph that contains a simple 2-cycle subgraph, the traversal would continue to oscillate
between the two vertices in the cycle as k increased. Specifically in the case of subgraph matching,
this would indicate a degenerate path, since the vertices in the final subgraph must be unique and
non-repeating. As demonstrated in Algorithm 2, cycles that return back to the starting vertex
candidates are represented by the diagonal entries of the walk matrices and can be simply ignored
by removing these entries from each W} matrix. This function is achieved as part of the upper
triangular operation which is performed after each intermediate BEF'S hop.

Detecting and removing cycles rooted at the b candidates requires additional steps demonstrated
on line 3 of Algorithm 2. Intuitively, the algorithm takes a forward step on all of the bi-directional
edges starting at its ¢ candidates, W5, and masks out any path that did not reach a vertex which is
a potential b candidate, ;. This newly computed term, Wepe, provides the count of all 2-hop paths
which start at a b candidate, pass through a ¢ candidate and return back to the original b candidate.
By removing Wy, W3 accounts for all the the non-cyclical paths connecting the starting vertex
candidates a and any of their respective d candidates.

2.1.3 Symmetry-breaking constraints

Symmetric query graphs have multiple automorphisms, and therefore, generate a multitude
of redundant matches rotated around the symmetrical vertices. As explored in depth in [25], by
applying constraints that ensure symmetric vertex candidates can only be considered in a certain
order, the redundant matches can be ignored during the traversal. This concept is realized in
Algorithm 2 using the upper-triangular operator. Since ¢ and j matrix indices represent numerical
identifiers, they provide a total order between all of the graph vertices. In the provided example on
line 1 of Algorithm 2, the upper triangular operator enforces a less-than constraint between the
rows and the columns; therefore, it specifies a simple way of only considering paths where the index
of the starting vertex a is smaller than any of the considered candidates b. Applying this operator
after each BFS hop, realizes the constraints necessary to remove all such redundant matches for a
4-cycle component.

As discussed in more detail in Section 3, this concept can be extended to more complicated
query graphs constraints; however, it does require special consideration during the join and query
planning phases.

2.2 COMPONENT ENUMERATION

After completing the component detection phase, W} matrices contain the state necessary to
reconstruct all of the unique paths matching the component subgraph. Specifically, the procedure
begins at the last hop, Wi, which contains the count and end-vertices of all of the valid paths for
each independent frontier. First, it works backwards to remove any forward path in all W} matrices
that did not directly contribute to a detection in Wj_1. Subsequently, for each hop, it creates a list

of the remaining vertices and leverages this state to expand and enumerate every individual path.
Algorithm 3 and Algorithm 4 illustrate the pseudocode for the two-part reconstruction process for
4-cycle example presented in the previous section.

Algorithm 3 Component Enumeration (Part I): Backwards Filter and Expansion of Partial Paths

Output: rowy: association between partial paths from hop & to hop k + 1; col: id of participating
vertex for each partial path at hop &

Input: A: data graph adjacency matrix; Wy: walk matrices generated by the detection phase

: {rowg, colg} = find(Wk)

—_

2: f =rowg

3: for k + {K...1} do

4: E = kal(f, :) o A(:, COlk)
5: {rowi_1,coly_1} = find(E)
6: f = f(rowy_1)

7: end for

Algorithm 4 Component Enumeration (Part II): Forward Enumeration of Complete Paths

Output: C: P x |V(Q)| matrix, where P is the number of overall matches. Each column in the
matrix corresponds to a vertex of the query graph, and the values are the IDs of the vertices in
the data graph which match the corresponding query vertex

Input: rowy: association between partial paths from hop & to hop k + 1; colg: id of participating
vertex for each partial path at hop &

1. P= [COlo]

2: T =1rowy

3: for k + {1..K} do
4: P = [P, coly(r)]
5: if £ < K then
6: r = rowy(r)
7: end if

8: end for

A full example for both parts of the enumeration algorithms is presented in Figure 4. It’s
important to note since the backward filter and expansion algorithm only considers the matrix
Wi to inform the Wj_; expansion, it has the potential of generating invalid paths with repeating
vertices. These paths can easily be detected and filtered in the second part of the enumeration.

2.3 MULTI-COMPONENT JOIN

Up to this point, the presented algorithms considered detection and enumeration of small
components. In order to generalize this approach for support of arbitrary queries, multiple individual

a) enumeration example b) path visualization

Vv .
Y Query Vertices

a b C d a

Wo(0,)) W,(0.) W,(0,:) W3(0,:) W,(0,)

G= vVye+—e vy
V3

@
Vs Vo

>
Graph Vertices
NS

¢) backwards filter and partial path expansion

k=4 k=3 k=2 k=1 k=0
row,, col, rows; col; row, col, row, col, row,,col,
0: [0,V0] i: 0: [0, V2] — O [0: V}] 0: [0, Vz] - » 0 [0’ Vo]

[0, vz] —> =1, vi] [0, vi] —» 1:[1, v)

‘x: 2-'[11 V2] — 2 [2, Vg]
row value is the index of 3:[1, v]— 33, v)]
the entry in k+1

enumeration vector

d) forward path expansion

k=0 k:l :2 :3
{invalid) [VO] [VO' v2] [VO.! Vo, V}] [vO' Va Ve v2]
[vol Vo vd o va vl Vo va vi vl
[vEJ] [vﬂ: v2] [VO: Vo VI] [VO’ V21 Vi V3]
[Vg] [Vg, V4] [VO, VgyV 1] [VO! Vay V1, V3]

Figure 4. Complete enumeration example for all path starting at vo. (NOTE: Other paths ignored for illustration
purposes)

10

components can be joined together. As discussed earlier, the order and the component decomposition
is identified during the planning phase. Once individual components are successfully enumerated,
the join operation described in Algorithm 5 can be used to merge the results to realize the complete
subgraph enumeration.

Algorithm 5 Component Join

Output: Co: Po x N matrix, where Po is the number of overall matches after the join operation
Input: Cy4: P4 x N matrix, where P4 is the number of overall matches for component A. Cp:
Pp x N matrix, where Pp is the number of overall matches for component B.

1. s = identifySharedVertices(Cy,Cp)

2: Ja = buildJoinMatrixz(Ca, s)

3: Jp = buildJoinMatriz(Cg, s)

4: Jo = Ja* J} // matrix multiply (+,*) operators are overloaded for (+, ==)
5: k<0

6: for all Jo(i,j) == # of shared vertices do

7: Co(k,:) = join(s,Ca(i,:),Cp(J,:))

8: k=k+1

9: end for

As illustrated in Figure 5, the output of the enumeration step is first converted to a P x N
matrix where each row represents an individual match, each column indicates vertex participation in
the match, and the value provides a mapping between the vertex in the data graph and its associated
vertex in the original query subgraph. For example, for a four node component, such as Cy, each
row would have four non-zero values for each query vertex match. Then, in order to perform the join,
the algorithm first identifies the query vertices that are shared between two enumerated components
and filters the input matrices to only contain candidates for the shared vertices (query vertices b
and d in the provided example). The main objective of the join is to identify all the partial matches
from the two components that share the data graph vertices and combine these matches to form the
larger Q¢ component. This operation is equivalent to a traditional database natural join and can be
implemented using a simple matrix multiply. The matrix multiply provides a mathematical operation
for an all-to-all comparison, the results of which are then used to perform the actual individual
row-based joins for each resulting match. By replacing the traditional element-wise operator with
an equivalency check, the matrix multiply ensures that the order of vertices is preserved during
the match consideration. It is important to note that partial matches that are identified by the
preceding operation only consider shared vertices, and therefore, the individual row-join operation
may identify results which contain candidate vertices which are mapped to multiple query vertices.
Since these matches would be considered invalid by definition, they are filtered by the join operation.

11

a) join example

Component A Component B
b b b
a q>c X I> e —* a@' e
join
d d d
c ad d e c ade
d ac e d cead
Cy= Cy = —> Cc=
d c a e d dca e
Pysx N Pgx N Pcx N
\ J
Y Y
input output

b) join matrix construction

CA JA CB JB

¢ a@ ® d @e® d
@O ac|___» d O e — >

@c am O d e @ O d

c) individual row join

CA(I ’) CB(J ’) CC' (k: '.)
|:c ad]NI: de]—bl:c ade:|

Figure 5. Visualization of the join operations and steps described in Algorithm 5.

12

3. DISCUSSION

This section discusses the fundamental advantages of the massive parallel walks using the matrix
representation. It also provides thoughts and considerations that are relevant to the applicability of
the presented algorithms to the general subgraph matching problem.

3.1 EFFICIENT STATELESS REPRESENTATION OF POTENTIAL MATCHES

The approach described in Section 2 is designed to leverage the highly efficient representation
of walk matrices. Under this representation and using linear algebra operators, components are
detected in a massively parallel fashion without enumerating the partial paths being considered,
as typically done in subgraph matching using a tree representation. At each k step in the parallel
walks, the partial paths being considered are represented minimally as counts in the walk matrix
where each non-zero element Wy(i,j) represents the number of such partial paths starting from
vertex ¢ and ending at vertex j. Note that a single count in this representation is able to denote
multiple paths without enumerating them, increasing the efficiency even more.

This matrix-based representation is stateless in the sense that each walk matrix does not
store information on all the vertices previously visited by the partial paths, except the starting
vertex. However, the sequence of walk matrices, along with the adjacency matrix contain all the
necessary information for enumerating the paths at a later stage (see Section 2.2). As demonstrated
empirically in Section 4, most partial paths will not complete as detected components at the end of
the walk, so there is much advantage to enumerate only the small fraction of paths that complete.
This is the advantage under the stateless representation of walk matrices.

3.2 COMPONENT SIZE CONSIDERATIONS

The empirical results described in Section 4.2 suggest that a 3-hop walk to detect 4-vertex
components provides a practical trade-off between component size and the density of the intermediate
walk matrices. Nonetheless, an interesting consideration is whether the detection algorithm can be
extended indefinitely to detect larger components. The simple answer is that the current approach
is limited to only detecting 3-hop paths. The limitation stems from its greatest benefit which is the
fact that it is stateless. W matrices aggregate path information, which means that compensation
terms, such Wy in Algorithm 2, to remove all cycles need to be computed in order to continue
the detection. Thus, for a 5-node component, terms Wapcda, Wapeds and Wpeqe are required. Since
there is only one candidate G vertex for the a query vertex per frontier (i.e., a row of W), removing
all of the diagonal entries would compensate for the Wypeq, cycles. Similar to Wpep, Wapede can be
computed using

Wabede = ([W3] - (Ao AT)) o Wa. (3)

However, in order to compute Wyp.qp, the algorithm has to be able to determine which b
candidates in W contributed to which d candidate in W3. Because of the intrinsic aggregation of the

13

matrix multiplication, this information cannot be recovered from the walk matrices without explicitly
enumerating the individual paths. We could introduce compensation terms that leverage multi-hop
association matrices, which can be computed through powers of the adjacency matrix, to help
identify these relationships. However, as the walk length increases, the density of the compensation
matrices will increase, ultimately making storage and computation of these terms intractable.

3.3 HOP-SEQUENCE ORDER

The component detection process requires that the traversal consists of a continuous, uninter-
rupted walk starting at the candidates for the initial query vertex and ending at the candidates
for the final vertex. Each matrix multiply by the adjacency matrix, A, represents an edge traversal
from the previously discovered candidates to identify potential new candidates for the next vertex
in the query. In the example illustrated in Algorithm 2, we can set Wy to the identity matrix, which
would mean that all vertices of the data graph are potential candidates for being a match for the
query vertex a. Through matrix multiplication, we can, in parallel, traverse the edges connected to
each of these vertices to discover potential candidates for the b vertex. Consequently, by extending
this 1-hop-based process, we can identify candidates for all of the vertices in the query.

As discussed in Section 3.2, any edge that connects candidates between multiple hops would
require multi-hop association matrices. However, by making the observation that there is never
an ambiguity for which a candidate contributed to which ¢ candidates, since there is only one a
candidate considered by each parallel frontier, the adjacency matrix captures all of the required
state to identify these edges. Thus, by simply changing the traversal order to allow 2-hop association
edges to only connect to the a candidate, this approach can be applied to find all, but one, 4-node
components. Figure 6 demonstrates several potential hop sequences that cannot be supported using
a single walk. Specifically, each of these hop-sequences requires information that disambiguates
which b candidate contributed to which d candidate. Other than the 4-clique subgraph, all other
components can be detected through simple adjustment of the hop sequence order, as illustrated
previously in Figure 2.

4-vertex components
b b b
b
a/1> c /\I> VAN
d d d

Figure 6. Example of hop-sequence that can be supported only with a multi-component join.

14

No hop-sequence combination can remove the discussed ambiguity from a 4-clique subgraph;
therefore, it is not a detectable component. It is important to note that it does not prevent a clique
from being a supported query graph, since it can be easily decomposed into any number of supported
components which can be joined to find any arbitrary subgraph.

3.4 UTILIZING STATE FROM MULTIPLE COMPONENTS

Component joins mitigate the limitation on the size and complexity of the component detectable
using the matrix-based parallel walks, but treating each component detection independently may
cause redundant explorations, because it is not fruitful to search for later components where earlier
components already failed to match. This can be mitigated by seeding the parallel walks for detecting
later components with only the starting vertices that have already matched in earlier components.
In this way, as more of the subgraph components have been detected and joined, fewer starting
vertices will be considered for later component detection, focusing the search only on parts of the
graph with potential complete matches.

3.5 LEVERAGING ATTRIBUTES

A general challenge for subgraph matching is the overwhelming number of potential matches,
especially early in the process when the matched parts are not very unique. Our approach is not
immune to this fundamental challenge either. Other than speeding up the component detection with
efficient massive parallel walks, our approach can be further enhanced with the availability of vertex
and edge attributes. Matching with graph attributes can eliminate a large fraction of potential
matches by filtering with attribute constraints to reduce the qualifying edges and nodes at each
step of the parallel walk.

3.6 SYMMETRY-BREAKING FOR LARGER QUERY GRAPHS

Applying symmetry-breaking constraints is an effective technique for detecting redundant
matches. Several important considerations have to be taken into account in order to leverage these
ideas for a subgraph matching methodology which decomposes the query graph into smaller partial
subqueries. First, the individual subqueries can be symmetric. This property can be identified
during the planning phase, and thus, specialized constraints can be generated and applied in the
intermediate matching steps in order to minimize the storage and computation requirements for
the partial results. At the same time, during the join phase, all rotations would still need to be
considered and expanded in order to verify the existence of any valid join opportunities between the
component and any other partial match.

Second, similar to component path exploration discussed in Section 3.3, applying multi-hop
constraints requires specialized planning and query decomposition. As demonstrated in Algorithm 2,
during the detection phase, applying the upper-triangular operator to the walk matrices, Wy, after
each hop allows a simple way to apply constraints that involve the a candidate for each component.

15

Applying constraints involving other vertices may be achieved during or after any completed join
operation on fully-enumerated partial matches.

16

4. EVALUATION

The primary workhorse of the proposed graph matching approach is the linear-algebra-based
component detection using massively parallel walks. This section evaluates and demonstrates the
advantages of the proposed algorithm to efficiently detect component matches without enumerating
partial matches, over a range of realistic graph topologies via simulation. Quantitative evaluation is
performed to reveal the computational and storage requirements as well as savings on the densest
walk matrix (i.e., W3 in Algorithm 2) which dominates the requirements. Specifically, statistics are
reported on: 1) the number of partial products which correspond to the number of edge traversals to
extend partial paths in the parallel walk, 2) the density of the densest walk matrix, 3) the fraction
of partial paths completed as detected components, and 4) the scale of compression by representing
partials paths as counts in the walk matrix.

4.1 SIMULATING REALISTIC GRAPH TOPOLOGIES

We use the degree-corrected stochastic blockmodel [26] with an additional density parameter
[27] to simulate networks across a range of realistic topological characteristics: 1) network density, 2)
Power-Law degree distribution, and 3) strength of community structure. For rapid exploration over
the graph topological features, evaluation is done on small data graphs of N = 1000 vertices. We
will scale up in the identified topological regime of interest as future work. The query component
used for this evaluation is the directed 4-cycle, with the exact detection steps shown in Algorithm 2.

Under this generative model, each edge, a;;, is drawn from a Poisson distribution of rate \;;
governed by the equations below:

Qg5 ~ POiSSOI’l()\ij) (4)
>\ij = Iij X (919] X Qbibj (5)

Each edge a;; represents the count or strength of interaction, which is binarized to render the
data graph for subgraph matching. The edge switch I;; ~ Bernoulli(s) is parameterized by s which
controls the overall density of the network. Note, however, that the density parameter s is not the
realized graph density (i.e., edge count divided by N?) which is affected also by the other parameters.
The vertex degree term 6; adjusts node i’s expected degree, drawn from a Power-Law distribution
with an exponent a between —3 and —2 to capture the degree distribution of realistic, scale-free
graphs [28]. The strength of community structure is governed by the block matrix {2 where strong
communities are formed when the diagonal elements (i.e., within-community strength) are much
larger than the off-diagonal elements (i.e., between-community strength). The community (i.e.,
block) assignment for each node b; is drawn from a multinomial distribution with equal probabilities.
The probabilities of community assignment can be drawn from a Dirichlet distribution for varying
levels of community size heterogeneity, for future evaluations. These parameters serve as “knobs”
that can be dialed to capture a rich range of realistic network topologies. Figure 7 shows an example
data graph generated with the baseline parameter setting: density parameter s = 0.3, Power-Law

17

exponent &« = —0.3, and 5 times more within-community edges than between-community edges. For
each parameter setting, results are reported on 10 realizations of data graphs for statistical support
(i.e., standard deviation bars in Figure 8 through 16).

Figure 7. Baseline simulated data graph for evaluation, with density parameter s = 0.3, Power-Law exponent
a = —0.3, and 5 times more within-community edges than between-community edges.

4.2 EVALUATION OVER GRAPH DENSITY

We first evaluate the behaviors of the proposed detection algorithm over varying levels of data
graph density, for a directed 4-cycle component (see Algorithm 2). As captured by the subsequent
figures, we demonstrate the rate with which the density and computational requirement increase for
the realization of the densest walk matrix. The resulting statistics highlight the key advantages of
the algorithm to efficiently detect component matches without enumerating partial results.

18

10000 4
70000 A

8000 - 60000 -

6000 -

of edges
of matches

g 58 2

o o o

o o o

o o o

4000
20000 A

10000 4
2000 -

011 OTZ 0j3 Oj4 0:5 0:6 Of7 011 OTZ 0j3 Oj4 0:5 0:6 Of7
density parameter density parameter

(a) (b)

Figure 8. Growth on the number of edges and matches as the density parameter increases.

Figure 8a shows the linear growth on the number of edges as the density parameter increases.
Not surprisingly, the number of matches for the 4-cycle component grows exponentially as the
dense regions produce a large number of matches, shown in Figure 8b. This exponential growth
in matches also results in much higher numbers of partial products required for computing the
walk matrices and their density, as shown in Figure 9a and 9b for the densest walk matrix (i.e.,
W35 in Algorithm 2). This increased computational and storage demand makes it difficult for any
matching algorithm to scale up for large data graphs. We will focus our evaluation going forward at
the graph density produced by density parameter s = 0.3 in this simulation. Note that for scaling
up evaluation on larger graphs, this density parameter will be adjusted for a graph of N vertices to
grow on the order of N log N in the number of edges, commonly known as the edge growth rate for
the graph to remain connected [29].

o
N
o

800000 -

o
N
o

600000 -

=}
=
v

400000 -

=]
=
o

200000 -

of partial products

o
o
S

density of densest walk matrix

01 02 03 04 05 0.6 07 01 02 03 0.4 05 06 0.7
density parameter density parameter

(a) (b)

Figure 9. Number of partial products and density of the densest walk matrix as the graph gets denser.

19

A key advantage of our proposed component detection algorithm using stateless walk matrices
is that it avoids enumerating partial paths, unlike conventional tree-based matching algorithms.
Paths are enumerated later only on completed matches. Figure 10a shows the significance of this
saving, as only a small fraction of partial paths at the densest walk matrix (i.e., W3 in Algorithm 2)
are completed. At the operating graph density of s = 0.3, our algorithm avoids enumeration of
about 97% of partial paths that do not complete a 4-cycle. Another significant advantage is the
compression of multiple paths sharing the same source and destination in the walk matrices as a
single count, as discussed in Section 3.1. Figure 10b shows the scale of compression (i.e., average
number of paths compressed in a single count) at the densest walk matrix (i.e., W3), which is around
x 1.6 at the operating graph density of s = 0.3.

4.5

o

=3

©
L

4.0 1

o

o

N
L

3.59

o

=3

=y
L

3.01

o

=}

o
L

2.54

o

o

=
L

2.01

o

=

@
L

o

=}

N}
N

151

fraction of paths completed

=]

o

=t
s

1.01

011 0t2 Oj3 0j4 OjS 0j6 0j7
density parameter

Ojl 0;2 0j3 0j4 0;5 016 0j7
density parameter

(a) (b)

compression at densest walk matrix

Figure 10. Fraction of partial paths completed and the compression scale at the densest walk matriz as the
density parameter increases.

4.3 EVALUATION OVER VERTEX DEGREE DISTRIBUTION

Another important graph topological feature to vary is the number of high degree nodes,
accomplished by varying the Power-Law exponent « from the realistic range of —3 to —2 [28]. With
a higher exponent, the degree distribution decays slower, resulting in more high degree nodes. For
meaningful comparison, the average number of edges (i.e., graph density) is fixed, as shown in
Figure 11a. Nevertheless, due to the increased variance in the heavy tail degree distribution at
higher «, there is more variations in the number of edges. Overall, Figure 11b shows a graceful,
non-exponential, increase in the number of matches from more concentrated edges around the super
vertices.

20

6000 -
12000 4

5500 A
10000 4

8000 - y

4000 A 6000

of edges
g g
of matches

3500 A 4000 -

3000 A

2000 -

2500

-30 28 26 24 22 -30 ~238 —26 —24 22
Power-Law parameter Power-Law parameter

(a) (b)

Figure 11. The number of edges and component matches as the Power-Law exponent increases to have more
high degree vertices.

The computational and storage demand also increases gracefully, as shown in Figure 12a
and 12b. At the highest exponent, the growth actually slows down due to the increased compression
scale shown in Figure 13b. This effect is not surprising, because more higher degree nodes will
generate more paths that share the same sources and destinations, and they are compressed as
counts in the walk matrices representation. Lastly, Figure 13a shows the completion rate of partial
paths remains quite low around 3.4%, demonstrating again the advantage of the proposed component
detection algorithm. For evaluation on graph density and strength of community structure, we use
the baseline value of @« = —2.5 on the Power-Law exponent.

300000 0124

250000 0.104

200000 q
0.08

150000
0.06

of partial products

100000 -
0.04

50000 q

density of densest walk matrix

-30 —28 ~26 —24 —2.2 -3.0 -28 —26 —24 —22
Power-Law parameter Power-Law parameter

(a) (b)

Figure 12. Number of partial products and density of the densest walk matriz as the Power-Law exponent
increases to have more high degree vertices.

21

2.64

0.0450

2.4+

2.24

2.01

1.8

1.6

1.4

-3.0 —238 -26 —2.4 22
Power-Law parameter

—3I.O —2‘.8 —2‘.6 —2‘.4 —2‘.2
Power-Law parameter

(a) (b)

fraction of paths completed
compression at densest walk matrix

Figure 13. Fraction of partial paths completed and the compression scale at the densest walk matriz as the
Power-Law exponent increases to have more high degree vertices.

4.4 EVALUATION OVER STRENGTH OF COMMUNITY STRUCTURE

Community structure is another important characteristics in real-world graphs, as vertices
from the same communities interact more strongly with one another than those between different
communities. Here we evaluate the effects of the community structure on the behaviors of the
component detection algorithm. The strength of the community structure is increased gradually,
parameterized by the ratio of within-community edges to between-community edges. For meaningful
comparison, the average number of edges (i.e., graph density) is fixed, as shown in Figure 14a. The
number of matches in Figure 14b has a gradual but statistically insignificant increase, likely due to
more cycles being formed with more concentrated edges within communities.

3500 -
4400

4200 1 3000 1

of edges

of matches

N
o
S
o

15001

2 3 4 s & 71 8 9 10 2 3 4 s & 71 8 9 10
community strength parameter community strength parameter

(a) (b)

Figure 14. The number of edges and component matches as the strength of community structure increases.

22

Figure 15a and 15b show decreased computational and storage requirement on the walk
matrices with stronger community structure, from a lower number of partial paths being generated
and slightly higher compression scale as shown in Figure 16b. With stronger community structure,
the paths being considered tend to be contained within-communities, resulting in fewer and more
concentrated partial paths. These more concentrated partial paths also have a higher completion
rate, with stronger community structure, as shown in Figure 16a. The completion rate remaining
below 5% (see Figure 16a), together with a compression scale at around 1.65, demonstrate the
advantages of the proposed component detection algorithm.

X
—
130000 - 4‘-0‘ 0.07 4
) 120000 A €
g 2 006
S 110000 A o
<) 2
S 100000 A .:;J’
© 90000 @ 0051
B c
© 80000 g
Q o 0041
%5 700001 o
60000 { Fry
&% 0.03
50000 A QC) :
2 3 4 5 6 7 8 9 10 o° 2 3 4 5 6 7 8 9 10
community strength parameter community strength parameter

(a) (b)

Figure 15. Number of partial products and density of the densest walk matriz as the strength of community
structure tncreases.

1.84

o o o
=3 =3 =)
= B @
o e o

1.7

0.030 A 167

1.5

o o
o o
] N
o o

2 3 4 5 & 71 8 9 10
community strength parameter

2 3 4 s 6 7 8 9 10
community strength parameter

(a) (b)

fraction of paths completed
e
compression at densest walk matrix

Figure 16. Fraction of partial paths completed and the compression scale at the densest walk matriz as the
strength of community structure increases.

23

This page intentionally left blank.

5. SUMMARY

In this paper, we introduce and motivate a new, multi-stage subgraph matching algorithm
that leverages matrix-based graph traversal for identifying matches. This formulation provides a
stateless discovery mechanism to explore the graph starting at multiple vertices simultaneously and
performing this exploration in a massively parallel fashion. We present a preliminary analysis of the
approach and demonstrate key advantages of the proposed formulation. In the future, we will be
looking to map the algorithm onto different state-of-the-art linear algebra accelerator technologies,
as well as extend the analysis and evaluation to much larger graph datasets.

25

This page intentionally left blank.

1]

[10]

[11]

REFERENCES

S.A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the Third
Annual ACM Symposium on Theory of Computing, New York, NY, USA: ACM (1971), STOC
71, pp- 151-158, URL http://doi.acm.org/10.1145/800157.805047.

T. Davis, “Algorithm 9xx: Suitesparse: Graphblas: graph algorithms in the language of sparse
linear algebra,” ACM Trans. on Mathematical Software (2019).

A. Bulug and J.R. Gilbert, “The combinatorial blas: Design, implementation, and applications,”
Int. J. High Perform. Comput. Appl. 25(4), 496-509 (2011), URL http://dx.doi.org/10.
1177/1094342011403516.

W.S. Song, V. Gleyzer, A. Lomakin, and J. Kepner, “Novel graph processor architecture,
prototype system, and results,” in 2016 IEEE High Performance Extreme Computing Conference
(HPEC), IEEE (2016), pp. 1-7.

J. Kepner and J. Gilbert, Graph algorithms in the language of linear algebra, vol. 22, STAM
(2011).

J. Kepner, P. Aaltonen, D. Bader, A. Bulug, F. Franchetti, J. Gilbert, D. Hutchison, M. Kumar,
A. Lumsdaine, H. Meyerhenke, S. McMillan, C. Yang, J.D. Owens, M. Zalewski, T. Mattson,
and J. Moreira, “Mathematical foundations of the graphblas,” in 2016 IEEE High Performance
Eztreme Computing Conference (HPEC) (2016), pp. 1-9.

A. Azad and A. Bulug, “Distributed-memory algorithms for maximal cardinality matching
using matrix algebra,” in 2015 IEEFE International Conference on Cluster Computing (2015),
pp. 398-407.

A. Azad, A. Bulug, and J. Gilbert, “Parallel triangle counting and enumeration using matrix
algebra,” in 2015 IEEFE International Parallel and Distributed Processing Symposium Workshop
(2015), pp. 804-811.

T.M. Low, D.G. Spampinato, A. Kutuluru, U. Sridhar, D.T. Popovici, F. Franchetti, and
S. McMillan, “Linear algebraic formulation of edge-centric k-truss algorithms with adjacency
matrices,” in 2018 IEEE High Performance extreme Computing Conference (HPEC) (2018),

pp. 1-7.
M.M. Wolf, M. Deveci, J.W. Berry, S.D. Hammond, and S. Rajamanickam, “Fast linear

algebra-based triangle counting with kokkoskernels,” in 2017 IEEE High Performance Extreme
Computing Conference (HPEC) (2017), pp. 1-7.

T. Mattson, T.A. Davis, M. Kumar, A. Buluc, S. McMillan, J. Moreira, and C. Yang, “Lagraph:
A community effort to collect graph algorithms built on top of the graphblas,” in 2019 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), IEEE
(2019), pp. 276-284.

27

http://doi.acm.org/10.1145/800157.805047
http://dx.doi.org/10.1177/1094342011403516
http://dx.doi.org/10.1177/1094342011403516

[12]

[13]
[14]

[15]

[16]

F. Jamour, I. Abdelaziz, Y. Chen, and P. Kalnis, “Matrix algebra framework for portable,
scalable and efficient query engines for rdf graphs,” in EuroSys (2019).

G. Sundaram and S.S. Skiena, “Recognizing small subgraphs,” Networks 25(4), 183-191 (1995).

J. Ullmann, “An algorithm for subgraph isomorphism,” Journal of the ACM (JACM) 23, 31-42
(1976).

L.P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph isomorphism algorithm
for matching large graphs,” IEEE Transactions on Pattern Analysis and Machine Intelligence
26(10), 1367-1372 (2004).

’

H. He and A. Singh, “Graphs-at-a-time: Query language and access methods for graph databases,’
in Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2018 (2008), pp. 405-418.

I. Almasri, X. Gao, and N. Fedoroff, “Quick mining of isomorphic exact large patterns from
large graphs,” IEEFE International Conference on Data Mining Workshops, ICDMW 2015,
517-524 (2015).

X. Ren, J. Wang, W.S. Han, and J.X. Yu, “Fast and robust distributed subgraph enumeration,”
Proc. VLDB Endow. 12(11), 1344-1356 (2019), URL https://doi.org/10.14778/3342263.
3342272.

V. Carletti, P. Foggia, P. Ritrovato, M. Vento, and V. Vigilante, “A parallel algorithm for
subgraph isomorphism,” in D. Conte, J.Y. Ramel, and P. Foggia (eds.), Graph-Based Represen-
tations in Pattern Recognition, Cham: Springer International Publishing (2019), pp. 141-151.

L. Lai, L. Qin, X. Lin, and L. Chang, “Scalable subgraph enumeration in mapreduce,” Proceed-
ings of the VLDB Endowment 8(10), 974-985 (2015).

L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang, “Scalable distributed subgraph
enumeration,” Proceedings of the VLDB Endowment 10(3), 217-228 (2016).

K. Ammar, F. McSherry, S. Salihoglu, and M. Joglekar, “Distributed evaluation of subgraph
queries using worst-case optimal low-memory dataflows,” Proceedings of the VLDB Endowment
11(6), 691-704 (2018).

T. Reza, M. Ripeanu, N. Tripoul, G. Sanders, and R. Pearce, “Prunejuice: Pruning trillion-edge
graphs to a precise pattern-matching solution,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis, Piscataway, NJ, USA:
IEEE Press (2018), SC ’18, pp. 21:1-21:17, URL https://doi.org/10.1109/SC.2018.00024.

M. Jarke and J. Koch, “Query optimization in database systems,” ACM Computing surveys
(CsUR) 16(2), 111-152 (1984).

J.A. Grochow and M. Kellis, “Network motif discovery using subgraph enumeration and
symmetry-breaking,” in RECOMB (2007).

28

https://doi.org/10.14778/3342263.3342272
https://doi.org/10.14778/3342263.3342272
https://doi.org/10.1109/SC.2018.00024

[26] B. Karrer and M.E. Newman, “Stochastic blockmodels and community structure in networks,”

Physical Rev. E 83(1), 016107 (2011).

[27] E.K. Kao, S.T. Smith, and E.M. Airoldi, “Hybrid mixed-membership blockmodel for inference
on realistic network interactions,” IEFE Transactions on Network Science and Engineering

(2018).
[28] A.L. Barabési, “Scale-free networks: a decade and beyond,” science 325(5939), 412-413 (2009).

[29] P. Erdés and A. Rényi, “On the evolution of random graphs,” Publ. Math. Inst. Hung. Acad.
Sei 5(1), 17-60 (1960).

29

This page intentionally left blank.

30

	Title
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	Introduction
	Notation
	Matrix-Based Graph Traversal
	Related Work
	Contributions

	Algorithm Description
	Component Detection
	Component Enumeration
	Multi-Component Join

	Discussion
	Efficient Stateless Representation of Potential Matches
	Component Size Considerations
	Hop-Sequence Order
	Utilizing State from Multiple Components
	Leveraging Attributes
	Symmetry-Breaking for Larger Query Graphs

	Evaluation
	Simulating Realistic Graph Topologies
	Evaluation over Graph Density
	Evaluation over Vertex Degree Distribution
	Evaluation over Strength of Community Structure

	Summary
	References

