
ARL-TR-8909• FEB 2020

Rigid Neighborhood Discovery and
Decentralized Localization for Multi-Agent
Mobile Networks

by Moshe Hamaoui

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-
ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-8909• FEB 2020

Rigid Neighborhood Discovery and
Decentralized Localization for Multi-Agent
Mobile Networks

by Moshe Hamaoui
Weapons and Materials Research Directorate, CCDC Army Research Laboratory

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704‐0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704‐0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202‐
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD‐MM‐YYYY)

2. REPORT TYPE

3. DATES COVERED (From ‐ To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

	

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

February 2020 Technical Report

Rigid Neighborhood Discovery and Decentralized Localization for Multi-Agent
Mobile Networks

Moshe Hamaoui

ARL-TR-8909

Approved for public release; distribution is unlimited.

1 March 2019–16 September 2019

CCDC Army Research Laboratory
ATTN: FCDD-RLW-LF
Aberdeen Proving Ground, MD 21005-5066

ORCID: https://orcid.org/0000-0002-4851-4823
primary author’s email: <moshe.hamaoui.civ@mail.mil>.

Location awareness is crucial for many mobile-network applications. While commercial applications rely heavily on the
convenience and ubiquity of GPS, military applications must remain robust across the spectrum of denied and contested
battlespaces. The use of interagent RF ranging measurements provides one means of reconstructing the relative network
geometry. If all pairwise range measurements are always available to all agents, each agent can then separately solve for the
network geometry. For dynamic mobile networks with constrained communications, and particularly for extended networks
with many agents, the available range measurements may not uniquely specify the entire network geometry. Instead, each agent
must discover and localize a solvable subset of the network. This report presents a decentralized method of rigid-neighborhood
discovery and localization. The method is implemented in simulation under conditions of range-limited measurement and
communication. Results suggest that rigid-neighborhood selection can improve relative localization compared to full-network or
random-neighborhood selection.

multi-agent localization, rigid graphs, graph theory

28

Moshe Hamaoui

410-306-0968Unclassified Unclassified Unclassified UU

ii

Contents

List of Figures iv

List of Tables iv

1. Introduction/Background 1
1.1 Problem Statement 2

1.2 Global Rigidity 3

2. Methods 3
2.1 k-vertex Connected Components 3

2.2 Maximal k-VCC Identification 4

2.3 Communication Lag 7

2.4 Localization 8

3. Simulation 9
3.1 Simulation Model 9

3.2 Metrics 11

4. Results and Discussion 12

5. Conclusion 17

6. References 19

List of Symbols, Abbreviations, and Acronyms 21

Distribution List 22

iii

List of Figures

Fig. 1 Stacked histogram of rigidity classes binned by vertex connectivity (log
scale) for 10,000 random graphs on n = 8 vertices4

Fig. 2 Multi-agent Simulink model with full network localization and k-VCC
localization running side by side ... 10

Fig. 3 Example multi-agent trajectory transitioning across waypoint
configurations .. 10

Fig. 4 Average position misalignment is an intuitive metric by which to assess
ensemble localization performance but depends on first estimating an
optimal rigid transformation to the true point configuration. Stress
provides a more direct performance metric because it is invariant under
rigid transformation. ... 12

Fig. 5 Vertex connectivity history of the complete mobile network G(t) 13

Fig. 6 Vertex connectivities for each agent’s discovered neighborhood as a
function of time.. 14

Fig. 7 Overlay of vertex connectivities of full network (blue bubbles) and agents’
maximal k-VCC neighborhood .. 14

Fig. 8 Neighborhood localization performance across the trajectory 16

Fig. 9 Decentralized localization performance for full-network awareness 16

List of Tables

Table 1 Parameters in multi-agent simulation model9

iv

1. Introduction/Background

Location awareness is crucial for many mobile-network applications. While com-
mercial applications rely heavily on the convenience and ubiquity of GPS, military
applications must remain robust across the spectrum of denied and contested bat-
tlespaces. The use of interagent RF ranging measurements provides one means of
reconstructing the unanchored (relative) network geometry. If all pairwise range
measurements are always available to all agents, each agent can then separately
solve for the network geometry. For dynamic mobile networks with constrained
communications, and particularly for extended networks with many agents, the
available range measurements may not uniquely specify the entire network geome-
try. Instead, each agent must discover and localize a solvable subset of the network.

As range measurements and communications are often range-limited, agents will
typically have more information about nearby agents than those farther away. An
agent’s solvable subset therefore typically comprises its neighbors. For many appli-
cations, this neighborhood solution will suffice to facilitate collaborative behaviors,
including formation control, cooperative tracking, and weapon–target assignment.

In general, the various unanchored neighborhood solutions are not expressed in a
common reference frame. However, with sufficient membership overlap between
two sets, the frame transformation can be estimated and the neighborhoods can be
merged. With sufficient overlap and careful consensus protocols, this procedure can
continue hierarchically until all agents agree on a consistent coordinate assignment
for all members. This global solution is all-inclusive but remains unanchored since
the agreed-upon reference frame has no known relation to the “absolute” world
frame.

For some applications, absolute positioning may be available to a (possibly chang-
ing) subset of so-called “anchor” agents. The anchors then define an absolute frame,
allowing the relative unanchored solutions to be transformed to the common abso-
lute frame. The anchored solution allows agents to interact not only with each other,
but also with the environment.

1

1.1 Problem Statement

In a decentralized multi-agent architecture, inter-agent distances are observed, com-
municated, and received in an ongoing, bidirectional flow of information across the
network. Agents maintain and update a record of most recently received measure-
ments. It is from this local record of asynchronous measurements that an agent
develops a view of the network beyond its immediately adjacent neighbors. At
any instant t, then, we may imagine two edge-weighted graphs that characterize
the network. The first is the interaction graph G(t) that describes which direct
peer-to-peer measurements and communications may occur at time t. The ver-
tices V = v1, v2, ..., vn correspond to all n member agents of the network, and
the weights on edges E(t) encode the corresponding inter-agent range measure-
ments. The second graph Gi(t) is the ith agent’s best estimate of the edge-weighted
network. This is usually an estimate (rather than a subset of G(t)) because the ag-
gregated measurements are generally asynchronous—requiring some extrapolation
to synchronize measurements. By the same token, it is also possible for edges to
exist in Gi(t) that may not be present in G(t).

The decentralized full localization problem asks the ith agent to estimate the posi-
tions of all n members, based on Gi(t) and, more particularly, based on the asso-
ciated weighted adjacency matrix Wi ∈ Rn×n. As is discussed in Section 1, the
solution is uniquely specified if and only if Gi(t) is globally rigid. Furthermore,
even if an agent has instantaneous access to all direct measurements encoded in W
(the weighted adjacency matrix associated with G(t)), there is certainly no guaran-
tee that G(t) is itself globally rigid—or even connected.

In contrast, the decentralized neighborhood localization problem demands only that
the ith agent estimate the positions of some vertex subset V κ

i ⊆ Vi. For notational
consistency, we likewise designate the corresponding subgraph with the κ super-
script, Gκ

i . The motivation for this relaxed problem formulation comes from the
observation that graphs can often be partitioned into more rigid components. One
trivial but very practical example is the disconnected graph whose components are
entirely uncoupled from one another—but may themselves exhibit some degree of
rigidity. In any event, while the solution space is expanded, it is not at all obvious
how to choose Gκ

i . In other words, how do we methodically identify an optimally
rigid subgraph?

2

1.2 Global Rigidity

Let X ∈ Rn×η be the stacked coordinates of n points in Rη, and let G(X) be a bar

framework on X, where each point xi ∈ Rη corresponds to a vertex in G and the
edges of G correspond to fixed-length bars joining adjacent vertices. G(X) is then
globally rigid in Rη, if for every framework G(Y),Y ∈ Rn×η; Y is identical to X

up to translation, rotation, and reflection. Similarly, a graph G is said to be globally
rigid in Rη, if for any realizable set of edge lengths, there is only one possible
realization (again, up to congruence).

Global rigidity is closely related to the graph theoretic notion of vertex connectivity.
G is vertex-k connected if a minimum of k vertices must be deleted in order to
disconnect G. Hendrickson1 showed that global rigidity in Rη requires that G must
be vertex η+ 1 connected, as well as redundantly rigid. The condition of redundant
rigidity further demands that G must remain rigid (flex free) with the removal of
any one edge. These necessary conditions are also sufficient for dimension η = 2,2

though not for η ≥ 3.3 No combinatorial characterization of global rigidity for
η ≥ 3 has been found,4 but an algebraic characterization based on the associated
stress matrix has been shown to be sufficient5 and necessary.6

Based on the rigidity and stress matrices, graphs can be readily classified as flexible,
rigid, globally rigid, or complete. This classification also characterizes the relative
degeneracy, of the solution space. Flexible configurations admit an infinite number
of solutions, and locally rigid configurations allow only a finite solution set.

2. Methods

2.1 k-vertex Connected Components

We return now to the question of how to methodically identify solvable subgraphs of
Gi(t). In light of the previous discussion on rigidity, we may state more precisely
that we seek globally rigid substructures. Interestingly, simulations show that the
vertex connectivity κ generally correlates with rigidity class, with a higher κ corre-
sponding to an elevated rigidity class. Most importantly for the present discussion,
although η+ 1 connectivity is necessary but insufficient to guarantee global rigidity
in R3, it turns out to be a highly probable indicator, as shown in Fig. 1. This ob-
servation suggests the idea that for practical applications we may identify globally
rigid subgraphs in R3 by searching for k-vertex connected components (k-VCCs)

3

of degree k = 4, or higher.

complete

g-rigid

rigid

flexible

Fig. 1 Stacked histogram of rigidity classes binned by vertex connectivity (log scale) for 10,000
random graphs on n = 8 vertices

There is another practical benefit to ranking solvability by connectivity. Whereas a
globally rigid graph (with specified edge lengths) is theoretically always solvable,
existing localization algorithms tend to do better with higher connectivity. Thus,
even if we could identify a marginally globally rigid substructure, we may well do
better to choose an alternate substructure with higher connectivity.

2.2 Maximal k-VCC Identification

Various algorithms exist to measure the connectivity of a given graph, as well as
coded implementations in various languages.7 It has been more difficult to find al-
gorithms and code to implement maximal k-VCC identification. To fill this gap,
an original recursive algorithm has been developed for maximal k-VCC identifi-
cation. The pseudocode descriptions are shown in Algorithms 1 and 2, and coded
implementations in Mathematica7 and MATLAB are available upon request.

4

Algorithm 1 Hierarchical k-VCC discovery
input: G, kthresh
output: All k-VCC’s and associated k.

1: procedure KVCCOMPS(G, kthresh)
2: block = {{G, kthresh}}
3: declare global variable kvcc .array of k-VCC’s and connectivities
4: kvcc = ∅
5: i = 0
6: while block 6= ∅ do
7: block ← kvccStep(block) .see Algorithm 2
8: i = i+ 1
9: end while

10: return kvcc
11: end procedure

The intuition behind this algorithm is the fact that for any k-vertex connected com-
ponent, the pairwise connectivities must satisfy kij ≥ k. Also, candidate compo-
nents must themselves form maximal cliques on a graph with adjacency matrix A

with elements

aij =

1 kij ≥ k

0 otherwise
. (1)

5

Algorithm 2 k-VCC discovery at each iteration
input: {{G1, kthresh,1} , {G2, kthresh,2} ...}
output: {{G1, kthresh,1} , {G2, kthresh,2} ...} .updated, for next iteration

1: procedure KVCCSTEP({{G1, kthresh,1} , {G2, kthresh,2} ...})
2: for all {Gi, kthresh,i} do
3: C← matrix of pairwise vertex connectivities of Gi

4: kg ← min(C) .element-wise minimum, excluding main diagonal
5: kmax ← max(C) .highest possible component connectivity
6: k0 ← min(C > kg ∧C ≥ kthresh,i)
7: if kg ≥ kthresh then
8: kvcc← append {V(Gi), kthresh,i} to kvcc .update global variable
9: end if

10: if kg = kmax then .test for complete graph
11: blocki = ∅
12: return
13: end if
14: if k0 = ∅ then .no more cliques
15: blocki = ∅
16: return
17: end if
18: A← binary matrix(C ≥ k0) .adjacency matrix
19: cliques← findCliques(A) .maximal cliques
20: if cliques = ∅ then
21: blocki = ∅
22: return
23: else
24: knext ← max(kg + 1, kthresh,i)
25: {S1, S2, ...} ← set of induced subgraphs of Gi by cliques
26: blocki ← {{S1, knext}, {S2, knext}...}
27: end if
28: end for
29: return

⋃
{block1, block2, ...} .concatenate and flatten to form 2D array

30: end procedure

Thus, the algorithm proceeds by successively calculating the kij , dropping edges
that do not satisfy the pairwise connectivity requirement, taking the resulting sub-
graph, searching for maximal cliques, and investigating the connectivity k of each
clique (i.e., the connectivity of the subgraph induced by the vertices in this clique).
If k ≥ kthresh, the corresponding vertex set is recorded (along with its connectivity).
kthresh is then raised, and the procedure repeats recursively on each clique (where

6

the associated induced subgraph becomes the next input graph).

This constitutes a generic algorithm to hierarchically decompose any graph into its
k-VCCs. For this application, an agent is only interested in k-VCCs of which it is a
member (since the agent is seeking to localize itself within a neighborhood). To do
this, the algorithm simply ignores cliques of which it is not a member, which has the
added benefit of also speeding up k-VCC identification. One may also choose to set
the input connectivity threshold to kthresh = 4, since this is a necessary condition
for global rigidity, as described in Section 1.

Finally, we note that the algorithm can be further accelerated by first identifying the
agent’s k-core component and searching only in the k-core’s induced subgraph. An
agent’s k-core component is a maximal weakly connected subgraph in which all
vertices have degree at least k. The idea here is that any maximal k-VCC of which
the agent is a member must be a subset of its k-core. By definition, any two vertices
in k-vertex connected component are connected by at least k vertex-disjoint paths.
Then each vertex in the k-VCC must have degree at least k.

2.3 Communication Lag

The essential information that the ith agent transmits and records is Wi ∈ Rn×n, the
weighted adjacency matrix which encodes distance measurements, and Ti ∈ Rn×n,
which carries the corresponding timestamps. The mobile network is dynamic both
in terms of its geometric configuration and communication links, so that received
measurements are generally asynchronous. With each received communication, the
agent updates these matrix entries to reflect the most recent measurement available
for distance wij . The approach taken here is then to separately synchronize the mea-
surements and then localize. Each agent maintains a parametrically defined number
of past measurements for each entry in Wi and Ti, and spline extrapolation is used
to estimate the current Ŵi. While spline-based synchronization is adequate, it is by
no means optimal. For practical applications, particularly where motion and noise
models are available, a Kalman filter would offer more accurate estimates of current
range values, as described in Allik et al.8

7

2.4 Localization

Having identified a vertex subset V κ
i ∈ Vi belonging to a maximal k-VCC, the last

step is to localize the agents belonging to this closed neighborhood. The available
ranges are collected in the ith agent’s weighted adjacency matrix Ŵκ

i , where the
over-hat accent denotes that fact that the matrix is an estimate. In particular, we
seek to find a coordinate assignment Xκ

i ∈ Rm×3, where the pairwise Euclidean
distances are consistent with the pairwise distances encoded in Wκ

i and m = |V κ
i |.

The problem can be addressed with a family of techniques known as multidimen-
sional scaling (MDS).9 Several flavors of MDS exist, including faster noniterative
subspace methods (so-called “classical MDS”), as well as slower but more accu-
rate and robust iterative methods (e.g., Scaling by Majorizing a Complicated Func-
tion [SMACOF],10 which guarantees monotonic convergence9,11). Aside from speed
considerations, there are other differences that may be significant. Classical MDS
requires all pairwise measurements. In contrast, iterative methods can accommodate
missing measurements and weighting, but are inherently vulnerable to false local
min convergence and therefore are sensitive to the choice of starting configuration
upon which to iterate.

One viable approach is to use the last known estimate of Xκ
i to initialize itera-

tive MDS in the current time-step. This tends to work well in a dynamic setting
if V κ

i ∈ Vi is relatively constant in time so that complete coordinate estimates
are available for these agents. For the k-VCC approach described in this report,
however, Xκ

i is generally not constant. Instead, therefore, we have adopted a hy-
brid approach initializing with the last solution when available and classical MDS
otherwise. Because classical MDS requires the complete distance matrix, we must
somehow estimate the missing entries.

Some authors12,13 have proposed using an all-pairs shortest path algorithm (e.g.,
Dijkstra or Floyd–Warshall) to complete the distance matrix. In this approach,
the edge weights on Gκ

i are taken to be the corresponding distances. The short-
est weighted-graph path is calculated, and the sum of path weights is then taken to
be the missing distance. Note that, by definition, a k-VCC will be connected unless
the agent in question is completely disconnected from the network. This guarantees
that there will always be a path between any two agents in Gκ

i so that all entries
can be estimated. Finally, if the approximate maximum sensor range is known, this

8

estimate can be improved upon by replacing multi-hop estimates with the average
of the maximum range and the path length (which is approach implemented here).

3. Simulation

3.1 Simulation Model

To investigate the performance of the proposed decentralized k-VCC localization
scheme, a multi-agent network was modeled in Simulink. The agents each follow
a prescribed trajectory while ranging, communicating, and localizing. At each step,
the interaction matrix G(t) is recalculated based on the agent positions X(t) and
maximum sensor range. G(t) defines which range measurements and communica-
tions take place. We assume a simple communication scheme where all agents can
range and communicate simultaneously. Details of the communication package and
the agent’s internal recording protocols were described in Section 2. User-defined
simulation parameters are described in Table 1, and the Simulink model is shown in
Fig. 2. As shown in Fig. 3, the agents are initially clustered together in close prox-
imity. Agents then briefly split into two groups before reassembling. At maximum
separation, the groups cannot communicate with each other, and agents are forced
to rely on local information to maintain position awareness.

Table 1 Parameters in multi-agent simulation model

Parameter Value Description
n 12 number of agents

delta 3.3 km max sensor range
XWayPoints ... network geometry waypoints determine trajectory
tWayPoints ... time vector for XWayPoints

f_full 1 Hz update frequency of full network localization
f_neighborhood 1 Hz update frequency of k-VCC neighborhood localization
f_transceiver 20 Hz update frequency of ranging and communication
lagThresh 4 s discard measurements older than lagThresh

nHistory 4 number of unique past range measurements to retain for
interpolation and synchronization

9

Fig. 2 Multi-agent Simulink model with full network localization and k-VCC localization
running side by side

Fig. 3 Example multi-agent trajectory transitioning across waypoint configurations

10

3.2 Metrics

The choice of metric by which to judge relative (unanchored) localization is com-
plicated by the fact that the solution is, at best, only unique up to rigid transforma-
tion. Geometric misalignment of the estimated embedding to the true configuration,
while intuitive, would therefore rely on first finding an optimal transformation be-
tween the coordinates sets. While this is easily calculated for two morphologically
identical embeddings, it becomes less meaningful as the morphologies diverge—
due to missed or noisy measurements. Instead, we use a variation of the normalized
Kruskal stress (Borg and Groenen,9 p. 42), which we define as

s =
∑
ij

√
[(Kij)e − (Kij)0]

2

[(Kij)0]2
, (2)

where edge kernels (K)e and (K)0 are constructed from estimated and true position
configurations, respectively. The edge kernel is so-named because it collects inner
products of all pairwise displacement vectors in the geometric configuration. Con-
struction of K is detailed in Algorithm 3. Normalization ensures that the scale of
the configuration volume does not skew results. Figure 4 shows an overlay of abso-
lute misalignment (arbitrary units) and stress for a sample data set using a classical
MDS localization scheme. The example is intended only to reassure the reader that
stress correlates well with misalignment.

11

Algorithm 3 Constructing K

input: X ∈ RN×3 for N agents
output: K ∈ RM×M where M =

(
N
2

)
1: procedure EDGEDOT(X)
2: N ← length(X)

3: k ← 1

4: for i← 1, N − 1 do
5: for j ← i+ 1, N do
6: Vk ← Xj −Xi

7: k ← k + 1

8: end for
9: end for

10: K← VV′

11: return K

12: end procedure

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

vertex connectivity

m
ag
ni
tu
de

Localization Metrics: Misalignment vs. Stress

misalignment
stress

Fig. 4 Average position misalignment is an intuitive metric by which to assess ensemble lo-
calization performance but depends on first estimating an optimal rigid transformation to the
true point configuration. Stress provides a more direct performance metric because it is in-
variant under rigid transformation.

4. Results and Discussion

Decentralized models for k-VCC rigid neighborhood localization, as well as full-
network localization, are run side by side. The former technique works by identi-
fying neighborhoods with maximal vertex connectivity—which are naturally more
rigid, and hence, localizable. Thus, it is illuminating to compare κ(G(t)) against

12

each agent’s κ(G(t)κi), where the shorthand κ(.) is the vertex connectivity of the
indicated graph. The connectivity histories for G(t) and G(t)κi , i = 1, 2, ..., n are
shown in Figs. 5 and 6, respectively. After the initial startup, the general trend is
κ(G(t)κi) ≥ κ(G(t)) meaning that agents are often able to discover smaller neigh-
borhoods with higher connectivity compared to the full network structure. Figure 7
shows a 2-D overlay of the two connectivity histories. This disparity becomes par-
ticularly significant during the mid-flight interval when κ(G(t)) tends to zero while
κ(G(t)κi) ≥ 3—so that agents can localize to a neighborhood even though the full
network may remain unsolvable.

0 5 10 15 20 25 30 35 40 45 50

time

0

1

2

3

4

5

6

7

8

ve
rt

ex
 c

on
ne

ct
iv

ity

Fig. 5 Vertex connectivity history of the complete mobile network G(t)

13

Fig. 6 Vertex connectivities for each agent’s discovered neighborhood as a function of time

0 5 10 15 20 25 30 35 40 45 50

time

0

1

2

3

4

5

6

7

8

ve
rt

ex
 c

on
ne

ct
iv

ity

Vetex Connectivities: Neighborhood / Full network

Fig. 7 Overlay of vertex connectivities of full network (blue bubbles) and agents’ maximal
k-VCC neighborhood

14

Neighborhood localization performance (stress) across the example trajectory is
shown in Fig. 8, and corresponding results for full-network (distributed) localiza-
tion are shown in Fig. 9. As expected, based on the connectivity results presented
earlier, neighborhood localization is particularly advantageous during periods of
degraded interaction. Although the threshold connectivity for solvability is κ ≥ 4,
these results (for example, agent 10 between 10 and 17 s) show that agents are in
fact able to successfully localize at κ = 3. This is only possible because agents
leverage knowledge of the previous solution when possible.

In general, a measurement graph of κ = 3 carries an ambiguity due to possible
reflection so that the two solutions are consistent with the available range measure-
ments. To visualize this, recall that κ = 3 implies that there are at least two vertices
that cannot be connected by more than three vertex-independent paths. Somewhere
in the graph there must be three vertices whose removal would sever any connection
between the first two vertices. Now, suppose we find a set of coordinates consistent
with the available range measurements such that the triplet now defines a plane. If
we were to then reflect all positions on one side of the plane with respect to the
plane, the pairwise distances along existing edges must remain the same, leading to
a second possible solution. By the same argument, if there exists another such triplet
whose members also share the same side of the plane, the number of solutions will
again double. This type of construction can be carried on indefinitely, as long as
additional triplets can be found. Importantly, however, these reflections correspond
to a discontinuous set of embeddings with (typically) radically different geometries.
While it is also possible for a three-vertex connected system to exhibit continuous
flex, simulations suggest that rigid configurations are more likely, as seen in Fig.
1—implying discrete, widely separated solutions.

15

Fig. 8 Neighborhood localization performance across the trajectory

Fig. 9 Decentralized localization performance for full-network awareness

Under such circumstances, and without additional information, there is still no way
to decide which solution is correct. For dynamic mobile networks, however, past
history can be leveraged to better estimate the current state. In particular, agents
retain both the previous solution and the associated metric stress (which indicates
goodness of solution). If the last estimate achieved low stress, then this solution
becomes the initial guess for the iterative optimization strategy at the current step.
Furthermore, if the agent was navigating at some point under conditions of κ ≥ 4,
then the system was (almost definitely) uniquely solvable. If the agent then passes

16

briefly into periods of lower connectivity and the geometry has not since changed
dramatically, then the optimization routine will naturally converge to the closest
solution, thus preserving the correct state estimate. This explains how agents can
maintain near-perfect localization for intermittent periods of k = 3 connectivity.

Of course, flexible graphs (κ ≤ 2) will also benefit from a good initial guess, but
because continuous flex implies an infinite number of solutions in the vicinity of
the true configuration, the solution will generally not snap to the correct one (as it
appears to for k = 3). Instead, localization performance smoothly degrades with
time as the geometry deforms (as seen, for example, in Fig. 9 during mid-flight).

5. Conclusion

The main contribution of this report is a robust method of decentralized neighbor-
hood localization for mobile networks with dynamic topologies. Agents must care-
fully decide which subset of the observed network to localize to assure uniqueness
of solution and solvability. It was shown that four-vertex connectivity is a highly
probable indicator of global rigidity, and that an agent’s maximal k-VCC therefore
represents an optimally rigid neighborhood. A recursive algorithm identifying all
k-VCCs of a given graph and, specifically, those belonging to a particular vertex
(or agent), has been described. An MDS technique was also outlined, which is used
to estimate all neighbors’ positions based on available (asynchronous) inter-agent
range measurements.

To validate this decentralized approach for switching mobile networks, a Simulink
framework was constructed to model the temporal flow of information across the
agent network. The network itself was modeled as a dynamic proximity graph
evolving over time as a function of inter-agent spacings along a prescribed tra-
jectory. This captures the essential features of range-limited communication and
measurement. Agent-level protocols then implement ranging, transmission, asyn-
chronous data consolidation, and localization.

An example 12-agent trajectory was chosen for this simulation comparing perfor-
mance of two decentralized relative localization schemes: 1) k-VCC neighborhood
and 2) full network localization. For tightly cohesive networks, the two solutions
tend to converge, but results show that neighborhood localization becomes espe-
cially advantageous under conditions of clustering subdivision (see Fig. 3).

17

Other situations which could benefit from neighborhood detection and localization
include the following:

1. The network is well connected, with the exception of just a few agents. Even
if the rigid component was well estimated under full localization, it is difficult
to distinguish between good and bad estimates without resorting to neighbor-
hood detection.

2. The network diameter is large. Even if the complete network is globally rigid,
the delays associated with multi-hop communications may render measure-
ments stale—particularly for rapidly deforming mobile networks.

3. The network size is very large, unknown, or changing due to member ad-
dition/attrition. Full localization may then be too time-consuming or simply
impossible.

Rigid neighborhood detection and localization is a general approach that is not lim-
ited to swarming munitions. The technique is applicable to any networked assets or
personnel that require relative position awareness, including dismounted Soldiers,
search and rescue teams, and autonomous unmanned aerial vechicles. The network
itself may comprise any dynamic set of heterogeneous “agents of opportunity”—
other participating Soldiers, ground/air vehicles, or beacons. Unanchored localiza-
tion is useful on its own for tasks such as troop coordination, formation control, and
patterned weapon delivery. If some of the participating agents also have access to
absolute position measurements (i.e., “anchor agents”), then the unanchored solu-
tion can be transformed to the world frame, granting all members absolute position
awareness, as described in Allik et al.8

18

6. References

1. Hendrickson B. Conditions for unique graph realizations. SIAM Journal on
Computing. 1992;21(1):65–84.

2. Jackson B, Jordán T. Connected rigidity matroids and unique realizations of
graphs. Journal of Combinatorial Theory, Series B. 2005;94(1):1–29.

3. Connelly R. On generic global rigidity. In: Applied geometry and discrete
mathematics; Vol. 4; Providence (RI): American Mathematical Society; 1991.
p. 147–155.

4. Tóth C, O’Rourke J, Goodman JE. Handbook of discrete and computational
geometry. Third edition. ed. Boca Raton (FL): CRC Press; 2017. Tóth C,
O’Rourke J, Goodman J, editors.

5. Connelly R. Generic global rigidity. Discrete & Computational Geometry.
2005;33(4):549–563.

6. Gortler SJ, Healy AD, Thurston DP. Characterizing generic global rigidity.
American Journal of Mathematics. 2010;132(4):897–939.

7. Mathematica. Ver. 12.0. Champaign (IL): Wolfram Research, Inc.;. 2019.

8. Allik BL, Hamaoui M, Don M, Miller C. Kalman filter aiding mds for projec-
tile localization. In: AIAA Scitech 2019 Forum; p. 1159.

9. Borg I, Groenen PJF. Modern multidimensional scaling: theory and applica-
tions. 2nd ed. New York (NY): Springer; 2005. (Springer series in statistics)
Borg I, Groenen PJF, editors.

10. de Leeuw J, Heiser WJ. Convergence of correction matrix algorithms for mul-
tidimensional scaling. Ann Arbor (MI): Mathesis Press; 1977.

11. de Leeuw J, Mair P. Multidimensional scaling using majorization: Smacof in
r. Journal of Statistical Software. 2009;31(3):30.

12. Shang Y, Ruml W, Zhang Y, Fromherz MPJ. Localization from mere connec-
tivity. In: Proceedings of the 4th ACM international symposium on Mobile ad
hoc networking & computing; 2003 June 1–3; Annapolis, MD.; p. 201–212.

19

13. Ash JN, Potter LC. Robust system multiangulation using subspace methods.
In: 2007 6th International Symposium on Information Processing in Sensor
Networks; 2007 Apr 25–27; Cambridge, MA.; p. 61–68.

20

List of Symbols, Abbreviations, and Acronyms

2-D – two-dimensional

GPS – global positioning system

k-VCC – k-vertex connected component

MDS – multidimensional scaling

RF – radio frequency

SMACOF – Scaling by Majorizing a Complicated Function

21

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

1
(PDF)

CCDC ARL
FCDD RLD CL

TECH LIB

1
(PDF)

CCDC ARL
FCDD RLW LF

M HAMAOUI

22

	List of Figures
	List of Tables
	Introduction/Background
	Problem Statement
	Global Rigidity

	Methods
	k-vertex Connected Components
	Maximal k-VCC Identification
	Communication Lag
	Localization

	Simulation
	Simulation Model
	Metrics

	Results and Discussion
	Conclusion
	References
	List of Symbols, Abbreviations, and Acronyms
	Distribution List

