AWARD NUMBER: W81XWH-16-1-0059

TITLE: Therapeutic targeting of spliceosomal-mutant acquired bone marrow failure disorders

PRINCIPAL INVESTIGATOR: Omar Abdel-Wahab MD

RECIPIENT: Sloan Kettering Institute for Cancer Research

REPORT DATE: August 2019

TYPE OF REPORT: Final Technical

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Therapeutic targeting of spliceosomal-mutant acquired bone marrow failure disorders

5a. CONTRACT NUMBER

5b. GRANT NUMBER
W81XWH-16-1-0059

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Omar Abdel-Wahab M.D.

E-Mail: abdelwao@mskcc.org

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Sloan Kettering Institute for Cancer Research
1275 York Avenue
New York, NY 10065-6007

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Genes encoding core components of the RNA splicing machinery are the most common mutational targets in acquired bone marrow failure (BMF) due to myelodysplastic syndromes (MDS). The goals of this proposal were to identify (1) the subset of biologically and therapeutically relevant targets that link spliceosomal mutations to MDS and (2) therapeutic strategies that interfere with the altered function of mutant spliceosomal proteins. Since award of this grant we have found that different spliceosomal mutations, despite imparting distinct effects on splicing and gene expression, are negatively selected for when co-expressed in the same cell or in a homozygous state. At the same time, aberrant splicing of distinct targets/events by mutant SF3B1 and SRSF2 results in hyperactivated NF-kB signaling, thereby identifying convergent biological consequences of splicing factor mutations and the basis for their mutual exclusivity and heterozygous nature. In addition, we have completed both a negative selection shRNA screen and a genome-wide CRISPR dropout screen to identify genes selectively required in spliceosomal mutant cells. This effort has also highlighted a requirement for innate immune signaling in SF3B1-mutant MDS and has implicated a few specific proteins as potential novel therapeutic targets for spliceosomal mutant MDS.

15. SUBJECT TERMS
MDS, SF3B1, Splicing, SRSF2, U2AF1, ZRSR2.

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
18

19a. NAME OF RESPONSIBLE PERSON
USAMRMC

19b. TELEPHONE NUMBER (include area code)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2. Keywords</td>
<td>4</td>
</tr>
<tr>
<td>3. Accomplishments</td>
<td>4</td>
</tr>
<tr>
<td>4. Impact</td>
<td>8</td>
</tr>
<tr>
<td>5. Changes/Problems</td>
<td>9</td>
</tr>
<tr>
<td>6. Products</td>
<td>10</td>
</tr>
<tr>
<td>7. Participants & Other Collaborating Organizations</td>
<td>13</td>
</tr>
<tr>
<td>8. Special Reporting Requirements</td>
<td>16</td>
</tr>
<tr>
<td>9. Appendices</td>
<td>18</td>
</tr>
</tbody>
</table>
1. **INTRODUCTION:** Narrative that briefly (one paragraph) describes the subject, purpose and scope of the research.

 | Genes encoding core components of the RNA splicing machinery are the most common mutational targets in acquired bone marrow failure (BMF) due to myelodysplastic syndromes (MDS). MDS associated “spliceosomal mutations” most frequently affect SF3B1, SRSF2, and U2AF1. Mutations in each of these genes conspicuously occur as heterozygous point mutations at highly restricted residues and are mutually exclusive, suggesting that they are oncogenic gain-of-function alterations. While these data suggest that each RNA splicing factor mutation may share downstream targets, currently few mis-spliced genes have been conclusively identified as downstream targets of any mutant splicing protein, and no shared targets downstream of all three spliceosomal gene mutations have been identified. Thus, the goals of this proposal were to identify (1) the subset of biologically and therapeutically relevant targets that link spliceosomal mutations to MDS and (2) therapeutic strategies that interfere with the altered function of mutant spliceosomal proteins. |

2. **KEYWORDS:** Provide a brief list of keywords (limit to 20 words).

 | MDS, SF3B1, Splicing, SRSF2, U2AF1, ZRSR2 |

3. **ACCOMPLISHMENTS:** The PI is reminded that the recipient organization is required to obtain prior written approval from the awarding agency Grants Officer whenever there are significant changes in the project or its direction.

 What were the major goals of the project?

 List the major goals of the project as stated in the approved SOW. If the application listed milestones/target dates for important activities or phases of the project, identify these dates and show actual completion dates or the percentage of completion.

 | The major goals of this project were as follows:
 | **Specific Aim 1.** Identify unifying molecular abnormalities across spliceosomal mutations using combined genomic and proteomic approaches.
 | **Specific Aim 2.** Identify additional genes that are required for the survival of cells carrying different spliceosomal mutations with synthetic lethality screens.
 | **Specific Aim 3.** Identify novel therapeutic strategies specifically targeting mutant spliceosomal protein function. |

 What was accomplished under these goals?

 For this reporting period describe: 1) major activities; 2) specific objectives; 3) significant results or key outcomes, including major findings, developments, or conclusions (both positive and negative); and/or 4) other achievements. Include a discussion of stated goals not met. Description shall include pertinent data and graphs in sufficient detail to explain any significant results achieved. A succinct description of the methodology used shall be provided. As the project progresses to completion, the emphasis in reporting in this section should shift from reporting activities to reporting accomplishments.
Aim 1 accomplishments: We identified that different spliceosomal mutations, despite imparting distinct effects on splicing and gene expression, are negatively selected for when co-expressed in the same cell or in a homozygous state. At the same time, aberrant splicing of distinct targets/events by mutant SF3B1 and SRSF2 results in hyperactivated NF-κB signaling. Specifically, mutations in SF3B1 result in aberrant splicing and consequent downregulation of MAP3K7 while mutations in SRSF2 generate a stable truncated form of Caspase 8. Each of these alterations result in activation of NFk-B signaling. These data identify convergent biological consequences of splicing factor mutations and the basis for their mutual exclusivity and heterozygous nature. Our shared manuscript on these data were published since the last reporting period in Cancer Cell as follows:

Aim 2 accomplishments: *SRSF2*-mutant cells are preferentially sensitive to RBM39-degrading compounds. We previously identified that spliceosomal mutant cells are preferentially sensitive to genetic or pharmacologic perturbations to the splicing process. Our initial work on this focused on pharmacologic inhibition of the SF3b complex of the core spliceosome. In an effort to identify additional RNA binding proteins (RBPs) required in myeloid malignancy cells, we performed an RNA binding domain-focused CRISPR screen to systematically target RBPs across a variety of cancer cell lines. This identified a unique genetic requirement for RBM39 in myeloid leukemia cells. Serendipitously, several drugs (known as anticancer “sulfonamides,” as they all contain a sulfonamide moiety) were recently discovered to specifically degrade RBM39 protein by physically linking RBM39 to the Ddb1/CUL4 E3 ubiquitin ligase complex via an adaptor protein known as DCAF15. We therefore tested those compounds to discover that splicing factor mutant cells were especially sensitive to RBM39 degraders. Importantly, the safety of RBM39-degrading compounds has been established in previous phase I clinical trials in solid tumor and leukemia patients (NCT00078637, NCT01773421). We are now initiating a phase II clinical trial of the RBM39-degrading agent E7820 in patients with myeloid neoplasms and an RNA splicing factor mutation who have relapsed or are refractory to standard therapies. Our manuscript on these data were published this year:

Aim 3 accomplishments: Preferential effect of PRMT inhibition on spliceosomal mutant leukemias. We recently identified that inhibiting symmetric (SDMA) or asymmetric dimethyl arginine methylation (ADMA), mediated by PRMT5 and type I protein arginine methyltransferases (PRMTs) respectively, reduces splicing fidelity and results in strong preferential killing of spliceosomal mutant leukemias over WT counterparts. Consistent with this, proteomic analyses identified RNA binding proteins and splicing factors as the most enriched PRMT5 and/or PRMT Type I substrates in leukemia. Accordingly, combined PRMT5/type I PRMT inhibition resulted in synergistic cell killing and pronounced effects on splicing compared with inhibiting either enzymatic activity alone. These data identify genetic subsets of cancer most likely to respond to PRMT inhibition and a mechanistic basis for therapeutic efficacy of PRMT inhibition in cancer. These data were published in the following publication:

Other Accomplishments:

Discovery that RNA splicing and epigenomic alterations act combinatorially to drive myeloid neoplasm development: We studied the transcriptomes of 982 patients with myeloid neoplasms to discover frequently co-occurring mutations in *SRSF2* and *IDH2* that together promote leukemogenesis by coordinately dysregulating RNA splicing and the epigenome. While mutations in either *SRSF2* or *IDH2* alone imparted distinct splicing changes, co-expression of mutant IDH2 altered the splicing effects of mutant SRSF2 and resulted in more profound splicing changes than did either mutation alone. Co-expression of mutant IDH2 and SRSF2 resulted in lethal MDS with proliferative features in vivo and enhanced self-renewal in a manner not observed with either mutation alone. These data identify a pathogenic crosstalk between altered splicing and epigenetic state in a subset of leukemias, provide functional evidence that mutations in splicing factors drive myeloid malignancy development, and identify splicing changes as mediators of *IDH2*-mutant leukemogenesis. These data were published in the following recent paper:

SF3B1 mutations disrupt the non-canonical BAF (ncBAF) complex: Unlike other spliceosomal mutations, which primarily occur in MDS and related hematologic diseases, *SF3B1* mutations are also common in non-hematologic malignancies. In order to understand this distinction, we used the above models of spliceosomal mutations to discover that *SF3B1* mutations found in both hematologic and non-hematologic disease converge on repression of BRD9, a core component of the recently described ncBAF complex, to promote cell transformation. These data explained the pervasive nature of *SF3B1* mutations and also elucidated a potential mechanism-based therapeutic. These data were published in the following recent paper:

What opportunities for training and professional development has the project provided?
If the project was not intended to provide training and professional development opportunities or there is nothing significant to report during this reporting period, state “Nothing to Report.”

Describe opportunities for training and professional development provided to anyone who worked on the project or anyone who was involved in the activities supported by the project. “Training” activities are those in which individuals with advanced professional skills and experience assist others in attaining greater proficiency. Training activities may include, for example, courses or one-on-one work with a mentor. “Professional development” activities result in increased knowledge or skill in one’s area of expertise and may include workshops, conferences, seminars, study groups, and individual study. Include participation in conferences, workshops, and seminars not listed under major activities.

On the basis of the work completed from this award:
- Dr. Stanley Chun-Wei Lee (former postdoctoral fellow in the Abdel-Wahab lab) received an NIH K99/R00, a prestigious Scholar Award from the American Society of Hematology (ASH), and has now started his own independent laboratory as a tenure-track faculty member at the Fred Hutchinson Cancer Research Center.
- Dr. Akihide Yoshimi (former postdoctoral fellow in the Abdel-Wahab lab) received a prestigious Special Fellow Award from the Leukemia & Lymphoma Society and started his own independent laboratory as a tenure-track faculty member at the Japanese National Cancer Institute (Tokyo, Japan).
- Dr. Heidi Dvinge (former Bradley lab member) became appointed as an independent faculty member as an Assistant Professor in the Dept. of Biomolecular Chemistry at the University of Wisconsin, Madison.
- Dr. Daichi Inoue (former Abdel-Wahab lab member) received a Special Fellow Award from the Leukemia & Lymphoma Society and started his own laboratory as a tenure-track faculty member at Kobe University (Kobe, Japan).

How were the results disseminated to communities of interest?
If there is nothing significant to report during this reporting period, state “Nothing to Report.”

Describe how the results were disseminated to communities of interest. Include any outreach activities that were undertaken to reach members of communities who are not usually aware of these project activities, for the purpose of enhancing public understanding and increasing interest in learning and careers in science, technology, and the humanities.

Results from the last year of our research were highlighted in the following lay press research articles online by MSKCC and the Fred Hutchinson Cancer Research Center:
https://www.mskcc.org/blog/splicing-may-be-effective-target-fight-against

What do you plan to do during the next reporting period to accomplish the goals?
If this is the final report, state “Nothing to Report.”
Describe briefly what you plan to do during the next reporting period to accomplish the goals and objectives.

Nothing to Report

4. IMPACT: Describe distinctive contributions, major accomplishments, innovations, successes, or any change in practice or behavior that has come about as a result of the project relative to:

What was the impact on the development of the principal discipline(s) of the project?
If there is nothing significant to report during this reporting period, state “Nothing to Report.”

Describe how findings, results, techniques that were developed or extended, or other products from the project made an impact or are likely to make an impact on the base of knowledge, theory, and research in the principal disciplinary field(s) of the project. Summarize using language that an intelligent lay audience can understand (Scientific American style).

One of the main findings from our work thus far is that cells which contains mutations in RNA splicing factors have enhanced sensitivity to drugs that further alter the RNA splicing process. This has led to a clinical trial of a novel RNA splicing inhibitor in patients with MDS and other forms of myeloid leukemia (clinicaltrials.gov identifier NCT02841540). This is a phase I clinical trial sponsored by the company H3 Biomedicine Inc. and is designed to test the safety of this approach and ability to block splicing in patients. In addition, GSK has launched another phase I clinical trial of their PRMT5 inhibitor for MDS and spliceosomal mutant MDS patients based on this work (NCT03614728). Finally, we are working with Eisai Pharmaceuticals to initiate a phase II trial of the RBM39 degrading compound E7820 in spliceosomal mutant MDS and related myeloid neoplasms now.

What was the impact on other disciplines?
If there is nothing significant to report during this reporting period, state “Nothing to Report.”

Describe how the findings, results, or techniques that were developed or improved, or other products from the project made an impact or are likely to make an impact on other disciplines.

Nothing to report.

What was the impact on technology transfer?
If there is nothing significant to report during this reporting period, state “Nothing to Report.”

Describe ways in which the project made an impact, or is likely to make an impact, on commercial technology or public use, including:
• transfer of results to entities in government or industry;
• instances where the research has led to the initiation of a start-up company; or
• adoption of new practices.

Nothing to report.
What was the impact on society beyond science and technology?

If there is nothing significant to report during this reporting period, state “Nothing to Report.”

Describe how results from the project made an impact, or are likely to make an impact, beyond the bounds of science, engineering, and the academic world on areas such as:

- improving public knowledge, attitudes, skills, and abilities;
- changing behavior, practices, decision making, policies (including regulatory policies), or social actions; or
- improving social, economic, civic, or environmental conditions.

Nothing to report.

5. CHANGES/PROBLEMS: The Project Director/Principal Investigator (PD/PI) is reminded that the recipient organization is required to obtain prior written approval from the awarding agency Grants Officer whenever there are significant changes in the project or its direction. If not previously reported in writing, provide the following additional information or state, “Nothing to Report,” if applicable:

Changes in approach and reasons for change
Describe any changes in approach during the reporting period and reasons for these changes. Remember that significant changes in objectives and scope require prior approval of the agency.

Nothing to report.

Actual or anticipated problems or delays and actions or plans to resolve them
Describe problems or delays encountered during the reporting period and actions or plans to resolve them.

Nothing to report.

Changes that had a significant impact on expenditures
Describe changes during the reporting period that may have had a significant impact on expenditures, for example, delays in hiring staff or favorable developments that enable meeting objectives at less cost than anticipated.

Nothing to report.

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents
Describe significant deviations, unexpected outcomes, or changes in approved protocols for the use or care of human subjects, vertebrate animals, biohazards, and/or select agents during the reporting period. If required, were these changes approved by the applicable institution committee (or equivalent) and reported to the agency? Also specify the applicable Institutional Review Board/Institutional Animal Care and Use Committee approval dates.

Significant changes in use or care of human subjects

Nothing to report.

Significant changes in use or care of vertebrate animals.

Nothing to report.

Significant changes in use of biohazards and/or select agents

Nothing to report.

6. PRODUCTS: List any products resulting from the project during the reporting period. If there is nothing to report under a particular item, state “Nothing to Report.”

- **Publications, conference papers, and presentations**
 Report only the major publication(s) resulting from the work under this award.

 Journal publications. List peer-reviewed articles or papers appearing in scientific, technical, or professional journals. Identify for each publication: Author(s); title; journal; volume: year; page numbers; status of publication (published; accepted, awaiting publication; submitted, under review; other); acknowledgement of federal support (yes/no)

Books or other non-periodical, one-time publications. Report any book, monograph, dissertation, abstract, or the like published as or in a separate publication, rather than a periodical or series. Include any significant publication in the proceedings of a one-time conference or in the report of a one-time study, commission, or the like. Identify for each one-time publication: Author(s); title; editor; title of collection, if applicable; bibliographic information; year; type of publication (e.g., book, thesis or dissertation); status of publication (published; accepted, awaiting publication; submitted, under review; other); acknowledgement of federal support (yes/no).

Nothing to report.

Other publications, conference papers, and presentations. Identify any other publications, conference papers and/or presentations not reported above. Specify the status of the publication as noted above. List presentations made during the last year (international, national, local societies, military meetings, etc.). Use an asterisk (*) if presentation produced a manuscript.

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>AACR Annual Meeting</td>
</tr>
<tr>
<td>2018</td>
<td>American Society for Biochemistry and Molecular Biology Annual Meeting</td>
</tr>
<tr>
<td>2018</td>
<td>23rd Congress of the European Hematology Association, Stockholm, Sweden</td>
</tr>
<tr>
<td>2018</td>
<td>9th Japanese Society of Hematology International Symposium, Kyoto, Tokyo</td>
</tr>
<tr>
<td>2018</td>
<td>Danny Thomas Lecture Series, St. Jude’s Children’s Research Hospital</td>
</tr>
<tr>
<td>2018</td>
<td>Edward P. Evans MDS Foundation Summit, Broad Institute, Cambridge, MA</td>
</tr>
<tr>
<td>2018</td>
<td>Cold Spring Harbor Laboratories Seminar Series, Cold Spring Harbor, NY</td>
</tr>
</tbody>
</table>

Website(s) or other Internet site(s)
List the URL for any Internet site(s) that disseminates the results of the research activities. A short description of each site should be provided. It is not necessary to include the publications already specified above in this section.

Results from the last year of our research were highlighted in the following lay press research articles online by MSKCC and the Fred Hutchinson Cancer Research Center:

Article from MSKCC:
https://www.mskcc.org/blog/splicing-may-be-effective-target-fight-against

Article from Fred Hutchinson Cancer Research Center:

Technologies or techniques
Identify technologies or techniques that resulted from the research activities. In addition to a description of the technologies or techniques, describe how they will be shared.
Inventions, patent applications, and/or licenses
Identify inventions, patent applications with date, and/or licenses that have resulted from the research. State whether an application is provisional or non-provisional and indicate the application number. Submission of this information as part of an interim research performance progress report is not a substitute for any other invention reporting required under the terms and conditions of an award.

Other Products
Identify any other reportable outcomes that were developed under this project. Reportable outcomes are defined as a research result that is or relates to a product, scientific advance, or research tool that makes a meaningful contribution toward the understanding, prevention, diagnosis, prognosis, treatment, and/or rehabilitation of a disease, injury or condition, or to improve the quality of life. Examples include:

- data or databases;
- biospecimen collections;
- audio or video products;
- software;
- models;
- educational aids or curricula;
- instruments or equipment;
- research material (e.g., Germplasm; cell lines, DNA probes, animal models);
- clinical interventions;
- new business creation; and
- other.

We have deposited RNA-seq, ChIP–seq, and eRRBS data generated as part of this study were deposited in the Gene Expression Omnibus under accession numbers GSE124720 and the NCBI Sequence Read Archive under accession number SRP133673.

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

What individuals have worked on the project?
Provide the following information for: (1) PDs/PIs; and (2) each person who has worked at least one person month per year on the project during the reporting period, regardless of the source of compensation (a person month equals approximately 160 hours of effort). If information is unchanged from a previous submission, provide the name only and indicate “no change.”
<table>
<thead>
<tr>
<th>Name</th>
<th>Project Role</th>
<th>Researcher Identifier (e.g. ORCID ID)</th>
<th>Nearest person month worked</th>
<th>Contribution to Project</th>
<th>Funding Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Smith</td>
<td>Graduate Student</td>
<td></td>
<td>5</td>
<td>Ms. Smith has performed work in the area of combined error-control and constrained coding.</td>
<td>The Ford Foundation (Complete only if the funding support is provided from other than this award).</td>
</tr>
<tr>
<td>Omar Abdel-Wahab</td>
<td>PI</td>
<td>None</td>
<td>1</td>
<td>Overseeing all experiments in conjunction with Dr. Bradley.</td>
<td>US National Institutes of Health (NIH)-NHLBI grant R01 HL128239</td>
</tr>
<tr>
<td>Robert Bradley</td>
<td>co-PI</td>
<td>None</td>
<td>1</td>
<td>Overseeing all experiments in conjunction with Dr. Abdel-Wahab.</td>
<td>US National Institutes of Health (NIH)-NHLBI grant R01 HL128239</td>
</tr>
<tr>
<td>Stanley Chun-Wei Lee</td>
<td>Postdoctoral fellow</td>
<td>None</td>
<td>2</td>
<td>Stanley has performed all in vivo experiments related to Specific Aim 1 and the shRNA screen in Aim 2.</td>
<td>Leukemia and Lymphoma Society Special Fellow Award, NIH K99/R00, ASH Scholar</td>
</tr>
<tr>
<td>Bo Liu</td>
<td>Postdoctoral fellow</td>
<td>None</td>
<td>2</td>
<td>Bo generated the splicing reporters described in Aim 3.</td>
<td>Josie Robertson Award (MSKCC)</td>
</tr>
<tr>
<td>Young Rock Chung</td>
<td>Sr. Research Assistant</td>
<td>None</td>
<td>1</td>
<td>Assisted postdoctoral fellows in the Abdel-Wahab lab with experiments.</td>
<td>NIH (R01-CA201247), Pershing Square, W81XWH-16-1-0059</td>
</tr>
</tbody>
</table>
Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last reporting period?

If there is nothing significant to report during this reporting period, state “Nothing to Report.”

If the active support has changed for the PD/PI(s) or senior/key personnel, then describe what the change has been. Changes may occur, for example, if a previously active grant has closed and/or if a previously pending grant is now active. Annotate this information so it is clear what has changed from the previous submission. Submission of other support information is not necessary for pending changes or for changes in the level of effort for active support reported previously. The awarding agency may require prior written approval if a change in active other support significantly impacts the effort on the project that is the subject of the project report.

SEE APPENDIX FOR CHANGES IN ACTIVE SUPPORT

What other organizations were involved as partners?

If there is nothing significant to report during this reporting period, state “Nothing to Report.”

Describe partner organizations – academic institutions, other nonprofits, industrial or commercial firms, state or local governments, schools or school systems, or other organizations (foreign or domestic) – that were involved with the project. Partner organizations may have provided financial or in-kind support, supplied facilities or equipment, collaborated in the research, exchanged personnel, or otherwise contributed.

Provide the following information for each partnership:

Name: Khrystyna Dilai
Project Role: Graduate Student
Researcher Identifier (e.g. ORCID ID): None
Nearest person month worked: 3
Contribution to Project: Khrystyna performed the informatics analyses to identify convergent effects of spliceosomal gene mutations in Aim 1.
Funding Support: US National Institutes of Health (NIH)-NHLBI grant R01 HL128239

Name: Akihide Yoshimi
Project Role: Postdoctoral fellow
Researcher Identifier (e.g. ORCID ID): None
Nearest person month worked: 2
Contribution to Project: Dr. Yoshimi completed the experiments on H3B-8800.
Funding Support: Leukemia and Lymphoma Society Special Fellow Award

Name: Daichi Inoue
Project Role: Postdoctoral fellow
Researcher Identifier (e.g. ORCID ID): None
Nearest person month worked: 2
Contribution to Project: Dr. Inoue is work on validating results from the CRISPR Screen in Aim 2 and the RBM39 work.
Organization Name: Fred Hutchinson Cancer Research Center
Location of Organization: (if foreign location list country): Seattle, WA
Partner’s contribution to the project (identify one or more)
- Collaboration (e.g., partner’s staff work with project staff on the project).

8. SPECIAL REPORTING REQUIREMENTS

COLLABORATIVE AWARDS: For collaborative awards, independent reports are required from BOTH the Initiating PI and the Collaborating/Partnering PI. A duplicative report is acceptable; however, tasks shall be clearly marked with the responsible PI and research site. A report shall be submitted to https://ers.amedd.army.mil for each unique award.

QUAD CHARTS: If applicable, the Quad Chart (available on https://www.usamraa.army.mil) should be updated and submitted with attachments.

9. APPENDICES: Attach all appendices that contain information that supplements, clarifies or supports the text. Examples include original copies of journal articles, reprints of manuscripts and abstracts, a curriculum vitae, patent applications, study questionnaires, and surveys, etc.

OMAR I. ABDEL-WAHAB, M.D.

ACTIVE SUPPORT

W81XWH-18-1-0383 (PI: Abdel-Wahab) 8/15/2018 - 8/14/2021 0.91 calendar
Congressionally Directed Medical Research $100,000

Programs
Mechanistic and Therapeutic Implications of Spliceosomal Gene Mutations in ER+ Breast Cancer
Goals: Our grant aims to (1) identify what drives breast cancer growth; determine how to stop it and (2)
revolutionize treatment regimens by replacing them with ones that are more effective, less toxic, and
impact survival.
Specific Aims: (1) Determine the mechanism by which the SF3B1 K700E mutation promotes hormoneindependent
growth of breast cancer, (2) Examine the effect of SF3B1 K700E mutation on mammary tumorigenesis in vivo, (3)
Determine the therapeutic benefit of modulating RNA splicing in genetically defined breast cancers with and without
spliceosomal gene mutations.
Agency Contract: Grants Specialist: Jodi Cardoza Phone: 301-619-2693 Email: jodi.l.cardoza.civ@mail.mil
Overlap: None

1 UG1 CA233332-01 (PI: Abdel-Wahab) 3/7/2019 - 2/28/2025 0.46 calendar
NCI $737,015
ECOG-ACRIN Integrated Leukemia Translational Science Center (LTSC)
Advances in the treatment of hematologic malignancies have been disappointing. The ECOG-ACRIN
Goals: Leukemia Translational Science Center will create, support, and synergize partnerships between clinical and
laboratory investigators and foster the continuous, near-term translation of state-of-the art laboratory studies into the
clinical context to improve outcomes for leukemia patients.
Specific Aims: 1. To identify the molecular signatures which define clinical, prognostic, and therapeutically distinct
leukemia subtypes, and can be used to develop risk-stratified therapeutic protocols and/or to therapy with mechanism-based
therapies for biomarker-defined disease subsets. 2. To evaluate the mechanism of action, therapeutic efficacy, and
predictors of response/resistance of mechanism based therapies for leukemia patients. 3. To perform dynamic, biomarker
based molecular assessment of response to leukemia therapies which can be used to monitor disease response, inform
mechanisms of sensitivity and resistance to leukemia therapies, and to design clinical trials which incorporate dynamic
biomarker profiling into clinical trial design and clinical care.
Agency Contract: Grants Management Specialist: Barbara Hodgkins Email: barb.hodgkins@nih.gov Phone: (240) 276-6294
Overlap: None

112-0063 (PI: Abdel-Wahab) 1/1/2019 - 12/31/2020 0.24 calendar
Starr Cancer Consortium $75,000
Identification of transcriptional determinants of asparaginase sensitivity in leukemias
Goals: Asparaginase, which selectively depletes asparagine from serum, kills asparagine-dependent leukemia cells and is a
first line chemotherapeutic agent. However, the precise mechanisms underlying the asparaginase response of leukemic
cells and whether there are other cancer types dependent on particular nutrients remain poorly understood.
Specific Aims: Aim 1: Determine the precise mechanism by which ZBTB1 enables ALLs to survive under asparagine
depletion. Aim 2: Examine the clinical significance of ZBTB1 in ALL and other lymphoid malignancies. Aim 3: Map the
amino acid dependencies of blood cancer cell lines using DNA-barcoding technology.
Agency Contract: Sylvie Le Blancq, PhD, Executive Director, Sloan Kettering Institute, 1275 York Avenue, New York,
NY 10065, lesblanc2@mskcc.org, 646-888-3773
Overlap: None

1 UG1 CA233290-01 (PI: Aghajanian / Lee / Morris / Tallman / Zivanovic) 3/6/2019 - 2/28/2025 0.60 calendar
NCI $9,615
Network Lead Academic Participating Site: Memorial Sloan Kettering Cancer Center
Goals: This goal will be achieved through the continued successful development and execution of definitive, randomized,
clinical treatment and advanced imaging trials across a broad range of diseases and diverse patient populations.
Leadership in the Activities of the NCTN and NCI Scientific Steering Committees
3. Patient Accrual on NCTN Trials
4. Mentoring Junior Investigators in Clinical Trial Research

Agency Contract: Grants Management Specialist: Barbara Hodgkins Email: barb.hodgkins@nih.gov Phone: (240) 276-6294
Overlap: None

7018-19 (PI: Cleveland) 10/1/2018 - 9/30/2023 0.60 calendar
Leukemia and Lymphoma Society $ 178,333
Regulation and Targeting of Inflammatory Circuits in Myelodysplastic Syndromes
Goals & Specific Aims: Aim 1: Determine the mechanistic basis for hyper-activated innate immune signaling in spliceosome-mutant MDS bearing mutations in RNA splicing factors. Aim 2: Define the therapeutic potential for MAP3K7, p38/MAPK, and TGF- pathway inhibition in spliceosome mutant MDS. Aim 3: Define the mechanistic basis for preferential dependency on IFN-JAK-STAT signaling in SF3B1 mutant cells.
Agency Contract: Director of Research Administration, 3 International Drive, Suite 200, Rye Brook, New York 10573, researchprograms@lls.org
Overlap: None

DRG2018 (PI: Figueroa) 9/1/2018 - 8/31/2020 0.24 calendar
Edward P. Evans Foundation $ 90,909
Determining the Contribution of MDS-associated RNA Splicing Factor Mutations to Altered DNA Methylation
Goals & Specific Aims: As part of this collaboration, our lab will perform analyses to integrate DNA methylation and hydroxy-cytosine methylation data with RNA splicing data. We will also attempt to understand how alterations in DNA methylation alter splicing through focused studies of splicing and expression of potential regulators of DNA methylation. In addition, we will perform locus-specific biochemical experiments to understand how alterations in the epigenome impact splicing.
Agency Contract: Michael Lewis, Ph.D. President,mdl@epefoundation.org 978 494-6009
Overlap: None

1R01HL145283-01 (PI: Landau) 2/1/2019 - 11/30/2022 0.20 calendar
NHLBI $ 87,279
The role of DNA methylation modifiers in shaping the hematopoietic differentiation topology
Goals & Specific Aims: The Abdel-Wahab will generate and maintain the murine models used in Aims 1-2 as well as perform purification of mouse and human cell populations in all aims of the grant. The Abdel-Wahab lab will also perform the cell transduction and differentiation experiments described in Aim 2.
Agency Contract: Grants Management Specialist: Laurel Katherine Kennedy Email: laurel.kennedy@nih.gov Phone: 301-8270477
Overlap: None

W81-XWH-18-1-0265 (PI: Liu) 7/1/2018 - 6/30/2020 0.56 calendar
Congressionally Directed Medical Research Programs
Understanding and Targeting Mutant p53 in Myelodysplastic Syndromes
Goals and Specific Aims: Task 1. We will assist in the generation of patient-derived xenografts from patients with myelodysplastic syndromes (MDS). Task 2. We will generate p53R248W/+SRSF2P95H/+ -Mx1-Cre+ mice.
Agency Contract: Grant Specialist: Karen L. Petrore Phone: 301-619-3590 Email: Karen.l.petrore.civ@mail.mil
Overlap: None

GC238654 (PI: Shlush) 11/1/2018 - 10/31/2023 1.60 calendar
Leukemia and Lymphoma Society/ Rising Tide Foundation $ 363,636
Early diagnosis and treatment of pre-leukemia
Goals: Successful completion of our aims could have major ramifications on how subjects with ARCH are evaluated and treated, which could, in turn, have a major impact on development of MDS and AML. We now propose to utilize this knowledge to treat high-risk individuals with ARCH, at a time point before they have developed disease, by targeting the driving alterations most associated with AML.
Specific Aims: Aim 1. Develop novel efficient strategies to identify individuals with preleukemia. Aim 2. Determine the molecular and functional consequences of SMMs in human preleukemia. Aim 3. Identify targeted therapies effective at eliminating preL-HSPCs carrying SMMs.

Agency Contract: Director of Research Administration, 3 International Drive, Suite 200, Rye Brook, New York 10573, researchprograms@lls.org

Overlap: None

5 R01 HL138090-03 (PI: Geissmann) 8/16/2017 - 6/30/2021 0.60 calendar
NHLBI $ 415,910

Lineages and pathophysiology of clonal histiocytic disorders

Goals: This project aims to characterize at the molecular, cellular and organismal levels the pathophysiology of clonal histiocytic disorders, exemplified by Langerhans Cell Histiocytosis (LCH) and Erdheim-Chester Disease (ECD). Specific Aims: We will (Aim 1) investigate the pathological, molecular and cellular mechanisms that underlie the development of the brain neurodegenerative disease we observe in our genetic model Csf1rMeriCreMer; BRAFV600E; Rosa26LSL-YFP in which we introduce a BRAFV600E allele in a small number of EMPs. Next (Aim 2) we will determine the pathological consequences of targeting BRAFV600E outside the brain and in particular test whether environmental factors can influence the pathogenesis of histiocytosis in the liver. We will also investigate the extent to which lineage(s) of origin of histiocytoses determines pathological outcomes using a murine model to conditionally target BRAFV600E expression to a small faction of HSCs. Finally (Aim 3) we will investigate the efficiency of BRAF inhibitor administration to prevent or treat the neurodegenerative disease in our models.

Agency Contract: Renee Livshin, livshinr@nhlbi.nih.gov, 301-435-0174

Overlap: None

LLS-02 (PI: Nimer) 10/1/2017 - 9/30/2022 0.20 calendar
Leukemia and Lymphoma Society $ 77,500

Interventional Epigenetics in Myeloid Malignancies

Goals: Our ultimate goal is to define the mechanistic epigenetic basis for the development and progression of myeloid malignancies and to develop novel and effective epigenetic-focused therapies for patients with these disorders. Specific Aims: Major Task 1: Determine genome-wide localization of ASXL1 versus ASXL2. Major Task 2: Characterize the effects of ASXL2 loss in the setting of AML1-ETO. Major Task 3: Determine the effect of p300 inhibition in AML1-ETO cells with or without Asxl2 loss. Major Task 4: Test LSD1 inhibition in ASXL1/2-deficient AML cells. Major Task 5: Identify genes which are synthetic lethal with ASXL1-mutant cells by performing functional genomic screens.

Agency Contract: Director of Research Administration, 3 International Drive, Suite 200, Rye Brook, New York 10573, researchprograms@lls.org

Overlap: None

6533-18 (PI: Park) 10/1/2017 - 9/30/2020 0.30 calendar
Leukemia and Lymphoma Society $ 180,018

Chemotherapy-Free Targeted Therapeutic Approaches for New and Relapsed Hairy Cell Leukemia

Goals: This proposed study has a potential to challenge and change the current standard treatment practice of frontline HCL and offer chemotherapy-free, rationally targeted therapeutic options in HCL. Specific Aims: Aim 1: Determine the efficacy of combined RAF inhibition and anti-CD20 immunotherapy as frontline therapy for classical hairy cell leukemia (cHCL). Aim 2: Determine the safety and efficacy of ERK inhibition in relapsed/refractory (R/R) cHCL and hairy cell leukemia variant (HCLv).

Agency Contract: Director of Research Administration, 3 International Drive, Suite 200, Rye Brook, New York 10573, researchprograms@lls.org

Overlap: None

110-0074 (PI: Abdel-Wahab) 1/1/2017 - 12/31/2019 NCE 0.10 calendar
Starr Cancer Consortium $ 197,500

Dissecting micro-environmental contributions to the pathogenesis of myelodysplastic syndromes

Goals: Our proposal aims at highlighting the molecular alterations in the HMEV of MDS patients that could serve as novel therapeutic targets. Specific Aims: Specific Aim 1: Identify the functional impact of molecular alterations in the microenvironment of MDS patients on hematopoiesis. We will investigate the mechanisms through which molecular alterations identified in our gene
expression analysis of mesenchymal subsets in MDS patients contribute to MDS pathogenesis.

Agency Contract: Sylvie Le Blancq, PhD, Executive Director, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, lesblanc2@mskcc.org, 646-888-3773

Overlap: None

<table>
<thead>
<tr>
<th>GC238545 (PI: Abdel-Wahab)</th>
<th>1/15/2017 - 1/14/2020</th>
<th>0.60 calendar months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henry & Marilyn Taub Foundation</td>
<td>$181,818</td>
<td></td>
</tr>
</tbody>
</table>

Understanding and manipulating pathologic splicing preferences and nonsense-mediated mRNA decay (NMD) in spliceosomal-mutant MDS

Goals: Here we aim to develop two novel mechanism-based approaches targeting spliceosomal-mutant MDS based on: (1) selectively targeting the pathologic RNA-binding preferences of mutant spliceosomal proteins; and (2) restoring the expression of key transcripts targeted for nonsense-mediated decay (NMD) due to aberrant splicing. Understanding the mechanistic link between NMD and spliceosomal gene mutations will be critical for this latter aim.

Specific Aims:

- **Aim I.** Determine the precise mechanism by which mutant SRSF2 promotes NMD. Aim II. Utilize antisense techniques to restore expression of mRNAs pathologically degraded by NMD in spliceosomal-mutant MDS cells. Aim III. Determine the therapeutic potential of oligonucleotide decoys that exploit the RNA-binding preferences of WT versus mutant SRSF2 in SRSF2-mutant malignant cells.

Agency Contract: Erin Johnstone, Program Officer, The Medical Foundation, ejohnstone@hria.org

Overlap: None

<table>
<thead>
<tr>
<th>1R01HL128239-04 (PI: Bradley)</th>
<th>8/1/15 - 5/31/2020</th>
<th>2.26 calendar months</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIH</td>
<td>$181,189</td>
<td></td>
</tr>
</tbody>
</table>

Genetic and molecular basis for SRSF2 mutations in myelodysplasia

Goals: Measure the therapeutic efficacy of drugs that inhibit RNA splicing, and test whether drug-induced splicing inhibition specifically affects SRSF2 mutation-responsive exons versus causing widespread splicing failure.

Specific Aims: Perform functional studies to determine the effect of specific mis-spliced isoforms on myeloid differentiation. Test the hypothesis that a wildtype copy of SRSF2 is necessary for hematopoietic cell survival and maintenance of functional splicing. Determine whether SRSF2 mutations do not co-occur with other spliceosomal mutations because they are functionally redundant, or whether multiple spliceosomal mutations are deleterious to the cell. Test the hypothesis that commonly co-occurring SRSF2 and epigenetic factor mutations are synergistic, leading to more aggressive disease and/or more extreme splicing changes. Measure the therapeutic efficacy of drugs that inhibit RNA splicing, and test whether drug-induced splicing inhibition specifically affects SRSF2 mutation-responsive exons versus causing widespread splicing failure. Generate cells to be utilized in CRISPR/Cas9 screen and perform validation of sgRNAs from the screen.

Agency Contract: Kelly Stewart, Fred Hutchinson Cancer Res. Center, kstewart@fredhutch.org, 206-667-6925

Overlap: None

<table>
<thead>
<tr>
<th>5 R01 CA201247-04 (PI: Abdel-Wahab / Park)</th>
<th>9/1/16 - 8/31/2021</th>
<th>1.81 calendar months</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCI</td>
<td>$298,536</td>
<td></td>
</tr>
</tbody>
</table>

Origins of BRAF-mutant hematologic malignancies and their therapeutic resistance

Goals: We expect our studies to elucidate mechanisms that underlying the development of these disparate blood cancers driven by a shared mutation, provide the first description of the genetic events that likely cooperate with the BRAFV600E mutation to drive these disorders and therapy resistance.

Specific Aims:

- **Aim 1.** Determine the mechanistic basis for the divergent phenotypes of BRAFV600E mutant hematopoietic disorders. Aim 2. Determine whether recurrent mutations co-occurring with the BRAFV600E mutation HCL and SH alter the disease phenotype. Aim 3: Define mechanisms of vemurafenib resistance in HCL using patient samples and murine models of BRAFV600E-mutant hematopoietic malignancies.

Agency Contract: Funmi Elesinmogun, Grants Management Specialist, elesinmf@mail.nih.gov, 240-276-6313

Overlap: None

<table>
<thead>
<tr>
<th>2314-17 (PI: Abdel Wahab)</th>
<th>7/1/2016 - 6/30/2021</th>
<th>0.0 calendar months*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia and Lymphoma Society</td>
<td>$104,762</td>
<td></td>
</tr>
</tbody>
</table>

Investigating and Targeting Diverse Kinase Alterations Driving Systemic Histiocytic Neoplasms

Goals: The discovery of BRAFV600E mutations in 50% of patients with systemic histiocytoses provided the first molecular target in these disorders. More recently, MAP2K1, ARAF, and N/KRAS mutations as well as kinase fusions...
have been identified in BRAFV600 wildtype patients. Here we propose to understand the clinical and biological importance of diverse kinase alterations in BRAFV600E wildtype histiocytic neoplasms.

Specific Aims:

Aim 1: Determine the clinical activity of cobimetinib in adult systemic histiocytic disorder patients as measured by radiologic (RECIST) response criteria, metabolic (FDG-PET) response criteria, and longitudinal assessment of somatic mutation burden in cell-free DNA (cfDNA). **Aim 2:** Identify the biological importance of mutations outside of BRAFV600E on histiocytosis pathogenesis and the molecular determinants of response to MEK inhibition.

Agency Contract: Director of Research Administration, 3 International Drive, Suite 200, Rye Brook, New York 10573, researchprograms@lls.org

Overlap: None

This grant provides salary support only. Effort is not required per the sponsor.

6581-20 (PI: Liu) 7/1/2019 - 6/30/2022 0.24 calendar Leukemia and Lymphoma Society $ 60,000

Development of therapeutic strategy for the treatment of MDS

Goals & Specific Aims:

AIM 1: Elucidate the mechanisms by which mutant p53 alters pre-mRNA splicing in HSCs and MDS cells. Dr. Abdel-Wahab will provide assistance with analysis of splicing in hematopoietic cells with or without mutations in p53. **AIM 2.** Determine the impact of inhibition of EZH2 and the spliceosome on MDS cells with TP53 mutations. Dr. Abdel-Wahab will test several therapies targeting RNA splicing in vitro and in vivo in primary human MDS and AML cells with or without mutations in TP53

Agency Contract: Director of Research Administration, 3 International Drive, Suite 200, Rye Brook, New York 10573, researchprograms@lls.org

Overlap: None

R01HL128239 (PI: Bradley) 7/1/20 - 6/30/2024 1.8 calendar NIH $ 212,885

Genetic and molecular basis for SRSF2 mutations in myelodysplasia

Goals: Measure the therapeutic efficacy of drugs that inhibit RNA splicing, and test whether drug-induced splicing inhibition specifically affects SRSF2 mutation-responsive exons versus causing widespread splicing failure. **Specific Aims:** Perform functional studies to determine the effect of specific mis-spliced isoforms on myeloid differentiation. Test the hypothesis that a wildtype copy of SRSF2 is necessary for hematopoietic cell survival and maintenance of functional splicing. Determine whether SRSF2 mutations do not co-occur with other spliceosomal mutations because they are functionally redundant, or whether multiple spliceosomal mutations are deleterious to the cell. Test the hypothesis that commonly co-occurring SRSF2 and epigenetic factor mutations are synergistic, leading to more aggressive disease and/or more extreme splicing changes. Measure the therapeutic efficacy of drugs that inhibit RNA splicing, and test whether drug-induced splicing inhibition specifically affects SRSF2 mutation-responsive exons versus causing widespread splicing failure. Generate cells to be utilized in CRISPR/Cas9 screen and perform validation of sgRNAs from the screen.

Agency Contract: Kelly Stewart, Fred Hutchinson Cancer Res. Center, kstewart@fredhutch.org, 206-667-6925

Overlap: None

1 R01 CA251138-01 (PI: Abdel-Wahab) 7/1/2020 - 6/30/2025 1.80 calendar NCI $ 621,000

Interrogating the minor spliceosome to understand and treat leukemia

Goals: Leukemias are cancers in which the bone marrow produces too many abnormal blood cells at the expense of normal blood cells. Here we will determine how a commonly occurring change in a gene called ZRSR2, which encodes a protein that participates in the process of RNA splicing, gives rise to leukemia. We will determine how ZRSR2 mutations drive leukemia and find new ways to treat leukemias with ZRSR2 mutations.

Agency Contract: N/A

Overlap: None

CA190171P2 (PI: Abdel-Wahab) 9/30/2020 - 9/29/2024 0.60 calendar Congressionally Directed Medical Research Programs $ 100,000

Identifying Novel Therapeutic Targets and Combination Strategies for Patients with BPDCN

Goals: Test the hypothesis that in vivo resistance to tagraxofusp in BPDCN cells is mediated by epigenetic silencing of diphthamide synthesis genes.
Targeting an RNA-binding Protein Network in Acute Myeloid Leukemia

Goals: Recent studies have identified that proteins that bind RNA to regulate RNA translation, stability or splicing, play key roles in human cancer. We recently identified a group of such RNA binding proteins (RBPs) that are required for the survival of acute myeloid leukemia (AML), a deadly form of cancer in great need of improved therapy. In this proposal we aim to understand the role of one such protein called RBM39, which is a putative, novel, and exciting new AML drug target.

Specific Aims:
1. Determine the biological role of RBM39 in normal and malignant hematopoiesis.
2. Identify the mechanistic basis for cell-type and disease-specific roles for RBM39 in normal and malignant hematopoietic cells.

SpliceIO: A machine learning approach to discover novel cancer specific antigens through splicing analysis using RNA seq data

Goals: Here, we propose to leverage and extend this resource to develop SpliceIO, a novel discovery platform that integrates the SpliceCore knowledge base with machine learning (ML) to identify novel TAEs resulting from aberrant splicing. This strategic development will lead Envisagenics to disrupt IO with an unprecedented modality for RNAseq analysis, creating partnership opportunities for co-develop of IO products with pharma.

Specific Aims:
1. Develop SpliceIO to identify and predict viable alternatively spliced ectodomains.
2. Identify and predict antigenicity of AS-derived TAE from public pediatric AML data to assess utility of SpliceIO in-silico.
3. Leverage SpliceIO to discover viable AS-derived ectodomains associated with AML relapse and validate targets in-vitro.

Therapeutic targeting of RNA splicing catalysis through inhibition of Protein Arginine Methylation

Goals & Specific Aims:
1. Assess the synergistic therapeutic potential of drugs targeting the extended splicing network.
2. Identify the molecular basis for the synergistic cooperation of PRMT5 and Type I PRMT inhibition.

Molecular mechanisms underlying age-related clonal hematopoiesis and diseases

Aims:
1. Determine the impact of mutant p53-mediated chronic inflammation on ARCH progression and MDS pathogenesis during aging.
2. Determine the impact of mutant p53-driven dysregulation of pre-mRNA splicing on MDS pathogenesis with age.

COMPLETED SUPPORT

Elucidating Critical Targets, Transcripts, and Collaborating Events in Spliceosomal-Mutant MDS

Goals & Specific Aims: The project goal is to understand which abnormally spliced products are functionally important for the development of myelodysplastic syndrome phenotypes.

Agency Contract: Michael Lewis, Ph.D. President, mdl@epefoundation.org 978 494-6009
Overlap: None
The Roles of Mutant U2AF1 in the Initiation and Maintenance of MDS

Goals: Our work will improve our basic understanding of key genetic alterations in MDS & provide crucial insights into genetic targets for therapeutic intervention in MDS. Importantly, the majority of our proposed experiments will be conducted on primary human hematopoietic tissues from MDS patients or healthy donors, combining the pre--clinical and clinical expertise of the Varmus and Abdel--Wahab labs. Therefore, the knowledge gained will be directly relevant to MDS patients carrying U2AF1 mutations.

Specific Aims: Specific Aim I: Determine if mutant U2AF1 is required for MDS disease maintenance. Specific Aim II: Determine the molecular targets of U2AF1(S34F) responsible for MDS development.

Agency Contract: Michael Lewis, Ph.D. President, mdl@epefoundation.org 978 494-6009
Overlap: None

Functional Evaluation of Immunologic Checkpoint Blockade in the Therapy of Histiocytosis

Goals: Thus, our proposal will provide greater insight into recurrent genomic alterations within the pediatric histiocytosis population as well as inform novel therapeutic approaches for children and adults with histiocytosis.

Specific Aims: The recent success of immune checkpoint blockade therapy in other cancer types combined with the expression of immune checkpoint antigens and abundant immune infiltrates in histiocytosis lesions suggests that such therapies may be effective for histiocytosis patients. We therefore seek here to (1) test the efficacy of checkpoint inhibitors (anti-CTLA4, anti-PD-1/PD-L1) alone or in combination with BRAF inhibition in in vivo models of LCH and (2) determine molecular correlates of PD-L1 expression.

Agency Contract: Grants Office, grants@histio.org, 856-589-6614
Overlap: None

Mutant p53 rejuvenates aged stem cells through modulating epigenetic regulators

Goals & Specific Aims: Milestone Task 1: Determine if MDS cells expressing mutant TP53 will accelerate the onset of MDS in NSG-SGM3 mice. MDS cells are difficult to engraft immunodeficient mice. Milestone Task 2: Determine whether mutant SRSF2 collaborates with gain-of-function mutations in TP53 in vivo.

Agency Contract: Grant Management Specialist: Eva Lawson-lipchin Email: lawsonlipchine@nia.nih.gov Phone: 301-496-9350
Overlap: None

Investigating the Basis of Hairy Cell Leukemia and Its Response to Therapy Through Single-Cell Approaches

Goals & Specific Aims: The Abdel-Wahab lab will perform flow cytometric sorting of primary patient samples from HCL patients for single cell RNA sequencing studies. In addition, they will perform bulk cell RNA-sequencing in addition to mutational analysis by whole exome sequencing and/or MSKCC IMPACT targeted mutational analysis.

Agency Contract: Grants Management Specialist: Kwesi Wright Email: wrightnk@mail.nih.gov Phone: (301) 451-4789
Overlap: None

Congressionally Directed Medical Research Programs

Goals: Therapeutic targeting of spliceosomal mutant acquired bone marrow failure disorders
The purpose of the current DOD application is to test inhibitors of TGF-beta signaling pathway in preclinical mouse models as possible therapy for FA.

Specific Aims:
Agency Contract:
Overlap: None

Investigating the Basis of Hairy Cell Leukemia and Its Response to Therapy Through Single-Cell Approaches

Goals & Specific Aims: The Abdel-Wahab lab will perform flow cytometric sorting of primary patient samples from HCL patients for single cell RNA sequencing studies. In addition, they will perform bulk cell RNA-sequencing in addition to mutational analysis by whole exome sequencing and/or MSKCC IMPACT targeted mutational analysis.

Agency Contract: Grants Management Specialist: Kwesi Wright Email: wrightnk@mail.nih.gov Phone: (301) 451-4789
Overlap: None
Identification of novel transcripts, pathways, and therapeutic strategies to target spliceosomal-mutant malignancies

Goals:
Overlap: None
Agency Contract: *Effort commitment is not required per the sponsor.

1 R13 TR001695-01 (PI: Diamond) 8/18/16 - 8/17/17
NCATS $ 10,000
Fourth International Medical Symposium on Erdheim-Chester Disease
Goals: Because of the rarity of the Erdheim-Chester disease (ECD), clinical experience is limited worldwide and international collaboration has proven vital to advancement in research and clinical care for these patients. The proposed conference will be an international symposium to gather ECD specialists from the US and Europe to discuss clinical and research efforts, and specifically to derive a consensus approach to response criteria for implementation in ECD clinical trials.
Specific Aims: Aim 1. To bring together clinicians and investigators from an international setting who treat and study patients with Erdheim-Chester disease (ECD). Aim 2. To assess the current and updated collective experience regarding genomic alterations and targeted therapies for ECD. Aim 3. To define, by consensus approach of ECD experts, response criteria for therapeutic clinical trials for ECD.
Agency Contact: Leslie Le, Grants Management Specialist, (e) leleslie@mail.nih.gov, (P) 301-435-0856 Overlap: None

GC228236 (PI: J. Park) 7/1/14-6/30/17
Conquer Cancer Foundation $62,466
A Phase II Study of the BRAF Inhibitor, Vemurafenib, in Patients with Relapsed or Refractory Hairy Cell Leukemia (HCL): Evaluating Clinical Efficacy and Molecular Mechanisms of BRAF Inhibition in HCL
Specific Aims: Aim 1: To determine the clinical efficacy of the BRAF inhibitor vemurafenib in patients with BRAFV600E+ relapsed or refractory HCL, as assessed by overall response rates, duration of response, kinetics of minimal residual disease (MRD), disease-free and overall survival. Aim 2: To assess the effect of the BRAF inhibitor vemurafenib.
Agency Contact: grants@conquercancerfoundation.org, 571-483-1700 Overlap: None

GC226666 (PI: Abdel-Wahab) 1/1/16 - 12/31/16
Histiocytosis Association $ 50,000
MEK Inhibition in the Therapy of Histiocytic Neoplasms
Goals: We have recently completed a clinical trial of vemurafenib for the adult BRAFV600E-mutant patients and we now seek to identify novel therapies that will benefit those patients that are BRAFV600-wildtype. This grant would provide critical funding to (1) allow us to understand clinical responses in this clinical trial in greater depth and (2) provide critical support which will allow us to get additional data which will serve as the basis of a multi-PI R01 application with other already identified investigators on the biology and therapy of MAP2K1-mutant malignancies.
Specific Aims: Aim 1: Determine the clinical activity of cobimetinib in adult systemic histiocytic disorder patients as measured by radiologic (RECIST) response criteria, metabolic (FDG-PET) response criteria, and longitudinal assessment of somatic mutation burden in cell-free DNA (cfDNA). Aim 2: Functionally characterize the novel kinase mutations and fusions identified in histiocytic disorders without the BRAFV600E mutation and evaluate the in vitro efficacy of MEK inhibition in the activating mutants. Results of these studies will be compared to clinical outcome data generated by the cobimetinib trial.
Agency contact: Grants Office, grants@histio.org, 856-589-6614 Overlap: None

GC223032 (PI: Abdel-Wahab) 10/1/14-9/30/16
The V Foundation $200,000
Understanding and Targeting Spliceosomal Mutations in Leukemia
Goals & Specific Aims: Aim 1: Determine how SRSF2 mutations alter SRSF2’s normal roles in pre-mRNA splicing. Aim 2: Utilize Srsf2 P95H mutant murine models to further identify transcriptional events and splicing changes critical to hematopoietic alterations driven by SRSF2 mutations. Aim 3: Identify and test therapeutic strategies for targeting leukemic clones with spliceosomal gene mutations.

Agency contact: Carole C. Wegner, Director of Grants, 106 Towerview Court, Cary, NC 27513, 919-380-95005

Overlap: None

GC221801 (PI: Abdel-Wahab) 10/1/13-9/30/14
Erdheim-Chester Disease Global Alliance $49,261
Somatic Genetic Alterations in the Pathogenesis and Therapy of Histiocytic Disorders

Goals: Histiocytic disorders, including Langerhans cell histiocytosis (LCH) and Erdheim Chester disease (ECD), represent a wide range of rare diseases with heterogeneous clinical course and prognoses. The relative rarity and protean clinical nature of the histiocytic disorders has made it difficult to clearly delineate the pathophysiology of these conditions.

Agency Contact: Kathy Brewer, President, support@erdheim-chester.org.

Overlap: None

5 U10 CA021115-39 (PI: Comis) 2/1/14 - 1/31/15
NIH $ 48,548
Investigating the importance of MAP kinase signaling and novel mutations activating NOTCH signaling in CLL.

Goals: We propose to assess the status of somatic genetic abnormalities in CLL patient samples from the Intergroup trial E2997 as performed in our pilot experiments.

Specific Aims: 1. Targeted resequencing and exome sequencing to identify novel somatic mutations that impact outcome and therapeutic response in CLL. 2. RNA-seq analysis to identify prognostically relevant expression changes in CLL. 3. Epigenetic studies to determine the impact of epigenomic alterations on CLL prognosis and therapeutic response.

Agency contact: Debra Strandberg, Strandberg.debra@jimmy.harvard.edu

Overlap: None

1 U10 CA180827-01 (PI: Paietta) 4/14/14 – 2/28/15
NIH $ 45,885
Genetic and Epigenetic Determinants of response to therapy and outcome in patients with chronic lymphocytic leukemia

Goals: Perform targeted sequencing on a panel of ~300 recurrently mutated genes in genomic DNA from diagnostic CLL patient samples from E2997 clinical trial. Identification of samples with mutations activating MAP kinas signaling and NOTCH signaling will allow us to perform further functional analysis of the therapeutic and biological relevance of these 2 pathways in CLL.

Agency contact: Mary LaRocca, 111 East 210th Street, Bronx, NY 10467, mlarocca@montefiore.org

Overlap: None

5 K08CA160647-05 (Abdel-Wahab) 9/20/11 – 8/31/16
NIH/NCI $157,300
Clinical Scientist Research Career Development Award “Role of ASXL1 mutations in myeloid malignancies.”

Goals and Specific Aims: Aim #1: Identify target genes of ASXL1 loss and alterations in chromatin state due to ASXL1 loss in normal and leukemic hematopoietic cells using in vitro assays. Aim #2: Determine the in vivo effects of ASXL1 loss on hematopoiesis by targeted disruption of ASXL1. Aim #3: Determine the role of ASXL1 mutations in the pathogenesis of MPN and AML through studies in patient samples and in in vivo models in cooperation with known MPN and AML disease alleles.

Agency Contact: Esther Young, youngel@mail.nih.gov, 240-276-6325

Overlap: None

00003930 (PI: Janku) 1/1/16 - 12/31/16
Erdheim-Chester Disease Global Alliance $ 24,631
Understanding and targeting novel molecular alterations in Erdheim-Chester disease without the BRAFV600E mutation

Goals: We plan to extend our effort in furthering the treatment and understanding of histiocytic disorders through preclinical and clinical correlative studies to identify and target novel kinase alterations identified in BRAFV600E-wildtype ECD patients. These studies will be critical for (i) establishing diagnostic approaches to identifying the diverse, clinically actionable genomic alterations in ECD and (ii) promoting novel therapeutic studies for ECD patients.
Specific Aims: 1) Perform genomic analysis of Erdheim Chester Disease (ECD) tissue biopsy samples. 2) Functionally characterize the novel kinase alterations recently identified in systemic histiocytic disorder. 3) Determine the sensitivity of kinase mutations present in BRAFV600E-wildtype ECD to targeted therapeutics in preclinical models.
Agency contact: Jaime Farias, Assistant Director, OSP, 1515 Holcombe Boulevard, Unit 1676, Houston, TX 77030 (P) 713-792-3220
Overlap: None

GC227311 (PI: Abdel Wahab) 1/1/16-12/31/16
Hairy Cell Leukemia Foundation $ 58,000
HCL Grant Proposal 2015

Goals: To identify the spectrum of recurrent genomic alterations co-existing with BRAFV600E mutations in HCL and delineating their clinical relevance and functional contribution to HCL development
Specific Aims: Aim I: Identify genetic alterations co-existing with the BRAFV600E mutation in HCL patients and their clinical importance. Aim II: Identify the functional importance of recurrent mutations coexisting with the BRAFV600E mutations in HCL pathogenesis.
Agency contact: Michael Margolin, MD. President, 575 Madison Avenue, 10th Floor, New York, NY 10022 Overlap: None
Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations

Highlights
- Mutations in SF3B1 and SRSF2 have a synthetic lethal interaction
- Mutations in RNA splicing factors are not tolerated in a homozygous state
- Mutations in SF3B1 and SRSF2 have distinct effects on pre-mRNA splicing
- Both SF3B1 and SRSF2 mutations result in hyperactive NF-κB signaling

Authors
Stanley Chun-Wei Lee, Khrystyna North, Eunhee Kim, ..., Benjamin L. Ebert, Robert K. Bradley, Omar Abdel-Wahab

Correspondence
rbradley@fredhutch.org (R.K.B.), abdelwao@mskcc.org (O.A.-W.)

In Brief
Lee et al. report that SF3B1 and SRSF2 mutations elicit distinct effects on splicing and are synthetically lethal due to the cumulative impact on hematopoietic stem cell survival and quiescence. These mutations share convergent effects on promoting NF-κB signaling to drive myelodysplastic syndrome.
Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations

Stanley Chun-Wei Lee, Khrystyna North, Eunhee Kim, Eunjung Jang, Esther Obeng, Sydney X. Lu, Bo Liu, Daichi Inoue, Akihide Yoshimi, Michelle Ki, Mirae Yeo, Xiao Jing Zhang, Min Kyung Kim, Hana Cho, Young Rock Chung, Justin Taylor, Benjamin H. Durham, Young Joon Kim, Alessandro Pastore, Sebastien Monette, James Palacino, Michael Seiler, Silvia Buonamici, Peter G. Smith, Benjamin L. Ebert, Robert K. Bradley, and Omar Abdel-Wahab

1Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69th Street, New York, NY 10065, USA
2Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop: M1-B514, Seattle, WA 98109-1024, USA
3Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
4Department of Genome Sciences, University of Washington, Seattle, WA, USA
5School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
6Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
7Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, NY, USA
8H3 Biomedicine, Cambridge, MA, USA
9Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
10Broad Institute of MIT and Harvard, Cambridge, MA, USA
11These authors contributed equally
12Lead Contact
*Correspondence: rbradley@fredhutch.org (R.K.B.), abdelwao@mskcc.org (O.A.-W.)
https://doi.org/10.1016/j.ccell.2018.07.003

SUMMARY

Mutations affecting RNA splicing factors are the most common genetic alterations in myelodysplastic syndrome (MDS) patients and occur in a mutually exclusive manner. The basis for the mutual exclusivity of these mutations and how they contribute to MDS is not well understood. Here we report that different spliceosomal gene mutations impart distinct effects on splicing, they are negatively selected for when co-expressed due to aberrant splicing and downregulation of regulators of hematopoietic stem cell survival and quiescence. In addition to this synthetic lethal interaction, mutations in the splicing factors SF3B1 and SRSF2 share convergent effects on aberrant splicing of mRNAs that promote nuclear factor κB signaling. These data identify shared consequences of splicing-factor mutations and the basis for their mutual exclusivity.

INTRODUCTION

Recurrent mutations in genes encoding spliceosome components have been identified across multiple cancer types. Spliceosomal gene mutations most commonly occur in myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML), acute myeloid leukemia (AML) (Papaemmanuil et al., 2011; Yoshida et al., 2011), chronic lymphocytic leukemia (CLL) (Wang et al., 2011), and uveal melanoma (Harbour et al., 2013; Martin et al., 2013). SF3B1, U2AF1, and SRSF2 are the

Significance

Mutual exclusivity of different mutations that affect a single pathway in cancer is commonly thought to indicate convergent effects of these mutations. RNA splicing-factor mutations constitute the most common class of alterations in patients with myelodysplastic syndromes and are also frequent in several additional cancer types, and occur as heterozygous mutations at restricted residues in a mutually exclusive manner. The mutual exclusivity of spliceosomal mutations suggests synthetic lethal and/or convergent biological effects of these mutations; however, there is currently no functional evidence supporting either of these possibilities. Here we report that individual spliceosomal mutations have non-overlapping effects on splicing and are mutually exclusive due to both synthetic lethal interactions and convergent effects on hyperactivation of innate immune signaling.
A. SF3B1, SRSF2, U2AF1, ZRSR2

B. (Text and diagrams related to BM MNCs, non-competitive BMT, competitive BMT, and chimerism analysis in hematopoietic organs)

C. Graph showing CD45.2 chimerism over time (weeks post pIpC)

D. Comparison of CD45.2 chimerism in different genotypes (WT, Srs2^{pro+}, Sgb^{pro+}, S3b^{pro+})

E. Graph showing CD45.2 chimerism over time (weeks post pIpC)

F. Bar graph comparing CD45.2 chimerism in BM, Spleen, Thymus, and Blood across genotypes (WT, Srs2^{pro+}, Sgb^{pro+}, S3b^{pro+})

G. Graph showing CD45.2 chimerism over time (weeks post pIpC)

H. Bar graph comparing CD45.2 chimerism in BM, Spleen, Thymus, and Blood across genotypes (WT, Srs2^{pro+}, Sgb^{pro+}, S3b^{pro+})

(legend on next page)
most commonly mutated genes. Mutations in each of these occur as heterozygous point mutations at specific residues, suggesting gain-of-function alterations. In addition, mutations in spliceosome genes are mutually exclusive with one another, presumably due to redundant effects and/or a limit on cellular tolerance of disrupted spliceosome function.

Despite insights into the effects of each mutation on pre-mRNA splicing, the basis for their mutual exclusivity, and functionally convergent effects they may have are unknown. For example, recent work identified that mutations affecting the core splicing factor SF3B1 are associated with cryptic 3′ splice site selection and altered branchpoint recognition (Darman et al., 2015; DeBoever et al., 2015). In contrast, mutations affecting SRSF2, an auxiliary splicing factor that binds exonic splicing enhancers to promote splicing, alter its RNA binding preference in a sequence-specific manner and thereby alter the efficiency of exon inclusion (Kim et al., 2015; Zhang et al., 2015). Finally, mutations affecting U2AF1 either promote or repress 3′ splice site based on sequences flanking the AG dinucleotide (Iliagan et al., 2014). Given that the effects of SF3B1, U2AF1, and SRSF2 mutations on splicing mechanisms are distinct, it is unclear why these mutations are mutually exclusive. Moreover, evaluation of the effects of these mutations on splicing and gene expression in an isogenic manner has not been performed. Here we directly assessed the functional basis for the mutual exclusivity of spliceosome gene mutations using models expressing single- or double-mutant splicing factors simultaneously. These data provide a functional explanation for the genetic configuration of spliceosome gene mutations and identify a convergent effect of these mutations on a pathway of established relevance to MDS pathogenesis.

RESULTS

Simultaneous Expression of Srsf2 and Sf3b1 Mutations Is Incompatible with Hematopoiesis

Evaluation of sequencing data from >4,000 patients with myeloid neoplasms revealed that while ~48% (1,935/4,032) have a mutation in an RNA splicing factor, only ~2% of patients (86/4,032) have >1 splicing-factor mutation (Figure 1A and Table S1). To understand the basis of this mutual exclusivity, we generated mice for inducible heterozygous expression of two of the most common splicing-factor mutations in MDS (SF3B1K700E and SRSF2P95H) simultaneously (Figure 1B). We performed noncompetitive bone marrow transplantation (BMT), whereby each mutation was induced following stable engraftment in recipient mice (Figure 1B). Bone marrow (BM) cells co-expressing Srsf2P95H and Sf3b1K700E mutations were severely defective in multi-lineage reconstitution compared with other groups (Figures 1C, 1D, and S1A–S1D). Chimerism analysis and evaluation for recombination prior to polynosinic-polyribocytidylic acid (pIpC) administration confirmed minimal spontaneous excision prior to BMT (Figures S1E and S1F). In competitive BMT (Figure 1E), BM cells co-expressing Sf3b1K700E and Srsf2P95H mutations were more readily outcompeted by competitor BM cells relative to single-mutant or wild-type (WT) controls. Analyses of hematopoietic organs 6 months post BMT revealed a near-complete absence of Srsf2P95H/+ Sf3b1K700E/+ cells, which was distinct from single-mutant groups (Figures 1E, 1F, and S1C). These data provide functional evidence that co-expression of mutant RNA splicing factors is not tolerated.

Expression of Splicing-Factor Mutations in a Homozygous or Hemizygous State Is Incompatible with Hematopoiesis

Prior studies identified that cells bearing mutant splicing factors require the WT allele for survival (Lee et al., 2016; Zhou et al., 2015). While these observations potentially explain the heterozygous nature of splicing-factor mutations in patients, the effect of expressing splicing-factor mutation in a homozygous manner was not assessed. To test this, we generated mice with conditional homozygous expression of the SRSF2P95H mutation (Mx1-Cre+ Srsf2P95H/+). In competitive BMT assays, hematopoietic stem and progenitor cells (HSPCs) from these mice showed severe defects in multi-lineage reconstitution relative to Mx1-Cre+ Srsf2P95H/+ and Mx1-Cre+ WT HSPCs, similar to defects seen with hemizygous Srsf2P95H expression (Mx1-Cre+ Srsf2P95H/fl) (Figures 1G, 1H, and S1G–S1I). These data firmly establish that neither hemizygous nor homozygous expression of splicing-factor mutations is tolerated, highlighting the unique dependency of spliceosome-mutant cells on residual WT spliceosome function.

Figure 1. Simultaneous Expression of Mutations in Srsf2 and Sf3b1 or Expression in the Homozygous State Is Incompatible with Hematopoiesis

(A) Heatmap of the four most commonly mutated genes encoding RNA splicing factors across 11 studies in myeloid malignancies (Bejar et al., 2012; Damm et al., 2012; Haferlach et al., 2014; Lasho et al., 2012; Makishima et al., 2012; Meggendorfer et al., 2012; Papaemmanuil et al., 2013; Patnaik et al., 2013; Thol et al., 2012; Yoshida et al., 2011; Zhang et al., 2012). Each column represents a patient, and each colored bar represents the presence of the specified mutation.

(B) Schema of competitive and noncompetitive bone marrow transplantation (BMT) using bone marrow mononuclear cells (BM MNCs) from 8-week-old Mx1-Cre+ wild-type (WT), Mx1-Cre+ Srsf2P95H/+; Mx1-Cre+ Sf3b1K700E/+; Mx1-Cre+ Srsf2P95H+/+; Sf3b1K700E/+-; Mx1-Cre+ Srsf2P95Hfl; and Mx1-Cre+ Sf3b1K700Efl mice. Polyinosinic-polycytidylic acid (pIpC) was administered to recipients 4 weeks post BMT to induce expression of mutant alleles.

(C) Percentage of CD45.2 chimerism in peripheral blood of recipients (n = 8–10 mice per genotype) in noncompetitive BMT.

(D) Representative fluorescence-activated cell sorting (FACS) plots of CD45.2+ cells in peripheral blood of recipients in noncompetitive BMT 52 weeks post pIpC.

(E) Percentage of CD45.2 chimerism in peripheral blood of recipients (n = 10 mice per genotype) in competitive BMT.

(F) Analysis of CD45.2 chimerism in the BM, spleen, thymus, and blood of recipients (n = 5–10 mice per genotype) in competitive BMT 20 weeks post pIpC.

(G) Percentage of CD45.2 chimerism in peripheral blood of recipients (n = 5–10 mice per genotype) in competitive BMT from Mx1-Cre+ WT, Mx1-Cre+ Srsf2P95H+/-, Mx1-Cre+ Srsf2P95Hfl, and Mx1-Cre+ Sf3b1K700E+/- mice.

(H) Analysis of CD45.2 chimerism in BM, spleen, thymus, and blood of recipients (n = 5–10 mice per genotype) in competitive BMT 20 weeks post pIpC.
Simultaneous Expression of Srsf2 and Sf3b1 Mutations Resulted in Increased Apoptosis and Reduced Quiescence of HSPCs

To identify why co-expression of Srsf2P95H and Sf3b1K700E resulted in severe HSPC dysfunction, we performed cell-cycle and apoptosis analysis. Two-weeks following recombination, there was a significant increase in lineage c-Kit- LK (LSK) cells undergoing apoptosis and in the S phase of cell cycle in Mx1-Cre+ Srsf2P95H/+ Sf3b1K700E/+ mice relative to controls (Figures 2A and 2B).

Selection against co-expression of two mutant splicing factors was strongly supported by the fact that mice with hematopoietic-specific expression of Srsf2P95H and Sf3b1K700E (Vav-Cre+ Srsf2P95H/+ Sf3b1K700E/+) mutations were associated with 100% lethality at weaning, while single-mutant mice were present at the expected frequencies (Figure 2C). Analysis of 139 embryos at embryonic day 14.5 (E14.5) revealed that Vav-Cre+ Srsf2P95H/+ Sf3b1K700E/+ fetuses were detectable at the expected frequency (Figures S2A and S2B). E14.5 Vav-Cre+ Srsf2P95H/+ Sf3b1K700E/+ fetal liver cells had increased number of LSK cells as well as phenotypic long-term hematopoietic stem cell (LT-HSC, LSK CD150+ CD48-), multi-potent progenitor (MPP, LSK CD150- CD48+), HPC-1 (LSK CD150- CD48-), and HPC-2 (LSK CD150- CD48+) populations compared with all other genotypes (Figures 2D, 2E, and S2C–S2G). Despite a significant increase in HSPCs, Vav-Cre+ Srsf2P95H/+ Sf3b1K700E/+ fetal liver cells had significantly impaired colony-forming ability in vitro (Figure 2F) and markedly increased percentage of cycling and apoptotic cells (Figures 2G–2I). These derangements in HSPC phenotypes were manifest by E18.5 when Vav-Cre+ Srsf2P95H/+ Sf3b1K700E/+ fetuses had near absence of hematopoietic cells in the BM as well as increased apoptotic cells in fetal liver (Figures S2H and S2I).

Taken together, these data demonstrate that co-expression of splicing-factor mutations compromises hematopoiesis, driven by aberrant cell-cycle progression and increased apoptosis of HSPCs.

Srsf2 and Sf3b1 Mutations Have Largely Distinct Effects on Gene Expression

To understand the mechanistic basis for mutual exclusivity of SF3B1 and SRSF2 mutations, we performed RNA sequencing (RNA-seq) on lineage c-Kit- LK cells from Mx1-Cre+ Srsf2P95H/+ Sf3b1K700E/+ mice as well as single-mutant and WT controls (Figure 3A). The mean allelic ratio of Sf3b1K700E and Srsf2P95H expressed in double-mutant cells was 20.7% and 33.5%, markedly lower than the ~50% expression in single-mutant controls, illustrating the intolerability of combining SF3B1 and SRSF2 mutations (Figure 3B). Expression of either mutation resulted in dysregulation of hundreds of coding genes (Figure 3C and Table S2). Mx1-Cre+ Srsf2P95H/+ Sf3b1K700E/+ cells exhibited significantly more gene dysregulation than single-mutant cells, consistent with their more dramatic biological phenotype (Figure 3D). Double-mutant cells shared a greater proportion of differentially expressed genes with each single-mutant group than single mutants shared with one another (Figure 3E). Gene ontology (GO) analysis of coding genes differentially expressed within each genotype relative to WT control revealed strong signatures of impaired hematopoiesis in double-mutant cells, consistent with the multi-lineage defects in these cells (Figure 3F and Table S3).

We next tested whether mutations in SF3B1 and SRSF2 have independent effects on gene expression; that is, whether double-mutant cells recapitulated the gene dysregulation observed for each single-mutant genotype relative to WT. Approximately 80% and 40% of genes dysregulated in Mx1-Cre+ Sf3b1K700E/+ and Mx1-Cre+ Srsf2P95H/+ single-mutant cells were also dysregulated in Mx1-Cre+ Sf3b1K700E/+ Srsf2P95H/+ double-mutant cells (Figure 3E and Table S2). That degree of recapitulation of gene dysregulation was highly similar to and statistically indistinguishable (p = 0.90 and 0.44 for Sf3b1K700E and Srsf2P95H mutations, respectively) from expected recapitulation under the assumption of independence (Figure S3A). We therefore conclude that SF3B1 and SRSF2 mutations have independent effects on gene expression even when present in the same cell. Interestingly, in addition to recapitulating the dysregulation of specific genes expected based on single-mutant cells, double-mutant cells exhibited additional gene dysregulation (Figures S3B and S3C), consistent with the severe hematopoietic phenotype of these cells. These results suggest that SF3B1 and SRSF2 mutations have independent but compound effects on gene expression when present in the same cell.

Srsf2 and Sf3b1 Mutations Have Distinct and Independent Effects on Splicing

We next assessed the consequences of single versus double mutations in Sf3b1 and Srsf2 on splicing (Table S4). Mutations in SF3B1 have been proposed to alter 3′ splice site recognition (Darman et al., 2015; DeBoever et al., 2015). In contrast, mutations in SRSF2 alter exon recognition via preferential recognition of C-rich exonic splicing enhancer (ESE) motifs relative to G-rich ESEs, while WT SRSF2 recognizes both classes of ESEs (Kim et al., 2015; Zhang et al., 2015). Our current understanding of SF3B1 and SRSF2 mutations therefore indicates that they induce distinct changes in splicing. However, the consequences of these mutations on splicing have not been compared in an isogenic context.

We used our double-mutant system to directly compare the effects of SF3B1 and SRSF2 mutations on RNA splicing. Consistent with prior studies, Sf3b1 and Srsf2 mutations affected 3′ splice site and exon recognition, respectively (Figures 4A, 4B, S4A, and S4B). We observed a modest enrichment of adenosines upstream of intron-proximal 3′ splice site promoted by the Sf3b1K700E mutation, independent of the Srsf2P95H mutation (Figure S4C). This enrichment was absent from cells expressing Srsf2P95H alone. Cassette exons promoted versus repressed in cells expressing Srsf2P95H were respectively enriched for CCNG and GGNG ESEs, while WT SRSF2 recognizes both classes of ESEs (Kim et al., 2015; Zhang et al., 2015). Our current understanding of SF3B1 and SRSF2 mutations therefore indicates that they induce distinct changes in splicing. However, the consequences of these mutations on splicing have not been compared in an isogenic context.
Figure 2. Combined Expression of Mutations in Srsf2 and Sf3b1 Results in Hematopoietic Stem and Progenitor Cell Apoptosis and Loss of Quiescence

(A and B) Percentage of bromodeoxyuridine + (BrdU+) (A) or annexin-V + propidium iodide/C0 (PI/C0) (B) LSK cells from Mx1-Cre+ WT (n = 4), Mx1-Cre+ Srsf2P95H/+ (n = 5), Mx1-Cre+ Sf3b1K700E/+ (n = 4), and Mx1-Cre+ Srsf2P95H/+ Sf3b1K700E/+ (n = 4) mice 2 weeks post pIpC administration. *p < 0.05; two-sided Chi-square test. **p = 0.0064; two-sided Chi-square test.

(C) Number of live mice at weaning from crossing Sf3b1K700E/+ mice to Vav-Cre+ Srsf2P95H/+ mice or by crossing Srsf2P95H/+ mice to Vav-Cre+ Sf3b1K700E/+ mice.

(D and E) Percentage of LSK (D) and long-term hematopoietic stem cells (LT-HSC; LSK CD150+ CD48/C0) (E) in E14.5 fetal livers from Vav-Cre+ WT (WT; n = 17), Vav-Cre+ Srsf2P95H/+ (P95H; n = 17), Vav-Cre+ Sf3b1K700E/+ (K700E; n = 15), and Vav-Cre+ Srsf2P95H/+ Sf3b1K700E/+ double-knockin (DKI; n = 16) fetuses and from Vav-Cre+ WT (n = 14), Vav-Cre+ Srsf2P95H/+ (P95H; n = 17), Vav-Cre+ Sf3b1K700E/+ (K700E; n = 19), and Vav-Cre+ Srsf2P95H/+ Sf3b1K700E/+ DKI (n = 17) fetuses. *p < 0.05; two-sided Chi-square test.

(F) Colony numbers from E14.5 fetal liver cells from Vav-Cre+ WT (n = 12), Vav-Cre+ Srsf2P95H/+ (P95H; n = 7), Vav-Cre+ Sf3b1K700E/+ (K700E; n = 12), and Vav-Cre+ Srsf2P95H/+ Sf3b1K700E/+ DKI (n = 7) fetuses and from Vav-Cre+ WT (n = 19), Vav-Cre+ Srsf2P95H/+ (P95H; n = 16), Vav-Cre+ Sf3b1K700E/+ (K700E; n = 11), and Vav-Cre+ Srsf2P95H/+ Sf3b1K700E/+ DKI (n = 13) fetuses. *p < 0.05; two-sided Chi-square test.

(G and H) Representative FACS plots (G) and quantitation of BrdU+ (H) and annexin-V+ PI/C0 (I) LSK cells from Vav-Cre+ WT (n = 5), Vav-Cre+ Srsf2P95H/+ (P95H; n = 8), Vav-Cre+ Sf3b1K700E/+ (K700E; n = 3), and Vav-Cre+ Srsf2P95H/+ Sf3b1K700E/+ DKI (n = 9) fetuses and from Vav-Cre+ WT (n = 4), Vav-Cre+ Srsf2P95H/+ (P95H; n = 6), Vav-Cre+ Sf3b1K700E/+ (K700E; n = 7), and Vav-Cre+ Srsf2P95H/+ Sf3b1K700E/+ DKI (n = 2) fetuses. Error bars represent mean ± SD. ANOVA and Tukey’s post hoc test was used to compare groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. See also Figure S2.
recapitulated the preferential effects of Sf3b1 and Srsf2 mutations on 3′ splice site recognition and cassette exon recognition, respectively, that we observed in single-mutant cells (Figure S4A). We did not observe widespread decreases in splicing efficiency, such as retention of constitutive introns, in double-mutant cells (Figure S4E). Instead, Mx1-Cre⁺ Srsf2^{P95H/+} Sf3b1^{K700E/+} cells exhibited modest increases in mis-spliced genes relative to cells bearing single mutations in Sf3b1 or Srsf2 (Figures 4A and 4B). Mx1-Cre⁺ Sf3b1^{K700E/+} cells recapitulated 40% and 32% of splicing dysregulation driven by expression of the single mutations in Sf3b1^{K700E} and Srsf2^{P95H}, respectively (Figure S4F). We identified only seven genes mis-spliced in both Mx1-Cre⁺ Srsf2^{P95H/+} and Mx1-Cre⁺ Sf3b1^{K700E/+} single-mutant as well as double-mutant cells, and
only six genes mis-spliced in both Mx1-Cre\(^+\) Srsf2\(^{P95H/+}\) and Mx1-Cre\(^+\) Sf3b1\(^{K700E/+}\) single-mutant but not double-mutant cells. We therefore conclude that SF3B1 and SRSF2 mutations typically have distinct and independent consequences on splicing.

To confirm these findings, we performed RNA-seq on purified LK cells from E14.5 Vav-Cre\(^+\) Srsf2\(^{P95H/+}\), Sf3b1\(^{K700E/+}\) and fetal liver and controls. The allelic frequencies of both mutations in double-mutant cells were near 50% and comparable with those of Vav-Cre\(^+\) single-mutant controls (Figure 4D). Similar to the Mx1-Cre system, the greatest alterations in gene expression were seen in Vav-Cre\(^+\) Srsf2\(^{P95H/+}\), Sf3b1\(^{K700E/+}\) HSPCs compared with single-mutant controls, and double-mutant cells recapitulated much of the gene expression dysregulation in single-mutant cells (Figures 4E and 4F). GO analysis revealed signatures of impaired hematopoiesis in double-mutant cells, consistent with those seen in Mx1-Cre mice (Figure S4G and Table S4). Moreover, effects on splicing similar to those seen in the Mx1-Cre system were seen in HSPCs from Vav-Cre mice, including preferential effects of Sf3b1 and Srsf2 mutations on 3\’ splice site and cassette exon recognition, respectively (Figures S4H and S4I).

Combined Expression of Srsf2 and Sf3b1 Mutations

Impairs Expression of Regulators of HSPC Survival and Increases Sensitivity to Inflammatory Stimulation

Given the largely non-overlapping effects of Srsf2\(^{P95H/+}\) and Sf3b1\(^{K700E/+}\) mutations on gene expression and splicing, we evaluated transcripts that exhibited concomitant dysregulation in gene expression and splicing in the double-mutant state (Figure 5A and Table S6). Multiple regulators of HSPC survival and quiescence were significantly dysregulated and mis-spliced in Srsf2\(^{P95H/+}\), Sf3b1\(^{K700E/+}\) HSPCs, including the thrombospondin receptor c-Mpl, integrin xIIIb (CD41), and the transcription factor Pbx1 (Figures 5A and SSA). After confirming reduced expression of these transcripts in LK cells in an independent cohort of Mx1-Cre\(^+\) Srsf2\(^{P95H/+}\), Sf3b1\(^{K700E/+}\) mice (Figure 5B), we evaluated the consequences of short hairpin RNA (shRNA)-mediated depletion of these mRNAs in WT HSPCs (Figures S5B and S5C). Consistent with prior published data (Alexander et al., 1996; Facica et al., 2008; Gekas and Graf, 2013; Qian et al., 2007; Yoshihara et al., 2008), silencing any of these individual genes was associated with severe impairment of HSPC clonogenicity (Figure S5D).

In addition to gene expression changes consistent with impaired hematopoiesis in Srsf2\(^{P95H/+}\), Sf3b1\(^{K700E/+}\) cells (Figure 3F), GO analysis also revealed a strong signature associated with immune signaling that was augmented in double- relative to single-mutant cells (Figures S4C and S4H). To functionally evaluate these gene expression changes, we studied the response of Srsf2 and Sf3b1 mutant cells to lipopolysaccharide (LPS). HSPCs from Vav-Cre\(^+\) Srsf2\(^{P95H/+}\) and Vav-Cre\(^+\) Sf3b1\(^{K700E/+}\) mice exhibited increased baseline nuclear factor \(\kappa\B (NF-\kappa\B)\) activation (marked by increased nuclear accumulation of phosphorylated p65 [p-p65]) relative to Vav-Cre\(^+\) WT HSPCs (Figures 5D and 5E), and this was further enhanced following ex vivo LPS stimulation in double-mutant cells relative to single-mutant or WT cells (Figures S5E and S5F).

Given prior data identifying that chronic LPS exposure impairs repopulating potential of HSPCs (Espilin et al., 2011; Zhao et al., 2013), we next evaluated the effects of chronic inflammation on the function of Srsf2 or Sf3b1 mutant BM HSPCs (Figure 5F). Vav-Cre\(^+\) WT, Vav-Cre\(^+\) Srsf2\(^{P95H/+}\), and Vav-Cre\(^+\) Sf3b1\(^{K700E/+}\) mice were treated with LPS (1 mg/kg) every second day for 30 days followed by serial BMT into lethally irradiated recipient mice. Chronic LPS treatment had a mild effect on the repopulating potential of WT HSPCs, evidenced by similar peripheral blood and BM HSPC chimerism in primary recipients (Figures 5G and 5H). In contrast, LPS-treated Vav-Cre\(^+\) Srsf2\(^{P95H/+}\) and Vav-Cre\(^+\) Sf3b1\(^{K700E/+}\) BM HSPCs showed significant reduction in repopulating ability relative to vehicle-treated counterparts, and this defect was further exacerbated following serial transplantation (Figures 5G and 5H).

The above observations suggest that Srsf2 and Sf3b1 mutant HSPCs are intrinsically hypersensitive to inflammatory stimuli that contribute to defective hematopoietic function, rendering features observed in MDS patients. In addition, LPS-treated Vav-Cre\(^+\) Srsf2\(^{P95H/+}\) mice had enhanced myeloid skewing and reduced B lymphopoiesis relative to vehicle-treated mice or Vav-Cre\(^+\) Srsf2\(^{P95H/+}\) mice treated with LPS (Figure S5G). Moreover, acute ex vivo LPS stimulation of BM LSK cells from Vav-Cre\(^+\) Srsf2\(^{P95H/+}\) mice also resulted in significant increase in nuclear p-p65 relative to Vav-Cre\(^+\) Srsf2\(^{P95H/+}\) LSK cells (Figures S5H and S5I). The enhanced response to inflammatory stimuli in Srsf2

Figure 4. Srsf2 and Sf3b1 Mutations Have Distinct and Independent Effects on RNA Splicing

(A) Scatterplots of cassette exon inclusion in Mx1-Cre\(^+\) Srsf2\(^{P95H/+}\), Mx1-Cre\(^+\) Sf3b1\(^{K700E/+}\), and Mx1-Cre\(^+\) Srsf2\(^{P95H/+}\), Sf3b1\(^{K700E/+}\) cells relative to Mx1-Cre\(^+\) WT cells. Axes indicate the fraction of mRNAs containing each cassette exon in the indicated sample. Red and blue indicate cassette exons whose inclusion is promoted or repressed, respectively, in mutant relative to WT cells. (B) As in (A), but for alternative 3\’ splice site events. Axes indicate the fraction of mRNAs that use the intron-proximal 3\’ splice site in the indicated sample. Red and blue indicate intron-proximal 3\’ splice sites whose usage is promoted or repressed, respectively, in mutant relative to WT cells. (C) Plots illustrating the spatial distribution of the CCNG and GGNG (N = any nucleotide) exonic splicing enhancers adjacent to differentially spliced cassette exons. Red and blue indicate promoters versus repressed cassette exons, respectively. (D) Expression of Srsf2\(^{P95H/+}\) and Sf3b1\(^{K700E/+}\) alleles as percentage of mRNAs expressed from Srsf2 and Sf3b1 in lineage\(^+\) c-Kit\(^+\) cells from fetal livers of Vav-Cre mice at E14.5. Color indicates genotype; the three biological replicates are A to C from left to right. (E) Scatterplots comparing mean coding gene expression for all replicates in Vav-Cre\(^+\) Srsf2\(^{P95H/+}\), Vav-Cre\(^+\) Sf3b1\(^{K700E/+}\), and Vav-Cre\(^+\) Srsf2\(^{P95H/+}\), Sf3b1\(^{K700E/+}\) cells relative to Vav-Cre\(^+\) WT cells. Red and blue indicate coding genes significantly up- or downregulated, respectively, in mutant relative to Vav-Cre\(^+\) WT cells. TPM, transcripts per million (TMM-normalized).

(F) Venn diagram showing the overlap between coding genes significantly dysregulated in Vav-Cre\(^+\) Srsf2\(^{P95H/+}\), Vav-Cre\(^+\) Sf3b1\(^{K700E/+}\), and Vav-Cre\(^+\) Srsf2\(^{P95H/+}\), Sf3b1\(^{K700E/+}\) cells relative to Vav-Cre\(^+\) WT cells in all replicates. See also Figure S4; Tables S4 and S5.
Figure 5. Co-expression of Srsf2 and Sf3b1 Mutations Results in Aberrant Splicing and Expression of Key Regulators of Hematopoietic Stem Cell Survival and Quiescence

(A) Venn diagram of genes differentially expressed and spliced in Mx1-Cre$^+$ Srsf2$^{P95H/+}$ Sf3b1$^{K700E/+}$ cells relative to Mx1-Cre$^+$ WT cells in any replicate.

(B) Expression of Mpl, Itga2b, and Pbx1 in lineage/c-Kit$^+$ (LK) cells from Mx1-Cre$^+$ Srsf2$^{P95H/+}$ Sf3b1$^{K700E/+}$ mice relative to control groups (n = 8–10 mice per genotype). Error bars represent mean ± SD. ***p < 0.001, ****p < 0.0001 versus Mx1-Cre$^+$ WT; ####p < 0.0001 versus Mx1-Cre$^+$ Srsf2$^{P95H/+}$; ^^^p < 0.001, ^^^^^p < 0.0001 versus Mx1-Cre$^+$ Sf3b1$^{K700E/+}$.

(C) GO enrichment analysis of Mx1-Cre$^+$ Srsf2$^{P95H/+}$, Mx1-Cre$^+$ Sf3b1$^{K700E/+}$, and Mx1-Cre$^+$ Srsf2$^{P95H/+}$ Sf3b1$^{K700E/+}$ cells relative to Mx1-Cre$^+$ WT cells. Circle size indicates the magnitude of the p value for each term and comparison.

(D) Immunofluorescence of nuclear phosphorylated-p65 (p-p65) level in LK cells from Vav-Cre$^+$ WT, Vav-Cre$^+$ Srsf2$^{P95H/+}$, Vav-Cre$^+$ Sf3b1$^{K700E/+}$, and Vav-Cre$^+$ Srsf2$^{P95H/+}$ Sf3b1$^{K700E/+}$ mice following LPS stimulation ex vivo. Scale bars, 10 μm.
and Sf3b1 mutant mice in vivo was evident upon LPS-induced sepsis. Exposure of primary Mx1-Cre+ WT, Mx1-Cre+ Srsf2^{bP50H/+}, and Mx1-Cre+ Sf3b1^{K700E/+} mice with LPS (15 mg/kg) resulted in accelerated death in both Srsf2- and Sf3b1-mutant mice relative to WT controls (Figure 5f).

SF3B1 Mutations Promote Mis-splicing of MAP3K7, Resulting in Hyperactivation of NF-κB Signaling

The above results identify that spliceosomal mutations are intolerable when co-expressed but they are independently more sensitive to inflammatory stimuli that converge on NF-κB signaling. To understand how spliceosome gene mutations activate immune signaling pathways, we first focused on events that are mis-spliced within SF3B1-mutant hematopoietic cells in both human and mouse (Table S7). Although recent studies reported few such shared mis-spliced events (Mupo et al., 2016; Obeng et al., 2016), we identified a larger set of 205 transcripts mis-spliced in both SF3b1-mutant murine hematopoietic cells and SF3B1-mutant MDS patients (Figure 6A). One of the most robust mis-spliced events was MAP3K7, for which an intron-proximal 3′ splice site was promoted by mutant SF3B1 in both human and mouse hematopoietic cells. Reanalysis of RNA-seq data from CLL patient cohorts (DeBoever et al., 2015) and isogenic cell lines with endogenous mutations in SF3B1, as well as RT-PCR and Sanger sequencing of cDNA from SF3B1-mutant cells, validated this isoform (Figures 6B, 6C, and S6A). This aberrant 3′ splice site recognition occurred in exons 5 of MAP3K7, which encodes part of the kinase domain, and is predicted to result in an out-of-frame transcript that undergoes nonsense-mediated decay (Figures 6B and 6C). Consistent with this, we observed reduced MAP3K7 protein in isogenic cell lines (Figures 6D and 6E) as well as patient BM mononuclear cells (MNCs) and peripheral blood MNCs from MDS and CLL patients, respectively (Figures 6F and 6G), with SF3B1 mutations versus those lacking splicing-factor mutations.

MAP3K7 encodes a kinase that mediates tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and Toll-like receptor signaling through the NF-κB, JNK, and MAPK pathways. The effects of MAP3K7 loss have been extensively studied and can result in loss or promotion of inflammation depending on cellular context (Ajibade et al., 2012; Lamotte et al., 2012; Sato et al., 2005; Tang et al., 2008; Vink et al., 2013; Xin et al., 2017). Here, we observed that SF3B1^{K700E} human myeloid or lymphoid leukemia cells stimulated with LPS had enhanced NF-κB activation compared with SF3B1 WT controls (Figures 6D, 6E, 6D, and 6E). Increased p-p65 level was also evident at baseline in isogenic cells as well as primary patient BM MNCs from SF3B1-mutant MDS and peripheral blood MNCs from SF3B1-mutant CLL relative to SF3B1 WT counterparts (Figures 6F and 6G). Increased nuclear p-p65 levels (Figure 7A) and enhanced NF-κB transcriptional activity using a reporter assay (Figures 7B and S7A) were also evident in SF3B1^{K700E} cells compared with SF3B1 WT cells following LPS or TNFα stimulation. This was further confirmed by marked induction in NF-κB targets IL-1β and TNFα following LPS treatment in SF3B1^{K700E} NALM-6 cells relative to parental and SF3B1^{K700D} control cells (Figure 7C).

Given that a number of aberrant splicing and gene expression events occur in SF3B1-mutant cells, we next sought to understand the contribution of MAP3K7 loss to hyperactivated NF-κB signaling. First, hyperactive NF-κB signaling was confirmed using shRNA-mediated downregulation of MAP3K7 in NALM-6 and K562 parental cells at the level of p-p65 signaling and NF-κB transcriptional activity at both baseline and after LPS stimulation (Figures 7B and S7B). In addition, re-expression of MAP3K7 in K562 SF3B1^{K700E} cells resulted in a significant decrease in p-p65 in both resting state as well as following LPS exposure based on immunoblotting, NF-κB luciferase reporter, and nuclear p-p65 level (Figures 7D, 7F, and S7C). At a biological level, restoration of Map3k7 expression in SF3B1^{K700E/K700D} HSPCs resulted in mild rescue of HSPC clonogenicity (Figure 7D). Overall, these data suggest that the effects of SF3B1^{K700E} mutation on induction of NF-κB signaling are indeed, in part, mediated through aberrant splicing of MAP3K7.

SRSF2 Mutations Promote Aberrant Splicing of Caspase-8, Resulting in a Truncated Protein that Hyperactivates NF-κB Signaling

Consistent with the distinct effects of SF3B1 and SRSF2 mutations on splicing, MAP3K7 aberrant splicing was restricted to SF3B1-mutant cells (Figure S6A). We therefore searched for aberrant splicing events in SRSF2-mutant cells that might affect NF-κB signaling. One such event was aberrant splicing of caspase-8, encoded by CASP8, that was recurrently mis-spliced in AML and CMMML patients with SRSF2 mutations, but not those bearing SF3B1 mutations (Figures 6A and S6B). Caspase-8 is a cysteine protease that initiates death-receptor-mediated apoptosis (Shu et al., 1997; Thome et al., 1997) in addition to regulating necroptosis and serving as a key activator of NF-κB (Chaudhary et al., 2000; Hu et al., 2000; Shikama et al., 2003). SRSF2 mutations repressed a cassette exon of caspase-8, as was evident by DNA-seq, RT-PCR, qRT-PCR, and cDNA sequencing from cell lines and patient samples (Figures 8A, 8B, and S8C–S8E). CASP8 normally encodes a 54/55-kDa protein containing two death-effector domains (DED) at the N terminus and a C-terminal catalytic domain. Exclusion of this cassette exon results in an mRNA encoding a truncated caspase-8 protein lacking the C-terminal catalytic domains, which was readily

(E) Violin plots quantifying nuclear p-p65 intensity of LC cells from (D). ANOVA and Kruskal–Wallis ranked test was performed and adjusted for false discovery rate. (F) Schema of competitive BMT using BM MNCs from Vav^{Cre−/−} WT, Vav^{Cre−/−} Srsf2^{bP50H/+}, and Vav^{Cre−/−} Sf3b1^{K700E/+} mice after a single dose of LPS (15 mg/kg) in vivo. Log-rank Mantel–Cox test was performed. *p = 0.0055.

ANOVA and Tukey’s post hoc test were used to compare groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 versus Vav^{Cre−/−} WT mice (‘#’ denotes versus Vav^{Cre−/−} Srsf2^{bP50H/+} mice and ‘&&’ denotes versus Vav^{Cre−/−} Sf3b1^{K700E/+} mice). (G) and (H), the top and bottom lines of the box represent the upper and lower quartiles, respectively; the line inside the box represents the median; the lines above and below the box represent the maximum and minimum values, respectively. See also Figure S5 and Table S6.
Figure 6. SF3B1 Mutations Promote Mis-splicing of MAP3K7, Resulting in Hyperactivation of NF-κB Signaling

(A) Venn diagram illustrating overlap of differentially spliced genes in MDS patient samples mutant versus WT for SF3B1 and murine hematopoietic progenitors in Sf3b1^{K700E/+} versus Sf3b1^{+/+} mice.

(B) From top to bottom, conservation of mouse and human MAP3K7 sequences adjacent to the competing 3' splice site affected by SF3B1 mutations, and RNA-seq coverage plots in human and mouse samples.
detectable in SRSF2-mutant cells using an N-terminal anti-
caspase-8 antibody (Figures 8C and 8D). Although several
caspase-8 isoforms have been described (Xu et al., 2009;
Yuan et al., 2012), the specific isoform detected in SRSF2-
mu tant cells is distinct from those previously described.

Previously described DED-only forms of caspase-8 have been
suggested to serve either as competitive inhibitors or promoters
of apoptosis (Xu et al., 2009; Yuan et al., 2012). Given this, we
tested the effect of this SRSF2-mutant-specific truncated iso-
form (hereafter referred to as CASP8TR) in an SRSF2 WT cell
line followed by TRAIL (TNF-related apoptosis-inducing ligand)
stimulation to engage the death-receptor pathway. Overexpres-
sion of both caspase-8 full-length (CASP8FL) and CASP8TR iso-
forms resulted in robust expression of proteins at the expected
size (Figures 8E and S8F) with no effect on cell growth (Fig-
ure 8S8G). Moreover, both isoforms promoted TRAIL-mediated
cell death, suggesting that the truncated isoform did not affect
cell death relative to CASP8FL (Figure S8H). Given this, we next
evaluated the effect of overexpressing CASP8TR on NF-κB tran-
scriptional activity, signaling, and nuclear localization. In both
K562 and HAP1 cells with endogenous caspase-8 expression,
overexpression of the CASP8TR, but not the CASP8FL isoform,
resulted in robust induction of NF-κB activity upon increasing
concentration of TRAIL (Figures 8E, 8F, S8I, and S8J). These
data were also confirmed in K562 cells with or without endoge-
nous SRSF2PR9H mutation (Figures 8G, S8K, and S8L). To rule
out an effect of endogenous caspase-8, we assessed the effect of
CASP8TR on cell death and NF-κB activity in CASP8KO HAP1
cells. Consistent with the lack of the catalytic domain, CASP8KO
HAP1 cells expressing CASP8TR isoform were unable to undergo
TRAIL-mediated cell death (Figures S8M and S8N); however, the
CASP8TR isoform was able to induce robust NF-κB signaling in
the absence of WT caspase-8 (Figures 8F, S8O, and S8P).

DISCUSSION

Mutations affecting RNA splicing factors are the most common
genic alterations in MDS but the basis for their significant
enrichment in this disease remains largely unexplained. Here
we identify that two of the most commonly mutated splicing fac-
tors in MDS converge on activation of innate immune signaling
through aberrant splicing of mRNAs encoding distinct enzymes.

Although the initial description of spliceosomal mutations pre-
dicted that the mutually exclusive pattern of these mutations
might be due to a common impact on MDS pathogenesis (Yosh-
ida et al., 2011), the data here identify that these mutations are
mutually exclusive, in part due to synthetic lethal interaction.
This provides one of the few examples of mutually exclusive
ocncogenic alterations due to synthetic lethal interactions in can-
cer. Interestingly, co-expression of SF3B1K700E and SRSF2PR9H
mutations resulted in impaired HSPC self-renewal, differentia-
tion, and survival, but this is not due to widespread inhibition of
splicing efficiency. Instead we identified aberrant splicing and
dysregulation of key regulators of HSPC function in double-
mutant cells, including the thrombopoietin receptor c-Mpl, the
homeodomain transcription factor Pbx1, and integrin αIIbβ3.
Hematopoietic-specific deletion of these factors individually
has previously been shown to result in failure of hematopoiesis
due to reduced HSC self-renewal, increased apoptosis, and
loss of quiescence (Ficara et al., 2008; Gekas and Graf, 2013;
Qian et al., 2007; Yoshihara et al., 2007), all features character-
istic of the double-mutant state.

Multiple lines of evidence implicate innate immune signaling in
MDS pathogenesis (Basiorka et al., 2016; Fang et al., 2014; Wei
et al., 2013), including experiments demonstrating increased
n innate immune signaling contributes to MDS development in vivo
(Fang et al., 2017; Varney et al., 2015). Increased activation of
Toll-like receptor and IL-1 receptor signaling with downstream
activation of MAPK and NF-κB pathways is widely reported in
MDS, but the mechanistic basis for this activation has mostly
been restricted to MDS with deletion of chromosome 5q (Fang
et al., 2014, 2017; Starczynowski, 2014; Varney et al., 2015).
Our work identifies a mechanism for hyperactivated NF-κB
signaling in a wider spectrum of MDS.

Although recent studies of SF3B1K700E mutation identified
relatively few mRNAs mis-spliced in both mouse and human
cells (Mupo et al., 2016; Obeng et al., 2016), we identified a
much greater overlap of aberrantly spliced transcripts shared
across mouse and human SF3B1K700E mutant hematopoietic
cells than previously reported. This includes aberrant splicing
of MAP3K7 through the use of an alternative 3’ splice site
promoted by mutant SF3B1. As downregulation of Map3k7 in
myeloid cells promotes myeloid neoplasms, this finding is likely
to be relevant to SF3B1-mutant MDS. For example, in vivo
knockdown of Map3k7 resulted in splenomegaly, myeloprolif-
eration, and extramedullary hematopoiesis, as well as increased
immune activation that was exacerbated by LPS (Vink et al.,
2013). Similarly, myeloid-specific deletion of Map3k7 heightened
the response to inflammatory stimuli and causes a clonal
myeloid leukemia (Ajibade et al., 2012; Eftychi et al., 2012;
Lamothe et al., 2012; Xin et al., 2017). Interestingly, the pro-
inflammatory and leukemogenic effects of Map3k7 loss appear
to be restricted to myeloid lineages (Ajibade et al., 2012), in stark
contrast to pan-hematopoietic deletion of Map3k7, which results
in complete failure of hematopoiesis (Tang et al., 2008). It will
therefore be important to understand whether there is a differen-
tial requirement for hematopoiesis in SF3B1 mutant cells given
the partial loss of MAP3K7 induced by mutant SF3B1.

While aberrant splicing and downregulation of MAP3K7 was
specific to SF3B1 mutant cells, cells expressing mutant SRSF2
shared similar elevated innate immune signaling and hypersensi-
tivity to LPS. This led us to identify a gain-of-function effect of
SRSF2 mutations through generation of a C-terminal truncated
caspase-8 isoform that promotes NF-κB signaling. This is

(C) RT-PCR of the MAP3K7 competing 3’ splice site in MDS and CLL patient samples with or without SF3B1 mutations as well as isogenic human and mouse cells.
(D and E) Immunoblot of phosphorylated p65 (p-p65), IκB-α, MAP3K7, and loading controls in isogenic K562 (D) and NALM-6 (E) cells. “Time (hr)” refers to hours
following LPS (5 μg/mL) exposure.

(F and G) Immunoblot analysis of p-p65, MAP3K7, and loading controls in BM MNCs from MDS (F) and peripheral blood MNCs from CLL patients (G) with or
without SF3B1 mutations.
See also Figure S6 and Table S7.

236 Cancer Cell 34, 225–241, August 13, 2018
Figure 7. MAP3K7 Loss Results in Hyperactive NF-κB Signaling in SF3B1-Mutant Cells

(A) Immunofluorescence of phosphorylated p65 (p-p65) in K562 cells with or without SF3B1K700E mutation 2 hr following LPS stimulation. Quantitation of p-p65 intensity is shown on the right (n = 3 independent experiments). Scale bars, 10 μm.

(B) Heatmap of NF-κB reporter signal in NALM-6 SF3B1-isogenic cells (left two panels) or parental NALM-6 cells with MAP3K7 shRNAs (right two panels) following LPS or TNFα stimulation for 24 hr.

(C) qRT-PCR analysis of IL-1β and TNFα 8 hr post LPS stimulation in NALM-6 SF3B1-isogenic cells (n = 2 independent experiments).

(D) Immunoblot of p-p65 in K562 SF3B1-isogenic cells ± FLAG-MAP3K7 cDNA and/or LPS (5 μg/mL) exposure for 2 hr.

(E) Quantitation of NF-κB reporter signal in cells from (D) (n = 3 independent experiments).

(F) Immunofluorescence of nuclear p-p65 and FLAG (MAP3K7) in cells from (D) (quantitation of p-p65 intensity [n = 3 independent experiments] on the right). Scale bars, 10 μm.

Error bars represent mean ± SD. ANOVA followed by Tukey’s post hoc test were used to compare groups. *p < 0.05, **p < 0.005, ***p < 0.0002, ****p < 0.0001, ####p < 0.0001 versus Vehicle; ###p < 0.001 versus Vehicle. See also Figure S7.
consistent with prior work showing that N-terminal prodomain-only containing isoforms of procaspase-8 activate NF-κB signaling through interactions with upstream regulators of NF-κB, a function not mediated by canonical full-length caspase-8 (Chaudhary et al., 2000; Hu et al., 2000; Shikama et al., 2003).

Together, our data demonstrate that different splicing-factor mutations alter distinct targets at the level of pre-mRNA splicing that nonetheless converge on the same downstream signaling node to hyperactivate innate immune signaling.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **CONTACT FOR REAGENT AND RESOURCE SHARING**
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Animals
 - Primary Human MDS and CLL Samples
 - Cell Lines
- **METHOD DETAILS**
 - Peripheral Blood Analysis
 - Bone Marrow Transplantation Assays
 - *In Vivo* LPS Stimulation Experiment
 - *In Vitro* Colony-Forming Assays
 - Flow Cytometry Analyses
 - Cell Cycle and Apoptosis Analyses
 - Histological Analysis
 - Immunoblot
 - Immunofluorescence
 - Caspase-8 and MAP3K7 Constructs
 - mRNA Stability Assay
 - Luciferase Reporter Assay
o RT-PCR and Quantitative RT-PCR (qRT-PCR)
o shRNA Experiments
o mRNA Isolation, Sequencing, and Analysis
o Genome Annotations
o RNA-seq Read Mapping
o Differential Gene Expression Analysis
o Differential Splicing Analysis
o Gene Ontology (GO) Enrichment Analysis
o Motif Enrichment Analysis and Sequence Logos
o Analysis of Expected and Observed Gene Expression Convergence

● QUANTIFICATION AND STATISTICAL ANALYSIS
 ● Statistical Analyses

● DATA AND SOFTWARE AVAILABILITY
 ● Publicly Available RNA-seq Data
 ● Accession Codes

SUPPLEMENTAL INFORMATION
Supplemental Information includes eight figures and eight tables and can be found with this article online at https://doi.org/10.1016/j.cell.2018.07.003.

ACKNOWLEDGMENTS
This work was supported by the Leukemia and Lymphoma Society (S.C.-W.L., D.I., R.K.B., O.A.-W.), the NICI K99 CA218896 (S.C.-W.L.), Aplastic Anemia and MDS International Foundation (A.Y.), Lauri Strauss Leukemia Foundation (A.Y.), US Dept. of Defense Bone Marrow Failure Research Program grant W81XWH-12-1-0041 (R.K.B., O.A.-W.), the National Research Foundation of Korea (NRF) grant funded by the Korean Government (Young Researcher Program, NRF-2017R1C1B00201991) (E.K.), the Settlement Research Fund (1.160104.01) of UNIST (Ulsan National Institute of Science and Technology) (E.K.), the NRF grant (the Individual Research in Basic Science and Engineering program, NRF-2017R1D1A1B03034094) (E.J.), the American Society of Hematology (S.C.-W.L., J.T., B.H.D., O.A.-W.), the Edward P. Evans Foundation (R.K.B., O.A.-W.), the Taub Foundation (O.A.-W.), grant R01 HL128239 (R.K.B., O.A.-W.), the Ellison Medical Foundation grant AG-NS-1030-13 (R.K.B.), grant R01 DK103854 (R.K.B.), the Starr Foundation grants 18-A8-075 and 19-A9-059 (O.A.-W.), and The Pershing Squeash Sohn Foundation. We would like to acknowledge the Molecular Cytology, Flow Cytometry, and Laboratory of Comparative Pathology core facilities for their technical assistance, and the MSK Cancer Center Support grant P30 CA008748.

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS
J.P., M.S., S.B., and P.G.S. are employees of H3 Biomedicine.

REFERENCES

STAR★METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-B220 Alexa Fluor 700 (RA3-6B2)</td>
<td>eBioscience</td>
<td>Cat# 56-0452-82; RRID: AB_891458</td>
</tr>
<tr>
<td>Anti-CD19 PECy7 (I03)</td>
<td>eBioscience</td>
<td>Cat# 25-0193-82; RRID: AB_657663</td>
</tr>
<tr>
<td>Anti-CD3 BV605 (17A2)</td>
<td>BioLegend</td>
<td>Cat# 100237; RRID: AB_2562039</td>
</tr>
<tr>
<td>Anti-CD4 BV711 (GK1.5)</td>
<td>BioLegend</td>
<td>Cat# 100447; RRID: AB_2564586</td>
</tr>
<tr>
<td>Anti-CD8a PerCP/Cy5.5 (53-6.7)</td>
<td>BioLegend</td>
<td>Cat# 100734; RRID: AB_2075238</td>
</tr>
<tr>
<td>Anti-Gr-1 PECy7 (RB6-8C5)</td>
<td>eBioscience</td>
<td>Cat# 25-5931-82; RRID: AB_469663</td>
</tr>
<tr>
<td>Anti-CD11b/Mac-1 PE (M1/70)</td>
<td>eBioscience</td>
<td>Cat# 12-0112-82; RRID: AB_465546</td>
</tr>
<tr>
<td>Anti-NK1.1 APC/Cy7 (PK136)</td>
<td>BioLegend</td>
<td>Cat# 108724; RRID: AB_830871</td>
</tr>
<tr>
<td>Anti-Ter119</td>
<td>BioLegend</td>
<td>Cat# 116223; RRID: AB_2137788</td>
</tr>
<tr>
<td>Anti-c-Kit APC (2B8)</td>
<td>eBioscience</td>
<td>Cat# 17-1171-82; RRID: AB_469430</td>
</tr>
<tr>
<td>Anti-Sca-1 PECy7 (D7)</td>
<td>eBioscience</td>
<td>Cat# 25-5981-82; RRID: AB_469669</td>
</tr>
<tr>
<td>Anti-FcγRII/III Alexa Fluor 700 (93)</td>
<td>eBioscience</td>
<td>Cat# 12-0251-82; RRID: AB_465607</td>
</tr>
<tr>
<td>Anti-CD45.1 PerCP/Cy5.5 (A20)</td>
<td>BioLegend</td>
<td>Cat# 110728; RRID: AB_893346</td>
</tr>
<tr>
<td>Anti-CD45.2 BV605 (104)</td>
<td>BioLegend</td>
<td>Cat# 109841; RRID: AB_2563485</td>
</tr>
<tr>
<td>Anti-CD48 PerCP/Cy5.5 (HM48-1)</td>
<td>BioLegend</td>
<td>Cat# 103422; RRID: AB_2075051</td>
</tr>
<tr>
<td>Anti-CD150 PE (9D1)</td>
<td>eBioscience</td>
<td>Cat# 12-1501-82; RRID: AB_465873</td>
</tr>
<tr>
<td>Anti-CD44 FITC (IM7)</td>
<td>eBioscience</td>
<td>Cat# 11-0441-82; RRID: AB_465045</td>
</tr>
<tr>
<td>Anti-CD34 FITC (RAM34)</td>
<td>eBioscience</td>
<td>Cat# 11-0341-82; RRID: AB_465021</td>
</tr>
<tr>
<td>Anti-CD45.1 PerCP/Cy5.5 (A20)</td>
<td>BioLegend</td>
<td>Cat# 110728; RRID: AB_893346</td>
</tr>
<tr>
<td>Anti-CD45.2 BV605 (104)</td>
<td>BioLegend</td>
<td>Cat# 109841; RRID: AB_2563485</td>
</tr>
<tr>
<td>Anti-CD48 PerCP/Cy5.5 (HM48-1)</td>
<td>BioLegend</td>
<td>Cat# 103422; RRID: AB_2075051</td>
</tr>
<tr>
<td>Anti-CD150 PE (9D1)</td>
<td>eBioscience</td>
<td>Cat# 12-1501-82; RRID: AB_465873</td>
</tr>
<tr>
<td>Anti-CD44 FITC (IM7)</td>
<td>eBioscience</td>
<td>Cat# 11-0441-82; RRID: AB_465045</td>
</tr>
<tr>
<td>Anti-IgM PE (II/41)</td>
<td>eBioscience</td>
<td>Cat# 12-5790-82; RRID: AB_465940</td>
</tr>
<tr>
<td>Anti-CD25 PE (PC61.5)</td>
<td>eBioscience</td>
<td>Cat# 12-0251-82; RRID: AB_465607</td>
</tr>
<tr>
<td>Anti-CD43 FITC (S11)</td>
<td>BioLegend</td>
<td>Cat# 143204; RRID: AB_10967045</td>
</tr>
<tr>
<td>Anti-BrdU FITC Flow Kit</td>
<td>BD Pharmingen</td>
<td>Cat# 559619; RRID: AB_2617060</td>
</tr>
<tr>
<td>Annexin V FITC Apoptosis Detection Kit</td>
<td>BD Pharmingen</td>
<td>Cat# 5566547</td>
</tr>
<tr>
<td>Anti-NF-κB/p65 (D14E12)</td>
<td>Cell Signaling Technology</td>
<td>Cat# 8242; RRID: AB_10859369</td>
</tr>
<tr>
<td>Anti-phospho NF-κB/p65-Ser536 (93H1)</td>
<td>Cell Signaling Technology</td>
<td>Cat# 3033; RRID: AB_331284</td>
</tr>
<tr>
<td>Anti-iKBα, rabbit polyclonal</td>
<td>Cell Signaling Technologies</td>
<td>Cat# 9242; RRID: AB_823540</td>
</tr>
<tr>
<td>Anti-TAK1/MAP3K7 (D94D7), rabbit monoclonal</td>
<td>Cell Signaling Technologies</td>
<td>Cat# 5206; RRID: AB_10694079</td>
</tr>
<tr>
<td>Anti-Caspase-8, N-terminal (E6), rabbit monoclonal</td>
<td>Abcam</td>
<td>Cat# ab32125; RRID: AB_2068469</td>
</tr>
<tr>
<td>Anti-Caspase-8, C-terminal (12F5), mouse monoclonal</td>
<td>Enzo Life Science</td>
<td>Cat# ALX-804-242-C100; RRID: AB_2050949</td>
</tr>
<tr>
<td>Anti-β-actin (AC-15), mouse monoclonal</td>
<td>Sigma-Aldrich</td>
<td>Cat# A5441; RRID: AB_476744</td>
</tr>
<tr>
<td>Anti-Flag (M2), mouse monoclonal</td>
<td>Sigma-Aldrich</td>
<td>Cat# F1804; RRID: AB_262044</td>
</tr>
<tr>
<td>Anti-mouse CD45, rat monoclonal</td>
<td>BD Pharmingen</td>
<td>Cat# 550539; RRID: AB_2174426</td>
</tr>
<tr>
<td>Anti-Myeloperoxidase, rabbit polyclonal</td>
<td>Dako</td>
<td>Cat# A0398; RRID: AB_2335676</td>
</tr>
<tr>
<td>Anti-Cleaved Caspase-3, rabbit polyclonal</td>
<td>Cell Signaling Technologies</td>
<td>Cat# 9661; RRID: AB_2341188</td>
</tr>
<tr>
<td>Anti-mouse Alexa Fluor 488, goat polyclonal</td>
<td>ThermoFisher Scientific</td>
<td>Cat# A-11001; RRID: AB_2534069</td>
</tr>
<tr>
<td>Anti-rabbit Alexa Fluor 594, goat polyclonal</td>
<td>ThermoFisher Scientific</td>
<td>Cat# A-11012; RRID: AB_2534079</td>
</tr>
<tr>
<td>Prolong Gold Antifade mounting agent</td>
<td>ThermoFisher Scientific</td>
<td>Cat# P36930</td>
</tr>
</tbody>
</table>

Biological Samples

| MDS and CLL primary patient samples | MSKCC |

Chemicals, Peptides, and Recombinant Proteins

Escherichia coli 0111:B5 LPS	Sigma Aldrich	Cat# L2880
Polybrene	Millipore	Cat# TR-1003-G
Recombinant TRAIL (soluble, human)	Enzo Life Science	Cat# ALX-201-073-3020

(Continued on next page)
Continued

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombinant human TNFα</td>
<td>PeproTech</td>
<td>Cat# 300-01A</td>
</tr>
<tr>
<td>Recombinant mouse IL-3</td>
<td>R&D</td>
<td>Cat# 403-ML</td>
</tr>
<tr>
<td>Recombinant mouse IL-6</td>
<td>R&D</td>
<td>Cat# 406-ML</td>
</tr>
<tr>
<td>Recombinant mouse SCF</td>
<td>R&D</td>
<td>Cat# 455-MC</td>
</tr>
<tr>
<td>Recombinant mouse TPO</td>
<td>R&D</td>
<td>Cat# 488-TO</td>
</tr>
<tr>
<td>Normal goat serum</td>
<td>ThermoFisher Scientific</td>
<td>Cat# PCN500</td>
</tr>
<tr>
<td>Actinomycin D</td>
<td>Life Technologies</td>
<td>Cat# 11805-017</td>
</tr>
</tbody>
</table>

Critical Commercial Assays

<table>
<thead>
<tr>
<th>Critical Commercial Assays</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MethoCult™ GF M3434</td>
<td>StemCell Technologies</td>
<td>Cat# M3434</td>
</tr>
<tr>
<td>NF-κB Cignal™ Reporter Assay</td>
<td>Qiagen</td>
<td>Cat# CCS-013L</td>
</tr>
</tbody>
</table>

Deposited Data

<table>
<thead>
<tr>
<th>Deposited Data</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNAseq data</td>
<td>This paper</td>
<td>GSE97452</td>
</tr>
</tbody>
</table>

Experimental Models: Cell Lines

<table>
<thead>
<tr>
<th>Experimental Models: Cell Lines</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human: NALM-6 cells, Parental, SF3B1<sup>K700K</sup>, SF3B1<sup>K700E</sup>, SF3B1<sup>K666N</sup></td>
<td>Horizon Discovery</td>
<td>Cat# N/A</td>
</tr>
<tr>
<td>Human: K562 cells, Parental, SF3B1<sup>K700E</sup>, SRSF2<sup>P95H</sup></td>
<td>Horizon Discovery</td>
<td>Cat# N/A</td>
</tr>
<tr>
<td>Human: HAP1 Parental cells</td>
<td>Horizon Discovery</td>
<td>Cat# C631</td>
</tr>
<tr>
<td>Human: HAP1 CASP8<sup>ΔDIM</sup> cells</td>
<td>Horizon Discovery</td>
<td>Cat# HZGH001511c007</td>
</tr>
<tr>
<td>Human: 293 T cells</td>
<td>Clontech</td>
<td>Cat# 632180</td>
</tr>
<tr>
<td>Human: 293 GPII cells</td>
<td>Clontech</td>
<td>Cat# 631530</td>
</tr>
</tbody>
</table>

Experimental Models: Organisms/Strains

<table>
<thead>
<tr>
<th>Experimental Models: Organisms/Strains</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mice: Mx1-Cre transgenic mice (C.Cg-Tg(Mx1-cre)1Cgn/J)</td>
<td>The Jackson Laboratory</td>
<td>Cat# JAX: 005673</td>
</tr>
<tr>
<td>Mice: Vav-Cre transgenic mice (B6.Cg-Tg(Vav1-icre)A2Kio/J)</td>
<td>The Jackson Laboratory</td>
<td>Cat# JAX: 008610</td>
</tr>
<tr>
<td>Mice: Srsf2<sup>P95H/+</sup> (B6J.B6NTac(SJL)-Srsf2tm1.1Oaw/J)</td>
<td>Kim et al. 2015</td>
<td></td>
</tr>
<tr>
<td>Mice: Srsf2<sup>P95H</sup> (B6;129S4-Srsf2<sup>tm1.1Oaw/J</sup>)</td>
<td>The Jackson Laboratory</td>
<td>Cat# JAX: 018019</td>
</tr>
<tr>
<td>Mice: Sf3b1<sup>K700E/+</sup></td>
<td>Obeng et al. 2016</td>
<td></td>
</tr>
</tbody>
</table>

Oligonucleotides

Please Refer to Table S8

<table>
<thead>
<tr>
<th>Oligonucleotides</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>pVSV.G</td>
<td>Addgene</td>
<td>Cat# 12259</td>
</tr>
<tr>
<td>psPAX2</td>
<td>Addgene</td>
<td>Cat# 12260</td>
</tr>
<tr>
<td>MSCV-IRE-GFP empty vector</td>
<td>Addgene</td>
<td>Cat# 52107</td>
</tr>
<tr>
<td>MSCV-Flag-CASP8<sup>FL</sup>-IRE-GFP</td>
<td>This paper</td>
<td></td>
</tr>
<tr>
<td>MSCV-Flag-CASP8<sup>TR</sup>-IRE-GFP</td>
<td>This paper</td>
<td></td>
</tr>
<tr>
<td>MSCV-Flag-mMap3k7-IRE-GFP</td>
<td>This paper</td>
<td></td>
</tr>
<tr>
<td>MSCV-Flag-hMAK3K7-IRE-GFP</td>
<td>This paper</td>
<td></td>
</tr>
<tr>
<td>T3G-dsRED-mirE-PGK-Neo-IRE-sRTA3 (LT3RENIR)</td>
<td>Fellmann et al., 2013</td>
<td></td>
</tr>
<tr>
<td>pMSCV-LTR-mirE-PGK-SV40-IRE-GFP (MLS-E)</td>
<td>Fellmann et al., 2013</td>
<td></td>
</tr>
<tr>
<td>pLKO.Empty Vector-Puro</td>
<td>Kim et al. 2015</td>
<td></td>
</tr>
<tr>
<td>pLKO.sh-UPF1-Puro</td>
<td>Kim et al. 2015</td>
<td></td>
</tr>
<tr>
<td>pNL3.2.NF-κB-RE Reporter Plasmid</td>
<td>Promega</td>
<td>Cat# N1111</td>
</tr>
</tbody>
</table>

Software and Algorithms

<table>
<thead>
<tr>
<th>Software and Algorithms</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowtie v1.0.0</td>
<td>Langmead et al. 2009</td>
</tr>
<tr>
<td>RSEM v1.2.4</td>
<td>Li and Dewey, 2011</td>
</tr>
<tr>
<td>TopHat v2.0.8b</td>
<td>Trapnell et al. 2009</td>
</tr>
<tr>
<td>TMM method</td>
<td>Robinson and Oshlack 2010</td>
</tr>
<tr>
<td>Wagenmakers’s Bayesian framework</td>
<td>Wagenmakers et al. 2010</td>
</tr>
<tr>
<td>MISO v2.0</td>
<td>Katz et al. 2010</td>
</tr>
</tbody>
</table>

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Omar Abdel-Wahab (abdelwao@mskcc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All animals were housed at Memorial Sloan Kettering Cancer Center (MSKCC). All animal procedures were completed in accordance with the Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committees at MSKCC. Generation and genotyping of the Srsf2\(^{P95H/+}\), Sf3b1\(^{K700E/+}\) and Srsf2\(^{P95H/+}\) as well as the Mx1-Cre and Vav-Cre transgenic mice have been previously described (Kim et al., 2015; Obeng et al., 2016). 8-week-old female CD45.1 C57BL/6J mice (The Jackson Laboratory) were used as recipients for bone marrow transplantation assays.

Primary Human MDS and CLL Samples
Studies were approved by the Institutional Review Boards of Memorial Sloan Kettering Cancer Center and conducted in accordance to the Declaration of Helsinki protocol. Patients provided samples after their informed consent and primary human de-identified MDS, AML, and CLL samples derived from whole peripheral blood or BM mononuclear cells were utilized.

Cell Lines
The NALM-6 isogenic cell lines (NALM-6 cells engineered to express the single mutations SF3B1\(^{K700E}\) or SF3B1\(^{K700K}\) from the endogenous locus) were cultured in RPMI/10% FCS and K562 isogenic cell lines (engineered to express SF3B1\(^{K700E}\) or SRSF2\(^{P95H}\) mutations from each respective endogenous locus) were cultured in IMDM/10% FCS. HAP1 and CASP8\(^{KO}\) HAP1 cells (obtained from Horizon Discovery) were cultured in IMDM/10% FCS.

METHOD DETAILS

Peripheral Blood Analysis
Blood was collected by submandibular bleeding using heparinized microhematocrit capillary tubes (Thermo Fisher Scientific). Automated peripheral blood counts were obtained using a ProCyte Dx Hematology Analyzer (IDEXX).

Bone Marrow Transplantation Assays
Primary mouse bone marrow (BM) cells were isolated from Mx1-Cre\(^{+}\) wild-type (WT), Mx1-Cre\(^{+}\) Srsf2\(^{P95H/+}\), Mx1-Cre\(^{+}\) Sf3b1\(^{K700E/+}\), Mx1-Cre\(^{+}\) Srsf2\(^{P95H/+}\) Sf3b1\(^{K700E/+}\), Mx1-Cre\(^{+}\) Srsf2\(^{P95H/+}\) or Mx1-Cre\(^{+}\) Srsf2\(^{P95H/+}\) mice (aged 8 weeks) into cold phosphate-buffered saline (PBS), without Ca\(^{2+}\) and Mg\(^{2+}\), and supplemented with 2% bovine serum albumin (BSA) to generate single cell suspensions. Red blood cells (RBCs) were removed using ammonium chloride-potassium bicarbonate (ACK) lysis buffer, resuspended in PBS/2% BSA, and filtered through a 40\(\mu\)m cell strainer. Total nucleated cells were quantified by the Vi-Cell XR cell counter (Beckman Coulter). For competitive transplantation experiments, a total of 1.8 \(\times\) 10\(^6\) BM cells from donor mice (Mx1-Cre\(^{+}\) WT, Mx1-Cre\(^{+}\) Srsf2\(^{P95H/+}\), Mx1-Cre\(^{+}\) Sf3b1\(^{K700E/+}\), Mx1-Cre\(^{+}\) Srsf2\(^{P95H/+}\), Sf3b1\(^{K700E/+}\), Mx1-Cre\(^{+}\) Srsf2\(^{P95H/+}\), Srsf2\(^{P95H/+}\), Mx1-Cre\(^{+}\) Srsf2\(^{P95H/+}\), Vav-Cre\(^{+}\) WT, Vav-Cre\(^{+}\) Srsf2\(^{P95H/+}\), and Vav-Cre\(^{+}\) Sf3b1\(^{K700E/+}\) CD45.2 mice were mixed with 0.2 \(\times\) 10\(^6\) wild-type CD45.1\(^{+}\) BM and transplanted via tail vein injection into 8-week old lethally irradiated (2 \(\times\) 450 cGy) CD45.1\(^{+}\) recipient mice. For noncompetitive transplantation experiments, 2 \(\times\) 10\(^6\) total BM cells from Mx1-Cre\(^{+}\) WT, Mx1-Cre\(^{+}\) Srsf2\(^{P95H/+}\), Mx1-Cre\(^{+}\) Sf3b1\(^{K700E/+}\), or Mx1-Cre\(^{+}\) Srsf2\(^{P95H/+}\) Sf3b1\(^{K700E/+}\) mice were injected into lethally irradiated (2 \(\times\) 450 cGy) CD45.1\(^{+}\) recipient mice. To induce the conditional alleles on Mx1-Cre background, mice were treated with 3 doses of polyinosinic:polycytidylic acid (pIpC; 12mg/kg/day; GE Healthcare) every other day via intra-peritoneal injection. Peripheral blood chimerism of mature blood cell lineages was assessed routinely by flow cytometry.
In Vivo LPS Stimulation Experiment

For *in vivo* LPS stimulation, *Escherichia coli* O55:B5 LPS (Sigma Aldrich) was used. For chronic LPS exposure, Vav-Cre+ WT, Vav-Cre+ Srsf2^{P95H/+} and Vav-Cre+ S3b^{K700E/+} received intra-peritoneal injection of LPS (1 mg/kg) every other day for 30 days. For acute LPS exposure, Mx1-Cre+ WT, Mx1-Cre+ Srsf2^{P95H/+} and Mx1-Cre+ S3b^{K700E/+} mice that have received pIpC for 8 weeks prior to activate the mutant alleles were given a single dose of LPS (15 mg/kg) via intra-peritoneal injection.

In Vitro Colony-Forming Assays

Single-cell suspension was prepared from E14.5 fetal livers, and 25,000 cells from each embryo were plated in duplicates in cytokine-supplemented methylcellulose medium (MethoCult™ GF M3434; StemCell Technologies), and colonies were enumerated 10-14 days later. To assess the effect of shRNA-mediated knockdown of target genes, 8-12 week-old C57BL/6 male mice were treated with 5-fluorouracil (150 mg/kg) via intra-peritoneal injection. Five days after injection, BM cells were harvested from the femora and tibiae and hip bones, and lineage-depletion was performed with biotin-conjugated antibodies against B220 (RA3-6B2), CD19 (D13), CD3 (17A2), CD4 (GK1.5), CD8a (53-6.7), CD11b (M1/70), Gr-1 (RB6-8C5), NK1.1 (PK136) and Ter119, labeled with anti-biotin MicroBeads (130-090-485; Miltenyi Biotec), and lineage-negative (Lin-) cells were magnetically separated using MACS columns according to the manufacturer’s instructions. Lin- BM cells were cultured overnight in IMDM/10% FCS supplemented with mIL-3 (10 ng/mL), mIL-6 (10 ng/mL) and mSCF (50 ng/mL). The next day, cells were subjected to spinfection (2,700 rpm for 1 hr) with retroviral supernatants containing shRNAs or cDNAs of interests at the presence of polybrene (5 µg/mL; Millipore). 24 hr after spinfection, cells that were successfully infected with retrovirus were marked with GFP, and were purified by flow cytometry. FACS-sorted cells were cultured in cytokine-supplemented methylcellulose medium (MethoCult™ GF M3434; StemCell Technologies), and colonies were enumerated 10-14 days later.

Flow Cytometry Analyses

Cells were incubated with antibodies in PBS/2% BSA (without Ca²⁺ and Mg²⁺) for 45 min on ice. For hematopoietic stem and progenitor cell analysis from adult mouse bone marrow, cells were stained with a lineage cocktail of monoclonal antibodies including B220 (RA3-6B2), CD19 (D13), CD3 (17A2), CD4 (GK1.5), CD8a (53-6.7), CD11b (M1/70), Gr-1 (RB6-8C5), NK1.1 (PK136) and Ter119, allowing for mature lineage exclusion from the analysis. For fetal liver analysis, CD11b (M1/70) was excluded from the lineage depletion cocktail. Cells were also stained with antibodies against c-Kit (2B8), Sca-1 (D7), FcγRI/II (93), CD34 (RAM34), CD45.1 (A20), CD45.2 (104), CD48 (HM48-1) and CD150 (9D1). DAPI was used to exclude dead cells. The composition of hematopoietic cell lineages in the bone marrow, spleen, thymus and peripheral blood was assessed using a combination of antibodies against B220, CD19, CD3, CD4, CD8a, CD11b, CD25 (PC61.5), CD44 (IM7), Gr-1, IgM (I/I41), CD43 (S11). All FACS sorting was performed on FACS Aria, and analysis was performed on an LSR Fortessa (BD Biosciences). Data analysis was performed using the FlowJo software.

Cell Cycle and Apoptosis Analyses

For apoptosis assays, freshly harvested bone marrow or fetal liver cells were first stained with antibodies against cell surface markers of interests, and then stained with FITC-conjugated Annexin-V in Annexin-V binding buffer (BD Pharmingen) according to manufacturer instructions. For assessment of cell cycle status in adult bone marrow HSPCs, BrdU (1 mg/kg) was administered via intra-peritoneal injection to adult mice 48 hr prior to sacrifice. For cell cycle analysis of E14.5 fetal HSPCs, BrdU (1 mg/kg) was administered to pregnant mice via intra-peritoneal injection 3 hr prior to harvesting fetal livers. Assessment of BrdU incorporation was performed following manufacturer instructions (BD Pharmingen) and data was acquired on a LSR Fortessa (BD Biosciences).

Histological Analysis

Tissues, embryos and pups were fixed in 4% paraformaldehyde, processed routinely in alcohol and xylene, embedded in paraffin, sectioned at 5-micron thickness, and stained with hematoxylin-eosin (H&E). Multiple sections were obtained through the head in the coronal plane, trunk in the transverse plane, and fore and hind limbs in the longitudinal plane. Immunohistochemistry (IHC) was performed on a Leica Bond RX automated stainer (Leica Biosystems, Buffalo Grove, IL). Following HIER at pH 6.0, the primary antibody against mouse CD45 (BD Pharmingen; 550539), myeloperoxidase (Dako; A0398), and cleaved caspase-3 (Cell Signaling; 9661) were applied at a concentration of 1:250, 1:1000, and 1:250 respectively, followed by application of a polymer detection system (DS9800, Novocastra Bond Polymer Refine Detection, Leica Biosystems) in which the chromogen was 3,3 diaminobenzidine tetrachloride (DAB) and counterstain was hematoxylin. For quantification of cleaved caspase-3 by image analysis, whole slide digital images were generated on a slide scanner (Pannoramic 250 Flash III, 3DHistech, 20x/0.8NA objective, Budapest, Hungary) at a resolution of 0.2431 µm per pixel. Staining quantification was performed with QuPath 0.1.2 software (Centre for Cancer Research & Cell Biology, Queen’s University Belfast, UK). The region of interest (ROI) was defined as the liver parenchyma. The number of DAB positive cells per mm² was measured with the positive cell detection algorithm. ROI selection and algorithm optimization and validation, and qualitative examination of all H&E and IHC slides were performed by a board-certified veterinary pathologist (S.M.).
RT-PCR (qRT-PCR) was performed in 10
SuperScript VILO cDNA synthesis kit (Life Technologies). The resulting cDNA was diluted 10–20 fold prior to use. Quantitative
Total RNA was isolated using RNeasy Mini kit (Qiagen). For cDNA synthesis, total RNA was reverse transcribed to cDNA with

CTCAGGTACC.

CTCAGGTACC.

TAAGCTTGGCCGCCGAGGCCAGATCTGTTTTTTCCCGTTTTGTCCCCGTTTTTTCCCGCTAGCGAG

Mutant-Rev

GGCGGCCAAGCTTA.

GGTACCTGAGCTCGCTAGCGGGAAAAACGGGGACAAAACGGGAAAAAACGGGGACAAAACGGGAAAAAACAGATCTGGCCTC

Mutant-Fwd

primers used to create the two mutant plasmids are:

#200522). There are five putative NF-

k

(RE), and performed mutagenesis in the NF-

k

activated by basal leakiness, we used another NF-

k

Assay System (Promega) according to the manufacturer instructions. To verify that the luciferase reporter assay was not aberrantly

Cycler (ThermoFisher Scientific). Relative gene expression levels were calculated using the comparative CT method.

Mix with AmpErase (ThermoFisher Scientific). All qRT-PCR analysis was performed on an Applied Biosystems QuantStudio 6 Flex

e5 Cancer Cell 34, 225–241.e1–e8, August 13, 2018

Immunoblot

For immunoblotting, the following antibodies were used: NF-κB/p65 (CST; 8242), phosphorylated NF-κB/p65-Ser536 (CST; 3033), IκB-α (CST; 9242), TAK1/MAP3K7 (CST; 5206), Caspase-8, N-terminal (Abcam; clone E6), Caspase-8, C-terminal (Enzo Life Science; clone 12F5), Flag (Sigma-Aldrich; F-1804), β-actin (Sigma-Aldrich; A-5441).

Immunofluorescence

Following stimulation with LPS (Sigma-Aldrich), TNFα (PeproTech), or TRAIL (Enzo Life Science), cells were fixed with 4% parafor-

maldehyde/PBS for 10 min at room temperature (RT), permeabilized with PBS-T (PBS/1% BSA/0.2% Triton-X) for 15 min, blocked

with PBS-T/5% goat serum (ThermoFisher PCN500) for 1 hr at RT, and incubated with primary antibodies (1:50 dilution for p-p65 and 1:100 for Flag) in PBS-T/5% goat serum overnight at 4°C. Cells were washed three times with PBS-T for 10 min at RT with gentle

agitation, and were incubated with goat anti-rabbit Alexa Fluor 594 (ThermoFisher Scientific; A-11012) or goat anti-mouse Alexa Fluor

488 (ThermoFisher Scientific; A-11001) secondary antibodies (1:500 dilution in PBS-T/5% normal goat serum) for 2 hr at RT in the

dark. Cells were then washed twice with PBS-T for 10 min at RT, and counter-stained with DAPI (0.5 μg/ml; Sigma-Aldrich; D-9542)

for 20 min at RT. Cells were coverslipped with ProLong Gold anti-fade (ThermoFisher Scientific; P36930). Images were captured using

either a confocal microscope (Leica TCS SP5, upright; Leica Microsystems), or were digitally scanned with a Pannoramic Confocal Scanner (3DHistech, Budapest Hungary) using a 20x/0.8NA objective. The projected images were exported into tif format using

CaseViewer software (3DHistech) and analyzed with ImageJ/FIJI. A macro was written that segments each nucleus using the

DAPI channel and measures the p-p65 intensity within the nucleus after appropriate threshold was set.

Caspase-8 and MAP3K7 Constructs

MSCV-Flag-CASP8FL-IREs-GFP, MSCV-Flag-CASP8TR-IREs-GFP, MSCV-Flag-MAP3K7-IREs-GFP (human), MSCV-Flag-

Map3k7-IREs-GFP (mouse) and MSCV-IREs-GFP empty vector constructs were used for overexpression studies. Retroviral supernatants were produced by transfecting 293 GPII cells with cDNA constructs and the packaging plasmid VSV.G using X-tremeGene9 (Roche), and were used to transduce HAP1, CASP8KO HAP1 and K562 parental and SF3B1K700E isogenic cells in the presence of polybrene (5 μg/ml; Millipore). Successfully transduced cells expressing GFP were purified by flow cytometry. Cells were stimulated with LPS (Sigma-Aldrich), TNFα (PeproTech) or TRAIL (Enzo Life Science).

mRNA Stability Assay

For mRNA half-life measurement using qRT-PCR, UPF1 shRNA and control lentivirus infected K562 SF3B1K700E cells were treated with 2.5 μg/ml Actinomycin D (Life Technologies) and harvested at 0, 2, 4, 6, and 8 hr (following protocols established previously (t Hoen et al., 2011)). MAP3K7 inclusion, MAP3K7 exclusion and 18s rRNA mRNA levels were measured by qRT-PCR.

Luciferase Reporter Assay

We generated K562, NALM-6 SF3B1 isogenic cells, HAP1 and CASP8KO HAP1 cells expressing the luciferase reporter for NF-κB response elements by following the manufacturer instructions (Cignal™ Reporter Assay, Iqagen). Cells were stimulated with LPS, TNFα or TRAIL as described above, and NF-κB activity was assessed by luciferase intensity using the Dual-Luciferase Reporter Assay System (Promega) according to the manufacturer instructions. To verify that the luciferase reporter assay was not aberrantly activated by basal leakiness, we used another NF-κB reporter plasmids (Promega; N1111) with known NF-κB response elements (RE), and performed mutagenesis in the NF-κB-RE using the QuiKChange II Site-Directed Mutagenesis Kit (Agilent Technologies; #200522). There are five putative NF-κB-RE binding sites in this reporter plasmid (5′-GGGTTTTCC-3′, where R is a purine, Y is a pyrimidine and N is any nucleotide). To mutagenize the binding sequence, the “TTTC” sequence was mutated to “AAAA”. The primers used to create the two mutant plasmids are:

Mutant-Fwd

GGTGACCTGAGCTGCTAGCGGAAAACCGGGACAAAAACGGGAAAAACGGGAAAAACGATCGGCTGCGCAGCTTA.

Mutant-Rev

TAAGCTTGGCCCGCCAGCGCAGATCGTTTTTTTCCGTTTTTGCTCCCGTTTTTTTTTTTTTTCGCTAGCGAGCTCAGTACC.

RT-PCR and Quantitative RT-PCR (qRT-PCR)

Total RNA was isolated using RNeasy Mini kit (Qiagen). For cDNA synthesis, total RNA was reverse transcribed to cDNA with SuperScript VILO cDNA synthesis kit (Life Technologies). The resulting cDNA was diluted 10–20 fold prior to use. Quantitative RT-PCR (qRT-PCR) was performed in 10 μL reactions with either SYBR Green PCR Master Mix or Taqman Gene Expression Master Mix with AmpErerase (ThermoFisher Scientific). All qRT-PCR analysis was performed on an Applied Biosystems QuantStudio 6 Flex

Cycler (ThermoFisher Scientific). Relative gene expression levels were calculated using the comparative CT method.

Primers used in RT-PCR reactions were:

MAP3K7 (human) – Fwd: GATGGAATATGCTGAGGGG, Rev: CACTCCCTGGAACACTGTA

Map3k7 (mouse) – Fwd: GATGGAATATGAGAGGGG, Rev: CACTCCCTGGAACACTGTA

CASP8 (human) – Fwd: GAACTTCCAGACACCAAGGC, Rev: CTTGTCCAAAGTCTTTGCTG
Primers used in qRT-PCR reactions were:
CASP8 exclusion isoform (aberrant):
Fwd: GATGAATTTTCAAATGACTTTGGAC
Rev: TGATCAGACCATATCCCGAG
CASP8 inclusion isoform (canonical):
Fwd: TGATGAATTTTCAAATGGGGAGGA
Rev: ATCCTGTTCCTTGAGAGTCC
MAP3K7 mRNA half-life experiment (human):
Fwd (common): GCGTTTATTGTAGAGCTTCGG
Rev (canonical): GCACCATGCAGCACATTATATAAAG
Rev (aberrant): CATGCAGCACTGCGAAAGAAAG

Taqman probes were used for gene expression analysis of TNF (Hs00174128_m1), IL-1β (Hs01555410_m1), GAPDH (Hs02786624_g1), Mpl (Mm00440310_m1), Pbx1 (Mm00439741_m1), and Hprt (Mm03024075_m1).

shRNA Experiments
NALM-6 parental cells carrying the NF-κB luciferase reporter were transduced with a doxycycline-inducible lentiviral vector, T3G-dsRED-mirE-IRE-rtTA3 (Fellmann et al., 2013), expressing shRNAs for MAP3K7 or a non-targeting renilla or firefly luciferase control. Transduced cells were selected with G418 (0.5 mg/mL; Sigma Aldrich). All mouse shRNAs used in clonogenic assays were cloned into the retroviral pMSCV-LTR-mirE-PGK-SV40-IRES-GFP (MLS-E) backbone (Fellmann et al., 2013). All shRNAs were designed using the SplashRNA algorithm (Pelossof et al., 2017). The short hairpin sequences are:

- sh-MAP3K7.748: TTAGGTAAATTTTTTATCAGTG
- sh-MAP3K7.1041: TTTTCAACAATTTTGATTCTAA
- sh-Luciferase control: TTAATCAGAGACTTCAGGCGGT
- sh-Ren.713 control: CAGGAATTATAATGCTTATCTA
- sh-Mpl.2121: TTATATAATAAACAGTGTCTAA
- sh-Mpl.2368: TCAAATAAATAGATGACAGCAA
- sh-Pbx1.824: TTCATCCAAACTCTGGTCTGTG
- sh-Pbx1.1393: TCATTCAGAATTTCTGTGGCTT
- sh-Itga2b.2279: TTCTCTTTCTTCTGAGTGCAAG
- sh-Itga2b.3380: TTAGGAAAAGGGATGCACCCGG
- sh-UPF1 (TRCN0000022254): CCGGGCATCTTATTCTGGGTAATAACTCGAGTTATTACCCAGAATAAGATGCTTTTT

mRNA Isolation, Sequencing, and Analysis
RNA was extracted from sorted mouse cell populations using Qiagen RNeasy columns. Poly(A)-selected, unstranded Illumina libraries were prepared with a modified TruSeq protocol. 0.5X AMPure XP beads were added to the sample library to select for fragments <400 bp, followed by 1X beads to select for fragments >100 bp. These fragments were then amplified with PCR (15 cycles) and separated by gel electrophoresis (2% agarose). 300 bp DNA fragments were isolated and sequenced on the Illumina HiSeq 2000 (~100M 101 bp reads per sample).

Genome Annotations
Genome annotations for the human (NCBI GRCh37/UCSC hg19) and mouse (NCBI GRCm38/UCSC mm10) genomes were created as previously described (Dvinge et al., 2014). Genome annotations from the Ensembl (Flicek et al., 2013) and UCSC (Meyer et al., 2013) databases were merged with splicing event annotations from MISO v2.0 (Katz et al., 2010). An additional annotation of all possible combinations of annotated 5’ and 3’ splice sites found in the merged annotation was created for read mapping. Constitutive introns were defined as those whose associated 5’ and 3’ splice sites were alternatively spliced in the UCSC annotation.

RNA-seq Read Mapping
RNA-seq reads were sequentially mapped to the transcriptome and genome as previously described (Dvinge et al., 2014). Reads were first mapped to the transcriptome using Bowtie v1.0.0 (Langmead et al., 2009) and RSEM v1.2.4 (Li and Dewey, 2011). The resulting read alignments were then filtered to require that reads spanning splice junctions overlapped the flanking exons by at least six nt. The remaining unaligned reads were then mapped to the genome and splice junctions using TopHat v2.0.8b (Trapnell et al., 2009), where reads were only allowed to align to the splice junctions present in the file of all possible combinations of annotated 5’ and 3’ splice sites described above. The resulting read alignments were then merged with the output of RSEM’s alignment to create a final file of aligned reads.
Differential Gene Expression Analysis

Gene expression analysis was performed using the gene expression estimates computed by RSEM in units of transcripts per million (TPM). Those estimates were then further normalized using the TMM method (Robinson and Oshlack, 2010), with a reference set of all protein-coding genes. Differentially expressed genes were defined as those with an associated Bayes factor \(\geq 100 \) (computed using Wagenmakers’s Bayesian framework (Wagenmakers et al., 2010)) and an associated fold-change \(\geq 1.5 \).

Differential Splicing Analysis

Isoform ratios for annotated splicing events (cassette exons, competing 5’ and 3’ splice sites, and annotated retained introns) were calculated using MISO v2.0 (Katz et al., 2010). Splicing of constitutively spliced introns and junctions was quantified using only junction-spanning reads, as previously described (Hubert et al., 2013). Differential splicing in the murine data was identified by comparing samples from different genotypes for a single replicate in a pairwise fashion. The analysis was restricted to splicing events with at least 20 informative reads, where an informative read is defined as a read that distinguishes between isoforms. Differentially spliced events were defined as those with an associated Bayes factor was \(\geq 5 \) (computed using Wagenmakers’s Bayesian framework (Wagenmakers et al., 2010)) and absolute change in isoform ratio of \(\geq 10\% \). Differential splicing in the human patient cohorts was identified using a group statistical test to identify differences between patient samples with or without defined splicing factor mutations. Differentially spliced events were defined as those with an associated \(p \) value \(\leq 0.05 \) (computed using the Wilcoxon rank-sum test) and an absolute change in median per-group isoform ratio of \(\geq 10\% \).

Gene Ontology (GO) Enrichment Analysis

GO enrichment analysis was performed using the GOSseq method (Young et al., 2010) to correct for sequencing depth biases. The background set of genes was defined as all protein-coding genes. False discovery rates were calculated using the Wallenius method and corrected using the Benjamini-Hochberg method. We restricted reporting of enriched terms to those with at least two ancestors and fewer than 500 associated genes.

Motif Enrichment Analysis and Sequence Logos

The relative enrichment of different ESEs was computed by comparing motif occurrence within and adjacent to cassette exons that were promoted versus repressed in cells or samples with versus without defined splicing factor mutations. These analyses were performed using all cassette exons that were differentially spliced in at least one mouse replicate for a given genotype comparison. 95% confidence intervals were calculated by bootstrapping with 500 resampling steps. Sequence logos centered on intron-proximal or intron-distal 3’ splice sites were created using all competing 3’ splice sites that were differentially spliced in at least one mouse replicate for a given genotype comparison. The analysis was restricted to events with canonical GT and AG dinucleotides at the 5’ and 3’ splice sites. These analyses relied upon the GenomicRanges package in Bioconductor (Huber et al., 2015).

Analysis of Expected and Observed Gene Expression Convergence

Expected gene expression programs for \(Mx1-Cre^{+} Srsf2^{P95H/+} Sf3b1^{K700E/+} \) samples were calculated by computing the mean of individual gene expression levels between \(Mx1-Cre^{+} Srsf2^{P95H/+} \) and \(Mx1-Cre^{+} Sf3b1^{K700E/+} \) samples for each replicate. This method of computing the expected gene expression program was motivated by the assumption that mutations in \(Srsf2 \) and \(Sf3b1 \) have independent consequences for individual gene expression. Gene dysregulation for the expected gene expression program was then calculated as described previously for the actual, observed gene expression values.

The numbers of dysregulated genes that were convergent between the expected gene expression program and the two \(Mx1-Cre^{+} Srsf2^{P95H/+} \) and \(Mx1-Cre^{+} Sf3b1^{K700E/+} \) single mutants was then determined for each replicate, again using a method identical to that for the actual, observed gene expression values (Figure S4A). A one-sided binomial proportion test was then used to test whether there were more dysregulated genes that were observed than expected (Figure S4B).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analyses

All data are presented as mean±standard deviation, unless otherwise stated. The replicate for each experiment was stated in the figure legend or indicated in the figure. Statistical significance was determined by analysis of variance (ANOVA) after testing for normal distribution and equal variance, followed by Tukey’s post-hoc test for multiple group comparisons. A \(p \) value of \(<0.05\) was considered statistically significant. For non-normally distributed data, a non-parametric test (Kruskal-Wallis) was used, followed by multiple group comparisons using false-discovery rate (FDR). For Kaplan Meier survival analysis, Mantel-Cox log-ranked test was used to determine statistical significance. For offspring frequency analysis, a Chi-Square test was performed to test the difference between observed and expected frequencies from different genotypes. No blinding or randomization was used. Unless otherwise noted, all immunoblot quantitation and immunofluorescence image quantitation were representative of at least three biological replicates from independent experiments. Data were plotted using GraphPad Prism 7 software.
DATA AND SOFTWARE AVAILABILITY

Publicly Available RNA-seq Data
FASTQ files from published RNA-seq studies of patients with MDS (Dolatshad et al., 2015) and CLL (Darman et al., 2015) were downloaded from GEO series GSE63569 and GSE72790.

Accession Codes
Gene Expression Omnibus: The accession number for all newly generated RNA-seq data reported in this paper are deposited into the GEO database (accession number GSE97452).
Targeting an RNA-Binding Protein Network in Acute Myeloid Leukemia

Graphical Abstract

Highlights

- CRISPR/Cas9 domain screen reveals RBP dependencies in AML
- RBM39 is required for AML maintenance through mis-splicing of HOXA9 target genes
- Proteomic studies identify an essential RBP splicing network in AML
- Pharmacologic RBM39 degradation leads to broad anti-leukemic effects

Authors

Eric Wang, Sydney X. Lu, Alessandro Pastore, ..., Adrian R. Krainer, Omar Abdel-Wahab, Iannis Aifantis

Correspondence

abdelwao@mskcc.org (O.A.-W.), iannis.aifantis@nyumc.org (I.A.)

In Brief

Using a CRISPR/Cas9 screen targeting RNA-binding domains of classical RNA-binding proteins (RBPs), Wang et al. uncover a network of interacting RBPs upregulated in acute myeloid leukemia (AML) and crucial for RNA splicing and AML survival, highlighting RBM39 as a central, targetable component of the RBP network.

Wang et al., 2019, Cancer Cell 35, 369–384

March 18, 2019 © 2019 Elsevier Inc.

https://doi.org/10.1016/j.ccell.2019.01.010
Targeting an RNA-Binding Protein Network in Acute Myeloid Leukemia

Eric Wang,1,6 Sydney X. Lu,2,5 Alessandro Pastore,2,6 Xufeng Chen,1 Jochen Imig,1 Stanley Chun-Wei Lee,2 Kathryn Hockemeyer,1 Yohana E. Ghebrechristos,1 Akishi Yoshimi,2 Daichi Inoue,2 Michelle Ki,2 Hana Cho,2 Lillian Bitner,3 Andreas Kloehtgen,1 Kuan-Ting Lin,3 Taisuke Uehara,4 Takashi Owa,4 Raoul Tibes,1 Adrian R. Krainer,3 Omar Abdel-Wahab,2,* and Iannis Aifantis1,6,*

1Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
2Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
3Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
4Tsukuba Research Laboratories, Eisai Company, Ltd, Tsukuba, Ibaraki 300-4352, Japan
5These authors contributed equally
6Lead Contact
*Correspondence: abdelwao@mskcc.org (O.A.-W.), iannis.aifantis@nyumc.org (I.A.)
https://doi.org/10.1016/j.ccell.2019.01.010

SUMMARY

RNA-binding proteins (RBPs) are essential modulators of transcription and translation frequently dysregulated in cancer. We systematically interrogated RBP dependencies in human cancers using a comprehensive CRISPR/Cas9 domain-focused screen targeting RNA-binding domains of 490 classical RBPs. This uncovered a network of physically interacting RBPs upregulated in acute myeloid leukemia (AML) and crucial for maintaining RNA splicing and AML survival. Genetic or pharmacologic targeting of one key member of this network, RBM39, repressed cassette exon inclusion and promoted intron retention within mRNAs encoding HOXA9 targets as well as in other RBPs preferentially required in AML. The effects of RBM39 loss on splicing further resulted in preferential lethality of spliceosomal mutant AML, providing a strategy for treatment of AML bearing RBP splicing mutations.

INTRODUCTION

Eukaryotic cells employ a wide range of mechanisms to regulate the fine-tuning of mRNA expression (Glisovic et al., 2008). These co- and post-transcriptional processes are orchestrated by interactions between RNA molecules and RNA-binding proteins (RBPs). RBPs are a diverse class of proteins containing unique RNA-binding domains (RBDs) (Cook et al., 2011). Classical RBPs encompass one or multiple conventional RBDs that include, but are not limited to, RNA-recognition motifs (RRMs), K-homology (KH) domains, and DEAD-box domains, which have been extensively determined structurally and biochemically (Lunde et al., 2007). Considering that RBPs are key regulators of gene expression, alterations of these proteins are also implicated in several human genetic diseases, including multiple cancers (Cooper et al., 2009; Kapeli et al., 2017; Lukong et al., 2008).

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with a dismal survival rate (<30% 5-year overall survival rate), highlighting the need for improved therapeutic interventions (Döhner et al., 2015). Advances in next-generation sequencing have exposed the genetic and epigenetic heterogeneity in AML pathogenesis (Papaemmanuil et al., 2016). Analyses of the genomic landscape in myeloid leukemia patients have discovered several somatic genetic lesions, including frequent mutations in RBPs that serve as splicing factors (Yoshida et al., 2011). Although the mechanisms by which

Significance

RNA-binding proteins (RBPs) regulate many aspects of transcription and translation and, as such, are thought to elicit cell- and tissue-type specific functions. Here, through systematic evaluation of RBPs across several cancer types, we identify RBPs specifically required in individual forms of cancer. In so doing we identify a network of functionally and physically interacting RBPs upregulated in AML over normal hematopoietic precursors and required for AML maintenance. Pharmacologic degradation of one such RBP, RBM39, led to aberrant splicing of multiple members of this RBP network as well as of transcriptional regulators required for AML survival. These data therefore identify RBPs with cancer-specific roles and illuminate a therapeutic approach targeting RBPs required for AML maintenance.
Figure 1. A CRISPR Domain-Targeted Screen Identifies RBP Dependencies in AML

(A) Volcano plot of differentially expressed classical RBPs (483 genes) in AML patient samples (n = 195) compared with normal human CD34+ hematopoietic stem and progenitor cells (n = 28). Blue vertical lines indicate log2 fold change (FC) = 0.5/0.5 cutoff (p > 0.05).

(B) Schematic depicting pooled RBP-focused CRISPR screen. RBD, RNA-binding domains; RRM, RNA-recognition motifs; zf, zinc finger; DEAD, DEAD-box ATPase; KH, KH homology; dsRBD, double-stranded RBDs; PWI, PWI motif; CSD, cold shock; La, La motif; PUA, PseudoUridine synthase and archaeosine transglycosylase; R3H, R-x3-H domain.

(C) Scatterplot comparison of CRISPR RBP-domain screen in AML and T-ALL. Plotted is the log2 fold change of sgRNA abundance (day 4/day 20) for each cell line. Each dot represents the average of all sgRNAs targeting an RBP. Red dots indicate RBPs that are significantly overexpressed in AML and preferentially required in AML.

(D) Scatterplot representation of CRISPR RBP-domain screen in AML and lung adenocarcinoma (LUAD). Red dots indicate RBPs that are significantly overexpressed in AML and preferentially required in AML.

(E) Fold change (day 4/day 20) in sgRNA abundance in pooled RBP-focused negative selection screen in MOLM-13 AML cells. Red dots indicate RBPs that are overexpressed in AML patients and exhibit greater than 3-fold depletion in CRISPR negative selection screen. Each dot represents the average of all sgRNAs targeting an RBP.

(legend continued on next page)
spliceosome mutations promote transformation are still being investigated, several studies have demonstrated that such mutations alter RNA-binding preferences to promote altered splicing as key in the molecular pathogenesis of these mutations (Dvinge et al., 2016). AML cells bearing splicing factor mutations exhibit increased sensitivity to pharmacologic modulation of splicing, thereby providing a therapeutic strategy for patients harboring spliceosome mutations (Lee and Abdel-Wahab, 2016; Lee et al., 2016; Obeng et al., 2016; Seiler et al., 2018). This has led to an ongoing phase I clinical trial to determine the safety and efficacy of a modulator of core splicing function H3B-8800 in patients with refractory leukemias (Seiler et al., 2018).

In the past few years, there has also been a deeper understanding of “non-oncogene addiction” of RBPs in cancers, which is the scenario in which RBPs are essential for cancer cell survival but are not targeted by genetic mutations. A few such RBP dependencies have already been identified by studying RBPs that are upregulated in diverse tumors (Anczukow et al., 2012; Fox et al., 2016; Wurth et al., 2016). Despite recent progress in uncovering essential RBPs in leukemia maintenance (Kharas et al., 2010; Palanichamy et al., 2016), the promise of targeting RBPs therapeutically is still limited by a lack of systematic evaluation for required RBPs in cancer. Here, our goal was to use functional screens to dissect the roles of classical RBPs in AML.

RESULTS

Aberrant RBP Expression in AML Patient Samples

Aberrant RBP expression has been commonly linked to promoting cancer progression through co- and post-transcriptional mechanisms. Analysis of datasets from The Cancer Genome Atlas (TCGA) uncovered numerous differentially expressed RBPs across various solid cancers, suggesting that RBPs are often dysregulated in tumors (Sebestyen et al., 2016). To define the extent to which RBP genes are altered in AML, we analyzed the mRNA expression of 484 classical RBPs in AML patients using publicly available data from the TCGA and Leucegene (Cancer Genome Atlas Research Network et al., 2013; Lavallee et al., 2015a). Comparison of RBP mRNA expression in AML patients with normal human CD34+ human hematopoietic stem/progenitor cells identified approximately 51% (247/484) of the genes to be differentially expressed (Figure 1A and Table S1). Among the dysregulated RBPs in AML, we identified 107 RBP genes that were significantly upregulated (p < 0.05), whereas 140 genes were found to be downregulated. These data support previous findings that aberrant expression of RBPs occurs ubiquitously in cancers (Sebestyen et al., 2016).

A CRISPR/Cas9 Domain-Targeted Screen Reveals RBP Dependencies in AML

The majority of cancer dependencies can be predicted based on gene expression and therefore serve as clinically relevant biomarkers or therapeutic targets (Tsherniak et al., 2017). Based on our TCGA analysis, we hypothesized that several of these dysregulated RBPs may act as genetic vulnerabilities in AML and represent potential therapeutic targets. To investigate potential RBP dependencies in AML, we used the type II CRISPR (clustered, regularly interspaced, short palindromic repeat) system, which has been widely adopted in high-throughput methods to identify essential genes for cancer survival (Shalem et al., 2014; Wang et al., 2017). Given the established biochemical function of RBPs in RNA biology, we used a previously described single-guide RNA (sgRNA) domain-focused approach that enhances CRISPR/Cas9-negative selection by targeting functional protein domains (Shi et al., 2015). As a proof of principle, we evaluated domain essentiality by designing sgRNAs against the coding exons of three classical RBPs required to sustain cell growth based on a previous genome-wide CRISPR/Cas9 knockout screen (Hart et al., 2015). Individual sgRNAs were subcloned into a lentivirus-based GFP-tagged (LRG) sgRNA vector and cell proliferation was measured using competition assays. Notably, CRISPR scanning of the selected RBPs led to robust negative selection of sgRNAs that specifically targeted the RBPs in comparison with non-domain exon sgRNAs, which demonstrated modest depletion (Figure S1A). Based on these findings, we built a custom 2,900 sgRNA (~6–8 per gene) library against 490 RBPs composed of well-defined RBPs based on previous studies (Gerstberger et al., 2014; Lunde et al., 2007) (Figure 1B). Pooled sgRNAs were subcloned into the LRG vector and next-generation sequencing was carried out to confirm optimal sgRNA representation (Figure S1B). Subsequently, we performed a loss-of-function pooled screen in a Cas9-expressing AML cell line, MOLM-13 (MLL-AF9, FLT3ITD), to identify RBPs required for AML proliferation. Genomic DNA was harvested from cells on day 4 and day 20 post transduction of sgRNA library, and individual sgRNA read counts were evaluated by deep sequencing. Changes in sgRNA abundance were assessed by measuring the average fold change (day 4/day 20) of all sgRNAs targeting a given gene. This negative selection screen identified 71 RBPs that strongly dropped out with >3-fold depletion. These also included positive controls of domain-targeting sgRNAs against known chromatin regulators (BRD4, DOT1L, and KMT2D) required for AML survival and the essential gene, RPA3, thereby confirming the quality of our negative selection screen (Figure S1C). In parallel, we performed counter Screens in three other cancer cell lines, a T cell acute lymphoblastic leukemia (T-ALL) line (CUTLL-1), a lung adenocarcinoma line (A549), and a melanoma line (501MEL), to delineate potential cancer lineage-specific RBPs. Pairwise comparison of domain CRISPR/Cas9 screens revealed several RBP dependencies unique to each cell line (Figures 1C, 1D, and S1D). We narrowed our focus on RBPs that were >2-fold depleted in our AML screen relative to T-ALL, melanoma, and lung adenocarcinoma (LUAD) to identify AML RBP candidates. Using this criterion, we uncovered 23 RBPs preferentially required in AML.

(F and G) Screen validation of RBP candidates using a competition-based proliferation assay in MOLM-13 (F) and THP-1 (G) AML cell lines. Plotted are GFP percentages measured during 20 days in culture and normalized to day 4. Negative control, sgRosa, and two independent sgRNAs targeting each RBP are shown in the graphs (mean ± SD, n = 3).

See also Figure S1 and Table S1.
Figure 2. RBM39 is Required to Sustain AML Growth In Vitro and In Vivo

(A) Violin plot of RBM39 normalized expression in AML patients (red) and normal human CD34+ hematopoietic stem and progenitor cells (blue). Horizontal line inside the box represent the mean with 25th–75th percentiles, showing all data points. Statistical analysis was performed using Wilcoxon rank-sum test.

(B) CRISPR mutagenesis of RBM39 exons in MOLM-13 AML cells using a competition-based assay. Green boxes represent annotated RNA-binding domains of RBM39.

(C) Bioluminescent images of mice transplanted with MLL-AF9 NrasG12D cells transduced with sgRosa (n = 4) or two independent sgRbm39 (n = 7/group). Representative images of three mice per sgRNA construct is shown. The same mice are depicted at each time point.

(D) Average luminescence (photons s⁻¹ cm⁻²) over time.

(E) Percentage of GFP+ in peripheral blood over time.

(F) Percent survival over time post-transplantation.

(legend continued on next page)
We next integrated the domain CRISPR screen with our transcriptome analysis in AML patients to identify RBPs that are both required for AML survival and dysregulated in expression in AML. From this analysis, we identified genes encoding 21 RBPs that were among the most highly depleted (>3-fold depletion) in our AML screen and significantly overexpressed in patient samples (p < 0.05) (Figure 1E). Based on our CRISPR counter-screen, we found 8 of the 21 RBP candidates (RBM39, DHX37, PABPN1, ZFP36L2, TRA2B, SRSF10, HNRNPH1, and SUPERT6H) to be selectively required and upregulated in AML (Figures 1C, 1D, and S1D). To further validate these findings, we evaluated four candidates (RBM39, DHX37, SUPERT6H, and HNRNPH1) by selecting the top sgRNAs for each gene and monitored their ability to inhibit AML cell growth using a competition-based assay. Our results confirmed that all sgRNAs demonstrated robust depletion in two independent AML cell lines, MOLM-13 and THP-1 (MLL-AF9, NRASmut) (Figures 1F and 1G). We also performed gene ontology (GO) analysis focusing on RBPs that were at least 5-fold depleted in our AML screen. Most of the genes significantly clustered into key RNA biological processes that included mRNA export, splicing, and mRNA processing (Figure S1E). Finally, as some of the top-ranking depleted RBPs were also considered core fitness genes (Hart et al., 2015) (Figure S1F), we eliminated them to increase the therapeutic significance of our findings.

RBM39 Is Required to Sustain Leukemia Survival In Vitro and In Vivo

One of the top-scoring candidates that met the above criteria was RBM39, also known as CAPER-α, a protein previously characterized as interacting with U2AF65 and SF3B1 (Imai et al., 1993; Loerch et al., 2014; Stepanyuk et al., 2016). Our expression studies were able to show that RBM39 was significantly more highly expressed in AML patient samples when compared with normal hematopoietic cells (Figure 2A). RBM39 median expression in AML was highest among all other cancer subtypes in the TCGA. We did not observe any significant differences in RBM39 expression across molecular or cytogenetics AML risk groups, suggesting a potential unique requirement for RBM39 in this type of leukemia (Figures S2A and S2B). To further evaluate the requirement across different cancers for RBM39, we performed competition assays using RNAi or CRISPR/Cas9 to target RBM39 in various cancer cell lines. Our one-by-one validation revealed that AML cell lines, across a variety of molecular subtypes, were the most susceptible to growth inhibition upon loss of RBM39 (Figures 1F, 1G, and S2C–S2E). Additionally, RBM39 suppression in AML led to marked induction of apoptosis, as determined by Annexin V staining (Figure S2F). In contrast, RBM39 was relatively more dispensable for growth in non-AML cell lines (Figures 1C, 1D, S1D, and S2G). Given the evident requirement of RBM39 in AML pathogenesis, we also employed CRISPR/Cas9 “domain scanning” to identify essential RBM39 protein domains for future drug discovery efforts. We designed sgRNAs with low off-target scores to perform a CRISPR scanning of RBM39 coding exons in two independent human AML cell lines. These include sgRNAs targeting the three RRM domains and the serine/arginine-rich (RS) region of RBM39, which are critical for pre-mRNA splicing (Prigge et al., 2009). Our results revealed strong depletion of sgRNAs that exclusively targeted RRM1 and RRM2 domains, whereas RRM3 and non-domain sgRNAs demonstrated lesser negative selection (Figures 2B and S2H). Overall, these findings demonstrate that RBM39 relies on specific RBDs and supports a critical RBM39 dependency in AML.

We next examined the in vivo significance of Rbm39 in AML progression by using a previously established MLL-AF9 NrasG12D mouse model (RN2) (Shi et al., 2015; Zuber et al., 2011a). We designed sgRNAs targeting the RRM domains of Rbm39 and confirmed knockout of Rbm39 protein in RN2 cells (Figure S2I); subsequently sgRNA-expressing RN2 cells were injected intravenously into sublethally irradiated recipient mice. Strikingly, we observed remarkable delay in leukemia progression in mice receiving Rbm39-deficient RN2 cells, as determined by bioluminescent imaging (Figures 2C and 2D). Moreover, fluorescence-activated cell sorting (FACS) analysis of peripheral blood in late-disease-onset mice detected a low percentage of circulating leukemia cells harboring Rbm39 sgRNAs (Figures 2E and S2J). These findings correlated with prolonged absolute survival (Figure 2F). Indel analysis by next-generation sequencing verified that sgRNA-positive cells mostly lacked CRISPR/Cas9 editing of Rbm39, suggesting that the mice succumbed to an outgrowth of unmodified alleles and substitution mutations (Figures S2K–S2L). Taken together, these observations support the notion that Rbm39 is required for AML growth in vivo.

Mapping of the RBM39 Proteome Identifies an Essential AML Splicing Network

To identify RBM39 interaction partners in AML cells, we performed immunoprecipitation followed by mass spectrometry (IP-MS) in the AML cell line MOLM-13 (Figures 3A and S3A). We identified a total of 54 RBM39-interacting proteins that were at least 10-fold more enriched over immunoglobulin G (IgG) (Figure 3B and Table S2). Proteomic network analysis identified numerous proteins associated with the spliceosome complex and ribosome biogenesis (Figure 3C). This was in agreement with GO analysis, which identified proteins highly enriched in fundamental processes involved in RNA metabolism

(D) Quantification of bioluminescent imaging in sgRosa-negative control and two independent sgRbm39 at the indicated time points. Box-and-whisker plot, minimum to maximum showing all points, 25th–75th percentiles, and median (horizontal line). Statistical analysis was performed using unpaired Student’s t test by GraphPad Prism (**p < 0.01, ***p < 0.001).

(E) Flow-cytometry analysis of GFP-positive sgRNA-expressing leukemia cells in peripheral blood of MLL-AF9 NrasG12D leukemia recipient mice at indicated time points. Box-and-whisker plot, minimum to maximum showing all points, 25th–75th percentiles, and median (horizontal line). Statistical analysis was performed using unpaired Student’s t test by GraphPad Prism (**p < 0.01; ns, not significant).

(F) Kaplan-Meier survival curves of recipient mice transduced with sgRosa-negative control and two independent Rbm39 sgRNAs are plotted. The p values were determined using a log-rank Mantel-Cox test (**p < 0.01, ***p < 0.001). See also Figure S2.
and ribosomal RNA processing (Figure S3B). In addition, we also found several RBM39-binding partners involved in chromatin and transcriptional regulation (e.g., histone chaperone, SUPT16, and the SWI/SNF-related subunit, SMARCA5), thereby suggesting possible roles for RBM39 in gene transcription. Moreover, our proteomics approach identified 31 RBM39-interacting RBPs that also appeared in our domain CRISPR screens. We found 15 of the 31 RBPs to exhibit strong essentiality (>2-fold depletion) in our genetic screen in AML (Figure 3D). Among these RBM39 interacting partners, the splicing factors SRSF10 and HNRNPH1 were identified in our CRISPR screen to be preferentially required in AML and also highly expressed in AML patient samples (Figure 3D). Altogether, these data place RBM39 in an extended RBP network that is essential for leukemia maintenance and suggest that modulation of AML splicing can be therapeutically exploited by targeting the RBM39 interactome.

RBM39 Loss Alters Splicing of mRNAs Essential for AML

Given the physical interaction of RBM39 with key core splicing factors and prior data identifying splicing changes upon RBM39 loss (Han et al., 2017; Uehara et al., 2017), we hypothesized that loss of RBM39 might disrupt splicing and expression of mRNAs preferentially required for leukemia growth. To this end, we initially evaluated changes in splicing by RNA
sequencing (RNA-seq) of human AML cells upon RBM39 sgRNA deletion. We measured “percentage spliced in” (ΔPSI) values across five main types of alternative splicing (AS) events (cassette exon [CE], alternative 5’ ss exon [ASE], alternative 3’ ss exon [A3E], mutually exclusive exons [MXE], and retained introns [RI]) in RBM39 knockout versus control MOLM-13 and THP-1 AML cells. This revealed that the predominant change in RNA splicing upon RBM39 depletion was a change in CE event splicing (68%–74% of differentially spliced events) across both AML cell lines with a false discovery rate (FDR) of <0.1 and ΔPSI > 10% (Figure 4A; Tables S3 and S4). Using the same parameters, we also found alterations in MXE (~6%–9%), ASE (5%–6%), A3E (8%–10%), and RI (5%–6%) events, albeit to a much lesser extent compared with CE (Figure 4A). Within CEs, we found approximately equal proportions of exon inclusion and exclusion with RBM39 genetic loss, which was also observed in other AS groups (Figure 4B).

The direct impact of RBM39-RNA interactions on pre-mRNA splicing has not been explored in cancer, nor is the precise role of RBM39 in splicing well defined. We thus performed anti-RBM39 enhanced UV crosslinking immunoprecipitation (eCLIP) using the MOLM-13 AML cell line to identify genome-wide RNA targets of RBM39 (Van Nostrand et al., 2016) (Figure 4A). eCLIP analysis identified 9,660 significant sequence clusters using an FDR of <0.05 and log(FC) > 1, which corresponded to 4,775 annotated transcripts (Figure 4C and Table S5). GO analysis of the top 200 enriched binding sites showed processes involved in RNA metabolism, cell cycle, and transcriptional regulation (Figure 4B). Approximately 79% of RBM39-binding sites mapped to exons (Figures 4D and S4C), with a preferential occupancy of proximal exonic sequences near 5’ and 3’ splice sites throughout the transcriptome (Figures 4E and S4D). In each instance, we identified that at least 50% of splicing events altered by RBM39 loss in MOLM-13 were also bound by RBM39, suggesting a direct role of RBM39 in splicing regulation of its mRNA targets (Figure 4E). Consistent with prior data suggesting an interaction of RBM39 with U2AF2 (Imai et al., 1993; Loerch et al., 2014; Stepanyuk et al., 2016), motif analysis showed highly pyrimidine-enriched sequences on mapped RBM39-binding sites (Figure 4F). In fact, ten of the top hexamer sequences enriched in RBM39-binding sites were pyrimidine rich, similar to results seen with U2AF2-RNA interactions previously reported (Shao et al., 2014). GO analysis of differentially spliced exons revealed that RBM39 loss was strongly enriched in processes related to RNA splicing, export, and metabolism as well as DNA replication and mitosis (Figure 4G). Moreover, gene set enrichment analysis (GSEA) of differentially spliced mRNAs with RBM39 sgRNA treatment identified prominent downregulation of HOX9 targets, known to be required for leukemogenesis of these MLL-rearranged AML cell lines (Figure 4H) (Faber et al., 2009). These prominently include aberrant splicing due to intron retention across several introns of BMI1, a gene known to be required for leukemogenesis that was also identified as a direct RBM39 mRNA-binding target by our eCLIP sequencing (eCLIP-seq). Additionally, GATA2, an essential hematopoietic factor involved in maintaining AML transcriptional homeostasis, was aberrantly spliced upon RBM39 loss (Katsura et al., 2016; Yang et al., 2017) (Figure 4I). The unannotated splicing changes observed in BMI1 and GATA2 upon RBM39 depletion are predicted to result in mRNAs that would be subjected to nonsense-mediated decay (NMD). These studies suggest that the dependency of RBM39 is, at least in part, due to defective splicing of genes involved in pathways required for AML cell survival.

Potent Anti-leukemic Effects of Pharmacologic RBM39 Degradation

An emerging field in drug discovery has been the characterization of small molecules that modulate E3 ligases to promote targeted protein degradation (Kronke et al., 2015; Lu et al., 2014). Interestingly, a class of compounds known as anti-cancer sulfonamides (including the drugs indisulam [also known as E7070], E7820, and chloroquinoxaline sulfonamide) was recently identified to selectively degrade RBM39 through an interaction with DCAF15, an adapter protein for the CUL4/Ddb1 E3 ubiquitin ligase (Han et al., 2017; Uehara et al., 2017). These compounds demonstrated an excellent safety profile in clinical trials and have previously been shown to exhibit some anti-tumor efficacy; however, overall response rates were low (Owa et al., 1999; Supuran, 2003), most likely because neither the mechanism of action nor potential biomarkers of response were known. To this end, we observed that DCAF15 was more highly expressed in AML cells upon RBM39 knockdown or with anti-RBM39 eCLIP-seq tracks. Yellow highlighted reads in GATA2 Sashimi plots highlight exon-skipping events with RBM39 sgRNA.
patient samples than normal hematopoietic progenitors (Figure 5A), and that increasing indisulam concentrations led to a dose-dependent reduction in RBM39 and HOXA9 target genes (BM1 and MYB) protein levels in human leukemia cells (Figures 5B, S5A, and S5B). Indisulam exposure led to severely impaired G2/M cell-cycle arrest and increased apoptosis after 48 h of treatment in AML cells in vitro (Figures 5C, 5D, and S5C). We additionally confirmed that the cellular effects of indisulam are dependent on DCAF15 expression by designing sgRNAs to knock out DCAF15 in AML-sensitive cells. Suppression of DCAF15 had little impact on AML cell viability at baseline. However, DCAF15 loss conferred robust resistance to treatment with indisulam, as demonstrated by the positive selection of AML cells expressing DCAF15 sgRNAs (Figure S5D). Moreover, we verified RBM39 as a direct target of indisulam by overexpressing a previously described RBM39 G268V mutation shown to confer resistance to indisulam (Figure S5E).

We next assessed the in vivo efficacy of indisulam in AML progression by transplanting AML cells expressing firefly luciferase into immune-deficient recipient mice. To simulate disease burden in patients we waited until onset of disease, and subsequently gave mice 13 consecutive daily treatments of either vehicle or 25 mg/kg indisulam, a previously described dose (Han et al., 2017). In concert with in vitro findings, administration of indisulam led to strong anti-leukemic effects in vivo using two AML cell line xenograft models, MOLM-13 and OCI-AML3. Bioluminescent quantification and imaging of animals treated with indisulam showed marked delay in AML burden (Figures 5G and S5G). Immunohistochemistry analysis of RBM39 expression in bone marrow and spleen further confirmed in vivo degradation of RBM39 in indisulam-treated mice (Figure S5H). Overall, indisulam administration significantly extended survival in both AML xenograft models (Figures 5H and S5I), with a median survival time of 26 days in MOLM-13 indisulam-treated animals versus 15 days in vehicle control cohorts (Figure 5H). In addition, indisulam treatment to five patient-derived xenografts (PDX) generated from three distinct patients demonstrated reduced leukemia burden with indisulam treatment in each case (Figures S5I–S5K).

In contrast to the robust anti-leukemic effects of RBM39 degradation in vitro and in vivo, 4 weeks of indisulam treatment in normal C57/B6 mice resulted in no hematologic toxicities while causing on-target degradation of RBM39 (Figures S6A–S6H). Similarly, we noticed no significant effects of pharmacologic degradation of RBM39 on human normal hematopoietic cells in vivo using immunocompromised mice transplanted with cord blood CD34+ cells (Figures S6I–S6Q). Overall, these findings demonstrate potent single-agent leukemic effects of indisulam in vivo with preferential effects of RBM39 loss on AML over normal human hematopoietic cells.

Preferential Sensitivity of Spliceosomal Mutant AML to RBM39 Degradation

Recent genomic studies of AML and related myeloid malignancies have identified recurrent change-of-function mutations in RNA splicing factors, highlighting a potential role for altered splicing in the pathogenesis of clonal hematopoietic malignancies. These mutations are conspicuously present in splicing factors that physically interact with RBM39 (including SF3B1 and U2AF1) and others (SRSF2) as a series of mutually exclusive, heterozygous point mutations at highly specific residues. Prior work has demonstrated that cancer cells bearing these mutations are genetically dependent on otherwise wild-type splicing catalysis for cell survival (Fei et al., 2016; Lee et al., 2016; Zhou et al., 2015). Similarly, cells bearing these mutations are preferentially sensitive to drugs that modulate core splicing catalysis by binding to SF3B1 (Lee and Abdel-Wahab, 2016; Obeng et al., 2016; Seiler et al., 2018; Shirai et al., 2017). Preferential
sensitivity of splicing mutant hematopoietic cells over splicing wild-type counterparts has previously been demonstrated for the drugs E7107, sudemycin, and H3B-8800. As mentioned earlier, this has led to an ongoing phase I trial to identify the safety and maximum tolerated dose of H3B-8800 in patients with refractory myeloid leukemia (Lee et al., 2016; Seiler et al., 2018; Shirai et al., 2017). Given our data that RBM39 loss resulted in greatly altered splicing of factors required for RNA splicing, export, and catabolism, we hypothesized that spliceosomal mutant AML might be preferentially sensitive to sulfonamide-induced RBM39 degradation. To this end, we further investigated the in vitro selectivity of sulfonamides across a panel of genetically diverse AML cell lines. Measurement of cell viability upon sulfonamide exposure revealed broad anti-leukemic effects with potent inhibitory activity across many AML subtypes, with most cell lines exhibiting submicromolar sensitivity (Figure 6A). We found that leukemia cells bearing mutations in leukemia-associated mutations in splicing factors were among the most sensitive cells to sulfonamides. In addition, a number of AML cell lines without spliceosomal gene mutations...
also exhibit sensitivity to the sulfonamides. Evaluation of relative DCAF15 mRNA expression revealed that the highest and lowest relative levels of DCAF15 mRNA correlated with the greatest and worst response to E7820 (Figure 6A). The preferential effects of sulfonamides on leukemia cells bearing spliceosomal gene mutations was further confirmed in a series of isogenic AML lines (K562 and TF-1) engineered to express hotspot mutations in SF3B1, SRSF2, and U2AF1 from their endogenous loci (Figures 6A and 6B) and B cell acute lymphoblastic leukemia (NALM-6 cells; Figure 6C) with exposure to E7820 and indisulam. In each instance, spliceosomal mutant cells were preferentially sensitive to growth inhibition to sulfonamides over spliceosomal wild-type cells. In isogenic cells, E7820 exposure led to similar dose-dependent degradation of RBM39 in leukemia cell lines (Figure 6D). Furthermore, short hairpin RNA (shRNA) knockdown of RBM39 in K562 cells knockin of SF3B1K700E resulted in greater competitive disadvantage when compared with K562 parental cells, supporting the concept that spliceosomal mutant cells are preferentially sensitive to RBM39 loss (Figure 6E).

RBM39 Degradation Targets an RBP Network Required for AML Survival

To understand the basis for the preferential effects of sulfonamides on spliceosomal mutant cells, we next evaluated RBM39 protein levels across a panel of isogenic AML cells with or without knockin of spliceosomal gene mutations. Degradation of RBM39 occurred in a comparable dose-dependent fashion across cell lines regardless of gene mutation status (Figure 6D), suggesting that a greater dependency on residual wild-type splicing function may be the basis for increased sensitivity of spliceosomal mutant cells to sulfonamides. Given that spliceosomal mutant cells are preferentially sensitive to alterations in splicing over their wild-type counterparts, we next performed RNA-seq of parental K562 and isogenic lines expressing SF3B1K700E and SRSF2P95H mutations treated with 1 mM E7820 (which represents the IC50 of parental K562 cells to E7820; Figure 7A). In parallel, we also carried out RNA-seq of the same cell lines treated with E7107, a small molecule that inhibits splicing through impeding binding of SF3B1 to the branchpoint (Cretu et al., 2018; Finic et al., 2018). Treatment with either E7820 or E7107 at the IC50 of each drug in parental K562 cells resulted in increased CE skipping and intron retention relative to DMSO treatment regardless of spliceosomal gene mutation status (Figures 7B and 7C). Interestingly, however, at equipotent non-toxic doses, E7820 resulted in greater changes in splicing within each cell type and across each category of splicing versus E7107 at this dose (Figures 7B, 7C, and 7A–7D). Moreover, a greater number of differentially splicing events were identified within each type of splicing in SF3B1K700E cells treated with E7820 versus SF3B1 wild-type counterparts. These data suggest that at least one reason for the preferential effects of sulfonamides on SF3B1-mutant over wild-type cells is a heightened splicing response of SF3B1-mutant cells to RBM39 degradation.

We also noticed that a number of differentially spliced events upon sulfonamide exposure involved mRNAs encoding RBPs identified in the CRISPR screen as upregulated and required for AML cell survival (Figure 1E). These included SUPT6H, HNRPPh1, and SRSF10 (Figure 7D), whereby E7820 exposure resulted in intron retention that was most pronounced in spliceosomal mutant cells. In addition and in agreement with our previous findings, RBM39 degradation also resulted in enhanced aberrant splicing of the HOXA9 target genes BMI1 and MYB and a number of RBPs in spliceosomal mutant AML over wild-type counterparts, including aberrant splicing events in U2AF2 and RBM3 (Figures 7D and 7A–7E). Although there was no mis-splicing of HOXA9 upon indisulam treatment (Figures S7F–S7H), we observed aberrant splicing and reduced expression of MYB, GATA2, and BMI1 (Figure 7I). These data are consistent with the prediction that mis-splicing of MYB, GATA2, and BMI1 upon RBM39 loss would result in NMD and indicate that RBM39 loss resulted in anti-leukemia effects by altering splicing and expression of HOXA9 target genes without affecting HOXA9 splicing or expression itself. Moreover, GSEA of differentially spliced events in response to E7820 also revealed downregulation of targets of MYC and PI3K-AKT-mTOR signaling as well as mRNAs involved in response to inflammation (Figures S7J–S7K), all known to be important in AML pathogenesis or progression. Overall, these data suggest that the presence of spliceosomal gene mutations as well as DCAF15 expression may serve as important predictors of response to RBM39 degradation in AML.

DISCUSSION

AML continues to have a dismal survival rate. This can largely be attributed to limited advances in treatment regimens that, for the last decades, have relied on the use of non-targeted cytotoxic drugs. However, recent Food and Drug Administration approvals of the first small-molecule inhibitors targeting recurrent genetic lesions in AML (midostaurin and enasidenib) provides hope for molecularly targeted therapies for this challenging illness. Despite the success in the development of these small-molecule inhibitors, the genetic heterogeneity of AML presents a current therapeutic barrier, whereby available selective inhibitors target only a genetically defined subset of patients. However, it appears that AML cells rely on specific pathways that have not been subjected to genomic alterations for their survival.

Figure 7. RBM39 Degradation Targets an RBP Network Required for AML Survival

(A) Schema of drug testing (6 h) across isogenic K562 cells with or without heterozygous knockin of the SF3B1K700E or SRSF2P95H mutation at the endogenous locus for RNA-seq. Each experiment was perform in duplicates.

(B) Violin plot of inclusion level differences of introns or CEs in SF3B1K700E/WT cells treated with DMSO versus SF3B1WT cells treated with DMSO (“DMSO” column) or SF3B1K700E/WT cells treated with E7820 or E7107 versus the same cells treated with DMSO. Horizontal line inside the box represents the mean and 25th–75th percentiles; points are “outliers” (outside the 99th percentile line). Statistical analysis was performed using a Wilcoxon rank-sum test.

(C) Bar plot of number of differential splicing events across parental, SF3B1K700E/WT, and SRSF2P95H/WT K562 cells. The numbers above each bar indicate the number of differentially spliced events.

(D) RNA-seq coverage plots of SUPT6H, HNRPPh1, SRSF10, and U2AF2 in the isogenic K562 cells from (A).

See also Figures S7.
has led to the discovery of broader targeted therapies that are currently in clinical trials for hematologic malignancies (Kotschy et al., 2016; Zuber et al., 2011b). From our focused CRISPR/Cas9 screen, we identified several dysregulated RBPs that are essential for AML maintenance. Many of these proteins have not been described previously as leukemia dependencies and warrant future research to elucidate their molecular mechanism in leukemia. Also, the direct comparison to identical CRISPR/Cas9 screens in T-ALL, melanoma, and LUAD gives us the ability to identify RBPs that play specific functions in AML cells. Here, we have focused our efforts on understanding the dependency of RBM39 in AML. Mechanistically, we showed that CRISPR-mediated deletion or pharmacologic degradation of RBM39 causes altered splicing of HOXA9 target genes, an essential transcriptional network required in AML. This in turn consequently leads to a preferential targeting of AML cells compared with other cancers. Given the mechanistic role of RBM39 in splicing shown here and the requirement of the DCAF15 adapter protein for anti-cancer sulfonamide activity, we identified that both the presence of spliceosomal gene mutations and levels of DCAF15 expression are important predictors of response to sulfonamides. Currently, a regimen that includes indisulam in combination with standard chemotherapy is being investigated in phase II trials in patients with refractory or relapsed myeloid malignancies (Assi et al., 2018). While indisulam is given to patients by intravenous infusion, E7820 is an orally bioavailable drug that has been tested as an improved, highly bioavailable drug that has been tested as an improved, highly on-target, second-generation anti-cancer sulfonamide in phase II clinical trials for solid tumors such as colorectal cancer (Miljkovic Kerklaan et al., 2016). The present study supports further clinical investigation of E7820 in patients with myeloid malignancies. These data also provide mechanistic support for expanded use of sulfonamides in clinical trials, as it identifies RBM39 as a key non-oncogenic addiction in AML, describes its mechanism of action, and offers valuable potential biomarkers and genetic predictors of response. The known safety of anti-cancer sulfonamides established through multiple phase I and phase II clinical trials to date provides an additional advantage over drugs targeting splicing by modulating SF3b function whose safety is not yet known. Indeed, we are currently planning a multi-center clinical trial using E7820, targeting AML patients that either carry spliceosomal mutations and/or express high levels of DCAF15, as biomarkers of response.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- CONTACT FOR REAGENT AND RESOURCE SHARING
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
 - Cell Lines and Cell Culture
 - Primary Human Samples
 - Animals
- METHOD DETAILS
 - sgRNA Library Design
 - CRISPR Screen
 - CRISPR/Cas9 Indel Analysis
- Apoptosis and Cell Cycle
- RNA-sequencing Library Preparation and Sequencing
- eCLIP Library Preparation
- Western Blotting
- Sulfonamide Drug Treatment IC50 Measurements
- qRT-PCR Measurement of Gene Expression
- RBM39 cDNA Overexpression
- Immunoprecipitation
- IP–MS
- Animal Experiments
- Immunohistochemistry

QUANTIFICATION AND STATISTICAL ANALYSIS

Splicing Analysis
eCLIP Data AnalysisGene Ontology AnalysisAML TCGA AnalysisStatistical AnalysisDATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and six tables and can be found with this article online at https://doi.org/10.1016/j.ccell.2019.01.010.

ACKNOWLEDGMENTS

We would like to thank all members of the O.A.-W. and I.A. labs for useful discussions and comments on the manuscript; A. Heguy and the NYU Genome Technology Center (supported in part by National Institutes of Health/National Cancer Institute grant P30CA016087-30) for expertise with sequencing experiments; the NYU Histology Core (P30CA16087-31) for assistance; C. Loomis and L. Chiriboga for immunohistochemistry experiments. We also thank Dr. Chris Vakoc for RN2-Cas9 cells and MOLM-13 Cas9 cells; We are grateful to Eclipse Bio for performing eCLIP experiments. E.W. is supported by the NIH T32 Genome Integrity grant. S.X.L. is supported by a Conquer Cancer Foundation and ASCO Young Investigator Award, an Aplastic Anemia & Myelodysplastic Syndrome International Foundation research award, as well as an AACR Lymphoma Research Fellowship. O.A.-W. was supported by the US National Institutes of Health (R01 HL128239, the Leukemia & Lymphoma Society, the Pershing Square Sohn Cancer Research Alliance, The Evans MDS Foundation, The Druckenmiller Center for Lung Cancer Research and MSK, and the Department of Defense Bone Marrow Failure Research Program (BM150092 and W81XWH-12-1-0041). O.A.-W. and A.R.K. are supported by grants from the Starr Cancer Consortium (R8-A8-075) and the Taub Foundation. I.A. was supported by the US National Institutes of Health (1R01 CA228135, 1R01 CA216421, 1R01CA194923, 1R01CA169784, 5R01CA173636), the Leukemia & Lymphoma Society (TRP#6499-17), the Taub Foundation, the Alex’s Lemonade Stand Foundation for Childhood Cancer, and the St. Baldrick’s Cancer Research Foundation. The work was also supported by the New York State Department of Health (#CO030132, C32587GG, C32563GG).

AUTHOR CONTRIBUTIONS

DECLARATION OF INTEREST

T.H. and T.O. are employees of Eisai Co. Ltd. O.A.-W. has served as a consultant for H3B Biomedicine, Foundation Medicine Inc., Merck, and Janssen. O.A.-W. has received prior research funding from H3B Biomedicine unrelated to the current manuscript. The other authors declare no competing interests.
regulates apoptosis and proliferation to promote mammary epithelial cell

Published: February 21, 2019

Revised: November 26, 2018

Received: July 2, 2018

REFERENCES

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBM39/Caper-alpha</td>
<td>Bethyl Laboratories</td>
<td>Cat#A300-291A; RRID: AB_263411</td>
</tr>
<tr>
<td>RBM39</td>
<td>Atlas Labs (Sigma Aldrich)</td>
<td>Cat#HPA001591-100UL; RRID: AB_1079749</td>
</tr>
<tr>
<td>Beta-actin antibody</td>
<td>Sigma Aldrich</td>
<td>Cat#A9441-5ML; RRID: AB_476744</td>
</tr>
<tr>
<td>Anti-MYB antibody</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#05175MI</td>
</tr>
<tr>
<td>BMI1 antibody</td>
<td>Abcam</td>
<td>Cat#ab38295; RRID: AB_725719</td>
</tr>
<tr>
<td>Mouse IgG</td>
<td>Santa Cruz</td>
<td>Cat#Sc-2025; RRID: AB_737182</td>
</tr>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MegaX DH10B Electrocomp Cells</td>
<td>Life Technologies</td>
<td>Cat#C640003</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indisulam</td>
<td>Sigma Aldrich</td>
<td>Cat#SML1225</td>
</tr>
<tr>
<td>E7820</td>
<td>Eisai</td>
<td>N/A</td>
</tr>
<tr>
<td>(2-Hydroxypropyl)-β-cyclodextrin powder</td>
<td>Sigma Aldrich</td>
<td>Cat#H107</td>
</tr>
<tr>
<td>D-Luciferin, Potassium Salt</td>
<td>Gold Bio Technology</td>
<td>Cat#LUCK-500</td>
</tr>
<tr>
<td>Puromycin</td>
<td>Sigma Aldrich</td>
<td>Cat#P7255-25MG</td>
</tr>
<tr>
<td>Polyethyleneimine (PEI)</td>
<td>Polysciences, Inc</td>
<td>Cat#23966</td>
</tr>
<tr>
<td>Polybrene transfection reagent</td>
<td>Fisher Scientific</td>
<td>Cat#TR1003G</td>
</tr>
<tr>
<td>Dimethyl sulfoxide (DMSO)</td>
<td>Fisher</td>
<td>Cat#D128-500</td>
</tr>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Click-iT Plus EdU Alex Fluor 647</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#C10340</td>
</tr>
<tr>
<td>APC Annexin V kit</td>
<td>BD bioscience</td>
<td>Cat#BD559763</td>
</tr>
<tr>
<td>NEXTflex Rapid Directional RNA-Seq Kit</td>
<td>Bioo Scientific</td>
<td>Cat#5138-07</td>
</tr>
<tr>
<td>QIAamp DNA Mini Kit</td>
<td>Qiagen</td>
<td>Cat#51304</td>
</tr>
<tr>
<td>NEBNext Poly(A) mRNA Magnetic Isolation</td>
<td>New England Biolabs</td>
<td>Cat#E7490S</td>
</tr>
<tr>
<td>NEXTflex RNA-seq Barcodes-12</td>
<td>Bioo Scientific</td>
<td>Cat#NOVA-512912</td>
</tr>
<tr>
<td>RNase Plus Mini Kit</td>
<td>Qiagen</td>
<td>Cat#74136</td>
</tr>
<tr>
<td>SilverQuest staining</td>
<td>Invitrogen</td>
<td>Cat#LC6070</td>
</tr>
<tr>
<td>2x Phusion Master Mix</td>
<td>Thermo Scientific</td>
<td>Cat#F-548</td>
</tr>
<tr>
<td>Deposited Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNA-seq Raw data</td>
<td>This paper</td>
<td>GSE114558</td>
</tr>
<tr>
<td>RBM39 eCLIP Raw data</td>
<td>This paper</td>
<td>GSE114558</td>
</tr>
<tr>
<td>RBM39 splicing analysis</td>
<td>This paper</td>
<td>GSE114558</td>
</tr>
<tr>
<td>Experimental Models: Cell Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human: MOLM-13</td>
<td>DSMZ</td>
<td>ACC 554</td>
</tr>
<tr>
<td>Human: K562</td>
<td>ATCC</td>
<td>CCL-243</td>
</tr>
<tr>
<td>Human: NALM6</td>
<td>ATCC</td>
<td>CRL-3273</td>
</tr>
<tr>
<td>Human: MV4-11</td>
<td>ATCC</td>
<td>CRL-9591</td>
</tr>
<tr>
<td>Human: HNT34</td>
<td>DSMZ</td>
<td>ACC 600</td>
</tr>
<tr>
<td>Human: NKM-1</td>
<td>JCRB</td>
<td>IFO50476</td>
</tr>
<tr>
<td>Human: TF-1</td>
<td>ATCC</td>
<td>CRL-2003</td>
</tr>
<tr>
<td>Human: TF-1 SF3B1K700E/WT knockin cells</td>
<td>Horizon Discovery</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(Continued on next page)
<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human: Monomac6</td>
<td>DSMZ</td>
<td>ACC 124</td>
</tr>
<tr>
<td>Human: HEL</td>
<td>DSMZ</td>
<td>ACC 11</td>
</tr>
<tr>
<td>Human: K052</td>
<td>JCRB</td>
<td>JCRB0123</td>
</tr>
<tr>
<td>Human: SET2</td>
<td>DSMZ</td>
<td>ACC 608</td>
</tr>
<tr>
<td>Human: UKE-1</td>
<td>Fiedler et al., 2000</td>
<td>N/A</td>
</tr>
<tr>
<td>Human: THP-1</td>
<td>ATCC</td>
<td>TIB-202</td>
</tr>
<tr>
<td>Human: OCI-AML3</td>
<td>DSMZ</td>
<td>ACC 582</td>
</tr>
<tr>
<td>Human: KG-1</td>
<td>ATCC</td>
<td>CCL-246</td>
</tr>
<tr>
<td>Human: HL-60</td>
<td>ATCC</td>
<td>CCL-240</td>
</tr>
<tr>
<td>Human: KASUMI-1</td>
<td>ATCC</td>
<td>CRL-2724</td>
</tr>
<tr>
<td>Human: NOMO-1</td>
<td>DSMZ</td>
<td>ACC 542</td>
</tr>
<tr>
<td>Human: A549</td>
<td>Thales Papagiannakopoulos Lab</td>
<td>N/A</td>
</tr>
<tr>
<td>Human: CUTLL1</td>
<td>Adolfo Ferrando Lab</td>
<td>N/A</td>
</tr>
<tr>
<td>Human: HEK293T</td>
<td>ATCC</td>
<td>CRL-1573</td>
</tr>
<tr>
<td>Mouse: MLL-AF9 NrasG12 (RN2) Cas9</td>
<td>Zuber et al., 2011a</td>
<td>N/A</td>
</tr>
<tr>
<td>Human: JURKAT</td>
<td>ATCC</td>
<td>TIB-152</td>
</tr>
<tr>
<td>Human: SK-MEL239</td>
<td>Eva Hernando Lab</td>
<td>N/A</td>
</tr>
<tr>
<td>Human: 501MEL</td>
<td>Eva Hernando Lab</td>
<td>N/A</td>
</tr>
<tr>
<td>Human: K562</td>
<td>ATCC</td>
<td>CCL-243</td>
</tr>
<tr>
<td>Human: K562 SF3B1K700E/WT, SF3B1K666N/WT, U2AF1S34F/WT, SRSF2P95H/WT knockin cells</td>
<td>PUBMED ID: 30107174</td>
<td>N/A</td>
</tr>
<tr>
<td>Human: NALM6 SF3B1K700E/WT, SF3B1K666N/WT, SF3B1P95H/WT knockin cells</td>
<td>PUBMED ID: 30107174</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Experimental Models: Organisms/Strains

| Mouse: C57BL/6 | N/A | N/A |
| NOD scid gamma | JAX | Cat#005557 |

Oligonucleotides

sgRNA sequence for RBP domain library, see Table S6	This paper	N/A
sgRNA sequences for RBP CRISPR scanning, see Table S6	This paper	N/A
In vivo mouse Rbm39 sgRNA, see Table S6	This paper	N/A
sgRNA for DCAF15, see Table S6	This paper	N/A
Human DCAF15 probe set, Hs00384913_m1	Life technologies	Cat#4331182
Human 18S rRNA probe set, Hs99999901_s1	Life technologies	Cat#4448485
Human GAPDH probe set, Hs02786624_g1	Life technologies	Cat#4448485

Recombinant DNA

MSCV-Cas9 puro	https://www.nature.com/articles/nbt.3235	Addgene: 65655
psPAX2	N/A	Addgene: 12260
pVSVG	N/A	Addgene: 12259
LRG sgRNA vector	https://www.nature.com/articles/nbt.3235	Addgene: 65656

Software and Algorithms

FlowJo V8.7	TreeStar (BD Biosciences)	https://www.flowjo.com/
Prism 7.0	GraphPad	https://www.graphpad.com
GSEA	Broad Institute	http://software.broadinstitute.org/gsea

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Iannis Aifantis (ioannis.aifantis@nyumc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Cell Culture
All human and mouse leukemia cells were cultured in recommended media, typically RPMI medium with 10% FBS and 1% penicillin/streptomycin. The NALM-6 isogenic cell lines (NALM-6 cells engineered to express the single mutations SF3B1^{K700E}, SF3B1^{K666N}, SF3B1^{H662Q} from the endogenous SF3B1 locus) were cultured in RPMI/10% FBS and 1% penicillin/streptomycin. K562 isogenic cell lines (engineered to express SF3B1^{K700E}, SF3B1^{K666N}, SRSF2^{P95H}, or U2AF1^{S34F} mutations from each respective endogenous locus) were cultured in IMDM/10% FBS. TF-1 isogenic cell lines (engineered to express SF3B1^{Wild-type} or SF3B1^{K700E} from the endogenous SF3B1 locus by Horizon Discovery Inc. as described previously) (Seiler et al., 2018) were cultured in RPMI/10% FBS and 1% penicillin/streptomycin with 5ng/mL human GM-CSF. Genotyping and variant allele frequency of spliceosomal gene mutations in SF3B1, SRSF2, U2AF1, and ZRSR2 in each cell line was performed using the MSKCC IMPACT assay (Cheng et al., 2015; Zehir et al., 2017). The adherent cell lines, A549, 501MEL and HEK293T cells were grown in DMEM medium with 10% FBS and 1% penicillin streptomycin. SK-MEL239 were cultured in RPMI, 10% FBS and 1% penicillin streptomycin. Cell lines transduced with retroviral Cas9 puromycin (Addgene plasmid no. 65655) were selected with puromycin (Sigma Aldrich) 48 hours after transduction. All transfections were performed in HEK293T cells using Polyethylenimine (PEI) reagent at 4:2:3 ratios of sgRNA construct: pVSVG: pPax2 in OPTI-MEM solution. Viral supernatant was collected 48 hrs and 72 hrs post-transfection. Spin infections were performed at room temperature at 1,800 RPM for 30 mins with polybrene reagent (1:2000 dilution) (Fisher Scientific).

Primary Human Samples
Studies were approved by the Institutional Review Boards of Memorial Sloan Kettering Cancer Center and conducted in accordance to the Declaration of Helsinki protocol. Primary human de-identified AML samples derived from whole peripheral blood or BM mononuclear cells were utilized. Mutational genotyping of each sample was performed by the MSKCC IMPACT assay as described previously (Cheng et al., 2015; Zehir et al., 2017). Cord blood was acquired from NY Blood Bank. Informed consent was obtained from all subjects to obtain the patient specimens used in the studies described. Specimens were obtained as part of the Memorial Sloan-Kettering Cancer Center Institutional Review Board approved clinical protocol #06-107 to which all subjects consented. O.A-W is a participating investigator on this protocol.

Animals
8-10 weeks-old C57BL/6 male mice were purchased from Jackson Laboratory. 10 week-old NOD scid gamma as well as NSG-SGM3 (NSGS) female mice were obtained from Jackson Laboratory. Mice were bred and maintained in individual ventilated cages and fed with autoclaved food and water at NYU School of Medicine Animal Facility as well as Memorial Sloan Kettering Cancer Center. All animal experiments were done in accordance with approved protocols from the Institutional Animal Care and Use Committees, according to national and institutional guidelines. Kaplan-Meier survival curves were compared using the Wilcoxon Rank-Sum test via GraphPad Prism. All animal experiments were performed in accordance with protocols approved by the New York University Institutional Animal Care and Use Committee (IACUC).
METHOD DETAILS

sgRNA Library Design
All sgRNAs in this study were designed using http://benchling.com/. Most sgRNAs had an off-target score of 70 or higher. RBP domain sgRNA library was designed to target 490 well-annotated RBDS based on NCBI database annotation. For each RBP gene, we designed on average 6-8 sgRNA for a total of ~2,900 sgRNAs. Library also consisted of positive sgRNAs targeting RPA3, DOT1L, BRD4, and KMT2D and the negative controls, sgRosa. Individual sgRNA oligos was synthesized by Twist Bioscience (https://twistbioscience.com/) on a 12K array and amplified using array primers (Table S1). Using a Gibson Assembly master mix (New England Biolabs), we cloned sgRNAs into a lentiviral sgRNA GFP-tagged vector (LRG) (Addgene plasmid no. 65656). Gibson reactions were transformed into DH10B electrocompetent cells (Invitrogen) at 2 kV, 200 Ω, and 25 μF. Bacterial colonies were quantified to obtain ~70X coverage. Subsequently, library was deep-sequenced using Miseq to confirm sgRNA representation. All sgRNA sequences used in this study are provided in Table S1.

CRISPR Screen
Cas9-expressing cell lines were transduced with sgRNA library virus at a low MOI (~0.3). On Day 4 post-transduction, GFP percentage was assessed to determine infection efficiency and sgRNA coverage (~300-500X). Remaining 300-500X cells were placed back into culture after each passage until 20 days’ post-transduction. Genomic DNA (gDNA) of cells containing 300-500X coverage were harvested on Day 4 and Day 20 using Qiagen DNA kit based on manufacturer’s protocol. For library construction, 200 ng of gDNA was amplified for 20 cycles using Phusion Master Mix. End repair products were generated using T4 DNA polymerase (NEB), DNA polymerase I (NEB) and T4 polynucleotide kinase (NEB). Subsequently, A overhangs were added following end repair using Klenow DNA Pol Exo- (NEB). DNA fragments were then ligated with Illumina-compatible barcodes (Bioo Scientific) using T4 Quick Ligase (NEB) and amplified using pre-capture primers (5 cycles). Barcoded libraries were then sequenced using Mi-Seq instrument (150 cycles). For pooled CRISPR screen analysis, individual time-points for all samples were normalized using the formula (sgRNA read count/Day 4/normalized read count Day 20).

CRISPR/Cas9 Indel Analysis
To quantify the spectrum of indel mutations in mouse Rbm39 sgRNAs, we transduced RN2 cells with sgRbm39s, followed by cell sorting of GFP+/sgRNA+ populations at day 3 and day 20 post-infection. Cells were then harvested for gDNA and PCR amplicon (ranging from 100-200 bps) were designed to flank the sgRNA recognition sequence. 200 ng of gDNA was amplified using 2x Phusion Master Mix, followed by end repair using T4 DNA polymerase (NEB), DNA polymerase I (NEB) and T4 polynucleotide kinase (NEB). Subsequently, A overhangs were added following end repair using Klenow DNA Pol Exo- (NEB). Adaptor barcodes (Bioo Scientific) were then ligated and products were purified by AMPure beads. Finally, precapture PCR cycles were performed and libraries were sequenced using Mi-Seq instrument (150 cycles). Indel analysis was performed using CRISPResso (http://crispresso.pinellolab.partners.org).

Apoptosis and Cell Cycle
To assess cell cycle, we used the 5-ethynyl-2’-deoxyuridine (EdU) incorporation using the Click-IT Plus EdU Alexa Fluor 647 kit and performed experiments as described in manufacturer’s protocol (Life Technologies). Apoptotic analysis was determined using APC Annexin V (BD Bioscience) and peroxidase-labeled Annexin V. Cells were stained with 50 μg/mL PI and 2 μg/mL 4′,6-Diamidino-2-phenylindole, Dihydrochloride (DAPI) for DNA content. Both EdU and Annexin V stained cells were analyzed by flow cytometry and FlowJo software.

RNA-Sequencing Library Preparation and Sequencing
CRISPR-mediated RBM39 knockout cells were harvested day 6 post-transduction and wash with 1x PBS. To extract total RNA, we used RNeasy Plus Mini Kit (Qiagen) and QIAshredder (Qiagen), which were performed according to manufacturer’s protocol. We isolated poly(A) mRNA using magnetic isolation method (NEB) using ~1 μg of total mRNA. To generate RNA-sequencing libraries, we used NEXTflex Rapid Directional (Bioo Scientific) protocol and NEXTflex RNA-seq barcodes (Bioo Scientific), which were carried out according to manufacturer’s protocol. RNA-seq barcoded libraries were then sequenced using Hi-Seq 4000 (150 cycles paired end).

For analysis of sulfonamide vs. E7107 treated K562 cells, RNA sequencing was performed in biological duplicate for each cell line and drug treatment. RNA was extracted using Qiagen RNeasy columns. poly(A)-selected, unstranded Illumina libraries were prepared with a modified TruSeq protocol. 0.5X AMPure XP beads were added to the sample library to select for fragments of 400 bp, followed by 1X beads to select for fragments 4100 bp. These fragments were then amplified with PCR (15 cycles) and separated by gel electrophoresis (2% agarose). 300 bp DNA fragments were isolated and 101 bp reads were sequenced on the Illumina HiSeq 2000 in paired end mode. For analysis of sulfonamide vs. E7107 treated K562 cells, 100 million paired end reads of 100 bp were performed for each sample.
eCLIP Library Preparation

eCLIP studies were performed in duplicates by Eclipse Bioinnovations Inc (San Diego, www.eclipsebio.com) according to the published single-end seCLIP protocol [[can cite pubmed ID 28766298]] with the following modifications. 10 million Molm13 cells were UV crosslinked at 400 mJoules/cm² with 254 nm radiation, and snap frozen. Cells were then lysed and treated with RNase I to fragment RNA as previously described. RBM39 antibody (A300-291A lot 001, Bethyl) was then pre-coupled to Protein G Dynabeads (Thermo Fisher), added to lysate, and incubated overnight at 4 deg C. Prior to immunoprecipitation, 2% of the sample was taken as the paired input sample, with the remainder magnetically separated and washed with lysis buffer only (as the standard high-salt eCLIP wash buffer gave poor immunoprecipitation yield). eCLIP was performed by excising the area from ~65 kDa to ~140 kDa. RNA adapter ligation, IP-western, reverse transcription, DNA adapter ligation, and PCR amplification were performed as previously described.

Western Blotting

Cell lines were treated with the indicated dose of drug for 24 hours. Lysate protein concentration was measured with the BCA reagent and 10 mcg was loaded per lane onto 4-12% bis-tris protein gels. After transfer, PVDF membranes were probed with anti-RBM39 rabbit polyclonal (Atlas Laboratories) at 1:200, anti-RBM39 (Bethyl Laboratories) at 1:1,000, BMI-1 (Abcam), and MYB (Thermo Fisher Scientific) and visualized by standard methods. Western blot densitometry was performed using ImageJ.

Sulfonamide Drug Treatment IC₅₀ Measurements

E7820 (molecular weight: 336.37 grams/mole) was provided by Eisai Pharmaceuticals. For in vitro experiments, E7820 was dissolved in DMSO to make a 100 micromolar stock solution, and this was then added to tissue culture media to the appropriate final concentration. Cell lines were plated in 96 well plates and exposed to the indicated sulfonamide compound at concentrations ranging from 1 micromolar to 1 nanomolar with a minimum of four technical replicates per concentration per cell line. Cell viability was measured with the CellTiter Glo reagent (Promega) as per manufacturer’s instructions. Absolute viability values were converted to percentage viability versus DMSO control treatment, and then non-linear fit of log(inhibitor) versus response (three parameters) was performed in GraphPad Prism v7.0 to obtain an IC₅₀ values. Experiments were performed at least in duplicate or triplicate.

qRT-PCR Measurement of Gene Expression

RNA was extracted from the indicated cell lines and reverse transcribed into cDNA using the Verso cDNA synthesis Kit (ThermoFisher Scientific). Measurement of DCAF15 (Hs00384913_m1) gene expression was performed using Taqman probes (Life Technologies) with GAPDH (Hs02786624_g1) or 18S ribosomal RNA (Hs99999901_s1) as the housekeeping gene. Assay IDs for other primers: HoxA9 Hs00365956_m1, BMI1 Hs00180411_m1, MYB Hs00920556_m1, GATA2 Hs00231119_m1. Relative expression levels across cell lines were calculated using the Delta-delta Ct method as per standard procedures.

RBM39 cDNA Overexpression

RBM39 was PCR amplified from MOLM-13 cDNA and cloned into MSCV Puro-IRES-GFP construct (Addgene #18751). RBM39 G268V retroviral overexpression plasmid was a gift from Eisai Pharmaceuticals, G268V CDNA was amplified and subsequently cloned into MSCV Puro-IRES-GFP plasmid. MOLM-13 cells were transduced with either empty vector, RBM39, or RBM39 G268V construct and high GFP+ expressing cells were sorted for in vitro indisulam experiments.

Immunoprecipitation

150 million MOLM-13 cells were harvested and washed twice with 1X PBS. Cell pellets were resuspended with Cytosolic Hypotonic Buffer (10 mM HEPES pH 7.9, 10 mM KCl, 1.5 mM MgCl₂, and 0.1 mM EDTA) containing protease inhibitor (PI) and phosphatase inhibitors. Subsequently, cell pellets were resuspended in Nuclear Extraction Buffer (20 mM HEPES pH 7.9, 400 mM NaCl, 1.5 mM MgCl₂, 0.4% Triton X-100, and 1 mM EDTA) containing protease inhibitors. Supernatant was extracted and diluted with Equilibrium Buffer (20 mM HEPES pH 7.9, 10% glycerol and 1 mM EDTA). Cell extracts were incubated with 2 ug of antibody overnight. Next day, cell extract containing antibodies were incubated with protein A magnetic beads and washed with BC-100 (20 mM HEPES pH 7.9, 100 mM NaCl, 10% glycerol, 0.4% Triton X-100, and 1 mM EDTA) and resuspended with loading buffer and boiled for 10 mins at 95°C. Supernatant was taken and western blot analysis was performed. Silver staining was performed with SilverQuest (Invitrogen) according to manufacturer’s instruction.

IP-MS

High resolution full MS spectra were acquired with a resolution of 70,000, an AGC target of 1e6, with a maximum ion time of 120 ms, and scan range of 400 to 1500 m/z. Following each full MS twenty data-dependent high resolution HCD MS/MS spectra were acquired. All MS/MS spectra were collected using the following instrument parameters: resolution of 17,500, AGC target of 5e4, maximum ion time of 120ms, one microscan, 2 m/z isolation window, fixed first mass of 150 m/z, and NCE of 27. MS/MS spectra were searched against a Uniprot human + mammalian IgG database using Sequest within Proteome Discoverer.

Animal Experiments

For in vivo Cas9 experiments, RN2 Cas9-expressing cells were transduced with sgRosa (negative control) (n=4) or sgRbm39 constructs (n=7/group). At day 2 post-transduction, sgRNA positive cells (GFP+) were sorted by FACS. One million leukemia-sgRNA
expressing cells were intravenously injected into each sub-lethal irradiated (5.5 Gy) B6/SJL recipient mice. For indisulam trials, a 50 mg/ml indisulam (Sigma Aldrich) stock was diluted in 20% (2-Hydroxypropyl)-β-cyclodextrin (Sigma Aldrich) to obtain a final concentration of 25mg/kg. NOD scid mice were intravenously injected with 1 million MOLM-13-expressing luciferase cells. Upon disease onset as measured by bioluminescent imaging, we intraperitoneally injected once daily with either 25 mg/kg indisulam or vehicle (1% DMSO) (n=6/group) for 13 consecutive days. All whole-body bioluminescent imaging was performed by intraperitoneal injection of Luciferin (Goldbio) at a 50 mg/kg concentration and imaging was performed after 5 mins using an IVIS imager. Bioluminescent signals (radiance) were quantified using Living Image software with standard regions of interests (ROI) rectangles. AML patient-derived xenografts were generated from patient peripheral blood and/or bone marrow mononuclear cells and subsequently transplanted intraperitoneally into NSG mice and eventually treated with indisulam (25mg/kg/daily) for 12-15 days. In vivo analysis of indisulam toxicity in C57/B6 mice was performed by intraperitoneally injection for 4 weeks (5 days on/2 days off). Additionally, human CD34+ cells were purified by MACS CD34+ from mononuclear cells from cord blood and intrafemorally injected into NSG and even-disulam toxicity in C57/B6 mice was performed by intraperitoneally injection for 4 weeks (5 days on/2 days off). Additionally, human

Immunohistochemistry

Immunohistochemistry was performed on bone marrow and spleen mice treated with vehicle (DMSO) or 25 mg/kg indisulam fixed, paraffin-embedded, 5-µm tissue sections collected on plus slides (Fisher Scientific, Cat # 22-042-924) and stored at room temperature. Polyclonal rabbit RBM39 antibody (Bethyl Laboratories Cat# A300-291A) was used for immunohistochemistry. Antigen retrieval conditions were determined followed by serial dilution of the primary antibody to determine optimum dilution/concentration. A nuclear staining pattern in was considered positive. Chromogenic immunohistochemistry was performed on a Ventana Medical Systems Discovery XT instrument using Ventana’s reagents and detection kits unless otherwise noted. In Brief, sections were deparaffinized online. Antigen retrieval was performed using Cell Conditioner 2 (Citrate) for 20 minutes. Endogenous peroxidase activity was blocked for all samples. CAPER was diluted 1:500 in Ventana antibody diluent (Ventana catalog number 760-219) and incubated for 3 hours at 37 °C. Primary antibody was detected using goat anti-rabbit horseradish peroxidase conjugated multimer incubated for 8 minutes. The complex was visualized with 3,3 diaminobenzidine and enhanced with copper sulfate. Slides were washed in distilled water, counterstained with hematoxylin, dehydrated and mounted with permanent media. Negative controls consisted of diluent only tested with the study sections.

QUANTIFICATION AND STATISTICAL ANALYSIS

Splicing Analysis

Significant changes in alternative splicing events and constitutive spliced exons and intron in response to CRISPR knockout or treatment depletion were quantified by MATS v4.0.2 (ref. MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data https://doi.org/10.1093/nar/gkr1291). Analyses were restricted to events with 10 or more reads. Events were defined as Significant if (i) the FDR corrected p value was smaller than 0.1 and (2) absolute Inclusion Level Difference was larger than 10%. Gene set enrichment was performed using the fgsea R package (1.4.0) using the KEGG, GO and MsigDB specific signatures according to the manual. Specific examples of splicing and mis-splicing events were visualized with IGV (Broad Institute).

eCLIP Data Analysis

The eCLIP data was processed similarly as described previously (Van Nostrand et al., 2016) and is outlined shortly in the following. First, adapter sequences were trimmed from both reads of all read-pairs using cutadapt version 1.14. Then, all remaining reads longer than 16 bases were aligned against the human reference genome sequence hg19/GRCh37 using STAR version 2.5.0c. Only uniquely mapped reads were kept. Read-pair duplicates by position were removed using picard tools version 2.6.0. To identify binding sites, we first ran a custom script to identify clusters of overlapping reads that had a read-depth of at least 10 reads. Then, we calculated significant enrichments for all such identified clusters by comparing IP-samples versus input-samples using edgeR. More specifically, we ran bamutilis count version 0.5.7 to counted stranded reads within all identified clusters for all samples. Using this output, we calculated differential coverage between IP-vs-input for each cluster with edgeR after normalizing for total sequencing depth per replicate (resulting in counts per million/CPM per cluster). Final binding sites were called by applying logFC > 2 and FDR < 0.05 thresholds between IP-vs-input.

Gene Ontology Analysis

Gene set enrichment was performed using the fgsea R package (1.4.0) using the KEGG, GO and MsigDB specific signatures according to the manual.

AML TCGA Analysis

Raw RNA-seq reads from 28 Bone marrow progenitor cell populations and 43 AML patient from the Leucegene data set were retrieved from the US National Center for Biotechnology Information (NCBI) sequence read archive (GEO accession numbers...
Gene expression quantification was performed using the TCGA pipeline method. Briefly, reads were aligned with STAR (2.5.3) using the GRCh38.p7 (May 2017) human assembly (https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-reference-files) and gene level expression were quantified using HTSeq (ref. HTSeq—a Python framework to work with high-throughput sequencing data https://doi.org/10.1093/bioinformatics/btu638). Gene expression of 151 AML patients from the TCGA project quantified by HTSeq was retrieved from GDC TCGA-LAML data portal (https://portal.gdc.cancer.gov/projects/TCGA-LAML). Additionally, 43 AML patient samples from Leucegene were obtained and included in our gene expression analysis (Lavallee et al., 2015a, 2015b, 2016; Pabst et al., 2016). Raw counts were transformed and normalized using the voom method (ref. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR doi:10.12688/f1000research.9005.2). We evaluated RBM39 expression across known risk groups of AML patients from the TCGA based on (i) the 2017 European LeukemiaNet (ELN) risk stratification system for AML (Dohner et al., 2017) and (ii) standard AML cytogenetic risk groups (Dohner et al., 2017).

Statistical Analysis
Kaplan-Meier survival curve p values were performed using Log rank Mantel-COX test. For statistical comparison, we performed unpaired Student’s t test. Statistical analyses were performed using Prism 7 software (GraphPad). Data with statistical significance are as indicated, *p< 0.05, **p< 0.01, ***p< 0.001.

DATA AND SOFTWARE AVAILABILITY
Gene Expression Omnibus: all newly generated RNA-seq data were deposited under accession number GSE114558.
Therapeutic Targeting of RNA Splicing Catalysis through Inhibition of Protein Arginine Methylation

Highlights

- Inhibition of SDMA or ADMA preferentially kills splicing factor (SF)-mutant cells
- Combined inhibition of PRMT5 and type I PRMTs has synergistic effects
- RNA-binding proteins are the most enriched cellular substrates of PRMTs
- Inhibition of RNA splicing underlies the cytotoxic effects of PRMT inhibition

Authors

Jia Yi Fong, Luca Pignata, Pierre-Alexis Goy, ..., Tiziana Bonaldi, Omar Abdel-Wahab, Ernesto Guccione

Correspondence

abdelwao@mskcc.org (O.A.-W.), ernesto.guccione@mssm.edu (E.G.)

In Brief

Fong et al. show that spliceosomal mutant leukemias are preferentially sensitive to inhibition of protein arginine methyltransferases (PRMTs), that RNA-binding proteins are enriched among substrates of PRMT5 and type I PRMTs, and that combined PRMT5 and type I PRMT inhibition synergistically kill these leukemia cells.
Therapeutic Targeting of RNA Splicing Catalysis through Inhibition of Protein Arginine Methylation

Jia Yi Fong,1,2 Luca Pignata,1,3 Pierre-Alexis Goy,1,3 Kimihito Cojin Kawabata,4 Stanley Chun-Wei Lee,5 Cheryl M. Koh,1,16 Daniele Musiani,6 Enrico Massignani,6 Andriana G. Kotini,8 Alex Penson,5 Cheng Mun Wun,1 Yudao Shen,7 Megan Schwarz,6 Diana HP. Low,1 Alexander Rialdi,8 Michelle Kl,7 Heike Wollmann,1 Slim Mzoughi,1 Florence Gay,1 Christine Thompson,9 Timothy Hart,9 Olena Barbash,9 Genna M. Luciani,10 Magdalena M. Szewczyk,10 Bas J. Wouters,11,12 Ruud Delwel,12 Eirini P. Papapetrou,8 Dalia Barsyte-Lovejoy,10 Cheryl H. Arrowsmith,10,13 Mark D. Minden,13 Jian Jin,7 Ari Melnick,4 Tiziana Bonaldi,6 Omar Abdel-Wahab,5,14, and Ernesto Guccione1,3,8,15,17,*

1Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
2NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
3Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
4Departments of Medicine and Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
5Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
6Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20146 Milan, Italy
7Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
8Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
9Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
10Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
11Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
12Department of Hematology, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands
13Ontario Cancer Institute/Princess Margaret Hospital, Toronto, ON M5G 2M9, Canada
14Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
15Department of Pharmacological Sciences and Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
16Present address: Silicon Therapeutics, Boston, MA, USA
17Lead Contact
*Correspondence: abdelwao@mskcc.org (O.A.-W.), ernesto.guccione@mssm.edu (E.G.)
https://doi.org/10.1016/j.ccell.2019.07.003

SUMMARY

Cancer-associated mutations in genes encoding RNA splicing factors (SFs) commonly occur in leukemias, as well as in a variety of solid tumors, and confer dependence on wild-type splicing. These observations have led to clinical efforts to directly inhibit the spliceosome in patients with refractory leukemias. Here, we identify that inhibiting symmetric or asymmetric dimethylation of arginine, mediated by PRMT5 and type I protein arginine methyltransferases (PRMTs), respectively, reduces splicing fidelity and results in preferential killing of SF-mutant leukemias over wild-type counterparts. These data identify genetic subsets of cancer most likely to respond to PRMT inhibition, synergistic effects of combined PRMT5 and type I PRMT inhibition, and a mechanistic basis for the therapeutic efficacy of PRMT inhibition in cancer.

Significance

Pharmacologic suppression of PRMT5 and type I PRMTs is being pursued as a cancer treatment approach, and numerous mechanisms have been proposed for the efficacy of PRMT inhibition. Here we identify that spliceosomal mutant leukemias are preferentially sensitive to PRMT inhibition and that RNA-binding proteins are the most enriched substrates of PRMT5 and/or type I PRMTs. Accordingly, combined PRMT5 and type I PRMT inhibition resulted in synergistic cell killing and pronounced effects on splicing compared with inhibiting either enzymatic activity alone. These data provide a rational combinatorial strategy and a strong basis for ongoing and future clinical trials based on the presence of genetic alterations impacting RNA splicing.
INTRODUCTION

Recent genomic analyses of cancers have identified numerous means by which splicing is altered in cancer (Dringe et al., 2016; Kahles et al., 2018; Zhang and Manley, 2013). These include change-of-function mutations in RNA splicing factors (SFs) (Harbour et al., 2013; Martin et al., 2013; Wang et al., 2011; Yoshida et al., 2011), mutations that alter splicing in cis (Supek et al., 2014), changes in the expression of splicing regulatory proteins (Anczukow et al., 2012; Kami et al., 2007), and alterations in transcriptional regulators that influence the process of splicing such as c-MYC (Hsu et al., 2015; Koh et al., 2015). In parallel, certain genetic subsets of cancer have been identified to be particularly sensitive to therapeutic inhibition of splicing. These include cells bearing hotspot change-of-function mutations in the RNA SFs SRSF2, SF3B1, and U2AF1 (from hereon collectively referred to as SF-mutants) (Lee et al., 2016; Obeng et al., 2016; Seiler et al., 2018; Shirai et al., 2017), as well as solid tumors and lymphomas driven by MYC (Hsu et al., 2015; Koh et al., 2015).

In an effort to identify additional means to therapeutically impact splicing, we sought to identify proteins with functional relationships to components of the core splicing machinery, which might be druggable with available therapies. We built a network based on protein-protein (protein complexes or enzyme/substrate relationships), protein-DNA (transcriptional), and protein-RNA (post-transcriptional) regulation (Shannon et al., 2003), to obtain a list of 312 genes encoding an extended network of proteins with known or putative interactions with the core spliceosome. We then manually selected all druggable targets and sourced available inhibitors for these proteins (Figure 1A; Table S1). Given that most of the genes in the network (71%) were transcriptional regulators, and that splicing is a co-transcriptional process influenced by transcription, we also included small molecules inhibiting epigenetic regulatory proteins (chemical probe collection from the SGC, Toronto) as additional controls.

We assembled a panel of 45 compounds based on the above criteria, and performed a drug screen using a range of five concentrations of each drug for 7 days in isogenic murine AML cells driven by the MLL-AF9 fusion in the absence or presence of mutant Srsf2 (MLL-AF9/Vav-cre Srsf2 WT or MLL-AF9/Vav-cre Srsf2 PASH cells). The generation of these cells has been described previously in studies identifying the preferential sensitivity of spliceosomal mutant cells to SF3B1 inhibitory compounds, and their growth rate is equivalent both in vitro and in vivo, regardless of Srsf2 genotype (Lee et al., 2016). Moreover, this is a genetically relevant model for human AML as SFs mutations occur in ~10% of adult MLL-rearranged AMLs (Lee et al., 2016). The hallmark global sequence-specific change in RNA splicing characteristic of mutant SRSF2 is evident in the context of both human MLL-rearranged AML and murine MLL/AF9 Srsf2 PASH cells (Lee et al., 2016).

We performed an in vitro drug screen and scored cell viability by MTS assay, after 7 days of drug treatment. Values were normalized to DMSO controls. Srsf2-mutant cells were more sensitive than WT counterpart cells to several inhibitors targeting components of the extended splicing network, including the SF3B complex inhibitor E7107 (Figure 1B; Table S1). Moreover, distinct inhibitors of PRMTs resulted in preferential killing of Srsf2-mutant AML cells over WT counterpart cells. These included GSK3203591 (abbreviated GSK591), a selective inhibitor of PRMT5 (Duncan et al., 2016), and MS023, a pan type I PRMTs inhibitor (Eram et al., 2016). Whereas type I PRMTs include PRMT1, 3, 4, and 6, selective inhibitors for PRMT3, PRMT4, or PRMT6 did not impair proliferation of Srsf2-mutant cells, suggesting that PRMT1 was the critical target of MS023 in this context.

PRMT5 and Type I PRMT Inhibition Preferentially Affect SF-Mutant AMLs

We next evaluated the effects of PRMT inhibitors on Srsf2 WT versus Srsf2 PASH cells over a range of drug concentrations to verify the results of the screen and to determine the half maximal inhibitory concentration for each compound (Figures 2A and 2B). As calculated by CellTiter Glo cell viability assay, Srsf2 PASH cells were approximately 10-fold more sensitive than their Srsf2 WT isogenic counterpart to GSK591 (120 versus 12 nM in Srsf2 WT versus Srsf2 PASH-mutant cells, respectively) and MS023 (1,100 versus 120 nM in Srsf2 WT versus Srsf2 PASH-mutant cells, respectively). Similar preferential induction of apoptosis was seen for Srsf2 PASH-mutant versus WT cells for both GSK591- and MS023-treated cells using a Caspase-Glo 3/7 (Figure S1A). The SF3B1 inhibitor E7107 was used in the same assays as a positive control, given previous data demonstrating enhanced sensitivity of Srsf2 PASH-mutant versus WT cells for both GSK591- and MS023-treated cells using a Caspase-Glo 3/7 (Figure S1A). Overall, these experiments identified that SF-mutant AML cells were >10 times more sensitive to either PRMT5 or type I PRMT inhibition than WT counterparts. The preferential killing of SF-mutant cells was mirrored by dose-dependent reductions of symmetric dimethylarginine and asymmetric...
dimethylarginine (SDMA and ADMA), respectively (Figures S1B and S1C), thereby also validating the on-target efficacy of these compounds. Moreover, we validated the increased sensitivity of SF-mutant AMLs to PRMT inhibitors across a panel of 22 genetically annotated human AML samples, half of which contained hotspot mutations in SF3B1, SRSF2, or U2AF1 (Figure 2D; Table S2). In this assay, primary AML mononuclear cells were exposed to GSK591 or DMSO for 6 days and evaluated by the number of viable cells at the end of culture. SF-mutant AML cells had a significantly increased sensitivity to GSK591 compared with SF-WT counterparts, an effect seen in SF3B1-, U2AF1-, and SRSF2-mutant samples. Similar effects were additionally observed in drug treatment of nine AML cell lines (four of which had mutations in SRSF2, U2AF1, or SF3B1; Figures S1D and S1E). This latter experiment was performed with the type I PRMT inhibitor GSK3368712, which has very similar potency and selectivity as MS023 (Fedoriew et al., 2019). Importantly these two latter experiments demonstrated that the increased sensitivity of SF-mutant AMLs to PRMT inhibitors extends beyond SRSF2-mutant leukemias to leukemias harboring mutations in SF3B1 and U2AF1 as well.

PRMT Inhibition Preferentially Affects SF-Mutant AMLs In Vivo

We next tested the sensitivity of leukemia cells to either PRMT5 or type I PRMT inhibitors based on SF-mutation status in vivo. We used the orally available PRMT5 inhibitor EPZ015666 dosed once a day at 200 mg/kg. Equal numbers of Srsf2WT or Srsf2P95H MLL-AF9-transformed leukemia cells were transplanted into secondary recipient mice and treatment was started at 8 days post-transplant to allow tumor engraftment (Figure S2A). EPZ015666 treatment increased the survival of mice transplanted with Srsf2P95H leukemias but not mice transplanted with Srsf2WT leukemias (Figure 3A). Western blot analysis demonstrated downregulation of global SDMA levels in spleen cells from mice treated with EPZ015666 (Figure 3B).

To evaluate the effect of type I PRMT inhibition on leukemias in vivo, we first identified the pharmacokinetic (PK) properties of MS023 (Figure S2B) and established an intraperitoneal dose of 80 mg/kg/day as optimal to downregulate ADMA in most organs (Figure S2C). Similar to that observed upon PRMT5 inhibition, treatment with MS023 delayed disease progression in mice transplanted with Srsf2P95H leukemias but not in the case of Srsf2WT AMLs (Figure 3C). Western blot analysis confirmed downregulation of global ADMA in bone marrow and spleen cells from mice treated with MS023. Concurrent upregulation of ADMA was observed, in accordance with previous reports of a scavenging effect by PRMT5 observed upon type I PRMTs inhibition (Dhar et al., 2013) (Figure 3D). Both EPZ015666 and MS023 were well tolerated in the mouse PK, and in vivo efficacy studies and no apparent toxicity was observed (Chan-Penere et al., 2015) (and data not shown).

Synergistic Effects of Combined PRMT5, Type I PRMT, and/or SF3B Inhibition

Given the upregulation of SDMA seen with type I PRMT inhibition and the preferential sensitivity of SF-mutant AMLs to inhibition of symmetric as well as asymmetric arginine dimethylation, we next sought to evaluate the effects of simultaneous inhibition of both axes of PRMT function. To evaluate the synergism between the two inhibitors, we calculated their combination index (CI), which quantitatively defines synergism (CI < 1), additive effect (CI = 1) and antagonism (CI > 1) among two drugs (Chou, 2010). Combined in vitro treatment of Srsf2WT or Srsf2P95H MLL-AF9 leukemia cells with MS023 and GSK591, MS023 and E7107, or GSK591 and E7107, revealed synergistic effects of each combination, regardless of Srsf2 mutational status (Figures 4A–4C). A similar synergistic effect was seen in vivo where combined MS023 (60 mg/kg) and EPZ015666 (150 mg/kg) treatment (given starting at day 8 after engraftment for 10 days) resulted in significantly increased survival in recipient mice engrafted with both Srsf2WT and Srsf2P95H MLL-AF9 leukemia cells (Figure 4D). Consistent with the extended survival seen with combined MS023 and EPZ015666 treatment, PRMT inhibition in vivo resulted in reductions in both ADMA and SDMA levels in splenic tissue (Figure S2D).

We then tested the combinatorial effects of PRMT5 and type I PRMT inhibition in additional models. First, we assessed the effect of combined treatment with GSK591 and MS023 in human AML cell lines (Figures 5A–5C). Importantly, the synergy between the two drugs extent beyond MLL-AF9-driven malignancies and was also observed in those with CALM-AF10 (U937) and BCR-ABL (K562) fusions.

Second, we used induced pluripotent stem cells (iPSCs) with a SRSF2P95H mutation knocked in by CRISPR and isogenic normal iPSCs (Chang et al., 2018). We differentiated the iPSCs into hematopoietic progenitor cells and treated them with PRMT inhibitors. The SRSF2-mutant cells were more sensitive than their isogenic WT control (Figure 5D).

Third, we tested three primary patient AML samples, two had SRSF2P95H and one had SF3B1Y765C, in vitro and found that GSK591/MS023 combination treatment resulted in a synergistic effect of reducing cell viability (Figure 5E; Table S3).

Fourth, we tested the efficacy of drug combination on a splicingosomal WT/MLL-rearranged and one SF3B1Y765C/EVI1-rearranged AML PDX models. Treatment with 60 mg/kg MS023 and 150 mg/kg EPZ015666 for 30 days resulted in reduction of human chimerism only in the SF-mutant AML (Figures S3A–S3C).

Figure 1. Spliceosomal Interacting Proteins Are Targetable Vulnerabilities in Spliceosomal Mutant Cells

(A) Molecular interaction network generated by Cytoscape 3.4.0 (Shannon et al., 2003) displaying proteins involved in RNA splicing, snRNP assembly, and/or mutated in acute myeloid leukemia (AML) and their nearest neighbors of a given physical entity (e.g., genes or proteins). Genes and proteins are illustrated by nodes, which are connected by lines to nodes based on physical or functional interaction. Nodes that are RNA SFs mutated in cancer are displayed in yellow while those that are druggable targets are indicated in red.

(B) Heatmap of the relative viability of MLL-AF9/Vav-cre Srsf2WT and MLL-AF9/Vav-cre Srsf2P95H to the indicated compounds following 7 days of growth scored by MTS assay and reported as a ratio to control DMSO-treated cells. Blue indicates a reduction, while red indicates an increase in cell viability, relative to DMSO-treated cells. The experiment was conducted in biological triplicate, and each individual run was repeated in technical triplicate.

See also Table S1.
Fifth, we extended our observation to isogenic K562 human leukemia cell lines with knockin mutations of the endogenous SRSF2 (SRSF2^{P95H}) or SF3B1 (SF3B1^{K700E}) (Figures 5F and 5G). In each case, we observed a strong synergistic effect between GSK591 and MS023, which was more pronounced in SF-mutant isogenic cells. The changes in symmetric and asymmetric dimethylation of arginine in K562 cells, from single and combinatorial use of MS023 and GSK591, were validated by western blot (Figure S4).

Finally, given the reported effects of E7107 (Lee et al., 2016), and the synergy observed upon combining MS023 and GSK591 (Figures 4B and 4C), we tested the effect of a triple-drug combination. As expected, triple combination treatment with MS023, GSK591, and E7107 had a strong effect on cell viability and preferentially killed the SRSF2-mutant line over the WT control (Figure 5H). Altogether these experiments confirm the strong synergy between the drugs impacting different aspects of splicing catalysis (type I PRMTs, PRMT5 and SF3B1 inhibitors), which was accentuated in the presence of an SF mutation.

Global Profiling of PRMT Substrates at Single-Site Resolution by Quantitative Liquid Chromatography-Tandem Mass Spectrometry

We next set out to explore the mechanistic basis for the link between inhibition of arginine methylation and preferential effects on SF-mutant leukemias. Although previous studies have suggested a link between PRMT5 and splicing regulation through arginine methylation of spliceosome-associated proteins (Braun et al., 2017; Koh et al., 2015), PRMT5 has numerous substrates (Guo et al., 2010; Hamard et al., 2018; Jansson et al., 2008; Musiani et al., 2019; Sims et al., 2011; Xu et al., 2001). Similarly, type I PRMTs have a large number of cellular substrates. As a consequence, it is currently unclear which PRMT substrate(s) are most relevant to the observed cellular effects of PRMT inhibition. To address this question, we undertook a proteomic approach to identify PRMT5 and PRMT type I substrates in leukemia. In particular, we employed a stable isotope labeling with amino acids in cell culture (SILAC)-mass spectrometry strategy (Musiani et al., 2019) to characterize the arginine methyl proteome in acute promyelocytic leukemia NB4 cells (Figure 6A; Table S4). In brief, in a forward SILAC experiment, cells cultured in the medium complemented with heavy-labeled arginine (“H”) and lysine were treated with GSK591 or MS023, while cells cultured with light amino acids (“L”) were treated with vehicle. Upon H and L cell harvesting and mixing in equal ratio, protein extraction and in-solution tryptic digestion, peptides bearing mono-methylated arginine (MMA), SDMA, or ADMA, respectively, were enriched using pan-methyl-specific antibodies, before high-resolution nano-liquid chromatography-tandem mass spectrometry analysis for modified peptide identification and quantification (Figure 6A). The SILAC experiments were repeated in biological replicates in SILAC reverse mode, and quantification (Figure S1 and Table S2).

Figure 2. Preferential Effects of PRMT5 or Type I PRMT Inhibition on SF-Mutant AML over WT Counterparts In Vitro

(A–C) Relative cell viability of MLL-AF9/Vav-cre Srsf2^{-cre} and MLL-AF9/Vav-cre Srsf2^{Prm5} treated with GSK951 (A), MS023 (B), or E7107 (C), and normalized to control (SGC2096 for PRMT5, MS094 for PRMT1, and DMSO for E7107). Samples were prepared in four to six replicates and averages were calculated, error bars represent SD. Student’s t test was used for statistical analysis. (D) Relative viable cell counts of AML patient samples to GSK591 based on spliceosomal gene mutation status. Primary AML cells with SF-mutations (n = 16) or WT for SRSF2, U2AF1, and SF3B1 (n = 16) were incubated with DMSO or GSK951 (0.5 mM) for 6 days. Cells were subjected to flow cytometry to detect 7-AAD-negative, YO-PRO1-negative, viable cells. Relative viable cell numbers were compared with Welch’s t test. Boxplot top line of whisker denotes the highest value in dataset and bottom line of whisker denotes the lowest value in dataset, box spans interquartile range and line in box indicates median.

*p = 0.01–0.05, **p = 0.001–0.01, ***p = 0.0001–0.001, ****p < 0.0001. See also Figure S1 and Table S2.
whereby the amino acid labels were swapped among the two functional states (see the STAR Methods). With this strategy, we were able to quantify a total of 391 and 735 R-methyl-peptides in the GSK591 and MS023 experiments, respectively. Specifically, in the GSK591 treatment experiment, we identified 299 peptides bearing MMA, 40 bearing DMA and 52 bearing both modifications; in the MS023 experiment, we found 433 MMA peptides, 200 DMA peptides, and 102 peptides bearing both modifications (Figure S5A). In total, these peptides carried 1,188 methylation events on arginine, and were distributed on 219 different proteins (Table S4).

Analysis of the methyl-peptide SILAC ratios, normalized by the respective protein ratios, revealed that both GSK591 and MS023 caused a prominent downregulation of methyl sites, with 49 (15%) and 135 (16%) methyl-peptides significantly decreased and only 4 (1%) and 97 (11%) upregulated, respectively (Figure S5B; Table S4). Log analysis of the significantly regulated methyl-peptides showed specific enrichment for glycine at position +1 and around the modified arginine in the MS023- and GSK591-treated cells, respectively (Figures 6B and 6C). Interestingly, PRMT5 and type I PRMTs appear to regulate the methylation of distinct and non-overlapping proteins (Figure 6D). We did not detect histones as differentially arginine methylated, rather, proteins whose methylation level changed upon PRMT inhibition were mainly RNA-binding proteins (RBPs) with established roles in RNA export, regulation of RNA stability, and

Figure 3. Preferential Effects of PRMT5 or Type I PRMT Inhibition on SF-Mutant AML over WT Counterparts In Vivo
(A and B) Kaplan-Meier survival curve of mice treated with vehicle or EPZ015666. Survival comparison by Mantel-Cox log-ranked test (WT vehicle n = 12; WT drug n = 13, Srsf2P95H vehicle n = 14, Srsf2P95H drug n = 8) (A). Western blot of PRMT5, symmetric dimethyl arginine (SDMA; both a short exposure and a long exposure are shown), and actin in spleens of mice from (A) at time of death. Organs collected were 24 h after the last dose. Each column represents tissue from a distinct individual representative animal (B).
(C and D) Kaplan-Meier survival curve of mice treated with vehicle or MS023. Survival comparison by Mantel-Cox log-ranked test (WT vehicle n = 9, WT drug n = 9, Srsf2P95H vehicle n = 9, Srsf2P95H drug n = 11). (C) Western blot of PRMT1, asymmetric dimethylarginine (ADMA) (both a low exposure and a high exposure are shown), SDMA, and actin in spleens of mice from (C) at time of death. Organs collected were 24 h after the last dose. Each column represents tissue from a distinct individual representative animal (D). *p = 0.01–0.05, **p = 0.001–0.01, ***p = 0.0001–0.001, ****p < 0.0001. See also Figure S2.
RNA splicing (Figures 6E–6H). In addition, MS023 elicited a specific effect on the methylation of proteins involved in translation (Figures 6E–6G). Most of the methyl-peptides responding to GSK91 (70%) and MS023 (89%) were orthogonally validated through the intersection with a high-quality methyl-proteome dataset annotated through the heavy methyl SILAC labeling strategy (Massignani et al., 2019; Ong et al., 2004) (Figure S5C; Table S4).

Importantly, to exclude a potential bias toward more abundant proteins in our methyl-proteome, we matched the methylated proteins identified with the immuno-enrichment approach to their respective protein abundances, calculated through the Intensity-Based Absolute Quantification (iBAQ) algorithm (Schwanhausser et al., 2011) in the whole proteome dataset, used as input for the methyl-peptide immunoprecipitation (Table S3). This experimental proteome included more than 7,300 proteins, encompassing a dynamic range of abundance of ~10^5, spanning from high (e.g., EEF1A1 and HNRNPs) to low (e.g., KMT2C and SVIL) expressed proteins (Figure S5D, red bars). A similar dynamic range was also observed for proteins directly regulated by PRMT5 or type I PRMT inhibitors (Figure S5E).

This result suggests that, despite being a minor proportion of the detectable cellular proteome, the PRMT-dependent methyl-proteome is not biased toward the high abundant subset; hence, the overrepresentation of RBPs is not a mere reflection of the abundance of these proteins, but linked to the cellular function of PRMTs.

Cell-Cycle Deregulation upon PRMT5 and Type I PRMT Inhibition

To further understand the mechanistic underpinning for the synergistic cytotoxic effects of PRMT inhibition on leukemia cells, regardless of the spliceosomal gene mutational status, we performed RNA sequencing analysis of isogenic SRSF2^{P9SH} K562 leukemia cell lines and its WT counterpart, treated with DMSO, GSK591, and MS023, or a combination of the two. We first analyzed the global changes in gene expression caused by drug treatment. Gene ontology (GO) analysis revealed that there is an upregulation of genes involved in mitosis and cell-cycle regulation for both K562 WT and K562 SRSF2^{P9SH} cells (Figures 7A and 7B; Table S5). This suggests that drug combination treatment causes cell-cycle deregulation and indeed we could validate this by cell-cycle analysis on cells collected at day 8 of drug treatment. Specifically, inhibition of PRMT5 and type I PRMTs leads to a decrease in proportion of cells in G1 and S phase (Figure 7C). Concomitantly, we observed an increase in an apoptotic sub-G1 population (Figures 7C and 7D). Overall, upon PRMT inhibition, SRSF2^{P9SH}-mutant cells exited the cell cycle and induced caspase-3/-7 activity more than their WT counterpart.

vehicle n = 15, Srsf2^{P9SH} drug n = 16), *p = 0.01–0.05, **p = 0.001–0.01, ***p = 0.0001–0.001, ****p < 0.0001. See also Figure S2.
PRMT5 and Type I PRMTs Inhibition Leads to Synergistic Changes in Alternative Splicing

We next conducted splicing analysis of the isogenic K562 leukemia cell lines treated with DMSO, GSK591, and MS023, or a combination of the two, to further decipher the possible cause for the overall synergistic killing of PRMT inhibitors, and preferential killing of SRSF2P95H over WT cells. As expected, SRSF2P95H-mutant and WT cells had a distinct transcriptome, typified by unique changes to RNA splicing, as described previously (Kim et al., 2015; Zhang et al., 2015a). First, the analysis revealed an increase in the number of aberrant splicing events upon treatment with both MS023 and GSK591, compared with control DMSO-treated cells. This was true both in WT and SRSF2P95H cells (Figures 8A and 8B). In addition, drug combination induced a unique pattern of splicing alteration that is not simply the sum of the cassette exon splicing events caused by the individual drugs (Figure S6A).

Second, we compared the overlap of the deregulated events among the two genotypes. Given that SRSF2P95H and WT cells have a different transcriptome to begin with, it was not surprising to note a divergence in the inclusion/exclusion of the affected cassette exons. More specifically, about one-third of the cassette exon events were commonly deregulated upon GSK591 + MS023 treatment, while the rest were uniquely spliced in either WT or SRSF2P95H cells (Figure S6B).

Third, we confirmed that SRSF2P95H-regulated exon inclusion/exclusion events have enrichment for C-rich exonic splicing enhancer sequences over G-rich sequences. Interestingly, treatment with PRMT inhibitors, led to a reduction in events...
containing a CCNG motif (preferentially regulated by SRSF2^{P95H}) and to an overall depletion of events regulated by WT SRSF2 (containing a GGNG and CGNG motif) (Figure 8C).

We then looked at the GO enrichment of cassette exon events changing upon combination drug treatment in K562 SRSF2^{P95H} cells and focused on the top perturbed GO categories, which included microtubule organization, DNA repair, and cell-cycle regulation (Table S5). We generated heatmaps for events in each GO category to depict the change in percentage spliced in (delta PSI) values upon single- and double-drug treatment in both cell lines, relative to K562 WT (Figures 8D and S6C). The rationale for this approach was to identify those splicing changes that could explain the preferential sensitivity of mutant cells to PRMT inhibition. Within these GO categories, we identified cassette exon splicing events that were changing more in K562 SRSF2^{P95H} than in their WT counterparts and validated some of these events (Figure S6D). As DNA repair genes are broadly deregulated by PRMT inhibition, we also performed western blot of phospho-H2Ax to check for evidence of DNA damage. Indeed, there is a significant upregulation of H2Ax, especially in the K562 SRSF2^{P95H}-mutant cells, they affect different genes and pathways, ultimately resulting in increased DNA damage and cell-cycle arrest.

See also Figure S5 and Table S3.

Figure 6. Global Profiling of PRMT Substrates at Single-Site Resolution by Quantitative Liquid Chromatography-Tandem Mass Spectrometry

(A) Workflow of the SILAC methyl-R-proteomic experiments carried out to identify mono- and dimethylarginine substrates regulated by GSK591 and MS023 in NB4 leukemia cells.

(B and C) Sequence motif analysis indicates the consensus sequences significantly enriched in the methyl-peptides regulated by MS023 (B) or GSK591 (C). For each pharmacological treatment two biological replicates, in forward and reverse SILAC mode, were carried out and different degrees of methylation were enriched and profiled. Only peptides reproducibly regulated in at least one pair of forward-reverse experiment are visualized in the heatmap.

(G and H) Functional analysis of changing methylated proteins highlight the biological process terms significantly enriched among proteins displaying methylation changes upon treatment with MS023 (G) and GSK591 (H). RNA-binding proteins are highlighted in red.

See also Figure S5 and Table S3.
Among the splicing events in the cell-cycle regulation GO category, we identified an aberrant splicing event within the mRNA encoding EZH2 (Kim et al., 2015; Lee et al., 2016). This specific event, which is driven by SRSF2 and not by SF3B1 mutations (Pellagatti et al., 2018) (Figures S6F and S6G), leads to the inclusion of a poison exon, to the formation of a premature stop codon, and subsequent nonsense-mediated decay (Kim et al., 2015; Lee et al., 2016). Interestingly, similar to that previously observed for E7107 (Lee et al., 2016), we observed decreased poison exon inclusion upon PRMT inhibition (Figures 8E, S6G, and S7A), leading to increased EZH2 protein abundance (Figure 8F). To functionally test the meaning of this event and assess whether toxicity induced by MS023 and GSK591 combination treatment (Figures 7A and B), we designed an antisense oligonucleotide (AON) to specifically mimic the exon-skipping event induced by PRMT inhibitors. The designed AON was able to reduce the inclusion level of the EZH2 poison exon (Figure S7B), increase EZH2 protein levels (Figure S7C), and reduce cell viability in K562, which was more evident in SRSF2P95H-mutant cells than in WT controls (Figure S7D).

To complement the above AON approach, we also used CRISPR/Cas9 to delete the endogenous EZH2 in K562 cells. We then treated EZH2 null cells or the parental control line with MS023, GSK591, or a combination of the two. EZH2 null cells were significantly more resistant to PRMT inhibition, suggesting that the effect of these small molecules is at least in part mediated by restoration of EZH2 levels in AML cells (Figure S7E).

DISCUSSION

Inhibition of PRMT5 or type I PRMTs has been linked to several downstream effects and proven to impact multiple pathways. Nonetheless, with the exception of the well-described MTAP deletion, which renders cells more susceptible to further depletion of PRMT5 (Kryukov et al., 2016; Marjon et al., 2016; Mavrakis et al., 2016), there has been no clear indication of additional potential vulnerabilities of cancer cells to PRMT deletion/inhibition.

Overall, our data identify a strong impact of inhibiting protein arginine methylation on RNA splicing. PRMT5 or type I PRMTs inhibition resulted in preferential killing of SF-mutant AML, and overall synergy across genetic backgrounds. Mechanistically, this can be explained through inhibition of arginine post-translational modification (SDMA and ADMA) of a large compendium of RBPs involved in splicing regulation.
Currently, there is no standardized way to predict the effects of arginine methylation on protein function. Even less is known on the interplay between ADMA and SDMA occurring at distinct or overlapping sites. However, despite the current limitations on systematic predictions, there are several examples in the literature describing the effect of individual arginine methylation events on the function of PRMT5 and/or type I PRMTs substrates.

As described here, type I PRMTs and PRMT5 methylate different arginine residues on a common set of RBPs involved in RNA post-transcriptional regulation. Both ADMA and SDMA maintain the positive charge of the arginine side chain, but...
reduce its hydrogen bonding capabilities. Methylation concur-
rently increases the hydrophobicity to the arginine side chain,
favoring its interaction with aromatic cages. As a consequence,
arginine methylation has been shown to alter protein-protein in-
teractions (Erce et al., 2013) and protein-RNA interactions (Den-
man, 2002; Dolzhanskaya et al., 2006). A well-documented
example is the arginine methylation of three of the seven Sm pro-
teins (SNRPB/B, SNRPD1, and SNRPD3), leading to their bind-
ing to the Tudor domain on SMN1 (Bezzi et al., 2013; Friesen
et al., 2001; Meister et al., 2001; Meister and Fischer, 2002).
This is a critical event in the assembly of spliceosomal snRNPs,
and, consistently with previous reports, we detected significant
changes in SNRPB methylation in our dataset at arginines 112
and 147, upon PRMT inhibition.

In addition, we identified several arginine methylated residues
on SFPQ and PSPC1. Interesting, both proteins are core compo-
nents of the membrane-less nuclear structures called para-
speckles, which play a central role in cancer and stress response
(Adriaens et al., 2016). In particular, SFPQR693me1 and
PSPC1R507me1 are reduced in the presence of GSK591, while
PSPC1R4me1/me2a are reduced in the presence of MS023.
 Whereas, in the case of SFPQ, arginine methylation is associated
with increased RNA binding (Snijders et al., 2015), there is no
report describing the role of PSPC1 methylation, a point that
warrants future investigation.

Recently, ADMA methylation by PRMT1 has been shown to
weaken the cation ð interactions between RGG/RG-rich motifs
and low complexity regions of several disease-associated
prion-like intrinsically disordered proteins (Hofweber et al.,
2018; Qamar et al., 2018; Tsai et al., 2016). We detected changes
in methylation of several members of this family of proteins (e.g.,
FUS, G3BP1, hnRNPA1, and hnRNPA1).
 We hence predict that PRMT5 and PRMT type I inhibitors may have an impact on
reversible liquid-liquid phase separation and on the assembly/
disassembly of membrane-less organelles, impacting RNA
post-transcriptional regulation.

Finally, there are numerous examples of how ADMA/SDMA
may regulate localization of proteins including cellular localiza-
tion of RBPs such as Sam68, Aven, FUS, hnRNPA1, and
hnRNPA2 (Cote et al., 2003; Nichols et al., 2000; Thandapani
et al., 2015; Tradewell et al., 2012; Wall and Lewis, 2017).

It is well documented that SF genes mutated in cancers are
mutually exclusive (Yoshida et al., 2011) and that they have a
synthetic lethal relationship when co-mutated in the same cell
(Lee et al., 2018). Here we observed a general perturbation of
gene expression and, importantly, of alternative splicing
(increased number of skipped/included exons and retained in-
trons) upon PRMT inhibition. Given that SF-mutant cells are pre-
ferentially sensitive to genetic or pharmacologic perturbations in
splicing, compared with spliceosomal WT counterparts (Lee
et al., 2016; Obeng et al., 2016; Seiler et al., 2018; Shirai et al.,
2017; Wang et al., 2019), an increase in overall splicing perturba-
tion is predicted to lead to their preferential killing. This has been
previously observed upon treatment with SF3B1 inhibitors (Lee
et al., 2016; Obeng et al., 2016; Seiler et al., 2018; Shirai et al.,
2017; Wang et al., 2019) and RBM39 degrading compounds
(Wang et al., 2019). Our results reveal how inhibition of both
type I and type II PRMTs can lead to a similar preferential killing
of SF-mutant AML and myelodysplastic syndrome cells.

At the same time, it is possible that PRMT inhibition causes the
aberrant splicing of oncogenic isoforms required for the survival
of SF-mutant cells, leading to their preferential killing over WT
counterparts. To test this latter point, we focused our analysis
on the aberrant splicing of the EZH2 mRNA. In myeloid malig-
nancies, EZH2 acts as a tumor suppressor, and it is often deleted
and/or affected by loss-of-function mutations (Ernst et al., 2010;
Nikoloski et al., 2010). Although we acknowledge that multiple
genes could mediate the downstream effects of PRMT inhibition,
we did observe a partial rescue upon CRISPR-mediated
knockout of EZH2.

In human SRSF2P95H-mutant cells, we detected the previ-
ously reported aberrant inclusion of a poison exon in the
EZH2 transcript, which harbors a premature stop codon and
targets it for nonsense-mediated decay (Kim et al., 2015; Lee
et al., 2016). Combinatorial use of the PRMT inhibitors caused
a reduction in poison exon inclusion and increased EZH2 pro-
tein levels. The importance of this splicing event as part of the
mechanistic basis for increased sensitivity of SRSF2P95H cells
to PRMT inhibition was further validated by the increased
sensitivity of K562 SRSF2P95H cells to the use of AON that
induced skipping of the poison exon, and with CRISPR/Cas9
deletion of EZH2, which reduced sensitivity of K562 cells to
PRMT inhibition.

To conclude, the data provided here have important therapeu-
tic implications for patients with spliceosomal gene muta-
tions, given ongoing clinical trials with GSK3326595 (PRMT5
inhibitor from the same chemical series as EPZ015666 and
GSK3203591; NCT03614728) and with a type I inhibitor
GSK3368715 (Fedoriw et al., 2019; NCT03666988). Specif-
ically, our data provide a strong basis for patient selection in
the use of PRMTs and type I PRMT inhibitors in ongoing
and future clinical trials of these agents based on the presence
of genetic alterations impacting RNA splicing. At the same time,
our proteomic data identify that PRMT5 and type I PRMTs
largely regulate a distinct set of substrates, and, coincident
with this, the simultaneous inhibition of both PRMT axes re-
sulted in strong synergistic effects. A notable example is the
increased expression of EZH2 protein in SRSF2P95H K562 cells.
EZH2 is recurrently deleted or affected by loss-of-function mu-
tations in myeloid malignancies (Ernst et al., 2010), while it is
partially inactivated by aberrant splicing in SRSF2-mutant cells.
These data extend the therapeutic utility of PRMT inhibitors,
identify a combinatorial drug strategy utilizing simultaneous
PRMT5 and type I PRMT inhibition, and implicate perturbation
of RNA splicing as an important cellular mediator of cell death
due to inhibition of PRMTs.

STAR METHODS

Detailed methods are provided in the online version of this paper
and include the following:

- KEY RESOURCES TABLE
- LEAD CONTACT AND MATERIALS AVAILABILITY
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
 - Cell Lines and Cell Culture
 - Primary Human Samples
 - Animals
METHOD DETAILS
- Identification of Druggable Targets in the Extended Splicing Network
- Animal Studies
- *In Vitro* Drug Screen with Murine MLL-af9 Cells
- *In Vitro* Drug Titration with Murine MLL-af9 Cells
- *In Vitro* Drug Treatment with Primary Human AML Patient Samples
- *In Vitro* Combination Drug Titration with Primary Human AML Patient Samples
- *In Vitro* Cell Viability Assays with Human Cell Lines
- Treatment of iPSC-derived Hematopoietic Progenitor Cells with PRMT Inhibitors
- Pharmacokinetic Studies of MS023 *In Vivo*
- Administration of PRMT Inhibitors *In Vivo*
- Western Blotting
- RNA-seq Sample Preparation
- Arginine Methyl-Peptide Separation and Enrichment Prior to LC-MS/MS Analysis
- Nano-LC-MS/MS Analysis
- Validation of RNaseq
- AON Electroporation
- CRISPR/Cas9 Knockout of EZH2 in K562 Cells

QUANTIFICATION AND STATISTICAL ANALYSIS
- Computation of the Combination Index
- RNA-Sequencing and Bioinformatics Analysis
- Replicates
- Data Analysis of SILAC Arginine Methyl-Peptides
- HmSEEKER: A Perl-Based Pipeline for High-Confidence Assignment of Methyl-Peptides from hmSILAC Data
- Use of hmLINKER to Intersect the SILAC Methyl-proteome with the hmSILAC Dataset
- Motif Analysis of R Methyl-Peptides
- Bioinformatic Analysis of R Methyl-Peptides
- Calculation of the Protein Abundance Index in the Annotated Proteome
- Statistical Analyses

DATA AND CODE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.ccell.2019.07.003.

ACKNOWLEDGMENTS

We thank H3 Biomedicine for providing E7107. We thank the BRC Shared facilities for technical support. We thank F. Raimondi (IEO) for technical support with the proteome to transcriptome data integration analysis. We are grateful to the GIS Genome Sequencing Team for help with the Solexa high-throughput sequencing, to the entire EG lab for critical discussion. This work was supported by AGS fellowship to J.Y.F., AGA-SINGA (Singapore Graduate Award) to the GIS Genome Sequencing Team for help with the Solexa high-throughput sequencing; to the entire EG lab for critical discussion. This work was supported by the Leukemia and Lymphoma Society of Canada. The Structural Genomics Consortium is a registered charity (1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative (EU/EFPIA) (ULTRADD grant no. 115766). Janssens, Merck, Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation, Pfizer, Sao Paulo Research Foundation FAPESP, Takeda, and the Wellcome Trust. Research in the T.B. group was supported by grants from the Italian Ministry of Health (GR-2011-02347880, the Epigen Flagship project (CNR), and the Italian Association for Cancer Research (IG-2016-21834). D.M. was supported by the Fondazione Umberto Veronesi (FUV) fellowship and the Fondazione Istituto Europeo di Oncologia (FIOE) fellowship. A.R. acknowledges support through the NIH (award no. T32 CA078207). J.J. acknowledges support by grant R01GM122749 from the US NIH.

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

O.A.-W. has received research support from H3 Biomedicine and Merck, and has served on advisory boards for Foundation Medicine, H3 Biomedicine, and Janssens. E.G. has received research funding from Eli-Lilly and Prelude Therapeutics, has served as a consultant for Prelude Therapeutics, SKBP, and has served on the advisory board for LION TCR and Janssens, he is a co-founder of ImmunoNOA, Ltd. C.M.K. is currently an employee at Mechanistic Biology and Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca Pharmaceuticals LP. 35 Gatehouse Dr, Waltham, MA 02451, USA. C.T. and O.B. are Employees and stakeholders of GSK. M.M. receives honorariums from Amgen, Pfizer, and Astellas, and funding from Pfizer, Notable Labs. All SGC Affiliated authors receive funding from the nine SGC-funding companies. C.H.A. and G.M.L. were supported by the Leukemia Lymphoma Society of Canada. The Structural Genomics Consortium is a registered charity (1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative (EU/EFPIA) (ULTRADD grant no. 115766). Janssens, Merck, Novartis Pharma, Ontario Ministry of Economic Development and Innovation, Pfizer, Sao Paulo Research Foundation FAPESP, Takeda, and the Wellcome Trust.

Received: February 6, 2019
Revised: June 2, 2019
Accepted: July 8, 2019
Published: August 12, 2019

REFERENCES

Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nature Chem. Biol. 3, 576–583.

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Actin</td>
<td>Santa Cruz</td>
<td>sc-47778; RRID: AB_626632</td>
</tr>
<tr>
<td>Anti-PRMT5</td>
<td>Abcam</td>
<td>Abcam ab109451; RRID: AB_10863428</td>
</tr>
<tr>
<td>Anti-SDMA</td>
<td>Cell signaling</td>
<td>#13222; RRID: AB_2714013</td>
</tr>
<tr>
<td>Anti-ADMA</td>
<td>Cell signaling</td>
<td>#13522; RRID: AB_2665370</td>
</tr>
<tr>
<td>Anti-PRMT1</td>
<td>Cell signaling</td>
<td>CST #2449; RRID: AB_2237696</td>
</tr>
<tr>
<td>Anti-MMA</td>
<td>Cell signaling</td>
<td>#8015; RRID: AB_10891776</td>
</tr>
<tr>
<td>Anti-EZH2</td>
<td>Cell signaling</td>
<td>CST #5246; RRID: AB_10694683</td>
</tr>
<tr>
<td>Anti-γH2Ax</td>
<td>Cell signalling</td>
<td>CST #9718; RRID: AB_2118009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biological Samples</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AML primary patient samples</td>
<td>Princess Margaret Hospital, Memorial Sloan Kettering Cancer Center, & Weill Cornell College of Medicine</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemicals, Peptides, and Recombinant Proteins</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GSK3203591</td>
<td>SGC Toronto</td>
<td>https://thesgc.org/chemical-probes/GSK91</td>
</tr>
<tr>
<td>MS023</td>
<td>SGC Toronto</td>
<td>https://www.thesgc.org/chemical-probes/MS023</td>
</tr>
<tr>
<td>EPZ015666</td>
<td>Tocris</td>
<td>Cat. No. 6516</td>
</tr>
<tr>
<td>GSK3368712</td>
<td>GSK</td>
<td>N/A</td>
</tr>
<tr>
<td>ET107</td>
<td>H3 Biomedicine Inc.</td>
<td>N/A</td>
</tr>
<tr>
<td>I-BRD9</td>
<td>SGC Toronto</td>
<td>https://www.thesgc.org/chemical-probes/I-BRD9</td>
</tr>
<tr>
<td>SGC-CBP30</td>
<td>SGC Toronto</td>
<td>https://www.thesgc.org/chemical-probes/CBP30</td>
</tr>
<tr>
<td>BI-9564</td>
<td>SGC Toronto</td>
<td>https://www.thesgc.org/chemical-probes/BI-9564</td>
</tr>
<tr>
<td>I-CBP112</td>
<td>SGC Toronto</td>
<td>https://www.thesgc.org/chemical-probes/I-CBP112</td>
</tr>
<tr>
<td>MS049</td>
<td>SGC Toronto</td>
<td>https://www.thesgc.org/chemical-probes/MS049</td>
</tr>
<tr>
<td>UNC0638</td>
<td>SGC Toronto</td>
<td>https://thesgc.org/chemical-probes/UNC0638</td>
</tr>
<tr>
<td>SGC707</td>
<td>SGC Toronto</td>
<td>https://www.thesgc.org/chemical-probes/SGC707</td>
</tr>
<tr>
<td>GSK484</td>
<td>SGC Toronto</td>
<td>https://www.thesgc.org/chemical-probes/GSK484</td>
</tr>
<tr>
<td>IOX2</td>
<td>SGC Toronto</td>
<td>https://www.thesgc.org/chemical-probes/IOX2</td>
</tr>
<tr>
<td>GSK-J4</td>
<td>SGC Toronto</td>
<td>https://www.thesgc.org/chemical-probes/gskj1</td>
</tr>
<tr>
<td>Vorinostat</td>
<td>Cayman chemicals</td>
<td>CAS N2 149647-78-9</td>
</tr>
<tr>
<td>GSK2334470</td>
<td>Cayman chemicals</td>
<td>CAS N2 1227911-45-6</td>
</tr>
<tr>
<td>SGC0946</td>
<td>SGC Toronto</td>
<td>https://www.thesgc.org/chemical-probes/SGC0946</td>
</tr>
<tr>
<td>PD0332991</td>
<td>Cayman chemicals</td>
<td>CAS N2 827022-32-2</td>
</tr>
<tr>
<td>CCT244747</td>
<td>Cayman chemicals</td>
<td>CAS N2 1404095-34-6</td>
</tr>
<tr>
<td>PF-477736</td>
<td>Cayman chemicals</td>
<td>CAS N2 952021-60-2</td>
</tr>
<tr>
<td>BMS-265246</td>
<td>Cayman chemicals</td>
<td>CAS N2 582315-72-8</td>
</tr>
<tr>
<td>Irinotecan</td>
<td>Cayman chemicals</td>
<td>CAS N2 100286-90-6</td>
</tr>
<tr>
<td>SCH772984</td>
<td>Cayman chemicals</td>
<td>CAS N2 942183-80-4</td>
</tr>
<tr>
<td>Alitretinoin</td>
<td>Cayman chemicals</td>
<td>CAS N2 5300-03-8</td>
</tr>
<tr>
<td>CX-4945</td>
<td>Cayman chemicals</td>
<td>CAS N2 1009820-21-6</td>
</tr>
<tr>
<td>Phenoxydiol</td>
<td>Sigma</td>
<td>CAS N2 211267-65-4</td>
</tr>
<tr>
<td>5Z-7-oxozeaenol</td>
<td>Cayman chemicals</td>
<td>CAS N2 253863-19-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Critical Commercial Assays</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caspase-Glo. 3/7 luminescence assay</td>
<td>Promega</td>
<td>G8090</td>
</tr>
<tr>
<td>Cell titer Glo</td>
<td>Promega</td>
<td>G7570</td>
</tr>
</tbody>
</table>

(Continued on next page)
Reagents or Resources

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTS assay</td>
<td>Promega</td>
<td>G3582</td>
</tr>
<tr>
<td>PTMScan® Asymmetric Di-Methyl Arginine Motif [adme-R] Kit</td>
<td>Cell Signaling Technologies</td>
<td>Kit #13474</td>
</tr>
<tr>
<td>PTMScan® Symmetric Di-Methyl Arginine Motif [sdme-RG] Kit</td>
<td>Cell Signaling Technologies</td>
<td>Kit #13563</td>
</tr>
<tr>
<td>PTMScan Mono-Methyl Arginine 13 Motif [mme-RG] Kit</td>
<td>Cell Signaling Technologies</td>
<td>Kit #12235</td>
</tr>
</tbody>
</table>

Deposited Data

| RNA-seq data | This paper | GEO: GSE123774 |
| MS-proteomics data | This paper | PRIDE: PXD012007 |

Experimental Models: Cell Lines

Human: K562 cells	ATCC	CLL-243
Human: THP1 cells	ATCC	TIB-202
Human: MOLM13 cells	DSMZ	ACC 554
Human: U937 cells	ATCC	CRL-1593.2
Human: K562 SRSF2^{P95H/WT} knockin cells	Horizon Discovery	N/A
Human: K562 SF3B1^{K700E/WT} knockin cells	Horizon Discovery	N/A
Human: TF1 cells	ATCC	CRL-2003
Human: OCI-AML5 cells	DSMZ	ACC 247
Human: F-36P cells	DSMZ	ACC 543
Human: GDM-1 cells	ATCC	CRL-2627
Human: KOS2 cells	JCRB	CVCL-1321
Human: HNT34 cells	DSMZ	ACC 600
Human: MonoMac6 cells	DSMZ	ACC 124
Human: 5-16 Cre20 (SRSF2 P95L)	(Chang et al., 2018)	N/A
Human: N-2.12 (isogenic normal)	(Chang et al., 2018)	N/A

Experimental Models: Organisms/Strains

Mice: Srsf2^{P95H/+}	N/A	
Mice: MLL-AF9/Vav-cre Srsf2^{WT/WT}	N/A	
Mice: MLL-AF9/Vav-cre Srsf2^{P95H/WT}	N/A	
Mice: Vav-cre transgenic mice (B6.Cg-Tg(Vav1-icre)A2Kio/J)	The Jackson Laboratory	JAX: 008610

Oligonucleotides

Human EZH2 F	(Lee et al., 2016)	TTTCATGCAACACCCAACACT
Human EZH2 R	(Lee et al., 2016)	CCGGTGATCCCTGACTGCT
Human ATF2 F	This paper	AGTTTACAGTGAGATTCGTTG
Human ATF2 F	This paper	CTCGGAAATGAGACGTCCTG
Human INTS3 F	This paper	ATGGCAAAATGAGGAGATG
Human INTS3 R	This paper	TCCGGAAATGAGACGTCCTG
Human TRPT1 F	This paper	GAGCAAAATGAGGAGATG
Human TRPT1 R	This paper	GAGCAAAATGAGGAGATG
Human HDAC7 F	This paper	GACTGGGGCAAGGGAAGGG
Human HDAC7 R	This paper	GACTGGGGCAAGGGAAGGG
Human LEF1 F	This paper	CCACCATGTCGGAGGAG
Human LEF1 R	This paper	AGGCATTACATCAGGAGG
Anti-sense oligonucleotide SCR	This paper	CUGGUGUGGUUAAUUCUCUAGUGU
Anti-sense oligonucleotide EZH2	This paper	UGAUAUCUUCUGUCAAAUCACAGGCAAUUA
sgRNA 1 sequence for EZH2	This paper	TTATCAGAAGGAAATTCGG
sgRNA 2 sequence for EZH2	This paper	TTATCAGAAGGAAATTCGG

(Continued on next page)
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ernesto Guccione (eguccione@imcb.a-star.edu.sg; Ernesto.guccione@mssm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Cell Culture

Primary murine MLL-AF9 leukemia cell lines were generated from bone marrow cells of leukemia-bearing mice and maintained in IMDM/15% FCS supplemented with L-glutamine, murine-SCF (25 ng/mL), murine-IL3 (10 ng/mL) and murine-IL6 (10 ng/mL). K562 isogenic cell lines (engineered to express SRSF2*P95H* or SF3B1*K700E* mutations from each respective endogenous locus from Horizon Discovery Inc.) were cultured in IMDM/10% FBS. THP-1, U937, KO52, GDM-1 and HNT34 cell lines were cultured in RPMI/10% FBS. TF1 cells were cultured in RMPI/10% FBS/2 ng/ml recombinant human GM-CSF. OCI-AML5 and F-36p cells were cultured in RPMI/10% FBS/10 ng/ml recombinant human GM-CSF. MonoMac 6 cells were cultured in RPMI/10% FBS/10 μg/ml recombinant human insulin. HEK293T cells were grown in DMEM medium with 10% FBS. The iPSC lines 5-16 Cre20 (SRSF2 P95L) and N-2.12 (isogenic normal) (Chang et al., 2018) were differentiated along the hematopoietic lineage as previously described (Kotini et al., 2017). To induce reprogramming, 10,000-300,000 cells were plated on retronectin-coated 24-well dishes and transduced with the OKMS lentiviral vector CMV-IVS2A (Kotini et al., 2015). The cells were harvested one or two days later and plated on mitotically inactivated MEFs in 6-well plates and centrifuged at 500 rpm for 30 min at RT. The following day and every day thereafter, half of the medium was gently changed to hESC medium with 0.5 mM valproic acid (VPA). In the first 10 days, cells contained in the removed medium were collected by centrifugation and placed back in their original wells. After 3-4 weeks, manually picked colonies with hPSC morphology were expanded. iPSCs were cultured on mitotically inactivated MEFs or in feeder-free conditions on Matrigel with hESC media supplemented with 6 ng/ml GFG2. Primary human AML patient sample cells were grown in Iscove’s Modified Dulbecco’s Medium (IMDM), 20% bovine serum albumin, insulin, and transferrin (BIT) 9500 serum substitute, 16.7 μg/ml human low-density lipoproteins, 55 μM beta-mercaptoethanol with recombinant human (rh) G-CSF (20 ng/ml), rhGM-CSF (20 ng/ml), rh IL3 (20 ng/ml), rh IL6 (20 ng/ml), rh FLT3 ligand (50 ng/ml) and rh SCF (50 ng/ml).

Primary Human Samples

Studies were approved by the Institutional Review Boards of the University Health Network, Weill Cornell College of Medicine, and Memorial Sloan Kettering Cancer Center. Studies were conducted in accordance to the Declaration of Helsinki protocol. De-identified primary human AML samples derived from whole peripheral blood or BM mononuclear cells were utilized. The MSK-IMPACT assay was used to perform mutational genotyping of samples, as described previously (Cheng et al., 2015; Zehir et al., 2017). Cord blood was acquired from NY Blood Bank. Informed consent was obtained from all subjects to use the specimens described...

REAGENT or RESOURCE SOURCE IDENTIFIER

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombinant DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LentCRISPR v2</td>
<td>N/A</td>
<td>Addgene: 52961</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software and Algorithms</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytoscape 3.4.0</td>
<td>(Shannon et al., 2003)</td>
<td>https://cytoscape.org/</td>
</tr>
<tr>
<td>Reactome FI</td>
<td>(Wu et al., 2014)</td>
<td>N/A</td>
</tr>
<tr>
<td>pLogo web application</td>
<td>(O’Shea et al., 2013)</td>
<td>N/A</td>
</tr>
<tr>
<td>hmLINKER</td>
<td>(Massignani et al., 2019)</td>
<td>N/A</td>
</tr>
<tr>
<td>hmSEEKER</td>
<td>(Massignani et al., 2019)</td>
<td>N/A</td>
</tr>
<tr>
<td>Prism 7.0</td>
<td>Graphpad</td>
<td>https://graphpad.com/</td>
</tr>
<tr>
<td>STAR</td>
<td>(Dobin et al., 2013)</td>
<td>https://github.com/alexdobin/STAR</td>
</tr>
<tr>
<td>HTSeq</td>
<td>(Anders et al., 2015)</td>
<td>N/A</td>
</tr>
<tr>
<td>R</td>
<td>R Core Team</td>
<td>https://www.r-project.org/</td>
</tr>
<tr>
<td>Bioconductor</td>
<td>(Huber et al., 2015)</td>
<td>N/A</td>
</tr>
<tr>
<td>DESeq2</td>
<td>(Love et al., 2014)</td>
<td>10.18129/B9.bioc.DESeq2</td>
</tr>
<tr>
<td>rMATS</td>
<td>(Shen et al., 2014)</td>
<td>http://maseq-mats.sourceforge.net/</td>
</tr>
<tr>
<td>ggsashimi</td>
<td>(Garrido-Marti et al., 2018)</td>
<td>https://github.com/guigolab/ggsashimi</td>
</tr>
</tbody>
</table>

in this study. Specimens were obtained as part of the Memorial Sloan-Kettering Cancer Center Institutional Review Board approved clinical protocol #06-107 to which all subjects consented. O.A-W is a participating investigator on this protocol.

Animals

6-8 weeks old C57BL/6 mice were purchased from InVivos. Mice were maintained in individual ventilated cages and fed with autoclaved food and water in the Biological Resource Center, A*STAR Singapore. 10 week-old NSG-SGM3 (NSGS) female mice were purchased from Jackson Laboratory. Mice were maintained in individual ventilated cages and fed with autoclaved food and water in Memorial Sloan Kettering Cancer Center. All animal experiments were conducted in accordance to approved protocols from Institutional Animal Care and Use Committees of Institute of Molecular and Cell Biology (IMCB), A*STAR and Memorial Sloan Kettering Cancer Center. Kaplan-Meier survival curves were compared using the Mantel-Cox Log-rank test via Graphpad Prism 7.

METHOD DETAILS

Identification of Druggable Targets in the Extended Splicing Network

A list of genes belonging to the Gene Ontology (GO) category GO_SPLICESOMAL_ SNRNP_ ASSEMBLY was derived from the Gene Set Enrichment Analysis (GSEA) website (Subramanian et al., 2005). We uploaded this list on the CBIO portal website (Cerami et al., 2012) and selected as a query “Acute Myeloid Leukemia, TCGA” study (Cerami et al., 2012; Gao et al., 2013; Ley et al., 2013). The network tab provided a list of neighboring genes (sif file). This network comprises the nearest neighbors of a given physical entity (e.g. gene, protein or small molecule). The following rules govern the construction of the neighborhood: 1) if A is part of a [complex] (A:B), (A:B) is included in the neighborhood, but none of the interactions involving (A:B) are included. 2) if A is a [CONTROLLER] for a [control] interaction, the reaction that is [CONTROLLED] (and all the participants in that reaction) are included in the neighborhood. 3) if A participates in a [conversion] reaction, and this reaction is [CONTROLLED] by another interaction, the [control] interaction (plus its [CONTROLLER]) are included in the neighborhood. The sif file was then imported into Cytoscape 3.4.0 (Shannon et al., 2003) to visualize molecular interaction networks and integrate the data with gene expression profiles and other state data. We next created a network of functional interacting genes using the application ‘Reactome FI’. (Wu et al., 2014) The list of genes belonging to the extended splicing network was manually curated to identify druggable targets. We used www.drugbank.ca and www.chemicalprobes.org to identify the inhibitors of the druggable genes.

Animal Studies

In leukemia transplant experiments, mice were monitored daily for any sign of distress and leukemia development. The number of mice chosen in each experiment was chosen to give 90% statistical power with a 5% error level given the differences in standard deviation that was observed in the pilot study. Generation and genotyping of the mice chosen in each experiment was chosen to give 90% statistical power with a 5% error level given the differences in standard deviation that was observed in the pilot study. All cell lines were seeded in white flat-well 96 well plates (Costar) at 1000 cells/well unless otherwise indicated. For murine MLL-AF9 cells, single drug titration experiments, cells were exposed to MS023 from a range of 0-5 μM, to GSK591 from a range of 0-5 μM and to E7107 from a range of 0-1 μM for seven days. For murine MLL-AF9 cells combination drug titration experiments, cells were exposed to MS023 from a range of 0-5 μM, to GSK591 from a range of 0-0.5 μM and to E7107 from a range of 0-0.05 μM for seven days. Cell viability read-out was performed using the Cell-titre glo assay (Promega) as per manufacturer’s instructions and normalized to DMSO controls.

In Vitro Drug Screen with Murine MLL-AF9 Cells

Both MLL-AF9/Vav-cre Srsf2WT and MLL-AF9/Vav-cre Srsf2P95H cells were seeded at 900 cells/well in 384 well plate. Cells were treated with indicated drugs for 7 days over various concentrations (see Table S1). Cell viability was measured using MTS or Cell-titre read-out was performed using the Cell-titre glo assay (Promega) as per manufacturer’s instructions and normalized to DMSO controls.

In Vitro Drug Titration with Murine MLL-AF9 Cells

All cell lines were seeded in white flat-well 96 well plates (Costar) at 1000 cells/well unless otherwise indicated. For murine MLL-AF9 cells single drug titration experiments, cells were exposed to MS023 from a range of 0-5 μM, to GSK591 from a range of 0-5 μM and to E7107 from a range of 0-1 μM for seven days. For murine MLL-AF9 cells combination drug titration experiments, cells were exposed to MS023 from a range of 0-5 μM, to GSK591 from a range of 0-0.5 μM and to E7107 from a range of 0-0.05 μM for seven days. Cell viability read-out was performed using the Cell-titre glo assay (Promega) as per manufacturer’s instructions and normalized to DMSO controls.
In Vitro Drug Treatment with Primary Human AML Patient Samples

Primary AML cells with SF mutation (n=16) or wild-type for SF (n=16) were incubated with DMSO or GSK591 (0.5 μM) for 6 days. Cells were grown in Iscove’s Modified Dulbecco’s Medium (IMDM), 20% bovine serum albumin, insulin, and transferrin (BIT) 9500 serum substitute, 16.7 μg/mL human low-density lipoproteins, 55 μM beta-mercuraptoethanol with recombinant human (rh) G-CSF (20 ng/mL), rhGM-CSF (20 ng/mL), rhIL3 (20 ng/mL), rhIL6 (20 ng/mL), rhFLT3 ligand (50 ng/mL) and rhSCF (50 ng/mL). Following the 6-day incubation period, cells were subjected to flow cytometry to detect 7-AAD negative, and YO-PRO1 negative, viable cells. Samples were prepared in 4-6 replicates and averages were calculated. Relative viable cell numbers were compared with Welch’s t test.

In Vitro Combination Drug Titration with Primary Human AML Patient Samples

Patient cells derived from either bone marrow or peripheral blood were thawed and allowed to grow for a minimum of three days on OP9 stroma in 6-well tissue culture plates (Greiner) topping up with fresh media and putting cells onto fresh OP9 as necessary. Patient cells were cultured in IMDM media (Gibco) with 2 mM L-glutamine, 10% FBS (Wisent), 55 μM β-mercaptoethanol (Gibco), 100 μg/mL Primocin (InvivoGen), 100 ng/mL SCF, 50 ng/mL FLT3L, 40 ng/mL THPO, 20 ng/mL IL3, and 20 ng/mL GM-CSF (Shenandoah Biotech or Custom Biologics). Leukemic cells were transferred to GFP labelled OP9 cells in 96-well plates for drug titration at a density of either 25000 or 50000 cells per well in 100 μL media. An additional 100 μL of media with drug was added at day 3-4. Cells were exposed to MS023 from a range of 0-10 μM and to GSK591 from a range of 0-3 μM for six days. Viable cell number was assessed at day 6. Cells were transferred to 96-well round well suspension plate (Starstedt) along with trypsinized (30U. 0.25% Trypsin-EDTA; Wisent) OP9 stroma and attached leukemic cells. Cells were resuspended in PBS (Wisent) with 2% FBS with 0.2 μM Sytox Blue (Life Technologies) viability dye. Flow cytometry was performed using MACSQuant VYB (Miltenyi), and MACSQuantify software was used to determine viable leukemic cell number (GFP negative, Sytox blue negative).

OP9 mouse stromal cells (ATCC) were grown in α-MEM media without nucleosides that contains GlutaMAX (Gibco), 20% fetal bovine serum (FBS, Wisent), 55 μM β-mercaptoethanol (Gibco) and 100U/100 μg/mL penicillin/streptomycin (Gibco) at 37°C/5% CO2. OP9 cells were transduced with GFP lentivirus and sorted for GFP positive cells to use in assays to test the effect of the drugs on leukemic blasts. GFP positive cells were seeded at 5000-10000 cells/well in 96-well plates (Greiner) and used 1-3 days later for leukemic cell assays.

In Vitro Cell Viability Assays with Human Cell Lines

Cells were treated in duplicated with a 20-point, two-fold dilution series of GSK3203591 (PRMT5 inhibitor) or GSK3368712 (Type I PRMT inhibitor). Cells were treated with drugs for six days and cell growth was measured using Cell-titre glo (Promega).

A plate of untreated cells was read at the time of compound addition to determine the T=0 value representing the starting number of cells. Data were fitted with a four-parameter equation to generate a concentration response curve. Growth inhibition is the percent maximal inhibition and was calculated as 100-((ymin-100)/(ymax-100)*100). Ymin-T0 values were calculated by subtracting the T0 value (100%) from the Ymin value on the curve, and are a measure of net population cell growth or death. Growth Death Index (GDI) is a composite representation of Ymin-T0 and percent maximal inhibition. If Ymin-T0 values are negative, then GDI equals Ymin-T0; otherwise, GDI represents the fraction of cells remaining relative to DMSO control (ymax) and (ymin); (ymin-100)/(ymax-100)*100).

Treatment of iPSC-derived Hematopoietic Progenitor Cells with PRMT Inhibitors

The iPSC lines 5-16 Cre20 (SRSF2 P95L) and N-2.12 (isogenic normal) (Chang et al., 2018) were differentiated along the hematopoietic lineage as previously described (Kotini et al., 2017). 250,000 single cells from day 12 of hematopoietic differentiation were plated in 24-well ultra-low attachment plates. MS023 and GSK591 inhibitors or DMSO were added on days 12 and 17 of hematopoietic differentiation culture at a concentration of 350 nM. Live cells were quantified by counting in a hemocytometer 10 days after the beginning of treatment (day 22 of differentiation culture).

Pharmacokinetic Studies of MS023 In Vivo

Male Swiss Albino mice at Sai Life Sciences were administered a single 80 mg/kg intraperitoneal (IP) injection (n=3) or a single oral 150 mg/kg dose of MS023 (n=3). Plasma concentrations of MS023 were then evaluated at 0.083, 0.25, 0.5, 1, 2, 4, 8, and 12 hr post dosing.

Administration of PRMT Inhibitors In Vivo

For in vivo drug sensitivity studies, 8 mg (80 mg/kg dose) or 6 mg (60 mg/kg dose) of MS023 was dissolved in 50 μL N-Methyl-2-pyrrolidone, 200 μL Captisol, 200 μL polyethylene glycol 400 and 550 μL PBS and administered via IP injection once per day. 20 mg/ml (200 mg/kg dose) or 15 mg/ml (150 mg/kg dose) of EPZ015666 was reconstituted in 0.5% methylcellulose and administered to each mouse via oral gavage route once per day. To generate leukemia in C57BL6 mice (6-10 weeks old), the mice were sublethally irradiated at 5 Gy total body γ irradiation, and tail vein injected with 250,000 primary MLL-AF9 leukemic cells. (Lee et al., 2016). In single drug administration experiment, 80 mg/kg MS023 or 200 mg/kg EPZ015666 was administered from Day 8 of experiment till mice are moribund. In combinatorial drug administration experiment, 60 mg/kg MS023 and 150 mg/kg EPZ015666 were administered daily to the mice from Day 8 of experiment for 10 days.
Western Blotting

Protein concentrations were determined using RC DC protein assay kit from Bio-Rad. Proteins were run on 8-15% gels and separated with SDS-PAGE. The membranes were blotted with the primary antibodies, anti-actin (Santa Cruz) at 1:1000, anti-PRMT5 (Abcam) at 1:1000, anti-PRMT1 (Cell signaling) at 1:1000, anti-SDMA (Cell signaling) at 1:1000, anti-ADMA (Cell signaling) at 1:1000, anti-MMA (Cell signaling) at 1:1000, anti-EZH2 (Cell signaling) at 1:1000 and anti-γH2A.X (Cell signaling) at 1:1000. Blots were incubated with primary antibodies overnight at 4°C. The next day, blots were washed in TBST, incubated with HRP-conjugated secondary antibodies for 1 hr and visualised on X-ray films with West Pico Chemiluminescent Substrate.

RNA-seq Sample Preparation

RNA was extracted from all human and mouse cell samples using RNeasy mini kit (Qiagen) as per manufacturers instructions. Poly(A)-selected, unstranded Illumina libraries were prepared with a modified TruSeq protocol. 0.5X Ampure XP beads were added to the sample library to select for fragments <400 bp, followed by 1X beads to select for fragments >100 bp. These fragments were then amplified with PCR (15 cycles) and separated by gel electrophoresis (2% agarose). 300 bp DNA fragments were isolated and sequenced on the Illumina HiSeq 2000 (~100 million 101 bp reads per sample).

Arginine Methyl-Peptides Separation and Enrichment Prior to LC-MS/MS Analysis

NB4 cells were treated for 3 days with MS023 (3 μM) or GSK591 (1 μM). Equal numbers of Light and Heavy-labelled NB4 cells differentially treated were mixed in a 1:1 ratio, pipetted and washed twice with PBS. Cell pellets were lysed in urea lysis buffer (9 M urea, 20 mM HEPES pH 8.0), supplemented with 1X Roche proteases and phosphatases inhibitors, sonicated and cleared by ultracentrifugation (20,000 x g for 15 min at 15°C). For in-solution digestion, 50 mg of proteins were reduced by adding 4.5 mM DTT (Sigma-Aldrich) for 30 min at 55°C, alkylated with 5.5 mM iodoacetamide (IAA: 10% v/v for 15 min at room temperature in the dark, Sigma Aldrich) and digested overnight with sequencing-grade trypsin (1:100 w/w, Promega), after a fourfold dilution in 25 mM ammonium bicarbonate solution. Protease digestion was terminated with the addition of trifluoroacetic acid (TFA) to adjust pH < 3. Precipitated material was removed by centrifugation for 15 min at 1780 × g at room temperature. Soluble peptides were purified using reversed-phase Sep-Pak C18 cartridges (Waters, Milford, MA) and eluted off the Sep-Pak with 40% acetonitrile in 0.1% TFA solution at a flow rate of 500 nL/min. SILAC immuno-enriched methyl-peptides were separated with a gradient of 5–40% solvent B over 90 min followed by a gradient of 40–60% for 10 min and 60–80% over 5 min at a flow rate of 250 nL/min in the EASY-nLC 1000 system.

Nano-LC-MS/MS Analysis

Peptide mixtures were analysed by online nano-flow liquid chromatography tandem mass spectrometry using an EASY-nLC™ 1000 (Thermo Fisher Scientific, Odense, Denmark) connected to a Q-Exactive instrument (Thermo Fisher Scientific) through a nano-electrospray ion source. The nano-LC system was operated in one column set-up with a 50 cm analytical column (75 μm inner diameter, 350 μm outer diameter) packed with C18 resin (EASYSpray PepMAP RSLC C18 2M 50 cm x 75 M, Thermo Fisher Scientific) configuration. Solvent A was 0.1% formic acid (FA) and solvent B was 0.1% FA in 80% ACN. Samples were injected in an aqueous 0.1% TFA solution at a flow rate of 500 nL/min. SILAC immuno-enriched methyl-peptides were separated with a gradient of 5–40% solvent B over 90 min followed by a gradient of 40–60% for 10 min and 60–80% over 5 min at a flow rate of 250 nL/min in the EASY-nLC 1000 system.

The Q-Exactive was operated in the data-dependent mode (DDA) to automatically switch between full scan MS and MSMS acquisition. Survey full scan MS spectra (from m/z 300-1150) were analysed in the Orbitrap detector with resolution R=35,000 at m/z 400. The ten most intense peptide ions with charge states ≥ 2 were sequentially isolated to a target value of 3e6 and fragmented by Higher Energy Collision Dissociation (HCD) with a normalized collision energy setting of 25%. The maximum allowed ion accumulation times were 20 ms for full scans and 50ms for MSMS and the target value for MSMS was set to 1e6. The dynamic exclusion time was set to 20 s.
Validation of RNAseq

Primers were designed to flank the exon of interest for validation of cassette exon events. cDNA is synthesized using the Maxima first strand cDNA synthesis kit (ThermoFisher Scientific). The PCR cycling conditions to amplify the alternatively spliced transcripts are as follows: 95°C for 5 min, 28 cycles of 95°C for 45 s, 58°C for 30 s and 72°C for 1 min, followed by 72°C for 5 min.

The primers used to validate the splicing events are as follows:

EZH2
- Forward primer: TTTCATGCAACACCAACACT
- Reverse primer: CCGCTTCCCTATCACTGT
- ATF2
- Forward primer: AGTTACATGTGAATTCTGCCAGG
- Reverse primer: CTCAAAATGGACTGCGCAACTC
- INTS3
- Forward primer: ATGCCAAGCTGGCTTTGTTT
- Reverse primer: TCCGACATATGGTTGCTCCATCTC
- HDAC7
- Forward primer: GGAAGAATCCACTGCTCCGA
- Reverse primer: GACTGGGCAAAGTGAAGGG
- TRPT1
- Forward primer: GGCCCAACAGGAGCATT
- Reverse primer: ATCACCAGCCAAGGAAAGGG
- LEF1
- Forward primer: CCACCCATCCCGAGAACATC
- Reverse primer: AGGCTTCAGCTGCATTAGGT

AON Electroporation

K562 cells were transiently transfected with antisense oligonucleotides using the BTX Gemini X2 electroporation system. Cells were resuspended in cytoperoration medium T (BTX #47-0002) at a density of 2x10⁷ cells/ml with 10⁻⁹ M of AON. Thereafter, cells were electroporated at 250 V x 10 ms X 1 pulse and plated onto fresh medium (3 ml medium per 100 mL electroporated cells). At 48 hours after electroporation, cells were collected for RNA, protein and cell viability readout using Cell-titre Glo (Promega).

AON sequence:
- SCR: CGGUGUGUGUAUCAUUCUCUAGUGU
- EZH2 (1042): UGAAUCUUCUGUCCAAAAUCCAACAGGCAAUAUA

CRISPR/Cas9 Knockout of EZH2 in K562 Cells

Guide RNA (gRNA) sequences were cloned into a lentiCRISPR V2 vector (Addgene) at the BsmBI restriction site.

Target sequences are
- gRNA1: TTATCAGAAGGAAATTTCCG
- gRNA 2: TTATGATGGGAAAGTACACG

To generate lentivirus, 293T cells were transfected using Lipofectamine 3000 (Thermo Fisher Scientific) according to the manufacturer’s protocol. Virus was collected at 48 and 72 hours post transfection, concentrated with Lenti-X concentrator (Takara), and titered using Lenti-X GoStix (Takara). 1x10⁶ K562 cells were spinoculated with virus (MOI of 3 and 5 μg/ml polybrene) for 1 hour at 2400 rpm and 37°C in non-tissue culture treated plates. Two days post-infection, cells were selected with 5 μg/ml puromycin for four days before starting experiments.

Quantification and Statistical Analysis

Computation of the Combination Index

The presence of synergistic or additive effects was determined following the theorem of Chou-Talalay (Chou, 2010). The resulting combination index (CI) offers quantitative definition for additive effect (CI = 1), synergism (CI < 1), and antagonism (CI > 1) in drug combinations.

RNA-Sequencing and Bioinformatics Analysis

Library preparation was performed following the TruSeq RNA Sample preparation v2 guide (Illumina). In brief, the sequenced reads were mapped to mm9 build of the mouse genome or hg19 build of the human genome using STAR version 2.4.2a. Differential expression analysis was performed using the edgeR package in R. Enriched Gene Ontology terms and KEGG pathways were identified using Metascape. Heatmaps of gene expressions (FPKM) were generated with in-house scripts with R. Alternative splicing analysis was done using rMATS version 4.0.1 with annotation versions Ensembl.NCBIvM37v65 for mouse and Ensembl.GRCh37v72 for human. Significant alternative splicing events were defined at FDR=0.05 and inclusion level difference of 10%.
Replicates
RNA-Seq was conducted with 3-5 biological replicates from each group. Genetic phenotyping experiments were replicated three times independently. For in vivo experiments, the number of animals was chosen to ensure 90% power with 5% error based on observed standard deviation. Flow cytometric experiments were replicated independently two-three times. Pilot studies were conducted with drug studies and results were replicated in a larger study to achieve enough statistical power. In vitro experiments were replicated two-three times, with viability experiments being completed in triplicate.

Data Analysis of SILAC Arginine Methyl-Peptides
Acquired raw data were analysed using the integrated MaxQuant software v1.3.0.5 or v.1.5.2.8, using the Andromeda search engine (Cox and Mann, 2008). In MaxQuant, the estimated false discovery rate (FDR) of all peptide identifications was set to a maximum of 1%. The main search was performed with a mass tolerance of 7 ppm. Enzyme specificity was set to Trypsin/P. A maximum of 3 missed cleavages was permitted, and the minimum peptide length was fixed at 7 amino acids. Carboxyamidomethylation of Cysteine was set as a fixed modification. The January 2016 version of the Uniprot sequence was used for peptide identification.

To assign and quantify SILAC methyl-peptides, each raw file was analysed with the following set of variable modifications: N-terminal acetylation, Methionine oxidation, mono-methyl-K/R and di-methyl-K/R. The MaxQuant evidence.txt output file was then filtered as follows: potential contaminants and reverse sequences were removed; methyl-peptides not fulfilling the quality criteria of Andromeda score ≥ 25 and PTM localization probability ≥ 0.50 were also removed. For the methyl-peptides quantified more than once, the median SILAC ratio was calculated. Finally, methyl-peptide SILAC ratios were normalised on the respective protein SILAC ratios extracted from the proteinGroups.txt MaxQuant output file. These were calculated using unmodified peptides in the “input” experiment. To define significantly up- or down-regulated methyl-peptides by GSK591, we used mean (μ) and standard deviation (σ), based on the distribution of the unmodified peptide SILAC ratios calculated separately in the forward and reverse experiments and we applied a $\mu \pm 3\sigma$ cut-off to the distributions of the modified peptides of the respective replicate (see Table S4).

HmSEEKER: A Perl-Based Pipeline for High-Confidence Assignment of Methyl-Peptides from hmSILAC Data
To assign hmSILAC peptide sequences, we defined new modifications in MaxQuant with the mass increment and residue specificities corresponding to heavy mono-methylation (mono-methyl4-K/R) and di-methylation (di-methyl4-K/R). Additionally, we defined new modifications for heavy methionine (Met4) and oxidized heavy methionine (OxMet4). To reduce the search complexity, raw data were analysed twice with the following sets of variable modifications: (i) N-terminal acetylation, Met4, OxMet4, oxidation, mono-methyl-K/R, mono-methyl4-K/R; (ii) N-terminal acetylation, Met4, OxMet4, oxidation, di-methyl-K/R, di-methyl4-K/R.

Identification of high confidence methyl-sites was carried out with an in-house developed, Perl-based pipeline, named hmSEEKER, which identifies doublets of heavy and light hmSILAC peptides from MaxQuant output tables (Massignani et al., 2019). hmSEEKER performs the following steps: methyl-peptides identified in the msms file are first filtered to remove: (i) all contaminants and decoy peptides, (ii) all peptides with single charge and (iii) all peptides bearing simultaneous heavy and light modifications. Then each peptide is associated to its corresponding MS1 peak in the allPeptides file. Finally, the H or L counterpart of each peak is searched among other peaks detected in the same raw data file. Because the pair is searched in msmsScans, hmSEEKER enables the identification of peptide doublets even when one of the two counterparts has not been MS/MS sequenced, thus not appearing in the msms file. We used hmSEEKER to automatically filter the MaxQuant msms.txt file and remove contaminants and reverse sequences, as well as peptides carrying simultaneously light and heavy modifications. To increase the confidence of our findings, remaining peptides were further filtered to remove any peptide with Andromeda score < 25 or Andromeda delta score < 12 and any methylation with a PTM localization probability < 0.75. Heavy and light methyl-peptide pairs were accepted when the difference between calculated and expected mass shift was < 2 ppm and the difference between their retention times was < 30 s.

Use of hmLINKER to Intersect the SILAC Methyl-proteome with the hmSILAC Dataset
Validation of the methylated peptide identified in the SILAC experiments through the hmSILAC identifications was achieved by using hmLINKER, another in-house developed bioinformatic tool that compares the sequences of the peptides in the SILAC dataset to those in the hmSILAC repository (hmSEEKER output). If a match is not found at the sequence level, the peptide is not immediately discarded, but a second round of match-attempt is performed using a 31 amino acids sequence window, centered on each modification site.

Motif Analysis of R Methyl-Peptides
Motif analysis of R methyl-sites was performed using the pLogo web application (O’Shea et al., 2013), which allows the visualization of significant enrichment variations between the set of GSK591-regulated sequences and the unchanging methyl-peptides used as a background set. p value threshold was set to 0.05.

Bioinformatic Analysis of R Methyl-Peptides
Motif analysis of changing methyl-sites was performed using the pLogo web application (O’Shea et al., 2013), which allows the visualization of significant enrichment variations between the set of drug-regulated sequences and the unchanging methyl-peptides used.
as a background set. P value threshold was set to 0.05. Networks on regulated methyl-proteins were built with the Reactome application of Cytoscape (Fabregat et al., 2018; Shannon et al., 2003). The Gene Ontology analysis was carried out with GOrilla (Eden et al., 2009) and Revigo (Supek et al., 2011).

Calculation of the Protein Abundance Index in the Annotated Proteome

We matched the methylated proteins identified via the immuno-enrichment approach with their respective protein, annotated in the whole proteome, which was used as INPUT for the methyl-peptides IP. To calculate the abundance index of each protein in this proteome, we employed the iBAQ algorithm (Intensity-Based Absolute Quantification (Schwanhausser et al., 2011), embedded in the MaxQuant suit.

Statistical Analyses

Statistical significance was determined by unpaired Student’s t-test after testing for normal distribution unless indicated otherwise. The Mantel-Cox log-rank test was used to compare survival curves. P values of < 0.05 were considered statistically significant. Data were plotted using GraphPad Prism 7 software as mean values and error bars represent standard deviation. Asterisks indicate * p = 0.01-0.05; ** p = 0.001-0.01, *** p = 0.0001-0.001, **** p <0.0001.

DATA AND CODE AVAILABILITY

The accession number for the RNA-seq data reported in this paper is GEO:GSE123774.

The accession number for the MS-proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE (Vizcaino et al., 2016) partner repository with the dataset identifier PRIDE: PXD012007.
Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis

Akihide Yoshimi1,12, Kuan-Ting Lin2,12, Daniel H. Wiseman3,4,12, Mohammad Alnoor Rahman2, Alessandro Pastore1, Bo Wang1, Stanley Chunj-Wei Lee1, Jean-Baptiste Mico3, Xiao Jing Zhang1, Stephanie de Botton5, Virginie Penard–Lacronique5, Eytan M. Stein6, Hana Cho1, Rachel E. Miles1, Daichi Inoue1, Todd R. Albrecht7, Tim C. P. Somervaille5, Kiran Batta4, Fabio Amaral3, Fabrizio Simeoni3, Deepti P. Wilks8, Catherine Cargo9, Andrew M. Intlekofer1, Ross L. Levine1,6, Heidi Dvinge10, Robert K. Bradley11, Eric J. Wagner7, Adrian R. Kainer2 & Omar Abdel–Wahab1,6*

Transcription and pre-mRNA splicing are key steps in the control of gene expression and mutations in genes regulating each of these processes are common in leukaemia1,2. Despite the frequent overlap of mutations affecting epigenetic regulation and splicing in leukaemia, how these processes influence one another to promote leukaemogenesis is not understood and, to our knowledge, there is no functional evidence that mutations in RNA splicing factors initiate leukaemia. Here, through analyses of transcriptomes from 982 patients with acute myeloid leukaemia, we identified frequent overlap of mutations in IDH2 and SRSF2 that together promote leukaemogenesis through coordinated effects on the epigenome and RNA splicing. Whereas mutations in either IDH2 or SRSF2 imparted distinct splicing changes, co-expression of mutant IDH2 altered the splicing effects of mutant SRSF2 and resulted in more profound splicing changes than either mutation alone. Consistent with this, co-expression of mutant IDH2 and SRSF2 resulted in lethal myelodysplasia with proliferative features in vivo and enhanced self-renewal in a manner not observed with either mutation alone. IDH2 and SRSF2 double-mutant cells exhibited aberrant splicing and reduced expression of INTS3, a member of the integrator complex3, concurrent with increased stalling of RNA polymerase II (RNAPII). Aberrant INTS3 splicing contributed to leukaemogenesis in concert with mutant IDH2 and was dependent on mutant SRSF2 binding to cis elements in INTS3 mRNA and increased DNA methylation of INTS3. These data identify a pathogenic crosstalk between altered epigenetic state and splicing in a subset of leukaemias, provide functional evidence that mutations in splicing factors drive myeloid malignancy development, and identify spliceosomal changes as a mediator of IDH2-mutant leukaemogenesis.

Mutations in RNA splicing factors are common in cancer and impart specific changes to splicing that are identifiable by mRNA sequencing (RNA-seq)4–6. Somatic mutations involving the proline 95 residue of the spliceosome component SRSF2 are among the most frequent in myeloid malignancies and alter SRSF2 binding to RNA in a sequence-specific manner6–7. We analysed RNA-seq data in The Cancer Genome Atlas (TCGA)8 from 179 patients with acute myeloid leukaemia (AML), evaluating them for spliceosomal alterations. Aberrant splicing events characteristic of SRSF2 mutations, including EZH26,7 poison exon inclusion, were observed in 19 patients (P = 1.6 × 10−12; Fisher’s exact test; Fig. 1a, Extended Data Fig. 1a, b, Supplementary Table 1). Although only one patient with a mutation in SRSF2 was reported in the TCGA AML publication1, mutational analysis of RNA-seq data identified SRSF2 hotspot mutations in each of these 19 patients (11% of the patients with AML). Therefore, these data retrospectively identify SRSF2 as one of the most commonly mutated genes in the TCGA AML cohort.

Notably, 47% of patients with mutated SRSF2 also had a mutation in IDH2 and conversely, 56% of patients with mutated IDH2 had a mutation in SRSF2 (P = 1.7 × 10−6; Fisher’s exact test; Fig. 1b, Extended Data Fig. 1c, d, Supplementary Table 2). Similar results were seen in RNA-seq data from 498 and 263 patients with AML from the Beat AML8 and Leucogene9 studies, respectively (Fig. 1c, d, Extended Data Fig. 1e–j). Across these datasets, variant allele frequencies of IDH2 and SRSF2 mutations were high and significantly correlated (Extended Data Fig. 1k), suggesting their common place-ment as early events in AML.

Beyond these datasets, combined IDH2 and SRSF2 mutations were identified in 5.2–6.2% of 1,643 unselected consecutive patients with AML in clinical practice (Supplementary Table 3). Although not statistically significant, IDH2 and SRSF2 double-mutant AML cases had the shortest overall survival across the four studied genotypes (Extended Data Fig. 2a). Whereas patients with IDH2 and SRSF2 double mutations had mostly intermediate cytogenetic risk, their prognosis was comparable to those with adverse cytogenetic risk (Extended Data Fig. 2b). The patients with IDH2 and SRSF2 double mutations were also significantly older than those with mutations in IDH2 only, or with wild-type IDH2 and SRSF2 (Extended Data Fig. 2d; clinical and genetic features are summarized in Extended Data Fig. 2 and Supplementary Table 3).

Mutations in IDH2 confer neomorphic enzymatic activity that results in the generation of 2-hydroxyglutarate (2HG)10, which in turn induces DNA hypermethylation via the competitive inhibition of the α-ketoglutarate-dependent enzymes TET1–TET3. Unsupervised hierarchical clustering of DNA methylation data from the TCGA AML cohort revealed that IDH2 and SRSF2 double-mutant AML cases form a distinct cluster with higher DNA methylation than IDH2 single-mutant AML cases (Extended Data Fig. 11–o). Collectively, these data identify IDH2 and SRSF2 double-mutant leukaemia as a recurrent genetically defined AML subset with a distinct epigenomic profile.

We next sought to understand the basis for co-enrichment of IDH2 and SRSF2 mutations. Although mutations in splicing factors are frequently found in leukaemias, there is no functional evidence that they can transform cells in vivo. Overexpression of human IDH2R140Q or IDH2R172K in bone marrow (BM) cells from Vav–cre Srsf2+/− or Vav–cre Srf2+/− mice revealed a clear collaborative effect between mutant IDH2 and Srsf2 (Extended Data Fig. 3a). Four weeks after transplantation, the peripheral blood of recipient mice transplanted with IDH2 and
Srsf2 double-mutant cells had a substantially higher percentage of GFP^+ cells than in an Srsf2 wild-type background (Fig. 2a, Extended Data Fig. 3b, c). Moreover, these mice exhibited significant myeloid skewing, macrocytic anaemia and thrombocytopenia of greater magnitude than seen with mutant IDH2 (Extended Data Fig. 3d–h). IDH2 and Srsf2 double mutants showed no difference in plasma 2HG levels from IDH2 single mutants (Extended Data Fig. 3i, j). Serial replating of BM cells from leukaemic mice revealed markedly enhanced clonogenicity of IDH2 and Srsf2 double-mutant cells compared with other genotypes; the IDH2 and Srsf2 cells exhibited a blastic morphology and immature immunophenotype (Extended Data Fig. 3k–m). Consistent with these in vitro results, mice transplanted with IDH2 and Srsf2 double-mutant cells developed a lethal myelodysplastic syndrome (MDS) characterized by pancytopenia, macrocytosis, myeloid dysplasia, expansion of immature BM progenitors and splenomegaly (Fig. 2b, Extended Data Fig. 3n–w). The IDH2 and Srsf2 double-mutant cells were also serially transplantable in sublethally irradiated recipients (Fig. 2c, Extended Data Fig. 3x). By contrast, IDH2 single-mutant controls developed leukocytosis, myeloid skewing without clear dysplasia and less pronounced splenomegaly, whereas Srsf2 single-mutant cells exhibited impaired repopulation capacity. These results provide evidence that splicing gene mutations can promote leukaemogenesis in vivo.

We next sought to verify the effects of mutant Idh2 and Srsf2 using models in which both mutants were expressed from endogenous loci. Mx1-cre Srsf2^{P95H/} mice were crossed with Idh2^{R140Q/} mice to generate control, Idh2^{R140Q/} single-mutant, Srsf2^{P95H/} single-mutant and Idh2 and Srsf2 double knock-in (DKI) mice (Extended Data Fig. 4a). As expected, 2HG levels in peripheral blood mononuclear cells were increased and 5-hydroxymethylcytosine levels in KIT^+ BM cells were decreased in Idh2 single-mutant and DK1 primary mice compared with controls (Extended Data Fig. 4b, c). We next performed non-competitive transplantation, in which each mutation was induced alone or together following stable engraftment in recipients. DK1 mice showed stable engraftment over time, similar to Idh2 single-mutant or control mice (Extended Data Fig. 4d). However, DK1 mice developed a lethal MDS with proliferative features and significantly shorter survival compared to controls (Fig. 2d). In competitive transplantation, expression of mutant Idh2^{R140Q/} rescued the impaired self-renewal capacity of Srsf2 single-mutant cells (Fig. 2e). These observations were supported by an increase in haematopoietic stem–progenitor cells in DK1 mice compared with Srsf2 single-mutant or control mice in primary and serial transplantation (Extended Data Fig. 4e–i). These results confirm cooperativity between mutant IDH2 and SRSF2 in promoting leukaemogenesis in vivo.

On the basis of data identifying 2HG-mediated inhibition of TET2 as a mechanism of IDH2 mutant leukaemogenesis, we also evaluated whether loss of TET2 might promote transformation of SRSF2 mutant cells. However, deletion of Tet2 in an Srsf2 mutant background was insufficient to rescue the impaired self-renewal capacity of Srsf2 single-mutant cells (Extended Data Fig. 4j–n). Similarly, restoration of TET2 function did not affect the self-renewal capacity of Idh2 and Srsf2 double-mutant cells in vivo (Extended Data Fig. 4o–q). These data indicated that the collaborative effects of mutant Idh2 and Srsf2 are not solely dependent on TET2. Consistent with this, combined silencing of Tet2 and TET3 partially rescued the impaired replating capacity of Srsf2 mutant cells in vitro (Extended Data Fig. 4r, s) and the impaired self-renewal of Srsf2 mutant cells in vivo (Extended Data Fig. 4t–v). Because FTO and ALKBH5—which have roles in RNA processing as N6-methyladenosine (m6A) RNA demethylases—also are dependent on α-ketoglutarate, we investigated the effects of their loss on cooperativity with mutant Srsf2. However, collaborative effects were not observed between loss of Fto or Alkbh5 and Srsf2^{P95H/} (Extended Data Fig. 4w, x).

To understand the basis for cooperation between IDH2 and SRSF2 mutations, we next analysed RNA-seq data from the TCGA (n = 179 patients), BeatAML (n = 498 patients) and Leucegene (n = 263 patients) cohorts as well as two previously unpublished RNA-seq datasets targeting defined IDH2 and SRSF2 genotype combinations (n = 42 patients) and the knock-in mouse models. This revealed that cells with mutations in both IDH2 and SRSF2 consistently contained more aberrant splicing events than cells with mutations in SRSF2 only. Moreover, IDH2 mutations were associated with a small but reproducible change in RNA splicing (Fig. 3a, b, Extended Data Fig. 5a–g, Supplementary Tables 4–20). By contrast, AML cases in which both TET2 and SRSF2 were mutated had fewer changes in splicing than those in which IDH2 and SRSF2 were mutated (Extended Data Fig. 5h–m, Supplementary Tables 21, 22).

The majority of splicing changes associated with SRSF2 mutations involved altered casette-exon splicing, consistent with SRSF2 mutations promoting inclusion of C-rich RNA sequences. The sequence specificity of mutant SRSF2 on splicing was not influenced by concomitant IDH2 mutations (Extended Data Fig. 5n–q) and a number of these events were validated by PCR with reverse transcription.
comparisons were calculated using PSI-Sigma 25. We evaluated INTS3 contains the highest number of predicted SRSF2-binding motifs over the ability to recognize G-rich sequences. Of note, exon 4 of INTS3 was verified by evaluating splicing in versions of the wild-type AML. Consistent with these observations, INTS3 protein expression was reduced in SRSF2 mutant cells. Overall, these data indicate that aberrant splicing and consequent loss of INTS3 was a consistent feature of IDH2 mutations promote increased DNA methylation and DNA methylation can affect splicing, we generated genome-wide maps of DNA cytosine methylation from patients with AML across four genotypes (Supplementary Table 23). This revealed that differentially spliced events in IDH2 single-mutant as well as IDH2 and SRSF2 double-mutant AML (compared to IDH2 and SRSF2 wild-type and SRSF2 single-mutant AML) contained significant hypermethylation of DNA. Thus regions of differential DNA hypermethylation significantly overlapped with regions of differential RNA splicing (Fig. 5e, Extended Data Fig. 7j).

The above results suggest a strong link between increased DNA methylation mediated by mutant IDH2 and altered RNA splicing by mutant SRSF2. To evaluate this further, we next examined DNA methylation levels around endogenous INTS3 exons 4–6 by targeted bisulfite sequencing. This revealed increased DNA methylation at all CpG dinucleotides in this region in IDH2 and SRSF2 double-mutant cells compared to control or single-mutant cells (Fig. 5f, Extended Data Fig. 7k). A functional role of DNA methylation at these sites was verified by evaluating splicing in versions of the INTS3 minigene in which each CG dinucleotide was converted to an AT to prevent expression of multiple integrator subunits. We next sought to understand how IDH2 mutations, which affect the epigenome, might influence splicing catalysis. Splice-site choice is influenced by cis-regulatory elements engaged by RNA-binding proteins as well as RNAPII elongation, which is regulated by DNA cytosine methylation and histone modifications. We therefore generated a controlled system to dissect the contribution of RNA-binding elements and DNA methylation to INTS3 intron retention. We constructed a minigene of spanning exons 4 and 5 and the intervening intron 4 (Extended Data Fig. 7a–c). Transfection of this minigene into leukemia cells containing combinations of IDH2 and SRSF2 mutations revealed that retention of INTS3 intron 4 is driven by mutant SRSF2 and further enhanced in the IDH2 and SRSF2 double-mutant setting (Extended Data Fig. 7d). SRSF2 normally binds C- or G-rich motif sequences in RNA equally well to promote splicing. Leukaemia-associated mutations in SRSF2 promote its avidity for G-rich sequences while reducing the ability to recognize G-rich sequences. Of note, exon 4 of INTS3 contains the highest number of predicted SRSF2-binding motifs over the entire INTS3 genomic region (Extended Data Fig. 7c). We evaluated the role of putative SRSF2 motifs in regulating INTS3 splicing by mutating all six CCNG motifs in exon 4 to G-rich sequences. In this G-rich version of the minigene, intron retention no longer occurred (INTS3-GGNG) (Extended Data Fig. 7e). Conversely, when all G-rich SRSF2 motifs were converted to C-rich sequences (INTS3-CCNG), intron retention became evident (Extended Data Fig. 7f). These results confirmed the sequence-specific activity of mutant SRSF2 in INTS3 intron retention and identified a role for mutant IDH2 in regulating splicing.

Because IDH2 mutations promote increased DNA methylation and DNA methylation can affect splicing, we generated genome-wide maps of DNA cytosine methylation from patients with AML across four genotypes (Supplementary Table 23). This revealed that differentially spliced events in IDH2 single-mutant as well as IDH2 and SRSF2 double-mutant AML (compared to IDH2 and SRSF2 wild-type and SRSF2 single-mutant AML) contained significant hypermethylation of DNA. Thus regions of differential DNA hypermethylation significantly overlapped with regions of differential RNA splicing (Fig. 5e, Extended Data Fig. 7j).

The above results suggest a strong link between increased DNA methylation mediated by mutant IDH2 and altered RNA splicing by mutant SRSF2. To evaluate this further, we next examined DNA methylation levels around endogenous INTS3 exons 4–6 by targeted bisulfite sequencing. This revealed increased DNA methylation at all CpG dinucleotides in this region in IDH2 and SRSF2 double-mutant cells compared to control or single-mutant cells (Fig. 5f, Extended Data Fig. 7k). A functional role of DNA methylation at these sites was verified by evaluating splicing in versions of the INTS3 minigene in which each CG dinucleotide was converted to an AT to prevent cytosine methylation. In these CG-to-AT versions of the minigene, IDH2 mutations no longer promoted mutant-SRSF2-mediated intron retention (Extended Data Fig. 7g–i). As further confirmation of the influence of mutant IDH2 on INTS3 splicing, cell-permeable 2HG increased INTS3 intron retention whereas treatment of IDH2 and SRSF2 double-mutant cells with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-AZA-CdR) inhibited INTS3 intron retention (Extended Data Fig. 7l, m).

Given that changes in epigenetic state may affect splicing by influencing RNAPII stalling, we evaluated the abundance of RNAPII...
INTS3 encodes a component of the integrator complex that participates in small nuclear RNA (snRNA) processing in addition to RNAPII pause–release. Consistent with this, SRSF2 single-mutant cells had altered snRNA cleavage similar to those seen with direct INTS3 downregulation, which was exacerbated in IDH2 and SRSF2 double-mutant cells (Extended Data Fig. 8a–h). Attenuation of INTS3 expression in SRSF2 mutant cells caused a blockade of myeloid differentiation, an effect further enhanced in an IDH2 mutant background (Extended Data Fig. 8i–n). Notably, direct INTS3 downregulation in the Idh2^{-/-} background resulted in enhanced clonogenic capacity of cells with an immature morphology and immunophenotype (Fig. 4d, Extended Data Fig. 8o–r) and promoted clonal dominance of Idh2 mutant cells (Extended Data Fig. 8s–v). Moreover, mice transplanted with Idh2^{-/-} BM cells treated with short hairpin RNA (shRNA) targeting Ints3 exhibited myeloid skewing, anaemia and thrombocytopaenia (Extended Data Fig. 9e–g) and developed a lethal MDS with proliferative features—phenotypes resembling those seen in IDH2 and Srsf2 double-mutant mice (Fig. 4e, Extended Data Fig. 9h, i).

The defects in snRNA processing in SRSF2 single-mutant and IDH2 and SRSF2 double-mutant cells were partially rescued by INTS3 cDNA expression (Extended Data Fig. 8s–x). In addition, restoration of INTS3 expression released SRSF2 single-mutant and IDH2 and SRSF2 double-mutant HL-60 cells from differentiation block (Extended Data Fig. 8y, z). Xenografts of IDH2 and SRSF2 double-mutant HL-60 cells demonstrated that forced expression of INTS3 induced myeloid differentiation and slowed leukaemia progression in vivo (Extended Data Fig. 9a–s). Collectively, these data suggest that INTS3 loss due to aberrant splicing by mutant IDH2 and SRSF2 contributes to leukaemogenesis.

Although loss of INTS3 resulted in measurable changes in snRNA processing, the degree of snRNA mis-processing did not have a substantial effect on splicing as determined by RNA-seq of IDH2^{-/-} HL-60 cells with INTS3 silencing. By contrast, INTS3 depletion in these cells significantly affected transcriptional programs associated with myeloid differentiation, multiple oncogenic signalling pathways, RNAPII elongation-linked transcription and DNA repair (Extended Data Fig. 10a–d, Supplementary Table 25). This latter association of INTS3 loss with DNA repair is potentially consistent with previous reports that sensor of single-stranded DNA complexes containing INTS3 participate in DNA damage response^{18,19}.

These data uncover an important role for RNA splicing alterations in IDH2 mutant tumorigenesis and identify perturbations in integrator as a driver of transformation of IDH2 and SRSF2 mutant cells. However, INTS3 is not known to be recurrently affected by coding-region alterations in leukaemias. We therefore evaluated INTS3 splicing across 32 additional cancer types as well as normal blood cells to evaluate whether aberrant INTS3 splicing might be a common mechanism in AML. This revealed that, whereas INTS3 mis-splicing is most evident in IDH2 and SRSF2 double-mutant AML, INTS3 mis-splicing is also prevalent across other molecular subtypes of AML but is not present in blood cells from healthy subjects or RNA-seq data from more than 7,000 samples from other cancer types (Fig. 4f, Extended Data Fig. 10e, f).

To further evaluate the effects of enforced INTS3 expression in myeloid leukaemia with a wild-type splicing phenotype, we used MLL-AF9;Nrag¹²¹⁰ mouse leukaemia (RN2) cells. INTS3 overexpression reduced colony-forming capacity (Extended Data Fig. 10g, h) and enhanced differentiation of RN2 cells, resulting in decelerated leukaemia progression in vivo (Fig. 4g, Extended Data Fig. 10i–s).

These data highlight a role for loss of INTS3 in broad genetic subtypes of AML. Further efforts to determine how integrator loss...
promotes leukaemogenesis and other non-mutational mechanisms mediating INTS3 aberrant splicing will be critical for understanding and targeting leukaemias with integrator loss. Previous studies have identified that integrator17,20 and SRSF221 have direct roles in modulating transcriptional pause–release. The accumulation of RNAPII at certain mis-spliced loci in this study is consistent with recent data that suggest that mutant SRSF2 is defective in promoting RNAPII pause–release22. Identifying how aberrant splicing mediated by mutant SRSF2 is influenced by altered RNAPII pause–release may therefore be informative.

In addition to modifying splicing in SRSF2 mutant cells, IDH2 mutations were associated with reproducible changes in splicing in haematopoietic cells. There is a strong correlation between aberrant splicing in IDH2 and IDH1 mutant low-grade gliomas (P = 2.2 × 10−16 (binominal proportion test); Extended Data Fig. 10t–w, Supplementary Tables 26–28). A significant number of splicing events that were dysregulated in IDH2 mutant AML from the TCGA and Leucogene cohorts were differentially spliced in IDH2 mutants versus IDH1 and IDH2 wild-type low-grade gliomas (P = 1.8 × 10−8 and P = 1.3 × 10−8, respectively; binominal proportion test). These data suggest that IDH1 and IDH2 mutations impart a consistent effect on splicing regardless of tumour type. Finally, these results have important translational implications given the substantial efforts to pharmacologically inhibit mutant IDH1 and IDH2 as well as mutant splicing factors23,24. The frequent coexistence of IDH2 and SRSF2 mutations underscores the enormous therapeutic potential for modulating splicing in the approximately 50% of patients with IDH2 mutant leukaemia who also have a spliceosomal gene mutation.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-019-1618-0.

Received: 24 May 2018; Accepted: 28 August 2019;
Published online 2 October 2019.

8. Figure, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylated phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).
METHODS

Data reporting. The number of mice in each experiment was chosen to provide 90% statistical power with a 5% error level. Otherwise, no statistical methods were used to predetermine sample size. The experiments were not randomized. The investigators were not blinded to allocation during experiments and outcome assessment.

Mice. All mice were housed at Memorial Sloan Kettering Cancer Center (MSK). All mouse procedures were completed in accordance with the Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committees at MSK. Six- to eight-week-old female C57BL/6 mice were purchased from The Jackson Laboratory (Stock No: 002014). Male and female C57/6.2Sryfl+/- conditional knock-in mice, Idh2fl/fl Sryfl+/-, Mx1-cre Mx1-cre Sryfl+/-, C57BL/6.2Sryfl+/- conditional knock-in mice, and Tet2fl/fl mice were provided by the The Jackson Laboratory (Stock No: 002014).

Mice. All mice were housed at Memorial Sloan Kettering Cancer Center (MSK). All procedures were completed in accordance with the Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committees at MSK. Six- to eight-week-old female C57BL/6 mice were purchased from The Jackson Laboratory (Stock No: 002014). Male and female C57/6.2Sryfl+/- conditional knock-in mice, Idh2fl/fl Sryfl+/-, Mx1-cre Mx1-cre Sryfl+/-, C57BL/6.2Sryfl+/- conditional knock-in mice, and Tet2fl/fl mice were provided by the The Jackson Laboratory (Stock No: 002014).

BM transplantation assays. Freshly dissected femurs and tibiae from C57BL/6 mice were used as bone marrow donors (generation of these mice were as described25–27). For BM transplantation assays with IDH2 overexpression, Sryfl+/- and littermate control mice were crossed to Vav-cre transgenic mice.

CBA analysis was performed on peripheral blood collected from submandibular bleeding, using a Procyte DX Hematology Analyzer (IDEXX Veterinary Diagnostics). For all mouse experiments, the mice were monitored closely for signs of disease or morbidity daily and were euthanized for visible tumour formation at tumour volume >1 cm³, failure to thrive, weight loss > 10% total body weight, open skin lesions, bleeding, or any signs of infection. In none of the experiments were these limits exceeded.

BM transplantation assays. Freshly dissected femurs and tibiae from C57BL/6 mice were isolated from Mx1-cre, Mx1-cre Idh2fl/fl, Mx1-cre Sryfl+/-, Mx1-cre Tet2fl/fl Sryfl+/-, C57/6.2Sryfl+/- mice. BM was flushed with a 3% insulin syringe into cold PBS supplemented with 2% bovine serum albumin to generate single-cell suspensions. BM cells were pelleted by centrifugation at 1,500 r.p.m. for 4 min and red blood cells (RBCs) were lysed in ammonium

Mx1-cre

at tumour volume

expression,

Sryfl+/- and littermate control mice were crossed to Vav-cre transgenic mice.

CBA analysis was performed on peripheral blood collected from submandibular bleeding, using a Procyte DX Hematology Analyzer (IDEXX Veterinary Diagnostics). For all mouse experiments, the mice were monitored closely for signs of disease or morbidity daily and were euthanized for visible tumour formation at tumour volume >1 cm³, failure to thrive, weight loss > 10% total body weight, open skin lesions, bleeding, or any signs of infection. In none of the experiments were these limits exceeded.

BM transplantation assays. Freshly dissected femurs and tibiae from C57BL/6 mice were isolated from Mx1-cre, Mx1-cre Idh2fl/fl, Mx1-cre Sryfl+/-, Mx1-cre Tet2fl/fl Sryfl+/-, C57/6.2Sryfl+/- mice. BM was flushed with a 3% insulin syringe into cold PBS supplemented with 2% bovine serum albumin to generate single-cell suspensions. BM cells were pelleted by centrifugation at 1,500 r.p.m. for 4 min and red blood cells (RBCs) were lysed in ammonium

Mx1-cre

at tumour volume

expression,

Sryfl+/- and littermate control mice were crossed to Vav-cre transgenic mice.

CBA analysis was performed on peripheral blood collected from submandibular bleeding, using a Procyte DX Hematology Analyzer (IDEXX Veterinary Diagnostics). For all mouse experiments, the mice were monitored closely for signs of disease or morbidity daily and were euthanized for visible tumour formation at tumour volume >1 cm³, failure to thrive, weight loss > 10% total body weight, open skin lesions, bleeding, or any signs of infection. In none of the experiments were these limits exceeded.

BM transplantation assays. Freshly dissected femurs and tibiae from C57BL/6 mice were isolated from Mx1-cre, Mx1-cre Idh2fl/fl, Mx1-cre Sryfl+/-, Mx1-cre Tet2fl/fl Sryfl+/-, C57/6.2Sryfl+/- mice. BM was flushed with a 3% insulin syringe into cold PBS supplemented with 2% bovine serum albumin to generate single-cell suspensions. BM cells were pelleted by centrifugation at 1,500 r.p.m. for 4 min and red blood cells (RBCs) were lysed in ammonium

Mx1-cre

at tumour volume

expression,

Sryfl+/- and littermate control mice were crossed to Vav-cre transgenic mice.

CBA analysis was performed on peripheral blood collected from submandibular bleeding, using a Procyte DX Hematology Analyzer (IDEXX Veterinary Diagnostics). For all mouse experiments, the mice were monitored closely for signs of disease or morbidity daily and were euthanized for visible tumour formation at tumour volume >1 cm³, failure to thrive, weight loss > 10% total body weight, open skin lesions, bleeding, or any signs of infection. In none of the experiments were these limits exceeded.

BM transplantation assays. Freshly dissected femurs and tibiae from C57BL/6 mice were isolated from Mx1-cre, Mx1-cre Idh2fl/fl, Mx1-cre Sryfl+/-, Mx1-cre Tet2fl/fl Sryfl+/-, C57/6.2Sryfl+/- mice. BM was flushed with a 3% insulin syringe into cold PBS supplemented with 2% bovine serum albumin to generate single-cell suspensions. BM cells were pelleted by centrifugation at 1,500 r.p.m. for 4 min and red blood cells (RBCs) were lysed in ammonium

Mx1-cre

at tumour volume

expression,

Sryfl+/- and littermate control mice were crossed to Vav-cre transgenic mice.

CBA analysis was performed on peripheral blood collected from submandibular bleeding, using a Procyte DX Hematology Analyzer (IDEXX Veterinary Diagnostics). For all mouse experiments, the mice were monitored closely for signs of disease or morbidity daily and were euthanized for visible tumour formation at tumour volume >1 cm³, failure to thrive, weight loss > 10% total body weight, open skin lesions, bleeding, or any signs of infection. In none of the experiments were these limits exceeded.

BM transplantation assays. Freshly dissected femurs and tibiae from C57BL/6 mice were isolated from Mx1-cre, Mx1-cre Idh2fl/fl, Mx1-cre Sryfl+/-, Mx1-cre Tet2fl/fl Sryfl+/-, C57/6.2Sryfl+/- mice. BM was flushed with a 3% insulin syringe into cold PBS supplemented with 2% bovine serum albumin to generate single-cell suspensions. BM cells were pelleted by centrifugation at 1,500 r.p.m. for 4 min and red blood cells (RBCs) were lysed in ammonium

Mx1-cre

at tumour volume

expression,

Sryfl+/- and littermate control mice were crossed to Vav-cre transgenic mice.

CBA analysis was performed on peripheral blood collected from submandibular bleeding, using a Procyte DX Hematology Analyzer (IDEXX Veterinary Diagnostics). For all mouse experiments, the mice were monitored closely for signs of disease or morbidity daily and were euthanized for visible tumour formation at tumour volume >1 cm³, failure to thrive, weight loss > 10% total body weight, open skin lesions, bleeding, or any signs of infection. In none of the experiments were these limits exceeded.

BM transplantation assays. Freshly dissected femurs and tibiae from C57BL/6 mice were isolated from Mx1-cre, Mx1-cre Idh2fl/fl, Mx1-cre Sryfl+/-, Mx1-cre Tet2fl/fl Sryfl+/-, C57/6.2Sryfl+/- mice. BM was flushed with a 3% insulin syringe into cold PBS supplemented with 2% bovine serum albumin to generate single-cell suspensions. BM cells were pelleted by centrifugation at 1,500 r.p.m. for 4 min and red blood cells (RBCs) were lysed in ammonium

Mx1-cre

at tumour volume

expression,

Sryfl+/- and littermate control mice were crossed to Vav-cre transgenic mice.

CBA analysis was performed on peripheral blood collected from submandibular bleeding, using a Procyte DX Hematology Analyzer (IDEXX Veterinary Diagnostics). For all mouse experiments, the mice were monitored closely for signs of disease or morbidity daily and were euthanized for visible tumour formation at tumour volume >1 cm³, failure to thrive, weight loss > 10% total body weight, open skin lesions, bleeding, or any signs of infection. In none of the experiments were these limits exceeded.
cDNA fragment with Muc tag was generated by PCR amplification using pCMV5S-TET2CD^Δ as a template and inserted into the BglII restriction sites of MSCV-IRE5-mCherry. Retroviral supernatants were produced by transfecting 293 GPl cells with cDNA constructs and the packaging plasmid VSVG using XtremeGen[®] (Roche) or polyethyleneimine hydrochloride (Polysciences). Lentiviral supernatants were produced by similarly transfecting HEK293T cells with cDNA constructs and the packaging plasmid VSVG and psPAX2. Virus supernatants were used for transduction in the presence of polybrene (5 μg ml^{−1}). GFP⁺ mCherry⁺ double-positive HL-60 cells and mCherry[−] K562 cells were FACS-sorted to obtain cells expressing wild-type or mutant IDH2 and SRSF2 in various combinations. Isogenic HL-60 cells transduced with 3× Flag-tagged INT3S or empty vector were obtained by puromycin selection (1 μg ml^{−1}). To let the cells fully establish epithenic changes, they were analysed after culture for more than 30 days.

For in vitro colony-forming assays, a single-cell suspension was prepared and 15,000 cells per 1.5 ml were plated in triplicates in cytokine-supplemented methylcellulose medium (MethoCult GF M3434; StemCell Technologies), and colonies were enumerated every week. For the colony-forming assays shown in Extended Data Fig. 3k, IDH2^{V378D} + Srf2³⁸⁰ knock-in cells were generated by puromycin selection (1 μg ml^{−1}) for 7 days and shRNAs against UPF1 were expressed by doxycycline (2 μg ml^{−1}) for 2 days. GFP⁺ (shRNA)-positive cells were FACS-sorted, treated with 2.5 μg ml^{−1} actinomycin D (Life Technologies), and collected at 0, 2, 4, 8, and 12 h.

ChIP assays. Cells were crosslinked and collected. Chromatin was broken down into 200–1,000-bp fragments using an E220 Focused-ultrasonicator. An antibody was added into the lysate and incubated overnight at 4 °C. Twenty microlitres of ChIP-grade Protein A/G Dynabeads was added into each IP tube and incubated for 2 h. IP samples were washed and crosslinked reverses by adding proteinase K and incubating overnight at 65 °C. DNA was purified with AMPlURE XP beads and eluted DNA was subjected to qPCR to measure the enrichment. RNAPII antibody (60–623; EMG Millipore) was used in this study. Primer sequences used for ChIP–PCR were as follows: Intron 1-3 forward: atacccgctgctctgatct, reverse: tctggagtctggagtctcttgctt; Intron 1-4 forward: atacccgctgctctgctggtct, reverse: ttcgctgctgctggtctcttgctt; Intron 2-3 forward: ttttgcccttgaaaatgac; reverse: ggacaggggaaagaggag; Intron 3-3 forward: ttcagcctgccctgctt; reverse: ttttcccaggctgctt; Exon 4 forward: cccaggccagctgctt; reverse: ccggccaggtgttcgag; Exon 5 forward: ccggccaggtgttcgag; reverse: ccggccaggtgttcgag; Exon 5-4 forward: ccggccaggtgttcgag; Exon 5-3 forward: ccggccaggtgttcgag; reverse: ccggccaggtgttcgag; Exon 5-3 forward: ccggccaggtgttcgag; reverse: ccggccaggtgttcgag; Exon 5-4 forward: ccggccaggtgttcgag; reverse: ccggccaggtgttcgag; Exon 6 forward: ccggccaggtgttcgag; reverse: ccggccaggtgttcgag; Exon 6-5 forward: ccggccaggtgttcgag; reverse: ccggccaggtgttcgag; Exon 6-4 forward: ccggccaggtgttcgag; reverse: ccggccaggtgttcgagt; Exon 6-5 forward: ccggccaggtgttcgag; reverse: ccggccaggtgttcgag.

ChiP–seq libraries were prepared as previously described³¹ and sequenced by the Integrated Genomics Operation (IGO) at MSK with 50 bp paired-end reads.

ChiP–seq of primary human AML samples. ChiP was performed as previously described³¹ using the following antibodies: RNAPII-Ser2P antibody (ChIP Grade) (Abcam ab5095), RNAPlI-Ser5P antibody [4H8] (Abcam ab5408), and anti-HP1 α antibody (ChIP Grade) (Abcam ab5408). Genomic DNA was isolated using the NextSeq platform from Illumina with 275 bp Hi Output (all samples bar K562) and 75 bp (K562) and quantified with AMPure beads (Beckman Coulter) for 200–800-bp size range and quantified with qPCR using a KAPA Library Quantification Kit. ChIP–seq data were generated using the NextSeq platform from Illumina with 2 × 75 bp Hi Output (all samples pooled, and sequenced on four consecutive runs before merger of FASTQ files). Histological analyses. Mice were euthanized and autopsied, and dissected tissue samples were fixed in 4% paraformaldehyde, dehydrated, and embedded in paraffin. Paraffin blocks were sectioned at 4 μm and stained with haematoxylin and eosin (H&E). Images were acquired using an Axio Observer A1 microscope (Carl Zeiss) or scanned using a MIRAX Scanner (Zeiss).

Patient samples. Studies were approved by the Institutional Review Boards of the Memorial Sloan Kettering Cancer Center (under MSK IRB protocol 06-107), Université Paris-Saclay (under declaration DC-200-725 and authorization AC-2013-1884), and the University of Manchester (institution project approval 12-TISO-04), and conducted in accordance with the Declaration of Helsinki protocol. Written informed consent was obtained from all participants. Manchester samples were retrieved from the Manchester Cancer Research Centre Haematological Malignancy Tissue Biobank, which receives sample donations from all consenting patients with leukaemia presenting to The Christie Hospital (REC Reference 07/H1003/161+5; HTA license 30004; instituted with approval of the South Manchester Research Ethics Committee). Patient samples were anonymized by the Hematologic Oncology Tissue Bank of MSK, Biobank of Gustave Roussy, and the Manchester Cancer Research Centre Haematological Malignancy Tissue Biobank. Genomic DNA was isolated from frozen or stored mononuclear cell samples submitted to the Manchester Cancer Research Centre Haematological Tissue Biobank. Targeted sequencing for recurrent myeloid mutations, using either: (a) a 54 gene panel (TruSight Myeloid; Illumina),
pooling 96 samples with 5% PHIX onto a single NextSeq high output, 2 × 151-bp sequencing run; variant call format (VCF) files were analysed using Illumina’s Variant Studio software; (b) a 40 gene panel (Oncomine Myeloid Research Assay; ThermoFisher), processing 8 samples per Ion 530 chip on the IonTorrent platform; data analysis performed using the Ion Reporter software; (c) a 27 gene custom panel (48 × 48 Access Array; Fluidigm) sequenced by Leeds HMDS on the MiSeq platform (300v2); (d) MSK HemePACT targeting all coding regions of 585 genes known to be recurrently mutated in leukaemias, lymphomas, and solid tumours. All panels provide sufficient coverage to detect minimum variant allele fraction 5% for all genes, except for the Access Array panel and SRSF2; all samples genotyped by this approach underwent manual Sanger sequencing of SRSF2 exon 1 using the following primers (tagged with Fluidigm Access Array sequencing adaptors CSI/CS2): forward: acacgagcatgctgtacccgtttacggtcctg, reverse: tacacgagactgctgtacccgtttacggtcctgacaca.

Statistics and reproducibility. Statistical significance was determined by (1) unpaired two-sided Student’s t-test after testing for normal distribution, (2) one-way or two-way ANOVA followed by Tukey’s, Sidak’s, or Dunnett’s multiple comparison test, or (3) Kruskal–Wallis tests with uncorrected Dunn’s test where multiple comparisons should be adjusted (unless otherwise indicated). Data were plotted using GraphPad Prism 7 software as mean values, with error bars representing standard deviation. For categorical variables, statistical analysis was done using Fisher’s exact test or χ²-test (two-sided). Representative western blot and PCR results are shown from three or more than three biologically independent experiments. Representative flow cytometry results and cytometry are shown from biological replicates (n ≥ 3). *P < 0.05, **P < 0.01 and ***P < 0.001, respectively, unless otherwise specified.

mRNA isolation, sequencing, and analysis. RNA was extracted as shown above. Poly(A)-selected, unstranded Illumina libraries were prepared with a modified TruSeq protocol. 0.5× AMPure XP beads were added to the sample library to select for fragments < 400 bp, followed by 1 × beads to select for fragments >100 bp. These fragments were then amplified with PCR (15 cycles) and separated by gel electrophoresis (2% agarose). DNA fragments 300 bp in length were isolated and sequenced on an Illumina HiSeq 2000 (about 100 × 106 101-bp reads per sample). Primary samples from the Manchester Cancer Research Centre Haematological Malignancies Biobank with known IDH1/2/SDSF2 genotype mutation were FACS-sorted to enrich for blasts on a FACS Aria III sorter using a panel including the following antibodies (all mouse anti-human): CD34-PerCP (8G12, BD); CD117-PE (8G12, BD); CD13-APC (56.7, BioLegend); CD11b-PE (56.7, BioLegend); CD13-PE (L138, BD); CD45-APC-H7 (2D1, BD). RNA was extracted immediately using a Qiagen Micro RNeasy kit. All RNA samples had RIN values > 7.

Identification and quantification of differential splicing. The inclusion ratios of alternative exons or introns were estimated by using PSI-Sigma values. In brief, the new PSI index considers all isoforms in a specific gene region and can report the PSI value of individual exons in a multiple-exon-skipping or more complex splicing event. The database of splicing events was constructed based on both gene annotation and the alignments of RNA-seq reads. A new splicing event not known to the gene annotation is labelled as ‘novel’ and a splicing event with a reference transcript that is known to induce nonsense-mediated decay is labelled as ‘NMD’ in Supplementary Tables. The inclusion ratio of an intron retention isoform is estimated based on the median of 5 counts of intronic reads at the 1st, 25th, 50th, 75th and 99th percentiles in the intron. A splicing event is reported when both sample-size and statistical criteria are satisfied. The sample-size criterion requires a splicing event to have more than 20 supporting reads in more than 75% of the 2 populations in the comparison. For example, for a comparison of 130 control versus 6 IDH2 mutant samples, a splicing event would be reported only when having more than 98 controls and 5 IDH2 mutant samples with more than 20 supporting reads. In addition, a splicing event is reported only when it has more than 10% PSI change in the comparison and has a P value lower than 0.01.

To generate Fig. 4f, RNA-seq reads were mapped and PSI values were calculated using junction-spanning reads as previously described16,37. All reads mapping to the INT33 introns (chr1:153,718,433-153,722,231; hg19) were extracted from the bam files and the per-nucleotide coverage was calculated. Data from normal peripheral blood and BM mononuclear cells and CD34+ cord blood cells are combined and shown as normal haematopoietic cells.

Motif enrichment and distribution. Motif analysis was done by using MEME SUITE38. In brief, the sequences of alternative exons of exon-skipping events were extracted from a given strand of the reference genome. The sequences were used as the input for MEME SUITE to search for motifs. One occurrence per sequence was set to be the expected site distribution. The width of motif was set to 5. The top 1 motif was selected on the basis of the ranking of E-value.

Heat map and sample clustering (differential splicing). The heat maps and sample clustering were done by using MORPHEUS (https://software.broadinstitute.org/morpheus/). The individual values in the matrix for the analysis were PSI values of a splicing event from a given RNA-seq sample. Splicing events were selected based on three criteria: (1) present in both TCGA and Leucegene datasets, (2) >5% PSI changes; and (3) false discovery rate smaller than 0.01. Unsupervised hierarchical clustering was based on one minus Pearson’s correlation (complete linkage).

Correlation between global changes in splicing and DNA methylation. DNA methylation levels were determined by eRRBS and differentially spliced events were obtained from RNA-seq data. In Fig. 3e, Overlaps of differentially methylated regions of DNA with differential splicing was obtained by evaluating differential cytosine methylation in 500-bp segments of DNA at genomic coordinates at which differential RNA splicing were observed comparing AML with distinct IDH2/SDSF2 genotype genotypes. (a) WT represents patients without mutations in IDH1/IDH2/spliceosomal genes.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability
RNA-seq, ChIP-seq and eRRBS data have been deposited in the NCBI Sequence Read Archive under accession number SRP133673. Gel source data are shown in Supplementary Fig. 1. Other data that support the findings of this study are available from the authors upon reasonable request.

Acknowledgements We thank D. L. Fei, Y. Huang, E. Wang, I. Aifantis, M. Patel, A. S. Shih, A. Penson, E. Kim, Y. R. Chung, B. H. Durham and H. Kunimoto for technical support. J. Wilusz for sharing recent data on integrator and B. J. Drucker for sharing the Beat AML RNA-seq data. A.Y. is supported by grants from the Aplastic Anemia and MDS International Foundation (AA&MDSIF) and the Laur Strauss Leukemia Foundation. A.Y. is a Special Fellow of The Leukemia and Lymphoma Society. A.Y., S.C.-W.L. and D.I. are supported by the Leukemia and Lymphoma Society Special Fellow Award. A.Y. and D.I. are supported by JSPS Overseas Research Fellowships. D.H.W. is supported by a Bloodwise Clinician Scientist Fellowship (15030). D.H.W. and K.B. are supported by fellowships from The Oligosby Charitable Trust. S.C.-W.L. is supported by the NIH/NCI (K99 CA218996) and the ASH Scholar Award. T.C.P.S. is supported by Cancer Research UK grant number C5759/A20971. E.J.W. is supported by grants from the CPRIT (RP140800) and the Welch Foundation (H-1889-20150801). R.K.B. and O.A.-W. are supported by grants from NIH/NIHBLI (RO1 HL128239) and the Department of Defense Bone Marrow Failure Research Program (W81XWH-16-1-0059). A.R.K. and O.A.-W. are supported by grants from the Starr Foundation (18-A8-075) and the Henry & Marilyn Taub Foundation. O.A.-W. is supported by grants from the Edward P. Evans Foundation, the Josie Robertson Investigator Program, the Leukemia and Lymphoma Society and the Pershing Square Sohn Cancer Research Alliance.

Competing interests A.M.I. has served as a consultant and advisory board member for Foundation Medicine. E.M.S. has served on advisory boards for Astellas Pharma, Daiichi Sankyo, Bayer, Novartis, Syros, Pfizer, PTC Therapeutics, AbbVe, Agios and Celgene and has received research support from Agios, Celgene, Syros and Bayer. R.L.L. is on the Supervisory Board of Qiagen and the Scientific Advisory Board of Loxo, reports receiving commercial research grants from Celgene, Roche and Prelude, has received honoraria from the speakers bureaus of Gilead and Lilly, has ownership interest (including stock and patents) in Qiagen and Loxo, and is a consultant and/or advisory board member for Novartis, Roche, Janssen, Celgene and Incyte. A.R.K. is a founder, director, advisor, stockholder and chair of the Scientific Advisory Board of Stoke Therapeutics and receives compensation from the company. A.R.K. is a paid consultant for Biogen; he is a member of the SABs of Skyhawk Therapeutics, Envisagenics BioAnalytics and Autoimmunity Biologic Solutions, and has received compensation from these companies in the form of stock. A.R.K. is a research collaborator of Ionis Pharmaceuticals and has received royalty income from Ionis through his employer, Cold Spring Harbor Laboratory. O.A.-W. has served as a consultant for H3 Biomedicine, Foundation Medicine, Merck and Janssen. O.A.-W. has received personal speaking fees from Daiichi Sankyo. O.A.-W. has received previous research funding from H3 Biomedicine unrelated to the current manuscript. D.I., R.K.B. and O.A.-W. are inventors on a provisional patent application (patent number FHCC.P0044US.P) applied for by Fred Hutchinson Cancer Research Center on the role of reactivating BRD9 expression in cancer by modulating aberrant BRD9 splicing in SF3B1 mutant cells.

Additional information Supplementary information is available for this paper at https://doi.org/10.1038/s41586-019-1618-0. Correspondence and requests for materials should be addressed to O.A.-W. Peer review information Nature thanks Rotem Karni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | See next page for caption.
Extended Data Fig. 1 | Mutant SRSF2-mediated splicing events in acute myeloid leukaemia (AML). a, Representative Sashimi plots of RNA-seq data from the TCGA showing the poison exon inclusion event in EZH2 ('Control' represents samples that are wild type (WT) for the following seven genes: IDH1, IDH2, TET2, SRSF2, SF3B1, U2AF1, and ZRSR2; 'IDH2 mutant' refers to patients with an IDH2 mutation and no mutation in the other six genes; 'SRSF2 mutant' refers to patients with an SRSF2 mutation and no mutation in the other five genes; 'double-mutant' refers to patients with an IDH2 and SRSF2 mutation and no mutation in the other five genes; 'others' refers to patients with mutations in IDH1, TET2, SF3B1, U2AF1 or ZRSR2; figure made using Integrative Genomics Viewer (IGV 2.3)39).

b, PSI values of EZH2 poison exon inclusion (the number of analysed patients is indicated; mean ± s.d.; one-way ANOVA with Tukey’s multiple comparison test). Note that patients classified as ‘others’ include one patient with an SRSF2P95L mutation with a coexisting IDH1R132G mutation (TCGA ID: 2990) and one patient with an IDH2 R140Q mutation also having an SF3B1 K666N mutation (TCGA ID: 2973), which were excluded from the analyses shown above. c, d, g–j, VAFs of SRSF2 mutations affecting the proline 95 residue (c, h, j) and IDH2 mutations affecting IDH2 arginine 140 or 172 (d, g, i) in TCGA (c, d), Beat AML (g, h) and Leucegene (l, j) datasets (mean ± s.d.; two-sided Student’s t-test). e, f, Heat map based on the ΔPSI of mutant SRSF2-specific splicing events in AML from Beat AML (e) and Leucegene (f) cohorts. ‘8aa DEL’ represents samples with 8 amino acid deletions in SRSF2 starting from proline 95, which has similar effects on splicing as point mutations affecting SRSF2 P95. Detailed information of splicing events shown is available in Supplementary Table 1. k, VAFs of IDH2 (x axis) and SRSF2 mutations (y axis) in IDH2 and SRSF2 double-mutant AML determined by RNA-seq data from the TCGA, Beat AML, Leucegene and our previously unpublished cohorts (Pearson correlation coefficient; P value (two-tailed) was calculated by Prism7). l, n, Unsupervised hierarchical clustering of DNA methylation levels of all probes (l) or at the promoter probes (n) in the TCGA AML cohort based on IDH2, SRSF2 and TET2 genotypes. m, o, DNA methylation levels of AML samples from each genotype are quantified and visualized from l and n as violin plots (the line represents mean, box edges show 25th and 75th percentiles and whiskers represent 2.5th and 97.5th percentiles; one-way ANOVA with Tukey’s multiple comparison test). **P < 0.01, ***P < 0.001.
Extended Data Fig. 2 | See next page for caption.
Extended Data Fig. 2 | Clinical relevance of coexisting *IDH2* and *SRSF2* mutations in AML.

a–**c**, Kaplan–Meier survival analysis of patients with AML from the Manchester/Christie Biobank dataset (**a**: based on *IDH2* and *SRSF2* genotype (n = 258); **b**: based on cytogenetic risk (n = 284)) and the TCGA (c; n = 161; based on *IDH1*, *IDH2* and *SRSF2* genotypes (log-rank (Mantel–Cox) test (two-sided))). **d**, Age at diagnosis of patients from the TCGA, Beat AML, and Manchester/Christie Biobank cohorts combined (the line represents mean, box edges show 25th and 75th percentiles and whiskers represent 2.5th and 97.5th percentiles; samples below 2.5th percentile and above 97.5th percentile are shown as dots; one-way ANOVA with Tukey’s multiple comparison test). **e**, Distribution of French–American–British (FAB) classification of patients with AML with the indicated genotypes from the TCGA cohort. **f**–**h**, Mutations coexisting with *IDH2* and *SRSF2* double-mutant and *SRSF2* single-mutant AML from the TCGA (**f**), Beat AML (**g**), and Manchester/Christie Biobank (**h**) cohorts are shown with FAB classification, cytogenetic risk, prior history of myeloid disorders, and genetic risk stratification based on European LeukaemiaNet (ELN) 2008 and ELN2017 guidelines (the number of patients is indicated; *P* values on the right represent statistical significance of co-occurrence (red and orange) or mutual exclusivity (blue and light blue) of each gene mutation with *SRSF2* (including those in *IDH2* and *SRSF2* double-mutant AML) or coexisting *IDH2* and *SRSF2* mutations; Fisher’s exact test (two-sided)). *P < 0.05, **P < 0.01, ***P < 0.001.
Extended Data Fig. 3 | See next page for caption.
Extended Data Fig. 3 | Mutant IDH2 cooperates with mutant Srsf2 to generate lethal MDS with proliferative features in vivo. a, Schematic of BM transplantation model. b, c, Chimerism of CD45.2⁺ cells in the peripheral blood of recipient mice over time (b) (n = 5 per group at 4 weeks; mean percentage ± s.d.; two-way ANOVA with Tukey’s multiple comparison test) and representative flow cytometry data showing the chimerism of CD45.2⁺ versus CD45.1⁺ (top) or GFP⁺ (bottom) cells in peripheral blood at 16 weeks post-transplant (c) (representative results from five recipient mice; the percentages listed represent the percent of cells within live cells). d, Composition of peripheral blood mononuclear cells (PBMCs) at 28 weeks post-transplant (the number of analysed mice is indicated; mean ± s.d.; two-way ANOVA with Tukey’s multiple comparison tests; statistical significances were detected in percentage of cells). e–h, Blood counts at 20 weeks post-transplant (white blood cells (WBC) (e); haemoglobin (Hb) (f); platelets (PLT) (g); mean corpuscular volume (MCV) (h); the number of analysed mice is indicated; mean ± s.d.; one-way ANOVA with Tukey’s multiple comparison tests). i, Plasma 2HG levels at 20 weeks post-transplant (2HG levels were quantified as previously described⁴⁰; n = 5 per group were randomly selected; mean ± s.d.; one-way ANOVA with Tukey’s multiple comparison test). j, Correlations between plasma 2HG levels and number of GFP⁺ cells in peripheral blood at 24 weeks post-transplant (n = 5 per group; the Pearson correlation coefficient (R²) and P values (two-tailed) were calculated using PRISM 7). k, Colony numbers from serial replating assays of BM cells collected from end-stage mice from Fig. 2b are shown (mean value ± s.d. represented by lines above the box; the number of analysed mice is indicated; two-way ANOVA with Tukey’s multiple comparison test). l, Giemsa staining of IDH2^{R172K} Srsf2^{P95H} double-mutant cells from the sixth plating (scale bar, 10 μm; original magnification, ×400; representative result from 9 biologically independent experiments). m, Immunophenotype of colony cells at the sixth plating. Normal BM cells were used as a control (the percentage listed represent the percent of cells within live cells; representative result from nine recipient mice). n, Cytomorphology of BM mononuclear cells (BMMNCs) from recipient mice at end stage. BM cells from IDH2 single-mutant and IDH2 and Srsf2 double-mutant groups have increased granulocytes. In addition, IDH2 and Srsf2 double-mutant groups had proliferation of monoblastic and monocytic cells as well as dysplastic features such as abnormally segmented neutrophils (black arrow and inset) and binucleated erythroid precursors with irregular nuclear contours (insets) (scale bar, 10 μm; original magnification, ×400; representative results from 3 controls and 9 recipients are shown; number of mice indicated in o–r). o–r, Blood counts at end-stage (WBC (o); Hb (p); PLT (q); MCV (r); the number of analysed mice is indicated; mean ± s.d.; Kruskal–Wallis tests with uncorrected Dunn’s test). s–u, Results from flow cytometry analysis of BM (s) and peripheral blood (t) mature lineages as well as BM haematopoietic stem/progenitor cells (HSPC) from two tibias, two femurs, and two pelvic bones (u) are quantified (LSK, Lineage ‘SCA1+ KIT’; LT-HSC, long-term haematopoietic stem cell (HSC); ST-HSC, short-term HSC; MPP, multi-potent progenitor; LK, Lineage ‘SCA1+ KIT’; CMP, common myeloid progenitor; GMP, granulocyte-monocyte progenitor; MEP, megakaryocyte-erythroid progenitor; the number of analysed mice is indicated; mean ± s.d.; two-way ANOVA with Tukey’s multiple comparison test). v, w, Spleen weight at end stage (v; the number of analysed mice is indicated; mean ± s.d.; two-way ANOVA with Tukey’s multiple comparison test) and representative photographs of spleens from recipient mice from v (w; each photograph was taken with an inch ruler). x, Kaplan–Meier survival analysis of serially transplanted recipient mice that were lethally irradiated (n = 5 per group; log-rank (Mantel–Cox) test (two-sided)). *P < 0.05, **P < 0.01, ***P < 0.001.
Extended Data Fig. 4 | See next page for caption.
Extended Data Fig. 4 | Collaborative effects of mutant Idh2 and mutant Srsf2 are not dependent on Tet2 loss alone. a, Schematic of competitive and non-competitive transplantation assays of CD45.2 + Mx1-cre control, Mx1-cre Idh2R140Q/+ , Mx1-cre Srsf2P95H/+ , Mx1-cre Tet2fl/fl Srsf2P95H/+ , Mx1-cre Tet2fl/fl Srsf2P95H/+ , Mx1-cre Tet2fl/fl Srsf2P95H/+ , Mx1-cre Tet2fl/fl Srsf2P95H/+ mice, Mx1-cre Tet2fl/fl Srsf2P95H/+ mice into CD45.1 + recipient mice. b, 2HG levels of bulk BMNCs from primary Mx1-cre mice were measured at three months post-pIpC (polyinosinic:polycytidylic acid) and normalized to internal standard (2-hydroxybutaric acid; 2,3,3,4,4-d5 acid; D5-2HG) (2HG and D5-2HG levels were quantified as described66; n = 5 per group; mean ± s.d.; one-way ANOVA with Tukey’s multiple comparison test). c, DNA extracted from sorted KIT + BM cells from primary Mx1-cre mice at one month post-pIpC was probed with antibodies specific for 5-hydroxymethylcytosine (5hmC) (left). Relative intensity of each dot was measured by ImageJ and divided by input DNA amount for comparison (right; n = 4; intensity of each dot divided by amount of input DNA was combined per genotype); representative results from 3 biologically independent experiments with similar results; mean ± s.d.; one-way ANOVA with Tukey’s multiple comparison test). d, Chimerism of peripheral blood CD45.2 + cells in non-competitive transplantation (pIpC was injected at 4 weeks post-transplant; mean ± s.d.; n = 10 (control and Idh2R140Q), n = 8 (Srsf2P95H), and n = 9 (DKI) at 0 week; two-way ANOVA with Tukey’s multiple comparison test; P values from comparison between Srsf2P95H and each of other groups are shown). e–i, Absolute number of BM HSPCs from two tibias, two femurs, and two pelvic bones were measured in the primary competitive transplant of Idh2 and Srsf2 mutant cells, and representative flow cytometry of BM HSPCs from the primary competitive transplant of Idh2 and Srsf2 mutant cells from e, f (the percentage listed represents the percent of cells within live cells) (the number of analysed mice is indicated; mean ± s.d.; two-way ANOVA with Tukey’s multiple comparison test). j, Kaplan–Meier survival analysis of CD45.1 + recipient mice transplanted non-competitively with BM cells from CD45.2 + Mx1-cre control, Mx1-cre Tet2fl/fl Srsf2P95H/+ , Mx1-cre Tet2fl/fl Srsf2P95H/+ mice (pIpC was injected at 4 weeks post-transplant; n = 10 per genotype; log-rank (Mantel–Cox) test (two-sided)). k, I, Chimerism of peripheral blood CD45.2 + cells in non-competitive (k) (n = 10 (control and Tet2 knockout (Tet2KO)), n = 8 (Srsf2P95H), and n = 5 (Tet2KO + Srsf2P95H) at 0 weeks) or competitive (l) (n = 9 (control), n = 10 (Tet2KO), n = 8 (Srsf2P95H), and n = 10 (Tet2KO + Srsf2P95H) at 0 weeks) transplantation (pIpC was injected at 4 weeks post-transplant; percentages of CD45.2 + cells at pre-transplant are also shown as data at 0 weeks in l; mean ± s.d.; two-way ANOVA with Tukey’s multiple comparison test). m, n, Absolute number of BM HSPCs from two tibias, two femurs, and two pelvic bones were measured in the primary competitive transplant of Tet2 and Srsf2 mutant cells (n = 10 per genotype; mean ± s.d.; two-way ANOVA with Tukey’s multiple comparison test). o, Schematic of TET2 catalytic domain (CD: catalytic domain; EV: empty vector) retroviral BM transplantation model. p, Western blot analysis confirming the expression of Myc-tagged TET2 CD in Ba/F3 cells transduced with or without TET2 CD (representative images from two biologically independent experiments with similar results). q, Colony numbers from serial replating assays of BM cells from Mx1-cre control, Mx1-cre Tet2fl/fl Srsf2P95H/+ , and Mx1-cre Tet2fl/fl Srsf2P95H/+ mice transduced with shRNAs targeting TET3 (shTet3) (n = 3; mean ± s.d.; two-way ANOVA with Tukey’s multiple comparison test). t, Schematic of shTet3 retroviral BM transplantation model. u, v, Chimerism of mCherry + cells in CD45.2 + donor cells in peripheral blood of recipient mice over time (u; left, Mx1-cre Srsf2P95H/+ , right, Mx1-cre Tet2fl/fl Srsf2P95H/+ ; n = 5 per group) and at 20 weeks post-transplant (v) (mean percentage ± s.d.; two-way ANOVA with Sidak’s multiple comparison test). w, Colony numbers from serial replating assays of either Mx1-cre Tet2fl/fl Srsf2P95H/+ or Srsf2P95H BM cells transduced with an shRNA against Fto or Alkbh5. BM cells were collected at one month post-pIpC (n = 3; mean ± s.d.; two-way ANOVA with Tukey’s multiple comparison test). x, qPCR of Fto or Alkbh5 in Ba/F3 cells transduced with shRNAs targeting mouse Fto or Alkbh5 (n = 3; mean value ± s.d.; one-way ANOVA with Tukey’s multiple comparison test). *P < 0.05, **P < 0.01, ***P < 0.001.
Extended Data Fig. 5 | See next page for caption.
Extended Data Fig. 5 *IDH2* mutations augment the RNA splicing defects of *SRSF2* mutant leukaemia. a–c, Venn diagram showing numbers of differentially spliced events from the Beat AML cohort (a), unpublished collaborative cohort 2 (b) and mouse Lin+ Kit+ bone marrow cells at 12 weeks post-plpC (c) based on *IDH2* and *SRSF2* mutant genotypes. d, Venn diagram showing the numbers of overlapping alternatively spliced events between *IDH2* and *SRSF2* double-mutant AMLs and mouse models (***P = 2.2 × 10−16; binomial test). e–g, Δ|PSI| (Δ|PSI| = |PSI|_{Double} − |PSI|_{SRSF2}) values for each overlapping mis-spliced event in *SRSF2* single-mutant and *IDH2* and *SRSF2* double-mutant AML from the TCGA (e), Beat AML cohort (f) and unpublished collaborative cohort 2 (g) are plotted along the y axis. Spliced events shown in green and red represent events that are more robust in *IDH2* and *SRSF2* double-mutant and *SRSF2* single-mutant AML, respectively, in terms of |PSI| values. The mean |PSI| value of each event was visualized as violin plots on the bottom (n = 292, n = 1,741, and n = 187, respectively; PSI values were calculated using PSI-Sigma; the line represents mean, box edges show 25th and 75th percentiles and whiskers represent 2.5th and 97.5th percentiles; samples below 2.5th percentile and above 97.5th percentile are shown as dots; paired two-tailed Student t-test). h, i, Venn diagram of numbers of differentially spliced events from the TCGA (h) and Beat AML (i) datasets based on *IDH2*, TET2 and *SRSF2* genotypes. j, k, Absolute numbers of each class of alternative splicing event from TCGA (j) and Beat AML (k) datasets are shown. SES, single-exon skipping; MES, multiple-exon skipping; MXS, mutually-exclusive splicing; A5SS, alternative 5′ splice site; A3SS, alternative 3′ splice site. l, m, Differentially spliced events ([Δ|PSI| > 10% and P < 0.01 were used as thresholds) in indicated genotype from the TCGA (l) (n = 730 differentially spliced events) and Beat AML (m) (n = 1,339 differentially spliced events) cohorts are ranked by y axis and class of event (PSI and P values adjusted for multiple comparisons were calculated using PSI-Sigma). n–p, Sequence logos of nucleotide motifs of exons preferentially promoted or repressed in splicing in *SRSF2* single-mutant (top) or *IDH2* and *SRSF2* double-mutant (bottom) AML from the TCGA cohort (n), Beat AML cohort (o) and mouse models (p). q, Percentage of each class of alternative splicing event from TCGA cohort is shown in a pie-chart. r–t, Differentially spliced events ([Δ|PSI| > 10% and P < 0.01 were used as thresholds) in indicated genotype from the Beat AML (r) (n = 2,183, 5,648, and 79 differentially spliced events, respectively), unpublished collaborative cohort 2 (s) (n = 558, 1,926, and 94 differentially spliced events, respectively) and Leucegene cohort (t) (n = 2,571, 787, and 122 differentially spliced events, respectively) are ranked by y-axis and class of event (PSI and P values adjusted for multiple comparisons were calculated using PSI-Sigma). u, w, Representative Sashimi plots of RNA-seq data showing the intron retention events in *REC8* (u) and *PHF6* (q) from the TCGA dataset. v, x, PSI values for intron retention events in *REC8* (v) and *PHF6* (x) in normal PBMCs (GSE5833541), BMMNCs (GSE6141041), cord blood CD34+ cells (GSE4884641), and AML samples with indicated genotypes (the line represents the median, box edges show 25th and 75th percentiles and whiskers represent 2.5th and 97.5th percentiles; samples below 2.5th percentile and above 97.5th percentile are shown as dots; PSI values for intron retention events in *REC8* and *PHF6* were calculated using PSI-Sigma; one-way ANOVA with Tukey’s multiple comparison test; *P < 0.05; **P < 0.01; ***P < 0.001). y, Volcano plots of aberrant splicing events in TCGA AML data comparing *SRSF2* single-mutant and *IDH2,* *SRSF2* double-mutant AML (n = 122 differentially spliced events; PSI and P values adjusted for multiple comparisons were calculated using PSI-Sigma; [Δ|PSI| > 10% and P < 0.01 were used as thresholds).
Extended Data Fig. 6 | See next page for caption.
Extended Data Fig. 6 | Aberrant INTS3 transcripts undergo nonsense-mediated decay, and effect of INTS3 loss extends to other members of the integrator complex. a, Representative Sashimi plots of RNA-seq data from the TCGA showing intron retention in INTS3. b, c, PSI values for INTS3 exon 5 skipping (b) and intron 4 retention (c) in normal PBMNC (GSE5833541), BMMNC (GSE6141041), cord blood CD34+ cells (GSE4884645) and AML samples with indicated genotypes (the number of RNA-seq samples analysed is indicated; PSI and P values adjusted for multiple comparisons were calculated using PSI-Sigma; the line represents mean, box edges show 25th and 75th percentiles and whiskers represent 2.5th and 97.5th percentiles; samples below 2.5th percentile and above 97.5th percentile are shown as dots; one-way ANOVA with Tukey's multiple comparison test). d, Sanger sequencing of cDNA showing wild-type or mutant SRSF2 expression in isogenic K562 knock-in cells. #a nonsynonymous mutation that alters P95; ##a synonymous mutation that does not change the amino acid. e, RT–PCR and western blot analysis of INTS3 in isogeneic HL-60 cells with various combinations of IDH2 and SRSF2 mutations. IR: intron retention; ES: exon skipping. Representative results from three biologically independent experiments with similar results. f, RT–PCR and western blot of INTS3 in non-isogenic myeloid leukaemia cell lines. SRSF2 genotypes are shown together (representative results from three independent experiments with similar results). g, Western blot analysis of K562 SRSF2P95H knock-in cells transduced with shRNAs against UPF1 (representative results from three biologically independent experiments with similar results). h, Primers used to specifically measure INTS3 isoform with intron 4 retention and exon 5 skipping, and those for the normal INTS3 isoform. i, j, Half-life of INTS3 transcripts with exon 5 skipping (i) and intron 4 retention (j) were measured by qPCR (n = 3; mean ± s.d.; a two-sided Student's t-test). k, l, Western blot analysis of protein lysates of samples from patients with AML with the indicated IDH2 and SRSF2 genotypes (k). Expression level of each integrator subunit was quantified using ImageJ and relative expression levels are shown in l, in which the mean expression levels of control samples were set as 1 (n = 6 for control, IDH2 single-mutant, and SRSF2 single-mutant AML, and n = 7 for IDH2 and SRSF2 double-mutant AML; detailed information of the primary patient samples used for this analysis is provided in Supplementary Table 23; mean ± s.d.; one-way ANOVA with Tukey's multiple comparison test). m, Western blot analysis of protein lysates from isogenic K562 cells with indicated IDH2 and SRSF2 genotypes (left) or with INTS3 knockdown (right) (representative results from three biologically independent experiments are shown). n, Western blot analysis of murine Lin− KIT+ BM cells at 12 weeks post-plpC based on Idh2 and Srsf2 mutant genotypes. Expression level of INTS3 was quantified using ImageJ and relative expression levels are shown below; n = 2 mice per genotype were analysed. o, Correlation among indicated Integrator subunits and P value were calculated in Excel and R² values are visualized as a heat map generated by Prism 7 (top). Correlation between INTS3 and INTS9 protein expression is shown (bottom) (n = 25 from k; the Pearson correlation coefficient (R²) and P values (two-tailed) were calculated in Excel). *P < 0.05, **P < 0.01, ***P < 0.001.
Extended Data Fig. 7 | See next page for caption.
Extended Data Fig. 7 | DNA hypermethylation at INTS3 enhances INTS3 mis-splicing, which is associated with RNAPII stalling.
a, Sequence of human INTS3 exon 4, intron 4 and exon 5, and schematic of INTS3 minigene constructs. GG(A/U)G motifs, (C/G)C(A/U)G motifs, and CG dinucleotides are highlighted in blue, red, and green, respectively. b, Schematic of INTS3 minigene constructs. c, Table revealing the number of GGNG or CCNG motifs in exon 4, entire cDNA of INTS3 or entire genomic DNA (gDNA) of INTS3 per 100 nucleotides. d–i, Radioactive RT–PCR results of INTS3 minigene assays using indicated versions of the minigene in isogenic K562 cells. Percentage of intron 4 retention were normalized against exogenous eGFP (n = 3; mean percentage ± s.d.; one-way ANOVA with Tukey’s multiple comparison test). j, Mean percentage of methylated CpGs at ARID3A in samples from patients with AML with indicated genotypes determined by eRRBS (n = 3 patients per genotype), followed by IGV plots of RNA-seq data of ARID3A from the TCGA. k, Results of eRRBS (n = 1 per genotype) and RNAPII-Ser2P ChIP-walking experiments are represented as shown in Fig. 3f (n = 3; mean percentage ± s.d.; two-way ANOVA with Tukey’s multiple comparison test). l, m, RT–PCR results detecting INTS3 intron retention in isogenic K562 cells containing various combinations of IDH2 and SRSF2 mutations that were treated with cell-permeable 2HG at 0.5 μM (l) or 5′-AZA-CdR at 5 μM (m) for 8 days (representative results from three biologically independent experiments with similar results). n, RNAPII pausing index in isogenic SRSF2WT or SRSF295H mutant K562 cells was calculated as previously described30 as a ratio of normalized ChIP–seq reads of RNAPII-Ser5P on TSSs (±250 bp) over that of the corresponding bodies (+500 to +1,000 from TSSs) (the line represents the median, box edges show 25th and 75th percentiles and whiskers represent 2.5th and 97.5th percentiles; each box plot was made by analysing ChIP–seq data from one cell line; two-sided Student’s t-test). o, Metagene plots showing genome-wide RNAPII-Ser5P occupancy in primary samples from patients with AML with indicated genotypes (patient samples used for this analysis are described in Supplementary Table 23). p, q, RNAPII occupancy representing ChIP–seq reads of RNAPII-Ser2P over gene bodies was calculated for isogenic K562 cells (p) and AML samples (q) (the line represents the median, box edges show 25th and 75th percentiles and whiskers represent 2.5th and 97.5th percentiles; each box plot was made by analysing ChIP–seq data from one cell line (p) or one primary AML sample (q); two-sided Student’s t-test (p) and one-way ANOVA with Tukey’s multiple comparison test (q)). r, s, Genome browser view of ChIP–seq signal for RNAPII Ser5P at INTS5 (r) and INTS14 (s) in isogenic K562 cells with or without SRSF2 mutation (n = 1) and primary AML samples with indicated genotype (results generated from n = 2 primary AML samples are shown). t, RNAPII abundance over the differentially spliced regions between IDH2 and SRSF2 wild-type control and SRSF2 single-mutant AML determined by RNAPII-Ser2P ChIP–seq (y axis, log2(counts per million); the line represents the median, box edges show 25th and 75th percentiles and whiskers represent 2.5th and 97.5th percentiles; each box plot was made by analysing ChIP–seq data from one primary AML sample; one-way ANOVA with Tukey’s multiple comparison test). *P < 0.05, **P < 0.01, ***P < 0.001.
Extended Data Fig. 8 | See next page for caption.
Extended Data Fig. 8 | Loss of INTS3 impairs uridine-rich small nuclear RNA processing and blocks myeloid differentiation.

a, Schematic of snRNA processing site and qPCR primers for detecting cleaved or uncleaved snRNA. **b**, qPCR (top; n = 3; mean ± s.d.; a two-sided Student's t-test) and representative western blot of INTS3 in HL-60 cells transduced with shRNAs targeting human INTS3 (bottom, representative results from three biologically independent experiments).

c-e, s, t, qPCR results of U2 (c, s) and U4 (d, t) snRNAs in isogenic HL-60 cells and U7 snRNA in murine cells from Extended Data Fig. 6n (e). Ratio of uncleaved/total snRNAs expression was compared (n = 3, mean ratio ± s.d.; one-way ANOVA with Tukey’s multiple comparison test; the largest P values calculated among 2 × 2 comparisons of two components from different groups are shown. For example, P values were calculated from the following four comparisons; bars 1 versus 3, 2 versus 3, 1 versus 4, 2 versus 4).

f, Schematic of the U7 snRNA–GFP reporter.

g, v, Flow cytometry analysis of 293T cells transduced with U7 snRNA-GFP reporter and IDH2, SRSF2 and INTS3 constructs as labelled on the right (representative results from three biologically independent experiments are shown).

h, w, Quantification of per cent GFP− and GFP+ 293T cells (n = 3 biologically independent experiments, mean percentage ± s.d.; one-way ANOVA with Tukey’s multiple comparison test; P values are shown as in c).**i, l, y**, Flow cytometry analysis of CD11b expression in isogenic HL-60 cells after ATRA treatment for two days (representative results from three biologically independent experiments are shown).**j, m, z**, Quantification of percentages of CD11b+ HL-60 cells over time (n = 3; mean percentage ± s.d.; two-way ANOVA with Tukey’s multiple comparison test).

k, n, Cytomorphology of isogenic HL-60 cells after ATRA treatment for two days (Giemsa staining; scale bar, 10 μm; original magnification, ×400; representative results from three biologically independent experiments are shown). **o, p**, qPCR of Ints3 (o) (mean ± s.d.; Kruskal–Wallis tests with uncorrected Dunn's test) and western blot of INTS3 (p) in Ba/F3 cells transduced with shRNAs targeting mouse Ints3.

q, r, Representative cytomorphology (q) and immunophenotype (r) of colony cells at the sixth colony. Normal BMMNCs were used as a control (the percentage listed represent the percent of cells within live cells; representative results from three biologically independent experiments are shown). **u, x**, Western blot of proteins extracted from HL-60 cells (u) assayed in s-t and y-z and 293T cells (x) assayed in v and w (representative results from three biologically independent experiments).

*P < 0.05, **P < 0.01, ***P < 0.001, *P < 0.05, **P < 0.01, ***P < 0.001.
Extended Data Fig. 9 | See next page for caption.
Extended Data Fig. 9 | Mutant Idh2 cooperates with Ints3 loss to generate a lethal myeloid neoplasm in vivo. a, Schematic of shRNA targeting Ints3 (shInts3) retroviral BM transplantation model. b, Flow cytometry data showing the chimerism of CD45.2+ versus CD45.1+ (top) or GFP+ (bottom) cells in peripheral blood at four weeks post-transplant (the percentages listed represent the percent of cells within live cells; representative results from five recipient mice). c, Composition of PBMCs at four weeks post-transplant (n = 5 per group; mean ± s.d.; represented by lines above the box). Statistical significance was detected in percentage of CD11b+Gr1+ cells by two-way ANOVA with Tukey’s multiple comparison test. d–g, Chimerism of GFP+ cells in peripheral blood (d) and blood counts of recipients at four weeks post-transplant (Hb (e); PLT (f); MCV (g); n = 5 per group; mean ± s.d.; one-way ANOVA with Tukey’s multiple comparison test). h, Giemsa staining of BMMNCs from moribund mice with indicated genotypes (red and yellow arrows represent blastic cells and dysplastic neutrophils, respectively; inset, representative neutrophils with abnormal segmentation; scale bar, 10 μm; original magnification, ×400; representative results from five mice per genotype). i, Flow cytometry data of BM, spleen, liver, and peripheral blood from Idh2R140Q mice treated with shInts3 (representative results from five mice). j, Schematic of HL-60 xenograft model in which recipient mice from cohort 1 were euthanized at day 18 post-transplant and mice from cohort 2 were observed for survival analysis until end stage. k–n, Blood counts (WBC (k); Hb (l); PLT (m)) and spleen weight (n) of mice from cohort 1 at day 18 post-transplant (mean ± s.d.; n = 5 per group; a two-sided Student’s t-test). o, p, Representative flow cytometry data of BM, spleen, and peripheral blood from the recipient mice from cohort 1 (o) (the percentage represents the percent of cells within live cells) and the mean percentage of GFP+ cells (p) (n = 5 per group; mean ± s.d.; two-way ANOVA with Sidak’s multiple comparison test). q, r, Representative flow cytometry data of BM, spleen and peripheral blood from cohort 1 (q) (the percentage represents the percent of cells within GFP+ live cells) and the mean percentage of hCD34−, hCD11b+ and hCD13+ cells (r) (n = 4 per group; mean ± s.d.; two-way ANOVA with Sidak’s multiple comparison test). s, Kaplan–Meier survival analysis of recipient mice from cohort 2 (n = 5 per group; log-rank (Mantel-Cox) test (two-sided)). *P < 0.05, **P < 0.01, ***P < 0.001.
Extended Data Fig. 10 | See next page for caption.
Extended Data Fig. 10 | Gene expression and biological consequences of INTS3 loss, and effect of IDH1 and IDH2 mutations on splicing in low-grade glioma. a–d, GSEA based on RNA-seq data generated from isogenic IDH2R172H mutant HL-60 cells with or without INTS3 depletion. Representative results from gene sets associated with leukaemogenesis and myeloid differentiation (a), oncogenic signalling pathways (b), RNAPII elongation-linked transcription (c) and DNA damage response (d) with statistical significance (P < 0.01) are shown (y axis; enrichment score; NES: normalized enrichment score; FDR: false discovery rate; RNA-seq data generated from isogenic HL-60 cells in duplicate were analysed using GSEA34). e, f, PSI values for INTS3 intron 4 (e) and 5 (f) retention events across 33 cancer cell types (the same datasets were analysed in Fig. 4f). ACC: adenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; DLBC, diffuse large B-cell lymphoma; ESCA, oesophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRP, kidney renal papillary cell carcinoma; LGG, low-grade glioma; LIHC, liver hepatocellular carcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumours; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma. The line represents the median, box edges show 25th and 75th percentiles and whiskers represent 2.5th and 97.5th percentiles; two-way ANOVA with Tukey’s multiple comparison test). g, h, Colony numbers from serial replating assays of RN2 cells with or without INTS3 overexpression (n = 3; mean ± s.d. represented by lines above the box; two-way ANOVA with Sidak’s multiple comparison test). h, Schematic of INTS3 retroviral BM transplantation models in which recipient mice from cohort 1 were euthanized at day 18 post-transplant and mice from cohort 2 were observed for survival analysis until end-stage. j–l, Blood counts (WBC (j); Hb (k); PLT (l)) of mice from cohort 1 at day 18 post-transplant (mean ± s.d.; n = 4 (empty) group); n = 5 (‘INTS3’ group) recipient mice; a two-sided Student’s t-test). m, Representative photograph of spleens and livers from cohort 1 with an inch scale (left), and spleen (middle) and liver weight (right) (n = 4 (empty); n = 5 (INTS3); mean ± s.d.; two-sided Student’s t-test). n, o, Representative Giemsa staining (n) (red arrows represent differentiated cells; scale bar, 10 μm; original magnification, ×400) and percentages of blasts, differentiated myeloid cells, and other cells in BMMNCs (o) from moribund mice from cohort 2 (n = 3 per genotype; 100 cells per mouse were classified; mean percentage ± s.d.; two-way ANOVA with Sidak’s multiple comparison test). p, q, Representative flow cytometry analysis of BM, spleen, liver, and peripheral blood (p) and percentages of CD45.2+ cells in Ter119– live cells (q) in recipient from cohort 1 (n = 4 (empty); n = 5 (INTS3); mean ± s.d.; two-way ANOVA with Tukey’s multiple comparison test). r, s, Representative flow cytometry analysis showing KIT expression in RN2 cells with or without INTS3 overexpression (r) and quantification of KIT+ cells (s) from cohort 1 (n = 4 (Empty); n = 5 (INTS3); mean ± s.d.; one-way ANOVA with Tukey’s multiple comparison test). t, u, Volcano plots of aberrant splicing events in the LGG TCGA dataset based on IDH2 (t) or IDH1 (u) mutant genotypes. [APSI] > 10% and P < 0.01 were used as thresholds (n = 849 and n = 433 differentially spliced events, respectively; RNA-seq data were analysed using PSI-Sigma). v, Percentage of each class of alternative splicing event in IDH2 (left) and IDH1 (right) mutant LGG is shown in pie-chart. w, Venn diagram of numbers of alternatively spliced events from the LGG TCGA dataset based on IDH1 and IDH2 mutant genotypes. ‘Control’ represents LGG with wild-type IDH1 and IDH2. *P < 0.05, **P < 0.01, ***P < 0.001.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- [x] The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- [x] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- [x] The statistical test(s) used AND whether they are one- or two-sided
- [x] Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- [x] A description of all covariates tested
- [x] A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- [x] A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- [x] For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 Give P values as exact values whenever suitable.
- [x] For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- [x] For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- [x] Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

No code was used for data collection.

Data analysis

The inclusion ratios of alternative exons or introns were estimated by using PSI-Sigma. GraphPad Prism 7 software was used to analyze the data and to make figures. RNA-seq reads were aligned by using 2-pass STAR 2.5.2a. Samtools (1.3.1) were used to generate variant call format (VCF) files for 6 target genes: IDH1, IDH2, SF3B1, SRSF2, U2AF1, and ZRSR2 with mpileup parameters (-Bvu). The VCF files were further processed by our in-house scripts to filter out mutations whose VAF was lower than 15%. The filtered VCF files were used for variant effect predictor (version 89.4) to annotate the consequences of the mutations. Motif analysis was done by using MEME SUITE. The heatmaps and sample clustering were done by using MORPHEUS (software.broadinstitute.org/morpheus/).

VCF files from the TruSightTM Myeloid 54 gene panel from Illumina were analyzed using Illumina’s Variant Studio software while those from a 40 gene panel (Oncomine Myeloid Research Assay; ThermoFisher), processing eight samples per Ion 530 chip on the IonTorrent platform were analyzed using the Ion Reporter software.

ChIP-seq reads were mapped to the genome by calling Bowtie v1.0.048 with the arguments ‘-v 2 -k 1 -m 1 --best --strata’. Peaks were called using MACS2 v2.1.1.2016030952 against input control libraries with P < 1e-5 and subsequently filtered to remove peaks contained within ENCODE blacklisted regions and the mitochondrial genome. Subsequent data analysis was performed with Bioconductor in the R programming environment. Consensus peaks between samples were called using the soGGI package v1.14.0. Peaks were annotated using the ChiPseeker package v1.18.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The RNA sequencing data have been deposited in NCBI Sequencing Read Archive (SRA) under accession number SRP133673.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences ☑ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
For the in vivo experiments, the number of mice in each experiment was chosen to provide 90% statistical power with a 5% error level. For the RNA-seq experiments, maximal sample sizes available were used to obtain statistical power as much as possible to detect significant splicing alterations.

Data exclusions
No data were excluded from the analyses.

Replication
The experiments were repeated at a minimum of 3 times for all the in vitro experiments. All attempts at replication were successful.

Randomization
Animals were assigned to experimental group based on genotype and there was no drug treatment groups, therefore randomization was not utilized.

Blinding
For survival and blood count analyses of mice, actual measurements were carried out by a member of the lab who did not have knowledge of which alleles were expected to alter survival or blood count parameters. All other experiments were not blinded and it was not necessary to be as they were less subjective.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Antibodies

- B220-APCCy7 (clone: RA3-6B2; purchased from BioLegend; catalog #: 103224; dilution: 1:200); B220-Bv711 (RA3-6B2; BioLegend; 103255; 1:200); CD3-PerCPCy5.5 (17A2; BioLegend; 100208; 1:200); CD3-APC (17A2; BioLegend; 100236; 1:200); CD3-APCCy7 (17A2; BioLegend; 100222; 1:200); Gr1-PECy7 (RB6-8C5; eBioscience; 25-5931-82; 1:500); CD11b-PE (M1/70; eBioscience; 12-0112-85; 1:500); CD11b-APCCy7 (M1/70; BioLegend; 101226; 1:200); CD11c-APCCy7 (N418; BioLegend; 117323; 1:200); NK1.1-APCCy7 (PK136; BioLegend; 116223: 1:200); cKit-APC (2B8; BioLegend; 105812; 1:200); cKit-PerCPCy5.5 (2B8; BioLegend; 105824; 1:100); cKit-Bv605 (ACK2; BioLegend; 135120; 1:200); Sca1-PECy7 (D7; BioLegend; 108724; 1:200); Ter119-APCCy7 (BioLegend; 116223: 1:200); cKit-APC (2B8; BioLegend; 105812; 1:200); cKit-PerCPCy5.5 (2B8; BioLegend; 105824; 1:100); cKit-Bv605 (ACK2; BioLegend; 135120; 1:200); Sca1-PECy7 (D7; BioLegend; 108724; 1:200); CD16/CD32 (FcγRII/III)-Alexa700 (93; eBioscience; 56-0161-82; 1:200); CD34-FITC (RAM34; BD Biosciences; 553731; 1:200); CD45.1-APC (A20; BioLegend; 110714; 1:200); CD45.1-APC (A20; BioLegend; 110714; 1:200); CD45.2-
Validation

All antibodies were validated by the supplier for human samples, and were checked in the lab by Western blotting on cell lysate and by comparing to the manufacturer’s or in-house results.

Eukaryotic cell lines

Policy information about cell lines

Cell line(s) K562, HL-60, TF1, and HEK293T cells were obtained from the American Type Culture Collection (ATCC). K052 cells were obtained from JCRB Cell Bank. Ba/F3 cells were obtained from DSMZ. 293 GPII cells were purchased from Clontech. The isogenic K562 cell lines with or without SRSF2 P95H were generated at Horizon Discovery. MLL-AF9/NrasG12D murine leukemia RN2 cells were obtained from Dr. Iannis Aifantis (NYU School of Medicine).

Authentication An aliquot of each cell lines were authenticated using ATCC/JCRB/DSMZ DNA fingerprinting.

Mycoplasma contamination All cell lines are frequently tested for mycoplasma contamination. Cell lines used in this study were verified to be mycoplasma negative before undertaking any experiments with them.

Commonly misidentified lines

No commonly misidentified cell lines were used.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 6-8 week female CD45.1 C57BL/6 mice were purchased from The Jackson Laboratory (Stock No: 002014). Male and female CD45.2 Srsf2P95H/+ conditional knock-in mice, Idh2R140Q/+ conditional knock-in mice, and Tet2 conditional knockout mice (all on C57BL/6 background) were also analyzed and used as bone marrow donors.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight All animal procedures were completed in accordance with the Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committees at MSKCC.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics The covariate-relevant population characteristics of the human research participants of Memorial Sloan Kettering Cancer Center (MSKCC), Université Paris-Saclay, and the University of Manchester are provided below: Samples were obtained from acute myeloid leukemia (AML) patients treated at MSKCC, Université Paris-Saclay, and the University of Manchester. All samples were viable frozen and used to extract DNA, RNA, and protein. All subjects with AML were eligible for inclusion regardless of age, sex, or race.

Recruitment All the participants were recruited without knowing their genotypes. Samples were genotyped and classified based on IDH2/ SRSF2 genotypes. Samples that had mutations in IDH1, SF3B1, U2AF1, or ZRSR2 were excluded from RNA-seq and targeted RNA and protein analyses. Then RNA-seq was performed to analyze the splicing alterations. Therefore, there was no self-selection bias and it is unlikely that bias, if any, impacted the splicing analysis.

Ethics oversight Studies were approved by the Institutional Review Boards of Memorial Sloan Kettering Cancer Center (under MSK IRB protocol 06-107), Université Paris-Saclay (under declaration DC-200-725 and authorization AC-2013-1884), and the University of Manchester (institution project approval 12-TISO-04), and conducted in accordance with the Declaration of Helsinki protocol. Written informed consent was obtained from all participants. Manchester samples were retrieved from the Manchester Cancer Research Centre Haematological Malignancy Tissue Biobank, which receives sample donations from all consenting leukemia patients presenting to The Christie Hospital (REC Reference 07/H1003/161+5; HTA license 30004; instituted with approval of the
South Manchester Research Ethics Committee). Patient samples were anonymized by the Hematologic Oncology Tissue Bank of MSK, Biobank of Gustave Roussy, and the Manchester Cancer Research Centre Haematological Malignancy Tissue Biobank.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChIP-seq

Data deposition
- Confirm that both raw and final processed data have been deposited in a public database such as GEO.
- Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links
May remain private before publication.

Files in database submission
Sample_WT-WT-614, Sample_WT-WT-247, Sample_RQ-WT-848, Sample_RQ-WT-475, Sample_WT-PH-343, Sample_RQ-PH-524, Sample_RQ-PH-475, k562_WT_input, k562_WT_si_PolII-Ser2, k562_WT_si_PolII-Ser5, k562_p95_input, k562_p95H_si_PolII-Ser2, k562_p95H_si_PolII-Ser5

Genome browser session
(e.g. UCSC)

The ChIP-seq data (and RNA-seq data and eRRBS data) have been deposited in NCBI Sequence Read Archive (SRA) under accession number SRP133673.

Methodology

Replicates
Two primary AML patient samples per IDH2/SRSF2 genotype (IDH2/SRSF2 WT/WT, Mutant/WT, WT/Mutant, and Mutant/Mutant) were used for the ChIP-seq experiments.

Sequencing depth
An average of 75 million paired reads was generated per sample (125 bp single-end).

Antibodies
RNA polymerase II CTD repeat YSPTSPS (phospho S2) (Abcam; ab5095)
RNA polymerase II CTD repeat YSPTSPS (phospho S5) (Abcam; ab5408)

Peak calling parameters
Narrow peaks were called using the callpeak function from MACS2 v2.1.1.20160309 against matched input samples, using default parameters and a P-value cutoff of 1e-5, according to the ENCODE Histone ChIP-seq Data Standards and Processing Pipeline (https://www.encodeproject.org/chip-seq/histone/).

Data quality
For all samples, a P-value cutoff of 1e-5 against input was used. All peaks were called at a q-value of < 0.017. For each sample, the number of peaks with a fold-change > 5, and the average total number of peaks called is 19,200.

Software
ChIP-seq reads were mapped to the genome by calling Bowtie v1.0.048 with the arguments '-v 2 -k 1 -m 1 --best --strata'. Peaks were called using MACS2 v2.1.1.20160309 against input control libraries with P < 1e-5 and subsequently filtered to remove peaks contained within ENCODE blacklisted regions and the mitochondrial genome. Subsequent data analysis was performed with Bioconductor in the R programming environment. Consensus peaks between samples were called using the soGGI package v1.14.0. Peaks were annotated using the ChIPseeker package v1.18.0.

Flow Cytometry

Plots
- Confirm that:
 - The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
 - The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
 - All plots are contour plots with outliers or pseudocolor plots.
 - A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Surface-marker staining of hematopoietic cells was performed by first lysing cells with ACK lysis buffer and washing cells with ice-cold PBS. Cells were stained with antibodies in PBS/2% BSA for 30 minutes on ice. For hematopoietic stem/progenitor staining, cells were stained with the following antibodies: BZ20-APC/Cy7 (clone: RA3-6B2; purchased from BioLegend; catalog #: 103224; dilution: 1:200); B220-Bv711 (RA3-6B2; BioLegend; 103255; 1:200); CD3-PerCPCy5.5 (17A2; BioLegend; 100208; 1:200); CD3-APC (17A2; BioLegend; 100236; 1:200); CD3-APCCy7 (7A2; BioLegend; 100222; 1:200); Gr1-APC (RB6-8C5; eBioscience; 25-5931-82; 1:500); CD11b-PE (M1/70; eBioscience; 12-0112-85; 1:500); CD11b-APCCy7 (M1/70; BioLegend; 101226; 1:200); CD11c-APCCy7 (N418; BioLegend; 117323; 1:200); NK1.1-APCCy7 (PK136; BioLegend; 108724; 1:200); Ter119-APCCy7 (BioLegend; 116223; 1:200); cKit-APC (2B8; BioLegend; catalog #: 103224; dilution: 1:200); cKit-PE (2B8; BioLegend; 105812; 1:200); cKit-PerCPCy5.5 (2B8; BioLegend; 105824; 1:100); cKit-Bv605 (ACK2; BioLegend; 135120; 1:200); Sca1-PECy7 (D7; BioLegend; 108102; 1:200); CD16/CD32 (FcγRII/III)-Alexa700 (93; eBioscience; 56-0161-82; 1:200); CD34-FITC (RAM34; BD Biosciences; 553731; 1:200); CD45.1-FITC (A20; BioLegend; 110706;
1:200); CD45.1-PerCPCy5.5 (A20; BioLegend; 110728; 1:200); CD45.1-PE (A20; BioLegend; 110708; 1:200); CD45.1-APC (A20; BioLegend; 110714; 1:200); CD45.2-PE (104; BioLegend; 110728; 1:200); CD45.2-Alexa700 (104; BioLegend; 109822; 1:200); CD45.2-Bv605 (104; BioLegend; 109841; 1:200); CD48-Bv711 (HM48-1; BioLegend; 103439; 1:200); CD150 (9D1; eBioscience; 12-1501-82; 1:200); DAPI was used to exclude dead cells. For sorting human leukemia cells, cells were stained with a lineage cocktail including CD34-PerCP (8G12; BD Biosciences; 345803; 1:200); CD117-PECy7 (104D2; eBioscience; 25-1178-42; 1:200); CD33-APC (P67.6; BioLegend; 366606; 1:200); HLA-DR-FITC (L243; BioLegend; 307604; 1:200); CD13-PE (L138; BD Biosciences; 347406; 1:200); CD45-APC-H7 (2D1; BD Biosciences; 560178; 1:200). The composition of mature hematopoietic cell lineages in the BM, spleen and peripheral blood was assessed using a combination of CD11b, Gr1, B220, and CD3. For the hematopoietic stem and progenitor analysis, a combination of CD11b, CD11c, Gr1, B220, CD3, NK1.1, and Ter119 was stained as lineage-positive cells.

Instrument

All the FACS sorting was performed on FACS Aria, and analysis was performed on an LSRII or LSR Fortessa (BD Biosciences).

Software

FlowJo Ver.9 was used for analysis of flow cytometry data.

Cell population abundance

To check the purity of GFP and/or mCherry positivity in post-sort samples, the sorted samples were analyzed for GFP and/or mCherry by FACS Aria (BD Biosciences), and samples with >99% purity were used for analyses.

Gating strategy

The FSC/SSC gates of the starting cell population was set in order to include all the lineages of mouse hematopoietic cells such as granulocytes, monocytes, and lymphocytes. Then doublet cells were excluded by SSC-H vs SSC-W and FSC-H vs FSC-W gating. The boundaries between “positive” and “negative” staining cell population were defined by using unstained and single color-stained controls that were prepared by staining the whole BM mononuclear cells from B6 mice at 8-12 weeks with antibodies against mouse CD11b. “Positive” staining cell population was defined as CD11b+ population and “negative” staining cell population was defined by unstained control. The boundary for each fluorescence was set between these “positive” and “negative” staining cell populations.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
Spliceosomal disruption of the non-canonical BAF complex in cancer

Daichi Inoue1,2,10, Guo-Liang Chew3,4,10, Bo Liu1, Brittany C. Michel6,7, Joseph Pangallo3,4, Andrew R. D’Avino6,7, Tyler Hitchman1, Khrystyna North3,4,8, Stanley Chun-Wei Lee1, Lillian Bittern1, Ariele Block1, Amanda R. Moore1, Akihide Yoshimizu1, Luisa Escober-Hoyos1, Hana Cho1, Alex Penson1, Sydney X. Lu1, Justin Taylor1, Yu Chen1,9, Cigall Kadoch6,7, Omar Abdel-Wahab1,9,4 & Robert K. Bradley3,4,8

SF3B1 is the most commonly mutated RNA splicing factor in cancer1–4, but the mechanisms by which SF3B1 mutations promote malignancy are poorly understood. Here we integrated pan-cancer splicing analyses with a positive-enrichment CRISPR screen to prioritize splicing alterations that promote tumorigenesis. We report that diverse SF3B1 mutations converge on repression of BRD9, which is a core component of the recently described non-canonical BAF chromatin-remodelling complex that also contains GLTSCR1 and GLTSCR1L2–7. Mutant SF3B1 recognizes an aberrant, deep intronic branchpoint within BRD9 and thereby induces the inclusion of a poison exon that is derived from an endogenous retroviral element and subsequent degradation of BRD9 mRNA. Depletion of BRD9 causes the loss of non-canonical BAF at CTCF-associated loci and promotes melanomagenesis. BRD9 is a potent tumour suppressor in uveal melanoma, such that correcting mis-splicing of BRD9 in SF3B1-mutant cells using antisense oligonucleotides or CRISPR-directed mutagenesis suppresses tumour growth. Our results implicate the disruption of non-canonical BAF in the diverse cancer types that carry SF3B1 mutations and suggest a mechanism-based therapeutic approach for treating these malignancies.

SF3B1 is subject to recurrent missense mutations at specific residues in myeloid leukaemia3,8 and lymphoid leukaemia3,8 as well as in solid tumours, at rates of up to 14–29% for uveal melanoma (UVM)9–12 and 65–83% for myelodysplastic syndromes with ring sideroblasts1,2. Consistent with the critical role of SF3B1 in the recognition of 3′ splice sites10,14,15, several previous studies have reported that SF3B1 mutations induce widespread usage of abnormal 3′ splice sites10,14,15. Although many mis-spliced genes have been identified in SF3B1-mutant samples, few of these have been functionally implicated in driving disease.

We hypothesized that effectors of the pro-tumorigenic consequences of SF3B1 mutations might appear as pan-cancer targets of mutant SF3B1. We accordingly identified mis-spliced events that were shared between erythroleukaemic (K562) and UVM (MEL270) cells that expressed wild-type SF3B1 or the most common SF3B1 mutation, SF3B1K700E. A compact set of 40 events exhibited concordant splicing changes, and was sufficient to infer SF3B1 mutational status across 249 samples from patients with chronic lymphocytic leukaemia, myelodysplastic syndromes and UVM (Fig. 1a, Extended Data Fig. 1a, Supplementary Tables 1–3).

We designed a single-guide RNA (sgRNA) library that targeted both pan-cancer and cancer-type-specific targets of mutant SF3B1, focusing on genes for which SF3B1 mutations are predicted to cause mis-splicing that triggers nonsense-mediated RNA decay (NMD) (Fig. 1b, Supplementary Table 4). We tested whether the knockout of any of these genes promoted the transformation of Ba/F3 cells (a mouse cell line with a wild-type spliceosome, with a requirement for IL-3 that can be overcome by oncogenic lesions) (Fig. 1c). In addition to the positive control Pten, our screen revealed that the loss of Brd9 promoted the transformation of Ba/F3 cells (Fig. 1d, Extended Data Fig. 1b–d, Supplementary Tables 5, 6). Brd9 was a notable hit because Brd9 exhibited notable mis-splicing in all cohorts of patients with SF3B1-mutant cancer (Fig. 1e). Brd9 knockout conferred cytokine independence to mouse 32Dcl3 cells, and growth advantage to human cancer cells with a wild-type spliceosome derived from UVM, cutaneous melanoma, and pancreatic cancer (Extended Data Fig. 1d–f). By contrast, acute myeloid leukaemia cells with rearranged MLL (also known as KMT2A) required Brd9 for growth (Extended Data Fig. 1g), as previously reported16.

SF3B1 mutations cause the exonization of a BRD9 intronic sequence, which results in the inclusion of a poison exon that interrupts the open reading frame of BRD9. This BRD9 poison exon is derived from a pri-mate-specific endogenous retroviral element, explaining its absence from mice (Extended Data Fig. 1h, i). We confirmed that the inclusion of the poison exon was induced by the expression of endogenous or ectopic mutant SF3B1 in K562 and NALM-6 cells, whereas SF3B1 knockdown in SF3B1 wild-type cells had no effect (Extended Data Fig. 1j–m). The poison exon was included in an SF3B1-mutation-dependent manner in diverse cell lines and in samples of chronic lymphocytic leukaemia, myelodysplastic syndromes and UVM that bear 19 different SF3B1 mutations—but not in healthy tissues (Extended Data Fig. 1n–p, Supplementary Table 7).

The inclusion of the BRD9 poison exon triggered NMD and reduced the half-life of BRD9 mRNA and steady-state levels of full-length BRD9 protein (Extended Data Fig. 1q–w). Patients with SF3B1 mutations exhibited reduced total levels of BRD9 mRNA relative to patients with wild-type SF3B1 (Extended Data Fig. 1x). We tested whether the inclusion of the poison exon could result in the production of C-terminally truncated Brd9 by knocking an N-terminal haemagglutinin tag into the Brd9 locus in MEL270 and K562 cells that transgenically express wild-type or mutant SF3B1 (Extended Data Fig. 2a–c). Mutant SF3B1 suppressed levels of full-length BRD9 protein, without generating a truncated Brd9 protein (Fig. 1f).

SF3B1 mutations promote the use of cryptic 3′ splice sites10,14,15, probably by altering the normal role of SF3B1 in branchpoint recognition17. We therefore mapped the BRD9 branchpoints used in K562, MEL270 and T47D (breast cancer) cells that express mutant SF3B1 (Fig. 2a, Extended Data Fig. 2d–f). The inclusion of the poison exon was associated with an unusually close branchpoint (close branchpoints are rare and normally inefficiently recognized18). Mutating the aberrant branchpoint abolished poison exon recognition (Fig. 2b, Extended Data

https://doi.org/10.1038/s41586-019-1646-9
Fig. 1 | **BRD9 mis-splicing causes BRD9 loss and proliferative advantage in SF3B1-mutated cancers.** a, Unsupervised clustering of patient samples on the basis of events that are differentially spliced in UVM (MEL270) and myeloid leukaemia (K562) cells that express SF3B1 K700E versus wild-type (WT) SF3B1, a3ss, alternative 3′ splice site; CLL, chronic lymphocytic leukaemia (data are from ref. 15); MDS, myelodysplastic syndromes (data are from ref. 27); mxe, mutually exclusive exons; PSI, percentage spliced inte;

**Consistent with the lack of an obvious polyypyrimidim tract upstream of the poison exon, neither U2AF1 nor U2AF2 knockdown compromised poison exon recognition, whereas introducing a poly(Y) tract resulted in robust inclusion of the poison exon even in wild-type cells (Fig. 2c, Extended Data Fig. 2h–j). Finally, we identified a putative exon splicing enhancer that was essential for inclusion of the poison exon (Fig. 2c, Extended Data Fig. 2k). We confirmed that the aberrant branchpoint, lack of a polyypyrimidim tract, and exonic splicing enhancer were essential for poison exon recognition in the context of SF3B1 B625I, the most common mutation of SF3B1 in UVM (Extended Data Fig. 2l–n). Disrupting the 3′ splice site and/or exonic splicing enhancer of the poison exon with CRISPR-directed mutagenesis markedly increased the levels of BRD9 protein in UVM cells with mutated SF3B1 (Fig. 2d, Extended Data Fig. 2o, Supplementary Table 8), but had no effect on BRD9 splicing or expression in cells with wild-type SF3B1 (Extended Data Fig. 2p–r).

Several studies have recently described BRD9 as part of a non-canonical (nc) BAF complex, which is biochemically distinct from canonical BAF and polybromo-associated BAFs. Although ncBAF is not recurrently mutated in cancer—unlike canonical BAF and polybromo-associated BAF (Extended Data Fig. 3a)—our data suggested that ncBAF is nonetheless frequently disrupted via SF3B1 mutations.

We investigated the consequences of BRD9 loss by SF3B1 mutations for ncBAF function. Immunoprecipitation and mass spectrometry to identify the chromatin-associated interaction partners of BRD9 in K562 cells specifically recovered ncBAF components (Extended Data Fig. 3b, c, Supplementary Table 9). We confirmed these results by immunoblotting against shared and complex-specific components of canonical BAF, polybromo-associated BAF and ncBAF in K562 and UVM cells (Fig. 3b, Extended Data Fig. 3d). Expression of mutant, but not wild-type, SF3B1 reduced the levels of BRD9 protein and abolished interactions between BRG1 and GLTSCR1 while leaving interactions between BRG1 and HP1G1 intact, which indicates that SF3B1 mutations specifically perturb ncBAF rather than disrupting all BAF complexes (Fig. 3c, Extended Data Fig. 3e). Chemical degradation of BRD919 or BRD9 knockout similarly reduced the BRG1–GLTSCR1 interaction (Fig. 3c, Extended Data Fig. 3f). We next identified the BRD9 domains that are necessary for ncBAF formation by generating 3× Flag–BRD9 deletion mutants.

Fig. 2. a, The Benjamini–Hochberg method.

d, BRD9 RNA sequencing (RNA-seq) read coverage in patient samples. n, number of patients. PE, BRD9 poison exon; 14 and 15, flanking constitutive exons. Repetitive elements from RepeatMasker28, f, Western blot for N-terminally haemagglutinin (HA)-tagged endogenous BRD9 in MEL270 cells transduced with empty vector (EV) or doxycycline-inducible Flag–SF3B1 (WT) or Flag–SF3B1 (K700E). Representative images from n = 3 biologically independent experiments.

Extended Data Fig. 1. a, sgRNA library (3.5–mutant vs WT UVM samples).

Extended Data Fig. 2. a, sgRNA library (3.5–mutant vs WT UVM samples).

Extended Data Fig. 3. a, sgRNA library (3.5–mutant vs WT UVM samples).

Extended Data Fig. 1. a, sgRNA library (3.5–mutant vs WT UVM samples).

Extended Data Fig. 2. a, sgRNA library (3.5–mutant vs WT UVM samples).

Extended Data Fig. 3. a, sgRNA library (3.5–mutant vs WT UVM samples).
Fig. 2 | Mutant SF3B1 recognizes an aberrant, deep intronic branchpoint within BRD9. a, BRD9 gene structure and protein domains. Inset illustrates the branchpoints used when the poison exon is included (top) or excluded (bottom). Single and double underlining indicates sequence motifs that were subsequently mutated. aa, amino acid. b, PCR with reverse transcription (RT–PCR) analysis of inclusion of the BRD9 poison exon in a minigene (top) or endogenous (bottom) context, following transfection of minigenes with the illustrated mutations into MEL270 cells with doxycycline (dox)-inducible Flag–SF3B1(WT) or Flag–SF3B1(K700E). Representative images from n = 3 biologically independent experiments. Native, no mutations. c, As in b, but for minigene mutations (shown in red) at the 5′ end of the poison exon. ESE, exonic splicing enhancer. d, RT–PCR (top) illustrating the loss of inclusion of the BRD9 poison exon, and corresponding western blot (bottom) in MEL202 (SF3B1K700E) clones following CRISPR–Cas9 targeting of the poison exon. Indels are illustrated in Extended Data Fig. 2a. Control, unedited cells. Representative images from n = 2 (RT–PCR) and n = 3 (western blot) biologically independent experiments.

and testing for interactions with GLTSCR1 and GLTSCR1L. These experiments revealed that the DUF3512 domain of BRD9 mediates its interactions with GLTSCR1 and GLTSCR1L (Extended Data Fig. 3g–h).

We next determined how SF3B1 mutations altered ncBAF localization to chromatin. We mapped the genome-wide binding of the pan-BAF component BRG1, and the ncBAF-specific components BRD9 and GLTSCR1, in MEL270 cells that express wild-type or mutant SF3B1. We additionally performed the same chromatin immunoprecipitation with sequencing (ChIP–seq) experiments after treatment with dimethyl sulfoxide (DMSO) or a BRD9 degrader to identify BRD9-dependent effects. BRD9 and GLTSCR1 exhibited substantial co-localization, consistent with their mutual requirement for ncBAF formation, and were found at a subset of the loci bound by BRG1 (Fig. 3d). BRD9 and GLTSCR1 bound to promoters, gene bodies, and probable enhancers, with focal binding at promoters relative to BRG1 (Fig. 3e, Extended Data Fig. 4a). CTCF motifs exhibited notable co-localization with GLTSCR1, but only modest co-localization with BRG1 (Fig. 3f, Extended Data Fig. 4b).

We then tested how the depletion of BRD9, induced by SF3B1K700E or by chemical degradation of BRD9, altered ncBAF localization. We defined the genomic loci bound by GLTSCR1 in all samples as constitutive sites. Conversely, we defined genomic loci bound by GLTSCR1 in both control (wild-type SF3B1 or DMSO) but not BRD9-depleted

Fig. 3 | BRD9 loss perturbs the formation and localization of the ncBAF complex. a, Schematic of non-canonical BAF (ncBAF; left), canonical BAF (cBAF; middle) and polybrimo-associated BAF (PBAF; right) complexes. Solidus denotes one of the proteins is present; comma denotes one or more of the proteins are present or that mutually exclusive inclusion of proteins may occur. b, Cross-linking and immunoprecipitation (IP) with IgG or Flag followed by immunoblotting in K562 cells that express 3×Flag–BRD9. Representative images from n = 3 biologically independent experiments. c, Immunoprecipitation with GLTSCR1 or BRG1 antibody followed by immunoblotting in MEL270 cells that express exogenous SF3B1(K700E) (left) or were treated with BRD9 degrader (dBRD9) (right). Representative images from n = 3 biologically independent experiments. d, Overlap of consensus BRD9, BRG1 and GLTSCR1 ChIP–seq peaks called in both MEL270 control samples (DMSO and ectopic expression of wild-type SF3B1). e, Genomic localization of BRD9-, BRG1-, and GLTSCR1-bound loci in d. UTR, untranslated region. f, Distributions of transcription factor-binding motifs at GLTSCR1-bound loci (20 nucleotide (nt) rolling mean). n = 401 transcription factors analysed.
Fig. 4 | BRD9 is a therapeutically targetable tumour suppressor in melanoma. a, BRD9 expression (z-score normalized) in TCGA UVM samples with (n = 18) or without (n = 62) SF3B1 mutations. P value calculated by two-sided t-test. b, Tumour volume 49 days after subcutaneous engraftment of Melan-a cells transduced with the indicated shRNAs into SCID mice. n = 16, 16, 16, 14 and 14 tumours per group (left to right). Error bars, mean ± s.d. P values calculated by two-sided t-test. c, Representative mice from b at day 63. d, Survival of SCID mice engrafted with MEL202 cells that express empty vector, full-length wild-type BRD9 or a BRD9 bromodomain-deletion mutant (ABD). n = 5 mice per group. P value calculated by log-rank test. e, Tumour volume from experiments shown in d, 21 days after engrafment. n = 10 tumours per group. Error bars, mean ± s.d. P values calculated by two-sided t-test. f, Colony number (left) and representative images (right) of MEL202 cells (SF3B1 R625G) without (control) or with (clone 1, clone 2 and clone 3) CRISPR–Cas9-induced disruption of the BRD9 poison exon. Indels are illustrated in Extended Data Fig. 2o. n = 3 biologically independent experiments. Error bars, mean ± s.d. P values calculated by two-sided t-test at day 3 (middle).

As SF3B1 is recurrently mutated in uveal (Fig. 4a), mucosal and cutaneous melanomas, we first tested whether BRD9 loss induced melanomagenesis in vivo. We transduced non-tumorigenic mouse melanocytes (Melan-a cells), which require oncprotein expression for sustained growth, with a non-targeting short hairpin RNA (shRNA) (Extended Data Fig. 5a), doxycycline-inducible shRNAs targeting Brd9 or Brg1 (also known as Smarca4) or a cDNA encoding the oncprotein CYSLTR2(L129Q) (as a positive control)22. Knockdown of either Brd9 or Brg1 resulted in potent tumour growth, augmented melanocyte pigmentation, and expression of melanocyte-lineage-specific genes in vivo (Fig. 4b, e, Extended Data Fig. 5b–g).

We next tested whether Brd9 expression influences metastasis. Brd9 knockdown significantly increased the number of pulmonary metastatic foci following intravenous injection of cells from a mouse model of melanoma (B16) or of human UVM (92.1) cells into mice (Extended Data Fig. 6a–f). By contrast, restoring Brd9 expression in established tumours in vivo, by withdrawing doxycycline, suppressed tumour growth (Extended Data Fig. 6g, h). Similarly, ectopic expression of full-length BRD9, but not the bromodomain- or DUF3512-deletion mutants, suppressed the growth of UVM cell lines and xenografts (Fig. 4d, e, Extended Data Fig. 6i–k). These data demonstrate that loss of Brd9 promotes cell transformation, tumour maintenance, and metastatic progression, and that the bromodomains and DUF3512 domain of BRD9 are essential for its anti-proliferative effects.
We sought to understand how BRD9 loss promotes melanoma tumorigenesis. We identified BRD9-bound genes that exhibited dysregulated expression in samples from patients with UVM with mutated versus wild-type SF3B1, and in isogenic UVM cells with or without mutant SF3B1 and with or without forced loss of BRD9. HTRA1, a known tumour suppressor in melanoma, was the most downregulated gene in UVM (Extended Data Fig. 7a-c). HTRA1 was suppressed by mutant SF3B1 expression and BRD9-degradation treatment of UVM cells with wild-type SF3B1, and mutagenesis of the BRD9 poision exon increased levels of HTRA1 in UVM cells with mutated SF3B1 (Extended Data Fig. 7d, e). HTRA1 is bound by nCBAF in UVM, and this binding is reduced by mutant SF3B1 (Extended Data Fig. 7f). HTRA1 knockdown promoted the growth of UVM cells with wild-type SF3B1, and ectopic expression of HTRA1 suppressed the growth of UVM cells with mutated SF3B1 (Extended Data Fig. 7g–k). These data suggest that perturbation of nCBAF-dependent regulation of HTRA1 contributes to the pro-tumorigenic effects of BRD9 loss.

We next tested whether correcting BRD9 mis-splicing suppressed tumorigenesis. CRISPR-based mutagenesis of the poison exon markedly slowed the growth of cells with mutated SF3B1, but not of wild-type cells, both in vitro and in vivo (Figs. 2d, 4f, Extended Data Figs. 2o–r, 8). We then designed antisense oligonucleotides (ASOs) to block the inclusion of the BRD9 poison exon (Fig. 4h, Extended Data Fig. 9a). We treated SF3B1-mutated cells with a non-targeting (control) or poison-exon-targeting ASO, and measured BRD9 splicing, BRD9 protein levels, and cell growth. Each targeting ASO prevented the inclusion of the poison exon, increased the level of BRD9 protein, and suppressed cell growth relative to the control ASO (Fig. 4h, Extended Data Fig. 9b). The relative abilities of each ASO to restore BRD9 protein levels and suppress cell growth were strongly correlated, consistent with on-target effects. We therefore tested whether ASO treatment slowed tumour growth in vivo. We treated SF3B1-mutated xenografts (derived from MEL102 cells) with each ASO via intratumoral injection for 16 days. Treatment with the poison-exon-targeting ASO—but not with the non-targeting ASO—corrected BRD9 mis-splicing, significantly reduced tumour growth, and induced tumour necrosis (Fig. 4i, j, Extended Data Fig. 9c–f). We observed a similar ASO efficacy in a patient-derived xenograft model of rectal melanoma with the SF3B1 R625C mutation (Fig. 4k, Extended Data Fig. 9g–i, Supplementary Table 7). By contrast, when we performed an identical experiment with a patient-derived xenograft model of UVM (Extended Data Fig. 9g–i, Supplementary Table 7). By contrast, when we performed an identical experiment with a patient-derived xenograft model of UVM.

We next tested whether correcting BRD9 mis-splicing suppressed tumorigenesis. CRISPR-based mutagenesis of the poison exon markedly slowed the growth of cells with mutated SF3B1, but not of wild-type cells, both in vitro and in vivo (Figs. 2d, 4f, Extended Data Figs. 2o–r, 8). We then designed antisense oligonucleotides (ASOs) to block the inclusion of the BRD9 poison exon (Fig. 4h, Extended Data Fig. 9a). We treated SF3B1-mutated cells with a non-targeting (control) or poison-exon-targeting ASO, and measured BRD9 splicing, BRD9 protein levels, and cell growth. Each targeting ASO prevented the inclusion of the poison exon, increased the level of BRD9 protein, and suppressed cell growth relative to the control ASO (Fig. 4h, Extended Data Fig. 9b). The relative abilities of each ASO to restore BRD9 protein levels and suppress cell growth were strongly correlated, consistent with on-target effects. We therefore tested whether ASO treatment slowed tumour growth in vivo. We treated SF3B1-mutated xenografts (derived from MEL102 cells) with each ASO via intratumoral injection for 16 days. Treatment with the poison-exon-targeting ASO—but not with the non-targeting ASO—corrected BRD9 mis-splicing, significantly reduced tumour growth, and induced tumour necrosis (Fig. 4i, j, Extended Data Fig. 9c–f). We observed a similar ASO efficacy in a patient-derived xenograft model of rectal melanoma with the SF3B1 R625C mutation (Fig. 4k, Extended Data Fig. 9g–i, Supplementary Table 7). By contrast, when we performed an identical experiment with a patient-derived xenograft model of UVM (Extended Data Fig. 9g–i, Supplementary Table 7). By contrast, when we performed an identical experiment with a patient-derived xenograft model of UVM.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-019-1646-9.

Received: 12 January 2019; Accepted: 30 August 2019.
Published online 9 October 2019.

A single positive clone containing the HA coding sequencing was selected to carry subsequent restriction enzyme digestion with XhoI and direct Sanger sequencing. Micro-micrograms of PiggyBac Transposase construct (CMV-PB-Transposase-ires-KE-HSV) and 6 μg of wild-type SF3B1 (ITR-CAG-Flag-SF3B1 WT, IRES-Puro-IKR) or SF3B1 K700E (ITR-CAG-Flag-SF3B1 K700E, IRES-Puro-IKR) cDNA constructs were electroporated into 2 × 10^6 cells (in 200 μl volume) using the Amaxa Nucleofector Protocol (Program T-003) according to manufacturer instructions (Lonza). Puromycin selection (1 μg/ml) was initiated 4 days after electroporation to select for cells that successfully incorporated the constructs. Sanger sequencing was performed to confirm successful integration of the cDNA plasmid using the following primers: fwd, TCCAGTCCTGAAACCGAAG and rev, GACCAGTTTTCGCAAGCAT.

RT–PCR and quantitative RT–PCR

Total RNA was isolated using RNeasy Mini or Micro kit (Qiagen). For CDNA synthesis, total RNA was reverse-transcribed to cDNA with SuperScript VILO cDNA synthesis kit (Life Technologies). The resulting cDNA was diluted 10–20 fold before use. Quantitative RT–PCR (qRT–PCR) was performed in 10–μl reactions with SYBR Green PCR Master Mix. All qRT–PCR analysis was performed on an Applied Biosystems QuantStudio 6 Flex Cycler (ThermoFisher Scientific). Relative gene expression levels were calculated using the comparative C_r method. Primers used in RT–PCR analyses were forward, GCAATACATACGAGCGGACG and reverse, GAGCTGCTCTTGTCTCATA; Brd9 (mouse) fwd, TTGGAGATGGAATGCTGCTT and rev, GCAACTTCTGAGATGACTGACT; Brd9 poison exon (human) fwd, AGCTTGTTTGCAGTCTATG and rev, CTGAAAGAACATAGGCTGT; Brd9 poison exon inclusion for small interfering RNA (siRNA) experiment (human) fwd, CAGACGCTGTCTTGGAGT and rev, CCTGAAAGAACAGAGACTG; Brd9 poison exon exclusion for siRNA experiment (human) fwd, CAGACGCTGTCTTGGAGT and rev, TCACCTTCCCCAGAGAGCCT; Epb49 (also known as DMTN) casette exon inclusion (human) fwd, GCCCTGCAAGACAGAGGAG and rev, ACCACTAGATTCTCATAGGATAT; CTCAGAAGCGCTCGACATG; Brd9 poison exon for mRNA interference experiment (human) fwd, GTCGGGGACACCTTGAAGGAG, rev (exclusion-specific), CCTACCTTCTCCCAAGAGGACG and rev (inclusion-specific), CCTGAAAGAACAGAGACTG; 18S rRNA (human) fwd CTA CGG AAC TGG AA G and rev, TCTGTGGG CAC AGG; Mipf (mouse) fwd, CCACACCGCATGTGCTATG and rev, CCTGCACTCTCTGCT; Dct (mouse) fwd, GTTCTCCACTCCTTCTAGAGC and rev, ATTTGGTTTTGACCAATTGGGT; Pmel (mouse) fwd, GAGCTTCTTCCCTGCTTT and rev, TTTGGCTTCCAGGTTT; Typr (mouse) fwd, CCCCCATCTTATCCTTTT and rev, TACAGCTTTGGAGATGG; Gapdh (human) fwd, GGAAGAGATCCTCCCTTCCAAT and rev, GGCGTGGATCTACATGCTATG; and Gapdh (mouse) fwd, AGGTCGGTGAACGGAGGAG and rev, TGTACACGTGAGTGGAGAGTA. mRNA stability assay. For mRNA half-life measurement using qRT–PCR, K562 and NALM-6 cells with isogenic SF3B1 K666N mutations were infected with anti-U6 shRNAs or control shRNA, and treated with 2.5 μg/ml actinomycin D (Life Technologies) and collected at 0, 2, 4, 6 and 8 h (using methods as previously described^32). BRD9 poison exon inclusion or exclusion and 18S rRNA mRNA levels were measured by qRT–PCR.

Western blotting

For western blotting, the following antibodies to the following proteins were used: BRD9 (Bethyl Laboratories A303-781A and Active Motif 61538), SF3B1/Sap-155 (MBL D221-3), Flag-2 (Sigma-Aldrich F-1084), J3-actin (Sigma-Aldrich A-5441), G3PDH (Bethyl Laboratories A303-015A), BRG1 (Santa Cruz Biotechnology sc-17796), BAF155 (Santa Cruz Biotechnology sc-48350), BAF60A (Santa Cruz Biotechnology sc-135843), BAF47 (Santa Cruz Biotechnology sc-166156), ARID1A (Santa Cruz Biotechnology sc-373784), ARID2 (Santa Cruz Biotechnology sc-166117), D2T (Thermo Fisher Scientific PA5-15621), BRM (Bethyl Laboratories A303-015A), BRG1 (Santa Cruz Biotechnology sc-17796), BAF155 (Santa Cruz Biotechnology sc-48350), BAF60A (Santa Cruz Biotechnology sc-135843), BAF47 (Santa Cruz Biotechnology sc-166156), ARID1A (Santa Cruz Biotechnology sc-373784), ARID2 (Santa Cruz Biotechnology sc-166117), D2T (Thermo Fisher Scientific PA5-49379), U2AF2 (Bethyl Laboratories A303-0665A), U2AF2 (Bethyl Laboratories A303-080A), histone H3 (Abcam ab1791), HTRA1 (R&D Systems MAB2916-S), Dnmt1 (R&D Systems MAB2916-S). Primary antibodies for western blotting were diluted 1:1000. All primary antibodies were detected with goat anti-mouse HRP conjugated antibody (Immunology Technologies) at 1:5000 dilution. For detection, we used 0.05% TBS–Twen 20 (TBS-T) or 5% skim milk in 0.05% TBS-T. Nuclear extracts were quantified using BCA and 1 mg protein (1 mg ml^-1^ in immunoprecipitation buffer supplemented with protease inhibitors) was used for immunoprecipitation.
Proteins were incubated for 3 h with 2–5 μg of antibody and then with protein G magnetic beads. Protein complexes were washed and trypsin was used to remove the immunoprecipitate from beads and digest the protein sample. Protein digests were separated from the beads and purified using a C18 spin column (Harvard Apparatus). The peptides were vacuum-dried using a SpeedVac. Digested peptides were analysed by liquid chromatography and tandem mass spectrometry on a Thermo Scientific Q Exactive Orbitrap mass spectrometer in conjunction with a Proxeon Easy-nLC II HPLC (Thermo Scientific) and Proxeon nanospray source.

Protein identifications were accepted if they contained at least one identified peptide. Proteins that contained similar peptides and could not be differentiated based on tandem mass spectrometry analysis alone were grouped to satisfy the principles of parsimony. Proteins sharing significant peptide evidence were grouped into clusters. Protein peptide evidence is specified in Supplementary Table 9. The final list was generated by taking all proteins with a spectral count of five and above from each replicate reaction and comparing them in a Venn diagram. The final list was generated by taking all proteins with a spectral count of five and above from each replicate reaction and comparing them in a Venn diagram. The final list was generated by taking all proteins with a spectral count of five and above from each replicate reaction and comparing them in a Venn diagram.

shRNA experiments. Cells were transduced with a doxycycline-inducible LT3GEPiR lentiviral vector, T3G-CAF-mir-EPG-Puro-IRES-rtTA34, expressing shRNAs against BRD9 or a non-targeting shRNA against Renilla. The shRNAs were induced with 2 μg/ml doxycycline (Sigma Aldrich). All shRNAs were designed using the SplasHRNA algorithm35. The shRNA sequences are: BRD9 shRNA no. 1 (human, shBRD9_352): TTTATATTACATTGAATCCAG; BRD9 shRNA no. 2 (human, shBRD9_353): TTTATATTACATTGAATTCATA; BRD9 shRNA no. 1 (mouse, shBRD9_311): TTTATATTACATTGAATTCATA; BRD9 shRNA no. 2 (mouse, shBRD9_512): TTTATATTACATTGAATTCATA; HTRA1 shRNA no. 1 (human, shHTRA1_1192): TTTTATTATCTTATCAGATGGGA; HTRA1 shRNA no. 2 (human, shHTRA1_1669): TGAAACCAAAAAATGGCAGTCA; and HTRA1 shRNA no. 3 (human, shHTRA1_1888): TTTCTATCTACGCTGGTAATAG.

irRNA transfections. K562 cells were transected with a non-targeting control siRNA (Dharmacon, D-001810-01, target sequence: UGGUUUACAGCGGCACUA), an siRNA pool against 2UAF1 (Dharmacon ON-TARGETplus SMARTpool, L-01325-01) or an siRNA pool against 2UAF2 (Dharmacon ON-TARGETplus SMARTpool, L-012380-02) using the Nucleofector II device from Lonza with the Cell Line Nucleofector Kit V (program T16). RNA was lsed and genomic DNA was extracted (Qiagen), and quantified by Qubit (Thermo Fisher Scientific 10131027), the selected cells were treated with 1 μg/ml doxycycline (Sigma D98991). The BRD9 minigene construct was generated by inserting the DNA fragment containing the BRD9 genomic sequence from exon 14 to exon 15 in between the BamHI and AgeI restriction sites in the FRES plasmid (Addgene 62377) via Gibson assembly. BRD9 minigene mutagenesis was performed with the Agilent QuikChange II site-directed mutagenesis kit with specific primers according to the manufacturer’s directions. For transient transfection experiments, cells were seeded into a 24-well plate one day before transfection of BRD9 minigene constructs in the presence of X-tremeGENE HP DNA transfection reagent (Roche) according to the manufacturer’s directions. Forty-eight hours after transfection, cells were collected and RNA was extracted using Qiagen RNeasy mini kit. Minigene-derived and endogenous BRD9 transcripts were analysed by RT–PCR using specific primers. Primers and oligonucleotides used in RT–PCR reactions were cloned in vector: plasmid GACAGCGATTCAGGATCCTGTGTTGGGACAGCAGTGGCGTTTGCCTGACCTGTGGCAGTTGAG; lyzed and genomic DNA was extracted (Qiagen), and quantified by Qubit (Thermo Fisher Scientific 10131027), the selected cells were treated with 1 μg/ml doxycycline (Sigma D98991). The BRD9 minigene construct was generated by inserting the DNA fragment containing the BRD9 genomic sequence from exon 14 to exon 15 in between the BamHI and AgeI restriction sites in the FRES plasmid (Addgene 62377) via Gibson assembly. BRD9 minigene mutagenesis was performed with the Agilent QuikChange II site-directed mutagenesis kit with specific primers according to the manufacturer’s directions. For transient transfection experiments, cells were seeded into a 24-well plate one day before transfection of BRD9 minigene constructs in the presence of X-tremeGENE HP DNA transfection reagent (Roche) according to the manufacturer’s directions. Forty-eight hours after transfection, cells were collected and RNA was extracted using Qiagen RNeasy mini kit. Minigene-derived and endogenous BRD9 transcripts were analysed by RT–PCR using specific primers. Primers and oligonucleotides used in RT–PCR reactions were cloned in vector: plasmid GACAGCGATTCAGGATCCTGTGTTGGGACAGCAGTGGCGTTTGCCTGACCTGTGGCAGTTGAG;
moral with 12.5 mg/kg scrambled or poison-exon-targeting Vivo-Morpholinos tinely in alcohol and xylene, embedded in paraffin, sectioned at 5-μm thickness and stained with H&E. Immunohistochemistry was performed on a Leica Bond RX automated stainer (Leica Biosystems). Following heat-induced epitope retrieval at pH 6.0, the primary antibody against Ki67 (Vector VP-K451) was applied, followed by application of a polymer detection system (DS9800, Novoceastra Bond Polymer ReFine Detection, Leica Biosystems) in which the chromogen was 3,3-diaminobenzidine tetrachloride (DAB) and the counterstain was haematoxylin. Photomicrograph examination of all H&E and immunohistochemistry slides were performed using a Zeiss Axioskop imaging.

BRD9 expression correlates. The cor.test (in R) was used to calculate Spearman's ρ and the *p*-value was associated with the correlation of BRD9 expression with the expression of each coding gene across all samples within each cohort from the TCGA. Analysis was restricted to coding genes that are not on the same chromosome arm as BRD9 (chromosome 5p) to remove potential confounding effects of local correlations. Coding genes with *p* < 0.01 in at least 10 cancer types were ranked by their absolute mean value of ρ (computed across all TCGA cohorts) and classified as RNA-binding if they were annotated with the 'RNA-binding' Gene Ontology term (GO: 0003723).

BRD9 alternative splicing. Potential NMD-targeted isoforms of BRD9 were identified as follows: we queried the MISO v2.0 alternative splicing annotation for exon skipping and competing splice site events within the BRD9 gene locus, restricted to those events with coding genes that were differentially spliced in isogenic UVM (MEL270 cells) as well as myelodysplastic syndrome and UVM samples (Fig. 1a) was based on the 40 events restricted to the 30 of these events that had sufficient read coverage in all cohorts (described in ‘Genome annotation, RNA-seq read mapping, and estimation of gene and isoform expression’). As z-score normalization was performed across all samples for each isoform in each cohort before model fitting. The resulting coefficients from the fitted models were subsequently used to predict BRD9 expression from BRD9 NMD-targeted isoform expression.

RNA-seq library preparation. RNA-seq libraries were prepared from TRIzol-isolated (Thermo Fisher cat. no. 15596026) RNA using the Illumina TrueSeq RNA Library Prep Kit v2 (Illumina cat. no. RS-122-2001/2). K562 libraries were sequenced at MSKCC with 101–bp single-end reads. MEL270 libraries were sequenced by the FHCR Genomics Shared Resource with 2 × 51–bp paired-end reads.

ChIP–seq library preparation. ChIP–seq libraries were prepared and sequenced as previously described by the Molecular Biology Core Facilities at the Dana-Farber Cancer Institute with 75-bp single-end reads.

Genomic analysis of SWI–SNF complex members from TCGA. Mutationally enriched members of the SWI–SNF complex was performed as previously described.

Gene annotation, RNA-seq read mapping, and estimation of gene and isoform expression. RNA-seq reads were processed for gene expression and isoform ratio quantification as previously described. Briefly, RNA-seq reads were aligned to the hg19/GRCh37 assembly of the human genome using a gene annotation created by merging the UCSC knownGene gene annotation 49, Ensemble v71.1 gene annotation 48 and MISO v2.0 isoform annotation 50. Read alignment and expression estimation were performed with RSEM v1.2.4, Bowtie v1.0.0 and TopHat v2.1.1. Isoform ratios were quantified with MISO v2.0. Gene expression esti- mates were normalized by applying the trimmed mean of M values method 51 to coding genes. Statistical tests for differential gene and isoform expression were performed for single-sample comparisons with Wagenmakers' Bayesian framework 49 and for sample group comparisons with the Mann–Whitney U-test. RNA-seq read-coverage plots (for example, Fig. 1e) represent reads normalized by the number of reads mapping to all coding genes in each sample (per million).

RNA-seq coverage plots. RNA-seq coverage plots were made using the UCSC Genome Browser 59 and/or the ggplot2 package in R 51. Repetitive elements were annotated by RepeatMasker 28.

Cluster analysis. Unsupervised clustering of chronic lymphocytic leukaemia, myelodysplastic syndrome and UVM samples (Fig. 1a) was based on the 40 events that were differentially spliced in isogenic UVM (MEL270 cells) as well as mye- lodysplastic leukaemia (K562 cells) cells expressing SF3B1Δ7700 versus wild-type SF3B1, restricted to the 30 of these events that had sufficient read coverage in all cohorts for clustering.

ChIP–seq data analysis. ChIP–seq reads were mapped to the genome by calling Bowtie v1.0.0 with the arguments -v 2 -k 1 -m 1–best–strata. Peaks were called and HIC value annotation and input control libraries with P < 10−5 and subsequently filtered to remove peaks contained within ENCODE blacklisted regions 53 and the mitochondrial genome. Subsequent data analysis was performed with Bioconductor in the R programming environment 49, Consensus
peaks between samples were called using the soGGI package v.1.14.0. Peaks were annotated using the ChiPseeker package v.1.18.0. Potential transcription factor binding in a 300-nucleotide region around the centre of consensus peaks was scored using the TFBSTools package v.1.20.65, with models taken from the HOCOMOCO v.11 human core collection48 and applied with a threshold of \(P < 10^{-3} \). The highest scores for each consensus peak region were collated for each transcription factor. A two-sided Mann–Whitney U-test was used to assess the significance of the difference in scores between constitutive and sensitive peaks for each transcription factor.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability
RNA-seq and ChiP-seq data generated as part of this study were deposited in the Gene Expression Omnibus (accession number GSE124720). RNA-seq data from published studies were downloaded from CGHub (TCCG UVM™), EMBL-EBI ArrayExpress (Illunima Human BodyMap 2.0: E-MTAB-513), the Gene Expression Omnibus (accession numbers GSE72790 and GSE114922 for chronic lymphocytic leukemia49 and myelodyplastic syndromes50, respectively), or directly obtained from the authors (for UVM™). Gel source data can be found in Supplementary Figure 1. Other data that support the findings of this study are available from the corresponding authors upon reasonable request.

Acknowledgements
We are grateful for the support of the MSK RNA core facility for help with the CRISPR screens performed in the study, the MSK and Institutional core assessment committee for help with patient-derived xenograft experiments and the Genomics Shared Resource of the Fred Hutchinson/University of Washington Cancer Consortium (P30 CA015704). D.J., S.-C.W., A.Y. and O.A.-W. are supported by the Leukemia & Lymphoma Society. D.J. is supported by grants from Lucile O’Leary Memorial Pias Dermatological Foundation and Kobayashi Foundation for Cancer Research. A.Y. is supported by grants from the Aplastic Anemia and MDS International Foundation (AAMDSIF) and the Laun Strauss Leukemia Foundation. S.X.L. is supported by a Conquer Cancer Foundation and ASCO Young Investigator Award, an Aplastic Anemia & Myelodysplastic Syndrome International Foundation research award, as well as an AOCR Lymphoma Research Fellowship. G.-L.C. is a Mohan Fellow. O.A.-W. is supported by the Pershing Square Sohn Cancer Research Alliance, the Henry & Marilyn Taub Foundation and the Starr Cancer Consortium. R.K.B. is a Scholar of The Leukemia and Lymphoma Society (1344-18) and is supported in part by the US National Institutes of Health (R01 DK103854). O.A.-W. and R.K.B. are supported by the Evans MDS Foundation, the US National Institutes of Health (R01 HL128259) and the Department of Defense Bone Marrow Failure Research Program (BM150092 and W81XWH-12-1-0041). The results shown here are in part based upon data generated by the TCGA research network (https://cancergenome.nih.gov/).

Author contributions

Competing interests
D.I. is a Scientific Founder, fiduciary Board of Directors member, Scientific Advisory Board member, consultant and shareholder of Foghorn Therapeutics, none of which are related to the current manuscript. O.A.-W. has served as a consultant for H3 Biomedicine, Foundation Medicine, Merck and Janssen; O.A.-W. has received personal speaking fees from Daiichi Sankyo. O.A.-W. has received previous research funding from H3 Biomedicine unrelated to the current manuscript. D.I., O.A.-W. and R.K.B. are inventors on a provisional patent application submitted by the Fred Hutchinson Cancer Research Center that covers BRD9 activation in cancer.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-019-1646-9.

Correspondence and requests for materials should be addressed to O.A. or R.K.B.

Peer review information
Nature thanks Boris Bastian, Rotem Karni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | See next page for caption.
Extended Data Fig. 1 | BRD9 is mis-spliced in SF3B1-mutated human cells, and BRD9 loss confers a proliferative advantage. a, Scatter plots comparing differential splicing (ΔPSI) between patients in the TCGA UVM cohort with SF3B1 mutations or wild-type SF3B1 (x axis) and patients from a myelodysplastic syndromes cohort with SF3B1 mutations or wild-type SF3B1 (y axis). Events were classified as alternative 3’ splice sites or skipped exons. b, Rank plot for the −log10(FDR) associated with each sRNA in our CRISPR–Cas9 positive-selection screen. sRNAs targeting the positive control (Pten) and Brd9 are highlighted, for the probe-level (per-sRNA) analysis, we fitted a negative binomial generalized log-linear model and performed a likelihood ratio test. FDR values were computed using the Benjamini–Hochberg method. c, Read counts for sRNAs targeting the positive control (Pten) or Brd9. D0 and D7 indicate days following withdrawal of IL-3. d, Heat map summarizing the results of a competition assay to measure the effect of each indicated sRNA on the growth of Cas9-expressing Ba/F3 cells. Cell growth was computed with respect to cells treated with a non-targeting (control) sRNA and the percentages of GFP+ cells on day 14 were normalized to the percentages on day 2. The illustrated values correspond to the mean computed value over n = 3 biological replicates. Rpa3 sRNAs were used as a negative control. e, As in d, but for 32Dc5 cells. f, As in d, but for the indicated melanoma and pancreatic ductal adenocarcinoma cell lines. g, As in d, but for RN2 cells. h, Sequence conservation of the BRD9 poison exon locus as estimated by phyloP. Conservation and repetitive element annotation is from the UCSC Genome Browser. i, RT–PCR analysis of Brd9 poison exon inclusion using whole bone marrow cells from Mx1-cre Sf3b1 K700E/WT (WT/WT) and Mx1-cre Sf3b1 K700E/WT (K700E/WT) mice. Three weeks after pIpC treatment, RT–PCR was performed with mouse primers corresponding to those used to assay BRD9 poison exon inclusion in human cells. Representative images from n = 2 technically independent replicates. j, RT–PCR analysis to confirm mutant-SF3B1-dependent inclusion of the BRD9 poison exon in isogenic NALM-6 cell lines engineered to contain the indicated mutations. SF3B1K700E is a wild-type control for genome engineering. Representative images from n = 2 technically independent replicates. k, Western blot for Flag, SF3B1 and BRD9 in K562 cells overexpressing N-terminally Flag-tagged wild-type SF3B1 or SF3B1K700E cDNAs, or an empty vector; this panel corresponds to the cells evaluated in m. Representative images from n = 2 biologically independent replicates. l, Western blot for SF3B1 in K562 cells treated with doxycycline-inducible SF3B1-targeting shRNAs or a non-targeting control shRNA (shRen); this panel corresponds to cells evaluated in m. Representative images from n = 2 technically independent replicates. m, RT–PCR illustrating the specificity of BRD9 poison exon inclusion for SF3B1-mutated cells in the indicated cell lines. These include K562 cells treated with control shRNA (shRen) or SF3B1-targeting shRNAs (the columns labelled ‘K562 knock-down’); knock-in of the SF3B1 K700E, SF3B1 ΔK700E or SF3B1 K666E mutation into the endogenous locus of SF3B1 (the columns labelled ‘K562 knock-in’); or overexpression of wild-type SF3B1 or SF3B1K700E cDNA (the columns labelled ‘K562 cDNA’). The two right-most lanes show acute myeloid leukaemia cell lines with wild-type SF3B1 (MV4;11) or a naturally occurring endogenous SF3B1K700E mutation (HT134 cells; the columns labelled ‘leukaemia cell lines’). Representative images from n = 3 biologically independent experiments. n, As in m, but for the indicated pancreatic ductal adenocarcinoma cell lines (left), UVM cell lines (centre) and a cohort of patients with chronic lymphocytic leukaemia (right). CFPCA1 and MIA PaCa2 cells lack SF3B1 mutations; Panc05/04 cells carry SF3B1Q699R/K700E, UPMD1 and MEL270 cells lack SF3B1 mutations; MEL202 and UPMD2 cells carry SF3B1 R625G and SF3B1 K700E mutations, respectively. Sample identifiers for patients with chronic lymphocytic leukaemia correspond to the genotypes shown in Supplementary Table 7. Representative images from n = 2 technically independent experiments (left and centre) and n = 3 biologically independent experiments (right). o, RNA-seq read coverage plots of the BRD9 poison exon locus from patient samples with the indicated SF3B1 genotypes. All SF3B1-mutated samples exhibit BRD9 poison exon inclusion. As in m, but for the indicated tissues from healthy donors (from BodyMap 2.0). q, qRT–PCR measurement of the half-lives of the poison exon inclusion (left) and exclusion (right) isoforms in isogenic K562 SF3B1K700E cells treated with the indicated shRNAs and actinomycin D to inhibit transcription. NMD inhibition via UPF1 knockdown stabilizes the inclusion, but not exclusion, isoform. Red arrows indicate primers used to specifically detect the two isoforms. n = 2 biologically independent experiments and n = 2 technically independent experiments for the inclusion isoform; n = 3 technically independent experiments for the exclusion isoform. P value was calculated by two-sided t test at 8 h. r, Bar graph illustrating the estimated poison exon inclusion isoform half-life in the indicated conditions from the data in q. Error bars, mean ± s.d. n = 2 biologically independent experiments and n = 2 technically independent experiments. P value was calculated by two-sided t test. As in r, but for the exclusion isoform. Error bars, mean ± s.d. n = 3 technically independent experiments. P value was calculated by two-sided t test. s, As in q, but for NALM-6 SF3B1 K700E cells. n = 3 technically independent experiments for the inclusion isoform and the exclusion isoform. P value was calculated by two-sided t test at 8 h. u, As in r, but for NALM-6 SF3B1 K700E cells. n = 3 technically independent experiments. Error bars, mean ± s.d. P value was calculated by two-sided t test. v, As in s, but for NALM-6 SF3B1 K700E cells. Error bars, mean ± s.d. n = 3 technically independent experiments. P value was calculated by two-sided t test. w, Western blot for BRD9 in NALM-6 cells with or without knock-in of an SF3B1 mutation. Actin, loading control. Representative images from n = 3 biologically independent experiments. x, Rank plot of BRD9 poison exon inclusion (scale of 0 to 1; top) and box plot of gene expression (inset) for patients stratified by SF3B1 mutational status (data are from cohorts of patients with myelodysplastic syndromes or UVM, as in Fig. 1a). SF3B1 mutations were strongly associated with high poison exon inclusion and low BRD9 expression. Boxes illustrate 1st and 3rd quartiles, with whiskers extending to 1.5× interquartile range. P value computed with one-sided Mann–Whitney U test.
Extended Data Fig. 2 | See next page for caption.
Extended Data Fig. 2 | Mutant SF3B1 recognizes an aberrant branchpoint within BRD9 to promote poison exon inclusion, causing loss of full-length BRD9 protein. a, Schematic illustrating the strategy for knock-in of an HA tag into the endogenous BRD9 locus. The single-stranded donor DNA contained a 197-nt fragment, including 83 nt homologous to the BRD9 5′ UTR (upstream of the HA tag) and 87 nt homologous to BRD9 exon 1 (downstream of the start codon). b, Sanger sequencing of genomic DNA validating successful HA tag knock-in in K562 SF3B1K700E cells. Representative images from n = 2 biologically independent experiments. c, Western blot with anti-BRD9 (left), anti-HA (right, top) or anti-actin (right, bottom) used to probe K562 SF3B1K700E cells carrying an endogenously N-terminally HA-tagged BRD9. White arrows, non-specific bands. Red arrow, expected size of BRD9 protein. d, Western blot for Flag, SF3B1 and endogenous BRD9 protein in MEL270 cells with doxycycline-inducible Flag-tagged wild-type SF3B1 or Flag-tagged SF3B1(K700E). Representative images from n = 3 biologically independent experiments. e, Sanger sequencing of cDNA arising from reverse transcription of lariats arising from inclusion (top) (exon 14–exon 15 splicing) or exclusion (bottom) (exon 14–exon 15 splicing) of the BRD9 poison exon in MEL270 cells with doxycycline-inducible Flag-tagged wild-type SF3B1 (bottom) or Flag-tagged SF3B1(K700E) (top). The branchpoints are illustrated in Fig. 2a. Representative images from n = 3 biologically independent experiments. f, As in e, but for T47D cells. Representative images from n = 3 biologically independent experiments. g, As in Fig. 2b, but for the indicated minigene mutagenesis in T47D cells with doxycycline-inducible Flag-tagged SF3B1 or Flag-tagged SF3B1(K700E). Representative images from n = 3 biologically independent experiments. h, Western blot of U2AF2, U2AF1 and histone H3 in K562 cells transfected with siRNAs against U2AF1 and/or U2AF2 (top) and bar plot illustrating mean BRD9 poison exon inclusion as measured by quantitative PCR (qPCR) following siRNA knockdown of U2AF1 and/or U2AF2 (bottom). Experiment performed with n = 1 biologically independent replicate for siRNA transfection, n = 1 technically independent replicate for western blot and n = 3 technically independent replicates for RT–PCR. Poison exon inclusion was computed over all n = 3 × 3 (9) combinations of technical replicates for RT–PCR for the inclusion and exclusion isoforms. Bars illustrate mean inclusion. i, EPB49 cassette exon inclusion as measured by qPCR following siRNA knockdown of U2AF1 and/or U2AF2. As the EPB49 cassette exon is U2AF-dependent, this experiment serves as a positive control for the functional efficacy of U2AF1 and U2AF2 knockdown. n = 3 biologically independent experiments. Cassette exon inclusion was computed over all n = 3 × 3 (9) combinations of technical replicates for RT–PCR for the inclusion and exclusion isoforms. Bars illustrate mean inclusion. j, As in Fig. 2b, but for the indicated minigene mutagenesis in T47D cells with doxycycline-inducible Flag-tagged SF3B1(K700E). Representative images from n = 3 biologically independent experiments. k, As in Fig. 2c, but for the indicated minigene mutagenesis in T47D cells with doxycycline-inducible Flag-tagged SF3B1(K700E). Representative images from n = 3 biologically independent experiments. l, Western blot for Flag, SF3B1, BRD9 and actin in MEL270 cells expressing an empty vector or N-terminally Flag-tagged wild-type SF3B1, SF3B1R625H or SF3B1K700E cDNA. Representative images from n = 3 biologically independent experiments. m, RT–PCR analysis of BRD9 splicing in MEL270 cells expressing doxycycline-inducible empty vector, wild-type SF3B1, SF3B1R625H or SF3B1K700E cDNA. Representative images from n = 3 biologically independent experiments. n, As in m, but for the illustrated minigene mutations at the 5′ end of the poison exon. Representative images from n = 3 biologically independent experiments. o, Mutations generated at the 5′ end of the BRD9 poison exon by CRISPR–Cas9-mediated indels in MEL202 cells (SF3B1R625H). The PAM sequence is illustrated with uppercase, underlined nucleotides. Red nucleotides hybridize to the sgRNA. Substitutions are illustrated with lowercase, underlined nucleotides. p, As in o, but for MEL270 cells. Representative images from n = 3 biologically independent experiments. q, As in Fig. 2d top, but for MEL270 cells. Representative images from n = 3 biologically independent experiments. r, As in Fig. 2d bottom, but for MEL270 cells. Representative images from n = 3 biologically independent experiments.
Extended Data Fig. 3 | BRD9 loss impairs ncBAF complex formation.

a, Mutation rate observed across TCGA cohorts for canonical BAF, polybromo-associated BAF and ncBAF components.

b, Western blot confirming Flag-tagged BRD9 protein expression in 3×Flag–BRD9-expressing K562 cells. Representative images from n = 3 biologically independent experiments.

c, Experimental workflow for using rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for purification and identification of the chromatin-associated interactions partners of BRD9. Western blotting with IgG or Flag followed by probing with the indicated antibodies. Data from 3×Flag–BRD9-expressing MEL270 cells. Representative images from n = 3 biologically independent experiments.

d, Cross-linking and immunoprecipitation with IgG or Flag followed by probing with the indicated antibodies. Data from 3×Flag–BRD9-expressing MEL270 cells. Representative images from n = 3 biologically independent experiments.

e, Immunoprecipitation of GLTSCR1 followed by western blotting with the indicated antibodies in SF3B1K700E knock-in NALM-6 cells. Representative images from n = 3 biologically independent experiments.

f, Immunoprecipitation of GLTSCR1 (top) or BRG1 (bottom) followed by blotting with the indicated antibodies in K562 cells with CRISPR-mediated knockout (KO) of BRD9. Representative images from n = 3 biologically independent experiments.

g, Schematic of the BRD9 full-length (FL) protein and the deletion mutants that we constructed. BD, bromodomain; DUF, domain of unknown function; N, amino acids 1–133 of BRD9; N + BD, amino acids 1–242 of BRD9; N + BD + DUF, amino acids 1–505 of BRD9; dN, amino acids 134–597 of BRD9; dBD, bromodomain-deletion mutant of BRD9; dDUF, DUF-domain deletion mutant of BRD9.

h, Immunoprecipitation with Flag following by probing (immunoblot, IB) for GLTSCR1 or GLTSCR1L in 293T cells expressing 3×Flag-tagged versions of the indicated deletion mutants. Deletion mutants illustrated in g. Representative images from n = 3 biologically independent experiments.
Extended Data Fig. 4 | BRD9 loss drives relocalization of GLTSCR1 away from CTCF-associated loci. a. As in Fig. 3e, but illustrating relative positions with respect to transcription start sites (TSSs). b. As in Fig. 3f, but for motifs at BRG1-bound loci. n = 401 transcription factors analysed. c. UpSet plots depicting the overlap of consensus GLTSCR1-bound loci in MEL270 cells with the indicated treatments. d. Volcano plot illustrating the difference in the mean motif scores at BRD9-sensitive versus constitutive GLTSCR1-bound loci for the transcription factors in Fig. 3f, as well as associated statistical significance. n = 401 transcription factors analysed. P values computed with a two-sided Mann–Whitney U-test. e. As in c, but for BRG1-bound loci. f. As in d, but for BRG1-bound loci. n = 401 transcription factors analysed. g. Selected enriched annotation terms from a Genomic Regions Enrichment of Annotations Tool (GREAT) analysis61 of genes near BRD9-sensitive and constitutive GLTSCR1-bound loci. Plot illustrates −log10(FDR), computed with a one-sided binomial test and corrected for multiple testing using the Benjamini–Hochberg procedure. O and E, numbers of genes that were observed and expected, respectively. h. Differences in gene expression in SF3B1-mutated versus wild-type samples in the TCGA UVM cohort for genes with GLTSCR1-bound promoters identified in MEL270 cells. Colours indicate the responsiveness of peaks to BRD9 loss. i. Read coverage from GLTSCR1 ChIP–seq (MEL270 cells) and RNA-seq (TCGA UVM cohort) around NFATC2IP. Red trapezoid indicates GLTSCR1 binding in the promoter, with reduced binding upon treatment with BRD9 degrader or expression of SF3B1K700E. NFATC2IP was significantly differentially expressed in UVM samples with SF3B1 mutations relative to wild-type samples. Vertical axis scales were rendered comparable by normalizing ChIP–seq read coverage to mapped library size and RNA-seq read coverage to mapped library size, restricted to coding genes. ChIP–seq experiment performed for n = 1 biologically independent replicate. j. As in i, but for SETD1A. SETD1A was significantly differentially expressed in UVM samples with SF3B1 mutations relative to wild-type samples.
Extended Data Fig. 5 | See next page for caption.
Extended Data Fig. 5 | BRD9 is a potent tumour suppressor in UVM.

a. In vitro growth curves of Melan-a cells treated with two non-targeting shRNAs (against Renilla (shRen) and luciferase (shLuc)) versus parental, un-manipulated Melan-a cells. *n* = 3 biologically independent experiments per group. Data are presented as mean ± s.d.

b. Tumour volume in SCID mice subcutaneously injected with Melan-a cells expressing a control shRNA (against Renilla), shRNA against Brd9 (Brd9 shRNA no. 1 and no. 2), shRNA against Brg1 or cDNA encoding CYSLTR2(L129Q) (*n* = 8 mice per group). Data are presented as mean ± s.d. *P* value at day 64 was calculated compared to Renilla shRNA group with a two-sided *t*-test.

c. Representative images of the dissected melanomas from **b.**

d. H&E images of melanomas from **b.** Scale bars, 100 μm. Representative images from *n* = 3 biologically independent experiments.

e. qRT–PCR measuring expression of Brd9 (left) and melanoma-associated genes (Mitf, Dct, Pmel and Tyrp1) of melanomas from **a.** *n* = 4 (Renilla shRNA) and *n* = 5 (Brd9 shRNA no. 1 and no. 2) biologically independent experiments. Data are presented as mean ± s.d. *P* value was calculated by two-sided *t*-test.

f. Images of mice transplanted with parental, un-manipulated Melan-a cells or Melan-a cells transduced with a non-targeting shRNA or Brd9-targeting shRNA. Cells were subcutaneously engrafted into SCID mice and tumour volume was estimated 36 days after transplant.

g. Volumes of tumours from **f** at day 36. Data are presented as mean ± s.d. *n* = 10 tumours per group. *P* value was calculated relative to the parental group by a two-sided *t*-test.
Extended Data Fig. 6 | See next page for caption.
Extended Data Fig. 6 | BRD9 is a potent tumour suppressor in UVM.

a, Representative images of pulmonary metastatic foci produced 14 days after intravenous injection of B16 cells with or without Brd9 shRNA (MLS-E vector). Scale bar, 5 mm. b, Western blot of endogenous BRD9 in B16 cells immediately before injection. Actin, loading control. The experiment was repeated three times with similar results. c, H&E sections of lung metastases. Arrows indicate metastatic foci. Scale bar, 100 μm. The experiment was repeated three times with similar results. d, Numbers of pulmonary B16 metastases identified in the experiments from a. n = 6 mice per group. P value was calculated relative to the Renilla shRNA group by a two-sided t-test. e, Relative percentages of GFP+ 92.1 cells with or without BRD9 shRNA (MLS-E vector), assessed by flow cytometric analysis of lung tissue in recipient NSG (NOD−SCID Il2rg−/−) mice 14 days after intravenous injection by tail vein. The signal was normalized by dividing by the average percentage of GFP+ cells in the Renilla shRNA (control) group. n = 5 biologically independent experiments per group. P value was calculated relative to the Renilla shRNA group by a two-sided t-test. f, Anti-GFP immunohistochemistry for sections of lung metastases from the experiment in e. Scale bar, 200 μm. The experiment was repeated three times with similar results. g, Representative images of tumours derived from transplantation of Melan-a cells transduced with doxycycline-inducible Brd9 shRNA. Doxycycline was administered for nine weeks (left) and followed by doxycycline withdrawal for three weeks (right). h, Tumour volume for the experiment in g. n = 4 mice per group. The experiment was repeated twice with similar results. P value was calculated relative to the parental group by a two-sided t-test at day 7, day 14 and day 21. i, Representative images of recipient mice engrafted with MEL270 cells transduced with empty vector, full-length BRD9 (BRD9 WT) or a bromodomain-deletion mutant of BRD9 (BRD9 ΔBD) at day 12. n = 5 mice per group. j, Results of a competition assay to measure the effects of expression of the indicated cDNAs on growth of the indicated melanoma cells. Transduced cells were identified by co-expression of GFP (pMIGII vector). The percentage of GFP+ cells was tracked over 21 days and normalized to the GFP percentage on day 2. Data are presented as mean ± s.d. n = 2 biologically independent experiments per group. k, Results of a competition assay to measure the effects of expression of the indicated cDNAs on growth of the indicated melanoma cells. Transduced cells were identified by co-expression of GFP (pMIGII vector). The percentage of GFP+ cells was tracked over 10 days and normalized to the GFP percentage on day 3. n = 2 biologically independent experiments per group.
Extended Data Fig. 7 | See next page for caption.
Extended Data Fig. 7 | BRD9 regulates HTRA1 expression to promote UVM tumorigenesis. a, Rank plot illustrating fold change (expressed in log2) of each significantly differentially expressed gene identified by comparing samples from patients in the TCGA UVM cohort with mutated versus wild-type SF3B1. The plot is restricted to genes with BRD9 ChIP-seq peaks within their promoters or gene bodies in the absence of perturbations to BRD9 (MEL270 cells treated with DMSO or following ectopic expression of wild-type SF3B1). \(n = 3,122 \) genes analysed, of which \(n = 248 \) met the significance (\(P < 0.001 \)) and expression (median expression in both wild-type and mutant samples > 2 transcripts per million) thresholds, and so are illustrated here. \(P \) value was computed using a two-sided Mann–Whitney \(U \)-test. b, As in a, but a volcano plot additionally illustrating the \(P \) value associated with the comparison between SF3B1-mutated and wild-type SF3B1 samples. \(n = 3,122 \) genes analysed and illustrated. \(P \) value computed with two-sided Mann–Whitney \(U \)-test. c, HTRA1 expression in samples from patients in the TCGA UVM cohort with (\(n = 18 \)) or without (\(n = 62 \)) SF3B1 mutations. Expression is \(z \)-score normalized across all samples. Data are presented as mean ± s.d. \(P \) value computed with two-sided \(t \)-test. d, Western blot for Flag, SF3B1, HTRA1, BRD9 and actin in MEL270 cells (wild-type SF3B1), treated with DMSO, BRD9 degrader, Flag–SF3B1(WT) or Flag–SF3B1(K700E). Representative images from \(n = 3 \) biologically independent experiments. e, Western blot for HTRA1, BRD9 and actin in MEL202 cells (SF3B1K700E) following CRISPR–Cas9-mediated mutagenesis of the BRD9 poison exon (as shown in Extended Data Fig. 2o). Representative images from \(n = 3 \) technically independent experiments. f, Read coverage for BRG1, BRD9 and GLTSCR1 ChIP–seq at the HTRA1 locus in MEL270 cells (shown in d) treated with an empty vector, BRD9 degrader, or SF3B1\(^{WT} \) or SF3B1\(^{K700E} \) cDNAs (\(n = 1 \) ChIP–seq experiment performed for each condition). g, Western blot for HTRA1 and actin in MEL270 cells treated with shRNAs against HTRA1 or with a non-targeting control shRNA (against Renilla). Representative images from \(n = 3 \) biologically independent experiments. h, Heat map summarizing the results of a competition assay to measure the effect of each indicated shRNA on the growth of Cas9-expressing UVM cell lines with wild-type SF3B1. Cell growth was computed with respect to cells treated with a non-targeting control shRNA (against Renilla) and the percentage of GFP\(^+\) cells at day 14 was normalized to that at day 2. The illustrated values correspond to the mean values computed over \(n = 3 \) biologically independent experiments. i, Western blot for HTRA1 and actin in MEL202 cells (SF3B1R625G) following stable overexpression of an empty vector or HTRA1 (both with an MSCV-IRES-GFP vector). Representative images from \(n = 3 \) biologically independent experiments. j, Ratio of GFP\(^+\) to GFP\(^-\) MEL202 cells (SF3B1R625G) from a competition experiment in which GFP\(^+\) cells from i were seeded at an initial 1:1 ratio with GFP\(^-\) control cells. Data are presented as mean of \(n = 2 \) biologically independent experiments. k, Colony number of MEL202 cells expressing empty vector or HTRA1 cDNA from i, following 10 days of growth in soft agar. Data are presented as mean of \(n = 3 \) biologically independent experiments.
Extended Data Fig. 8 | CRISPR–Cas9-mediated mutagenesis of the BRD9 poison exon corrects BRD9 aberrant splicing and abrogates growth of SF3B1-mutated melanoma. a, Colony number for MEL270 cells (wild-type SF3B1) without (control) or with (clone 1, clone 2 and clone 3) CRISPR–Cas9-induced indels that disrupted BRD9 poison exon recognition. Data presented as mean ± s.d. n = 3 biologically independent experiments per group. b, Representative images from a. c, Proliferation of the clones described in a. n = 3 biologically independent experiments per group. d, Proliferation of MEL285 cells (wild-type SF3B1) without (control) or with (clones 1, 2 and 3) CRISPR–Cas9-induced indels that disrupted BRD9 poison exon recognition. n = 3 biologically independent experiments per group. e, Mutations generated at the 5′ end of the BRD9 poison exon by CRISPR–Cas9-mediated indels in clones 1, 2 and 3 of MEL285 cells from d. The PAM sequence is illustrated with uppercase, underlined nucleotides. Red nucleotides hybridize to the sgRNA. f, Representative images of dissected tumours from recipient mice transplanted with CRISPR–Cas9-modified MEL202 clones. g, Tumour weight for the tumours illustrated in f. Data presented as mean ± s.d. n = 6 biologically independent experiments per group. P value was calculated relative to the control shRNA group by a two-sided t-test. h, H&E staining, as well as Ki-67 immunohistochemistry images, for the tumours illustrated in f. Representative images from n = 3 independent histological analyses.
Extended Data Fig. 9 | Correcting BRD9 mis-splicing in SF3B1-mutated xenografts with ASOs suppresses tumour growth. a, Cartoon representation of the BRD9 loci targeted by each designed morpholino. Melting temperature (T_m) is shown. Lengths of target sequences are indicated in parentheses; if these are not indicated, then the length is 25 nt.

b, Growth of MEL202 cells (SF3B1R625G) treated with 10 μM of control non-targeting (control) or BRD9 poison-exon-targeting morpholinos (no. 3, no. 6 and no. 7). $n = 3$ biologically independent experiments per group. P values at day 9 were calculated relative to the control group by a two-sided t-test.

c, Representative images of recipient mice xenografted with MEL202 cells and treated with PBS or morpholinos in vivo. Each tumour was analysed after in vivo treatment with PBS, control morpholino or morpholino against the BRD9 poison exon (no. 6) (12.5 mg kg$^{-1}$, every other day to a total of 8 intratumoral injections). $n = 10$ tumours per group. Estimated tumour volumes before and after treatment are shown. Data are presented as mean ± s.d. P values were calculated relative to the control group by a two-sided t-test.

d, Representative images of dissected tumours from the experiment described in c. e, RT–PCR results of tumours from c to evaluate BRD9 splicing. The experiment was repeated three times with similar results.

f, Representative H&E and Ki-67 staining images of tumours from c. Scale bars, 100 μm (top), 50 μm (middle and bottom). The experiment was repeated three times with similar results.

g, Estimated tumour volume for recipient mice transplanted with a patient-derived xenograft model of SF3B1R625C rectal melanoma and treated with in vivo morpholinos (control or morpholino against BRD9 poison exon, no. 6) (12.5 mg kg$^{-1}$, every other day to a total of 8 intratumoral injections). $n = 5$ mice per group. Estimated tumour volumes before and after treatment are shown. Data are presented as mean ± s.d. P values were calculated relative to the control group by a two-sided t-test.

h, Representative H&E staining images of tumours from g. The experiment was repeated three times with similar results.

i, Representative Ki-67 staining images of tumours from g. The experiment was repeated three times with similar results.

j, Estimated tumour volume for recipient mice transplanted with a patient-derived xenograft model of UVM (wild-type SF3B1), treated with in vivo morpholinos (control or morpholino against BRD9 poison exon, no. 6) (12.5 mg kg$^{-1}$, every other day to a total of 8 intratumoral injections). $n = 5$ mice per group. Estimated tumour volumes before and after treatment are shown. Data are presented as mean ± s.d. P values were calculated relative to the control group by a two-sided t-test.

k, Representative images of dissected tumours from j. l, Tumour weight for tumours from k. $n = 5$ mice per group. P value was calculated relative to the control group by a two-sided t-test.
Extended Data Fig. 10 | See next page for caption.
Extended Data Fig. 10 | Use of multiple, distinct NMD isoforms of

BRD9. a, **BRD9** gene structure illustrating constitutive **BRD9** exons and
alternative splicing events that are predicted to induce NMD. **SF3B1**
mutations promote inclusion of the **BRD9** poison exon in intron 14.

b, Genomic coordinates (hg19/GRCh37 assembly) of each NMD-inducing
event illustrated in a, as well as genomic sequence of each alternatively
spaced region highlighted in red in a. The third column indicates the
specific isoform that is a predicted NMD substrate. Prox, intron-proximal
competing 3′ splice site; dist, intron-distal competing 3′ splice site; inc,
exon inclusion; exc, exon exclusion. c, Rank plot illustrating levels of each
NMD-inducing isoform relative to total **BRD9** mRNA levels for each
sample in each indicated TCGA cohort. Boxes illustrate first and third
quartiles, with whiskers extending to 1.5× interquartile range. d, Box plot
illustrating the distribution of coefficients estimated by fitting a linear
model to predict **BRD9** gene expression on the basis of relative levels
of each NMD-inducing isoform. The relative levels of NMD-inducing
isoforms illustrated in c, as well as **BRD9** gene expression estimates for
each sample, were used to construct an independent linear model with
robust regression for each TCGA cohort. The coefficients resulting from
this model fitting procedure are illustrated in the box plot, in which each
dot corresponds to the coefficient associated with the corresponding
NMD-inducing event for a single TCGA cohort. Coefficients for the
TCGA UVM cohort are highlighted in red. The coefficients are typically
negative (as expected for NMD-inducing isoforms), with the exception
of constitutive exon 9 skipping, for which the coefficients are generally
positive—as expected for an event in which NMD is induced when a
constitutive exon is excluded. The **SF3B1**-mutation-responsive poison
exon in intron 14 dominates the fit for UVM, as expected. n = 33 TCGA
cohorts analysed and illustrated. e, Scatter plots comparing actual (y axis)
and predicted (x axis) **BRD9** expression levels for three TCGA cohorts.
Each dot corresponds to a single sample. ρ, Spearman’s correlation
between actual and predicted values. f, RNA-seq read coverage plots for
patient samples from the TCGA cohorts illustrated in e for representative
alternative splicing events illustrated in a. Each coverage plot illustrates
data averaged over the n = 5 patient samples from the vertically matched
cohort in e that exhibit the lowest or highest relative expression of the
NMD-inducing isoform. μ, mean relative expression of the illustrated
NMD-inducing isoform, computed over each group of samples.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

 Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

<table>
<thead>
<tr>
<th>Data collection</th>
<th>No software was used for data collection.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data analysis</td>
<td>Publicly available software was used in this study. Specific programs are RSEM (v1.2.4), Bowtie (v1.0.0), TopHat (v2.0.8b), MISO (v2.0), and Bioconductor (v3.7) within the R (v3.5.1) programming environment.</td>
</tr>
</tbody>
</table>

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

RNA-seq and ChIP-seq data generated as part of this study were deposited in the Gene Expression Omnibus (accession number GSE124720). RNA-seq data from published studies were downloaded from CGHub (TCGA UVM57), EMBL-EBI ArrayExpress (Illumina Human BodyMap 2.0: E-MTAB-513), the Gene Expression Omnibus (accession numbers GSE72790, GSE114922) (CLL: Darman et al. 201515, MDS: Pellagati et al. 201858), or directly obtained from the authors (UVM: Alsafadi et al. 201610). Gel source data can be found in Supplementary Fig. 1. Other data that support this study’s findings are available from the authors upon reasonable request.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

<table>
<thead>
<tr>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample sizes for xenograft experiments were chosen based on published studies of known oncogenic drivers of relevant models (e.g., expression of the oncoprotein CYSLTR2 L129Q in Melan-a cells).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data exclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>No data were excluded.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attempts at replication were successful.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Randomization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animals were randomly assigned to experimental groups.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blinding</th>
</tr>
</thead>
<tbody>
<tr>
<td>The data presented did not require the use of blinding.</td>
</tr>
</tbody>
</table>

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td>Antibodies</td>
</tr>
<tr>
<td>☑</td>
<td>Eukaryotic cell lines</td>
</tr>
<tr>
<td>☑</td>
<td>Palaeontology</td>
</tr>
<tr>
<td>☑</td>
<td>Animals and other organisms</td>
</tr>
<tr>
<td>☑</td>
<td>Human research participants</td>
</tr>
<tr>
<td>☑</td>
<td>Clinical data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td>ChIP-seq</td>
</tr>
<tr>
<td>☑</td>
<td>Flow cytometry</td>
</tr>
<tr>
<td>☑</td>
<td>MRI-based neuroimaging</td>
</tr>
</tbody>
</table>

Antibodies

Antibodies used

For Western blotting, the following antibodies to the following proteins were used: BRD9 (Bethyl Laboratories; A303-781A and Active Motif; 61538), SF3B1/Sap-155 (MBL; D221-3), Flag-M2 (Sigma-Aldrich; F-1084), β-actin (Sigma-Aldrich; A-5441), GLTSCR1 (Santa Cruz Biotechnology; sc-515086), GLTSCR1L (Thermo Fisher Scientific; P19-56126), CRM (Bethyl Laboratories; A303-015A), BRG1 (Santa Cruz Biotechnology; sc-17796), BAF155 (Santa Cruz Biotechnology; sc-48350), BAF60A (Santa Cruz Biotechnology; sc-135843), BAF47 (Santa Cruz Biotechnology; sc-166165), ARID1A (Santa Cruz Biotechnology; sc-373784), ARID2 (Santa Cruz Biotechnology; sc-166117), BRD7 (Thermo Fisher Scientific; P10-49379), U2AF2 (Bethyl Laboratories; A303-665A), U2AF1 (Bethyl Laboratories; A302-080A), Histone H3 (Abcam; ab1791), HTRA1 (R&D systems; MAB2916-SP). For ChIP-seq studies in MEL270 cells, antibodies to endogenous BRG1 (Abcam EP#CR111A, Lot # GR3208604-8), GLTSCR1 (Santa Cruz SC-240516, Lot # A2313), and BRD9 (Abcam, ab137245) were used.

Validation

All antibodies were validated by the supplier for human samples, and were checked in the lab by Western blotting on cell lysate and by comparing to the manufacturer's or in-house results.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

Ba/F3, K562, NALM6, TF1, HEK293T, MCF10A, Mlapaca2, CFPAC1, B16, and HEK293T cells were obtained from the American Type Culture Collection (ATCC). The isogenic K562 and NALM6 cell lines with or without SF3B1 mutations were generated at Horizon Discovery. Melan-a cells were provided by Dr. Dorothy Bennett (PMID: 3102392); MEL202, MEL270, UPM01, UPM2, and 92-1 were obtained from Dr. Boris Bastian (PMID: 22236444). KPC cells were obtained from Dr. Ben Stanger (PMID: 21436454). SK-MEL30 cells and RN2 cells were provided by Dr. David B. Solit (PMID: 21725359) and Dr. Scott W. Lowe (PMID: 21131983), respectively.
Authentication
An aliquot of each cell line was authenticated using ATCC fingerprinting. Otherwise, the cells were submitted for short tandem repeat (STR) profiling and MSK-IMPACT (integration mutation profiling of actionable cancer targets) for mutational status at MSKCC to confirm their authenticity.

Mycoplasma contamination
All cell lines are frequently tested for mycoplasma contamination. Cell lines used in this study were verified to be mycoplasma negative before undertaking any experiments with them.

Commonly misidentified lines (See ICLAC register)
No commonly misidentified cell lines were used.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals
6-8 week SCID and NGS mice were purchased from The Jackson Laboratory (stock #001303 and stock #005557, respectively).

Wild animals
The study did not involve wild animals.

Field-collected samples
The study did not involve samples collected from the field.

Ethics oversight
All animals were housed at Memorial Sloan Kettering Cancer Center (MSKCC). All animal procedures were completed in accordance with the Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committees at MSKCC. All mouse experiments were performed in accordance with a protocol approved by the MSKCC Institutional Animal Care and Use Committee (11-12-029).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics
Patients with chronic lymphocytic leukemia (CLL) and uveal and mucosal melanoma seen at Memorial Sloan Kettering Cancer Center who provided anonymized peripheral blood mononuclear cells (for CLL) and tissue biopsies (for melanoma).

Recruitment
Patients with CLL and uveal and mucosal melanoma seen at Memorial Sloan Kettering Cancer Center (MSK) who consented to MSK IRB protocol 06-107 (for CLL) and IRB 14-191 (for melanoma samples) were eligible for inclusion regardless of race, gender, ethnicity or other characteristics.

Ethics oversight
Studies were approved by the Institutional Review Boards of Memorial Sloan Kettering Cancer Center (MSK), informed consent was obtained from all subjects (under MSK IRB protocol 06-107) and conducted in accordance to the Declaration of Helsinki protocol. Patients provided samples after their informed consent and primary human de-identified CLL samples derived from whole peripheral blood or BM mononuclear cells were utilized. PDX models were performed using tumor biopsies from de-identified patients under MSK IRB protocol 14-191. Genomic alterations in melanoma tumor biopsies and CLL cells were analyzed using MSK IMPACT28 assay or FoundationOne Heme30 assay, both as previously described. Patient samples were anonymized by the Hematologic Oncology Tissue Bank of MSK (for CLL samples) and the MSK Antitumor Assessment Core Facility (for PDX samples).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChIP-seq

Data deposition

Crossmark Confirm that both raw and final processed data have been deposited in a public database such as GEO.
Crossmark Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links
May remain private before publication.
The data (including related RNA-seq data) has been deposited in the Gene Expression Omnibus under accession number GSE124720 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124720)

Files in database submission
The above accession includes related RNA-seq data. The relevant ChIP-seq files (.fastq, .bigwig and associated peak calls) can be obtained at the link above:
GSM3544057 MEL270.tBRD9.BRG1
GSM3544058 MEL270.tBRD9.GLTSR1
GSM3544059 MEL270.tBRD9,input
GSM3544061 MEL270.DMSO.BRD9
GSM3544062 MEL270.DMSO.BRG1
GSM3544063 MEL270.DMSO.GLTSR1
GSM3544064 MEL270.DMSO,input
GSM3544066 MEL270.SF3B1_K700E.BRG1
GSM3544067 MEL270.SF3B1_K700E.GLTSR1
GSM3544068 MEL270.SF3B1_K700E.input
Methodology

Replicates

The ncBAF complex was pulled-down with two distinct antibodies against BRD9 and GLTSCR1 in two separate control and ncBAF perturbation experiments that used orthogonal methods to perturb ncBAF formation. Analyses used the intersection of data from these distinct experiments.

Sequencing depth

Sequencing depth, as well as mapping rates are described below:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Reads Total</th>
<th>Reads mapped</th>
<th>Reads unmapped</th>
<th>Reads multimapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEL270.dBRD9.GLTSCR1</td>
<td>21663452</td>
<td>17327309 (79.98%)</td>
<td>3317111 (15.31%)</td>
<td>1019032 (4.70%)</td>
</tr>
<tr>
<td>MEL270.dBRD9.input</td>
<td>18584217</td>
<td>16915436 (91.02%)</td>
<td>761948 (4.10%)</td>
<td>906833 (4.88%)</td>
</tr>
<tr>
<td>MEL270.dBRD9.BRG1</td>
<td>20392804</td>
<td>18016161 (88.35%)</td>
<td>1654723 (8.11%)</td>
<td>721920 (3.54%)</td>
</tr>
<tr>
<td>MEL270.DMSO.BRD9</td>
<td>19785290</td>
<td>15734102 (79.52%)</td>
<td>2934586 (14.83%)</td>
<td>1116602 (5.64%)</td>
</tr>
<tr>
<td>MEL270.DMSO.GLTSCR1</td>
<td>19281052</td>
<td>15911493 (82.52%)</td>
<td>2501075 (13.23%)</td>
<td>919884 (4.80%)</td>
</tr>
<tr>
<td>MEL270.DMSO.BRG1</td>
<td>20749334</td>
<td>17876186 (87.08%)</td>
<td>1099487 (5.41%)</td>
<td>967667 (4.77%)</td>
</tr>
<tr>
<td>MEL270.SF3B1_K700E.GLTSCR1</td>
<td>20098772</td>
<td>15780486 (78.51%)</td>
<td>3347543 (16.66%)</td>
<td>970743 (4.83%)</td>
</tr>
<tr>
<td>MEL270.SF3B1_K700E.input</td>
<td>18866831</td>
<td>17097903 (90.62%)</td>
<td>832672 (4.14%)</td>
<td>957518 (4.81%)</td>
</tr>
<tr>
<td>MEL270.SF3B1_K700E.BRG1</td>
<td>19879373</td>
<td>17670132 (88.89%)</td>
<td>1491006 (7.50%)</td>
<td>718235 (3.61%)</td>
</tr>
<tr>
<td>MEL270.SF3B1_WT.BRD9</td>
<td>15700266</td>
<td>12196453 (77.68%)</td>
<td>2501075 (13.23%)</td>
<td>919884 (4.80%)</td>
</tr>
<tr>
<td>MEL270.SF3B1_WT.GLTSCR1</td>
<td>19755923</td>
<td>17523685 (90.32%)</td>
<td>895478 (4.62%)</td>
<td>981962 (5.06%)</td>
</tr>
<tr>
<td>MEL270.SF3B1_WT.BRG1</td>
<td>21373496</td>
<td>18958611 (88.17%)</td>
<td>1589600 (7.70%)</td>
<td>769496 (3.60%)</td>
</tr>
</tbody>
</table>

Antibodies

- BRG1 (Abcam EPNCIR111A, Lot # GR3208604-8)
- GLTSCR1 (Santa Cruz SC-240516, Lot # A2313)
- BRD9 (Abcam, ab137245)

Peak calling parameters

Narrow peaks were called using the callpeak function from MACS2 v2.1.1.20160309 against matched input samples, using default parameters and a p-value cutoff of 1e-5.

Data quality

For all samples, a p-value cutoff of 1e-5 against input was used. All peaks were called at a q-value of < 0.017. For each sample, the number of peaks with a fold-change > 5, and the total number of peaks called is as follows:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Number of peaks</th>
<th>Total number of peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEL270.dBRD9.BRG1</td>
<td>68229</td>
<td>94156</td>
</tr>
<tr>
<td>MEL270.dBRD9.GLTSCR1</td>
<td>2982</td>
<td>4504</td>
</tr>
<tr>
<td>MEL270.DMSO.BRD9</td>
<td>13390</td>
<td>20591</td>
</tr>
<tr>
<td>MEL270.DMSO.BRG1</td>
<td>73624</td>
<td>101272</td>
</tr>
<tr>
<td>MEL270.SF3B1_K700E.BRG1</td>
<td>60362</td>
<td>85463</td>
</tr>
<tr>
<td>MEL270.SF3B1_K700E.GLTSCR1</td>
<td>6939</td>
<td>11118</td>
</tr>
<tr>
<td>MEL270.SF3B1_WT.BRD9</td>
<td>17434</td>
<td>25208</td>
</tr>
<tr>
<td>MEL270.SF3B1_WT.BRG1</td>
<td>64209</td>
<td>8948</td>
</tr>
<tr>
<td>MEL270.SF3B1_WT.GLTSCR1</td>
<td>5794</td>
<td>8678</td>
</tr>
</tbody>
</table>

Software

ChIP-seq reads were mapped to the genome by calling Bowtie v1.0.048 with the arguments `-v 2 -k 1 -m 1 --best --strata`. Peaks were called using MACS2 v2.1.1.2016030952 against input control libraries with p < 10-5 and subsequently filtered to remove peaks contained within ENCODE blacklisted regions and the mitochondrial genome. Subsequent data analysis was performed with Bioconductor in the R programming environment. Consensus peaks between samples were called using the soGGI package v1.14.0. Peaks were annotated using the ChIPseeker package v1.18.0.