
SENSOR-CHAIN: A DEMO OF A LIGHTWEIGHT BLOCKCHAIN
BASED INTERNET OF MILITARY THINGS SECURITY SCHEME

FLORIDA INTERNATIONAL UNIVERSITY

APRIL 2020

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2020-069

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2020-069 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
TODD N. CUSHMAN JAMES S. PERRETTA
Work Unit Manager Chief, Information Exploitation

& Operations Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APRIL 2020
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

MAY 2019 – DEC 2019
4. TITLE AND SUBTITLE

SENSOR-CHAIN: A DEMO OF A LIGHTWEIGHT BLOCKCHAIN
BASED INTERNET OF MILITARY THINGS SECURITY SCHEME

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-19-1-0022

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Niki Pissinou

5d. PROJECT NUMBER
BC2S

5e. TASK NUMBER
CI

5f. WORK UNIT NUMBER
MT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Florida International University
11200 SW 8th St
Miami, FL 33199

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2020-069
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Internet of Military Things (IoMT) consists of an increasing number of ubiquitous sensing and computing devices
worn by military personnel and embedded within military equipment that are capable of acquiring a variety of static and
dynamic biometrics and collecting operational context data that can be used to perform context-adaptive authentication
in-the-wild and in a dedicated edge computing architecture. This demo, coined “Sensor-Chain”, promises a new
generation of lightweight blockchain management with superior reduction in resource consumption, and, at the same
time capable of retaining critical information about IoMTs.

15. SUBJECT TERMS
Block chain, Internet of Things, cybersecurity, distributed ledger, embedded systems, hyperledger, internet of military
things, partition tolerance

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
TODD N. CUSHMAN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

82

 i

TABLE OF CONTENTS

List of Figures .. ii
List of Tables ... ii
1.0 SUMMARY ... 1

2.0 INTRODUCTION ... 2

2.1 Background ... 3

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES .. 7

3.1 System Model and Assumptions ... 7

3.2 Methodology ... 7

4.0 RESULTS AND DISCUSSION ... 13

4.1 Proof of Concept Evaluation ... 13

4.2 Implementation Detail of Sensor-Chain.. 15

5.0 CONCLUSION ... 20

6.0 REFERENCES .. 21

APPENDIX A – Publications and Presentations.. 24

APPENDIX B – Source codes .. 25

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS .. 77

 ii

List of Figures

Figure 1. Sensor-Chain demo. PI: Niki Pissinou .. 2
Figure 2. Future IoMT architecture .. 3
Figure 3. A block structure. .. 4
Figure 4. A Voronoi diagram of a region with local networks and local blockchains 8
Figure 5. Illustrated Sensor-Chain:. .. 10
Figure 6. Evaluation results: (a) Sensor-Chain, (b) conventional, (c) improved-temporal, and (d)
spatial blockchains (experiment Settings: number of cells = 50, number of sensors = 1000). ... 14
Figure 7. Comparison between Sensor-Chain and spatial approaches in terms of number of (a)
cells and (b) sensors. ... 14
Figure 8. Key components of Sensor-Chain Framework.. 15
Figure 9. Architecture Diagram of Sensor-Chain ………………………………….…………....16

Figure 10. Class Diagram of Sensor-Chain……………………………………..……………….17

Figure 11 Sequence Diagram of Sensor-Chain. .. 18
Figure 12 Use-case diagram.. 19

List of Tables
Table 1 Parameters used in the Experiment .. 13

Approved for Public Release; Distribution Unlimited.
1

1.0 SUMMARY

The Internet of Military Things (IoMT) consists of an increasing number of ubiquitous sensing
and computing devices worn by military personnel and embedded within military equipment that
are capable of acquiring a variety of static and dynamic biometrics and collecting operational
context data that can be used to perform context-adaptive authentication in-the-wild and in a
dedicated edge computing architecture. To secure IoMT deployments, blockchain technology has
emerged as a way of recording digital interactions in a way that is designed to be secure,
transparent, highly resistant to outages, auditable, and efficient. Although blockchains are
considered as the key to redesign IoMT systems, they cannot be directly integrated into IoMT
systems. In particular, since the chain is always growing, IoMT nodes require more and more
resources. Thus, an oversized chain poses storage and scalability problems. With this in mind, the
overall goal of this proposal is to design, develop and demonstrate a lightweight blockchain-based
Internet of Military Things (IoMT) Security scheme. This demo, coined “Sensor-Chain”, promises
a new generation of lightweight blockchain management with superior reduction in resource
consumption, and, at the same time capable of retaining critical information about IoMTs.

Approved for Public Release; Distribution Unlimited.
2

2.0 INTRODUCTION

The overall goal of this technical report is to present and demonstrate the design and
development details of a lightweight blockchain-based Internet of Military Things (IoMT) Security
scheme. This demo, coined “Sensor-Chain”, is depicted in Figure 1 and promises a new generation
of lightweight blockchain management with superior reduction in resource consumption, and, at
the same time capable of
retaining critical information
about IoMTs.
Over the past several years,
there has been a surge of
interest on systems that
connect physical
infrastructures with machine
intelligence, information and
communication technologies
based on sensors and Wireless
Sensor Networks (WSN).
Today, these uniquely
identifiable objects and their
virtual representations in an
internet like structure are
referred to as the “Internet of
Things (IoT)” [1]. While the new capabilities of IoT technology promise to impact many
commercial and civilian applications, its machine intelligence and networked communications will
also have a tremendous influence on military applications [2]. For example, research conducted at
the US Army Research Laboratory predicted a scale on the order of a million of things per square
kilometer of IoT [2]. Coined as the “Internet of Military Things(IoMT)” [3],”the IoMT (or Internet
of Battlefield Things), consists of an increasing number of ubiquitous sensing and computing
devices worn by military personnel and embedded within military equipment that are capable of
acquiring a variety of static and dynamic biometrics and collecting operational context data that
can be used to perform context-adaptive authentication in-the-wild and in a dedicated edge
computing architecture [3].”

Before realizing the new promise of the IoMT (figure 2), there are significant challenges
to address. First, we must overcome the limitations of its centralized model. Depending on the use,
this can be done by using a Peer-to-Peer network paradigm. Since the IoMT network topology is
prone to frequent changes due to node failure, damage, energy depletion, or channel fading, the
peer-to-peer paradigm can adapt to change faster. Also, as peer-to peer networks allow direct
communication between devices, it can lead to faster communication among devices. As such, the
peer-to-peer approach has gained significant attention in IoMT applications, but tapping into the
benefits of a ubiquitous peer-to-peer connectivity is not without challenges. The first challenge is
the scale issue around data collection, storage, and analytic. Since IoMT devices possess limited

Figure 1. Sensor-Chain demo. PI: Niki Pissinou

Approved for Public Release; Distribution Unlimited.
3

computational power and storage capabilities, and are characterized by lossy, low communication
channels, these characterizes affect the design of protocols for the IoMT domain. Often, to reduce
memory requirements, the size and number of messages is minimized. To reduce the memory and
resource consumption of security protocols the use of resource intensive cryptography primitives
is limited. In this situation, the adversary can seize or control IoMT devices or networks and gain
access to secured communications and data. Devices seized in an attack can be controlled by an
adversary because the adversary can evade anti-forensic techniques and abuse advanced security
features of IoMT devices. Thus, despite the potential advantages of IoMTs, such as greater and
faster tactical-level situational awareness, improved command and control of combined operations
logistics support, monitoring vehicle and soldier status, trust management security, privacy and
and transparency remain a concern.

2.1 Background
To secure IoMT deployments, blockchain technology has emerged as a way of recording

digital interactions in a way that is designed to be secure, transparent, highly resistant to outages,
auditable, and efficient [4]. Blockchain is essentially a data structure or public ledger of sequence
of blocks that constantly grows as newly created blocks are added to record the up-to-date
transactions [5], [6]. It provides built-in integrity of information, and security of immutability by
design, making it very useful to ensure trust, security, and transparency in Peer-to-Peer (P2P)
trustless networks of huge number of devices. Although blockchains are considered as the key to
redesign IoMT systems, they cannot be directly integrated into IoMT systems. Since the chain is
always growing, IoMT nodes require more and more resources. Thus, an oversized chain poses
storage and scalability problems.

Figure 2. Future IoMT architecture

Approved for Public Release; Distribution Unlimited.
4

First, managing blockchain with limited storage space remains a challenge. Sensors, unlike
high-end computing devices, used for cryptocurrencies, are equipped with very limited storage
space. Consequently, an ever-growing blockchain will take over the whole storage space of sensors
in a very short period of time after the creation of
genesis block [7]. Similarly, scalability with
constrained computing power and battery also
poses a challenge. In a distributed IoT system,
each sensor node is assumed to be connected to all
other nodes in the network. Thus, with an
integration of blockchain, each node needs to
perform large number of tasks at different stages
of the blockchain with their constrained
computing power and battery life. The growth of
the network further aggravates the problem. These two issues are rooted to the problem of
managing the number of transactions required to be stored and processed by a single sensor. If we
take a look at the different elements of a block (figure 3), we observe that it contains some elements
which take constant storage space (the elements of block header and transaction counter). While
each transaction size can be within a limit, it’s their number which is the only dominating variable
in a block. Thus, we can express the size of a blockchain as a function of number of transactions
stored in it. For better understanding, let us consider a conventional blockchain for a network of 𝑛𝑛
number of nodes where each node performs a transaction with every other node at each timestamp
in a worst-case scenario. That is, there are 𝑛𝑛(𝑛𝑛−1)

2
 number of transactions are happening every

timestamp. Then the size of the blockchain,

 (1)

Where, 𝑇𝑇 is the lifetime of the blockchain and 𝑇𝑇𝑋𝑋𝑡𝑡 refers to the total number of transactions
happened at time 𝑡𝑡. Let us understand the issue with an example. If 𝑛𝑛 = 1000, the nodes perform
transactions at every 10 seconds, and each transaction takes . 01 KB space to be stored in a
blockchain; then the size of the blockchain after 10 hours 1000 × (1000−1)

2
× 6 × 60 × 10 ×

0.1 GB = 17.982 GB, which is far beyond the storage and processing capabilities of sensors.
Understandably, in some IoT applications, the transactions may happen at a longer interval (e.g.
30 minutes) and every timestamp a smaller number of nodes perform transactions than 𝑛𝑛(𝑛𝑛−1)

2
.

Size of a blockchain

= 𝑇𝑇𝑋𝑋1 + 𝑇𝑇𝑋𝑋2 + ⋯+ 𝑇𝑇𝑋𝑋𝑇𝑇

=
𝑛𝑛(𝑛𝑛 − 1)

2
+
𝑛𝑛(𝑛𝑛 − 1)

2
+ ⋯+

𝑛𝑛(𝑛𝑛 − 1)
2

= �
𝑛𝑛(𝑛𝑛 − 1)

2

𝑡𝑡=𝑇𝑇

𝑡𝑡=1

= 𝑇𝑇 ×

𝑛𝑛(𝑛𝑛 − 1)
2

Figure 3. A block structure.

Approved for Public Release; Distribution Unlimited.
5

However, it is not going to change the fact that, existing blockchains are not feasible for resource-
constrained sensors in the long-run.

Severity of the problem of managing blockchain with limited resources can go beyond the
mere “out of storage space” issue to critical cyberattack on IoMT network. For instance,
adversaries can take over few IoMT nodes in the network and continue performing frequent
transactions with other nodes without violating any protocol of the system. Eventually, the
blockchain will be large enough such that some nodes will be out of the network due to their lack
of power and storage space, allowing attackers to compromise the network. All these problems
highlight that the storage and scalability problems of blockchain for resource-constrained sensors
must be addressed before moving forward with blockchain-based IoMT.

Understanding the limitations of existing blockchain solutions, recent focus has been shifted to
developing lightweight decentralized architecture based on blockchain. Large number of the
research works in this area [7], [8] discussed the impact of blockchain on IoT and important
research issues that are required to be addressed to fully realize the benefit of blockchain. The
existing research efforts can be categorized into devising approach to integrate blockchain with
IoT [9]-[12], node authentication and access control [13]-[16], trust management [8], [17]-[19],
and security and privacy [20]-[22]. These different research works have one thing in common:
they either simply considered that IoMT devices are equipped with enough storage and computing
resources to hold and process blockchains, or utilized high end edge computing devices to manage
the blockchain. The assumptions of having enough resources is hard to get on with IoMT devices,
making the applicability of the research works, based on such assumptions, questionable. For
instance, trust and authentication management for wireless sensor networks using blockchain was
proposed in [17] without hinting how the sensors will manage the blockchain on their own local
space. Likewise, the Block-VN architecture for distributed transport management system [23],
based on a permissioned blockchain, considered that at least some portion of the vehicles are
capable of storing and processing an ever-growing blockchain. Another example is the IoT-based
Machine-to-Machine payment system, known as IOTA [24]. IOTA uses proof-of-work consensus
protocol, which makes the new block creation task both computationally expensive and time
consuming. Thus, in IOTA the hardware requirement is too high and it is hard to meet such
requirement for IoMT sensor nodes.

Realizing the resource issues of the IoT devices, many researches proposed to offload the
blockchain onto edge computing devices. The SpeedyChain [25] data sharing framework for
intelligent vehicles suggested to use roadside infrastructure units (RSIs) and service providers
(SPs) to maintain blockchain. In SpeedyChain, RSIs are responsible for trust and authentication
management and trusted vehicles, verified by the RSIs, can append block to the blockchain. In a
similar way, a Roadside Units (RSU) based blockchain trust management for vehicular network
was proposed in [26]. In this work, each vehicle generates a rating for its neighboring vehicles and
share the rating with nearby RSU. With all most recently received ratings, RSUs calculate the trust
value offsets of involved vehicles and gather these data into a block. In order to insert the new
block into the blockchain, the authors proposed a combination of proof-of-work and proof-of-
stake, improving each other. In contemporary works, Xiong et al. [9], [27] proposed to deploy
multiple access mobile edge computing devices to carry out the computationally expensive proof-

Approved for Public Release; Distribution Unlimited.
6

of-work and introduced game theoretic approach for edge computing resource management. In
these works, the sensors are considered as ordinary nodes, and the edge devices are responsible to
carry out the blockchain operations. The “EdgeChain” framework [10] extended this idea by
introducing credit-based resource management system to control the edge server resource
consumption by an individual IoT device. In [13], a smart contract-based access mechanism was
put forward with the aim of simplifying the process of blockchain management and reducing the
communication overhead between the nodes. In this mechanism, the IoT devices are kept out of
the blockchain as they cannot hold a large blockchain. Rather, a special node called management
hub is proposed to put as a link between IoT devices and blockchain. A blockchain framework was
proposed for smart homes [28], where the information produced by smart home devices are stored
in the blockchain. In this architecture, the blockchain is maintained in the gateways and is isolated
from the devices. Similar to the other works on blockchain based Internet of Vehicles, kang et al.
[29] also considered RSUs as edge computing infrastructures for blockchain management. This
approach utilized a modified high-efficiency Delegated Proof-of-Stake (DPoS) consensus scheme
where instead of stake-based voting, reputation is used for miner RSU selection.

Through a careful observation of all these approaches, one can figure it out that that they
all tried to solve the storing and processing heavyweight blockchain problems by employing more
powerful computing devices in the architecture. Besides being costly, these devices are mostly
static and are deployed in a predefined structured way. Such structured deployment of static
devices is hard to be acceptable in IoMT, as the network topology is prone to changes faster than
in many other IoT scenarios (e.g. smart home, IoV with predefined road network, and so on).
Furthermore, the management of blockchain using fixed positioned edge devices naturally makes
the system more vulnerable, as compromise of few edge devices will affect a large portion of the
sensors nodes in the IoMT network.

One viable solution to make blockchain “manageable” for sensors without using any edge
or other devices is limiting the size of the blockchain within the resource capacity of sensors. The
“temporal blockchain” framework proposed a solution based on such concept [30]. It was proposed
to delete all the blocks older than a preset period (e.g. 30 days old) from the blockchain. While this
approach can reduce the size of the blockchain, it still lacks in guaranteeing limited storage
capacity with the growth of the network in the long-run in IoT scenario. Moreover, how to deal
with the loss of information due to the deletion of blocks was not addressed.

This investigation highlights that existing blockchain frameworks for IoMT lack a clear
understanding of resource management issues for blockchain in IoMT scenario. Lack of such
understanding not only makes the frameworks impractical for IoMT, but also allow adversaries to
dismantle a system through a variety of denial-of-service (DoS) attacks [31], such as sleep
deprivation attack [32] and buffer overflow attack [33]. Equally important, the absence of a proper
transaction validation method in those frameworks can allow an adversary to inject false data in
an IoMT system in a legitimate way [34]. The research on blockchain and IoMT has a long way
to go, and we emphasize that before taking further steps, we must have an efficient approach to
make blockchain lightweight and scalable for IoMT sensors in a secure way.

In light of this, this investigation develops a lightweight scalable practical blockchain security
scheme for IoMT and demonstrates the framework in a simulated environment with field
spatiotemporal data.

Approved for Public Release; Distribution Unlimited.
7

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
This section presents the Sensor-Chain framework. We first discuss 3 different frameworks:

Conventional and our proposed improved temporal, and spatial blockchains. We analyze their
strength and limitations to highlight the motivation behind the design of Sensor-Chain framework.

3.1 System Model and Assumptions
The proposed system model has two major entities: 1) a region, divided into a set of smaller

cells, and 2) a set of sensor nodes. Some of the sensors are static and others are mobile. The mobile
nodes are moving over the region based on Random Waypoint Mobility model [34]. Each sensor
node is capable of performing lightweight aggregate operations, such as e.g. max, mean, min,
weighted average [35] and so on. Furthermore, the proposed system does not require any additional
resources. We assume that the distribution of the sensed data within a cell is approximately same.
The proposed blockchain can be either a public blockchain or a permissioned-blockchain. If it is
public blockchain, there is no authority in the blockchain and nodes can join and leave the network
with random cryptographic key pairs. In such a blockchain, we assume that the nodes are using a
lightweight consensus algorithm, such as Proof-of-Stake (PoS). Our work is also applicable in
permissioned-blockchain where an authority assigns each IoT Node a private key and a private
key and to join a network a node needs to reveal its identity to all the other nodes in the network.
In order to achieve conditional privacy from the peers, an IoT node can anytime request the
authority for new key pairs. In such a case, we assume that the nodes are using a Byzantine Fault
tolerant algorithm for reaching consensus in the network. Devising novels mechanisms for Key
management and authentication are beyond the scope of this work.

3.2 Methodology
In the conventional blockchain frameworks [9], [17] a blockchain is managed by all the

nodes in the network and continues to grow with the lifespan of the network. Thus, with a 𝑇𝑇 = ∞
lifespan, according to our discussion on the size of blockchain, the size of a conventional
blockchain becomes,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑠𝑠𝑛𝑛𝑡𝑡𝑠𝑠𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐) = �
𝑛𝑛(𝑛𝑛 − 1)

2

∞

𝑡𝑡=1

Obviously, this blockchain will impose a high storage requirement which cannot be met by sensor
nodes. To improve this, we then design an improved version of temporal blockchain [30] in the
context of mobile IoT.

Approved for Public Release; Distribution Unlimited.
8

In the original temporal blockchain [30], it was proposed to keep a portion of the
blockchain after certain time period. However, we propose to replace the blockchain with an
aggregated version of it after certain a time period. In detail, in the preprocessing step of our
scheme, we consider a specific time at the “genesis time”, and a time period is set as the temporal
constraint for blockchain deletion. For
example, if 00:00 in 24-hour format is taken
as the genesis time and the temporal
constraint is 2 hours, then the deletion
operation will take place at 02:00, 04:00,
06:00, … of each day. This genesis time
information and temporal constraint are
preset onto the IoT devices. Another way to
set this information is to have smart contract
on the blockchain. We leave this for our
future research. Every time the lifetime of the
blockchain meets the temporal constraints,
through the consensus mechanism, a node
will be selected as an aggregator node which
performs aggregation over the whole blockchain and creates an aggregated block. This block
includes the ID of the aggregator node. This block is then broadcasted over the network by the
aggregator. This aggregation could be anything lightweight for IoT sensor devices to perform (e.g.
min, max, mean, weight average [35]). Upon receiving this block, the nodes in the network
replaces the whole existing blockchain with this block on their local storage. That is, it will be
considered as the genesis block of a new blockchain. Even though as a consequence the newly
restarted blockchain's size becomes relatively small, we still need to look into the size of the
blockchain between two consecutive restarts so as to ensure that it is within the storage space
capacity of the IoT sensor node. If the temporal constraint is 𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑛𝑛, then in the the worst-case
scenario, the maximum size of the blockchain can be,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐) = �
𝑛𝑛(𝑛𝑛 − 1)

2

𝑡𝑡=𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑡𝑡=1

Clearly this scheme outperforms the conventional blockchain schemes. However, with higher
𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑛𝑛 and a large number of nodes in a network, the nodes still need to hold a large blockchain,
making it quite impractical for IoT devices. Thus, despite the fact that a temporal blockchain can
reduce the size of a chain, the size of a chain must be further improved when dealing with IoT
nodes. This is done using the following spatial blockchain technique.

In our spatial blockchain framework, a global blockchain is broken down into smaller
disjoint local blockchains with the aim of reducing the number of transactions performed by a
node at any given time than in conventional blockchain frameworks. To achieve this objective, we
translate a region into a Voronoi diagram [36]. Voronoi diagram ℂ, is a partitioning of a plane into
non-overlapping smaller convex regions, called Voronoi cells ℂ. Based on this partitioning of the
plane, we define two different structures: local networks and local blockchains (figure 4 depicts

Figure 4. A Voronoi diagram of a region with local
networks and local blockchains

Approved for Public Release; Distribution Unlimited.
9

these structures). A local network refers to the graph 𝐺𝐺𝑎𝑎𝑡𝑡 = (𝑉𝑉𝑎𝑎𝑡𝑡,𝐸𝐸𝑎𝑎𝑡𝑡) formed by the nodes in the cell
𝐶𝐶𝑎𝑎∈ℂ at time 𝑡𝑡. Here, 𝑉𝑉𝑎𝑎𝑡𝑡 and 𝐸𝐸𝑎𝑎𝑡𝑡 are the set of the nodes and the edges between them. Any two local
networks of two different cells at the same time are disjoint. That is,

𝑉𝑉𝑎𝑎𝑡𝑡 ∩ 𝑉𝑉𝑗𝑗𝑡𝑡 = ∅, 𝐸𝐸𝑎𝑎𝑡𝑡 ∩ 𝐸𝐸𝑗𝑗𝑡𝑡 = ∅ (2)

A local blockchain 𝐵𝐵𝑎𝑎, is the blockchain managed by the nodes in cell 𝐶𝐶_𝑠𝑠 and 𝐵𝐵𝑎𝑎𝑡𝑡 is the snapshot
of 𝐵𝐵𝑎𝑎 at time 𝑡𝑡. Any two local blockchains from two different cells have the following property: a
block of a local blockchain in a cell is neither a parent nor a child of a block of another local
blockchain in another cell at any time instance. That is,

�∃bix ∈ Bi�bix is a parent of a block in Bj� ∪

�∃bj
y ∈ Bj� bj

y is a parent of a block in Bi) = ∅;∀ t (3)

The two properties imply that a sensor node in 𝐺𝐺𝑎𝑎 works only on local blockchain 𝐵𝐵𝑎𝑎. Hence, it
needs to store only the copy of 𝐵𝐵𝑎𝑎 at any given time as long as it remains in 𝐺𝐺𝑎𝑎.

While this definitely improves the storage issue than in conventional blockchain, this
scheme further enhances its efficacy considering mobility of the nodes. In case of mobility, if a
node moves from cell 𝐶𝐶𝑎𝑎 to 𝐶𝐶𝑗𝑗, at first it deletes the copy of local blockchain 𝐵𝐵𝑎𝑎 from its memory
and then, after joining 𝐺𝐺𝑗𝑗, it downloads the copy of 𝐵𝐵𝑗𝑗 from its peers. Thus, a node is required to
store only one local blockchain at any time instance, which significantly reduces the required space
to store a blockchain. We quantify the storage requirement of this scheme as follows. Let us
consider that at any time instance, there could be at most 𝑖𝑖 number of nodes in a cell, where 𝑖𝑖 <
𝑛𝑛 and the time difference between the creation of genesis block and current time is ≈ ∞ . Let us
also assume that a mobile node's permanence in a cell is at most 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝. At the first glance, it seems

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖𝑐𝑐𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐) = ∑ 𝑚𝑚(𝑚𝑚−1)
2

𝑡𝑡=𝑡𝑡𝑝𝑝𝑎𝑎𝑝𝑝
𝑡𝑡=1 . However, consider the worst-case scenario where there exists

at least one node in a particular cell 𝐶𝐶𝑎𝑎 all the time (if some nodes are static or the cell is never
empty). That is, the local blockchain continues to expand forever. In that case,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖𝑐𝑐𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐) = �
𝑖𝑖(𝑖𝑖− 1)

2

𝑡𝑡=∞

𝑡𝑡=1

 ; 𝑖𝑖 < 𝑛𝑛 (4)

From the analysis of temporal and spatial blockchains, it is not clear which one offers the
best solution. For static nodes, the temporal blockchain with a small temporal constraint could be
the better solution in the long run. On the other hand, in mobile environment, the spatial blockchain
will be the winner. To address the limitations of both approaches, we propose Sensor-Chain
approach.

Approved for Public Release; Distribution Unlimited.
10

Sensor-Chain is a fusion of both temporal and spatial blockchain approaches. Similar to
spatial blockchain, in this framework, a complete region is first divided into a number of Voronoi
cells. Using those cells, the nodes in a cell form a local network and maintain a local blockchain.
All the local networks and local blockchains follow the properties defined for spatial blockchain.
Among different information, each nodes holds the following tuple:
{𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑛𝑛𝑡𝑡 𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 𝑠𝑠𝑖𝑖,𝐶𝐶𝑐𝑐𝑐𝑐𝑝𝑝 , 𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 𝑐𝑐𝑜𝑜 𝑡𝑡ℎ𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐ℎ𝑠𝑠𝑛𝑛 𝐵𝐵𝑐𝑐𝑐𝑐𝑝𝑝𝑡𝑡 }. In order to manage the size of a
blockchain, this framework has two important constraints: temporal constraint 𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑛𝑛 and block
creation time constraint 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏. The storage management of blockchain is done in two ways:
spatiotemporal and mobility-based.

Spatiotemporal-based blockchain management is detailed in algorithm 1. In this
framework, the block creation and insertion are done at a fixed time interval (lines 1-6), a similar
approach of bitcoin. At first, in each local network 𝐺𝐺𝑎𝑎𝑡𝑡 a 𝑀𝑀𝑠𝑠𝑛𝑛𝑠𝑠𝑖𝑖 is selected through consensus.
Then the 𝑀𝑀𝑠𝑠𝑛𝑛𝑠𝑠𝑖𝑖 gathers all the recent transactions and creates 𝑁𝑁𝑠𝑠𝑁𝑁𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏. Upon verification, the
new block is inserted into 𝐵𝐵𝑎𝑎𝑡𝑡. The temporal constraint is used to reset the local blockchains at a
fixed time interval. Every time the temporal constraint is met (line 8), an 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑠𝑠𝐴𝐴𝑐𝑐𝑡𝑡𝑐𝑐𝑖𝑖 node is
selected from each local network. This 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑠𝑠𝐴𝐴𝑐𝑐𝑡𝑡𝑐𝑐𝑖𝑖 node computes aggregation of its local
blockchain, creates an 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑠𝑠𝐴𝐴𝑐𝑐𝑡𝑡𝑠𝑠𝑖𝑖𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏, and broadcasts it over its local network (lines 9-13).
Upon receiving the 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑠𝑠𝐴𝐴𝑐𝑐𝑡𝑡𝑠𝑠𝑖𝑖𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏, the nodes in the local network first delete their copy of
the existing local blockchain (line 14) and then regenerate the local blockchain using the
aggregated block as the genesis block (line 15).

Algorithm 5 presents the mobility-based blockchain management. Every time a node moves from
one cell 𝐶𝐶𝑐𝑐𝑐𝑐𝑝𝑝 to another 𝐶𝐶𝑛𝑛𝑝𝑝𝑛𝑛_𝑐𝑐𝑝𝑝𝑏𝑏𝑏𝑏 (line 1), it deletes the copy of the local blockchain 𝐵𝐵𝑐𝑐𝑐𝑐𝑝𝑝 of
previous cell from its memory. Then it joins the network in 𝐶𝐶𝑛𝑛𝑝𝑝𝑛𝑛_𝑐𝑐𝑝𝑝𝑏𝑏𝑏𝑏. The work flow of Sensor-
Chain is illustrated in figure 5. For figure 5, T_(i+1): A mobile node moves from cell C_2 toC_1.
First, it deletes the copy of local blockchain b_2 from its memory and then downloads B_1 from
its peers in G_1^(i+1). T_(i+2) : local blockchain B_3 does not exist anymore as C_3 is empty.

Figure 5. Illustrated Sensor-Chain

Approved for Public Release; Distribution Unlimited.
11

T_(i+3): as temporal constraint is met, (a) aggregator node from each local network is selected.
The selected nodes compute aggregation over their respective local blockchains and generate
aggregated blocks. (b) using the aggregated blocks as the genesis, the local blockchains are
regenerated

We argue that, with such spatiotemporal and mobility-based blockchain management, Sensor-
Chain provides the best solution. To prove its validity, we now analyze the space requirement to
store a blockchain in this scheme. Referring to the discussion on spatial blockchain, with the space
partitioning, the size of a local blockchain in Sensor-Chain can be at most,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑖𝑖 − 𝑐𝑐ℎ𝑐𝑐𝑠𝑠𝑛𝑛) = �
𝑖𝑖(𝑖𝑖− 1)

2

𝑡𝑡=∞

𝑡𝑡=1

Approved for Public Release; Distribution Unlimited.
12

However, as the temporal constraint 𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑛𝑛 is applied to all the local blockchains, according to
the discussion on temporal blockchain, the size of a local blockchain can be further reduced as
follows,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑖𝑖 − 𝑐𝑐ℎ𝑐𝑐𝑠𝑠𝑛𝑛) = �
𝑖𝑖(𝑖𝑖− 1)

2

𝑡𝑡=𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑡𝑡=1

This analysis gives us the required storage space in Sensor-Chain. Next, we analyze the scheme
case by case and draw comparison with our proposed improved temporal and spatial blockchain
frameworks.

In the first case, all the nodes are assumed as static. Also, the partitioning of the region is such
that all the nodes reside in a single cell. In such a case, 𝑖𝑖 = 𝑛𝑛.

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑖𝑖 − 𝐶𝐶ℎ𝑐𝑐𝑠𝑠𝑛𝑛) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐) = �
𝑛𝑛(𝑛𝑛 − 1)

2

𝑡𝑡=𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑡𝑡=1

< 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖𝑐𝑐𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐)

Where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖𝑐𝑐𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐) = ∑ 𝑛𝑛(𝑛𝑛−1)
2

𝑡𝑡=∞
𝑡𝑡=1

In the second case, all the nodes are moving in such a way that each local blockchain becomes
empty (more correctly, it doesn't exist anymore) every time before the temporal constraint is
satisfied. This case is depicted in figure 5(𝑇𝑇𝑎𝑎+2) where cell 𝐶𝐶3 is empty so that 𝐵𝐵3 does not exist
anymore. In such a case,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑖𝑖 − 𝐶𝐶ℎ𝑐𝑐𝑠𝑠𝑛𝑛) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖𝑐𝑐𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐) = �
𝑖𝑖(𝑖𝑖− 1)

2

𝑡𝑡<𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑡𝑡=1
< 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐)

Where 𝑖𝑖 < 𝑛𝑛 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖𝑐𝑐𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐) = ∑ 𝑛𝑛(𝑛𝑛−1)
2

𝑡𝑡=𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡=1

In all other cases,

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑖𝑖 − 𝐶𝐶ℎ𝑐𝑐𝑠𝑠𝑛𝑛) < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖𝑐𝑐𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐)) & (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑖𝑖 − 𝐶𝐶ℎ𝑐𝑐𝑠𝑠𝑛𝑛) < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖𝑐𝑐𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐))

Approved for Public Release; Distribution Unlimited.
13

4.0 RESULTS AND DISCUSSION
In this section, we first present the proof-of-concept evaluation of Sensor-Chain. The evaluation
results justify the theoretical analysis of Sensor-Chain. Then, we present the implementation
detail of the framework, including its class, architectural, sequence, and use case diagrams.

4.1 Proof of Concept Evaluation
To carry out the experiment we use synthetic data. The parameters and their different

values used in the experiment are presented in table 1. We implemented all the four (conventional,
improved-temporal, spatial, and Sensor-Chain) approaches. We ran the simulation for 6 hours and
generated statistics for all the approaches. Specifically, we compared the approaches in terms of
number transactions needed to be stored on a single IoT sensor device, as it defines the size of a
blockchain. The evaluation is done from three different points of view: 1) duration of the
simulation, 2) number of cells, and 3) number of sensors. The detail of the evaluation results is
discussed below.

Table 1. Parameters used in the Experiment

Parameters Values
Area of the region 5000𝑖𝑖 × 5000𝑖𝑖
Number of Voronoi Cells 50, 100, 150, 200, 1000
Number of sensor nodes 1000, 3000, 5000, 7000
Speed of the nodes [0,50] 𝑏𝑏𝑖𝑖/ℎ
Temporal constraint, 𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑛𝑛 1 ℎ𝑐𝑐𝑐𝑐𝑖𝑖
Block creation time constraint,
𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏

10 𝑖𝑖𝑠𝑠𝑛𝑛𝑐𝑐𝑡𝑡𝑠𝑠

Figure 6(a) shows the result of the simulation for Sensor-Chain. In every hour, the curve
moves upward. As 𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑛𝑛 = 1 hour, the size of the blockchain becomes 1 (with the aggregated
block) at the end of each hour. It is also clear that in Sensor-Chain, using the temporal constraint,
it is possible to keep the size of the blockchain within a limit. Figure 6(b) shows the comparison
between Sensor-Chain and conventional approaches. From nearly the beginning of the simulation,
the required storage space in Sensor-Chain is far less than in conventional approach. Next, we
evaluate how Sensor-Chain, with the fusion of spatiotemporal and mobility-based blockchain
management, outperforms the improved temporal and spatial schemes. For both of the improved
temporal and Sensor-Chain, we used the same temporal constraint. Although the improved
temporal blockchain shows a trend similar to Sensor-Chain, its required storage space is much
higher than Sensor-Chain. Figure 6(d) shows more interesting results on the comparison with
spatial blockchain. In the 1𝑠𝑠𝑡𝑡 hour, both spatial and Sensor-Chain approaches go toe-to-toe.
However, just after the 1𝑠𝑠𝑡𝑡 hour (as 𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑛𝑛 = 1 hour), the local blockchains in Sensor-Chain restore
to genesis block, while spatial blockchain continues to grow over the time.

Approved for Public Release; Distribution Unlimited.
14

Figure 6. Evaluation results: (a) Sensor-Chain, (b) conventional, (c) improved-temporal, and (d)
spatial blockchains (experiment Settings: number of cells = 𝟓𝟓𝟓𝟓, number of sensors = 𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓).

Figure 7. Comparison between Sensor-Chain and spatial approaches in terms of number of (a) cells

and (b) sensors.

Then, we analyze the impact of number of cells and sensors on the size of the blockchain. As only
spatial and Sensor-Chain use cell-based partitioning, here we analyze their comparison. Figure
7(a) presents the comparison result in terms of number of cells. It is understandable that with the
increase in the number of cells, the size of a local blockchain decreases. Furthermore, it seems that

Approved for Public Release; Distribution Unlimited.
15

when this number is relatively high (e.g. 1000 in the figure), both approaches require similar
storage capacity. However, it is the number of sensors that makes the difference in such a particular
case. With the increase in the number of sensors, the required storage space increases rapidly in
spatial approach than in Sensor-Chain. Figure 7(b) shows the results for 1000 cells with different
number of sensors.

4.2 Implementation Detail of Sensor-Chain
In this section we present the detail of the implementation steps of Sensor-Chain. The development
was carried out with Go programming language, an open source programming language. For P2P
communication, we used \verb|go-libp2p-pubsub| library [36], an open source golang
implementation of pubsub system with flooding and gossiping variants. Figure 8 presents the key
components of the Sensor-Chain platform. Figures 9, 10, 11, and 12 illustrate the class,
architecture, sequence, and use case diagrams of the platform.

Figure 8. Key components of Sensor-Chain Framework.

Approved for Public Release; Distribution Unlimited.
16

Figure 9. Architecture Diagram of Sensor-Chain.

Approved for Public Release; Distribution Unlimited.
17

Figure 10. Class Diagram of Sensor-Chain.

Approved for Public Release; Distribution Unlimited.
18

Figure 11. Sequence Diagram of Sensor-Chain.

Figure 12. Use-case diagram.

Approved for Public Release; Distribution Unlimited.
19

Approved for Public Release; Distribution Unlimited.
20

5.0 CONCLUSION

In this report, we proposed “Sensor-Chain”, a lightweight scalable blockchain framework for
resource-constrained IoT sensor devices. In this framework, a conventional blockchain is made
lightweight in three steps. First, a global blockchain is divided into smaller disjoint local
blockchains in spatial domain such that the required storage space to hold a local blockchain for
an IoT device is always smaller than that in conventional blockchain. Second, a temporal constraint
is imposed on the life span of the local blockchains to limit their size in temporal domain. Finally,
a sensor node is required to keep at most one local blockchain in its memory at any time instance.
We analyzed and tested Sensor-Chain in terms of both long-run performance and scalability; and
compared with other approaches. Experimental results show that it consumes far little storage
space than other approaches. Further, we implemented the demonstration of the framework for a
P2P network of permissioned blockchain.

Approved for Public Release; Distribution Unlimited.
21

6.0 REFERENCES

1. Ashton, K. (2009). That ‘internet of things’ thing. RFID journal, 22(7), 97-114.
2. Kott, A., Swami, A., & West, B. J. (2016). The internet of battle things. Computer, 49(12),

70-75.
3. Castiglione, A., Choo, K. K. R., Nappi, M., & Ricciardi, S. (2017). Context aware

ubiquitous biometrics in edge of military things. IEEE Cloud Computing, 4(6), 16-20.
4. Fernández-Caramés, T. M., & Fraga-Lamas, P. (2018). A Review on the Use of Blockchain

for the Internet of Things. IEEE Access, 6, 32979-33001.
5. S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, bitcoin.org, 2008
6. P. Franco,Understanding Bitcoin: Cryptography, engineering and economics. John Wiley &

Sons, 2014.
7. K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the internet of

things,” Ieee Access, vol. 4, pp. 2292–2303, 2016.
8. B. Yu, J. Wright, S. Nepal, L. Zhu, J. Liu, and R. Ranjan, “Iotchain: Establishing trust in the

internet of things ecosystem using blockchain,” IEEE Cloud Computing, vol. 5, no. 4, pp.
12–23, Jul./Aug. 2018. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/MCC.2018.043221010

9. Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When mobile blockchain meets edge
computing: challenges and applications,” arXiv preprint arXiv:1711.05938, 2017.

10. J. Pan, J. Wang, A. Hester, I. Alqerm, Y. Liu, and Y. Zhao, “Edgechain: An edge-iot
framework and prototype based on blockchain and smart contracts,” arXiv preprint
arXiv:1806.06185, 2018.

11. Z. Xiong, S. Feng, W. Wang, D. Niyato, P. Wang, and Z. Han, “Cloud/fog computing
resource management and pricing for blockchain networks,” IEEE Internet of Things
Journal, pp. 1–1, 2018.

12. D. W¨orner and T. von Bomhard, “When your sensor earns money: exchanging data for cash
with bitcoin,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct Publication. ACM, 2014, pp. 295–298.

13. O. Novo, “Blockchain meets iot: An architecture for scalable access management in iot,”
IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1184–1195, April 2018.

14. A. Z. Ourad, B. Belgacem, and K. Salah, “Using blockchain for iot access control and
authentication management,” in Internet of Things – ICIOT 2018. Cham: Springer
International Publishing, 2018, pp. 150–164.

15. G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain to protect personal
data,” in Security and Privacy Workshops (SPW), 2015 IEEE. IEEE, 2015, pp. 180–184.

16. L. Axon, “Privacy-awareness in blockchain-based pki,” 2015.
17. A. Moinet, B. Darties, and J.-L. Baril, “Blockchain based trust & authentication for

decentralized sensor networks,” arXiv preprint arXiv:1706.01730, 2017.
18. A. Durand, P. Gremaud, and J. Pasquier, “Decentralized web of trust and authentication for

the internet of things,” in Proceedings of the Seventh International Conference on the
Internet of Things, ser. IoT ’17. New York, NY, USA: ACM, 2017, pp. 27:1–27:2. [Online].
Available: http://doi.acm.org/10.1145/3131542.3140263

Approved for Public Release; Distribution Unlimited.
22

19. G. Ayoade, V. Karande, L. Khan, and K. Hamlen, “Decentralized iot data management using
blockchain and trusted execution environment,” in 2018 IEEE International Conference on
Information Reuse and Integration (IRI), July 2018, pp. 15–22.

20. P. Angin, M. B. Mert, O. Mete, A. Ramazanli, K. Sarica, and B. Gungoren, “A blockchain-
based decentralized security architecture for iot,” in Internet of Things – ICIOT 2018. Cham:
Springer International Publishing, 2018, pp. 3–18.

21. R. Casado-Vara, J. Prieto, and J. M. Corchado, “How blockchain could improve fraud
detection in power distribution grid,” in International Joint Conference SOCO’18-CISIS’18-
ICEUTE’18. Cham: Springer International Publishing, 2019, pp. 67–76.

22. A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for iot security and
privacy: The case study of a smart home,” in Pervasive Computing and Communications
Workshops (PerCom Workshops), 2017 IEEE International Conference on. IEEE, 2017, pp.
618–623.

23. P. K. Sharma, S. Y. Moon, and J. H. Park, “Block-vn: A distributed blockchain based
vehicular network architecture in smart city,” Journal of Information Processing Systems,
vol. 13, no. 1, p. 84, 2017.

24. I. Foundation. (2018) Iota. [Online]. Available: https://www.iota.org/
25. R. A. Michelin, A. Dorri, R. C. Lunardi, M. Steger, S. S. Kanhere, R. Jurdak, and A. F.

Zorzo, “Speedychain: A framework for decoupling data from blockchain for smart cities,”
arXiv preprint arXiv:1807.01980, 2018.

26. Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. Leung, “Blockchain-based decentralized trust
management in vehicular networks,” IEEE Internet of Things Journal, 2018.

27. Z. Xiong, S. Feng, D. Niyato, P. Wang, and Z. Han, “Edge computing resource management
and pricing for mobile blockchain,” CoRR, vol. abs/1710.01567, 2017.

28. R. C. Lunardi, R. A. Michelin, C. V. Neu, and A. F. Zorzo, “Distributed access control on iot
ledger-based architecture,” in NOMS 2018-2018 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2018, pp. 1–7.

29. J. Kang, Z. Xiong, D. Niyato, D. Ye, D. I. Kim, and J. Zhao, “Towards secure blockchain-
enabled internet of vehicles: Optimizing consensus management using reputation and
contract theory,” arXiv preprint arXiv:1809.08387, 2018.

30. R. Dennis, G. Owenson, and B. Aziz, “A temporal blockchain: a formal analysis,” in
Collaboration Technologies and Systems (CTS), 2016 International Conference on. IEEE,
2016, pp. 430–437.

31. X. Chen, K. Makki, K. Yen, and N. Pissinou, “Sensor network security: A survey.” IEEE
Communications Surveys and Tutorials, vol. 11, no. 2, pp. 52–73, 2009.

32. T. Martin, M. Hsiao, D. Ha, and J. Krishnaswami, “Denial-of-service attacks on battery-
powered mobile computers,” in Pervasive Computing and Communications, 2004. PerCom
2004. Proceedings of the Second IEEE Annual Conference on. IEEE, 2004, pp. 309–318.

33. J. C. Foster, V. Osipov, and N. Bhalla, Buffer overflow attacks. Syngress Publishing, 2005.
34. G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, “A review of false data injection

attacks against modern power systems,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp.
1630–1638, 2017.

Approved for Public Release; Distribution Unlimited.
23

35. S. Pumpichet, X. Jin, and N. Pissinou, “Sketch-based data recovery in sensor data streams,”
in Networks (ICON), 2013 19th IEEE International Conference on. IEEE, 2013, pp. 1–6.

36. M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational geometry:
algorithms and applications. Springer-Verlag TELOS, 2008.

37. S. Tasnim, J. Caldas, N. Pissinou, S. Iyengar, and Z. Ding, “Semantic-aware clustering-
based approach of trajectory data stream mining,” in 2018 International Conference on
Computing, Networking and Communications (ICNC). IEEE, 2018, pp. 88–92.

38. S. Tasnim, N. Pissinou, and S. Iyengar, “A novel cleaning approach of environmental
sensing data streams,” in Consumer Communications & Networking Conference (CCNC),
2017 14th IEEE Annual. IEEE, 2017, pp. 632–633.

39. C. S. Aleman, N. Pissinou, S. Alemany, and G. Kamhoua, “A dynamic trust weight
allocation technique for data reconstruction in mobile wireless sensor networks,” in 2018
17th IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/12th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). IEEE, 2018, pp. 61–67.

40. B. Q. Ali, N. Pissinou, and K. Makki, “Belief based data cleaning for wireless sensor
networks,” Wireless Communications and Mobile Computing, vol. 12, no. 5, pp. 406–419,
2012.

41. C. C. Aggarwal and S. Sathe, “Theoretical foundations and algorithms for outlier
ensembles,” ACM SIGKDD Explorations Newsletter, vol. 17, no. 1, pp. 24–47, 2015.

42. S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for mining outliers from
large data sets,” in ACM Sigmod Record, vol. 29, no. 2. ACM, 2000, pp. 427–438.

43. Hyperledger. (2018) Hyperledger sawtooth. [Online]. Available:
https://www.hyperledger.org/projects/sawtooth

44. Sawtooth. (2018) Private networks with the sawtooth permissioning features. [Online].
Available:
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#about-
distributed-ledgers

45. E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user movement in location-
based social networks,” in Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2011, pp. 1082–1090.

46. D. Yang, D. Zhang, Z. Yu, and Z. Yu, “Fine-grained preference-aware location search
leveraging crowdsourced digital footprints from lbsns,” in Proceedings of the 2013 ACM
international joint conference on Pervasive and ubiquitous computing. ACM, 2013, pp. 479–
488.

Approved for Public Release; Distribution Unlimited.
24

APPENDIX A – Publications and Presentations

1. Shahid, A. R., Pissinou, N., Staier, C., & Kwan, R. (2019, July). Sensor-Chain: A Lightweight
Scalable Blockchain Framework for Internet of Things. In 2019 International Conference on
Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData) (pp. 1154-1161). IEEE.

2. Shahid, A.R., Pissinou, N., Njilla, L., Aguilar. E., & Perez. E. (2019, November). Demo:
Towards the Development of a Differentially Private Lightweight and Scalable Blockchain for
IoT. In 16th IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS),
IEEE.

3. Shahid, A.R., Pissinou, N., Njilla, L., Alemany, S., Imteaj, A., Makki, K., & Aguilar, E. (2019,
November). Quantifying Location Privacy in Permissioned Blockchain-Based Internet of
Things (IoT). In 2019 16th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services (MobiQuitous), EAI.

Approved for Public Release; Distribution Unlimited.
25

APPENDIX B – Source codes
node-manager.go

package engine

import (

 “bufio”

 “encoding/json”

 “fmt”

 “log”

 mrand “math/rand”

 “os”

 “runtime”

 “strconv”

 “strings”

 “sync”

 “time”

 “github.com/EAGnR/sensor-chain/src/block”

)

var (

 clusterCount = 4 // The amount of clusters, with more clusters then more nodes can be created
without the risk of connection pruning.

 nodesPerCluster = 6 // The starting amount of nodes per cluster, note that if this number is way too
high then excessive connections may get pruned by libp2p.

 initialPort = 10000 // The port of the first node created, it is incremented for each node, this is
necessary as the node manager runs them on localhost.

 // Clusters can be used to access all the running nodes within their clusters.

 Clusters = make([]Cluster, clusterCount)

 tsxInterval = 5000 // Transactions attempted every tsxInterval by node, in ms.

 tsxLoad = 0.2 // Probability that each transaction attempt will go through, adds randomness,
[0.0,1.0].

Approved for Public Release; Distribution Unlimited.
26

 moveInterval = tBlock * 2 // Each moveInterval a random amount of nodes will move to another
cluster, being too low may cause stalling of cluster consensus.

 minInt = 0 // The minimum value for the transaction generation.

 maxInt = 1000 // The maximum value ...

 inputRangeMean = (float64(maxInt-minInt) / 2.0) + float64(minInt) // Middle of range

 consensusDebug = false // Debug flag for debugging consensus, right now it would show validator
selection for the current cluster.

 currClusterDebug *Cluster // USed for validator selection dubugging.

)

// Cluster stores the nodes belonging to a certain cluster in the network.

type Cluster struct {

 ClusterID int // Unique identifier of the cluster.

 Engines []*Engine // Nodes belonging to the cluster.

 joinQueue []*Engine // Nodes waiting to join the cluster.

 seed int64 // This seed value can be used for consensus purposes, where all nodes can share a
seed for a random number generator.

 resetting bool // Flag that signifies if the consensus for this cluster is being reset.

 seedLock *sync.Mutex // Locks the seed whenever a validator changes it for the cluster, or any node
reads it.

}

// RunNodeManager initializes the node creation and management process.

func RunNodeManager() {

 counter := 0

 for i := range Clusters {

 Clusters[i] = Cluster{ClusterID: i, Engines: []*Engine{}, seed: int64(i), resetting: false, seedLock:
&sync.Mutex{}}

 Clusters[i].Engines = make([]*Engine, nodesPerCluster)

 }

Approved for Public Release; Distribution Unlimited.
27

 for _, cluster := range Clusters {

 engines := cluster.Engines

 defer shutdownEngines(engines)

 for i := range engines {

 engines[i] = createEngine(fmt.Sprintf(“node %d”, counter), counter, cluster.ClusterID,
initialPort+counter)

 counter++

 }

 setupNetworkTopology(engines)

 setupPeerLists(engines)

 startListening(engines)

 }

 runTerminalInterface()

}

// setupNetworkTopology sets up a random and sparse network topology.

func setupNetworkTopology(engineSlice []*Engine) {

 mrand.Seed(time.Now().UTC().UnixNano())

 if len(engineSlice) > 1 {

 edges := “Graph Topology: {“

 for i := range engineSlice {

 n := i

 for n == i || (len(engineSlice) > 2 &&
len((*engineSlice[i].BasicHost).Network().ConnsToPeer((*engineSlice[n].BasicHost).ID())) != 0) {

 n = mrand.Intn(len(engineSlice))

 }

 connectHostToPeer(*engineSlice[i].BasicHost,
getLocalHostAddress(*engineSlice[n].BasicHost))

Approved for Public Release; Distribution Unlimited.
28

 edges += fmt.Sprintf(“(%d, %d), “, i, n)

 }

 edges = strings.TrimSuffix(edges, “, “)

 edges += “}”

 fmt.Println(edges)

 }

 // Wait so that subscriptions on topic will be done and all peers will “know” of all other peers

 time.Sleep(time.Second * 2)

}

func setupPeerLists(engineSlice []*Engine) {

 peerList := getCurrentPeerlist(engineSlice)

 for i := range engineSlice {

 engineSlice[i].updatePeerList(peerList)

 }

}

func getCurrentPeerlist(engineSlice []*Engine) map[string]string {

 peerList := make(map[string]string)

 for _, e := range engineSlice {

 peerList[(*e.BasicHost).ID().Pretty()] = getLocalHostAddress(*e.BasicHost)

 }

 return peerList

}

func startListening(engineSlice []*Engine) {

 startTime := time.Now()

Approved for Public Release; Distribution Unlimited.
29

 for i := range engineSlice {

 go engineSlice[i].startListening(startTime, true)

 }

}

func (c *Cluster) setClusterSeed(newSeed int64) {

 c.seedLock.Lock()

 c.seed = newSeed

 c.seedLock.Unlock()

}

func (c *Cluster) getClusterSeed() int64 {

 c.seedLock.Lock()

 currSeed := c.seed

 c.seedLock.Unlock()

 return currSeed

}

func (c *Cluster) resetClusterConsensus() {

 if !c.resetting {

 c.resetting = true

 for i := range c.Engines {

 c.Engines[i].Consensus.stopConsensus()

 }

 // Waiting for current consensus round to finalize, before proceeding with reset.

 time.Sleep(time.Second * time.Duration(tBlock))

 // synchronizing cluster seed.

 for i := range c.Engines {

 c.Engines[i].Consensus.selectedValidator = ““

 c.Engines[i].Consensus.random.Seed(c.getClusterSeed())

 }

Approved for Public Release; Distribution Unlimited.
30

 startTime := time.Now()

 // restarting consensus

 for i := range c.Engines {

 go c.Engines[i].Consensus.runConsensus(startTime)

 }

 fmt.Printf(“\nConsensus reset and synchronized for cluster %d.\n”, c.ClusterID)

 c.resetting = false

 }

}

// PrintMemUsage outputs the current, total and OS memory being used. As well as the number

// of garage collection cycles completed.

func printMemUsage() {

 var m runtime.MemStats

 runtime.ReadMemStats(&m)

 // For info on each, see: https://golang.org/pkg/runtime/#MemStats

 // Green console color: \x1b[32m

 // Reset console color: \x1b[0m

 fmt.Print(“\x1b[32m”)

 fmt.Println(“\nOverall Memory Usage Stats:”)

 fmt.Printf(“Current allocated memory = %v KiB\n”, bToKb(m.Alloc))

 fmt.Printf(“Total memory allocated over time = %v KiB\n”, bToKb(m.TotalAlloc))

 fmt.Printf(“System memory obtained from OS = %v KiB\n”, bToKb(m.Sys))

 fmt.Printf(“Garbage Collector cycles ran = %v\n”, m.NumGC)

 fmt.Print(“\x1b[0m”)

}

func bToMb(b uint64) uint64 {

 return b / 1024 / 1024

}

Approved for Public Release; Distribution Unlimited.
31

func bToKb(b uint64) uint64 {

 return b / 1024

}

func shutdownEngines(engineSlice []*Engine) {

 fmt.Println(“Shutting down node engines.”)

 for _, e := range engineSlice {

 e.shutdownEngine()

 }

}

func runTerminalInterface() {

 stdReader := bufio.NewReader(os.Stdin)

 switchClusterCommand := “SwitchCluster”

 switchNodeCommand := “SwitchNode”

 sendTransactionCommand := “Send”

 autoTransactionsCommand := “AutoSend”

 manualTransactionsCommand := “ManualSend”

 showActivityCommand := “ShowActivity”

 hideActivityCommand := “HideActivity”

 printBlockChainCommand := “PrintBlockchain”

 autoMoveOnCommand := “AutoMoveOn”

 autoMoveOffCommand := “AutoMoveOff”

 resetClusterConsensusCommand := “ResetConsensus”

 shutdownNetworkCommand := “Shutdown”

 currNode := Clusters[0].Engines[0] // Starting node

 currNode.Verbose = true

 verbosity := currNode.Verbose

 currCluster := &Clusters[0]

 autoSend := false

 autoMove := false

 currClusterDebug = currCluster

 for {

Approved for Public Release; Distribution Unlimited.
32

 currNode.Verbose = false

 fmt.Println()

 fmt.Printf(“Current cluster, ID: %d, node count: %d\n”, currCluster.ClusterID,
len(currCluster.Engines))

 nodes := “Nodes in cluster: “

 for i := range currCluster.Engines {

 nodes += fmt.Sprintf(“([%d]: %s), “, i, currCluster.Engines[i].Moniker)

 }

 nodes = strings.TrimSuffix(nodes, “, “)

 fmt.Println(nodes)

 fmt.Printf(“Current node, moniker: %s, address: %s\n”, currNode.Moniker, currNode.Address)

 fmt.Printf(“\nCommands: %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s\n”,
switchClusterCommand, switchNodeCommand, sendTransactionCommand,

 autoTransactionsCommand, manualTransactionsCommand, showActivityCommand,
hideActivityCommand, printBlockChainCommand, autoMoveOnCommand,

 autoMoveOffCommand, resetClusterConsensusCommand, shutdownNetworkCommand)

 fmt.Print(“Enter command: “)

 input, err := stdReader.ReadString('\n')

 if err != nil {

 log.Fatal(err)

 }

 input = strings.Replace(input, “\n”, ““, -1)

 currNode.Verbose = verbosity

 switch strings.ToLower(input) {

 case strings.ToLower(switchClusterCommand):

 clusterNumber := 0

 currNode.Verbose = false

 fmt.Printf(“Enter cluster ID [0-%d]: “, len(Clusters)-1)

 _, err := fmt.Scanf(“%d”, &clusterNumber)

 if err != nil {

 fmt.Println(“Invalid cluster ID!”)

 break

 }

Approved for Public Release; Distribution Unlimited.
33

 if clusterNumber >= 0 && clusterNumber < len(Clusters) {

 currCluster = &Clusters[clusterNumber]

 currClusterDebug = currCluster

 currNode = currCluster.Engines[0]

 } else {

 fmt.Println(“Invalid cluster ID range!”)

 break

 }

 currNode.Verbose = verbosity

 case strings.ToLower(switchNodeCommand):

 nodeNumber := 0

 currNode.Verbose = false

 fmt.Printf(“Enter node index [0-%d]: “, len(currCluster.Engines)-1)

 _, err := fmt.Scanf(“%d”, &nodeNumber)

 if err != nil {

 fmt.Println(“Invalid node index!”)

 break

 }

 if nodeNumber >= 0 && nodeNumber < len(currCluster.Engines) {

 currNode = currCluster.Engines[nodeNumber]

 } else {

 fmt.Println(“Invalid node index range!”)

 break

 }

 currNode.Verbose = verbosity

 case strings.ToLower(sendTransactionCommand):

 message := ““

 nodeNumber := 0

 currNode.Verbose = false

 fmt.Print(“Enter transaction message: “)

 message, err := stdReader.ReadString('\n')

 if err != nil {

Approved for Public Release; Distribution Unlimited.
34

 fmt.Println(“Invalid message!”)

 break

 }

 message = strings.Replace(message, “\n”, ““, -1)

 fmt.Printf(“Enter receiver node number [0-%d]: “, len(currCluster.Engines)-1)

 _, err = fmt.Scanf(“%d”, &nodeNumber)

 if err != nil {

 fmt.Println(“Invalid node number!”)

 break

 }

 if nodeNumber >= 0 && nodeNumber < len(currCluster.Engines) {

 currNode.broadcastTransaction((*currCluster.Engines[nodeNumber].BasicHost).ID(),
time.Now().Format(time.RFC1123), message)

 } else {

 fmt.Println(“Invalid node range!”)

 break

 }

 currNode.Verbose = verbosity

 case strings.ToLower(autoTransactionsCommand):

 if !autoSend {

 autoSend = true

 go transactionTicker(&autoSend)

 }

 case strings.ToLower(manualTransactionsCommand):

 autoSend = false

 case strings.ToLower(showActivityCommand):

 verbosity = true

 currNode.Verbose = verbosity

Approved for Public Release; Distribution Unlimited.
35

 case strings.ToLower(hideActivityCommand):

 verbosity = false

 currNode.Verbose = verbosity

 case strings.ToLower(printBlockChainCommand):

 bytes, err := json.MarshalIndent(*currNode.NodeStore.Blockchain, ““, “ “)

 if err != nil {

 log.Fatal(err)

 }

 // Green console color: \x1b[32m

 // Reset console color: \x1b[0m

 fmt.Printf(“\x1b[32m%s\x1b[0m\n”, string(bytes))

 printMemUsage()

 case strings.ToLower(autoMoveOnCommand):

 if !autoMove {

 autoMove = true

 go movementTicker(&autoMove)

 }

 case strings.ToLower(autoMoveOffCommand):

 autoMove = false

 case strings.ToLower(resetClusterConsensusCommand):

 go currCluster.resetClusterConsensus()

 case strings.ToLower(shutdownNetworkCommand):

 return

 default:

 fmt.Println(“Invalid command!”)

 }

Approved for Public Release; Distribution Unlimited.
36

 stdReader.ReadLine()

 }

}

// transactionTicker can be called as a Goroutine, asynchronously submits node transactions based on ticker time interval, and
generated from a nomral dist.

func transactionTicker(auto *bool) {

 mrand.Seed(time.Now().UTC().UnixNano())

 for *auto {

 for _, cluster := range Clusters {

 engines := cluster.Engines

 for _, engine := range engines {

 value := mrand.NormFloat64()*(inputRangeMean/3.0) + inputRangeMean //
Alters standard normal dist. to correspond to value range.

 message := fmt.Sprintf(“%s”, strconv.FormatFloat(value, 'f', 3, 64))

 destNodeIndex := mrand.Intn(len(engines))

 if mrand.Float64() <= tsxLoad {

 engine.broadcastTransaction((*engines[destNodeIndex].BasicHost).ID(),
time.Now().Format(time.RFC1123), message)

 }

 if !*auto {

 break

 }

 }

 }

 time.Sleep(time.Millisecond * time.Duration(tsxInterval))

 }

 fmt.Println(“Stopped automatic transaction generation.”)

}

Approved for Public Release; Distribution Unlimited.
37

// TODO: Seems to work okay, but needs a lot more testing to catch all possible edge cases, especially in preventing fork
conditions.

//*****

// movementTicker can be called as a Goroutine, asynchronously moves random nodes to different clusters.

func movementTicker(auto *bool) {

 mrand.Seed(time.Now().UTC().UnixNano())

 for *auto {

 if len(Clusters) < 2 {

 *auto = false

 fmt.Println(“Automatic node movement cannot be activated with only 1 cluster.”)

 break

 }

 srcClusterID := mrand.Intn(len(Clusters))

 destClusterID := srcClusterID

 for destClusterID == srcClusterID {

 destClusterID = mrand.Intn(len(Clusters))

 }

 srcCluster := &Clusters[srcClusterID]

 destCluster := &Clusters[destClusterID]

 movingNodeIndex := mrand.Intn(len(srcCluster.Engines))

 movingNode := srcCluster.Engines[movingNodeIndex]

 if len(srcCluster.Engines) > 1 {

 // Removing node from source cluster engine list.

 if movingNodeIndex < len(srcCluster.Engines)-1 {

 srcCluster.Engines = append(srcCluster.Engines[:movingNodeIndex],
srcCluster.Engines[movingNodeIndex+1:]...)

 } else {

 srcCluster.Engines = srcCluster.Engines[:movingNodeIndex]

Approved for Public Release; Distribution Unlimited.
38

 }

 // Updating peer list for nodes in source cluster.

 setupPeerLists(srcCluster.Engines)

 // Disconnecting node from current cluster, and emptying its storage.

 movingNode.Consensus.stopConsensus()

 for _, conn := range (*movingNode.BasicHost).Network().Conns() {

 conn.Close() // Closes all connections from source cluster to this node.

 }

 // In case some nodes become disconnected as this one leaves, reconnect them to the
source cluster again.

 // ISSUE: Partial solution, helps mitigate the problem, but doesn't entirely solve it. There
is the possibility of a new disconnected graph forming.

 // A possible solution would be disconnect all nodes, and reconnect them again using
setupNetworkTopology(), but this is a brute force solution.

 // TODO: Come up with a complete and efficient solution.

 if len(srcCluster.Engines) > 1 {

 for i, engine := range srcCluster.Engines {

 // If a node in srcCluster is found to have 0 connections then
reconnect it.

 if len((*engine.BasicHost).Network().Conns()) == 0 {

 n := i

 for n == i || (len(srcCluster.Engines) > 2 &&

 len((*srcCluster.Engines[i].BasicHost).Network().ConnsToPeer((*srcCluster.Engines[n].BasicHost).ID
())) != 0) {

 n = mrand.Intn(len(srcCluster.Engines))

 }

 connectHostToPeer((*engine.BasicHost),
getLocalHostAddress((*srcCluster.Engines[n].BasicHost)))

Approved for Public Release; Distribution Unlimited.
39

 }

 }

 }

 movingNode.ClusterID = destClusterID

 movingNode.PeerList = &TimedPeerList{time.Now(), make(map[string]string)}

 movingNode.NodeStore.Blockchain = &[]block.Block{}

 movingNode.NodeStore.LiveWallet = make(map[string]int)

 movingNode.Consensus = createConsensus(movingNode, tBlock, tChain, temporal,
blockThreshold, blockLimit)

 // Updating join queue of destination cluster.

 destCluster.joinQueue = append(destCluster.joinQueue, movingNode)

 }

 // Adding nodes waiting to join destination clusters to network.

 for len(destCluster.joinQueue) > 0 {

 joiningNode := destCluster.joinQueue[0]

 for i := range destCluster.Engines {

 destCluster.Engines[i].Consensus.stopConsensus()

 }

 connectHostToPeer((*joiningNode.BasicHost),
getLocalHostAddress((*destCluster.Engines[mrand.Intn(len(destCluster.Engines))].BasicHost)))

 destCluster.Engines = append(destCluster.Engines, joiningNode)

 setupPeerLists(destCluster.Engines)

 // Dequeueing join queue.

 if len(destCluster.joinQueue) > 1 {

 destCluster.joinQueue = destCluster.joinQueue[1:]

 } else {

 destCluster.joinQueue = []*Engine{}

Approved for Public Release; Distribution Unlimited.
40

 }

 go destCluster.resetClusterConsensus()

 }

 // For info on each, see: https://golang.org/pkg/runtime/#MemStats

 // Green console color: \x1b[32m

 // Reset console color: \x1b[0m

 fmt.Print(“\x1b[32m”)

 fmt.Printf(“\n%s moving from cluster %d to cluster %d\n”, movingNode.Moniker,
srcCluster.ClusterID, destCluster.ClusterID)

 fmt.Print(“\x1b[0m”)

 time.Sleep(time.Second * time.Duration(moveInterval))

 }

 fmt.Println(“Stopped automatic node movement.”)

}

engine.go

package engine

import (

 “encoding/json”

 “fmt”

 “log”

 “time”

 “github.com/EAGnR/sensor-chain/src/block”

 msg “github.com/EAGnR/sensor-chain/src/message”

 “github.com/EAGnR/sensor-chain/src/store”

 “github.com/libp2p/go-libp2p-core/host”

 “github.com/libp2p/go-libp2p-core/peer”

)

Approved for Public Release; Distribution Unlimited.
41

// 30 seconds tBlock is suggested for up to 10 nodes per cluster, for more nodes per cluster consider raising the
tBlock for longer broadcasting times.

var (

 tBlock = 30 // In seconds, should allow enough time for broadcasting over the
network, otherwise more forking is likely to occur.

 tChain = 240 // In seconds, can be used to determine the maximum amount of
blocks based on tBlock.

 temporal = true // Whether the temporal constraint is activated or not.

 blockThreshold = 8 // Minimum amount of blocks needed before aggregating.

 blockLimit = blockThreshold + 2 // Minimum amount of blocks needed before
aggregating.

)

// Engine manages the host of a node and its communication over the network, essentially it is the core of a node.

type Engine struct {

 NodeStore *store.Store // This node's storage.

 BasicHost *host.Host // The engine's host for communication over the P2P network.

 PubSub *libp2pPubSub // The broadcasting mechanism used.

 Moniker string // Unique nickname.

 MonikerNumber int // Numerical portion of nickname.

 PortNumber int // Listen Port Number

 Address string // The address used to connected with this node.

 ClusterID int // Identifying ID of the cluster this node belongs to.

 PeerList *TimedPeerList // The list of peers belonging to this node's current cluster.

 Consensus *Consensus // Consensus mechanism used by this engine.

 Verbose bool // Whether this engine is currently selected by the Node Manager to
output to stdout.

 shutdown bool // The engine shuts down when this flag is set.

}

// TimedPeerList is the struct type that stores a node's peer list alongside its update time.

type TimedPeerList struct {

Approved for Public Release; Distribution Unlimited.
42

 Timestamp time.Time

 Peers map[string]string

}

// createEngine creates a new engine thereby running a new node.

func createEngine(moniker string, monikerNumber, clusterID int, listenPort int) *Engine {

 pubsub := new(libp2pPubSub)

 // creating libp2p host

 host := pubsub.createPeer(moniker, listenPort)

 // creating pubsub

 pubsub.initializePubSub(*host)

 engine := Engine{

 NodeStore: store.CreateStore(),

 BasicHost: host,

 PubSub: pubsub,

 Moniker: moniker,

 MonikerNumber: monikerNumber,

 PortNumber: listenPort,

 Address: getLocalHostAddress(*host),

 ClusterID: clusterID,

 PeerList: &TimedPeerList{time.Now(), make(map[string]string)},

 Consensus: nil,

 Verbose: false,

 shutdown: false,

 }

 engine.Consensus = createConsensus(&engine, tBlock, tChain, temporal, blockThreshold,
blockLimit)

 return &engine

Approved for Public Release; Distribution Unlimited.
43

}

func (e *Engine) startListening(startTime time.Time, runConsensus bool) {

 if runConsensus {

 e.Consensus.runConsensus(startTime)

 }

 for !e.shutdown {

 sender, message := e.PubSub.Receive()

 if e.Verbose {

 fmt.Println(“\nIncoming broadcast...”)

 data := &msg.Message{}

 if err := json.Unmarshal([]byte(message), &data); err != nil {

 log.Fatal(err)

 }

 fmt.Printf(“Node %s sent Message of type: '%s'\n”, sender.Pretty(), data.Type)

 if data.Type == msg.TransactionType {

 fmt.Println(message)

 }

 }

 e.handleMessage(message)

 }

 e.Consensus.stopConsensus()

 err := (*e.BasicHost).Close()

 if err != nil {

Approved for Public Release; Distribution Unlimited.
44

 log.Println(err)

 }

}

func (e *Engine) broadcastTransaction(to peer.ID, timestamp string, str string) {

 from := (*e.BasicHost).ID()

 rawData, err := json.Marshal(msg.TransactionPayload{From: from, To: to, Timestamp:
timestamp, Transaction: str})

 if err != nil {

 log.Fatal(err)

 }

 message := msg.Message{Type: msg.TransactionType, RawPayload: rawData}

 bytes, err := json.Marshal(message)

 if err != nil {

 log.Println(err)

 }

 e.PubSub.Broadcast(string(bytes))

}

func (e *Engine) broadcastBlockchain(blockchain []block.Block) {

 rawData, err := json.Marshal(msg.BlockchainPayload{Blockchain: blockchain})

 if err != nil {

 log.Fatal(err)

 }

 message := msg.Message{Type: msg.BlockchainType, RawPayload: rawData}

 bytes, err := json.Marshal(message)

Approved for Public Release; Distribution Unlimited.
45

 if err != nil {

 log.Println(err)

 }

 e.PubSub.Broadcast(string(bytes))

}

func (e *Engine) handleMessage(str string) {

 if str == ““ {

 return

 }

 if str != “\n” {

 message := &msg.Message{}

 if err := json.Unmarshal([]byte(str), &message); err != nil {

 log.Fatal(err)

 }

 switch message.Type {

 case msg.TransactionType:

 payload := msg.TransactionPayload{}

 if err := json.Unmarshal(message.RawPayload, &payload); err != nil {

 log.Fatal(err)

 }

 e.Consensus.enqueueTransaction(payload)

 case msg.BlockchainType:

 payload := msg.BlockchainPayload{}

 if err := json.Unmarshal(message.RawPayload, &payload); err != nil {

 log.Fatal(err)

 }

Approved for Public Release; Distribution Unlimited.
46

 e.Consensus.receiveUpdatedChain(payload)

 default:

 if e.Verbose {

 fmt.Println(“Unknown message type received, it was discarded.”)

 }

 }

 }

}

func (e *Engine) updatePeerList(peerList map[string]string) {

 e.PeerList.Timestamp = time.Now()

 e.PeerList.Peers = peerList

 for key := range e.PeerList.Peers {

 if _, found := e.NodeStore.LiveWallet[key]; !found {

 e.NodeStore.LiveWallet[key] = 0

 }

 }

}

func (e *Engine) shutdownEngine() {

 e.shutdown = true

}

Consensus.go

package engine

import (

 “encoding/json”

 “fmt”

 “log”

Approved for Public Release; Distribution Unlimited.
47

 mrand “math/rand”

 “runtime”

 “sort”

 “strconv”

 “sync”

 “time”

 “github.com/EAGnR/sensor-chain/src/block”

 “github.com/EAGnR/sensor-chain/src/message”

 “github.com/libp2p/go-libp2p-core/peer”

)

// Consensus is the struct which handles the consensus mechanism of the platform.

type Consensus struct {

 Engine *Engine

 TBlock int // Time for block creation, in seconds.

 TChain int // Time for blockchain aggregation, in seconds.

 Temporal bool // Whether the temporal constraint is activated or not.

 BlockThreshold int // Minimum amount of blocks needed before aggregating.

 BlockLimit int // Maximum amount of blocks allowed.

 random *mrand.Rand

 tsxQueue []message.TransactionPayload // This servers as the transaction pool.

 tsxBuffer []block.TransactionContent // Transactions to be commited on next block.

 selectedValidator peer.ID

 queueMutex *sync.Mutex

 blockchainMutex *sync.Mutex

 running bool // Whether the consensus mechanism is running or not.

}

// createConsensus creates a new consensus struct which manages the consensus mechanism.

Approved for Public Release; Distribution Unlimited.
48

func createConsensus(engine *Engine, tBlock int, tChain int, temporal bool, blockThreshold int, blockLimit int)
*Consensus {

 consensus := &Consensus{

 Engine: engine,

 TBlock: tBlock,

 TChain: tChain,

 Temporal: temporal,

 BlockThreshold: blockThreshold,

 BlockLimit: blockLimit,

 random: mrand.New(mrand.NewSource(0)),

 tsxQueue: []message.TransactionPayload{},

 tsxBuffer: []block.TransactionContent{},

 selectedValidator: ““,

 queueMutex: &sync.Mutex{},

 blockchainMutex: &sync.Mutex{},

 running: false,

 }

 return consensus

}

// runConsensus runs the randomized consensus mechanism for a node.

func (c *Consensus) runConsensus(startTime time.Time) {

 c.running = true

 c.blockchainMutex.Lock()

 blockchain := c.Engine.NodeStore.Blockchain

 c.blockchainMutex.Unlock()

 // Broadcast blockchain on consensus restart if this is the previously elected validator.

 go func() {

Approved for Public Release; Distribution Unlimited.
49

 c.blockchainMutex.Lock()

 if len(*blockchain) > 0 && (*blockchain)[len(*blockchain)-1].Header.Validator != ““ {

 recentValidator, err := peer.IDB58Decode((*blockchain)[len(*blockchain)-
1].Header.Validator)

 if err != nil {

 log.Fatal(err)

 }

 if recentValidator == (*c.Engine.BasicHost).ID() {

 c.Engine.broadcastBlockchain(*blockchain)

 }

 }

 c.blockchainMutex.Unlock()

 }()

 nextTBlockTime := startTime.Add(time.Second * time.Duration(c.TBlock/2)) // Initial
tBlock interval has a delay from start time.

 nextTChainTime := startTime.Add(time.Second * time.Duration(c.TChain))

 c.random.Seed(Clusters[c.Engine.ClusterID].getClusterSeed()) // Deterministic consensus
seed.

 go func() {

 for c.running {

 if (time.Now().After(nextTBlockTime) || time.Now().Equal(nextTBlockTime))
&& len(c.tsxQueue) > 0 {

 if len(*blockchain) < 1 {

 nextTBlockTime = nextTBlockTime.Add(time.Second *
time.Duration(c.TBlock))

 time.Sleep(time.Second)

 continue

 }

 // List of validator candidates is created and populated.

Approved for Public Release; Distribution Unlimited.
50

 candidates := []string{}

 for key := range c.Engine.PeerList.Peers {

 candidates = append(candidates, key)

 }

 sort.Strings(candidates)

 // Validator is chosen radomly but in a deterministic manner for all
nodes.

 validator := candidates[c.random.Intn(len(candidates))]

 c.blockchainMutex.Lock()

 lastBlock := (*blockchain)[len(*blockchain)-1]

 c.blockchainMutex.Unlock()

 lastBlockTime, err := time.Parse(time.RFC1123,
lastBlock.Header.Timestamp)

 if err != nil {

 log.Fatal(err)

 }

 // Synchronizing the next consensus round seed

 if nextTBlockTime.Before(lastBlockTime.Add(time.Second *
time.Duration(c.TBlock))) {

 c.random.Seed(Clusters[c.Engine.ClusterID].getClusterSeed()) // Deterministic consensus
seed.

 //nextTBlockTime = lastBlockTime

 }

 // Obtaining most recent previous validator.

 c.blockchainMutex.Lock()

 var recentValidator peer.ID

 if (*blockchain)[len(*blockchain)-1].Header.Validator != ““ {

Approved for Public Release; Distribution Unlimited.
51

 recentValidator, err =
peer.IDB58Decode((*blockchain)[len(*blockchain)-1].Header.Validator)

 if err != nil {

 log.Fatal(err)

 }

 }

 c.blockchainMutex.Unlock()

 // If true then empty the transaction buffer, as the previous consensus
round was succesful,

 // otherwise keep the previous transactions to attempt committing them
again.

 if recentValidator == c.selectedValidator || c.selectedValidator == ““ {

 c.tsxBuffer = []block.TransactionContent{}

 } else {

 if c.Engine.Verbose {

 fmt.Println(“Expected validator timed out, they could
have left the cluster, or there is congestion, or there is a possible fork.”)

 }

 }

 pid, err := peer.IDB58Decode(validator)

 if err != nil {

 log.Fatal(err)

 }

 c.selectedValidator = pid

 if c.Engine.ClusterID == currClusterDebug.ClusterID &&
consensusDebug {

 fmt.Printf(“Elected Validator of %s: %s\n”,
c.Engine.Moniker, c.selectedValidator.Pretty())

 }

 // Dequeuing transaction queue into buffer, and updating node live
wallet.

Approved for Public Release; Distribution Unlimited.
52

 c.queueMutex.Lock()

 for len(c.tsxQueue) > 0 {

 t := c.dequeueTransaction()

 if _, found :=
c.Engine.NodeStore.LiveWallet[t.From.Pretty()]; found {

 c.Engine.NodeStore.LiveWallet[t.From.Pretty()]++

 } else {

 c.Engine.NodeStore.LiveWallet[t.From.Pretty()] = 1

 }

 c.tsxBuffer = append(c.tsxBuffer, block.TransactionContent{

 From: t.From.Pretty(), To: t.To.Pretty(), Timestamp:
t.Timestamp, Transaction: t.Transaction})

 }

 c.queueMutex.Unlock()

 // Broadcasting updated chain if chosen as validator.

 go func() {

 c.blockchainMutex.Lock()

 if c.selectedValidator == (*c.Engine.BasicHost).ID() {

 seed := time.Now().UTC().UnixNano()

 candidateBlock :=
block.CreateBlockWithList(&lastBlock, c.tsxBuffer, c.Engine.NodeStore.LiveWallet, (*c.Engine.BasicHost).ID(),
seed)

 currentChain := c.Engine.NodeStore.Blockchain

 // Temporal constraint aggregation.

 if c.Temporal && len(lastBlock.TransactionList) > 1
&&

 (((time.Now().After(nextTChainTime) ||
time.Now().Equal(nextTChainTime)) && len(*currentChain) >= c.BlockThreshold) ||

 len(*currentChain) >=
c.BlockLimit) {

Approved for Public Release; Distribution Unlimited.
53

 if c.selectedValidator ==
(*c.Engine.BasicHost).ID() {

 aggregatedChain :=
c.aggregateChain(append(*currentChain, *candidateBlock))

 if aggregatedChain != nil {

 c.Engine.broadcastBlockchain(aggregatedChain)

 }

 }

 nextTChainTime =
nextTChainTime.Add(time.Second * time.Duration(c.TChain))

 // Else append new block without
aggregating.

 } else {

 if block.IsBlockValid(candidateBlock,
&lastBlock) {

 c.Engine.broadcastBlockchain(append(*currentChain, *candidateBlock))

 } else {

 if c.Engine.Verbose {

 fmt.Println(“Block
Creation: Block validation failed!”)

 }

 }

 }

 Clusters[c.Engine.ClusterID].setClusterSeed(seed)

 }

 c.blockchainMutex.Unlock()

 }()

Approved for Public Release; Distribution Unlimited.
54

 nextTBlockTime = nextTBlockTime.Add(time.Second *
time.Duration(c.TBlock))

 }

 time.Sleep(time.Second)

 }

 }()

}

// stopConsensus stops the consensus mechanism for a node.

func (c *Consensus) stopConsensus() {

 c.running = false

}

// enqueueTransaction adds a transaction to the transaction queue, which will later be commited by the consensus
mechanism.

func (c *Consensus) enqueueTransaction(payload message.TransactionPayload) {

 c.queueMutex.Lock()

 found := false

 for _, val := range c.tsxQueue {

 if val.From == payload.From && val.To == payload.To && val.Timestamp ==
payload.Timestamp && val.Transaction == payload.Transaction {

 found = true

 }

 }

 if !found {

 c.tsxQueue = append(c.tsxQueue, payload)

 }

 c.queueMutex.Unlock()

}

// Make sure that queue is not empty before using.

func (c *Consensus) dequeueTransaction() message.TransactionPayload {

Approved for Public Release; Distribution Unlimited.
55

 var element message.TransactionPayload

 if len(c.tsxQueue) > 0 {

 element = c.tsxQueue[0]

 if len(c.tsxQueue) > 1 {

 c.tsxQueue = c.tsxQueue[1:]

 } else {

 c.tsxQueue = []message.TransactionPayload{}

 }

 } else {

 element = message.TransactionPayload{}

 }

 return element

}

// receiveUpdatedChain accepts broadcasted blockchains, validates them, and checks if they were sent by the
validator.

func (c *Consensus) receiveUpdatedChain(payload message.BlockchainPayload) {

 c.blockchainMutex.Lock()

 currentChain := c.Engine.NodeStore.Blockchain

 updatedChain := payload.Blockchain

 // if len(*currentChain) == 0 then this node has just moved to a new cluster and emptied its
blockchain storage, so it should receive the blockchain from

 // the new cluster.

 if len(*currentChain) == 0 || (((len(updatedChain) > len(*currentChain) &&
updatedChain[0].Header.Generation == (*currentChain)[0].Header.Generation) ||

 updatedChain[0].Header.Generation > (*currentChain)[0].Header.Generation) &&

 updatedChain[len(updatedChain)-1].Header.Validator == c.selectedValidator.Pretty()) {

Approved for Public Release; Distribution Unlimited.
56

 if len(updatedChain) == 1 || block.IsBlockValid(&updatedChain[len(updatedChain)-1],
&updatedChain[len(updatedChain)-2]) {

 *c.Engine.NodeStore.Blockchain = updatedChain

 currentChain = c.Engine.NodeStore.Blockchain

 lastBlock := (*currentChain)[len(*currentChain)-1]

 // Synchronizing node live wallet.

 c.Engine.NodeStore.LiveWallet = make(map[string]int)

 for key, value := range lastBlock.Header.Wallet {

 c.Engine.NodeStore.LiveWallet[key] = value

 }

 // Updated locally stored blockchain and outputing it to stdout.

 bytes, err := json.MarshalIndent(*c.Engine.NodeStore.Blockchain, ““, “ “)

 if err != nil {

 log.Fatal(err)

 }

 // Green console color: \x1b[32m

 // Reset console color: \x1b[0m

 if c.Engine.Verbose {

 runtime.GC() // Run garbage collector every time blockchain is
updated, reduces memory usage immediately after aggregation.

 fmt.Printf(“\x1b[32m%s\x1b[0m\n”, string(bytes))

 printMemUsage()

 }

 } else {

 if c.Engine.Verbose {

 fmt.Println(“ReceiveUpdatedChain: Block validation failed!”)

 }

 }

 }

 c.blockchainMutex.Unlock()

Approved for Public Release; Distribution Unlimited.
57

}

// Returns nil if there wasn't more than one transaction value to aggregate.

func (c *Consensus) aggregateChain(blockChain []block.Block) []block.Block {

 tempList := blockChain[len(blockChain)-1].TransactionList

 newBlockChain := []block.Block{}

 if len(tempList) > 1 {

 txsList := []string{}

 for _, c := range tempList {

 txsList = append(txsList, c.Transaction)

 }

 aggregate := weightedMovingAverage(decodeTxsToFloat(txsList))

 newGenesisBlock := block.CreateGenesisBlock(blockChain[0].Header.Generation+1,
&blockChain[len(blockChain)-1],

 strconv.FormatFloat(aggregate, 'f', 6, 64), blockChain[len(blockChain)-
1].Header.Wallet, (*c.Engine.BasicHost).ID(), time.Now().UTC().UnixNano())

 newBlockChain = append(newBlockChain, *newGenesisBlock)

 if c.Engine.Verbose {

 fmt.Println(“\nThis node aggregated the blockchain.”)

 }

 } else {

 newBlockChain = nil

 }

 return newBlockChain

}

Approved for Public Release; Distribution Unlimited.
58

func decodeTxsToFloat(txsList []string) []float64 {

 txsFloatList := []float64{}

 for i := range txsList {

 tempFloat, err := strconv.ParseFloat(txsList[i], 64)

 if err != nil {

 continue

 }

 txsFloatList = append(txsFloatList, tempFloat)

 }

 return txsFloatList

}

func weightedMovingAverage(txsList []float64) float64 {

 alpha := 0.1

 wAvg := 0.0

 if len(txsList) == 1 {

 return txsList[0]

 }

 for i := range txsList {

 wAvg = (1.0-alpha)*wAvg + alpha*float64(txsList[i])

 }

 return wAvg

}

pubsub.go

package engine

Approved for Public Release; Distribution Unlimited.
59

// Our use of PubSub is based on this example: https://github.com/libp2p/go-libp2p-examples/pull/74/files

// Credit to: https://github.com/MBakhshi96

import (

 “context”

 “crypto/ecdsa”

 “crypto/rand”

 “fmt”

 “log”

 “strings”

 “github.com/btcsuite/btcd/btcec”

 libp2p “github.com/libp2p/go-libp2p”

 “github.com/libp2p/go-libp2p-core/crypto”

 “github.com/libp2p/go-libp2p-core/host”

 “github.com/libp2p/go-libp2p-core/peer”

 psub “github.com/libp2p/go-libp2p-pubsub”

 “github.com/multiformats/go-multiaddr”

)

type libp2pPubSub struct {

 pubsub *psub.PubSub // PubSub of each individual node

 subscription *psub.Subscription // Subscription of individual node

 topic string // PubSub topic

}

// Broadcast Uses PubSub publish to broadcast messages to other peers

func (c *libp2pPubSub) Broadcast(msg string) {

 // Broadcasting to a topic in PubSub

 err := c.pubsub.Publish(c.topic, []byte(msg))

 if err != nil {

Approved for Public Release; Distribution Unlimited.
60

 log.Printf(“Error : %v\n”, err)

 return

 }

}

// Receive gets message from PubSub in a blocking way

func (c *libp2pPubSub) Receive() (peer.ID, string) {

 // Blocking function for consuming newly received messages

 // We can access message here

 msg, _ := c.subscription.Next(context.Background())

 return msg.GetFrom(), string(msg.Data)

}

// createPeer creates a peer on localhost and configures it to use libp2p.

func (c *libp2pPubSub) createPeer(moniker string, port int) *host.Host {

 // Creating a node

 h, err := createHost(port)

 if err != nil {

 panic(err)

 }

 fmt.Printf(“%s is %s\n”, moniker, getLocalHostAddress(h))

 // Returning pointer to the created libp2p host

 return &h

}

// initializePubSub creates a PubSub for the peer and also subscribes to a topic

func (c *libp2pPubSub) initializePubSub(h host.Host) {

 var err error

 // Creating pubsub

 // every peer has its own PubSub

Approved for Public Release; Distribution Unlimited.
61

 c.pubsub, err = applyPubSub(h)

 if err != nil {

 log.Printf(“Error : %v\n”, err)

 return

 }

 // Registering to the topic

 c.topic = “TOPIC”

 // Creating a subscription and subscribing to the topic

 c.subscription, err = c.pubsub.Subscribe(c.topic)

 if err != nil {

 log.Printf(“Error : %v\n”, err)

 return

 }

}

// createHost creates a host with some default options and a signing identity

func createHost(port int) (host.Host, error) {

 // Producing private key

 prvKey, err := ecdsa.GenerateKey(btcec.S256(), rand.Reader)

 if err != nil {

 return nil, err

 }

 sk := (*crypto.Secp256k1PrivateKey)(prvKey)

 // Starting a peer with default configs

 opts := []libp2p.Option{

 libp2p.ListenAddrStrings(fmt.Sprintf(“/ip4/0.0.0.0/tcp/%d”, port)),

 libp2p.Identity(sk),

 libp2p.DefaultTransports,

 libp2p.DefaultMuxers,

Approved for Public Release; Distribution Unlimited.
62

 libp2p.DefaultSecurity,

 }

 h, err := libp2p.New(context.Background(), opts...)

 if err != nil {

 return nil, err

 }

 return h, nil

}

// getLocalHostAddress is used for getting address of hosts

func getLocalHostAddress(h host.Host) string {

 for _, addr := range h.Addrs() {

 if strings.Contains(addr.String(), “127.0.0.1”) {

 return addr.String() + “/p2p/” + h.ID().Pretty()

 }

 }

 return ““

}

// applyPubSub creates a new GossipSub with message signing

func applyPubSub(h host.Host) (*psub.PubSub, error) {

 optsPS := []psub.Option{

 psub.WithMessageSigning(true),

 }

 return psub.NewGossipSub(context.Background(), h, optsPS...)

}

// connectHostToPeer is used for connecting a host to another peer

func connectHostToPeer(h host.Host, connectToAddress string) {

 // Creating multi address

Approved for Public Release; Distribution Unlimited.
63

 multiAddr, err := multiaddr.NewMultiaddr(connectToAddress)

 if err != nil {

 log.Printf(“Error : %v\n”, err)

 return

 }

 pInfo, err := peer.AddrInfoFromP2pAddr(multiAddr)

 if err != nil {

 log.Printf(“Error : %v\n”, err)

 return

 }

 err = h.Connect(context.Background(), *pInfo)

 if err != nil {

 log.Printf(“Error : %v\n”, err)

 }

}

block.go

package block

import (

 “crypto/sha256”

 “encoding/hex”

 “fmt”

 “log”

 “sort”

 “strconv”

 “time”

 “github.com/cbergoon/merkletree”

 “github.com/libp2p/go-libp2p-core/peer”

Approved for Public Release; Distribution Unlimited.
64

)

// BlockHeader holds the Block struct contents which are hashed for blockchain integrity.

type BlockHeader struct {

 Generation int

 Index int

 Timestamp string

 Hash string

 PrevHash string

 RootHash []byte // Merkle tree root hash which is composed of the concatenated hashes of
all transactions in block.

 Wallet map[string]int

 Validator string

 Seed int64 // This seed value can be used for consensus purposes, where all nodes can
share a seed for a random number generator.

}

// Block is the struct type held by the blockchain.

type Block struct {

 Header BlockHeader

 TransactionList []TransactionContent

}

// CreateBlock creates a new block using the previous block hash, and appends one payload.

func CreateBlock(oldBlock *Block, from string, to string, timestamp string, transaction string, wallet map[string]int,
validator peer.ID, seed int64) *Block {

 var newBlock Block

 var contentList []merkletree.Content

 for _, c := range oldBlock.TransactionList {

 contentList = append(contentList, c)

 }

Approved for Public Release; Distribution Unlimited.
65

 contentList = append(contentList, TransactionContent{From: from, To: to, Timestamp:
timestamp, Transaction: transaction})

 tree, err := merkletree.NewTree(contentList)

 if err != nil {

 log.Fatal(err)

 }

 validRootHash, err := tree.VerifyTree()

 if err != nil {

 log.Fatal(err)

 }

 if !validRootHash {

 err := tree.RebuildTree()

 if err != nil {

 log.Fatal(err)

 }

 validRootHash, err = tree.VerifyTree()

 if err != nil {

 log.Fatal(err)

 }

 if !validRootHash {

 log.Fatalln(“CreateBock: Failed to build correct merkle tree multiple times.”)

 }

 }

 var tsxContentList []TransactionContent

 for _, c := range contentList {

 tsxContentList = append(tsxContentList, c.(TransactionContent))

Approved for Public Release; Distribution Unlimited.
66

 }

 newBlock.TransactionList = tsxContentList

 newBlock.Header = BlockHeader{

 Generation: oldBlock.Header.Generation,

 Index: oldBlock.Header.Index + 1,

 Timestamp: time.Now().Format(time.RFC1123),

 Hash: ““,

 PrevHash: oldBlock.Header.Hash,

 RootHash: tree.MerkleRoot(),

 Wallet: wallet,

 Validator: validator.Pretty(),

 Seed: seed,

 }

 newBlock.Header.Hash = CalculateHash(&newBlock)

 return &newBlock

}

// CreateBlockWithList creates a new block using the previous block hash, and appends a list of transactions.

func CreateBlockWithList(oldBlock *Block, transactions []TransactionContent, wallet map[string]int, validator
peer.ID, seed int64) *Block {

 var newBlock Block

 var contentList []merkletree.Content

 for _, c := range oldBlock.TransactionList {

 contentList = append(contentList, c)

 }

 for _, t := range transactions {

Approved for Public Release; Distribution Unlimited.
67

 contentList = append(contentList, TransactionContent{From: t.From, To: t.To,
Timestamp: t.Timestamp, Transaction: t.Transaction})

 }

 tree, err := merkletree.NewTree(contentList)

 if err != nil {

 log.Fatal(err)

 }

 validRootHash, err := tree.VerifyTree()

 if err != nil {

 log.Fatal(err)

 }

 if !validRootHash {

 err := tree.RebuildTree()

 if err != nil {

 log.Fatal(err)

 }

 validRootHash, err = tree.VerifyTree()

 if err != nil {

 log.Fatal(err)

 }

 if !validRootHash {

 log.Fatalln(“CreateBockWithList: Failed to build correct merkle tree multiple
times.”)

 }

 }

 var tsxContentList []TransactionContent

Approved for Public Release; Distribution Unlimited.
68

 for _, c := range contentList {

 tsxContentList = append(tsxContentList, c.(TransactionContent))

 }

 newBlock.TransactionList = tsxContentList

 newBlock.Header = BlockHeader{

 Generation: oldBlock.Header.Generation,

 Index: oldBlock.Header.Index + 1,

 Timestamp: time.Now().Format(time.RFC1123),

 Hash: ““,

 PrevHash: oldBlock.Header.Hash,

 RootHash: tree.MerkleRoot(),

 Wallet: wallet,

 Validator: validator.Pretty(),

 Seed: seed,

 }

 newBlock.Header.Hash = CalculateHash(&newBlock)

 return &newBlock

}

// CreateGenesisBlock creates a new genesis block, if generation is 0 then all other arguments can be nil or 0, they
won't be used.

func CreateGenesisBlock(generation int, oldBlock *Block, startingVal string, wallet map[string]int, validator
peer.ID, seed int64) *Block {

 var newBlock Block

 var contentList []merkletree.Content

 contentList = append(contentList, TransactionContent{From: ““, To: ““, Timestamp:
time.Now().String(), Transaction: startingVal})

Approved for Public Release; Distribution Unlimited.
69

 tree, err := merkletree.NewTree(contentList)

 if err != nil {

 log.Fatal(err)

 }

 validRootHash, err := tree.VerifyTree()

 if err != nil {

 log.Fatal(err)

 }

 if !validRootHash {

 err := tree.RebuildTree()

 if err != nil {

 log.Fatal(err)

 }

 validRootHash, err = tree.VerifyTree()

 if err != nil {

 log.Fatal(err)

 }

 if !validRootHash {

 log.Fatalln(“CreateGenesisBlock: Failed to build correct merkle tree multiple
times.”)

 }

 }

 var tsxContentList []TransactionContent

 for _, c := range contentList {

 tsxContentList = append(tsxContentList, c.(TransactionContent))

 }

 newBlock.TransactionList = tsxContentList

Approved for Public Release; Distribution Unlimited.
70

 var prevHash string

 var tempValidator string

 if generation == 0 {

 oldBlock = nil

 prevHash = ““

 startingVal = ““

 wallet = make(map[string]int)

 tempValidator = ““

 seed = 0

 } else {

 prevHash = oldBlock.Header.Hash

 tempValidator = validator.Pretty()

 }

 newBlock.Header = BlockHeader{

 Generation: generation,

 Index: 0,

 Timestamp: time.Now().Format(time.RFC1123),

 Hash: ““,

 PrevHash: prevHash,

 RootHash: tree.MerkleRoot(),

 Wallet: wallet,

 Validator: tempValidator,

 Seed: seed,

 }

 newBlock.Header.Hash = CalculateHash(&newBlock)

 return &newBlock

}

Approved for Public Release; Distribution Unlimited.
71

// IsBlockValid makes sure block is valid by checking index, and comparing the hash of the previous block.

func IsBlockValid(newBlock, oldBlock *Block) bool {

 if oldBlock.Header.Index+1 != newBlock.Header.Index {

 return false

 }

 if oldBlock.Header.Hash != newBlock.Header.PrevHash {

 return false

 }

 if CalculateHash(newBlock) != newBlock.Header.Hash {

 return false

 }

 var contentList []merkletree.Content

 for _, c := range newBlock.TransactionList {

 contentList = append(contentList, c)

 }

 tree, err := merkletree.NewTree(contentList)

 if err != nil {

 log.Fatal(err)

 }

 validRootHash, err := tree.VerifyTree()

 if err != nil {

 log.Fatal(err)

 }

 if !validRootHash {

 err := tree.RebuildTree()

 if err != nil {

 log.Fatal(err)

 }

 validRootHash, err = tree.VerifyTree()

 if err != nil {

 log.Fatal(err)

Approved for Public Release; Distribution Unlimited.
72

 }

 if !validRootHash {

 log.Fatalln(“IsBlockValid: Failed to build correct merkle tree multiple times.”)

 }

 }

 if fmt.Sprintf(“%x”, newBlock.Header.RootHash) != fmt.Sprintf(“%x”, tree.MerkleRoot()) {

 return false

 }

 return true

}

// CalculateHash performs SHA256 hashing on the contents of the block struct.

func CalculateHash(block *Block) string {

 record := strconv.Itoa(block.Header.Generation) + strconv.Itoa(block.Header.Index) +
block.Header.Timestamp +

 fmt.Sprintf(“%x”, block.Header.RootHash) + block.Header.PrevHash +
mapToString(block.Header.Wallet)

 h := sha256.New()

 h.Write([]byte(record))

 hashed := h.Sum(nil)

 return hex.EncodeToString(hashed)

}

// mapToString converts map to string of “Key: Value” ordered pairs. Mainly used for hashing purposes.

func mapToString(wallet map[string]int) string {

 var list []string

 str := ““

 for key, value := range wallet {

 list = append(list, fmt.Sprintf(“%s:%d”, key, value))

 }

 sort.Strings(list)

 for _, pair := range list {

Approved for Public Release; Distribution Unlimited.
73

 str += pair + “ “

 }

 return str

}

transaction-content.go

package block

import (

 “crypto/sha256”

 “fmt”

 “github.com/cbergoon/merkletree”

)

// TransactionContent implements the Content interface provided by merkletree and represents the content stored in
the tree.

type TransactionContent struct {

 From string

 To string

 Timestamp string

 Transaction string

}

// CalculateHash hashes the values of a TransactionContent

func (t TransactionContent) CalculateHash() ([]byte, error) {

 h := sha256.New()

 if _, err := h.Write([]byte(fmt.Sprintf(“%s%s%s%s”, t.From, t.To, t.Timestamp,
t.Transaction))); err != nil {

 return nil, err

 }

 return h.Sum(nil), nil

}

// Equals tests for equality of two Contents

Approved for Public Release; Distribution Unlimited.
74

func (t TransactionContent) Equals(other merkletree.Content) (bool, error) {

 return t.From == other.(TransactionContent).From && t.To ==
other.(TransactionContent).To &&

 t.Timestamp == other.(TransactionContent).Timestamp && t.Transaction ==
other.(TransactionContent).Transaction, nil

}

//String returns a string representation of the content.

func (t TransactionContent) String() string {

 return fmt.Sprintf(“From: %s, To: %s, Timestamp: %s, Transaction: %s”, t.From, t.To,
t.Timestamp, t.Transaction)

}

message.go

package message

import (

 “encoding/json”

 “github.com/EAGnR/sensor-chain/src/block”

 “github.com/libp2p/go-libp2p-core/peer”

)

// PayloadType is the identifier for the type of data in the Payload.

type PayloadType string

const (

 // TransactionType is the payload type for holding transaction strings.

 TransactionType PayloadType = “TransactionPayload”

 // BlockchainType is the payload type for holding a peers list, alongside its update time.

 BlockchainType PayloadType = “BlockchainPayload”

Approved for Public Release; Distribution Unlimited.
75

 // // PeerListType is the payload type for holding a peer list, alongside its update time.

 // PeerListType PayloadType = “PeerListPayload”

)

// Message is the struct that is sent as a marshaled JSON over the network,

// with the metadata field Type to let the receiving node know how unmarshal it.

type Message struct {

 Type PayloadType

 RawPayload json.RawMessage

}

// TransactionPayload is the payload type for holding transaction strings.

type TransactionPayload struct {

 From peer.ID

 To peer.ID

 Timestamp string

 Transaction string

}

// BlockchainPayload is the payload type for holding a slice of block (the blockchain).

type BlockchainPayload struct {

 Blockchain []block.Block

}

Store.go

package store

import (

 “github.com/EAGnR/sensor-chain/src/block”

)

Approved for Public Release; Distribution Unlimited.
76

// Store contains the storage of a node.

type Store struct {

 Blockchain *[]block.Block

 LiveWallet map[string]int

}

// CreateStore creates a new empty node.

func CreateStore() *Store {

 var newStore Store

 newStore.Blockchain = &[]block.Block{}

 newStore.LiveWallet = make(map[string]int)

 *newStore.Blockchain = append(*newStore.Blockchain, *block.CreateGenesisBlock(0, nil, ““, nil, ““, 0))

 return &newStore

}

sensor-chain.go

package main

import (

 “github.com/EAGnR/sensor-chain/src/engine”

)

func main() {

 engine.RunNodeManager()

}

Approved for Public Release; Distribution Unlimited.
77

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

Symbol Description
TX Abbreviation of transaction
BC Abbreviation of blockchain
ℂ Voronoi diagram or set of Voronoi cells
𝐶𝐶𝑎𝑎 𝑠𝑠-th Voronoi cell
𝑇𝑇𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑛𝑛 Temporal constraint for blockchain
𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 Block creation time constraint
𝑛𝑛 Total number of sensing nodes
𝑖𝑖 Number of sensors in a single cell
𝐺𝐺𝑎𝑎𝑡𝑡 Local network in 𝑠𝑠-th cell at time 𝑡𝑡
𝑉𝑉𝑎𝑎𝑡𝑡 Set of vertices of location network 𝐺𝐺𝑎𝑎𝑡𝑡
𝐸𝐸𝑎𝑎𝑡𝑡 Set of edges between the nodes in 𝑉𝑉𝑎𝑎𝑡𝑡
𝑆𝑆 A sensor node
𝐵𝐵𝑎𝑎𝑡𝑡 Local blockchain generated by 𝐺𝐺𝑎𝑎𝑡𝑡

	List of Figures
	List of Tables
	1.0 SUMMARY
	2.0 INTRODUCTION
	2.1 Background

	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 System Model and Assumptions
	3.2 Methodology

	4.0 RESULTS AND DISCUSSION
	4.1 Proof of Concept Evaluation
	4.2 Implementation Detail of Sensor-Chain

	5.0 CONCLUSION
	6.0 REFERENCES
	APPENDIX A – Publications and Presentations
	APPENDIX B – Source codes
	LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

