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ABSTRACT

Three important factors that influence user trust in automation and machine learning (ML) 
algorithm are good performance, interpretability—the ability for users to understand how the 
automation reaches its recommendation—and adaptability—the ability for the automation to learn 
from new data and user feedback. This report describes work conducted under the Adaptable 
Interpretable Machine Learning (AIM) program, whose goal is to create ML algorithms that users 
can understand and that keep learning so users will trust them and actually use them.

This report derives Recursive Bayesian Rule Lists (RBRL), a group of supervised-classification 
algorithms that are both interpretable and adaptable. RBRL is based on Bayesian Rule Lists 
(BRL), which are interpretable decision-list classifiers that perform competitively with state-of-the-
art, non-interpretable classifiers on many problems, and on an analogy between classifier adaptation 
and recursive Bayesian tracking (RBT).

RBRL has several appealing properties. First, it can accept user feedback on the feature 
combinations that were important to a user, rather than only accept feedback in the form of cor-
rected labels. Second, RBRL uses an efficient adaptation procedure that only involves the new 
data and user feedback; it does not require accumulating all past data and feedback. Adaptation is 
non-iterative and highly parallelizable, so it can be thousands or millions of times faster than the 
Markov Chain Monte Carlo sampling that would be required to retrain BRL from scratch. Third, 
RBRL can include an explicit model for dataset shift to account for a changing environment or 
differences between the training and testing data and the data encountered in actual use. Fourth, 
RBRL can accept noisy truth labels from multiple users, provided that the users’ truthing-error dis-
tributions can be characterized. Together, these properties make RBRL well-suited for interactive 
machine learning.

Two algorithmic forms of RBRL are presented: grid-based RBRL and particle-filter RBRL. 
Grid-based RBRL is optimal in theory but might be impractical to realize in practice. However, 
it includes the special case in which dataset shift does not occur and more data is continuously 
acquired; static-case RBRL provides an efficient algorithm for this situation. Particle-filter RBRL 
includes a generic algorithm, for which the optimal importance distribution is theoretically available 
but might be practically infeasible. The sampling importance resampling RBRL algorithm offers 
an efficient, suboptimal alternative.

The derivation of the RBT analogy and the descriptions of the different algorithms lay the 
foundation for RBRL implementations and experiments planned for the next year of the AIM 
program.
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1. INTRODUCTION

Trust is a key component in whether or not an automation capability will be accepted by
users. If users lose trust in automation, they quickly abandon it or only use it begrudgingly [1].
This behavior can be succinctly expressed as: “No trust, no use” [2].

Several different factors influence trust, including a user’s natural propensity to accept or
reject automation; the user’s level of attention, stress or fatigue; the automation’s performance;
agreement between the user’s mental model and automation’s behavior; the interface through which
the user and automation interact, if at all; and the purpose of the automation and context in which
it is used [3] [2]. Three important factors, which are emphasized in this work, are:

1. Providing an acceptably small level of errors or mistakes;

2. Providing the user with an understanding of how the automation works or providing a ratio-
nale for its recommendation;

3. Providing cues to the user and/or accepting feedback from the user to modify the automation’s
behavior or performance.

Machine learning (ML) is a class of algorithms that have become ubiquitous in automa-tion, 
autonomy, and decision-support systems. ML is often a critical component of automation—some 
might say that it is the critical component because it is the component that chooses the 
recommendation—so the factors that affect trust in automation apply to trust in ML as well.

ML is used for myriad purposes, such as self-driving vehicles, screening of applicants for jobs 
or college admissions, estimating a person’s risk of recidivism, recommending medical treatments 
or predicting outcomes, recognizing speech, faces, or vehicles, identifying potentially dangerous 
cargo or individuals, detecting cyberintrusion, processing medical images, and selecting targeted 
advertisements. There also exists a wide variety of ML algorithms, such as supervised classifi-
cation, clustering or unsupervised classification, estimation or regression, ranking, dimensionality 
reduction, and reinforcement learning. Typically, the users, domain experts, and consumers who 
use automation or are affected by it have little or no knowledge of ML. If they do not trust it, it is 
unlikely that they will adopt or embrace it.

This work is part of the Adaptable Interpretable Machine Learning (AIM) project, which is 
part of MIT Lincoln Laboratory’s Line-Supported Information, Computation, and Exploitation 
Program. The large number of factors that affect trust in automation and the large number of ML 
algorithms mean it is impossible to address them all in this work. AIM focuses on the three factors 
enumerated above. AIM’s goal is to create ML algorithms that users can understand and 
that keep learning so users will trust them and actually use them.

This report concentrates on supervised classification (Sec. 2.1). In supervised classification, 
each data sample contains a set of feature values, and it is assumed to belong to exactly one of a finite 
number of predefined classes. Training is the process of learning a mapping between the feature 
values and the classes from a training data set. The learned mapping is the trained classifier.
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When a new, unlabeled sample of features is presented, the mapping is applied to predict the class 
or label for the sample. Testing is the process of assessing the predictive accuracy of the trained 
classifier; it is conducted with a test data set that was excluded during training.

We are interested in developing classifiers that provide a high degree of predictive accuracy 
while also being both interpretable and adaptable. By “interpretable,” we mean that a human 
can understand how the classifier makes its predictions, and by “adaptable,” we mean that the 
algorithm is able to learn from new data and user feedback. We choose this focus because these 
factors are important to user trust, because supervised classification is one of the most prevalent 
forms of ML, and because the vast majority of top-performing supervised classification algorithms 
are neither interpretable nor adaptable.

1.1 INTERPRETABILITY

Before discussing interpretability further, we mention some matters related to a lack of in-
terpretability. Most ML algorithms are black-box algorithms, which just return a predicted label 
or number. They are non-interpretable because there is no way for a user to understand how an 
erroneous—or correct—prediction was determined. Examples include support vector machines and 
neural networks, which are known for achieving high predictive accuracy but in a way that is very 
difficult to comprehend [4]. The interpretability of näıve Bayes and logistic regression is debatable.1 

Ensemble methods, which use a battery of classifiers and include boosting, bootstrap aggregating or 
bagging, and Random ForestsTM, can also be difficult to interpret [5], even if each individual classifier 
is interpretable.

With black-box algorithms, one can obtain an answer, but one does not receive an explanation. 
Regarding insight and understanding, this situation corresponds to “giving a man a fish” rather 
than “teaching a man to catch a fish.”2 This deficiency can lead to faulty reasoning and cause a 
conflict between the user’s mental model of how he or she thinks an algorithm operates and how it 
actually operates.

Even an ideal ML algorithm will make mistakes, yet ML experts and practitioners often 
cannot explain how an algorithm makes its predictions or how it will respond to different inputs. 
Unexpected, unexplainable behavior from a black-box algorithm can rapidly erode trust. Moreover, 
it is usually not feasible to test the response of a black-box algorithm to all possible inputs, which 
can raise concerns about its reliability during ordinary operation or its susceptibility to malicious 
or adversarial exploits.

In contrast, an algorithm is interpretable if a human user can understand how it arrives at its 
recommendations. Such algorithms are sometimes called transparent-box or white-box algorithms 
to contrast them with black-box algorithms. Freitas [4] makes a number of excellent arguments

1 Näıve Bayes uses a sum of log-likelihood functions, and logistic regression computes an inner product and passes it
through an S-shaped nonlinearity to approximate a probability. Some users are comfortable with the linear component
of these algorithms, but the log-likelihood and nonlinear components can lead to confusion and misunderstanding.

2 One form of this proverb is: “Give a man a fish and you feed him for a day; teach a man to fish and you feed
him for a lifetime.”
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in favor of interpretable classification, and we discuss some important aspects of interpretability
below.

Justification Interpretability might be preferred or required, particularly in cases where the con-
sequences of prediction— whether correct or incorrect— are significant. It can be necessary
to explain a medical recommendation; to protect against legal repercussions like claims of bias
or discrimination; to justify law-enforcement actions like detainment, search, and seizure; to
fulfill policy requirements of accountability or transparency; and to explain a decision to use
force, including lethal force [6] [7].

Performance There is sometimes a misconception that interpretability necessarily causes a re-
duction in model expressiveness or predictive accuracy.3 However, a less-complicated model
is less prone to overfitting than a more-complicated one, and interpretability can have a re-
gularizing effect. For many problems, simple models perform well [8], a multitude of equally
good models exists, and an interpretable algorithm is frequently among them [9]. In other
words, interpretability is often free.

Availability Some ML packages offer interpretable classifiers. These classifiers should be included
during training and testing, in which multiple algorithms are evaluated against the same data
and then down-selected. In this way, one can find out if interpretability comes for free, and
if not, one can decide if a small reduction in performance is offset by the additional benefit
of interpretability.

Vetting An interpretable algorithm can be compared against the experience and expertise of
domain experts. This property can minimize or eliminate mismatch between the algorithm
and a user’s mental model of it. Even if the application will not involve having a user check the
algorithm’s prediction, interpretability can increase confidence in the vetting process before
the algorithm is deployed operationally.

Insight An interpretable algorithm can allow users, domain experts, and researchers to gain new
insight, such as identifying important features or relationships between features that should
be investigated further. In this way, interpretability can be viewed as “teaching a man to
catch a fish,” rather than just “giving a man a fish.” It can also reveal biases that might
otherwise remain hidden within a black-box algorithm.

Training Because an interpretable algorithm can be understood by humans, it can be used to
teach novices so that they improve their proficiency rather than becoming reliant on a device
to tell them what to do. In a similar way, it can prevent skill atrophy because users can
review the algorithm to reinforce their understanding of how it works.

Behavior It is often possible to examine an interpretable algorithm and determine exactly how
it will respond to any combination of features; hence, there will not be any surprises about

3 This mistaken belief might occur because many ML packages rely on greedy algorithms to train decision trees,
a well-known type of interpretable classifier. These algorithms are prone to becoming trapped near a local optimum,
so the trained decision tree can perform worse than other classifiers.
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how it will behave in all situations. Resources need not be diverted to improving it in areas
where it is already strong. Knowledge of its weaknesses can indicate where additional data
or more discriminative features are required, and one can develop procedures or protocols to
protect against gaming the system.

Human calculation Users such as clinicians, first responders, and soldiers are already trained
to follow prescribed procedures in certain situations. Examples include the CHADS2 score
for predicting stroke risk [10] and the flowchart for triaging individuals in a mass-casualty
situation [11]. These procedures are often hand-crafted by humans rather than driven by data.
An interpretable algorithm can use data to generate a simple, compact procedure that users
can follow and that achieves greater performance than the hand-crafted approach [12] [13]. In
other words, the procedure can be learned by a machine, but it will be calculated or carried
out by a human.

These machine-learned, human-calculated algorithms can be deployed in cases where machine-
calculated algorithms cannot. The resulting procedure can be memorized during training or
printed on a card [14]. Such interpretable procedures can be used in austere, field-forward
situations without requiring the additional bulk and weight of a computer, electronic device,
or battery, and they can be performed without diverting the user’s attention to a screen
or other interface. Finally, these procedures do not risk electronic detection, either due to
inadvertent RF emissions or connection to a communications network.

1.2 ADAPTABILITY

One of the fundamental assumptions in ML is that one has a set of training and testing data
that is representative of the data that will be encountered in practice. This assumption can be
violated for a number of reasons, such as geographic or demographic differences; sensor degradation
or substitution; seasonal or environmental changes; biological evolution or mutation; or a change in
an adversary’s strategy or tactics. Dataset shift is the general term used when the ideal assumption
of representativeness is not satisfied [15] [16].

When dataset shift occurs, an ML algorithm that does not adapt becomes brittle: It does
not adjust to new conditions and repeats mistakes. Its performance degrades and can become
unacceptable. When degraded performance is combined with a lack of interpretability, trust in the
algorithm can decline precipitously. Users may stop using it, and they may also become skeptical
of other automation.

Standard adaptation techniques for supervised classification are relevance feedback and active
learning. In relevance feedback [17], the user indicates which algorithm predictions are correct and
which are incorrect, and the algorithm is retrained. In active learning, an additional algorithm
selects unlabeled samples that will help the classification algorithm learn most rapidly, and it
prompts the user to provide labels for them [18] [19].

In both of these techniques, the user indicates the correct labels for additional data samples.
There is no way for the user to provide feedback about which features led him or her to select a label.
Additionally, adaptation often amounts to adding the newly-labeled samples to the training data
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and retraining the classifier from scratch on all of the accumulated training data. Consequently,
an ever-increasing amount of storage and computation is required.

1.3 OTHER APPLICATIONS

There are certainly applications for which interpretability and adaptability are not important.
We mention them, but they are not the point of this work.

In some situations, such as collision avoidance, the user must follow a defined response or take
a particular action based on an algorithm’s prediction. There is neither a need nor an opportunity
for the user to check the prediction or the reason behind it. In other cases, such as detecting
manufacturing defects, automation replaces the human user entirely. Sometimes the data and
features themselves are not naturally human-interpretable, and for some applications like targeted
advertising or spam filtering, predictive accuracy is the only criterion of interest. Interpretability
is not required here, and a black-box method is sufficient or called for.

For other situations, such as characterizing physical phenomena in a controlled environment,
there is every reason to believe that the training and testing data are representative, so adaptation
is unnecessary. Likewise, the rate of change might be so small as to obviate the need for adaptation.
There are also cases where there are sufficient storage and computing resources to accumulate new
data and retrain a classifier from scratch rather than adapt in a more efficient manner. In these
cases, adaptability is either not needed at all or it can be accomplished by brute force.

1.4 RECURSIVE BAYESIAN RULE LISTS (RBRL)

This report describes and derives Recursive Bayesian Rule Lists (RBRL), which were disco-
vered under AIM during FY17. RBRL is based on two components: Bayesian Rule Lists (BRL),
which are interpretable decision-list classifiers that were published by Letham, Rudin, McCormick,
and Madigan [12] and perform competitively with state-of-the-art classifiers on many problems; and
an analogy between classifier adaptation and recursive Bayesian tracking (RBT), which includes
state-estimation algorithms like Kalman filtering [20] [21] and particle filtering [22] [23].

Some key properties of RBRL are briefly listed here. First, RBRL can accept user feedback
on features and labels, rather than on labels alone. Second, RBRL enables efficient adaptation that
only involves the new data and user feedback and does not require accumulating all of the past data
and feedback. The adaptation procedure is non-iterative and highly parallelizable. Third, RBRL
can include an explicit model for dataset shift. Fourth, RBRL can accept noisy truth labels from
multiple users, provided that the users’ truthing-error distributions can be characterized. Finally,
the combination of these properties make RBRL well-suited for interactive machine learning.4

The remainder of this report consists of the following. Sec. 2 provides background on su-
pervised classification and on elements of BRL: frequent pattern mining, decision lists, association
rules, and rule lists. Sec. 3 reviews BRL, and Sec. 4 derives the analogy between BRL adaptation
and RBT. Sec. 5 and Sec. 6 describe some algorithms for implementing RBRL. Sec. 7 provides a

4 Credit goes to Cynthia Rudin for this observation.
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summary. Some reference material appears in the appendices. App. A describes certain random
variables (RVs) used in BRL and RBRL, App. B contains derivations from BRL, and App. C
reviews RBT.
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2. BACKGROUND

This section presents some background material. We illustrate many of the ideas in this
section using a version of the Titanic data set, which contains information about the 2,201 people
aboard the ill-fated luxury ship. The data set is a 2,201-by-4 table, where each row contains a
person’s cabin (first-class, second-class, third-class, or crew), adulthood status (child or adult),
gender (female or male), and whether or not the person survived the tragic accident; there were
711 survivors. The training set is a subset of this data that contains 1,761 rows and includes 582
survivors.

2.1 SUPERVISED CLASSIFICATION

This report assumes that the reader is familiar with supervised classification, so we present
only a quick review. We have a finite-dimensional feature space X and a set Y of L classes or labels,
where L is an integer greater than or equal to two. For the Titanic example, the features are cabin,
adulthood, and gender, so we have a three-dimensional feature space X = {first-class, second-class,
third-class, crew} × {child, adult} × {female, male}. The labels are “died” and “survived,” so the
label set Y = {died, survived}. Of course, the labels can also be represented as a discrete set of
integers such as L = {1, 2, . . . , L}. Binary classification corresponds to L = 2, and multi-class
classification to L > 2.

We wish to learn a mapping g : X → Y from the feature space to the set of labels. A classifier
is an assumed form of the mapping g. If we are presented with a feature vector x̃ ∈ X but do not
know the associated correct label ỹ ∈ Y, then we can use the learned mapping g to compute a
predicted label ŷ = g(x̃). If the correct label ỹ becomes available and ŷ = ỹ, then the predicted
label is correct; otherwise, it is incorrect.

The data is partitioned into a training set and test set. Classifier training is the process
of learning the mapping from the training set, and the learned mapping is the trained classifier.
Classifier testing applies the trained classifier to the feature vectors in the test set and compares
its predicted labels against the correct labels in the test set to measure predictive accuracy. The
training and test sets are disjoint to eliminate the possibility of cheating during training. Cross-
validation is often applied to characterize performance variability due to different choices of the
training and test partitions.

2.2 FREQUENT PATTERN MINING

This section describes some terms and concepts in frequent pattern mining.

2.2.1 Features, Feature Values, and Patterns

While the notion of a “feature” in classification is generally understood, we will make some
distinctions between the set of values and a specific value. A feature is one of the dimensions of
X ; it includes all possible values for that dimension. In our example, cabin and gender are two
features: cabin = {first-class, second-class, third-class, crew}, and gender = {female, male}.
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Next, a feature value is one of the values that a feature can take. For the example, one gender
feature value is female, and the other is male.

Finally, a pattern is a combination of feature values for a subset of the dimensions of X .
Examples are “cabin = second-class,” and “adulthood = child and gender = male.” When there
is no confusion, we drop the feature and just provide the feature values as a tuple, so (second-
class) and (child, male) are equivalent forms of these example patterns. We refer to the length or
dimensionality of a pattern as its cardinality, so ∅ has cardinality zero, (male) and (crew) each have
cardinality one, and (third-class, child, male) has cardinality three.

As another example, suppose that the feature vector x = (second-class, adult, female). The
first “feature” is cabin, which refers to the first dimension of X but not the value that x(1) takes.
The “feature value” x(1) is second-class. The vector x contains “patterns” such as (female) and
(adult) of cardinality one, (adult, female) and (second-class, adult) of cardinality two, and (second-
class, adult, female) of cardinality three. It does not contain the patterns (male) or (crew, adult).

2.2.2 Frequent Pattern Mining

Frequent pattern mining (FPM) is a class of data-mining methods that explore a data set and
extract combinations of feature values that occur often [24], [25], [26], [27]. Typically, one specifies
the desired maximum pattern cardinality and minimum support (frequency of pattern occurrence).

For the Titanic training set, the pattern (first-class, adult) has cardinality two and occurs
254 times, so its support is 14.4%. The pattern (crew) occurs 705 times, yielding a support of
40.0%. Some other patterns are (crew, adult, male) with support 39.0% and (third-class, child)
with support 3.7%. If the desired maximum cardinality and minimum support are 2 and 10%,
respectively, then (first-class, adult) and (crew) would be returned, but (crew, adult, male) would
be rejected because its cardinality exceeds 2, and (third-class, child) would be rejected because its
support is below 10%.

2.3 DECISION TREES AND DECISION LISTS

This section provides some background on decision lists, which can be helpful in understanding
the Bayesian Rule Lists used in this report.

2.3.1 Decision Trees

A decision tree is a tree structure that describes a sequence of tests applied to a sample
x ∈ X to arrive at a final decision regarding x [28]. For classification, this decision is a predicted
label ŷ, and such decision trees are often called “classification trees.” Decision trees have several
natural representations: tree, flowchart, and nested if-then-else statements. These representations
make decision trees amenable to human interpretation. Indeed, they were initially conceived with
interpretability in mind.

An example decision tree for the Titanic training set appears in Figure 1; its if-then-else-
form is shown in Figure 2. It is a binary tree, in which each non-leaf node of the tree contains a
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Figure 1. Graphical depiction of decision tree for Titanic data

boolean condition or test to apply to x. Typically, each condition tests a single feature in x. Each
leaf node contains a decision about ŷ.

To classify x with a decision tree, processing starts at the root node and tests x against the
root node’s condition. Processing branches to the child node associated with the test outcome. If
the next node has another condition, then testing and branching is performed at this node; the
process continues until a leaf node is reached. When a leaf node is reached, a decision about ŷ
is made. For binary classification, only the probability or frequency for one label is needed, and
it is compared against a threshold to select ŷ. All leaf nodes used the same threshold, which can
be swept to generate a receiver operating characteristic (ROC) performance curve. For multi-class
classification, one usually chooses the label with the highest probability.

For the Titanic example, suppose the threshold is 0.5, and x = (first-class, adult, male). The
outcome of the root node’s test (if second-class) is false, so processing follows the false-branch to
(if adult)-node. This node’s test outcome is true, so processing follows the true-branch to the
(if first-class)-node. The test outcome is true, so finally processing arrives at the leaf node with
Pr(survived) = 0.62. Since 0.62 > 0.5, the predicted label is ŷ = “survived.” Figure 3 shows the
same if-then-else-form of the tree with a threshold of 0.5.

Decision-tree training is the process of constructing a tree with good predictive accuracy from
a data set. It typically begins with a tree, such as a root-node-only tree, and applies splitting and
pruning operations to modify the tree. Splitting takes a leaf node in the current tree, examines
the training data that applies to the node, and chooses a condition for creating two new child
nodes. Pruning takes a non-leaf node in the current tree and collapses its sub-trees to form a leaf
node. Popular algorithms include CART [28] and C4.5 [29] or C5.0. Unfortunately, exploring all
possible splits is computationally intractable, and optimal decision-tree training has been shown to
be NP-complete [30]. Greedy algorithms and heuristics are used in practice, and they can become
trapped near a local optimum. Consequently, the predictive accuracy of classification trees can lag
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if second-class then
if female then

Pr(survived) = 0.89
else

Pr(survived) = 0.15
end if

else
if adult then

if first-class then
Pr(survived) = 0.62

else
if female then

Pr(survived) = 0.51
else

Pr(survived) = 0.21
end if

end if
else

Pr(survived) = 0.43
end if

end if

Figure 2. if-then-else-form of decision tree for
Titanic data

if second-class then
if female then

ŷ = survived
else

ŷ = died
end if

else
if adult then

if first-class then
ŷ = survived

else
if female then

ŷ = survived
else

ŷ = died
end if

end if
else

ŷ = died
end if

end if

Figure 3. Decision tree from Figure 2 with a
threshold of 0.5.
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Figure 4. One-sided tree graphical depiction of decision list
for Titanic data

Figure 5. Flowchart for decision list
for Titanic data

that of other state-of-the-art classifiers. Increasing tree depth can sometimes improve performance, 
but the tree can become much harder to interpret.

2.3.2 Decision Lists

A decision list [31] is a special kind of decision tree, namely a one-sided tree, such as the 
example in Figure 4. It can also be depicted as a one-sided flowchart (Figure 5), as if-then-else-
statements with nesting only under the else-block (Figure 6), or as an if-then-elseif -statement with 
multiple elseif -blocks and without any nesting (Figure 7). The one-sided nature or absence of 
nesting can greatly simplify interpretation, provided that the conditions are not too complicated. 
Sec. 2.4 describes another representation, namely an ordered list of antecedents and consequents.

Any decision tree can also be mapped into a decision list by tracing the tree in reverse order 
from each leaf node to create a sequence of un-nested conditions. As an example, the decision tree 
from Figure 2 can also be written as the decision list in Figure 8. However, if the decision tree has 
several deep sub-trees, then the conditions in the resulting list can become difficult to comprehend.

2.4 ASSOCIATION RULES AND RULE LISTS

An association rule, written a → b, is an implication between an antecedent a and the 
consequent b. Association rules were originally introduced in the context of data mining [24] [25], 
but in this report, it suffices to consider them in the context of decision-list classification. Here, 
the antecedent a corresponds to the condition and the consequent b to the action taken should the 
condition be satisfied. That is, a → b corresponds to “if a then b.”
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if child then
Pr(survived) = 0.56

else
if crew then

Pr(survived) = 0.24
else

if first-class and female then
Pr(survived) = 0.97

else
if male then

Pr(survived) = 0.18
else

Pr(survived) = 0.61
end if

end if
end if

end if

Figure 6. Example decision list, with nesting only
under else-blocks, for Titanic data

if child then
Pr(survived) = 0.56

else if crew then
Pr(survived) = 0.24

else if first-class and female then
Pr(survived) = 0.97

else if male then
Pr(survived) = 0.18

else
Pr(survived) = 0.61

end if

Figure 7. Example decision list, as an if-
then-elseif-statement without nesting, for Tita-
nic data

if second-class and female then
Pr(survived) = 0.89

else if second-class then
Pr(survived) = 0.15

else if adult and first-class then
Pr(survived) = 0.62

else if adult and not first-class and female then
Pr(survived) = 0.51

else if adult and not first-class then
Pr(survived) = 0.21

else
Pr(survived) = 0.43

end if

Figure 8. Example decision list created from the decision tree in Figure 2
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A decision list can also be expressed as an ordered list of association rules. For Figure 7, the 
example decision list is ((child) → Pr(survived) = 0.56, (crew) → 0.24, (first-class, female) → 0.97,
(male) → 0.18, ∅ → 0.61), where ∅ → 0.61 is the final else-block, also known as the default rule.

In contrast, a rule list is an ordered list of antecedents only; it does not contain any con-
sequents [12]. For the example in Figure 7, the rule list is ((child), (crew), (first-class, female),
(male)); the final else-block does not have an antecedent and does not appear at the end of the 
list. Rule lists are of interest because BRL is based on a model for the distribution of rule lists. 
This model is combined with training data to learn a decision list for classification.

Finally, the sparsity of a decision list or rule list can be described by its length—i.e., number 
of antecedents—and the average cardinality of its antecedents. The example rule list of Figure 7 
has a length of 4 and an average cardinality of 1.25.
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3. REVIEW OF BAYESIAN RULE LISTS

Bayesian Rule Lists (BRL), recently published by Letham, Rudin, McCormick, and 
Madigan [12], are decision-list classifiers that, for many data sets, demonstrate performance 
competitive with state-of-the-art, non-interpretable classifiers. A review of the main technical 
aspects of BRL appears here.

BRL cleverly combines a number of ideas during training. First, it uses FPM to find patterns 
that merit consideration as test conditions in a decision list. Second, it limits the training search 
space to ordered lists built from these patterns, rather than all possible splits. Third, it adopts a 
Bayesian approach—hence the name—in which the prior favors rule lists of a desired sparsity, and 
the likelihood relates the rule list to the training features and labels. Fourth, it employs Markov 
Chain Monte Carlo (MCMC) methods to sample from the rule list posterior distribution. Finally, it 
selects an optimal rule list from among the generated sample rule lists.

Hence, BRL learns a decision list, which is a restricted type of decision tree. Fundamentally, 
optimal decision-tree training remains NP-complete. BRL does not change this fact, but it avoids 
the combinatorial explosion in conventional decision-tree training and achieves a powerful balance 
between predictive accuracy, sparsity and interpretability, and tractable computation.5

3.1 OVERVIEW

Figure 9 shows that BRL training consists of two main components: frequent pattern mining 
and rule list optimization, where the latter consists of MCMC sampling followed by rule list se-

lection. Let M be the size of the training set (x, y), where x = {x1, . . . , xM} is the set of training 
feature vectors and y = {y1, . . . , yM} is the corresponding set of training labels.

The pre-mined patterns from FPM comprise the set of antecedents, which provides a number 
of benefits. First, it greatly limits the training search space. Second, it means that computational 
complexity scales with the number of patterns rather than with the feature dimensionality. Third, 
the maximum pattern cardinality will usually be greater than one, so splits are not restricted to a 
single feature dimension.

The Bayesian formulation means that the worthiness of a candidate rule list is expressed as a 
posterior probability. The posterior combines the prior, which quantifies the rule list’s agreement 
with the desired sparsity hyperparameters, and the likelihood, which quantifies the rule list’s 
agreement with the observed training data.

The use of MCMC sampling allows stochastic exploration of the entire space D, the set of all 
ordered lists that can be formed from A. It eliminates the need for greedy algorithms, which are 
susceptible to becoming trapped in local optima. Sampling from the rule list posterior distribution 
generates candidate rule lists along with their probability or worthiness. Highly worthy rule lists

5 A natural question is whether the BRL creators have considered lifting the decision-list restriction and allowing
nested if-then statements. They have done so, but they did not find an improvement in predictive accuracy, and
nesting can make it more difficult to interpret the resulting classifiers. For these reasons, they focused on decision
lists.
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Figure 9. Block diagram of Bayesian Rule List training

also have a greater chance of being sampled compared to less worthy ones. Choosing a rule list
from the generated samples is then a straightforward matter.

3.2 FREQUENT PATTERN MINING

FPM is applied only to the training features x; the training labels y are not considered by this
component. The class of FPM algorithms is known as “frequent itemset mining.” The particular
implementation used in [12] is FP-Growth [26], but algorithms such as Apriori [25] and Eclat [27]
would return identical results.

One specifies the desired maximum cardinality and minimum support of a pattern, and the
algorithm searches the training features x and returns the set of frequent patterns that meet these
criteria. The mined patterns provide the antecedents in a rule list, so the set is called the antecedent
set and is denoted by A. The number of antecedents is |A|.

Also, let D be the set of possible rule lists formed from A. The number of rule lists of length m

is |A|!/(|A|−m)!, for m = 0, 1, . . . , |A|, so the total number of rule lists is |D| =
∑|A|

m=0
|A|!

(|A|−m)! ≈
(|A|!) · e. Even for modest values of |A|, this number is enormous, making exhaustive search
intractable.

3.3 ASSOCIATION RULES

BRL uses the language of association rules (Section 2.4). The antecedents are the pre-mined
patterns in A produced by FPM, and the consequents are assumed to follow a Dirichlet-multinomial
distribution. That is, a ∈ A, and b = {y|θ ∼ Multinomial(θ), θ|α ∼ Dirichlet(α)}, where
the multinomial parameter vector θ = (θ1, . . . , θL) and the Dirichlet hyperparameter vector α =
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(α1, . . . , αL), α` > 0, ∀`. Hence, a → b reads as “a implies that the label y has a multinomial
distribution with parameter θ, and θ has a Dirichlet distribution with hyperparameter α.”6 App. A
contains a brief review.

The Dirichlet-multinomial distribution is a compound distribution with some convenient pro-
perties [32]. First, the hyperparameter vector α has a pseudocount interpretation: Each element
α` can be interpreted as if α` examples of label ` have already been observed before any data is
observed. Typically, α` = 1, ∀`, which results in θ|α having a uniform distribution.

Second, the Dirichlet-multinomial distribution is a conjugate prior distribution, so it has a
closed-form posterior update. For the observed data (x,y), let N`(x,y) denote the number of
times that ym = ` when xm satisfies the antecedent a. Then the posterior distribution of θ is just
another Dirichlet-multinomial RV, but with hyperparameter equal to α+N(x,y), where N(x,y) =
(N1(x,y), . . . , NL(x,y)). That is, θ|x,y,α ∼ Dirichlet(α + N(x,y)) [see App. A.3.2]. Explicit
computation of Bayes’ rule and numerical integration are unnecessary to obtain the posterior.

3.4 GENERATIVE MODEL

BRL uses a generative model to enable MCMC rule list sampling. The model has three user-
selectable hyperparameters: λ > 0, the expected rule list length; η > 0, the expected antecedent
cardinality; and α, the Dirichlet hyperparameter vector for the labels. The hyperparameters λ and
η control the sparsity of the desired rule list: λ specifies the desired list length, and η specifies the
desired average cardinality.

This report contains a large amount of notation and indexing. Table 1 summarizes the
indexes, and Table 2 summarizes elements that remain constant. Most of the entries appear in this
discussion of BRL, but a few— marked with an asterisk— will be used later in the development of
RBRL. Table 3 lists elements in BRL that will become time-varying in RBRL, where they appear
again in Table 4.

Let the elements of A be indexed from 1 to |A|, so A = {a1, a1, . . . , a|A|}, and let a0 ≡ ∅
be reserved for the default rule. A rule list d is an ordered list of antecedents, so we express it
as d = (ak(1), ak(2), . . . , ak(|d|)), where k(j) is the index of the corresponding antecedent in A, and
the indexes are distinct: k(j) 6= k(j′), j 6= j′.7 The default rule a0 is not included in d, but for
consistency, let k(0) = 0.

We also index the Dirichlet-multinomial consequents and define θk and αk = α, k = 0, 1,
. . . , |A|. Let ~α = (α0, . . . , α|A|) be the vector of copies of the Dirichlet hyperparameters. We
include an optional Dirichlet hyperparameter β = (β1, . . . , β|A|) that can be used to encourage or

6 Since y corresponds to a single trial, the Multinomial(θ) distribution reduces to a Categorical(θ) distribution,
but these terms are often used without distinction, and we adhere to the “multinomial’‘’ convention used by Letham
et al. in [12].

7 The rule list could also be represented as (k(1), k(2), . . . , k(|d|)), an ordered list of antecedent indexes, but the
previous form is more consistent with the notation of Letham et al.
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TABLE 1

Indexing Conventions. An asterisk indicates an index 
used for Recursive Bayesian Rule Lists.

Symbol Description

i *index of rule list within a set of rule lists

j index of antecedent in a rule list

j(d, x) index of the first antecedent in rule list d that captures feature vector x

k index of antecedent in antecedent set A
k(j(d, x)) index of antecedent in antecedent set A that corresponds to the first

antecedent in rule list d that captures feature vector x

` label index

m sample index

n *current time index

t *truther index

discourage different antecedents in A. A diagram using plate notation [33] [32] appears in Figure 10
for M samples.8

The model is constructed as follows.

1. The list length |d| is sampled from a truncated Poisson distribution with parameter λ. It has 
support over {0, 1, . . . , |A|} and mode close to λ, which encourages rule lists with length close 
to λ.

2. Given |d|, the antecedents are sequentially drawn from A without replacement (a0 is not 
included). For j = 1, . . . , |d|, let ak(j) be the jth antecedent in d and ck(j) be its cardinality. 
The following notation is used when ak(j) is being selected:

• ak(<j) = {ak(1), . . . , ak(j−1)}: the antecedents in d that precede the jth antecedent (ak(j)) 
in the rule list d;

• ck(<j) = {ck(1), . . . , ck(j−1)}: the cardinalities of the preceding antecedents;

• A(ak(<j)) = A \ ak(<j): the set of remaining antecedents;

• C(ak(<j)): the set of remaining cardinalities9—i.e., the cardinalities of the antecedents 
in A(ak(<j)), without duplication;

8 Our notation introduces an additional layer of indexing—k(j) rather than simply j—that does not appear     
in Letham et al. [12]. It is necessary because we will need to keep track of variables and parameters associated
with different antecedents over time. We also make |A| + 1 copies of α because the hyperparameters for different
antecedents might change over time. For the present review of BRL, one can safely replace k(j) by j, αk(j),` by α`,
and ~α by α.

9 C(ak(<j)) is equivalent to Rj−1(c<j ,A) used by Letham et al. [12].
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TABLE 2

Constant Elements. An asterisk indicates an element used for Recursive Bayesian 
Rule Lists.

Symbol Type Description

A = {a1, . . . , a|A|} set antecedent set

ak antecedent kth antecedent in A (k 6= 0)

a0 ≡ ∅ antecedent default antecedent

α = (α1, . . . , αL) vector user-specified Dirichlet parameters

α` scalar user-specified Dirichlet parameter for `th label

β = (β1, . . . , β|A|) vector user-specified Dirichlet parameters for antecedents

βk scalar user-specified Dirichlet parameter for kth antece-
dent in A

D set set of all possible rule lists from A
D = {d(1), . . . , d(|D|)} set set of sampled rule lists

d(i) ordered list ith rule list in D
ζ scalar *process-noise parameter (Sec. 6.5.2)

κ scalar *exponential decay factor (Sec. 4.1)

λ scalar user-specified expected list length

η scalar user-specified expected average cardinality

L scalar number of labels or classes

L = {1, . . . , L} set set of labels

ν scalar *process-noise parameter (Sec. 6.5)

NT scalar *number of truthers (Sec. 4.1, Sec. 4.4.3)

T = {1, . . . , NT } set *set of truther indexes (Sec. 4.1, Sec. 4.4.3)
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TABLE 3

Bayesian Rule List Elements

Symbol Type Description

ak(j) antecedent jth antecedent in rule list d or k(j)th ante-
cedent in antecedent set A

~α = (α0, . . . ,α|A|) list of vectors Dirichlet parameters for all antecedents

αk = (αk,1, . . . , αk,L) vector Dirichlet parameters for kth antecedent

αk,` scalar Dirichlet parameter for kth antecedent, `th
label

d = (ak(1), . . . , ak(|d|)) ordered list rule list

k(j) scalar index into antecedent set A for jth antece-
dent in rule list d

M scalar number of samples

Nj(d,x,y) = (Nj,1(d,x,y),
. . . , Nj,L(d,x,y))

vector counts of all labels in y for samples in x
captured by the jth antecedent in rule list d

Nj,`(d,x,y) scalar count of `th label in y for samples in x cap-
tured by the jth antecedent in rule list d

~θ = (θ0, . . . ,θ|A|) list of vectors multinomial parameters for all consequents

θk = (θk,1, . . . , θk,L) vector multinomial parameters for kth consequent

θk,` scalar multinomial parameter for kth consequent,
`th label

x = (x1, . . . , xM ) list of vectors all features

xm vector features for mth sample

y = (y1, . . . , yM ) list of scalars all labels

ym scalar label for mth sample
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Figure 10. Generative model for Bayesian Rule Lists. Arrows show dependencies between variables. Squares
indicate non-random variables, circles denote random entities, and double-outlined circles denote random
entities that are completely determined by the variables they depend on. Shaded elements are known or
observed, while unshaded ones are hidden or latent. The rectangles or plates indexed by k and m mean
that the variables inside the plates are repeated as many times as indicated. The squiggly line indicates that
k(j(d, xm)) selects the index of the variable θk(j) upon which ym depends. The dashed lines for the parameter
β denote an optional non-uniform prior over the antecedents ak(1), . . . , ak(|d|).
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• A(ak(<j), c) = {ak ∈ A(ak(<j)) : |ak| = c}: the set of remaining antecedents of cardinality
c;

• K(ak(<j), c) = {k : ak ∈ A(ak(<j)), |ak| = c}: essentially the same set as A(ak(<j), c),
except that it contains the antecedents’ indexes rather than the antecedents themselves.

For j = 1, 2, . . . , |d|, each antecedent ak(j) is sampled according to the following procedure.

(a) The cardinality ck(j) is drawn from a truncated Poisson distribution parameterized by η
and with support over C(ak(<j)). The expected value of this distribution is close to η, so
it favors antecedents with cardinality η. Figure 10 only shows dependence on A(ak(<j))
since it determines C(ak(<j)).

(b) Given A(ak(<j)) and ck(j), the antecedent ak(j) itself is distributed over A(ak(<j), ck(j)),
the set of remaining antecedents of cardinality ck(j). We allow for the optional use of
a Dirichlet-multinomial distribution parameterized by β. The figure only shows depen-
dence on A(ak(<j)) and ck(j) since they determine A(ak(<j), ck(j)).

3. For k = 0, 1, . . . , |A|, sample the multinomial parameter vector θk ∼ Dirichlet(αk).

Alternatively, since BRL only involves the antecedents in the rule list d, for each antecedent
ak(j) in d, sample θk(j) ∼ Dirichlet(α) only for ak(j) ∈ d, and sample θ0 ∼ Dirichlet(α).

4. Antecedent ak(j) ∈ d is said to capture xm if xm contains the pattern of antecedent ak(j)

and does not contain the patterns of the preceding antecedents ak(1), ak(2), . . . , ak(j−1). Let
j(d, x) denote the index of the antecedent in the rule list d that captures x, so k(j(d, x)) is
the index of the antecedent in the antecedent set A; j(d, x) = 0 and k(j(d, x)) = 0 if none of
the antecedents in d capture xm. Then the consequent is ym ∼ Multinomial(θk(j(d,xm))).

3.4.1 Prior

Based on the above model, the rule list prior is [cf . [12, Eq. (2.1)]]

p(d|A, λ, η,β) = p(|d||A, λ)︸ ︷︷ ︸
list length

|d|∏
j=1

p(ck(j)|ck(<j),A, η)︸ ︷︷ ︸
cardinality of
jth antecedent

p(ak(j)|ak(<j), ck(j),A,β)︸ ︷︷ ︸
jth antecedent

=

(
λ|d|/|d|!

)∑|A|
j=0(λj/j!)

|d|∏
j=1

(
ηck(j)/ck(j)!

)∑
c′∈C(ak(<j)) (ηc′/c′!)

p(ak(j)|ak(<j), ck(j),A,β). (1)

As described above, the list-length term is a truncated Poisson with parameter λ. The product
indexed by j corresponds to iteration over the antecedents in d. On each iteration, the cardinality
term is a truncated Poisson distribution with parameter η and support restricted to the remaining
cardinalities, and the antecedent term is a distribution over the remaining antecedents with the
selected cardinality.
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We let the antecedent term be a Dirichlet-multinomial distribution with hyperparameters
chosen from {βk : k ∈ K(ak(<j), ck(j))}:

p(ak(j)|ak(<j), ck(j),A,β) =
Γ(
∑

k∈K(ak(<j),ck(j))
βk)

Γ(1 +
∑

k∈K(ak(<j),ck(j))
βk)

1 + Γ(βk(j))

Γ(βk(j))
, ak(j) ∈ A(ak(<j), ck(j)). (2)

Then (1) becomes

p(d|A, λ, η,β) =

(
λ|d|/|d|!

)∑|A|
j=0(λj/j!)

|d|∏
j=1

(
ηck(j)/ck(j)!

)∑
c′∈C(ak(<j)) (ηc′/c′!)

Γ(
∑

k∈K(ak(<j),ck(j))
βk)

Γ(1 +
∑

k∈K(ak(<j),ck(j))
βk)

1 + Γ(βk(j))

Γ(βk(j))
.

(3)
If βk = 1, ∀k, the right-hand side of (2) becomes |A(ak(<j), ck(j))|−1 for the eligible antecedents,
which gives the uniform distribution used in [12, Eq. (2.2)]. In this case, the rule list prior is

p(d|A, λ, η,β = (1, . . . , 1)) =

(
λ|d|/|d|!

)∑|A|
j=0(λj/j!)

|d|∏
j=1

(
ηck(j)/ck(j)!

)∑
c′∈C(ak(<j)) (ηc′/c′!)

1

|A(ak(<j), ck(j))|
(4)

∝
(
λ|d|/|d|!

)∑|A|
j=0(λj/j!)

|d|∏
j=1

(
ηck(j)/ck(j)!

)∑
c′∈C(ak(<j)) (ηc′/c′!)

. (5)

The rule list prior does not depend directly on the training data (x,y), although A is de-
termined by mining x. Rather, the prior favors sampling of rule lists that conform to the desired
sparsity settings {λ, η}. Its form makes rule lists whose desired lengths and average cardinalities
are close to λ and η more probable than rule lists whose characteristics differ substantially from λ
or η.

3.4.2 Likelihood Function

The rule list likelihood function introduces the influence of the training data (x,y). It quanti-
fies how likely a given rule list d and the features x are to have produced the labels y. Given (x,y),
let Nj,`(d,x,y) be the number of samples that are captured by antecedent ak(j) and have label `,
and let Nj(d,x,y) = (Nj,1(d,x,y), . . . , Nj,L(d,x,y)).10 Hence, the prior consequent for the jth
rule is {y|θk(j) ∼ Multinomial(θk(j)), θk(j)|αk(j) ∼ Dirichlet(αk(j))}, and the posterior consequent
is {y|θk(j) ∼ Multinomial(θk(j)), θk(j)|d,x,y,αk(j) ∼ Dirichlet(αk(j) + Nj(d,x,y))}.

10 Since d and j are given, there is no need to show the extra indexing layer k(j) on N and N. Nj,`(d,x,y)
corresponds to Nj,` in [12], and Nj(d,x,y) corresponds to Nj in [12]. We emphasize the dependence on the rule list
d and training data (x,y).
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The likelihood function can be derived from the generative model; see [12] or App. B.1. The
result is

p(y|d,x, ~α)
(a)
=

|d|∏
j=0

Γ(
∑L

`=1 αk(j),`)

Γ(
∑L

`=1Nj,`(d,x,y) + αk(j),`)

L∏
`=1

Γ(Nj,`(d,x,y) + αk(j),`)

Γ(αk(j),`)
(6)

∝
|d|∏
j=0

∏L
`=1 Γ(Nj,`(d,x,y) + αk(j),`)

Γ(
∑L

`=1Nj,`(d,x,y) + αk(j),`)
. (7)

3.4.3 Posterior

The rule list posterior follows from Bayes’ rule, which gives

p(d|x,y,A, ~α, λ, η,β)

∝ p(y|d,x,A, ~α, λ, η,β)p(d|x,A, ~α, λ, η,β)

(a)
∝ p(y|d,x, ~α)p(d|A, λ, η,β)

∝

 |d|∏
j=0

∏L
`=1 Γ(Nj,`(d,x,y) + αk(j),`)

Γ(
∑L

`=1Nj,`(d,x,y) + αk(j),`)

 (
λ|d|/|d|!

)∑|A|
j=0(λj/j!)

|d|∏
j=1

(
ηck(j)/ck(j)!

)∑
c′∈C(ak(<j)) (ηc′/c′!)

×
Γ(
∑

k∈K(ak(<j),ck(j))
βk)

Γ(1 +
∑

k∈K(ak(<j),ck(j))
βk)

1 + Γ(βk(j))

Γ(βk(j))
, (8)

where (a) follows from the generative model. When β = (1, . . . , 1), it reduces to

p(d|x,y,A, ~α, λ, η,β = (1, . . . , 1))

∝

 |d|∏
j=0

∏L
`=1 Γ(Nj,`(d,x,y) + αk(j),`)

Γ(
∑L

`=1Nj,`(d,x,y) + αk(j),`)

 (
λ|d|/|d|!

)∑|A|
j=0(λj/j!)

|d|∏
j=1

(
ηck(j)/ck(j)!

)∑
c′∈C(ak(<j)) (ηc′/c′!)

. (9)

The posterior describes how probable rule list d is, given the pre-mined antecedent set A, the
training data (x,y), the sparsity settings {λ, η}, and the hyperparameters α and β.

3.5 MARKOV CHAIN MONTE CARLO RULE LIST SAMPLING

Markov chain Monte Carlo (MCMC) is a collection of methods for generating samples from
a desired posterior distribution p(d| . . .) that cannot be directly sampled. One of the main MCMC
methods is the Metropolis-Hastings algorithm, an iterative, stochastic sampling method [34].

Beginning at iteration t = 1, the algorithm start with an initial sample d1, which is usually
randomly selected. On iteration t + 1, it generates a new sample d∗ q(d∗|dt), where q(d∗|dt) is
called the proposal distribution. The sample d∗ only depends upon dt, the sample from the previous
iteration. The algorithm then uses rejection sampling to determine whether to accept d∗ and set
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dt+1 = d∗ or to reject it and set dt+1 = dt. The acceptance-rejection threshold is calculated from 
q(d∗|dt) and p(d∗| . . .). Finally, the algorithm repeats.

The procedure just described conducts a random walk over a Markov chain. If the proposal

distribution q(d∗|dt) is chosen such that the chain is aperiodic and irreducible11, then the chain will 
have p(d| . . .) as its unique equilibrium distribution. Hence, after a sufficient number of iterations,
the chain will converge, and the subsequently generated samples will be distributed according to
p(d| . . .). The required number of iterations is called the burn-in period, and different methods are
available to test for convergence.

The Metropolis-Hastings algorithm has several appealing properties. First, although it is

hard to sample from p(d∗| . . .), it is usually straightforward to calculate p(d∗| . . .) for the sample d∗. 
Second, p(d∗| . . .) only needs to be known up to a proportionality constant, which can be difficult 
to calculate for complicated distributions. Third, it is usually not difficult to construct a suitable
proposal distribution to ensure that the chain has the necessary properties.

BRL uses the Metropolis-Hastings algorithm to sample from the rule list posterior p(d|x, y, A,
λ, η). Three types of proposals are used [12]: move  – exchange the positions of two antecedents

already in d; add  – select an antecedent from A that is not already in d and insert it into d;
and remove  – delete an antecedent from d. For the data sets considered in [12], the algorithm
was run for 20,000, 50,000, or 100,000 iterations.

3.6 RULE LIST SELECTION AND POSTERIOR PREDICTIVE

Different classifiers can be chosen from D. The rule list posterior is a probability distribution
over D, so choosing a classifier can be considered an estimation problem. Of course, in practice

one uses D, the set of sampled rule lists after burn-in. It is much smaller than D and serves as an
approximation of D.

3.6.1 Rule List Selection

In some Bayesian estimation problems, like minimum mean-square error estimation, the con-
ditional posterior mean is the optimum estimate. However, it is not obvious how to define the mean
of a collection of rule lists, so the conditional mean is not particularly useful. Another possible
alternative is the maximum a posteriori (MAP) rule list, but the MAP rule list might be much

shorter than the mean list length of the sampled rule lists in D.

For these reasons, Letham et al. introduce BRL-point, which is a constrained MAP estimate.
Namely, BRL-point is the most-probable rule list whose length and average cardinality agree with
the mean length and mean average cardinality (rounded up or down) of the sampled rule lists. It is
a single, human-readable rule list and the preferred point estimate in this report. Alg. 1 provides
pseudocode; it returns BRL-point and its index, which will be useful for computing the posterior

predictive.

11 Roughly speaking, an aperiodic Markov chain does not contain any loops, and an irreducible Markov chain is a
chain for which it is possible to get from any state to any other state.
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Algorithm 1. BRL-point. The inputs are a set of distinct rule lists and their corresponding posterior
probabilities or non-negative weights.

1: function
[
d̂, ı̂
]
← BRL-Point({d(i)}Ni=1, {w(i)}Ni=1)

2: function c̄← AvgCard(d) . Calculate average cardinality of a rule list
3: if d = ∅ then
4: c̄← 0
5: else
6: c̄← |d|−1

∑|d|
j=1 ck(j)

7: end if
8: end function
9: m̄← N−1

∑N
i=1 |d(i)| . Mean length of rule lists

10: ¯̄c← N−1
∑N

i=1 AvgCard(d(i)) . Mean average cardinality of rule lists
11: I ← {i : |d(i)| ∈ {bm̄c, dm̄e}, b¯̄cc ≤ AvgCard(d(i)) ≤ d¯̄ce}
12: ŵ ← max{w(i)}i∈I . Posterior probability or weight of BRL-point
13: ı̂← index of ŵ in {w(i)}Ni=1 . Index of BRL-point
14: d̂← d(ı̂) . BRL-point
15: end function

3.6.2 Posterior Predictive

Given a single rule list d, such as BRL-point, the posterior predictive can be applied to use
d to classify a feature vector x̃ and predict the unknown label ỹ. From [12, Sec. 2.7] or App. B.2,
the posterior predictive is

p(ỹ = `|x̃, d,x,y, ~α) =
αk(j(d,x̃)),` +Nj(d,x̃),`(d,x,y)∑L

`′=1 αk(j(d,x̃)),`′ +Nj(d,x̃),`′(d,x,y)
, ` = 1, . . . , L. (10)

This distribution gives the consequent for ak(j(d,x̃)); hence, d can be expressed as a decision list like
in Sec. 2.3.2.

A trivial algorithm for calculating the posterior predictives for all antecedents and labels
appears in Alg. 2. It returns a (|d| + 1) × L array P , where Pj,` contains the posterior predictive
for the jth rule and `th label. This array can be used to implement a classifier. For example, in
binary classification, Pj,1 can be compared to the decision threshold to determine the predicted
label associated with the jth antecedent. For multi-class classification, the predicted label for the
jth antecedent corresponds to arg max`∈L Pj,`.
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Algorithm 2. Calculation of posterior predictives for BRL point estimate. The optional input r is rule
feedback that acts like additional pseudo-observations [cf. Sec. 4.4]. It defaults to the empty set if omitted.

1: function P ← TabulatePosteriorPredictives(d,x,y, ~α, r = ∅)
2: for j ← 0 : |d| do . Antecedents
3: for `← 1 : L do . Labels
4: Pj,` ←

αk(j),`+Nj,`(d,x,y)+Nj,`(d,r)∑L
`′=1 αk(j),`′+Nj,`′ (d,x,y)+Nj,`(d,r)

. Posterior predictive for point estimate (10)

5: end for
6: end for
7: end function

Another way to classify x̃ is to marginalize over all sampled rule lists. This classifier is called
BRL-post and is given by [12, Sec. 2.7]

p(ỹ = `|x̃,x,y,A, ~α, λ, η,β) =
∑
d∈D

p(ỹ = `|x̃, d,x,y, ~α) p(d|x,y,A, ~α, λ, η,β)

=
∑
d∈D

αk(j(d,x̃)),` +Nj(d,x̃),`(d,x,y)∑L
`′=1 αk(j(d,x̃)),`′ +Nj(d,x̃),`′(d,x,y)

p(d|x,y,A, ~α, λ, η,β)︸ ︷︷ ︸
rule list posterior

,

(11)

where the rule list posterior is available from (9). Since BRL-post is computed over many rule lists,
it is not human-interpretable; however, Letham et al. suggest that a few point estimates could be
used as examples.

3.7 REMARKS

Many classifiers are specified by a collection of unknown, non-random parameters, and classi-
fier training is the process of estimating these parameters. For example, a discriminative classifier
hypothesizes a model for p(y|x, ψ), and training seeks the maximum-likelihood estimate of the
parameters ψ. Hence, the labels y are random variables conditioned on the features x and the
parameters ψ.

In contrast, BRL treats the rule list d itself as being random. Classifier training uses the rule
list posterior p(d|x,y,A, ~α, λ, η,β) to compute an optimal estimate; we consider a point estimate
d̂ such as BRL-point.

There are three posterior distributions of interest in BRL. First, the generative model introdu-
ces the posterior consequent {y|θk(j) ∼ Multinomial(θk(j)), θk(j)|d,x,y,αk(j) ∼ Dirichlet(αk(j) +
Nj(d,x,y))} for each antecedent in d. Second, the rule list posterior p(d|x,y,A, ~α, λ, η,β) describes
the distribution of rule lists given the training data (x,y), antecedent set A, and hyperparameters.
Third, the selected estimate d̂ is an ordered list of antecedents; it does not contain any consequents.
To classify a new feature vector x̃ with d̂, the posterior predictive p(ỹ = `|x̃, d̂,x,y, ~α) is required
to obtain the Dirichlet-multinomial consequents.
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if female then
Pr(survived) = 0.73

else if child then
Pr(survived) = 0.50

else if crew then
Pr(survived) = 0.23

else
Pr(survived) = 0.18

end if

Figure 11. Example falling rule list for Titanic data

3.8 FALLING RULE LISTS

A special kind of decision list, introduced by Wang and Rudin [14], is a falling rule list (FRL).
It is a decision list in which the label probability decreases monotonically down the list. Figure 11
shows an example.

Falling rule lists are not the focus of this report, but they deserve mention for several reasons.
First, the monotonicity property distinguishes FRL from ordinary decision lists and makes FRL
ideally suited for applications like triage or sorting, which ordinary classifiers are not designed for.
Monotonicity is an additional requirement that is not even considered—and generally not satisfied—
by most decision lists.

Second, the monotonicity requirement acts as a strong constraint, so the predictive accuracy of
FRL might be lower than that of other classifiers that do not attempt to satisfy it. However, in some
cases, there is little or no reduction in performance. For some applications, monotonicity might be a
necessity, and in other cases, gaining monotonicity might be worth losing a small amount of
predictive accuracy.

Third, FRL was developed from BRL, so it shares an academic and technical genealogy with
BRL. FRL bears many mathematical similarities to BRL: It is a Bayesian approach to rule list
training based on FPM and MCMC sampling. FRL uses Gibbs sampling and collapsed Metropolis-
Hastings sampling to sample rule lists from a desired posterior distribution. Consequently, virtually
all of the ideas that this report uses to derive RBRL from BRL can also be used to create recursive
algorithms for FRL.

Finally, AIM has supported development of new Optimized Falling Rule Lists and Softly
Falling Rule Lists [35]. These training algorithms use a non-Bayesian optimization approach that
relaxes the monotonicity requirement from a hard constraint to a soft one.
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4. RECURSIVE BAYESIAN RULE LISTS (RBRL)

This section shows how BRL can be made analogous to RBT to form recursive Bayesian rule
lists (RBRL), which map the problem of classifier adaptation to the problem of tracking a moving
target: RBRL essentially tracks the underlying rule list.

4.1 TEMPORAL MODEL

We extend the generative model of Sec. 3.4 and Figure 10 by adding a discrete-time dimension.
Unfortunately, doing so requires adding to the already dense notation. Recall that indexing and
constant elements are listed in Tables 1 and 2. For elements that can change with time, we add
a subscript for the discrete-time index n = 1, 2, . . .; it precedes all other subscripts. For example,
for time n, Mn denotes the number of samples, xn = {xn,1, xn,2, . . . , xn,Mn} denotes the features,
and yn = {yn,1, yn,2, . . . , yn,Mn} denotes the labels. The time-varying elements are organized
in Table 4, which closely corresponds to Table 3. New elements introduced for RBRL are briefly
described here and explained later in this section. To reduce the notation slightly, BRL constant
elements such as A, λ, η, β and new RBRL constant elements such as κ, ζ, and ν will not be shown
in conditional distributions.

A graphical model for the first three time indexes appears in Figure 12. At time n = 1,
regular BRL training generates the rule list d1 and updated hyperparameters ~α2. The extension
of the BRL model allows the rule list and hyperparameters to evolve on subsequent time steps; it
is shown for times n = 2 and 3 and repeats indefinitely. It has four components.

First, the rule list is permitted to change over time. The rule list dn depends on three
independent variables: the previous rule list dn−1, fully-observed antecedent feedback an provided
by users, and unobserved process noise vn−1. The antecedent feedback and process noise can
directly change the rule list. This part of the model gives RBRL a way to model dataset shift; it
is developed in Sec. 4.3, which determines the rule list transition distribution p(dn|dn−1,an). The
process noise can be modeled either as independent of dn−1 or dependent on it (dashed lines). The
parameters ν and ζ are discussed in Sec. 6.5.1 and Sec. 6.5.2. At time n = 1, there is no antecedent
feedback, so a1 = ∅, and there is no process noise.

Second, at each time, the correct labels yn depend on the rule list dn, the observed features
xn, and fully-observed rule feedback rn from the users. The dependence on dn and xn occurs
through the capture mechanism k(j(dn, xn,m)). These variables are independent for different time
or sample indexes. This model component is described in Sec. 4.4.1, which gives the rule list
likelihood function with feedback p(yn|dn,xn, rn, ~αn). The features and rule feedback indirectly
influence the rule list through the likelihood function, which modifies the rule list posterior. There
is no rule feedback at time n = 1, so r1 = ∅.

Third, the model allows for the possibility that the correct labels yn are not available and
noisy truth labels zn are observed instead. We assume there is a fixed set of NT truthers, indexed
by the set T . For each sample zn,m ∈ zn, let Tn,m be the set containing the indexes of the
truthers who provided a truth label, and let zn,m,t denote the noisy truth label from the tth truther,
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t ∈ Tn,m. The noisy truth label zn,m,t is assumed to depend on the unseen correct label yn,m and 
unobserved, independent truthing-error noise or truthing errors wn,m,t. The truthing errors for 
the mth sample at time n are wn,m = (wn,m,t)t∈Tn,m , and the collective truthing errors at time n 
are wn = (wn,1, . . . , wn,Mn ). Sec. 4.4.2 and Sec. 4.4.3 develop this part of the model, which uses 
fractional truth labels y̌n, y̌n,m, y̌n,m,` calculated from zn to obtain an approximation for the rule 
list likelihood function p(zn|dn, xn, rn, ~αn).

Finally, the model assumes that the consequent for each antecedent akn(j) ∈ dn has a Dirichlet-
multinomial distribution, just as in BRL. However, the Dirichlet hyperparameters αn+1,kn(j) now 
depend on the previous hyperparameters αn,kn(j), the features and labels (xn, yn) captured by the 
antecedent, and the rule feedback rn. Because the rule list might change over time, the model 
considers all antecedents ak ∈ A, not just the antecedents in the rule list at the current time. The 
hyperparameter update is given in Sec. 4.4.1 and Sec. 4.4.3. It includes a decay constant 0 < κ ≤ 1,
so the influence of past data decreases exponentially if κ 6= 1.

Figure 13 shows the detailed graphical model for two time steps, which is a first-order hidden
Markov model (HMM). By dropping many of the details, we arrive at the simplified HMM in
Figure 14.

4.2 ANALOGY WITH RECURSIVE BAYESIAN TRACKING

As mentioned previously, RBRL is analogous to recursive Bayesian tracking (RBT), which is
reviewed in App. C. RBT is a recursive procedure for estimating the state of a dynamical system as

it changes over time. The state space is usually a continuous space S′, such as RN , and the system 
state at time n is s′n ∈ S′. The system is assumed to evolve according to a state-space model that

 

  

is driven by a known control input a′n and unknown process noise vn−1. The system output y
is determined by the state and known direct-feed control inputs x′n and r . However, y is not 
observed directly because of interference by measurement noise w , so only noisy observations z
are available.

In RBRL, the state space is the set of all possible rule lists D formed from A, so it is a finite—
and hence discrete—space, and the state is the rule list dn. Table 5 shows many of the 
correspondences between RBRL and RBT. A minor difference between RBRL and RBT is that 
RBRL must maintain the hyperparameters ~αn and use them to obtain the posterior predictive from 

the selected rule list d̂n.
A block diagram of the RBRL state-space model appears in Figure 15; the corresponding 

block diagram for RBT is Figure C.1. The two components of the RBRL state-space model—the 
feedback and dynamics model and the truthing model—are described in Sec. 4.3 and Sec. 4.4.

4.3 ANTECEDENT FEEDBACK AND RULE LIST DYNAMICS

Let dn ∈ D be a rule list at time n. To represent how it changes over time, we introduce a 
feedback and dynamics model of the form:

dn = f(dn−1,an,vn−1). (12)
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TABLE 4

Recursive Bayesian Rule Lists Elements.
An asterisk indicates new elements that do not appear in Table 3.

Symbol Type Description

akn(j) antecedent jth antecedent in rule list dn or kn(j)th antece-
dent in antecedent set A

an abstract *antecedent feedback

~αn = (αn,0, . . . ,αn,|A|) list of vectors Dirichlet parameters for all antecedents
αn,k = (αn,k,1, . . . , αn,k,L) vector Dirichlet parameters for kth antecedent
αn,k,` scalar Dirichlet parameter for kth antecedent, `th label
dn = (akn(1), . . . , akn(|dn|)) ordered list rule list
kn(j) scalar index into antecedent set A for jth antecedent in

rule list dn
Mn scalar number of samples
Nj(dn, rn) = (Nj,1(dn, rn),
. . . , Nj,L(dn, rn))

vector *pseudocounts of all labels in rn for patterns in
rn captured by the jth antecedent in rule list dn

Nj,`(dn, rn) scalar *pseudocount of `th label in rn for patterns in rn
captured by the jth antecedent in rule list dn

Nj(dn,xn,yn) =
(Nj,1(dn,xn,yn), . . . ,
Nj,L(dn,xn,yn))

vector counts of all labels in yn for samples in xn cap-
tured by the jth antecedent in rule list dn

Nj,`(dn,xn,yn) scalar count of `th label in yn for samples in xn captured
by the jth antecedent in rule list dn

rn abstract *rule feedback

Tn,m set of indexes *indexes of truthers for mth sample

~θn = (θn,0, . . . ,θn,|A|) list of vectors multinomial parameters for all consequents
θn,k = (θn,k,1, . . . , θn,k,L) vector multinomial parameters for kth consequent
θn,k,` scalar multinomial parameter for kth consequent, `th

label
vn abstract *process noise
wn = (wn,1, . . . , wn,Mn

) list of sets *all truthing errors
wn,m = (wn,m,t)t∈Tn,m

set *truthing errors for mth sample
wn,m,t abstract *truthing error for mth sample, tth truther
xn = (xn,1, . . . , xn,Mn

) list of vectors all features
xn,m vector features for mth sample

yn = (yn,1, . . . , yn,Mn) list of scalars all correct labels
yn,m scalar correct label for mth sample
y̌n = (y̌n,1, . . . , y̌n,Mn

) list of vectors *all fractional truth labels
y̌n,m = (y̌n,m,1, . . . , y̌n,m,L) vector *fractional truth labels for mth sample
y̌n,m,` scalar *fractional truth label for mth sample, `th label
zn = (zn,1, . . . , zn,Mn

) list of sets *all noisy truth labels
zn,m = (zn,m,t)t∈Tn,m

set *noisy truth labels for mth sample
zn,m,t scalar *noisy truth label for mth sample from tth trut-

her
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Figure 12. Generative model for BRL initialization and RBRL temporal evolution
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Figure 13. Generative model for RBRL over two time steps
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Figure 14. Simplified hidden Markov model for recursive Bayesian rule lists

We assume that f can be written as a composition of functions:

d̃n = fa(dn−1,an), (13)

dn = fv(d̃n,vn−1), (14)

so that
dn = fv(fa(dn−1,an),vn−1). (15)

We choose this composition because the user’s antecedent feedback an will be based on the previous
rule list dn−1, so it should be applied before the process noise.

The antecedent feedback an behaves like a control input in RBT that modifies dn−1 to yield
the intermediate rule list d̃n, while the process noise vn−1 causes random changes to d̃n to produce
dn. Examples of antecedent feedback could be the addition or removal of an antecedent or a re-
ordering of antecedents. The specific types of antecedent feedback will depend on the application
and interface, so an is described as “abstract” in Table 5.

4.3.1 Rule List Transition Distribution

We require the rule list transition distribution p(dn|dn−1,an), which is analogous to the state
transition distribution in RBT [cf. (C.9)]. It will be useful to show explicit rule list indexes in the
discrete state space D. Suppose that dn−1 is the jth rule list in D and dn is the ith rule list in D;
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TABLE 5

Analogous Entities in RBRL and RBT

Recursive Bayesian Rule Lists Recursive Bayesian Tracking

rule list set D state space S′

time index n time index n
rule list dn state s′n

antecedent feedback an control input a′n
rule feedback rn direct-feed control input r′n

features xn direct-feed control input x′n
correct labels yn system output y′n

noisy truth labels zn noisy observations z′n
hyperparameters ~αn —

feedback and dynamics model f (12) control and dynamics model f ′ (C.1)
feedback model fa (13) control model f ′a′ (C.3)
dynamics model fv (14) dynamics model f ′v′ (C.4)

process noise vn−1 process noise v′n−1
rule list transition distribution p(dn|dn−1,an) state transition distribution p(s′n|s′n−1, a′n)

truthing model h (24) measurement model h′ (C.2)
correct-label model hxr (25) system-output model h′x′r′ (C.6)
truthing-error model hw (26) measurement-error model h′w′ (C.7)

truthing errors wn measurement noise w′n
rule list likelihood function p(zn|dn,xn, rn) state likelihood function p(z′n|s′n, x′n, r′n)

feedback and dynamics update (34) control and dynamics update (C.9)
rule list prior at n: p(dn|z1:n−1,x1:n−1,a1:n, r1:n−1) state prior at n: p(s′n|z′1:n−1, x′1:n−1, a′1:n, r′1:n−1)

training update (35) measurement update (C.10)
rule list posterior at n: p(dn|z1:n,x1:n,a1:n, r1:n) state posterior at n: p(s′n|z′1:n, x′1:n, a′1:n, r′1:n)

trained rule list d̂n filtered state estimate ŝ′n
posterior predictive —
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Figure 15. Detailed state-space model in recursive Bayesian rule lists

that is, dn−1 = d(j) ∈ D and dn = d(i) ∈ D, where dn−1 and dn are random, and d(i) and d(j) are
fixed, non-random elements of D.

Then from (13),

p(dn|dn−1,an) = p(d(i)
n |d

(j)
n−1,an)

= p(dn = d(i)|dn−1 = d(j),an)

(a)
= p(dn = d(i)|d̃n = fa(d

(j),an))

(b)
=

∑
vn−1∈{v′n−1:fv(fa(d(j),an),v′n−1)=d(i)}

p(vn−1).

Here, (a) is from (13): d(j) and an are passed into fa, which yields the intermediate rule list
fa(d

(j),an). Then (b) indicates that the desired conditional probability is equal to the probability
that the process noise will drive the intermediate rule list to d(i) when (14) is applied.

We can drop the indexing to write this relationship as two steps:

d̃n = fa(dn−1,an), (16)
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and

p(dn|dn−1,an)︸ ︷︷ ︸
rule list transition

distribution

= p(dn|fa(dn−1,an)) (17)

= p(dn|d̃n)︸ ︷︷ ︸
switching

distribution

(18)

=
∑

vn−1∈{v′n−1:fv(d̃n,v′n−1)=dn}

p(vn−1|d̃n). (19)

We refer to p(dn|d̃n) as the switching distribution since it gives the conditional probability of d̃n
switching to dn. The equations show that the process noise could depend on the intermediate
rule list d̃n. Although the last expression requires a summation over all possible process noise
realizations that yield dn from d̃n, the implementations we consider will not requite such prohibitive
computation.

The process noise and dynamics model (14) are mainly shown to complete the analogy with
RBT. In RBT, they are typically based on a physically-motivated dynamical systems model and
used to determine the state transition distribution [cf. (C.9)]. For RBRL, the rule list transition
distribution p(dn|dn−1,an) or switching distribution p(dn|d̃n) is the important relationship. As
long as one of these distributions can be computed, RBRL can be implemented without explicitly
specifying the process-noise distribution and dynamics model (e.g., Alg. 6 and Sec. 6.5.2).

4.3.2 Static Case

One simple but important situation is the static case, in which there is neither antecedent
feedback nor process noise. Then (12) reduces to dn ≡ dn−1, and the transition distribution is just

p(dn|dn−1,an) =

{
1, if dn = dn−1;

0, otherwise.
(20)

Because the rule list remains constant in this case, the problem of estimating the rule list is
parameter estimation rather than tracking [22]. The particle filter-based algorithms discussed in
Sec. 6 are therefore not applicable. However, the discrete nature of RBRL means the grid-based
algorithms of Sec. 5 are still valid; Sec. 5.2 and Alg. 7 provide a simple, efficient algorithm.

4.4 RULE FEEDBACK AND TRUTHING ISSUES

This section covers the RBRL truthing model, which handles rule feedback and various tru-
thing issues.

4.4.1 Correct Truth and Rule Feedback

This section assumes that zn ≡ yn, meaning that the correct labels yn are available; they
correspond to the pristine system output y′n in RBT. Sec. 4.4.2 and Sec. 4.4.3 discuss a model for
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truthing issues in which the correct labels are unavailable, and noisy truth labels must be used
instead.

Rule feedback, denoted by rn, allows users to encourage or discourage antecedent-consequent
pairs in the likelihood function (Sec. 3.4.2). The BRL likelihood function is already based on
a Dirichlet-multinomial model, so for each antecedent akn(j) ∈ dn, we can apply rule feedback
through an additional length-L pseudocount vector Nj(dn, rn) = (Nj,1(dn, rn), . . . , Nj,L(dn, rn))
that behaves just like Nj(dn,xn,yn). The posterior consequent for an,kn(j) becomes {yn|θn,kn(j) ∼
Multinomial(θn,kn(j)), θn,kn(j) ∼ Dirichlet(αn,kn(j) + Nj(dn,xn,yn) + Nj(dn, rn))}.

Including the rule-feedback pseudocounts in (6) or (7) gives the rule list likelihood function
with feedback :

p(yn|dn,xn, rn, ~αn) =

|dn|∏
j=0

Γ(
∑L

`=1 αn,kn(j),`)

Γ(
∑L

`=1Nj,`(dn,xn,yn) +Nj,`(dn, rn) + αn,kn(j),`)

×
L∏
`=1

Γ(Nj,`(dn,xn,yn) +Nj,`(dn, rn) + αn,kn(j),`)

Γ(αn,kn(j),`)
(21)

∝
|dn|∏
j=0

∏L
`=1 Γ(Nj,`(dn,xn,yn) +Nj,`(dn, rn) + αn,kn(j),`)

Γ(
∑L

`=1Nj,`(dn,xn,yn) +Nj,`(dn, rn) + αn,kn(j),`)
. (22)

Here, Nj,`(dn,xn,yn) and Nj,`(dn, rn) highlight that the former originates from the training data
(xn,yn), and the latter arises from the rule feedback rn.

We must also update the Dirichlet hyperparameters ~αn for the next time index. For antece-
dent ak ∈ A, we assume that αn+1,k is equal to αn,k from the posterior consequent, scaled by a
decay constant 0 < κ ≤ 1 and bounded below by unity. For the antecedents in dn, the Dirichlet-
multinomial posterior applies, and for the other antecedents, the hyperparameters do not change.
Thus,

αn+1,k =

{
max{1, κ · (αn,k + Nk(dn,xn,yn) + Nk(dn, rn))}, if ak ∈ dn;

max{1, κ ·αn,k}, if ak 6∈ dn.
(23)

There are many ways rule feedback from users can be mapped into pseudocounts. A direct
mapping would require that the user say something like, “The pattern (first-class, child) should act
like ten more observations of the label ‘survived,’ ” for the Titanic example. More sophisticated
mappings specific to the problem domain, user base, and human-machine interface will likely be
needed for different applications, so rn is described as “abstract” in Table 4, and the details of the
mapping are left as an implementation detail.

4.4.2 Truthing Model

Classifier training normally requires the correct label for each training feature vector. How-
ever, RBRL can account for certain truthing issues by introducing a truthing model of the form

zn = h(dn,xn, rn,wn), (24)
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which is analogous to the measurement model (C.2) in RBT. Here, wn models truthing errors and
corresponds to measurement noise w′n in RBT, and zn represents noisy truth labels and is analogous
to noisy observations z′n in RBT.

We assume that the model can be expressed as a composition of functions. First, the correct
labels yn obey [cf. (C.6)]

yn = hxr(dn,xn, rn). (25)

Second, the noisy truth labels zn are a function of the correct labels and truthing errors [cf. (C.7)]:

zn = hw(yn,wn). (26)

Then the model becomes [cf. (C.8)]

zn = hw(hxr(dn,xn, rn),wn). (27)

In (25), the correct labels yn correspond to the pristine system output y′n in RBT. The
features xn and rule feedback rn behave like direct-feed control inputs in RBT. In (26), the correct
labels are corrupted by truthing errors, which produce in the observed noisy truth labels.

4.4.3 Multiple Truthers and Truthing Errors

This section further defines the truthing model to allow RBRL to handle incorrect truth
labels and multiple, conflicting truth labels from different truthers.12 The truthing model appears
in Figures 12 and 13 as the plates indexed by t. It yields an approximate expression for the rule
list likelihood function p(zn|dn,xn, rn, ~αn).

Recall that xn,m and yn,m are the features and the unobserved correct label for the mth
sample. Also recall that T = {1, 2, . . . , NT } is the set of indexes of the truthers, who independently
provide noisy truth labels for the samples. Next, consider the sample xn,m. Let the non-empty set
Tn,m ⊆ T contain the indexes of the truthers who labeled xn,m. For t ∈ Tn,m, define zn,m,t ∈ L
as the noisy truth label assigned to xn,m by the tth truther. Hence, a different combination of
truthers can provide truth labels for different samples. The set of noisy truth labels for xn,m is
zn,m = {zn,m,t : t ∈ Tn,m}. Finally, the set of noisy truth labels for all samples at time n is denoted
by zn = {zn,1, . . . , zn,Mn}.

We assume that the truthing-error distribution p(zt|y) is known for all t ∈ T , where here we
consider a single sample. Dawid and Skene [36] describe two general methods for estimating the
conditional distribution p(zt|y) for each truther. First, if one has a data set with known correct
labels, then one can have each truther examine the features and assign labels, and finally one can
compute the maximum-likelihood estimate of p(zt|y) for each truther. Second, if one does not have
a data set with known correct labels, then one can have each truther assign labels and apply the
expectation-maximization (EM) algorithm [37] to find a locally optimum estimate of p(zt|y) for
each truther. Other authors [38] [39] [40] [41] have built on this technique and constructed different

12 The approach described in this section could also be included in initial BRL training.
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models for p(zt|y), but Dawid and Skene considered the most general case, in which p(zt|y) is an

L× L array, say A(t), where A
(t)
ij = p(zt = j|y = i) for (i, j) ∈ L × L.

We do not define hxr as a deterministic function in (25). After all, if we could do so, then
we would not need to train a classifier in the first place. Rather, we continue to use the Dirichlet-
multinomial model of Sec. 4.4.1.

In RBT, the measurement noise and measurement model are part of a dynamical systems
model and used to obtain the state likelihood function. For RBRL, we mainly need the rule list
likelihood function p(zn|dn,xn, rn, ~αn). It is not necessary to define the truthing-error distribution
and hw explicitly in (26); instead, we make two assumptions that let us find the approximate rule
list likelihood function. First, we assume that the noisy truth labels assigned by the tth truther are
independent and distributed according to p(zt|y). Second, we assume that the noisy truth labels
for xn,m are conditionally independent given yn,m; that is, the truthers do not influence each other.
Hence, zn,m,t depends only on the correct label yn,m and truther index t.

These assumptions mean that, for a given combination of y and t, the noisy truth labels are
independent and identically distributed. However, if the correct label or truther index changes, then
a different conditional distribution applies.13 This dependence is shown by the dependence of wn,m,t
on yn,m and t in Figures 12 and 13. We could also define a trivial function like zn,m,t = yn,m+wn,m,t
and then specify p(wn,m,t|yn,m, t) in terms of p(zt|y), but this step is unnecessary.

These assumptions give

p(zn,m|yn,m, dn, xn,m, rn, ~αn) =
∏

t∈Tn,m

p(zn,m,t|yn,m, dn, xn,m, rn, ~αn)

(a)
=

∏
t∈Tn,m

p(zn,m,t|yn,m), (28)

where (a) is from (26). If there are no truthing errors, then all truthers in Tn,m assign the same
correct label yn,m, and

p(zn,m,t|yn,m) =

{
1, if zn,m,t = yn,m;

0, otherwise.
(29)

When correct truth was assumed as in Sec. 4.4.1, the properties of the Dirichlet-multinomial
distribution allowed us to express the likelihood function in terms ofNj,`(dn,xn, zn) andNj,`(dn, rn).
The presence of truthing errors does not allow such a solution because the posterior consequent
no longer has a Dirichlet-multinomial distribution. Nevertheless, we can still exploit the pseudo-
count interpretation of the Dirichlet hyperparameters to obtain an approximation to the likelihood
function.

We assume that the unknown correct labels indeed have a Dirichlet-multinomial distribution,
and for each sample (xn,m, zn,m), we use it to apportion the unit count for the unknown correct

13 It is also straightforward to include dependence on additional attributes, such as sample difficulty [40] [41]. If it
is denoted by δ, then p(zt|y) can be replaced by p(zt|y, δ).
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label yn,m among the possible labels. For the mth sample, we form a vector of fractional truth

labels y̌n,m = (y̌n,m,1, . . . , y̌n,m,L) with y̌n,m,` ≥ 0, ` = 1, . . . , L, and
∑L

`=1 y̌n,m,` = 1. Then

y̌n,m,` = p(yn,m = `|dn, xn,m, zn,m, ~α)

(a)
∝ p(zn,m|dn, xn,m, yn,m = `, ~αn) p(yn,m = `|dn, xn,m, ~αn)

= p(zn,m|yn,m = `) p(yn,m = `|dn, xn,m, ~αn)

(b)
=

( ∏
t∈Tn,m

p(zn,m,t|yn,m = `)

)
αn,k(j(dn,xn,m)),`∑L

`′=1 αn,k(j(dn,xn,m)),`′)
, ` = 1, . . . , L;m = 1, . . . ,Mn, (30)

where (a) is because of Bayes’ rule; and in (b), the first term is from (28) and the second term
is from (A.9) since θn,k(j(dn,xn,m)) ∼ Dirichlet(αn,k(j(dn,xn,m))). We use this equation to construct
y̌n,m, and pseudocode appears in Alg. 3. If there are no truthing errors, then (29) applies, and y̌n,m
becomes a vector of zeros except at element `, where it equals one. Hence, this approach properly
reduces to the case of correct truth.

Finally, we substitute y̌n for yn to obtain the approximate rule list likelihood function [cf. (21)
and (22)]:

p(zn|dn,xn, rn, ~αn) ≈ p(yn|dn,xn, rn, ~αn)
∣∣
yn=y̌n

=

|dn|∏
j=0

Γ(
∑L

`=1 αn,kn(j),`)

Γ(
∑L

`=1Nj,`(dn,xn, y̌n) +Nj,`(dn, rn) + αn,kn(j),`)

×
L∏
`=1

Γ(Nj,`(dn,xn, y̌n) +Nj,`(dn, rn) + αn,kn(j),`)

Γ(αn,kn(j),`)
(31)

∝
|dn|∏
j=0

∏L
`=1 Γ(Nj,`(dn,xn, y̌n) +Nj,`(dn, rn) + αn,kn(j),`)

Γ(
∑L

`=1Nj,`(dn,xn, y̌n) +Nj,`(dn, rn) + αn,kn(j),`)
. (32)

We also get the approximate hyperparameter update [cf. (23)]

αn+1,k =

{
max{1, κ · (αn,k + Nk(dn,xn, y̌n) + Nk(dn, rn))}, if ak ∈ dn;

max{1, κ ·αn,k}, if ak 6∈ dn;
(33)

In the above equations, Nj,` and Nk now allow for fractional count assignments for the different
labels. The hyperparameter update is implemented in Alg. 4. If the decay factor κ ≡ 1 and all
elements of α are greater than or equal to one, then Alg. 5 can be used instead.

4.5 RECURSIVE ADAPTATION

Given the results of the preceding sections, the derivation of the RBRL adaptation procedure
is identical to that for RBT (App. C.3), except that we use a summation instead of an integral
because the state space is discrete rather than continuous. A block diagram appears in Figure 16,
which is analogous to Figure C.4 for RBT.
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Algorithm 3. Apportionment of correct label counts. Whether or not correct truth is assumed is treated as
a global setting, as is the set of truthing-error probabilities {p(zt|y)}NT

t=1. The set Tm can be determined from
zm, so it does not appear as an argument.

1: function y̌← ApportionLabels(d,x, z, ~α)
2: if correct truth then
3: y̌← z
4: else
5: M ← |x| . Number of samples
6: for m← 1 : M do . Loop over samples
7: Determine Tm from zm . Truther indexes for mth sample
8: Z ← 0 . Normalization term
9: for `← 1 : L do . Loop over possible labels

10: y̌m,` ←
(∏

t∈Tm p(zm,t|ym = `)
)

αn,k(j(dn,xn,m)),`∑L
`′=1 αn,k(j(dn,xn,m)),`′ )

. Eq.(30)

11: Z ← Z + y̌m,`
12: end for
13: y̌m ← (y̌m,1/Z, . . . , y̌m,L/Z)
14: end for
15: y̌← (y̌1, . . . , y̌M )
16: end if
17: end function

Algorithm 4. Dirichlet hyperparameter update. The decay factor 0 < κ ≤ 1 defaults to 1 if omitted.

1: function ~αn+1 ← UpdateDirichlets(d,x, y̌, r, ~αn, κ = 1)
2: for k ← 0 : |A| do . The length of ~α is |A|+ 1
3: if ak ∈ d then . Eq. (33)
4: αn+1,k ← max{1, κ · (αn,k + Nk(d,x, y̌) + Nk(d, r))}
5: else
6: αn+1,k ← max{1, κ ·αn,k}
7: end if
8: end for
9: end function

Algorithm 5. Simplified Dirichlet hyperparameter update when the decay factor κ ≡ 1 and all elements of
the initial Dirichlet hyperparameter vector α are greater than or equal to one.

1: function ~αn+1 ← UpdateDirichlets(d,x, y̌, r, ~αn)
2: ~αn+1 ← ~αn . Copy hyperparameters
3: for j ← 0 : |d| do
4: αn+1,k(j) ← αn,k(j) + Nk(j)(d,x, y̌) + Nk(j)(d, r) . Eq. (33) for ak ∈ d only
5: end for
6: end function
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Figure 16. Adaptation procedure in recursive Bayesian rule lists

4.5.1 Feedback and Dynamics Update

The RBRL feedback and dynamics update corresponds to (C.9). It includes the new antecedent
feedback an and permits the rule list to switch between time n − 1 and time n. The derivation
follows:

p(dn|z1:n−1,x1:n−1,a1:n, r1:n−1, ~α1:n−1)︸ ︷︷ ︸
rule list prior at time n

=

|D|∑
k=1

p(dn|d(k)
n−1, z1:n−1,x1:n−1,a1:n, r1:n−1, ~α1:n−1)

× p(d(k)
n−1|z1:n−1,x1:n−1,a1:n, r1:n−1, ~α1:n−1)

(a)
=

|D|∑
k=1

p(dn|d(k)
n−1,an)︸ ︷︷ ︸

rule list transition
distribution

p(d
(k)
n−1|z1:n−1,x1:n−1,a1:n−1, r1:n−1, ~α1:n−1)︸ ︷︷ ︸

rule list posterior at time n− 1

, (34)

where (a) is because (12) applies to the first term and because d
(k)
n−1 does not depend on an in the

second term. When n = 2, the rule list posterior at time 1 is available from initial BRL training,
and when n > 2, it is available from the training update at time n− 1, which is derived next.
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4.5.2 Training Update

When the new training data zn and xn becomes available, RBRL applies its training update,
which corresponds to (C.10). The derivation is:

p(dn|z1:n,x1:n,a1:n, r1:n, ~α1:n)︸ ︷︷ ︸
rule list posterior at time n

(a)
∝ p(zn|dn, z1:n−1,x1:n,a1:n, r1:n, ~α1:n)p(dn|z1:n−1,x1:n,a1:n, r1:n, ~α1:n)

(b)
= p(zn|dn,xn, rn, ~αn)︸ ︷︷ ︸

rule list likelihood
function

p(dn|z1:n−1,x1:n−1,a1:n, r1:n−1, ~α1:n−1)︸ ︷︷ ︸
rule list prior at time n

, (35)

where (a) is from Bayes’ rule w.r.t. zn, and (b) is because (27) applies to the first term and (12)
applies to the second term. The rule list prior at time n is available from the feedback and dynamics
update (34).

If we assume the truth labels are correct (zn ≡ yn) as in Sec. 4.4.1, then we use (21) or (22) for
the rule list likelihood function, and we use (23) to update ~αn for the next time index. If we instead
adopt the truthing model in Sec. 4.4.3, then we apply (30) to apportion the unknown correct label
occurrences and construct y̌n from zn, and we use the approximate likelihood function (31) or (32)
and the approximate hyperparameter update (33).

We point out the different ways the antecedent feedback, rule feedback, and features behave,
and their relation to RBT. The antecedent feedback an (RBT control input) modifies the rule
list (RBT state) through the rule list transition distribution (RBT state transition distribution).
It forces a change to the rule list, but it does not influence the correct labels yn, so it does not
have a pseudocount interpretation. In contrast, the rule feedback rn (RBT direct-feed control
input) drives the patterns and correct labels yn (RBT system output), rather than the rule list. It
indirectly affects the rule list through the likelihood function via artificial occurrences of patterns
and correct labels, so it has the Dirichlet-multinomial pseudocount interpretation. Finally, the
observed features xn (another RBT direct-feed control input) act in the same manner as the rule
feedback, but they are actual observations of patterns and associated correct labels yn, rather than
pseudo-observations.

4.6 POSTERIOR PREDICTIVE

In ordinary RBT, once the state estimate has been computed, the answer is ready. In RBRL,
the selected rule list d̂n only contains antecedents; to classify an unlabeled feature vector x̃n by
using d̂n to predict ỹn, the Dirichlet-multinomial consequents are needed, so the posterior predictive
is required.
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If the truth labels are assumed to be correct (zn ≡ yn), then the posterior predictive for a
point estimate d̂n is the same as (10) with rule feedback included:

p(ỹn = `|x̃n, d̂n,x1:n,y1:n,a1:n, r1:n, ~α1:n)

(a)
= p(ỹn = `|x̃n, d̂n,xn,yn,an, rn, ~αn)

=
αn,k(j(d̂n,x̃n)),` +Nj(d̂n,x̃n),`(d̂n,xn,yn) +Nj(d̂n,x̃n),`(d̂n, rn)∑L

`′=1 αn,k(j(d̂n,x̃n)),`′ +Nj(d̂n,x̃n),`′(d̂n,xn,yn) +Nj(d̂n,x̃n),`′(d̂n, rn)
, ` = 1, . . . , L,

(36)

where (a) is from (27). If we use the model of Sec. 4.4.3, then we just replace yn with y̌n in this
equation.
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5. GRID-BASED RBRL (GB-RBRL)

Grid-based RBRL (GB-RBRL) is theoretically optimal for a finite state space. It maintains
the set D of all possible rule lists and updates the posterior probability of each one as more data
becomes available. In most cases, D will be too large to make GB-RBRL tractable, so in practice,
GB-RBRL will operate over D, the set of rule lists from initial BRL training, instead of D. This
section covers the GB-RBRL algorithm because it could be useful as an optimal reference and
because it includes the static case in which there are no dynamics.

5.1 RECURSION

The derivation of the GB-RBRL recursion is exactly the same as in [22, Sec. III-B], so we
only present the main results. GB-RBRL maintains three sets of corresponding items:

• The set of sampled rule lists D = {d(i)}|D|i=1 from initial BRL training.

• The corresponding set of non-negative weights ~Wn = {w(i)
n }|D|i=1. Each w

(i)
n ∝ p(d

(i)
n |z1:n,x1:n,

a1:n, r1:n, ~α
(i)
1:n), and the weights are normalized to sum to one.

• The corresponding set of Dirichlet hyperparameters ~An = {~α(i)
n }
|D|
i=1.

At time n = 1, regular BRL training is performed. It provides d̂1, D, ~W1, and ~A2. For n ≥ 2,
GB-RBRL implements the recursion in Sec. 4.5 directly to update ~Wn and ~An+1 from ~Wn−1, ~An,
zn, xn, an, and rn. Pseudocode appears in Alg. 6.

The rule list posterior at time n is

p(dn|z1:n,x1:n,a1:n, r1:n, ~α1:n) ≈
|D|∑
i=1

w(i)
n I(dn = d(i)

n ),

where I(x) is the indicator function: I(x) = 1 if x is true, and I(x) = 0 if not. Hence, D and ~Wn

can be used to compute BRL-point. The pseudocode returns d̂n and its associated hyperparameters
so the posterior predictive can be computed.

The loop that calculates w̃(i) requires a summation over all rule lists in D:

w̃(i) ←
|D|∑
j=1

w
(j)
n−1p(d

(i)
n |d̃(j)), i = 1, 2, . . . , |D|,

so a simplistic implementation of GB-RBRL has complexity O(|D|2). However, if only small rule
list changes are possible between adjacent time steps, then for each d(i), there will only be a small
number of intermediate rule lists that can transition to it. A more efficient implementation could
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Algorithm 6. Grid-Based Recursive Bayesian Rule Lists (GB-RBRL). The decay factor 0 < κ ≤ 1 defaults
to one if omitted.

1: function
[
d̂n, ~̂αn, ~Wn, ~An+1

]
← GB-RBRL(D, ~Wn−1, ~An, zn,xn,an, rn, κ = 1)

2: for j ← 1 : |D| do . Antecedent feedback

3: d̃(j) ← fa(d
(j)
n−1,an) . cf. (16)

4: end for
5: for i← 1 : |D| do . Feedback and dynamics update

6: w̃(i) ←
|D|∑
j=1

w
(j)
n−1p(d

(i)
n |d̃(j)) . cf. (18) and (34)

7: end for
8: for i← 1 : |D| do . Training update (unnormalized)

9: y̌(i) ← ApportionLabels(d
(i)
n ,xn, zn, ~α

(i)
n )

10: w
(i)
n ← w̃(i) p(y̌(i)|d(i)

n ,xn, rn, ~α
(i)
n )︸ ︷︷ ︸

rule list likelihood
function

. cf. (35)

11: end for
12: Z ←

∑|D|
i=1w

(i)
n . Normalization term

13: for i← 1 : |D| do

14: w
(i)
n ← w

(i)
n /Z . Normalize and update weights ~Wn

15: ~α
(i)
n+1 ← UpdateDirichlets(d

(i)
n ,xn, y̌

(i), rn, ~α
(i)
n , κ) . Update hyperparameters ~An+1

16: end for
17:

[
d̂n, ı̂

]
← BRLPoint(D, ~Wn)

18: ~̂αn ← ~α(ı̂)
n . Hyperparameters for d̂n

19: end function
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reduce computations by pre-computing the set D̃(i) = {d̃(j) ∈ D : p(d(i)|d̃(j)) > 0} and a look-up
table with p(d(i)|d̃(j)). Then

w̃(i) ←
∑

d̃(j)∈D̃(i)

w
(j)
n−1p(d

(i)
n |d̃(j)), i = 1, 2, . . . , |D|.

Since |D̃(i)| � |D|, ∀i, complexity could be reduced to O(max{|D̃(i)|}Di=1 · |D|)� O(|D|2).

It might also appear that ~An must store |D|(|A| + 1) Dirichlet parameter vectors, each of
length L. However, the rule lists are fixed, so for each i, ~α(i)

n only needs to store the Dirichlet
parameters for the antecedents in d(i) and a0.

5.2 STATIC-CASE RBRL (SC-RBRL)

An important special case of GB-RBRL is the static case from Sec. 4.3.2: There is no ante-
cedent feedback an and no process noise. This case corresponds to the common situation in which
one assumes that the generative model does not change, and one simply acquires more data over
time and adjusts the posterior probabilities of the possible rule lists at each time step.

From (20), the feedback and dynamics update can be skipped, which gives the static-case
RBRL (SC-RBRL) algorithm in Alg. 7. SC-RBRL has complexity O(|D|). Even though each rule
list is assumed not to change, the decay factor κ can be used to attenuate the past data and give
SC-RBRL a crude ability to address a slowly-changing environment.

Algorithm 7. Static-Case Recursive Bayesian Rule Lists (SC-RBRL). The decay factor 0 < κ ≤ 1 defaults
to one if omitted.

1: function
[
d̂n, ~̂αn, ~Wn, ~An+1

]
← SC-RBRL(D, ~Wn−1, ~An, zn,xn, rn, κ = 1)

2: for i← 1 : |D| do . Training update only (unnormalized)

3: y̌(i) ← ApportionLabels(d
(i)
n ,xn, zn, ~α

(i)
n )

4: w
(i)
n ← w

(i)
n−1 p(y̌

(i)|d(i)
n ,xn, rn, ~α

(i)
n )︸ ︷︷ ︸

rule list likelihood
function

. cf. (35)

5: end for
6: Z ←

∑|D|
i=1w

(i)
n . Normalization term

7: for i← 1 : |D| do

8: w
(i)
n ← w

(i)
n /Z . Normalize and update weights ~Wn

9: ~α
(i)
n+1 ← UpdateDirichlets(d

(i)
n ,xn, y̌

(i), rn, ~α
(i)
n , κ) . Update hyperparameters ~An+1

10: end for
11:

[
d̂n, ı̂

]
← BRLPoint(D, ~Wn)

12: ~̂αn ← ~α(ı̂)
n . Hyperparameters for d̂n

13: end function
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6. PARTICLE-FILTER RBRL (PF-RBRL)

This section shows how RBRL can be implemented as a particle filter (PF). Particle filtering
is a sequential Monte Carlo (SMC) method [22] [23] [42]; it is one of the most successful nonlinear,
non-Gaussian tracking methods available, is broadly used, and has a well-studied theory. Whereas
a grid-based method like GB-RBRL maintains a fixed set of distinct sample states (rule lists) and
updates their probabilities over time, PF methods maintain a collection of (possibly duplicated)
sample states, each of which evolves through the dynamical model, and importance sampling is
used to approximate the state distribution (rule list distribution).

6.1 REVIEW

We quickly review some aspects of PF in the usual RBT context with a continuous state space.

PF maintains a set of Np particles {s′[i]n }Npi=1 and weights {w[i]
n }Npi=1, where s

′[i]
n is a sample state and

w
[i]
n ≥ 0 is its associated weight. We use superscript bracketed indexes instead of parenthesized

indexes because there could be multiple copies of the same state; that is, s
′[i]
n and s

′[j]
n could be

identical, although their weights might differ.

First, the most basic PF form is sequential importance sampling (SIS) [22, Sec. V-A & Alg. 1]
[23], which draws new particles from the importance density q(s′n|s′n−1, u

′
n) and updates the weights

via [22, Eq. (48)]

w[i]
n = w

[i]
n−1

p(z′n|s
′[i]
n , u′n)p(s

′[i]
n |s′[i]n−1, u

′
n)

q(s
′[i]
n |s′[i]n−1, u

′
n)

. (37)

For background, pseudocode appears in Alg. 8, although we will not use SIS because it suffers from
degeneracy : after a small number of cycles, only one particle will have non-negligible weight, and
all other particles will have weights close to zero.

Algorithm 8. Sequential Importance Sampling

1: function
[
ŝ′n, {s′[i]n }Npi=1, {w

[i]
n }Npi=1

]
← SIS({s′[i]n }Npi=1, {w

[i]
n }Npi=1, u

′
n)

2: for i← 1 : Np do . Importance sampling

3: Draw s
′[i]
n ∼ q(s′n|s

′[i]
n−1, u

′
n)

4: w[i]
n ← w

[i]
n−1

p(z′n|s
′[i]
n , u′n)p(s

′[i]
n |s′[i]n−1, u

′
n)

q(s
′[i]
n |s′[i]n−1, un)

. Eq. (37)

5: end for
6: ŝ′n ← SelectEstimate({s′[i]n , w

[i]
n }Npi=1) . e.g.: conditional mean or MAP estimate

7: end function

Degeneracy is measured by the effective sample size Neff [22] [23], which reflects the fact
that the variance of an estimate formed from the Np particles is approximately equivalent to that
formed from Neff samples drawn from the actual distribution. In practice, Neff is approximated by
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the estimated effective sample size N̂eff, which lies between 1 and Np [22, Eq. (51)]:

N̂eff =

 Np∑
i=1

w[i]
n

−1

. (38)

Second, most PF forms perform resampling to protect against degeneracy. When N̂eff falls
below a pre-defined threshold NT , the particles are resampled according to the distribution (39),

and all weights are reset to w
[i]
n = 1/Np. NT = Np/2 is suggested in [23]. A significant amount of

research in particle filtering is concerned with resampling methods [43].

Third, the resampled particles can become highly redundant, a phenomenon known sample
impoverishment. Since particles are resampled according to the posterior, sample states with large
weights are drawn more frequently than those with small weights, and the resampled particles lose
diversity [22, Sec. V-A3] [23, Sec. 3.5]. Sample impoverishment is particularly problematic when
the process noise is small [22, Sec. V-A3]. A variety of techniques have been proposed to combat
sample impoverishment; they include the resample-move algorithm [44], the auxiliary PF [45], and
the regularized PF [46].

Resampling and the variations above allow PF to protect against the effects of degeneracy
and sample impoverishment. PF represents some of the most successful non-linear and/or non-
Gaussian tracking algorithms, and the generic PF (described next for RBRL) works well for many
problems. Under certain mixing conditions, the bias and variance of the PF estimation error can
be uniformly bounded with n [23, Secs. 3.6 & 3.7].

6.2 GENERIC ALGORITHM

Particle-filter RBRL (PF-RBRL) offers a practical, suboptimal SMC tracking algorithm. It
maintains:

• A set of particles ~Dn = {d[i]
n }Npi=1, where d

[i]
n is a candidate rule list that can evolve over time.

• The corresponding set of non-negative weights ~Wn = {w[i]
n }Npi=1.

• The corresponding set of Dirichlet hyperparameters ~An = {~α[i]
n }

Np
i=1.

We re-use the symbols ~Wn and ~An from GB-RBRL, but we use superscript bracketed indexes

instead of parenthesized indexes because d
[i]
n and d

[j]
n could be identical, unlike in the grid-based

method. The rule list posterior at time n is approximated by [cf. (C.11)]

p(dn|z1:n,x1:n,a1:n,r1:n, ~α1:n) ≈
Np∑
i=1

w[i]
n I(dn = d[i]

n ). (39)

Given the analogy between RBT and RBRL, derivation of PF-RBRL follows exactly the steps
in [22, Sec. V-A]. At time n = 1, regular BRL training produces a set D of candidate rule lists, their
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posterior probabilities, and their Dirichlet hyperparameter sets. The initial sets ~D1, ~W1, and ~A2 can
be created by replicating the BRL outputs C times and renormalizing the posterior probabilities,
which means Np = C|D|. Alternatively, ~D1, ~W1, and ~A2 can be initialized by sampling Np times
from the BRL outputs according to the BRL-generated posterior probabilities.

Alg. 9 gives the generic PF-RBRL algorithm, which is based on [22, Alg. 3] and [23, SIR/SMC
for Filtering]. The algorithm relies upon an importance distribution q(dn|dn−1, zn,xn,an, rn, ~αn),
which must be specified and from which it must be possible to draw new rule lists:

d[i]
n ∼ q(dn|d

[i]
n−1, zn,xn,an, rn, ~α

[i]
n ). (40)

This sampling step provides PF-RBRL with a way to introduce new antecedents and rule lists.

The weight update is the same as (37):

w[i]
n ∝ w

[i]
n−1

p(zn|d[i]
n ,xn, rn, ~α

[i]
n )p(d

[i]
n |d[i]

n−1,an)

q(d
[i]
n |d[i]

n−1, zn,xn,an, rn, ~α
[i]
n )

. (41)

The algorithm substitutes y̌n for zn into the rule list likelihood function in case the truthing model
(Sec. 4.4.3) is used.

The trained rule list d̂n is selected based on the approximate posterior (39). There can be
multiple particles for the same rule list, so the algorithm uses Alg. 10 to aggregate the weights and
hyperparameters for each unique rule list before computing BRL-point. It returns the aggregated
hyperparameters for d̂n for computing the posterior predictive.

If N̂eff falls below the threshold NT , indicating potential degeneracy, then the algorithm

resamples the candidate rule lists and resets the weights to w
[i]
n = 1/Np, i = 1, . . . , Np. A simple

resampling algorithm is given in [22, Alg. 2]; it has been modified to include the hyperparameters

{~α[i]
n+1}

Np
i=1 and is included as Alg. 11.

6.3 OPTIMAL IMPORTANCE DISTRIBUTION

Selection of a good importance distribution is a critical element of successful PF development,
and it must be possible to draw samples from the chosen distribution. The optimal importance
distribution maximizes the effective sample size, and it is given by [22, Eq. (52)]:

qopt(dn|d[i]
n−1, zn,xn,an, rn, ~α

[i]
n ) = p(dn|d[i]

n−1, zn,xn,an, rn, ~α
[i]
n )

(a)
=
p(zn|dn, d[i]

n−1,xn,an, rn, ~α
[i]
n )p(dn|d[i]

n−1,xn,an, rn, ~α
[i]
n )

p(zn|d[i]
n−1,xn,an, rn, ~α

[i]
n )

(b)
=

rule list
likelihood function︷ ︸︸ ︷

p(zn|dn,xn, rn, ~α[i]
n )

rule list transition
distribution︷ ︸︸ ︷

p(dn|d[i]
n−1,an)

p(zn|d[i]
n−1,xn,an, rn, ~α

[i]
n )

, (42)
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Algorithm 9. Generic Particle-Filter Recursive Bayesian Rule Lists (PF-RBRL). The decay factor 0 <
κ ≤ 1 defaults to one if omitted.

1: function
[
d̂n, ~̂αn, ~Dn, ~Wn, ~An+1

]
← PF-RBRL( ~Dn−1, ~Wn−1, ~An, zn,xn,an, rn, κ = 1)

2: for i← 1 : Np do . Importance sampling

3: y̌[i] ← ApportionLabels(d
[i]
n ,xn, zn, ~α

[i]
n )

4: Draw d
[i]
n ∼ q(dn|d[i]

n−1, zn,xn,an, rn, ~α
[i]
n ) . Eq. (40)

5: w[i]
n ← w

[i]
n−1

rule list likelihood
function︷ ︸︸ ︷

p(y̌[i]|d[i]
n ,xn, rn, ~α

[i]
n )

rule list transition
distribution︷ ︸︸ ︷

p(d[i]
n |d

[i]
n−1,an)

q(d
[i]
n |d[i]

n−1, zn,xn,an, rn, ~α
[i]
n )

. Eq. (41)

6: end for
7: Z ←

∑Np
i=1w

[i]
n . Normalization term

8: for i← 1 : Np do

9: w
[i]
n ← w

[i]
n /Z . Normalize and update weights ~Wn

10: ~α
[i]
n+1 ← UpdateDirichlets(d

[i]
n ,xn, y̌

[i], rn, ~α
[i]
n , κ) . Update hyperparameters ~An+1

11: end for
12:

[
~D′, ~W ′, ~A′

]
← AggregateParticles( ~Dn, ~Wn, ~An+1)

13:
[
d̂n, ı̂

]
← BRLPoint( ~D′, ~W ′)

14: ~̂αn ← ı̂th element of ~A′ . Hyperparameters for d̂n

15: N̂eff ←
(∑Np

i=1w
[i]
n

)−1
. Eq. (38)

16: if N̂eff < NT then
17:

[
~Dn, ~Wn, ~An+1

]
← Resample( ~Dn, ~Wn, ~An+1)

18: end if
19: end function

Algorithm 10. Particle Aggregation. FindUniqueParticles returns the set of unique particles and, for
each unique particle, the indexes of the particles in ~D that match it.

1: function
[
~D′, ~W ′, ~A′

]
← AggregateParticles( ~D, ~W, ~A)

2: [ ~D′, I]← FindUniqueParticles( ~D)
3: for j ← 1 : | ~D′| do . Note that Ij = {i : d[i] ∈ ~D, d[i] = d(j) ∈ ~D′} below

4: w′(j) ←
∑

i∈Ij w
[i] . Aggregate weights ~W ′

5: ~α(j) ← (w′(j))−1
∑

i∈Ij w
[i]~α[i] . Aggregate hyperparameters ~A′

6: end for
7: end function
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Algorithm 11. Resampling. This algorithm is from [22, Alg. 2] and includes the Dirichlet hyperparameters.

1: function
[
{d[j]

n }Npj=1, {w
[j]
n }Npj=1, {~α

[j]
n+1}

Np
j=1

]
← Resample({d[i]

n }Npj=1, {w
[i]
n }Npj=1, {~α

[i]
n+1}

Np
i=1)

2: c1 ← 0 . Initialize the CDF
3: for i← 2 : Np do

4: ci ← ci−1 + w
[i]
n . Construct CDF

5: end for
6: i← 1 . Start at the bottom of the CDF
7: Draw u1 ∼ Uniform[0, 1/Np] . Draw a starting point
8: for j ← 1 : Np do
9: uj ← u1 + (j − 1)/Np . Move along the CDF

10: while uj > ci do
11: i← i+ 1
12: end while
13: d

[j]
n ← d

[i]
n . Assign sample

14: w
[j]
n ← 1/Np . Assign weight

15: ~α
[j]
n+1 ← ~α

[i]
n+1 . Assign hyperparameters

16: end for
17: end function

where (a) is Bayes’ rule, and (b) is from (12) and (24). The numerator is the product of the rule
list likelihood function and the rule list transition distribution.

For a continuous state space, the denominator requires integration and usually cannot be
computed except for a few special cases [22]. For a discrete state space like RBRL, the denominator
can be calculated as

p(zn|d[i]
n−1,xn,an, rn, ~α

[i]
n ) =

Np∑
i′=1

p(zn|d[i′]
n ,xn, rn, ~α

[i]
n )p(d[i′]

n |d
[i]
n−1,an), i = 1, . . . , Np. (43)

RBRL has a finite state space, so at least in theory, the optimal importance distribution could
be employed. However, evaluating (43) for all particles has complexity O(N2

p ), which could be
impractical.

6.4 SAMPLING IMPORTANCE RESAMPLING RBRL (SIR-RBRL)

One popular PF form is the sampling importance resampling (SIR) filter, originally called the
“bootstrap filter” [42] [22, Sec. V-B1]. It uses the rule list transition distribution p(dn|dn−1,an) as
the importance distribution, so

qSIR(dn|d[i]
n−1, zn,xn,an, rn, ~α

[i]
n ) = p(dn|d[i]

n−1,an). (44)

Comparing this equation with (42), we see that the SIR filter neglects the influence of the rule
list likelihood function p(zn|dn,xn, rn, ~α[i]

n ). However, as a practical matter, from Sec. 4.3, we
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can readily sample from this importance distribution by first computing d̃n = fa(d
[i]
n−1,an), then

drawing a process noise sample v distributed p(vn−1), and finally computing d
[i]
n = fv(d̃n,v).

The weight update (41) becomes

w[i]
n ∝ w

[i]
n−1p(zn|d

[i]
n ,xn, rn, ~α

[i]
n ). (45)

Alg. 12 presents the sampling importance resampling RBRL (SIR-RBRL) algorithm. It resamples
when N̂eff becomes sufficiently small, although the original SIR filter resamples on every iteration

The SIR importance distribution ignores zn and xn, so the SIR filter “can be inefficient and
is sensitive to outliers” [22, Sec. V-B1]. However, the complexity of the SIR filter is O(Np) rather
than O(N2

p ), which makes it tractable. In addition, the SIR filter has only mild requirements:
One mainly needs to be able to draw realizations of the process noise and evaluate the likelihood
function. The next section describes a process-noise sampling technique.

Algorithm 12. Sampling Importance Resampling Recursive Bayesian Rule Lists (SIR-RBRL). The decay
factor 0 < κ ≤ 1 defaults to one if omitted.

1: function
[
d̂n, ~̂αn, ~Dn, ~Wn, ~An+1

]
← SIR-RBRL( ~Dn−1, ~Wn−1, ~An, zn,xn,an, rn, κ = 1)

2: for i← 1 : Np do . Importance sampling

3: y̌[i] ← ApportionLabels(d
[i]
n ,xn, zn, ~α

[i]
n )

4: d̃n ← fa(d
[i]
n−1,an) . Eq. (13)

5: Draw v ∼ p(vn−1|d̃n) . See Alg. 13 or 14, for example

6: d
[i]
n ← fv(d̃n,v) . Eq. (14)

7: w[i]
n ← w

[i]
n−1 p(y̌

[i]|d[i]
n ,xn, rn, ~α

[i]
n )︸ ︷︷ ︸

rule list likelihood
function

. Eq. (45)

8: end for
9: Z ←

∑Np
i=1w

[i]
n . Normalization term

10: for i← 1 : Np do

11: w
[i]
n ← w

[i]
n /Z . Normalize and update weights ~Wn

12: ~α
[i]
n+1 ← UpdateDirichlets(d

[i]
n ,xn, y̌

[i], rn, ~α
[i]
n , κ) . Update hyperparameters ~An+1

13: end for
14:

[
~D′, ~W ′, ~A′

]
← AggregateParticles( ~Dn, ~Wn, ~An+1)

15:
[
d̂n, ı̂

]
← BRLPoint( ~D′, ~W ′)

16: ~̂αn ← ı̂th element of ~A′ . Hyperparameters for d̂n

17: N̂eff ←
(∑Np

i=1w
[i]
n

)−1
. Eq. (38)

18: if N̂eff < NT then
19:

[
~Dn, ~Wn, ~An+1

]
← Resample( ~Dn, ~Wn, ~An+1)

20: end if
21: end function
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6.5 PROCESS-NOISE SAMPLING

Some approaches for sampling the process noise follow.

6.5.1 Independent Process Noise

The process noise vn−1 can be sampled in a straightforward manner by re-purposing the BRL
MCMC proposals (move, add, remove) in Sec. 3.5. One possibility is to define vn−1 to be a sequence
of N MCMC proposals, where N ∼ Geometric(ν), and let each proposal element vn−1(m), m = 1,
. . . , N , be uniformly distributed over {move, add, remove}. Then

p(vn−1|ν) = p(N |ν)

N∏
m=1

p(vn−1(m))

= (1− ν)Nν ×
N∏
m=1

(1/3).

Here, the geometric RV has parameter ν ∈ [0, 1] and gives the number of failures prior to the first
success for a series of independent Bernoulli(ν) trials. The distribution has support {0, 1, . . .}, and
larger values of ν make smaller values of N more probable than large ones. The distribution could
also be truncated to limit the maximum length of vn−1. If a maximum length of one is desired,
then a Bernoulli distribution could replace the geometric distribution.

A simple implementation is shown in Alg. 13. When dn = fv(d̃n,vn−1) is computed, it applies
the proposals in vn−1 sequentially. If a proposal is impossible (e.g., if the rule list becomes empty
and the next proposal is “remove”), then it is skipped.

Algorithm 13. Independent process-noise sampling using MCMC proposals

1: function v← SampleProcessNoise(ν)
2: Draw N ∼ Geometric(ν) . Number of changes
3: for i← 1 : N do
4: Draw p ∼ Categorical((1/3, 1/3, 1/3)) . Equiprobable over {move, add, remove}
5: if p = move then
6: v(i)← move
7: else if p = add then
8: v(i)← add
9: else

10: v(i)← remove
11: end if
12: end for
13: end function
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6.5.2 Dependent Process Noise

The above model makes the distribution of vn−1 independent of the intermediate rule list d̃n.
It does not impose any constraints on the length or average cardinality of the resulting rule list dn,
so over time the rule list might become too complicated to interpret and might overfit the training
data.

These problems can be addressed by making vn−1 dependent on d̃n [cf. Sec. 4.3.1] and the
BRL parameters λ, η, and β. Alg. 14 describes one possible procedure for doing so. Rather than
explicitly sampling vn−1 and passing it into fv(d̃n,vn−1), it computes dn directly given d̃n, so it
would replace Lines 5 and 6 in Alg. 12. This approach is shown by the dashed lines in Figure 12
and Figure 13. The models do not show d̃n, but they show that vn−1 depends on dn−1 and an−1,
which together determine d̃n.

The algorithm uses a geometric RV to sample the number of changes to make to d̃n. For each
change, it samples a list length using the same term from the BRL rule list prior (3). The difference
between the sampled list length and the current list length is passed into a logistic function to select
the probabilities of drawing “add” and “remove” changes. If the difference is negative, then “add”
is favored; if it is positive, then “remove” is favored; and if it is zero, then these changes are
equiprobable. The logistic function includes a non-negative parameter ζ; if ζ = 0, then “add” and
“remove” remain equiprobable regardless of the sample list length. The remaining probability is
reserved for the “move” change.

Next, the change is sampled from a categorical RV with support over {move, add, remove}.
If “move” or “remove” is drawn, then it is applied equiprobably over the antecedents in the current
rule list. If “add” is drawn, then the cardinality and antecedent terms from the BRL rule list prior
are applied to favor sampling an antecedent with the desired cardinality.

This processing encourages, but does not force, the rule list to conform to the parameters λ,
η, and β; these parameters could be made time-varying if desired.

6.6 REMARKS

Some remarks on GB-RBRL and PF-RBRL are merited.

6.6.1 Remarks on GB-RBRL

GB-RBRL is theoretically optimal if it operates over the entire set of rule lists D. However,
in practice it must operate over D, the set of sampled rule lists. It does not suffer from degeneracy
or sample impoverishment. As mentioned in Sec. 5.1, it has general complexity O(|D|2), which
could make it impractical, but when only small changes to a rule list can occur, the complexity
could be greatly reduced.

GB-RBRL also includes the important static case (Sec. 4.3.2 and Sec. 5.2), in which the
rule list does not change over time. Then GB-RBRL reduces to SC-RBRL (Alg. 7), which has
complexity O(|D|). Particle filtering is not appropriate for the static case because the problem
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Algorithm 14. Applying dependent process-noise sampling. The parameter ζ must be non-negative.

1: function d← ApplyDependentProcessNoise(d̃, ν,A, λ, η,β, ζ)
2: d← d̃
3: Draw N ∼ Geometric(ν) . Number of changes
4: for i← 1 : N do
5: Draw m ∼ p(m|A, λ) = (λm/m!)∑|A|

j=0(λj/j!)
. List-length term from BRL prior (3)

6: s← 1
1+e−ζ(m−|d|)

. Logistic function

7: θchange ←
(

1
3 ,

2
3s,

2
3(1− s)

)
. Categorical parameters over {move, add, remove}

8: Draw p ∼ Categorical(θchange) . Sample the change
9: if p = move then

10: Draw j uniformly over {1, 2, . . . , |d|}
11: Draw j′ uniformly over {1, 2, . . . , |d|} \ {j}
12: d← swap jth and j′th antecedents in d
13: else if p = add then
14: Draw j uniformly over {1, 2, . . . , |d|+ 1}
15: Draw c ∼ (ηc/c!)∑

c′∈C(ak(<j))
(ηc′/c′!)

. Cardinality from BRL prior (3)

16: Draw ak′ ∼
Γ(

∑
k∈K(ak(<j),ck(j))

βk)

Γ(1+
∑
k∈K(ak(<j),ck(j))

βk)

1+Γ(βk(j))

Γ(βk(j))
. Antecedent from BRL prior (3)

17: d← insert ak′ before jth index of d
18: else
19: Draw j uniformly over {1, 2, . . . , |d|}
20: d← remove jth antecedent from d
21: end if
22: end for
23: end function
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is actually parameter estimation rather than tracking, and it will experience degeneracy and/or
sample impoverishment.

6.6.2 Remarks on PF-RBRL

If one assumes that the rule list can change over time, then PF-RBRL becomes suitable and
may be preferable to GB-RBRL. Particle filtering actually requires a sufficient amount of process
noise to work (Sec. 6.1); if the process noise is too small, then sample impoverishment can occur.14

The SIR-RBRL version of PF-RBRL has complexity O(Np), and process-noise sampling can be
realized by re-purposing the BRL MCMC proposals or components of the BRL rule list prior.

Although we have assumed that the antecedent set A and sampled rule list set D remain
constant, they can easily be allowed to vary over time. For example, dynamic frequent pattern
mining could discover new antecedents, so A could become time-varying. The importance sampling
and process-noise sampling steps in PF-RBRL could introduce the new antecedents and rule lists.
Of course, the user-specified parameters λ, η, and β, and the other parameters like κ, ν, and ζ
could also be made time-varying. It is not immediately clear how GB-RBRL could support these
capabilities.

Next, RBT typically assumes a continuous state space and uses mean-squared error as a
distance measure. RBRL uses a finite, and hence discrete, state space, and we have not defined
a distance measure for rule lists.15 RBT PF algorithms like the auxiliary PF [45] and regularized
PF [46] were developed for a continuous state space [23], so they might not carry over to PF-
RBRL. Similarly, PF convergence results [47] [48] have assumed a continuous state space, so they
might not apply directly to PF-RBRL. For example, the study of bias and variance in PF requires
the definition of a distance metric. This consideration is similar to the remark by Letham et al.
in [12, Sec. 2.7] that it is difficult to interpret the conditional mean of a collection of sample rule
lists.

Finally, sample impoverishment is a concern in conventional PF, but the discrete nature of
RBRL might make it less of a concern in PF-RBRL. To maintain diversity, it might suffice to
resample and then perturb the resampled rule lists, which might be similar to the resample-move
algorithm [44].

14 This situation is reminiscent of the linear Gaussian case, in which the Kalman filter is asymptotically unbiased
if the process noise sufficiently excites the dynamics model [20] [21].

15 Levenshtein distance or a similar edit distance could likely be adopted as a rule list distance measure.
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7. SUMMARY

User trust in automation and machine learning depends on several factors. This work has
emphasized three important factors: good performance, interpretability, and adaptability. These 
factors serve the goal of the Adaptable Interpretable Machine Learning (AIM) program: To create
ML algorithms that users can understand and that keep learning so users will trust them and
actually use them.

We have further focused on supervised classification with Bayesian Rule Lists (BRL), a
recently-published, human-understandable decision-list classifier that is competitive with state-
of-the-art, non-interpretable classifiers on many problems. We sought to enable BRL to adapt
to new data and user feedback. We identified a powerful analogy between BRL adaptation and
recursive Bayesian tracking (RBT). This analogy, called Recursive Bayesian Rule Lists (RBRL),
has several appealing properties, some of which appear to be novel.

7.1 RBRL PROPERTIES

Some key properties of RBRL follow.

7.1.1 Feature and Label User Feedback

BRL’s exploitation of pre-mined patterns means that, when providing truth labels for new
training data, a user can tell RBRL which patterns led him or her to choose those labels. As a
result, the user can potentially correct cases in which the classifier got “the right answer but for
the wrong reason.”

For conventional classifier adaptation methods like relevance feedback or active learning, such
feedback is impossible: the user can only indicate the correct labels, but there is no way for the user to 
indicate the pattern that led him or her to make that decision. The user can only hope that the
classifier figures out the relationship. Of course, RBRL also allows conventional, label-only feedback.

This capability allows the user to encourage preferred rule lists over competing ones. Letham
et al. point out that BRL can produce many rule lists with nearly the same performance [12, Sec. 5];
user feedback can separate rule lists that contain preferred patterns from the rest.

Also, the rule feedback is incorporated into RBRL via Dirichlet-multinomial distributions, so it
can be expressed in terms of pseudocounts or pseudo-observations. For example, the user might have
years of experience, but the training data might only have been collected recently. The user can
provide pseudocounts that reflect cases that are not sufficiently represented in the training data.

7.1.2 Efficient Adaptation

The RBRL adaptation procedure is highly efficient. First, it is recursive, in the sense that it
only needs the new data and user feedback and the most recent set of candidate rule lists. There
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is no need to store or accumulate past data and feedback. This aspect can make RBRL suitable 
for streaming applications, and it can give it a fixed memory and computational footprint.

Second, adaptation in RBRL is non-iterative. Regular BRL training uses Markov Chain 
Monte Carlo (MCMC) sampling, which requires iterating a Markov chain many times until it 
converges to its stationary distribution. Anywhere from 104 to 106 or more iterations might be 
needed. In contrast, RBRL adaptation occurs in a single pass.

Third, most of the RBRL calculations are highly parallelizable. The normalization and 
resampling operations can be more complicated to parallelize, but they can occur in the 
background while a user is examining RBRL’s results. For many applications, they can likely 
be performed much faster than new data and user feedback are acquired.

7.1.3 Dataset Shift

RBRL can include a model for dataset shift, which is analogous to the state dynamics model 
in RBT. Antecedent feedback acts like a control input that changes the rule list. Along with 
process noise, it affects the rule list prior through the transition distribution. It does not have a 
pseudocount interpretation.

7.1.4 Multiple Noisy Truth Labels

RBRL can also handle noisy truth labels from multiple truthers, provided that the conditional 
distributions of the truthers’ labels given the correct label can be estimated (e.g., with the EM algo-
rithm). This property results from the analogy between the correct labels and the pristine system 
output in RBT and from the analogy between the noisy truth labels and the noisy observations in 
RBT.

Rule feedback and new features act like direct-feed control inputs; they affect the correct 
labels and affect the rule list posterior through the likelihood function. The Dirichlet-multinomial 
consequent gives the rule feedback a pseudocount interpretation.

7.1.5 Interactive Machine Learning

The classifiers generated by RBRL can be understood by users, the users can provide feedback 
on features and labels, and adaptation can be computed in an efficient, highly parallel manner. 
Although RBRL algorithms remain to be implemented in FY18, the combination of the above 
properties suggest that RBRL should be well-suited for interactive machine learning applications.

7.2 RBRL ALGORITHMS

The RBT analogy also means that several algorithms for RBRL are readily available. We 
have described two main types of algorithms: grid-based RBRL (GB-RBRL) and particle-filter 
RBRL (PF-RBRL).

GB-RBRL is theoretically optimal, but the state space of rule lists is so large that practical 
implementations will be suboptimal. GB-RBRL includes the special static-case RBRL (SC-RBRL)
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algorithm, which does not support antecedent feedback or dataset shift. However, SC-RBRL cor-
responds to the common situation where one assumes that there is no dataset shift but one merely
acquires more and more data over time. SC-RBRL can also apply an exponential-decay factor to
offer a crude way to adjust to a changing environment.

PF-RBRL includes a generic algorithm that requires an importance distribution. For RBRL,
the optimal importance distribution can theoretically be computed, but doing so is likely to
be impractical. The sampling importance resampling RBRL (SIR-RBRL) algorithm offers a
straightforward, efficient, suboptimal algorithm. It can incorporate the dataset-shift model, and the
resampling step could allow new frequent patterns and candidate rule lists to be introduced over

time.

7.3 PLANS AND FUTURE WORK

Our FY17 work on AIM has laid the foundation for implementing RBRL algorithms. In FY18,
we plan to complete implementations of SC-RBRL and SIR-RBRL. We will conduct experiments
on several real data sets to demonstrate the various RBRL capabilities and measure performance.

Some other potential areas for future work follow. First, RBRL is well-suited to support
interactive machine learning. It also offers offer new visualization and human-machine interface
(HMI) opportunities. In fact, RBRL can potentially go beyond the “interface” in HMI because the
classifiers—not just the interfaces—are designed with the user in mind. These possibilities might also 
be explored in FY18 or in future work.

Second, RBRL can provide users with a best counter-argument against the current pre-

diction.16 This capability is enabled by the collection of candidate rule lists that RBRL already 
maintains. Likewise, separate instances of RBRL—one with and one without user feedback—could
be used to illustrate the separate influence of user feedback.

Finally, it would be worthwhile to look for importance distributions that might improve upon
SIR-RBRL. It would also be interesting to study some of the particle-filter convergence results and
investigate if they can be modified for RBRL.

16 Credit for this idea goes to Cynthia Rudin.
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APPENDIX A: REVIEW OF RELEVANT RANDOM VARIABLES

A.1 CATEGORICAL AND MULTINOMIAL

A.1.1 Categorical

Without loss of generality, a categorical RV over L categories is a scalar RV that takes values
in {1, 2, . . . , L}. Its distribution is parameterized by a vector θ = (θ1, θ2, . . . , θL) with θ` ≥ 0, ∀`,
and

∑L
`=1 θ` = 1. For y ∼ Categorical(θ), the PMF is

p(y|θ) =
L∏
`=1

θ
I(`=y)
` = θy, y = 1, 2, . . . , L, (A.1)

and p(y|θ) = 0 for y 6∈ {1, 2, . . . , L}. When L = 2, the categorical RV reduces to the Bernoulli RV.

The result of M independent Categorical(θ) trials is y = (y1, y2, . . . , yM ), a vector of length
M , where each element ym is an integer giving the category chosen on the mth categorical trial. A
graphical model is shown in Figure A.1. The PMF of y is

p(y|θ) =

L∏
`=1

θ
N`(y)
`

=
M∏
m=1

L∏
`=1

θ
I(ym=`)
`

=

L∏
`=1

M∏
m=1

θ
I(ym=`)
`

(a)
=

L∏
`=1

θ
N`(y)
` , (A.2)

where in (a), N`(y) is the number of times category ` occurs in y, and

L∑
`=1

N`(y) = M. (A.3)

A.1.2 Multinomial

A multinomial RV ~y ∼ Multinomial(M,θ) is a length-L random vector ~y = (~y1, ~y2, . . . , ~yL),
where ~y` is an integer with the number of occurrences of the `th category in M independent
Categorical(θ) trials. Its distribution is parameterized by M , the number of categorical trials,
and θ = (θ1, θ2, . . . , θL), the parameter vector for the Categorical(θ) RVs. Figure A.2 displays a
graphical model. The multinomial PMF is

p(~y|M,θ) =

(
M

~y1 ~y2 · · · ~yL

)
θ~y11 θ

~y2
2 · · · θ

~yL
L =

M !

~y1!~y2! · · · ~yL!

L∏
`=1

θ~y`` , (A.4)
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Figure A.1. Independent categorical RVs graphi-
cal model: M independent Categorical(θ) trials

Figure A.2. Multinomial graphical model: Single
Multinomial(M,θ) trial

where ~y` ∈ {0, 1, . . . ,M}, ∀`, and
∑L

`=1 ~y` = M . When L = 2, the multinomial RV reduces to the
binomial RV.

A.1.3 Relationship

The categorical and multinomial RVs are closely related, as evident from Figures A.1 and A.2
and the PMFs in (A.2) and (A.4). The difference is whether one observes M individual categorical
RVs (y) or the number of occurrences (~y) of each category.

Since the multinomial RV summarizes the individual categorical RVs, its distribution must
account for their possible combinations, which leads to the multinomial coefficient in (A.4) that is
absent from (A.2). In addition, the length of y varies with M while the length of ~y is always L.

When M = 1, the Categorical(θ) RV y is a scalar y = y ∈ {1, . . . , L}. The corresponding
Multinomial(1,θ) RV ~y is a length-L vector of the form (0, . . . , 0, 1, 0, . . . , 0), which has a one at
the yth element (i.e., ~yy = 1) and zeros at all other elements (~y` = 0, ` 6= y); this form of ~y is called
one-hot encoding. In this case, both PMFs evaluate to θy, so y and ~y are essentially equivalent
except that one is a scalar, and the other is a one-hot encoded vector. For these reasons, the
terms “categorical” and “multinomial” are sometimes used interchangeably, and “M independent
Multinomial(θ)” RVs actually refers to M independent Categorical(θ) or Multinomial(1,θ) RVs.

A.2 DIRICHLET

A Dirichlet RV over the open (L − 1)-dimensional simplex is a length-L random vector
θ = (θ1, θ2, . . . , θL), where θ` ≥ 0, ∀`, and

∑L
`=1 θ` = 1. Its distribution is parameterized by a

parameter vector α = (α1, α2, . . . , αL) with α` > 0, ` = 1, . . . , L. The elements of α are known as
“concentration parameters.”

The PDF of θ ∼ Dirichlet(α) is [33] [32]

p(θ|α) =
1

B(α)
θα1−1

1 θα2−1
2 · · · θαL−1

L =
Γ(
∑L

`=1 α`)∏L
`=1 Γ(α`)

L∏
`=1

θα`−1
` , θ` ≥ 0,∀`;

∑L
`=1 θ` = 1; (A.5)
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Figure A.3. Dirichlet-categorical graphical 
model: M independent Categorical(θ) trials with 
θ ∼ Dirichlet(α)

Figure A.4. Dirichlet-multinomial graphical 
model: Single Multinomial(M, θ) trial with 
θ ∼ Dirichlet(α)

where B(α) =
(∏L

`=1 Γ(α`)
)
/Γ(
∑L

`=1 α`) is the multivariate beta function. When α = (1, . . . , 1),
the PDF becomes p(θ|α = (1, . . . , 1)) = Γ(L) = (L − 1)!, which is the uniform distribution over
the (L− 1)-dimensional simplex. When L = 2, the Dirichlet RV reduces to the beta RV.

A useful relationship is derived next. Since every PDF integrates to one, for θ ∼ Dirichlet(ξ)
with ξ = (ξ1, . . . , ξL),

1 =

∫
p(θ|ξ) dθ

=
Γ(
∑L

`=1 ξ`)∏L
`=1 Γ(ξ`)

∫ L∏
`=1

θξ`−1
` dθ,

which gives ∫ L∏
`=1

θξ`−1
` dθ =

∏L
`=1 Γ(ξ`)

Γ(
∑L

`=1 ξ`)
. (A.6)

A.3 DIRICHLET-CATEGORICAL

The Dirichlet-categorical RV is a length-M vector y of M independent Categorical(θ) trials
with θ|α ∼ Dirichlet(α). It is a compound distribution since θ is itself a Dirichlet(α) RV, and α is
sometimes called a “hyperparameter” or “hyperparameters.” Figure A.3 shows a graphical model
for the Dirichlet-categorical RV. When L = 2, the Dirichlet-categorical distribution reduces to the
beta-Bernoulli distribution.

Because of the mixing of the terms “categorical” and “multinomial,” the Dirichlet-categorical
RV is sometimes referred to as a “Dirichlet-multinomial RV.” This report uses the Dirichlet-
categorical RV, but in keeping with the terminology of Letham et al. [12], the majority of the
report refers to it as a “Dirichlet-multinomial RV.” The Dirichlet-multinomial RV with its stricter
meaning is covered in App. A.4.
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A.3.1 Probability Mass Function

The Dirichlet-categorical PMF is obtained by marginalizing over θ:

p(y|α) =

∫
p(y|θ,α)p(θ|α) dθ

=

∫
p(y|θ)p(θ|α) dθ

(a)
=

∫ ( L∏
`=1

θ
N`(y)
`

)
Γ(
∑L

`=1 α`)∏L
`=1 Γ(α`)

L∏
`=1

θα`−1
` dθ

=
Γ(
∑L

`=1 α`)∏L
`=1 Γ(α`)

∫ L∏
`=1

θ
α`+N`(y)−1
` dθ

(b)
=

Γ(
∑L

`=1 α`)∏L
`=1 Γ(α`)

∏L
`=1 Γ(α` +N`(y))

Γ(
∑L

`=1 α` +N`(y))

=
Γ(
∑L

`=1 α`)

Γ(
∑L

`=1 α` +N`(y))

L∏
`=1

Γ(α` +N`(y))

Γ(α`)
(A.7)

(c)
=

Γ(
∑L

`=1 α`)

Γ(M +
∑L

`=1 α`)

L∏
`=1

Γ(α` +N`(y))

Γ(α`)
, (A.8)

where (a) is from (A.2) and (A.5), (b) is from (A.6) with ξ` = α` +N`(y), and (c) is from (A.3).

If M = 1 so that y = y = `, this expression becomes

p(y = `|α) =
Γ(
∑L

`′=1 α`′)

Γ(1 +
∑L

`′=1 α`′)

Γ(α` + 1)
∏L
`′=1,`′ 6=` Γ(α`′)∏L

`′=1 Γ(α`′)

(a)
=

Γ(
∑L

`′=1 α`′)

(
∑L

`′=1 α`′) · Γ(
∑L

`′=1 α`′)

α` · Γ(α`)

Γ(α`)

=
α`∑L
`′=1 α`′

, (A.9)

where (a) is because Γ(x+ 1) = x · Γ(x), x > 0.
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A.3.2 Posterior for Categorical Parameters

By definition, the prior distribution of θ|α is Dirichlet(α). Given y, the posterior distribution
of θ|y,α is

p(θ|y,α)
(a)
∝ p(y|θ,α)p(θ|α)

= p(y|θ)p(θ|α)

(b)
=

(
L∏
`=1

θ
N`(y)
`

)
1

B(α)

L∏
`=1

θα`−1
`

∝
L∏
`=1

θ
α`+N`(y)−1
` ,

where (a) is Bayes’ rule, and (b) is because the likelihood function for θ is (A.2), viewed as a
function of θ rather than y, and because of (A.5).

The posterior distribution must integrate to one, and from (A.6), the necessary normalization
factor is Γ(

∑L
`=1 α` +N`(y))/

(∏L
`=1 Γ(α` +N`(y))

)
. Hence,

p(θ|y,α) =
Γ(
∑L

`=1 α` +N`(y))∏L
`=1 Γ(α` +N`(y))

L∏
`=1

θ
α`+N`(y)−1
` (A.10)

=
1

B(α + N(y))

L∏
`=1

θ
α`+N`(y)−1
` , (A.11)

where N(y) = (N1(y), . . . , NL(y)).

As a result, the posterior is another Dirichlet distribution: θ|y,α ∼ Dirichlet(α+N(y)). The
posterior Dirichlet parameters are just the prior Dirichlet parameters α plus the occurrence counts
N(y) for the observed data y. For this reason, the prior Dirichlet parameters α can themselves be
interpreted as “pseudocounts” [32], or counts of postulated pseudo-observations made prior to the
observations y.

Finally, since the prior and posterior distributions of θ are both Dirichlet distributions, they
are said to be “conjugate distributions” [32]. The Dirichlet prior is called the “conjugate prior” of
the likelihood function p(y|θ).

A.3.3 Posterior Predictive

Given y, the posterior predictive describes the distribution of ỹ|y,α for a vector ỹ = (ỹ1, . . . ,
ỹM̃ ) of M̃ independent Categorical(θ) RVs, with θ|y,α ∼ Dirichlet(α + N(y)). It is obtained by
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marginalizing over θ:

p(ỹ|y,α) =

∫
p(ỹ|y,θ,α)p(θ|y,α) dθ

=

∫
p(ỹ|θ)p(θ|y,α) dθ

(a)
=

∫ ( L∏
`′=1

θ
N`′ (ỹ)
`′

)
Γ(
∑L

`′=1 α`′ +N`′(y))∏L
`′=1 Γ(α`′ +N`′(y))

L∏
`′=1

θ
α`′+N`′ (y)−1
`′ dθ

=
Γ(
∑L

`′=1 α`′ +N`′(y))∏L
`′=1 Γ(α`′ +N`′(y))

∫ L∏
`′=1

θ
α`′+N`′ (y)+N`′ (ỹ)−1
`′ dθ

(b)
=

Γ(
∑L

`′=1 α`′ +N`′(y))∏L
`′=1 Γ(α`′ +N`′(y))

∏L
`′=1 Γ(α`′ +N`′(y) +N`′(ỹ))

Γ(
∑L

`′=1 α`′ +N`′(y) +N`′(ỹ))

=
Γ(
∑L

`′=1 α`′ +N`′(y))

Γ(
∑L

`′=1 α`′ +N`′(y) +N`′(ỹ))

L∏
`′=1

Γ(α`′ +N`′(y) +N`′(ỹ))

Γ(α`′ +N`′(y))
(A.12)

(c)
=

Γ(
∑L

`′=1 α`′ +N`′(y))

Γ(M̃ +M +
∑L

`′=1 α`′)

L∏
`′=1

Γ(α`′ +N`′(y) +N`′(ỹ))

Γ(α`′ +N`′(y))
, (A.13)

where (a) is from (A.2) and (A.10), and (b) is from (A.6) with ξ`′ = α`′ +N`′(y) +N`′(ỹ), and (c)
is from (A.3). These expressions resemble the PMF forms (A.7) and (A.8).

For the special case M̃ = 1, ỹ = ỹ = ` ∈ {1, . . . , L}, and (A.12) becomes

p(ỹ = `|y,α) =
Γ(
∑L

`′=1 α`′ +N`′(y))

Γ(
∑L

`′=1 α`′ +N`′(y) +N`′(ỹ))

L∏
`′=1

Γ(α`′ +N`′(y) +N`′(ỹ))

Γ(α`′ +N`′(y))

(a)
=

Γ(
∑L

`′=1 α`′ +N`′(y))

Γ(1 +
∑L

`′=1 α`′ +N`′(y))

Γ(α` +N`(y) + 1)
∏L
`′=1,`′ 6=` Γ(α`′ +N`′(y))∏L

`′=1 Γ(α`′ +N`′(y))

=
Γ(
∑L

`′=1 α`′ +N`′(y))

Γ(1 +
∑L

`′=1 α`′ +N`′(y))

Γ(α` +N`(y) + 1)

Γ(α` +N`(y))

(b)
=

Γ(
∑L

`′=1 α`′ +N`′(y))

(
∑L

`′=1 α`′ +N`′(y)) · Γ(
∑L

`′=1 α`′ +N`′(y))

(α` +N`(y)) · Γ(α` +N`(y))

Γ(α` +N`(y))

=
α` +N`(y)∑L

`′=1 α`′ +N`′(y)
(A.14)

(c)
=

α` +N`(y)

M +
∑L

`′=1 α`′
, (A.15)

where (a) is because N`(ỹ) = 1, and N`′(ỹ) = 0, `′ 6= `; (b) applies the relation Γ(x+ 1) = x · Γ(x),
x > 0; and (c) is from (A.3).

Similarly, if no observations y are available, then p(ỹ|α) is the prior predictive; it is just the
PMF (A.7), (A.8), or (A.9) evaluated at y = ỹ.
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A.4 DIRICHLET-MULTINOMIAL

The Dirichlet-multinomial RV is a length-L vector ~y ∼ Multinomial(M,θ) with θ|α ∼
Dirichlet(α). It is a compound distribution, and a graphical model appears in Figure A.4. When
L = 2, it reduces to the beta-binomial distribution. For completeness, expressions for the Dirichlet-
multinomial RV ~y are given here, without derivation.

The PMF is

p(~y|α) =
(M !) Γ(

∑L
`=1 α`)

Γ(
∑L

`=1 α` + ~y`)

L∏
`=1

Γ(α` + ~y`)

(~y`!) Γ(α`)
(A.16)

=
(M !) Γ(

∑L
`=1 α`)

Γ(M +
∑L

`=1 α`)

L∏
`=1

Γ(α` + ~y`)

(~y`!) Γ(α`)
. (A.17)

When M = 1, ~y one-hot encodes the `th category, and the PMF becomes

p(~y = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
= 1 for `th element only

|α) =
α`∑L
`′=1 α`′

. (A.18)

The posterior distribution θ|~y,α ∼ Dirichlet(α + ~y):

p(θ|y,α) =
Γ(
∑L

`=1 α` + ~y`)∏L
`=1 Γ(α` + ~y`)

L∏
`=1

θα`+~y`−1
` (A.19)

=
1

B(α + ~y)

L∏
`=1

θα`+~y`−1
` . (A.20)

The prior and posterior are again conjugate, and the Dirichlet prior is also the conjugate prior of
the likelihood function p(~y|θ) [cf. (A.4)].

The posterior predictive for ~̃y ∼ Multinomial(M̃,θ) and θ|~y,α ∼ Dirichlet(α + ~y) closely
resembles (A.16):

p(~̃y|~y,α) =
(M̃ !) Γ(

∑L
`=1 α` + ~y`)

Γ
(∑L

`=1 α` + ~y` + ~̃y`
) L∏
`=1

Γ(α` + ~y` + ~̃y`)(
~̃y`!
)

Γ(α` + ~y`)
(A.21)

=
(M̃ !) Γ(

∑L
`=1 α` + ~y`)

Γ(M̃ +M +
∑L

`=1 α`)

L∏
`=1

Γ(α` + ~y` + ~̃y`)(
~̃y`!
)

Γ(α` + ~y`)
. (A.22)

For the special case M̃ = 1, this expression becomes

p(~̃y = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
= 1 for `th element only

|~y,α) =
α` + ~y`∑L

`′=1 α`′ + ~y`′
(A.23)

=
α` + ~y`

M +
∑L

`′=1 α`′
. (A.24)

The prior predictive is the PMF (A.16) evaluated at ~y = ~̃y.
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APPENDIX B: NOTES ON BAYESIAN RULE LISTS

This appendix contains some mathematical details from Letham, Rudin, McCormick, and
Madigan [12]. Let A = (a1, a2, . . . , a|A|) be the antecedent set, and let a0 ≡ ∅ be the antecedent
for the default rule. Also let αk = α, k = 0, 1, . . . , |A|, be copies of the Dirichlet hyperparameter
vector α = (α1, . . . , αL), and let ~α = (α0, α1, . . . , α|A|). Next, let d = (ak(1), ak(2), . . . , ak(|d|))
be the rule list. For j = 1, . . . , |d|, let θk(j) = (θk(j),1, . . . , θk(j),L), be the multinomial/categorical
parameter vector for antecedent ak(j), and let k(0) = 0 and θk(0) = θ0 be the vector for the default
rule. Finally, let Nj,`(d,x,y) be the number of samples in (x,y) that are captured by antecedent
ak(j) and have label `, and let Nj(d,x,y) = (Nj,1(d,x,y), . . . , Nj,L(d,x,y)).

To convert our notation to that of Letham et al., one can make the following replacements:
k(j)← j, αk(j),` ← α`, ~α← α, Nj,` ← Nj,`(d,x,y) and Nj(d,x,y)← Nj .

B.1 RULE LIST LIKELIHOOD FUNCTION

The likelihood function is obtained by marginalizing over θk(0), . . . , θk(|d|):

p(y|x, d, ~α) =

∫
· · ·
∫
p(y|x, d,θk(0), . . . ,θk(|d|))p(θk(0), . . . ,θk(|d|)|~α) dθk(0) · · · dθk(|d|)

(a)
=

∫
· · ·
∫
p(y|x, d,θk(0), . . . ,θk(|d|))

|d|∏
j=0

p(θk(j)|αk(j)) dθk(0) · · · dθk(|d|),

where (a) is because the Dirichlet RVs θk(0), . . . , θk(|d|) are independent, and each one only depends
on its corresponding hyperparameter αk(j).

The samples captured by antecedent ak(j) are independent of those captured by the other
antecedents, and they are independently distributed Multinomial(θk(j)) [or Categorical(θk(j))], so

p(y|x, d,θk(0), . . . ,θk(|d|)) =
∏

j:
∑L
`=1Nj,`>0

p(y|x, ak(j),θk(j)),
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where the indexing means that the product only needs to include antecedents that capture at least
one sample. Then

p(y|x, d, ~α) =

∫
· · ·
∫ [ ∏

j:
∑L
`=1Nj,`>0

p(y|x, ak(j),θk(j))

] |d|∏
j=0

p(θk(j)|αk(j)) dθk(0) · · · dθk(|d|)

(a)
=

∫
· · ·
∫ [ ∏

j:
∑L
`=1Nj,`>0

p(y|x, ak(j),θk(j))p(θk(j)|αk(j))

]

×
∏

j:
∑L
`=1Nj,`=0

p(θk(j)|αk(j)) dθk(0) · · · dθk(|d|)

=

[ ∏
j:
∑L
`=1Nj,`>0

∫
p(y|x, ak(j),θk(j))p(θk(j)|αk(j)) dθk(j)︸ ︷︷ ︸

=p(y|x,ak(j),αk(j))

]

×

[ ∏
j:
∑L
`=1Nj,`=0

∫
p(θk(j)|αk(j)) dθk(j)︸ ︷︷ ︸

=1

]

=
∏

j:
∑L
`=1Nj,`>0

p(y|x, ak(j),αk(j)), (B.1)

where (a) splits the product over p(θk(j)|αk(j)) into antecedents that captured at least one sample
and antecedents that did not capture any samples.

Each p(y|x, ak(j),αk(j)) in (B.1) is the PMF of a Dirichlet-multinomial RV for the samples
captured by antecedent ak(j). This PMF is available from (A.7) by replacing N`(y) with Nj,`(d,x,y)
and α` with αk(j),`:

p(y|x, ak(j),αk(j)) =
Γ(
∑L

`=1 αk(j),`)

Γ(
∑L

`=1Nj,`(d,x,y) + αk(j),`)

L∏
`=1

Γ(Nj,`(d,x,y) + αk(j),`)

Γ(αk(j),`)
. (B.2)

Substituting (B.2) into (B.1) gives

p(y|x, d, ~α) =
∏

j:
∑L
`=1Nj,`(d,x,y)>0

Γ(
∑L

`=1 αk(j),`)

Γ(
∑L

`=1Nj,`(d,x,y) + αk(j),`)

L∏
`=1

Γ(Nj,`(d,x,y) + αk(j),`)

Γ(αk(j),`)

(a)
=

|d|∏
j=0

Γ(
∑L

`=1 αk(j),`)

Γ(
∑L

`=1Nj,`(d,x,y) + αk(j),`)

L∏
`=1

Γ(Nj,`(d,x,y) + αk(j),`)

Γ(αk(j),`)
,

where (a) is because, if there are no data samples for antecedent ak(j) (meaning Nj,`(d,x,y) = 0,
∀`), then (B.2) equals unity, and so the product can be safely calculated over all j. The last
equation is the rule list likelihood function (6).
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B.2 POSTERIOR PREDICTIVE FOR POINT ESTIMATE

Given a rule list point estimate d and an unlabeled sample x̃, we want to use d to predict
the label ỹ. Let j(d, x̃) be the index of the first antecedent in d that captures x̃. Then ỹ ∼
Multinomial(θk(j(d,x̃))) and θk(j(d,x̃)) ∼ Dirichlet(α + Nj(d,x̃)), so the posterior predictive is given
by (A.14) with α` ← αk(j(d,x̃)),` and N`(y)← Nk(j(d,x̃))(d,x,y):

p(ỹ = `|x̃, d,x,y, ~α) =
αk(j(d,x̃)),` +Nj(d,x̃),`(d,x,y)∑L

`′=1 αk(j(d,x̃)),`′ +Nj(d,x̃),`′(d,x,y)
, ` = 1, . . . , L,

which is (10).
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APPENDIX C: REVIEW OF RECURSIVE BAYESIAN TRACKING

This section quickly reviews recursive Bayesian tracking (RBT), which is also known as state
estimation and includes Kalman filtering [20] [21] and particle filtering [42]. An excellent overview
of RBT appears in [22].

C.1 STATE-SPACE MODEL

RBT is based on the state-space approach to dynamical systems [49] [50]. We use a prime
to indicate RBT entities. The state at discrete time index n is designated by s′n, a vector in a
D′-dimensional space S′, which can be continuous or discrete. The state-space model is

s′n = f ′(s′n−1, u
′
n, v
′
n−1) (C.1)

z′n = h′(s′n, u
′
n, w

′
n), (C.2)

where the control and dynamics model (C.1) describes how the known control input u′n and random
process noise v′n−1 cause the state to change over time, and the measurement model (C.2) describes
how measurement noise w′n creates of noisy observations z′n. From (C.1), the state sequence s′1,
. . . , s′n−1, s′n, . . . is a first-order Markov process, and from (C.2), the measurement process is
memoryless. The functions f ′ and h′ can be made time-varying if desired.

The model presented here differs from the standard model in two minor ways. First, it includes
a known control input u′n, which is usually omitted. Second, the control and dynamics model (C.1)
includes a direct-feed control input u′n; control systems often use s′n = f ′(s′n−1, u

′
n−1, v

′
n−1), which

delays the effect of the control input by one time step.

The state dynamics model f ′ and assumptions about the process noise v′n−1 determine the
state transition distribution p(s′n|s′n−1, u

′
n). The measurement model h′ and assumptions about

the measurement noise w′n determine the state likelihood function p(z′n|s′n, u′n). The derivation of
RBRL relies on finding suitable forms for these distributions.

C.2 USEFUL FORMS

We make some assumptions about the forms of f ′ and h′ that are useful for making the
analogy with RBRL. They correspond to the detailed state-space model in Figure C.1.

First, we assume the control input has three components, so let u′n = (x′n, a
′
n, r
′
n), so that the

components correspond to xn, an, and rn in RBRL. We also restrict f ′ to functions that can be
expressed as a composition of functions:

s̃′n = f ′a′(s
′
n−1, a

′
n) (C.3)

s′n = f ′v′(s̃
′
n, v
′
n−1), (C.4)

so that
s′n = f ′v′(f

′
a′(s

′
n−1, a

′
n), v′n−1). (C.5)
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Figure C.1. Detailed state-space model in recursive Bayesian tracking

The state s′n−1 first transitions to an intermediate state s̃′n in a non-random way due to the known
control input a′n. Then s̃′n transitions to the state s′n in a stochastic fashion due to the unknown
process noise v′n−1.

Second, we restrict h′ to satisfy

y′n = h′x′r′(s
′
n, x
′
n, r
′
n), (C.6)

z′n = h′w′(y
′
n, w

′
n), (C.7)

so
z′n = h′w′(h

′
x′r′(s

′
n, x
′
n, r
′
n), w′n). (C.8)

Here, y′n is the pristine system output at time n. The direct-feed control inputs x′n and r′n are
so-named because they directly affect the system output; they only have an indirect effect on the
state. The system output is corrupted by measurement noise to produce the noisy observations z′n.

Finally, the above assumptions yield the detailed Hidden Markov model in Figure C.2, Re-
moving the control inputs and noises gives the simplified model in Figure C.3.

C.3 RECURSION

At each time n, RBT estimates the state s′n given all available measurements z′1:n. We quickly
derive the recursive estimation equations for a continuous state space. Figure C.4 displays a block
diagram of the resulting procedure. Let p(s′n−1|z′1:n−1, x

′
1:n−1, a

′
1:n−1, r

′
1:n−1) be available; at time

n = 1, it is just the state prior p(s′0).
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Figure C.2. Detailed hidden Markov model for recursive Bayesian tracking

Figure C.3. Simplified hidden Markov model for recursive Bayesian tracking
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At time n, the control and dynamics update17 uses the known control input a′n to calculate
the state prior at time n according to

p(s′n|z′1:n−1, x
′
1:n−1, a

′
1:n, r

′
1:n−1)︸ ︷︷ ︸

state prior at n

=

∫
p(s′n|s′n−1, z

′
1:n−1, x

′
1:n−1, a

′
1:n, r

′
1:n−1)p(s′n−1|z′1:n−1, x

′
1:n−1, a

′
1:n, r

′
1:n−1) ds′n−1

(a)
=

∫
p(s′n|s′n−1, a

′
n)︸ ︷︷ ︸

state transition
distribution

p(s′n−1|z′1:n−1, x
′
1:n−1, a

′
1:n−1, r

′
1:n−1)︸ ︷︷ ︸

state posterior at n− 1

ds′n−1, (C.9)

where the first term in (a) only depends on s′n−1 and a′n from (C.5), and the second term is because
s′n−1 does not depend on quantities after time n− 1.

The control inputs x′n and r′n and the next observation z′n are then exploited by the measu-
rement update, which calculates the state posterior at time n:

p(s′n|z′1:n, x
′
1:n, a

′
1:n, r

′
1:n)︸ ︷︷ ︸

state posterior at n

(a)
∝ p(z′n|s′n, z′1:n−1, x

′
1:n, a

′
1:n, r

′
1:n)p(s′n|z′1:n−1, x

′
1:n, a

′
1:n, r

′
1:n)

(b)
= p(z′n|s′n, x′n, r′n)︸ ︷︷ ︸

state likelihood
function

p(s′n|z′1:n−1, x
′
1:n−1, a

′
1:n, r

′
1:n−1)︸ ︷︷ ︸

state prior at n

, (C.10)

where (a) is Bayes’ rule; the first term in (b) is from (C.8); and the second term in (b) does not
depend on x′n or r′n because of (C.5). A filtered state estimate ŝ′n can be computed from the state
posterior at time n.18 An optimal estimate like the conditional mean or most probable state is
normally chosen.

C.4 ALGORITHMIC FORMS

The preceding section derived the RBT recursion; this section briefly covers some algorithms
that can be used to implement it and are applicable to RBRL. First, when the state space is
finite, a grid-based method (GBM) provides the theoretically optimal solution [22, Sec. III-B]. The
state distribution becomes a PMF, and the GBM operates by storing every possible state and its
associated probability mass. The control and dynamics update (C.9) becomes a summation rather
than an integral. A GBM is optimal in theory and does not encounter issues of degeneracy, sample
impoverishment, and resampling that arise in other RBT algorithms. However, a GBM can only
be implemented when the state space is static and fairly small.

The second applicable RBT algorithm is particle filtering (PF), a sequential Monte Carlo

(SMC) method. PF maintains N ′ particles or pairs (s
′[i]
n , w

[i]
n ), i = 1, . . . , N ′, where s

′[i]
n is a sample

17 In RBT, this update is usually called the “prediction update,” but we avoid this term to prevent confusion.
18 In RBT, it is also common to compute a predicted state estimate from the state prior at time n before z′n has

been observed. This estimate is of less interest for our purposes than the filtered state estimate.
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Figure C.4. Estimation procedure in recursive Bayesian tracking

state, and w
[i]
n ≥ 0 is its weight. It is possible for s

′[i]
n and s

′[j]
n to be equal, so a superscript bracketed

index is used instead of a parenthesized index. The sample states and weights change over time.
For a continuous state space, PF approximates the posterior distribution as

p(s′n|z′1:n, u
′
1:n) ≈

N ′∑
i=1

w[i]
n δ
(
s′n − s′[i]n

)
, (C.11)

where δ(x) is the Dirac delta function: δ(x) = 0 for x 6= 0, and
∫∞
−∞ f(x)δ(x) dx = f(0). PF

implementations use different resampling tactics to counter the problems of degeneracy and sample
impoverishment.
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GLOSSARY

AIM Adaptable Interpretable Machine Learning

BRL Bayesian Rule Lists

CART Classification and Regression Trees

EM expectation-maximization

FPM frequent pattern mining

FRL Falling Rule Lists

FY fiscal year

GB-RBRL grid-based Recursive Bayesian Rule Lists

GBM grid-based method

HMI human-machine interface

HMM hidden Markov model

MAP maximum a posteriori

MCMC Markov Chain Monte Carlo

MIT Massachusetts Institute of Technology

ML machine learning

NP non-deterministic polynomial time

PDF probability density function

PF particle filter; particle filtering

PF-RBRL particle-filter Recursive Bayesian Rule Lists

PMF probability mass function

RBRL Recursive Bayesian Rule Lists

RBT recursive Bayesian tracking

ROC receiver operating characteristic

RV random variable

SC-RBRL static-case Recursive Bayesian Rule Lists

SIR sampling importance resampling

SIR-RBRL sampling importance resampling Recursive Bayesian Rule Lists

SMC sequential Monte Carlo
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