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ABSTRACT

We present data-driven results that probe the relationship between the existence
of cyber exploits – a stand-in for threat assessment – with CVSS scores, which are a
particular metric of cyber vulnerability. Initial results indicate a roughly power-law
relationship with an exponent of 7.5 ± 1.4, rising to a maximum of about 9% for
vulnerabilities with the most severe (highest) CVSS scores.
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1. BACKGROUND

In the absence of emergent probabilities of compromise conditioned on known vulnerabilities,
Lippmann et al. devised a simple heuristic to convert a known vulnerability’s Common Vulnerability
Scoring System (CVSS) score [1] to a probability of compromise given its observed CVSS score,

P (Compromised|Observed) =
( v

10

)2
, (1)

where v is the CVSS score, ranging from 0 to 10, that is associated with a vulnerability enumerated
by a Common Vulnerabilities and Exposures (CVE) identification (ID) number [2–4] . Lippman
and Riordan remark that “This simple approach could be improved if more detailed information
on vulnerabilities and exploits were available.” The purpose of this summary is to better probe this
relationship using data made available by Allodi and Massacci [5], who have provided digestible
databases of CVE IDs, CVSS scores, and known threats in the form of exploit kits and Symantec
inventories of malware and network attacks.
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2. ASSUMPTIONS

To compute the conditional probabilities, we use the definition

P (A|B) =
P (A ∩B)

P (B)
, (2)

where A is the event that an exploit exists for a particular CVE ID, and B is the event that a
CVE ID has an associated CVSS score v ∈ [VLo, VHi]. Then P (B) is computed by accumulating
the total number of CVE IDs that have CVSS scores in that range, and P (A ∩B) is computed by
accumulating the total number of scores in that range that also have known exploits, each of which
is divided by the total number of CVE IDs.

Tacit in the construction of these probabilities are several assumptions. Namely, we assume
that the National Vulnerability Database (NVD) information provided by Allodi and Massacci
enumerates the entire “universe” of vulnerabilities and that the exploit kit and Symantec databases
account for all known exploits (at the time of database construction). Additionally, we only query
the existence of an exploit’s association with a CVE ID. However, some vulnerabilities have many
associated exploits; presumably, the threat presented to these vulnerabilities is higher; see Figure 1.

Figure 1. Some vulnerabilities have many exploits. These are the numbers of exploits for the top 20 CVE
entries in the Symantec malware database.
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Additionally, many exploits exist without associated CVE IDs. Only about 9% of the Symantec
data, for instance, is associated with a CVE ID. These unassociated exploits are unaccounted for in
our discovered probabilities. We also attempt to consider the time at which the data was taken by
examining the date-stamp in Symantec’s malware database and comparing it with the publication
date of the vulnerability in NVD. The latest date in Symantec’s data is from November 16, 2012,
implying that NVD entries beyond 2012 are superfluous to this analysis. We also attempt to allow
time for a patch to emerge by considering the days elapsed between an NVD entry and a Symantec
database entry; a probability function describing that difference is provided as Figure 2. The median
of this data was 13 days, so we pruned the NVD data to end at November 3, 2012.

Figure 2. Probability function representing the days elapsed between appearance in the NVD and Symantec’s
malware database. Some incidences are negative, indicating that Symantec published a patch before the
vulnerability was entered into the NVD.

Other caveats are that:

• The CVSS scores in the provided database are integers, but CVSS version 2 scores should
be floating point. We have addressed this by re-computing the base scores from the score
vectors, which were also provided in the database. It appears that the data were truncated
(“floored”) when they were ingested.

• The data are static. Therefore, these probabilities would change as a function of the date
range for the databases if we were to update them (also, CVSS scores are revised over time).
As future work, it may be of interest to time-window these probabilities.
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• We did not perform statistical analyses to measure uncertainties in these probability estimates.

• Probability estimates only make sense in the context of this specific universe of samples, which
are likely undirected attacks against many hosts. A determined attacker may systematically
develop their own exploits against discovered vulnerabilities for a high-value target, which
would substantially increase the risk to that target beyond any probability associations
discovered here.
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3. RESULTS

About 2.7% of the CVE entries in this dataset have an associated exploit, regardless of their
CVSS score, implying that there a great deal of known vulnerabilities that have no documented
exploits against them. Only 9.2% of vulnerabilities with CVSS scores v ∈ [9, 10] have known exploits
in this dataset. Figure 3 presents the conditional probabilities of an exploit existing given a CVSS
score v ∈ [V, V +1], where V ranges from 0 to 9. The top subfigure of Figure 3 provides a comparison
to the quadratic heuristic introduced in [4]; the bottom subfigure presents the data alongside a
curve-fit to a generic function of the form f(v) = c + avb. Under this restriction, the functional
probability fit

p(v) = 0.01 + 0.18
( v

10

)7.51
where v ∈ [V, V + 1] and V ∈ {0, 1, . . . , 9} , (3)

emerges between the exploit probability and the CVSS score falling into a unit score window.

Figure 3. Conditional probability of an exploit existing with a CVSS score v falling in [v, v + 1].

Table 1 provides the values and standard deviations for the curve fit parameters, indicating
that the relative standard deviations are in the range of 17% to 24% of their stated estimates. In
particular, a one-standard-deviation range of the exponent is b ∈ [6.12, 8.9], so the value of 7.5
should not be considered a “gold standard.”

Consider the functional form to which we are fitting: p(v) = c + avb. The fit error of the
constant, score-independent term c = 0.01, is ±0.0024, so it is significant at more than 4σ. Thus,
the term invites speculation as to its interpretation. One way of interpretation is to assign it to
errors in the CVSS assessment process. That is, vulnerabilities that were initially assessed to have
a negligible impact turned out to be significant in practice. Another approach, which might be
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considered more aggressive, is to consider it as stemming from a low, ineradicable, background
exploit probability for any software in the NVD, regardless of its score. This approach agrees with
the intuition that no software is “unhackable.” Extending that train of thought a little further, one
might consider all software, not just software in the NVD, to have some irreducible residuum of
vulnerability that is represented by the constant term. It would be interesting to further categorize
the data to determine if statistically significant classes of software appear more or less secure than
others.

TABLE 1

Curve Fitting Coefficients and Standard Deviations for Exploit Probabilities 

Conditioned on CVSS    cores

p(v) = c+ avb Value Standard Deviation Fractional Standard Deviation

c 0.01 0.0024 0.24
a 0.18 0.031 0.17
b 7.51 1.39 0.18

Table 2 presents conditional probabilities that emerge from expanding the score window into
the traditional CVSS severity rankings of low, medium, and high. It indicates that medium severity
scores are about twice as likely to have an exploit as low severity, and high severity scores are about
3.5 times as likely to have exploits than medium scores. However, they are all low probabilities since
so many vulnerabilities have no coincident exploit.

TABLE 2

Conditional Probabilities of an Exploit Occurring for CVSS Severity Rankings

Score Range Severity Ranking Exploit Probability

v ∈ [0, 3.9] Low 0.8%
v ∈ [4, 6.9] Medium 1.4%
v ∈ [7, 10] High 4.5%

We also queried the distribution of CVSS scores for CVE IDs that have known exploits and
found that 48% of them have scores in the range [9,10], indicating that about half of the known
exploits targeted the highest scored vulnerabilities.
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4. CONCLUSIONS

Using conditional probabilities, we have made some progress into ascertaining a relationship
between vulnerability scores and the existence of an exploit. Initial results indicate that the exploit
probability increases with the CVSS score according to a power-law function with an exponent of
7.5±1.4, with a maximum probability just over 9%. Higher severity threats generally show a trend
of having a higher probability of exploits, although exceptions occur for isolated scores. All of the
computed probabilities are relatively low since many CVE IDs have no known associated exploits.

As future work, we may consider alternative data sources, accounting for time-windowing the
exploit emergence with vulnerability reporting (truncating very old NVD entries), and probing for
other trends in the vulnerability types, for instance, amongst Common Attack Pattern Enumeration
and Classification (CAPEC) [6] categories.
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