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Summary 

Novel assessment practices and metrics for evaluating trust in human-autonomy 
teams are needed to develop and calibrate effective team performance. This report 
provides insights into new assessment practices that can help quantify affect-based 
trust by analyzing facial expressivity. Affect-based trust is an emergent attitudinal 
state in which the individual makes attributions about the motives of their robot 
partner1,2 that can have a direct impact on comfort, satisfaction, and attitudes 
toward automation.3 This is critical for future crew stations because each of these 
factors influences how and when we interact with autonomy-enabled systems.  

There are two major outcomes from this research that advance the science in this 
domain and provide direct support to Army initiatives, including the Human 
Autonomy Teaming Essential Research Program and Army Modernization Priority 
Next Generation Combat Vehicle (NGCV). First, we developed a new method for 
grouping individuals prior to engaging in an autonomous driving scenario based on 
demographics, personality traits, response to uncertainty, and initial perceptions 
about trust, stress, and workload associated with interacting with automation. 
Analyses showed that these groups (rather than individuals) had unique differences 
in their reported state-based trust and consequently different patterns of facial 
expressivity while interacting with different levels and reliability patterns of 
automation. These findings suggest that trust calibration metrics may not be equally 
critical for all groups of people, meaning that trust-based interventions (e.g., 
changes in user display features, communication of intent, etc.) may not be 
necessary for all individuals, or may vary depending on group dynamics. 

This report is a more complete version of our published research as part of the 3rd 
International Conference on Intelligent Human System Integration (IHSI): 
Integrating People and Intelligent Systems in Modena, Italy, 19–21 February 2020.4  

  

                                                 
1 Burke C, Sims DE, Lazzara EH, Salas E. Trust in leadership: a multi-level review and integration. 
Leadership Quarterly. 2007;18:606–632. doi:10.1016/j.leaqua.2007.09.006. 
2 McAllister D. Affect- and cognition-based trust as foundations for interpersonal cooperation in 
organizations. Academy of Management Journal. 1995;38:24–59. doi:10.2307/256727. 
3 Schaefer KE, Chen JYC, Szalma JL, Hancock PA. A meta-analysis of factors influencing the 
development of trust in automation: implications for understanding autonomy in future systems. 
Hum Fact. 2016;58:377–400.  
4 Neubauer C, Gremillion G, Perelman B, La Fleur C, Metcalfe J, Schaefer-Lay K. How analysis of 
facial expressions explain affective state and trust-based decisions during interaction with autonomy 
aids. Proceedings of the 3rd International Conference on Intelligent Human Systems Integration: 
Integrating People and Intelligent Systems; 2020 Feb 19–20; Modena, Italy. 
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1. Introduction 

While trust has been shown to be critical for effective teaming, the methods and 
metrics needed to assess team trust need to be more fully developed. The traditional 
measurement practices for evaluating general trust are primarily associated with 
subjective feedback (Yagoda and Gillan 2012; Schaefer et al. 2016), with some 
research supporting behavioral or performance-based response (Freedy et al. 2007). 
More recently, there has been a push for integrating wearable sensing of the human 
to identify psycho-physiological signal differences during an interaction (Marathe 
et al. 2018); however, part of the difficulty in identifying new trust metrics and 
measurement practices is that trust in human-autonomy teams is a complex process.  

Through a large review of the literature, it has been found that there are six 
identified types of trust that impact human-autonomy teams: trust propensity, 
trustworthiness, affect-based trust, cognitive-based trust, situational trust, and 
learned trust (Schaefer et al. Forthcoming 2020). For this work, we are interested 
in identifying possible assessment metrics for evaluating affect-based trust within 
human-autonomy teams. Affect-based trust is an emergent attitudinal state in which 
the individual makes attributions about the motives of the automation (McAllister 
1995; Burke et al. 2007). The reason for this specific focus is that newer autonomy-
enabled technologies, such as automation-enabled driving aids, are being designed 
to help alleviate high-task demands that lead to negative emotional states, poor 
performance, or even dangerous decision-making strategies. Further, simulated 
driving tasks are capable of eliciting large-scale changes in affective response 
(Neubauer et al. 2010); therefore, simulated driving is a valuable domain to identify 
new assessment practices for affect-based trust.  

The current work extends the state of the art by explicitly evaluating facial 
expressions in response to the level and degree of reliability of the automation 
during a leader–follower driving task. We seek to investigate the following two 
research aims: (Aim 1) quantify the effects of a simulated drive on facial 
expressivity in response to the level and reliability of the aid and (Aim 2) robustly 
model trust-based responses using multimodal data streams relating to subjective 
response, demographic and individual difference clustering, and facial expressivity.  

2. Autonomous Driving Background 

Army modernization is demanding increased implementation of driving 
automation, up to and including full autonomy, as a fundamental capability for Next 
Generation Combat Vehicles (Army Modernization Priority #2: NGCV; see 
Purtiman 2018). Though the implementation of driverless technologies has long 
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been a goal of Army science and technology efforts, autonomous driving platforms 
have not enjoyed widespread integration into tactical ground-based platforms. In 
the civilian sector, however, the ever-increasing number of drivers on the road, 
along with added daily demands on our everyday lives, requires humans to juggle 
several tasks with limited bandwidth (often while driving). This inevitably results 
in an increase in the amount of traffic and roadway accidents.  

As such, negative emotional states, such as stress and fatigue, can arise while 
driving. When fatigued, drivers may have difficulty regulating their emotional 
responses, especially in conditions where task-underload is present. Here, drivers 
may cope with low-task demands by withdrawing effort, resulting in a state of 
passive fatigue (Matthews and Desmond 2002; Desmond and Matthews 2009). 
Additionally, stress causes driver attention to narrow, which may interfere with 
concentration and appropriate decision-making and may lead to aggressive driving 
and distraction. The National Highway and Transportation Security Administration 
estimated that there were over 72,000 crashes involving drowsy drivers from 2009 
to 2011 (National Center for Statistics and Analysis 2011), while the estimate of 
stress-related accidents remains unknown. For this reason, it is essential that active 
monitoring systems are developed to alert drivers of unsafe driving conditions. 
Within this domain, technologies relating to computer vision have long been 
employed for enhancing safe driving through detection and alerting systems for 
fatigue (Dong et al. 2011) and emotions relating to stress and impatience (Lisetti 
and Nasoz 2005; Nass et al. 2005). 

Recently, there has been an increased push toward developing intelligent vehicles 
(Little 1997). One such technology that has become increasingly popular is the use 
of automation-enabled assisted driving aids. Examples of these systems include 
adaptive cruise control, hazard detection, and lane monitoring or correcting 
systems. It appears that such systems may promote safer driving by reducing a 
driver’s workload and in turn decreasing stress and fatigue. However, it is also 
possible that these technological advances may result in poorer performance by 
decreasing task engagement (Hancock and Verwey 1997; Desmond et al. 1998) and 
shifting the driver’s attention to personal discomfort and stress symptoms during 
full vehicle automation (Stanton and Young 2005; Neubauer et al. 2012). 
Additionally, prolonged automation use may reduce situation awareness, whereby 
reaction times may increase in response to unexpected events in the roadway 
(Young and Stanton 2002; Young and Stanton 2007; Saxby et al. 2013). Continuous 
automation use may be particularly dangerous when drivers quickly need to take 
back manual control of the vehicle in the case of automation failure (Desmond et 
al. 1998; Saxby et al. 2013; Neubauer et al. 2014). Finally, automation level and 
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transparency are two factors that may leave the human feeling “out of control”, 
which may decrease situation awareness and, in turn, trust in the system.  

Although the benefits and potential dangers of automation use in driving have been 
extensively researched (Desmond et al. 1998; Desmond and Hancock 2001; Young 
and Stanton 2007; Neubauer et al. 2012; Saxby et al. 2013; Neubauer et al. 2014), 
a further issue revolves around the adequate development and assessment of trust. 
As more of the functional tasks of daily life are being changed by the integration of 
autonomy-enabled systems, human-autonomy teaming will be commonplace. A 
misaligned level of trust in the system (i.e., when expectations do not match system 
behaviors) typically results in unnecessary or preemptive human intervention, 
essentially rendering the system ineffective (Parasuraman and Manzey 2010). 
Mitigating this effect, denoted as miscalibrated trust (Sarter et al. 1997), requires 
accurate estimation of underlying psychological traits and states that relate to trust, 
and trust-related decisions.  

Many metrics to measure operator state exist and typically include questionnaire 
assessment; however, these are taken after an operator performs a task, requires 
them to remember how they felt in a given moment, and may reflect subjective bias. 
Additionally, unimodal streams of data may not accurately capture all aspects of an 
affective state or decision. Most of the published research on computer vision 
approaches to operator state detection have focused on fatigue assessment and 
typically relied on analyses focused on eye tracking and head movements (Gu and 
Ji 2004; Zhang and Zhang 2006; Dong et al. 2011). While the relationship between 
trust and facial expressivity has not been studied thoroughly during driving, we 
posit that these methods for measuring emotional response will provide more 
directed insight on understanding affect-based trust. This line of research is critical 
because it will be necessary to develop autonomy-enabled systems that can robustly 
perceive and respond to our emotions as we interact with them if human–agent 
teams are to be successful (Bartlett et al. 2004). In this context, it is vital that 
automated agents not only accurately perceive our affective state but also respond 
appropriately to avoid misinterpreting social cues during collaboration to improve 
decision-making and performance (Scheutz et al. 2006).  

3. Method 

The current study was conducted on an immersive 6-degree-of-freedom motion 
platform equipped with a full driving control interface and a three-screen visual 
presentation system at the US Army Combat Capabilities Development Command 
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(CCDC) Ground Vehicle Systems Center*. The following section describes the 
experimental design, participants, and measures used (see Fig. 1a for a view of the 
apparatus setup).  

3.1 Experimental Design 

A simulated leader–follower driving task was created using SimCreator (Real-Time 
Technologies, Royal Oak, Michigan), which allowed participants to operate a 
simulated vehicle on a two-lane closed-circuit roadway. During this drive, 
participants were instructed to safely navigate the roadway while avoiding 
collisions with all vehicles and pedestrians. Though the participants were not 
explicitly instructed to make any particular use of the driving automation (when 
available), they were encouraged to make their own decisions as to whether using 
the autonomous assistant would be beneficial to the goal of maintaining lane 
position and headway with respect to the lead vehicle. This joint human-automation 
driving task was conducted while simultaneously performing a secondary 
pedestrian classification button-press task (see Figs. 1b and 1c for roadway circuit 
and experimental display).  

The design was a 2 level of automation (level 1 automated speed control only; level 
2 full control of speed and steering) × 2 automation reliability (good; bad) within 
subjects design. Throughout this report, these four driving conditions are referred 
to as speed, good (SG) (i.e., level 1 speed control, high automation reliability); 
speed, bad (SB) (i.e., level 1 speed control, low automation reliability); full, good 
(FG) (i.e., level 2 full control of speed and steering, high automation reliability); 
and full, bad (FB) (i.e., level 2 full control of speed and steering, low automation 
reliability). In addition to the automated driving conditions, participants also 
completed one manual (no automation) drive as a baseline (referred to as the MM 
driving condition). The average drive time around the course for each condition 
lasted approximately 12 min. Full methods including additional information about 
participants, task descriptions, and all measures and procedures can be found in 
Drnec and Metcalfe (2016) and Gremillion et al. (2016).  

                                                 
* Prior to 2019, the CCDC Ground Vehicle Systems Center was referred to as the US Army Tank 
and Automotive Research, Development and Engineering Center. 
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a     b  

c  

Fig. 1 (a) Ride Motion Simulator; (b) simulated roadway circuit; (c) example view of 
leader–follower simulation trajectory and participant view of display, respectively 

3.2 Participants 

Twenty-four participants, ages 18–65 years with normal-to-corrected vision to 
normal vision were recruited. Only participants who had completed all sections of 
data collection were included for this analysis, resulting in a sample size of 19 
participants.  

3.3 Measures 

The larger intention of the paradigm from which the data were obtained was to 
develop a robust set of measures that could detect online changes in the human 
drivers of trust in the driving automation. Given that trust is subject to significant 
individual differences, it was deemed important to record a variety of measures 
spanning the range from subjective self-report to objective behaviors as well as the 
intervening physiological indicators of the underlying psychological processes. For 
a full discussion and rationale behind the paradigm design and measures, see Drnec 
and Metcalfe (2016) and Metcalfe et al. (2017). The following descriptions are 
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those included in data analysis for this report; however, this set does not comprise 
all variables that were recorded per the study design.  

1. Demographics: Although several demographics were collected, only age is 
reported due to the results of the cluster analysis.  

2. Personality: The Big Five Inventory (BFI) is a 44-item questionnaire that 
indexes personality traits relating to extraversion, openness to experience, 
agreeableness, conscientiousness, and neuroticism (John et al. 1991; 2008). 

3. Uncertainty: The Uncertainty Response Scale (URS) is a trait measure that 
contains 48 items designed to predict individual differences in coping with 
uncertainty (Greco and Roger 2001). The URS has three subscales: 
Emotional Uncertainty (EU), Desire for Change (DFC), and Cognitive 
Uncertainty (CU). 

4. Trust: Two scales were used to measure trust—a four-item version of the 
Muir and Moray trust scale (Muir and Moray 1996) and the Checklist for 
Trust in Automation (Jian and Bisantz 1998). 

5. Workload: The NASA-Task Load Index (NASA-TLX) is a standard 
measure of subjective workload based on ratings of task demands and is 
widely used in human performance research (Hart and Staveland 1988). 

6. Stress: The Stress Visual Analogue Scale (SVAS) is a one-item analogue 
scale to identify task-based stress. 

7. Analysis of Facial Expressivity: The participant’s face was continuously 
recorded throughout the task via a webcam mounted to the simulation 
screen. Measures relating to emotional expression were automatically 
extracted through the OpenFace freeware (Baltrušaitis et al. 2018). More 
specifically, OpenFace yields frame-by-frame evidence of facial action unit 
(AU) evidence, which corresponds to specific muscle movements of the 
face. Facial expressions relating to both positive and negative affect (i.e., 
emotions such as happiness, sadness, surprise, fear, anger, and contempt) 
were calculated on a frame-by-frame basis separately for each task, using 
computations of single AU evidence following the Facial Action Coding 
System (Ekman and Friesen 1978). Table 1 outlines the specific AUs 
needed to calculate each universal emotion.   
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Table 1 Facial expression emotion calculation from single AUs (Ekman and Friesen 1978) 

Emotion classification Action units 
Anger 4+5+7+23 

Contempt R12A+R14A 
Disgust 9+15+16 

Fear 1+2+4+5+7+20+26 
Happiness 6+12 
Sadness 1+4+15 
Surprise 1+2+5B+26 

3.4 Clustering Approach 

It is known that individual differences impact trust development (Schaefer and 
Scribner 2015; Schaefer et al. 2016); however, how the understanding of individual 
differences should (or should not) directly feed into the trust calibration process is 
unknown. Given the current state of the literature in this domain, it is difficult and 
in many cases impossible to completely individualize trust-based interventions 
when working with autonomy-enabled systems. Because of this, we employed a 
model-based clustering method to determine the trust-based patterns that emerge 
over subgroups of people in our sample rather than individuals. The process 
described here provides a data-driven means to infer clusters of participants within 
datasets. This analysis approach provides an attractive alternative to k-means 
clustering and related approaches since the analysis does not require a priori 
knowledge of underlying groups and can work with a relatively small sample size 
(see Perelman et al. 2019). 

We employed a mixture modeling approach aimed at revealing subgroups within 
our sample, defined by their traits and state responses to experimental stimuli. This 
statistical technique was selected on the basis that it defines these subgroups in a 
data-driven fashion; this is a contrast to traditional experiment design in which 
groups are experimenter-defined. Flexible mixture modeling (FMM) fits a mixture 
of Gaussian models to the data using expectation maximization (E-M) iteratively 
by minimizing a criterion value. Because mixture models are inherently 
probabilistic, they are amenable to Bayesian analyses. Specifically, when these 
models are generated in a stepwise fashion (i.e., stepwise FMM), exploring a range 
of mixture models containing different numbers of components, the resulting 
mixture models can be compared to one another to prevent overfitting.  

We used an implementation of stepwise FMM from the R Flexmix package (Leisch 
2004; Gruen and Leisch 2007). First, we selected a wide range of data upon which 
to cluster participants, including participant demographics (age), personality traits 
(BFI), response to uncertainty (URS), baseline perceived trust (both trust scales), 
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workload (NASA-TLX), and subjective stress response (SVAS). Second, we 
selected a model driver that was specifically designed to handle continuous data 
(adapted from Tan and Mueller 2016). Next, we generated mixture models 
containing 1 through n-1 components. Fixed variance in the process was set 
relatively low (σ = 0.1), and 200 E-M iterations were permitted to ensure 
convergence to an acceptable solution. Finally, we compared all of the resultant 
mixture models, which contained a range of components, on the basis of Bayes 
Information Criterion (BIC), which balances the model fit against the number of 
components. This process allowed us to determine the number of underlying 
subgroups present in the data, without specifying an overly complex model or 
overfitting the data.  

4. Results 

This section includes results of the flexible mixture modeling approach to 
clustering, and the associated changes in trust ratings and results relating to global 
changes in facial expressivity according to group cluster and driving condition.  

4.1 Clustering Analysis 

Results of the clustering analysis indicated that the participant sample was best 
described by four distinct groups indicated by the Akaike Information Criterion, 
BIC, and Integrated Completed Likelihood values (Fig. 2). 

 

Fig. 2 Scree plot for cluster analysis, indicating that the participant sample was best 
described as four distinct groups 
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The final four clusters are depicted in Fig. 3. In describing these clusters, terms 
such as “average”, “higher”, or “lower” refer to the value relative to the sample 
mean and do not reflect any normative values reported in other studies. 

 

Fig. 3 Participants’ Z-scores for various characteristic traits, averaged by cluster
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Cluster 1 (black squares) was representative of the oldest participants in the sample 
(though these participants were still relatively young relative to traditional age-
related trust effects) with a high DFC, high openness, extraversion, and 
conscientiousness (N = 6). Tied with their low neuroticism scores, we expect this 
group to be novelty-seeking, be less impacted by stress or workload, and thus be 
more willing to accept and trust automation. When identifying trust calibration 
metrics, we expect members of this group to use the automation and be willing to 
hand off and take away control, but they may be prone to overtrust.  

Cluster 2 (red diamonds) was relatively average on nearly all of the dimensions in 
the analysis (N = 6). However, this group did exhibit the highest EU in the sample, 
indicating a potential for maladaptive emotional and anxious responses to 
uncertainty. Therefore, we expect to see higher anxiety-based ratings in the 
facial data. For trust calibration metrics, we expect to see a greater negative 
trust response when the reliability of the automation is low.  

Cluster 3 (green circles) was relatively average across most dimensions (N = 3). 
However, this group reported extremely low CU and conscientiousness but had 
high agreeableness suggesting a high preference for predictable, planned behavior 
but some willingness to give automation a chance. Based on this clustering, we 
would expect this group to exhibit more stress and workload with bad automation 
and thus lower trust, but less stress and workload with good automation and thus 
higher trust.   

Cluster 4 (blue solid diamonds) was the youngest in the sample and reported 
extremely polarized scores on several key scales (N = 4). This group reported 
the lowest DC and EU scores, indicating that they do not seek novelty and 
would not respond emotionally to uncertainty. However, they reported the 
highest CU, indicating that they prefer predictability and structure in uncertain 
conditions. This coincided with this cluster’s neuroticism scores, which were 
the highest in the sample. We expect this group to have higher stress and 
workload while interacting with automation and to exhibit a general negative 
response to automation. 

For illustrative purposes of our data analysis, in Figs. 4–10 we have tried to 
depict differences among clusters according to their color grouping 
classification (e.g., Cluster 1 [Black], Cluster 2 [Red], Cluster 3 [Green], and 
Cluster 4 [Blue]).



 

11 

4.2 Effect of Trust, Stress, and Workload 

The mixed effect models described in this section were conducted in R (R Core 
Team 2016) using the lme4 package (Bates et al. 2015). Both trust measures (Muir 
and Moray 1996; Jian and Bisantz 1998) were analyzed and showed similar patterns 
of predicted changes in trust from the base condition across the type and reliability 
of the automation for each cluster (Fig. 4).  

     

 

Fig. 4 Differences from baseline trust as a function of cluster, automation level, and 
automation reliability using the Muir and Moray trust questionnaire (top) and the Checklist 
for Trust in Automation (bottom). Error bars are 95% confidence intervals. 
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For both trust scales, automation reliability was a significant predictor of change in 
reported trust, χ2 (1) = 9.37, p = 0.002 (Muir and Moray 1996), and χ2 (1) = 7.08,  
p = 0.008 (Checklist), whereby the mean difference from baseline trust improved 
with good automation and decreased with bad automation. When analyzing the 
clusters, the Muir and Moray trust scale showed a significant interaction between 
automation reliability and cluster, χ2 (3) = 10.73, p = 0.013 and automation level 
and cluster, χ2 (3) = 9./84, p = 0.020. The checklist also showed a significant 
interaction between automation level and cluster, χ2 (3) = 11.67, p = 0.009, but only 
a borderline significant interaction between automation reliability and cluster, χ2 
(3) = 7.28, p = 0.064. All other predictors were nonsignificant, p’s > .10.  

Follow-up analyses were conducted to determine specific differences between the 
clusters. Cluster 1 showed higher trust in good automation but had less negative 
response to bad automation. Cluster 2 had a stronger negative trust reaction to bad 
automation, especially when in the full automation condition, which identifies 
maladaptive anxiety responses to uncertainty. The patterns in trust-based response 
for Cluster 3 resulted in higher trust with good automation, but the results also show 
a trust degradation when the pattern of behavior becomes less predictable, as in the 
bad full automation condition. Finally, Cluster 4 showed an impact of bad 
automation on trust degradation, which corresponds with the high CU and 
neuroticism scores and general negative response to automation.   

We then examined whether cluster (1–4), automation level (Speed, Full), and 
automation reliability (Good, Bad) predicted changes in stress from the baseline 
condition using the SVAS questionnaire. The best-fitting model included a fixed 
effect for cluster, automation level, and automation reliability and a random effect 
for participants, as shown in Fig. 5. However, the only significant predictor was the 
cluster, χ2 (3) = 9.67, p = 0.022. Overall, the patterns suggest that for that 
individuals in Cluster 2, stress increased with the presence of automation. In 
contrast, for Cluster 3, stress generally decreased with automation. There was not a 
significant change in stress for Clusters 1 and 4.  
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Fig. 5 Differences from baseline stress using the SVAS questionnaire as a function of 
cluster, automation level, and automation reliability. Error bars are 95% confidence intervals. 

Finally, we examined whether corresponding changes from the baseline condition 
would be found in participants’ self-reported workload using the NASA-TLX 
questionnaire. As with the SVAS models, the best-fitting model included a fixed 
effect for cluster, automation level, automation reliability, and a random effect for 
participants, as shown in Fig. 6. Automation reliability was a borderline significant 
predictor of change in workload, χ2 (1) = 2.91, p = 0.09. Perceived workload tended 
to decrease with good automation and increase with bad automation, although the 
changes were small.  

There was also a significant interaction between automation level and cluster, χ2 
(3) = 12.37, p = 0.006. Although the change in workload from baseline did not 
significantly differ based on automation level for any of the clusters, Cluster 2 
participants reported an increase in workload for the FB condition that is 
significantly greater than zero. This fits with previous findings that Cluster 2 had 
maladaptive responses to emotional uncertainty, resulting in lower trust, higher 
stress, and higher workload.  
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Fig. 6 Differences from baseline workload using the TLX questionnaire as a function of 
cluster, automation level, and automation reliability. Error bars are 95% confidence intervals. 

Overall, there is a relationship between trust, stress, and workload within human-
autonomy teams. Previous research tends show an increase in trust when stress and 
workload decrease. The patterns in our analyses provide a more in-depth 
understanding into this relationship. It is clear that the relationship is not a one-to-
one correspondence, but rather a more complex interaction that can be more 
prominent in certain people and not others. In particular, more extreme changes in 
trust, stress, and workload are identified in Clusters 2 and 3. For Cluster 2, results 
showed that adding any type of automation led to an increase in stress, but also that 
a degradation of trust and increase in workload were only significant in the full 
automation, bad condition. These findings directly correspond to maladaptive 
anxiety responses to uncertainty. For Cluster 3, results showed that adding any 
type of automation reduced stress. There were also patterns of lower workload 
and higher trust, except for the full, bad automation condition. Results are in 
line with the cluster analysis that suggests a high preference for predictable, 
planned behavior but some willingness to give automation a chance. 

4.3 Analysis of Facial Expressivity 

Our last analysis focused on analyzing mean facial expressivity as a function of 
group clustering, automation type, and reliability. In the previous section, results of 
the subjective trust showed different patterns of trust for each of the four clusters, 
while stress and workload data indicated differences in responses for participants 

Automation Level 
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in Clusters 2 and 3. In regard to our analysis of differences in facial expressivity, 
results of interest point to differences in Clusters 1 and 3 (Fig. 7).  Here, participants 
in Cluster 1 had higher average expression values than all other clusters, with 
significantly higher values of happiness and contempt than all other clusters, which 
was likely due to their having the highest extraversion scores and generally positive 
subjective response to automation (with the exception of the FB driving condition). 
Members of Cluster 3 yielded generally lower mean expression values than other 
clusters, with significant differences in mean values of anger, fear, and surprise than 
all other clusters, which concurs with their low conscientiousness and high 
agreeableness scores and higher trust with good automation reliability ratings. 
While no significant trend was found between the mean expressivity values and 
driving condition, it can be posited that the increases in anger, fear, and surprise 
were correlated with deviations from predictable, planned behavior of the 
automation. 
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Fig. 7 Mean values are depicted for the six facial expressions calculated for the duration of 
the experimental drive within the four clusters. Values taken within each condition are shown 
in order of the MM, SG, SB, FG, and FB driving conditions. The rightmost (bold) values for 
each cluster correspond to the overall mean computed across conditions. Error bars are 
standard error. 

Next, we looked at any differences between relative levels of facial expressivity 
that were exhibited during periods when participants were engaged in human (e.g., 
no automation) or automated driving (Fig. 8) and where participant driving 
violations occurred (Fig. 9). We refer to “driving violations” as any instance where 
points were deducted from the subject’s score. Violations were labeled as “position 
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violations” (i.e., deviations from the participant’s lane position and following 
distance tolerances lasting more than 3 s) as well as collisions with pedestrians or 
other vehicles. Additionally, when looking at the following figures, it is imperative 
to note that the distance of these mean values from the plot origin indicates the 
overall magnitude of the expression. In other words, the degree to which these 
values lie above or below the 45° line (dotted) indicates whether greater 
expressivity was seen during human (x-axis) or automated driving (y-axis), 
respectively. 

We first separated our analysis to illustrate individual facial expression magnitude 
during human and automated driving for all driving conditions and across group 
cluster. From Fig. 8, it is evident that the positions of mean happiness and contempt 
for each cluster indicated relatively even expressivity between instances of human 
and automated driving, while the relative expressivity between human and 
automated driving appears to vary significantly among the clusters for the other 
expressions. Specifically, the expressions of anger and fear, for members of 
Cluster 1, are above the 45° line, indicating a relatively higher mean expressivity 
during human rather than automated driving. This conforms to expectations that 
Cluster 1 would be most willing to accept and trust automation, possibly to the point 
of overtrust, yielding relatively higher levels of anger and fear when in control of 
driving themselves than during automated driving.  
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Fig. 8 Comparisons between the automation (x-axis) and human driving (y-axis) mean 
facial expression values within clusters. The distance of these mean values from the plot origin 
indicates the overall magnitude of expression. Mean values are shown within each condition 
and across all conditions by the respective markers. Major axes of the ellipses are respective 
standard errors for the mean within conditions (shaded) and across driving conditions (solid 
outline).  
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Further, the position of the cluster means for expression shows generally greater 
similarity between Clusters 1 and 2 with higher expressivity, and greater similarity 
between Clusters 3 and 4 with lower expressivity. However, as shown in Fig. 9, the 
position of the cluster means for violation rates instead show similarity between 
Clusters 1 and 4 with more frequent violations, and similarity between Clusters 2 
and 3 with less frequent violations. Additionally, Cluster 1 (black) displayed higher 
magnitudes of expressivity during these periods of driving than the members of the 
other clusters, generally consistent with the results from Fig. 7. This illustrates that 
expression responses are not directly tied to performance rates and are more likely 
moderated by subject characteristics captured in their questionnaire responses, 
which delineate them by cluster.  

 

Fig. 9 Comparisons between the magnitudes of facial expressivity exhibited during periods 
of automation (x-axis) and human driving (y-axis) within clusters. The distance of these mean 
values from the plot origin indicates the overall magnitude of expression. Mean values are 
shown within each condition and across all conditions by the respective markers. Major axes 
of the ellipses are respective standard errors for the mean within conditions (shaded) and 
across driving conditions (solid outline).  

Finally, we looked at time-dependent trends that differed between members of the 
four clusters (Fig. 10). More specifically, this figure illustrates emotional responses 
for a 10-s window around events of interest (i.e., violations and authority toggles, 
either hand-offs or takeaways), averaged across all instances exhibited by members 
within each cluster. From this figure it is most notable that Cluster 2 had the 
strongest expressive reactivity to violations, which aligns with our expectation to 
see maladaptive anxiety responses to uncertainty and greater negative trust 
response to instances of low reliability. Cluster 4 showed the most expression 
reactivity to toggles of driving authority to the automation (hand-offs) and from the 
automation (takeaways), which corresponds with expectations of higher stress and 
workload while interacting with, and greater negative response to, automation. 
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Finally, subjects in Cluster 3 demonstrated relatively low expressive reactions to 
either authority toggles or violations, which again concurs with their low 
conscientiousness and high agreeableness scores. Overall, these findings indicate 
that expressivity between human and automated driving varied significantly among 
the clusters for each expression, which has implications for individual trust 
calibration and appropriate intervention development. 

  

Fig. 10 Event-locked time histories for the six expressions in 10-s windows centered on 
instances of a) violations during automation driving, b) violations during human driving, c) 
hand-offs, and d) takeaways. Solid curves are averaged values across all conditions for subjects 
within the four clusters. Shaded bands are standard errors. The color of each time history 
corresponds, respectively, to Cluster 1 (black), Cluster 2 (red), Cluster 3 (green), and Cluster 4 
(blue). 
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Fig. 10 Event-locked time histories for the six expressions in 10-s windows centered on 
instances of a) violations during automation driving, b) violations during human driving, c) 
hand-offs, and d) takeaways. Solid curves are averaged values across all conditions for 
subjects within the four clusters. Shaded bands are standard errors. The color of each time 
history corresponds, respectively, to Cluster 1 (black), Cluster 2 (red), Cluster 3 (green), and 
Cluster 4 (blue) (continued). 
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5. Conclusions 

In this report we were interested in identifying possible assessment metrics for 
evaluating affect-based trust within human-autonomy teaming. Results of our 
clustering analysis indicated that the participant sample was best described by four 
distinct groups who varied in their level of subjective trust and facial expressivity 
across the different drives. Convergent results from the cluster analysis of the trust 
questionnaires and mean facial expressivity values showed that there are indeed 
different patterns of response by different groups of people. It is not enough to look 
at single individual difference ratings in isolation, but rather the variance is 
dependent on an interplay of multiple features. It is often stated that for appropriate 
trust to be developed and effectively calibrated, an individual’s expectations need 
to match the system’s actual behaviors. What this research shows is that calibration 
metrics will not be the same for all people. In these cases, certain groups may be 
more prone to overtrust in automation (as seen in Cluster 1’s high levels of baseline 
trust) compared to a misaligned level of trust in automation from the start (as seen 
in Cluster 4’s somewhat moderate to low levels of baseline trust). These findings 
may impact intervention plans for individuals who engage in human-autonomy 
teaming and should consider the following: 1) we should not expect the same results 
regarding individual propensities to trust, subjective response to automation 
interaction, and overt behavioral responses from all individuals, 2) multivariate 
methodologies focusing on grouping individuals can illuminate informative 
clusters of individuals, and 3) interventions that use these clustering methodologies 
will need to account for psychological dynamics and behavioral responses that vary 
qualitatively and quantitatively between individuals. For example, Cluster 1 
interventions will require the expectation that these individuals may overtrust the 
automation, while also expressing strong outward changes in facial expressivity, 
while Cluster 4 interventions should account for a bias against automation to begin 
with and limited facial expressivity responses during an interaction with 
automation. 

Additionally, significant differences were found regarding subjective responses for 
each group cluster and changes in facial expressivity. We will attempt to outline 
and summarize these differences according to the four clusters previously 
described. 

Cluster 1: Tied with their low neuroticism, stress, and workload scores (i.e., no 
difference from baseline), we expected this group to be novelty-seeking and thus 
more willing to accept and trust the automation. When identifying trust calibration 
metrics, we expect members of this group to use the automation and be willing to 
hand off and take away control, but they may be prone to overtrust (as shown in 
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their higher trust ratings during good automation reliability and less negative 
response to bad automation comparatively). This group also exhibited the highest 
levels of facial expressivity (e.g., specifically for expressions relating to happiness 
and contempt), which may be expected from their high extraversion scores. This 
shows some validation, or at least a plausible and consistent connection, between 
the questionnaire responses and the measurement of behavioral response. More 
specifically, inferences based on real-time measures can or should be calibrated to 
have expected ranges based on baseline questionnaire responses (i.e., evidence of 
high facial expressivity should not be solely dependent upon the task stimuli, 
particularly for a subject with high extraversion scores). Additionally, as outlined 
in Fig. 8, for the expressions relating to anger and fear, data for Cluster 1 are above 
the 45° line, indicating that these expressions were stronger or more frequent during 
instances of human driving than automated driving. Given proneness to reliance on 
the automation and a willingness to accept and trust autonomy, this result suggests 
trust for this cluster was miscalibrated in the direction of overtrusting the 
automation.  

Cluster 2: This group exhibited that highest EU in the sample, indicating a 
potential for maladaptive emotional and anxious responses to uncertainty. 
Therefore, we expected to see higher anxiety-based ratings in the facial data. 
For trust calibration metrics, we expected to see a greater negative trust 
response when the reliability of the automation was low. This was confirmed 
from Cluster 2’s increase in subjective stress and workload and stronger 
negative trust reaction to full automation with bad reliability. This group also had 
the strongest expressive reactions to violations (e.g., specifically for emotions 
relating to anger, contempt, fear, and surprise), which is indicative of their potential 
for maladaptive anxiety responses to uncertainty. When compared with their 
relatively low rate of violations, these factors suggest that this cluster 
experienced miscalibrated trust in the form of undertrust.  

Cluster 3: Reports of CU and conscientiousness were extremely low in Cluster 3; 
however, high agreeableness was also reported, suggesting a high preference 
for predictable, planned behavior but some willingness to give automation a 
chance. Based on this clustering, we expected this group to exhibit more stress 
and workload with bad automation and thus lower trust, but less stress and 
workload with good automation and thus higher trust, which was somewhat 
confirmed. Here, the patterns in trust-based response for Cluster 3 resulted in 
higher trust and lower workload with good automation, but the results also showed 
a trust degradation and increased workload when the pattern of behavior becomes 
less predictable, as in the bad, full automation condition. This group also exhibited 
relatively low expressive reactions to either authority toggles or violations, which 
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in conjunction with their appropriately balanced evaluations of trust in the 
automation with respect to the level of reliability and their overall lower violation 
rate, suggest this group’s trust level was calibrated best relative to the other clusters.  

Cluster 4: This group was the most polarized and reported the lowest DC and EU 
scores, indicating that they do not seek novelty and would not respond 
emotionally to uncertainty. However, they also reported the highest CU, 
indicating that they prefer predictability and structure in uncertain conditions. 
This coincided with this cluster's neuroticism scores, which were the highest in 
the sample. In fact, the subjective responses for Cluster 4 showed an impact of 
bad automation on trust degradation, which corresponds with the high CU and 
neuroticism scores and general negative response to automation. Cluster 4 also 
demonstrated the greatest changes in expressivity to toggles of driving authority 
away from the driving automation, which comports with their proneness to stronger 
negative trust-based reactions to bad automation and their relatively poor 
performance.  

Outcomes from this work have shown that expressive response is not uniformly 
related to performance or even to interactions with the automation, even at granular, 
time-resolved scales, across all subjects. These responses instead form more 
consistent patterns when subjects are grouped based on their characteristic traits. 
Overall, we believe the current work extends the state of the art by explicitly 
evaluating facial expressions in response to level and degree of reliability of 
automation during a leader–follower driving task. Although more work is needed, 
we believe that the methods outlined here provide a way to systematically group, 
evaluate, and eventually predict individual behaviors relating to affect-based trust 
within human-autonomy teams. 
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List of Symbols, Abbreviations, and Acronyms 

AU action unit 

BFI Big Five Inventory 

BIC Bayes Information Criterion 

CCDC US Army Combat Capabilities Development Command 

CU Cognitive Uncertainty 

DFC Desire for Change 

E-M expectation maximization 

EU Emotional Uncertainty 

FB full, bad 

FG full, good 

FMM flexible mixture modeling 

NASA National Aeronautics and Space Administration 

NASA-TLX NASA-Task Load Index 

NGCV Next Generation Combat Vehicle 

SB speed, bad 

SG  speed, good 

SVAS Stress Visual Analogue Scale 

URS Uncertainty Response Scale
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