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Major Goals:  The overall objective of this work is to use machine learning control (MLC) to explore new flow 
regimes and behaviors and then use model identification techniques, to identify parsimonious and interpretable 
models that characterize the underlying flow physics.  Machine learning constitutes a growing set of data-driven 
optimization techniques that are ideal for the modeling and control of high-dimensional, nonlinear, and multi-scale 
systems, such as are found in fluid dynamics.  Further, sparse regression techniques have the potential to identify 
models that are both physically interpretable and generalize beyond the training data.  This work will provide new 
computational methods to analyze data from fluid simulations and experiments, and will also result in a better 
understanding of the fundamental structure and interaction physics of unsteady fluid flows. 



The modeling and control of fluid flows remains a grand challenge problem of the modern era, with potentially 
transformative scientific, technological, and industrial impact. Indeed, better understanding of complex flow physics 
may enable drag reduction, lift increase, mixing enhancement, and noise reduction in domains as diverse as 
transportation, energy, security and medicine. Fluid dynamics is a canonically difficult problem because of strong 
nonlinearity, high-dimensionality, and multi-scale physics; both modeling and control may be thought of as 
extremely challenging optimization problems. Recent advances in machine learning and sparse optimization are 
revolutionizing how we approach these traditionally intractable problems. We envision that these methods will 
enable the discovery of novel flow physics as well as practical new control strategies to achieve improved 
performance in engineering flows. At the end of this work, we will have learned a tremendous deal about important 
canonical flows. But moreover, we will have developed a framework to control and characterize fluids that improves 
with increasing data, positioning it to capitalize on the big data revolution. Improved data-driven modeling and 
control of fluid flows has the potential to significantly advance numerous scientific, engineering, and industrial 
efforts, resulting in drag reduction, lift increase, mixing enhancement, and noise reduction.

Accomplishments:  During the first year, my lab has focused on developing powerful extensions to the sparse 
identification of nonlinear dynamics (SINDy) algorithm to incorporate the effect of actuation and control and to 
identify models in the low-data limit and in response to abrupt changes to the dynamics, which are expected during 
the application of active control. Initial results are extremely promising, indicating that SINDy models may be 
identified with extremely limited data, depending on measurement quality, and the resulting models are lean 
enough to be used for effective model predictive control (MPC), even in nonlinear systems.  We have also applied 
the SINDy modeling framework to more complex fluid flows with broadband frequency content, namely the fluidic 
pinball, which consists of three independently rotating cylinders in a triangular configuration.  In this flow, we have 
identified extremely simple and interpretable models that involve two coupled nonlinear spring-mass-damper 
oscillators with nonlinear damping.  This is an encouraging result, since this is a natural generalization of the 

Report Date:  30-Nov-2019

INVESTIGATOR(S):

Phone Number:  6099216415
Principal:  Y

Name: Ph.D Steven  Brunton 
Email:  sbrunton@uw.edu



models obtained for the single cylinder flow, indicating that more complex, and even turbulent, flows may be 
characterized by a few dominant nonlinear oscillators, in the right coordinates.  Finally, we have also investigated 
optimal sensor placement for flow estimation and other machine learning control algorithms, including the use of 
deep neural networks for model predictive control to maintain high performance control in a mode-locked laser.

During the second year, my lab has focused on developing optimization techniques to extend the sparse 
identification of nonlinear dynamics (SINDy) algorithm to more complex, high-dimensional systems with a diversity 
of observed behaviors, which are common features of unsteady fluid dynamics.  First, we have developed a 
theoretical foundation for the sparse optimization approach used in the original SINDy paper, testing its limitations 
and extending it to other sparse optimization problems, such as compressed sensing, regularization, robust 
filtering, etc., which arise in a variety of signal processing applications.  Next, we developed a randomized linear 
algebra software package to efficiently extract modal decompositions in a scalable framework.  On the science 
side, we have extended SINDy to work on hybrid dynamical systems, where the dynamics switch between multiple 
distinct dynamical regimes, which will be useful for multiphase flows.  We have also shown improved learning of 
dynamics via neural networks by constraining the network to enforce Runge-Kutta time stepping constraints, 
enabling significant improvements to de-noising.  Finally, we have used SINDy to learn discrepancies between a 
controlled experiment and an idealized Hamiltonian, demonstrating how to include partial knowledge of the physics 
to improve the learning process, resulting in improved control. 

Approach

• Apply SINDy to the complex fluidic pinball flow, consisting of three independent cylinders;

• Extend SINDy to incorporate actuation and control and identify models in the low-data limit;

• Develop effective model predictive control based on SINDy models;

• Explore sensor placement for maximally extracting flow information for models and control;

• Develop deep MPC algorithms for nonlinear control of a mode-locked laser.

• Develop new sparse optimization techniques for more robust performance

• Extend SINDy approach to model hybrid dynamical systems

• Explore randomized linear algebra for modal decompositions at scale

• Use known constraints to improve simultaneous de-noising and discovery of dynamics

• Learn discrepancy between models and experimental data for control



Accomplishments for Reporting Period



• SINDy for model predictive control in the low-data limit 

• SINDy for detecting abrupt system changes 

• SINDy applied to the fluidic pinball 

• Deep model predictive control for self-tuning fiber lasers 

• Sparse sensor placement optimization for flow reconstruction 

• Improved sparse optimization framework

• Sparse identification of hybrid dynamical systems

• Randomized algorithms for modal extraction at scale

• Neural network de-noising and discovery with time-stepper dynamics

• Learning model discrepancies from data for control

RPPR Final Report 
as of 10-Jan-2020

Training Opportunities:  Graduate Students Involved During Reporting Period 

• Krithika Manohar (Ph.D., defended June 2018)

• Markus Quade (visiting Ph.D. student from U Potsdam, visiting under DAAD fellowship)

• Kardindan Kaheman (Ph.D.student)

• Jared Callaham (Ph.D.student)

• Thomas Mohren (Ph.D. student)

• Isabel Scherl (Ph.D.student)

• Benjamin Strom (Ph.D.student, defended March 2019)

• Thomas Baumeister (visiting Masters student from TU Munich)

Postdoctoral Researchers Involved During Reporting Period 

• Aditya Nair

Acting Assistant Professor Involved During Reporting Period 

• Kazuki Maeda



RPPR Final Report 
as of 10-Jan-2020

Results Dissemination:  • Loiseau, Deng, Pastur, Morzinski, Noack, Brunton, “Sparse reduced-order modeling of 
the fluidic pinball,” GDR Controle des ecollements, 2017.

• Kaiser, Kutz, Brunton, “Sparse identification of nonlinear dynamics for model predictive control in the low-data 
limit,” Proceedings of the Royal Society A, 474(2219), 2018.

• Baumeister, Brunton, Kutz, “Deep learning and model predictive control for self-tuning model-locked lasers,” 
Journal of the Optical Society of America, 35(3):617—626, 2018. 

• Quade, Abel, Kutz, Brunton, “Sparse identification of nonlinear dynamics for rapid model recovery,” Chaos, 28
(063116), 2018.

• Manohar, Brunton, Kutz, Brunton, “Data-driven sparse sensor placement for reconstruction,” IEEE Control 
Systems Magazine, 38(3):63—86, 2018.

• Erichson, Brunton, Kutz, “Randomized matrix decompositions using R,” Journal of Statistical Software, 89(11):
1—48, 2019.

• Mangan, Askham, Brunton, Kutz, Proctor, “Model selection for hybrid dynamical systems via sparse 
regression,” Proceedings of the Royal Society A, 475(20180534), 2019.

• Zheng, Askham, Brunton, Kutz, Aravkin, “A unified framework for sparse relaxed regularized regression: SR3,” 
IEEE Access, 7(1):1404—1423, 2019. 

• Rudy, Kutz, Brunton, “Deep learning of dynamics and signal-noise decomposition with time-stepping 
constraints,” Journal of Computational Physics, 396:483—506, 2019

• Rudy, Brunton, Kutz, “Smoothing and parameter estimation by soft-adherence to governing equations,” Journal 
of Computational Physics, 398:108860, 2019

• Kaheman, Kaiser, Strom, Kutz, Brunton, “Learning discrepancy models from experimental data,” CDC, 2019.

• Brunton, Noack, Koumoutsakos, “Machine Learning for Fluid Mechanics,” To appear in Annual Review of Fluid 
Mechanics, 2019.

Honors and Awards:  •Callaham: DOD NDSEG Graduate Fellowship, 2019

• Brunton: Presidential Early Career Award in Science and Engineering (PECASE), 2019

• Brunton: SIAM CSE Early Career Prize, 2019

• Brunton: College of Engineering Junior Faculty Award, 2018

• Brunton: Promotion to Associate Professor, 2018

• Manohar: Accepted NSF Postdoctoral Fellowship to work at Caltech, 2018

Protocol Activity Status: 

Technology Transfer:  • Related patent: Jose Nathan Kutz, Steven Brunton, Xing Fu, “Tuning Multi-Input 
Complex Dynamic Systems Using Sparse Representations of Performance and Extremum-Seeking Control,” US 
Patent Number 9,972,962, May 2018

PARTICIPANTS:

Person Months Worked:  1.00 Funding Support:  
Project Contribution:    
International Collaboration:    
International Travel:    
National Academy Member: N 

Person Months Worked:  4.00 Funding Support:  
Project Contribution:    
International Collaboration:    
International Travel:    
National Academy Member: N 

Participant Type:  PD/PI
Participant:  Steve  Brunton 

Other Collaborators:    

Participant Type:  Graduate Student (research assistant)
Participant:  Krithika  Manohar 

Other Collaborators:    



RPPR Final Report 
as of 10-Jan-2020

Person Months Worked:  15.00 Funding Support:  
Project Contribution:    
International Collaboration:    
International Travel:    
National Academy Member: N 

Person Months Worked:  3.00 Funding Support:  
Project Contribution:    
International Collaboration:    
International Travel:    
National Academy Member: N 

Person Months Worked:  3.00 Funding Support:  
Project Contribution:    
International Collaboration:    
International Travel:    
National Academy Member: N 

Person Months Worked:  2.00 Funding Support:  
Project Contribution:    
International Collaboration:    
International Travel:    
National Academy Member: N 

Person Months Worked:  4.00 Funding Support:  
Project Contribution:    
International Collaboration:    
International Travel:    
National Academy Member: N 

Person Months Worked:  2.00 Funding Support:  
Project Contribution:    
International Collaboration:    
International Travel:    
National Academy Member: N 

Participant Type:  Graduate Student (research assistant)
Participant:  Kardindan  Kaheman 

Other Collaborators:    

Participant Type:  Graduate Student (research assistant)
Participant:  Ben  Strom 

Other Collaborators:    

Participant Type:  Graduate Student (research assistant)
Participant:  Isabel  Scherl 

Other Collaborators:    

Participant Type:  Graduate Student (research assistant)
Participant:  Thomas  Mohren 

Other Collaborators:    

Participant Type:  Postdoctoral (scholar, fellow or other postdoctoral position)
Participant:  Aditya  Nair 

Other Collaborators:    

Participant Type:  Other (specify)
Participant:  Kazuki  Maeda 

Other Collaborators:    



RPPR Final Report 
as of 10-Jan-2020

CONFERENCE PAPERS:

Date Received:  23-Aug-2018 Date Published:  09-Nov-2017Conference Date:  09-Nov-2017

Authors:  Jean-Christophe Loiseau, Nan Deng, Luc Pastur, Marek Morzynski, Bernd Noack, Steven Brunton
Acknowledged Federal Support:  Y

Publication Type:  Conference Paper or Presentation
Conference Name:  4th GDR Symposium

Conference Location:  Orleans, France
Paper Title:  Sparse reduced-order modeling of the fluidic pinball

Publication Status: 1-Published



Project Summary - W911NF-17-1-0422 
(Reporting Period: August 2017 – July 2019) 

 

Uncovering Nonlinear Flow Physics with Machine Learning Control and Sparse Modeling 

 
Steven L. Brunton 

Department of Mechanical Engineering  
University of Washington, Seattle, Washington, 98195 

 
Objective 
The overall objective of this work is to use machine learning control (MLC) to explore new flow 
regimes and behaviors and then use model identification techniques, to identify parsimonious 
and interpretable models that characterize the underlying flow physics.  Machine learning 
constitutes a growing set of data-driven optimization techniques that are ideal for the modeling 
and control of high-dimensional, nonlinear, and multi-scale systems, such as are found in fluid 
dynamics.  Further, sparse regression techniques have the potential to identify models that are 
both physically interpretable and generalize beyond the training data.  This work will provide 
new computational methods to analyze data from fluid simulations and experiments, and will 
also result in a better understanding of the fundamental structure and interaction physics of 
unsteady fluid flows.  
During the first year, my lab has focused on developing powerful extensions to the sparse 
identification of nonlinear dynamics (SINDy) algorithm to incorporate the effect of actuation and 
control and to identify models in the low-data limit and in response to abrupt changes to the 
dynamics, which are expected during the application of active control. Initial results are 
extremely promising, indicating that SINDy models may be identified with extremely limited 
data, depending on measurement quality, and the resulting models are lean enough to be used for 
effective model predictive control (MPC), even in nonlinear systems.  We have also applied the 
SINDy modeling framework to more complex fluid flows with broadband frequency content, 
namely the fluidic pinball, which consists of three independently rotating cylinders in a 
triangular configuration.  In this flow, we have identified extremely simple and interpretable 
models that involve two coupled nonlinear spring-mass-damper oscillators with nonlinear 
damping.  This is an encouraging result, since this is a natural generalization of the models 
obtained for the single cylinder flow, indicating that more complex, and even turbulent, flows 
may be characterized by a few dominant nonlinear oscillators, in the right coordinates.  Finally, 
we have also investigated optimal sensor placement for flow estimation and other machine 
learning control algorithms, including the use of deep neural networks for model predictive 
control to maintain high performance control in a mode-locked laser. 
During the second year, my lab has focused on developing optimization techniques to extend the 
sparse identification of nonlinear dynamics (SINDy) algorithm to more complex, high-
dimensional systems with a diversity of observed behaviors, which are common features of 
unsteady fluid dynamics.  First, we have developed a theoretical foundation for the sparse 
optimization approach used in the original SINDy paper, testing its limitations and extending it 
to other sparse optimization problems, such as compressed sensing, regularization, robust 
filtering, etc., which arise in a variety of signal processing applications.  Next, we developed a 



randomized linear algebra software package to efficiently extract modal decompositions in a 
scalable framework.  On the science side, we have extended SINDy to work on hybrid dynamical 
systems, where the dynamics switch between multiple distinct dynamical regimes, which will be 
useful for multiphase flows.  We have also shown improved learning of dynamics via neural 
networks by constraining the network to enforce Runge-Kutta time stepping constraints, enabling 
significant improvements to de-noising.  Finally, we have used SINDy to learn discrepancies 
between a controlled experiment and an idealized Hamiltonian, demonstrating how to include 
partial knowledge of the physics to improve the learning process, resulting in improved control.  
Approach 
• Apply SINDy to the complex fluidic pinball flow, consisting of three independent cylinders; 
• Extend SINDy to incorporate actuation and control and identify models in the low-data limit; 
• Develop effective model predictive control based on SINDy models; 
• Explore sensor placement for maximally extracting flow information for models and control; 
• Develop deep MPC algorithms for nonlinear control of a mode-locked laser. 
• Develop new sparse optimization techniques for more robust performance 
• Extend SINDy approach to model hybrid dynamical systems 
• Explore randomized linear algebra for modal decompositions at scale 
• Use known constraints to improve simultaneous de-noising and discovery of dynamics 
• Learn discrepancy between models and experimental data for control 
 
Relevance to Army 
The modeling and control of fluid flows remains a grand challenge problem of the modern era, 
with potentially transformative scientific, technological, and industrial impact. Indeed, better 
understanding of complex flow physics may enable drag reduction, lift increase, mixing 
enhancement, and noise reduction in domains as diverse as transportation, energy, security and 
medicine. Fluid dynamics is a canonically difficult problem because of strong nonlinearity, high-
dimensionality, and multi-scale physics; both modeling and control may be thought of as 
extremely challenging optimization problems. Recent advances in machine learning and sparse 
optimization are revolutionizing how we approach these traditionally intractable problems. We 
envision that these methods will enable the discovery of novel flow physics as well as practical 
new control strategies to achieve improved performance in engineering flows. At the end of this 
work, we will have learned a tremendous deal about important canonical flows. But moreover, 
we will have developed a framework to control and characterize fluids that improves with 
increasing data, positioning it to capitalize on the big data revolution. Improved data-driven 
modeling and control of fluid flows has the potential to significantly advance numerous 
scientific, engineering, and industrial efforts, resulting in drag reduction, lift increase, mixing 
enhancement, and noise reduction.  

Accomplishments for Reporting Period 
 
• SINDy for model predictive control in the low-data limit  
The data-driven discovery of dynamics via machine learning is currently pushing the frontiers of 
modeling and control efforts, and it provides a tremendous opportunity to extend the reach of 
model predictive control. However, many leading methods in machine learning, such as neural 
networks, require large volumes of training data, may not be interpretable, do not easily include 



known constraints and symmetries, and often do not generalize beyond the attractor where 
models are trained. These factors limit the use of these techniques for the online identification of 
a model in the low-data limit, for example following an abrupt change to the system dynamics. 
In this work, we extend the recent sparse identification of nonlinear dynamics (SINDY) 
modeling procedure to include the effects of actuation and demonstrate the ability of these 
models to enhance the performance of model predictive control (MPC), based on limited, noisy 
data. SINDY models are parsimonious, identifying the fewest terms in the model needed to 
explain the data, making them interpretable, generalizable, and reducing the burden of training 
data. We show that the resulting SINDY-MPC framework has higher performance, requires 
significantly less data, and is more computationally efficient and robust to noise than neural 
network models, making it viable for online training and execution in response to rapid changes 
to the system. SINDY-MPC also shows improved performance over linear data-driven models, 
although linear models may provide a stopgap until enough data is available for SINDY.  

Relevant figures: Figure 1, Figure 1, Figure 1 
 
• SINDy for detecting abrupt system changes  
Big data have become a critically enabling component of emerging mathematical methods aimed 
at the automated discovery of dynamical systems, where first principles modeling may be 
intractable. However, in many engineering systems, abrupt changes must be rapidly 
characterized based on limited, incomplete, and noisy data. Many leading automated learning 
techniques rely on unrealistically large data sets, and it is unclear how to leverage prior 
knowledge effectively to re- identify a model after an abrupt change. In this work, we propose a 
conceptual framework to recover parsimonious models of a system in response to abrupt changes 
in the low-data limit. First, the abrupt change is detected by comparing the estimated Lyapunov 
time of the data with the model prediction. Next, we apply the sparse identification of nonlinear 
dynamics (SINDy) regression to update a previously identified model with the fewest changes, 
either by addition, deletion, or modification of existing model terms. We demonstrate this sparse 
model recovery on several examples for abrupt system change detection in periodic and chaotic 
dynamical systems. Our examples show that sparse updates to a previously identified model 
perform better with less data, have lower runtime complexity, and are less sensitive to noise than 
identifying an entirely new model. The proposed abrupt-SINDy architecture provides a new 
paradigm for the rapid and efficient recovery of a system model after abrupt changes.  

Relevant figures: Figure 1 
 
• SINDy applied to the fluidic pinball  
This work applies a sparse gray-box modeling procedure recently proposed by the same authors 
to the fluidic pinball, a new benchmark for nonlinear flow control. This procedure relies on 
experimentally available quantities, such as time-resolved sensor measurements and optional 
non-time-resolved PIV snapshots. Its application to the fluidic pinball illustrates the versatility of 
the present approach and its ability to identify human-interpretable nonlinear low-order models. 
These low-order models may then be used for nonlinear model-based control.  

Relevant figures: Figure 1 



 
• Deep model predictive control for self-tuning fiber lasers  
Self-tuning optical systems are of growing importance in technological applications such as 
mode-locked fiber lasers. Such self-tuning paradigms require intelligent algorithms capable of 
inferring approximate models of the underlying physics and discovering appropriate control laws 
in order to maintain robust performance for a given objective. In this work, we demonstrate the 
first integration of a deep-learning (DL) architecture with model predictive control (MPC) in 
order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture 
approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and 
appropriate control law for maintaining robust, high-energy pulses despite a stochastically 
drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser that is 
mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to 
a variety of optical systems that require robust controllers.  

Relevant figures: Figure 1 
 
• Sparse sensor placement optimization for flow reconstruction  
Optimal sensor placement is a central challenge in the design, prediction, estimation, and control 
of high-dimensional systems. High-dimensional states can often leverage a latent low-
dimensional representation, and this inherent compressibility enables sparse sensing. This article 
explores optimized sensor placement for signal reconstruction based on a tailored library of 
features extracted from training data. Sparse point sensors are discovered using the singular 
value decomposition and QR pivoting, which are two ubiquitous matrix computations that under- 
pin modern linear dimensionality reduction. Sparse sensing on a tailored basis is contrasted with 
compressed sensing, a universal signal recovery method in which an unknown signal is 
reconstructed via a sparse representation on a universal basis. Although compressed sensing can 
recover a wider class of signals, we demonstrate the benefits of exploiting known patterns in data 
with optimized sensing. In particular, drastic reductions in the required number of sensors and 
improved reconstruction are observed in examples ranging from facial images to fluid vorticity 
fields. Principled sensor placement may be critically enabling when sensors are costly and 
provides faster state estimation for low-latency, high-bandwidth control.  

Relevant figures: Figure 1, Figure 1, Figure 1 
 

• Improved sparse optimization framework 
Regularized regression problems are ubiquitous in statistical modeling, signal processing,  
and machine learning. Sparse regression in particular has been instrumental in scientific model 
discovery, including compressed sensing applications, variable selection, and high-dimensional 
analysis. We propose a broad framework for sparse relaxed regularized regression, called Sparse 
Regularized Relaxed Regression (SR3). The key idea is to solve a relaxation of the regularized 
problem, which has three advantages over the state-of-the-art: (1) solutions of the relaxed 
problem are superior with respect to errors, false positives, and conditioning, (2) relaxation 
allows extremely fast algorithms for both convex and nonconvex formulations, and (3) the 
methods apply to composite regularizers such as total variation (TV) and its nonconvex variants. 
We demonstrate the advantages of \SR3 (computational efficiency, higher accuracy, faster 



convergence rates, greater flexibility) across a range of regularized regression problems with 
synthetic and real data, including applications in compressed sensing, LASSO, matrix 
completion, TV regularization, and group sparsity. To promote reproducible research, we also 
provide a companion Matlab package that implements these examples. 

Relevant figures: Figure 10, Figure 11 
 

• Sparse identification of hybrid dynamical systems 
Hybrid systems are traditionally difficult to identify and analyze using classical dynamical 
systems theory.  Moreover, recently developed model identification methodologies largely focus 
on identifying a single set of governing equations solely from measurement data.  We have 
developed a new methodology, Hybrid-Sparse Identification of Nonlinear Dynamics (Hybrid-
SINDy), which identifies separate nonlinear dynamical regimes, employs information theory to 
manage uncertainty, and characterizes switching behavior. Specifically, we utilize the nonlinear 
geometry of data collected from a complex system to construct a set of coordinates based on 
measurement data and augmented variables.  Clustering the data in these measurement-based 
coordinates enables the identification of nonlinear hybrid systems.  This methodology broadly 
empowers nonlinear system identification without constraining the data locally in time and has 
direct connections to hybrid systems theory.  We demonstrate the success of this method on 
numerical examples including a mass-spring hopping model and an infectious disease model. 
Characterizing complex systems that switch between dynamic behaviors is integral to 
overcoming modern challenges such as eradication of infectious diseases, the design of efficient 
legged robots, and the protection of cyber infrastructures. 

Relevant figures: Figure 12, Figure 13 
 

• Randomized algorithms for modal extraction at scale 
Matrix decompositions are fundamental tools in the area of applied mathematics, statistical 
computing, and machine learning. In particular, low-rank matrix decompositions are vital, and 
widely used for data analysis, dimensionality reduction, and data compression. Massive datasets, 
however, pose a computational challenge for traditional algorithms, placing significant 
constraints on both memory and processing power. Recently, the powerful concept of 
randomness has been introduced as a strategy to ease the computational load. The essential idea 
of probabilistic algorithms is to employ some amount of randomness in order to derive a smaller 
matrix from a high-dimensional data matrix. The smaller matrix is then used to compute the 
desired low-rank approximation. Such algorithms are shown to be computationally efficient for 
approximating matrices with low-rank structure.  We have developed the R package rsvd, along 
with a tutorial introduction to randomized matrix decompositions. Specifically, randomized 
routines for the singular value decomposition, robust principal component analysis, interpolative 
decomposition, and CUR decomposition are discussed.  Several examples demonstrate the 
routines, and show the computational advantage over other methods implemented in R. 

Relevant figures: Figure 14, Figure 15, Figure 16 



 

• Neural network de-noising and discovery with time-stepper dynamics 
 
A critical challenge in the data-driven modeling of dynamical systems is producing methods 
robust to measurement error, particularly when data is limited.  Many leading methods either rely 
on denoising prior to learning or on access to large volumes of data to average over the effect of 
noise.  We propose a novel paradigm for data-driven modeling that simultaneously learns the 
dynamics and estimates the measurement noise at each observation.  By constraining our 
learning algorithm, our method explicitly accounts for measurement error in the map between 
observations, treating both the measurement error and the dynamics as unknowns to be 
identified, rather than assuming idealized noiseless trajectories.  We model the unknown vector 
field using a deep neural network, imposing a Runge-Kutta integrator structure to isolate this 
vector field, even when the data has a non-uniform timestep, thus constraining and focusing the 
modeling effort.   We demonstrate the ability of this framework to form predictive models on a 
variety of canonical test problems of increasing complexity and show that it is robust to 
substantial amounts of measurement error.  We also discuss issues with the generalizability of 
neural network models for dynamical systems and provide open-source code for all examples. 
 
Relevant figures: Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22 
 
• Learning model discrepancies from data for control 
First principles modeling of physical systems has led to significant technological advances across 
all branches of science. For nonlinear systems, however,  small modeling errors can lead to 
significant deviations from the true, measured behavior. Even in mechanical systems, where the 
equations are assumed to be well-known, there are often model discrepancies corresponding to 
nonlinear friction, wind resistance, etc. Discovering models for these discrepancies remains an 
open challenge for many complex systems. In this work, we use the sparse identification of 
nonlinear dynamics (SINDy) algorithm to discover a model for the discrepancy between a 
simplified model and measurement data.  In particular, we assume that the model mismatch can 
be sparsely represented in a  library of candidate model terms. We demonstrate the efficacy of 
our approach on several examples including experimental data from a double pendulum on a 
cart. We further design and implement a feed-forward controller in simulations, showing 
improvement with a discrepancy model.  
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Figure 1. Overview of examples of SINDy with model predictive control.  
 

 
Figure 2. Schematic overview of SINDy with actuation and control.  



 
Figure 3. Prediction horizon of SINDy models is more robust to sensor noise than neural network models. 
 
  

 
Figure 4. Overview of how to use SINDy to detect new models after abrupt system changes. 
 
 



 

 

 
Figure 5. SINDy model for fluidic pinball model.  Lift and drag on each cylinder are accurately predicted 
with a simple coupled nonlinear oscillator model.  



 
Figure 6. Deep model predictive control architecture for the mode-locked laser. 
 
  



 
Figure 7. Schematic overview of sensor placement for reconstruction. 

 
 

 
Figure 8. Mathematical framing of sensor placement problem. 

 
 



 
Figure 9. Optimal sparse sensor placement for the flow past a cylinder results in significantly better 
performance than random sensors (right). 
  



 

 
Figure 10. (a) Traditional sparse optimization path, and (b) proposed new relaxed optimization.  
   

 
Figure 11. Common optimization applications where SR3 method improves performance.  



   
  

 
Figure 12. Schematic of SINDy approach extended to hybrid systems, demonstrated using the spring-mass-
hopper system.   
 



 
Figure 13. Hybrid SINDy approach applied to disease dynamics.  



 

 
Figure 14. Randomized algorithms provide a probabilistic strategy for modal decomposition.  
 

 
Figure 15. Example of randomized singular value decomposition algorithm.  
 



 
Figure 16. Performance of randomized SVD on image compression.  



 

 
Figure 17. Illustration of simultaneous de-noising and discovery of dynamics.  
 

 
Figure 18. Schematic of how to enforce Runge Kutta integrator constraints to denoise and discover dynamics.  
 



 
Figure 19. Denoising performance on Lorenz system.  
 



 
Figure 20. Denoising performance on fluid flow example.  
 



 
Figure 21. Denoising performance on Lorenz system with biased noise.  
 

 
Figure 22. Denoising performance on Kuramoto Sivashinsky example.  
 



 
Figure 23. Double pendulum on cart experiment to test discrepancy modeling.  
 

 
Figure 24. Simulated control performance with and without discrepancy model.  


