
AFRL-AFOSR-VA-TR-2019-0204

Interactive Task Learning

John Laird
REGENTS OF THE UNIVERSITY OF MICHIGAN

Final Report
07/15/2019

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTA2
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no  
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR  FORM TO THE ABOVE ORGANIZATION. 
1.  REPORT DATE (DD-MM-YYYY) 

12-07-2019 
2.  REPORT TYPE 

Final Report 
3.  DATES COVERED (From - To) 

15-04-2015; 14-04-2019 
4.  TITLE AND SUBTITLE 
Interactive Task Learning 

5a.  CONTRACT NUMBER 

FA9550-15-1-0157 
5b.  GRANT NUMBER 

5c.  PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
John E. Laird 

5d.  PROJECT NUMBER 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Michigan 
Ann Arbor, MI 48109 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Office of Scientific Research 

10. SPONSOR/MONITOR'S ACRONYM(S) 

AFOSR 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Distribution A - Approved for Public Release 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Our research on interactive task learning has emphasized the continued development of a natural language understanding system that interfaces 
with a human instructor, and the underlying task learning system. The language system uniquely combined relevant research: a construction 
grammar approach to representing linguistic knowledge; an incremental, single-path processing algorithm with local repair; a cognitive architecture 
as the computational platform; and embodiment in the robotic agent for grounding language to the agent’s perception, action capabilities, and 
knowledge of the world. We extended this to process real world task instructions and the ability to handle multiple forms of ambiguity. The task 
learning research led to the development of an agent for learning all aspects of tasks, with emphasis on handling ambiguous scenarios. The agent 
can interactively learning over 55 games and puzzles, and transfers knowledge learned in one game to a similar game. 

15. SUBJECT TERMS 
Artificial Intelligence, Task Learning 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

 
UU 

18. NUMBER 
OF 
PAGES 

11 

19a. NAME OF RESPONSIBLE PERSON 
John E. Laird a. REPORT 

unclassified 

b. ABSTRACT 

unclassified 

c. THIS PAGE 

unclassified 19b. TELEPHONE NUMBER (Include area code) 
734 355-9613 

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18 

Adobe Professional 7.0 
Reset 



Final Report for Grant FA9550- 15-1-0157, "Interactive Task Learning" 
John E. Laird 

University of Michigan 
 
I. Grounded Language Understanding in Support of Interactive Task Learning.  

Research conducted by Peter Lindes under supervision from John Laird 
An important question in cognitive science is how exactly humans understand natural language.  
An important question in artificial intelligence is how to enable autonomous artificial agents to 
communicate and cooperate with humans using natural language.  In this research, we attack 
both of these problems jointly by building a language comprehension system embedded within a 
robotic agent using theoretical principles related to our knowledge of human language 
processing.  This system enables the agent to learn and perform new tasks based on interactive 
natural language instruction. 
 
For several years, our research group has been developing a software agent called Rosie as an 
autonomous agent for Interactive Task Learning (ITL; Laird et al., 2017).  As part of this effort 
we have developed, and are continuing to develop, a natural language comprehension system 
which we call Lucia (Lindes, Mininger, Kirk, & Laird, 2017).  Lucia has been developed both to 
provide the end-to-end grounded language comprehension that Rosie needs to be able to learn 
and perform new tasks, while doing this in a way that simulates the high-level cognitive abilities 
that humans use to understand language. 
 
The fundamental purpose of Lucia is to transform each input sentence in natural language into a 
grounded meaning representation that the Rosie agent can act on to achieve its goals.  We have 
designed its mechanisms in a way that is intended to model how the human mind represents and 
stores linguistic knowledge, how it processes new input dynamically based on this knowledge, 
how domain-general cognitive abilities are used in this processing, and how the resulting 
meanings are grounded dynamically to the agent’s knowledge about the environment, its own 
capabilities, and its perception of the current situation in the world (Lindes, 2018). 
 
In developing this design, we have drawn on several lines of cognitive science research.  For 
representing knowledge of linguistic forms and how they relate to their meanings, we have found 
work on cognitive semantics and construction grammar to be particularly useful.  Human 
language processing is known to be incremental and to build an interpretation of a sentence in 
small increments.  We adopt the assumption that language processing is a learned skill that uses 
domain-general cognitive abilities, and that cognitive architectures can be used to simulate these 
abilities.  Key to our approach is that the Lucia comprehension system is embedded within the 
Rosie agent and grounds the meanings of linguistic forms to the same knowledge that the rest of 
the agent uses to learn tasks and act in the physical world.  All of this is being done within the 
Soar cognitive architecture. 
 
We describe the work done for this project in three phases. The first phase, from April 2015 
through May 2016, involved building a prototype system as a proof-of-concept for the approach 
we have taken. The second phase, from May 2016 through August 2017, involved expanding the 
capability of the system to cover a large test set of sentences relevant to the larger Rosie ITL 
project, including working out solutions to a number of forms of ambiguity. The third phase, 



from August 2017 through April 2019, has involved integrating fully the Lucia comprehension 
system with the Rosie agent, extending its coverage to more tasks, and exploring alternative 
ways to use the capabilities of the Soar architecture for language comprehension. Further work 
on this third phase is ongoing with follow on funding from AFOSR. 
 

Phase 1, April 2015-May 2016 – Prototype 
In this phase, we built a prototype, proof-of-concept system based on theoretical principles 
derived from various aspects of cognitive science. The theoretical principles include: a 
construction grammar approach to representing linguistic knowledge; an incremental, single-path 
processing algorithm with local repair; a cognitive architecture as the computational platform; 
and embodiment in the robotic agent for grounding language to the agent’s perception, action 
capabilities, and knowledge of the world. This prototype worked well in small experiments, and 
has been the basis of work in the remaining phases. 
 
We use the Embodied Construction Grammar (ECG) theory developed at UC Berkeley (Bergen 
& Chang, 2013; Feldman, 2006) to represent Lucia’s knowledge of language. This theory fits our 
needs well as it draws on several decades of work in cognitive linguistics and ways of 
representing embodied meaning, as well as the general theory of construction grammar. To build 
this prototype we used the formal ECG grammar specification language (Bryant, 2008) to write a 
translator program that translates an ECG grammar into Soar production rules. Then we wrote a 
grammar in the high-level ECG language to handle a test set of 50 English sentences used to 
cover part of the range of language Rosie needs to learn its tasks. 
 
The rules automatically generated from the grammar are augmented by hand-written Soar rules 
that comprise the basic infrastructure of the language comprehension algorithm. Together these 
two sets of rules make up a set of procedures for doing grounded, incremental semantic parsing 
and interpretation of all the sentences in the test set. This set of procedures successfully 
processes all 50 sentences to produce an actionable output message for each that matches a pre-
defined gold standard. Initially, there were 487 rules generated automatically from the grammar, 
and 292 written by hand, or 62.5% to 37.5%. 
 
As another experiment performed in this phase we translated the 50 sentences into Spanish and 
made modifications to the grammar to be able to correctly process the Spanish sentences. The 
English grammar generated a total of 487 Soar rules. To process the Spanish sentences we were 
able to share 319 of these rules and add 263 Spanish-specific rules. 
 
Tangible Outputs in This Phase: A paper entitled “Toward Integrating Cognitive Linguistics and 
Cognitive Language Processing,” and an associated presentation, was done as Peter Lindes’s 
successful PhD qualifying exam. A paper entitled “Toward Integrating Cognitive Linguistics and 
Cognitive Language Processing” was presented at the 14th International Conference on Cognitive 
Modeling and published in its proceedings (Lindes & Laird, 2016). It won an Honorable Mention 
at that conference. 
 

Phase 2, April 2016-August 2017 – Integration and Coverage 
In this phase, work was done on extending the ECG grammar and Soar processing code to cover 
several dozen more complex sentences in our test set.  These sentences included new vocabulary, 



sentences to define goals that require an additional level of semantic abstraction, and a number of 
sentences with conditional expressions or multiple clauses.  The full test set of 207 sentences has 
been processed correctly for some time now, and a benchmark including 200 of these sentences 
was published (Lindes et al., 2017). 
 
For the 207 sentences, there were 1078 rules generated automatically from the grammar, and 454 
written by hand, or 70.4% to 29.6%. Compared to the numbers shown for the first 50 sentences, 
this shows some increase in the percentage of rules generated automatically from the grammar. 
A study of the details shows that it may be possible to convert a significant portion of the hand-
coded rules into automatically generated ones by extending some features of the ECG language 
and making the processing algorithm more general. Also, the incremental process by which 
additions were made to the grammar to process specific new grammatical phenomena can serve 
as a model for studying possible models of incremental language acquisition. 
 
One large piece of work in this phase was developing techniques for dealing with ambiguity. At 
each stage of incremental processing there may be more than one option of how to proceed: more 
than one sense of the current input word, or more than one possible composite construction to 
apply to the current state of the parse. We have used the principle that at each of these choice 
points the system chooses the best option available based on all the knowledge it has available at 
that time, thus allowing the system to proceed on a single analysis path. A variety of heuristics 
have been developed to deal with various cases of lexical, structural, and semantic ambiguity 
(Lindes & Laird, 2017a). 
 
When a choice is made in order to proceed on a single path, sometimes later input shows that this 
was not really the correct choice. In these cases we adopt a strategy called “local repair,” adapted 
from the techniques used by Lewis (1993). Here specific rules detect the problem and correct it 
by removing part of the comprehension state, an operation Lewis (1998) calls “snip,” and then 
allowing the processing to proceed in a new way that includes the new information. Such a repair 
is not always possible if the point where the incorrect choice was made is too far back in the 
parse, thus not being “local” enough. In such cases Lucia shows a “garden-path effect” similar to 
the one in humans. 
 
Another large piece of work was to integrate the Lucia language comprehension system with the 
rest of the Rosie ITL agent.  A variety of software engineering issues had to be resolved, and 
now Rosie can use the Lucia parser to comprehend its natural language input. 
 
Tangible Outputs in This Phase: A presentation entitled “Language Comprehension in Rosie” 
was presented at the 37th Soar Workshop.  A paper entitled “Cognitive Modeling Approaches to 
Language Comprehension Using Construction Grammar” was presented at the AAAI Spring 
Symposium in April 2017 and published in its proceedings (Lindes & Laird, 2017b). A paper 
entitled “Ambiguity Resolution in a Cognitive Model of Language Comprehension” was 
presented at the 15th International Conference on Cognitive Modeling and published in its 
proceedings (Lindes & Laird, 2017a). A paper entitled “Grounding Language for Interactive 
Task Learning” was presented as a poster at the First Workshop on Language Grounding for 
Robots at the annual meeting of the Association for Computational Linguistics, and was 
published, along with supplementary materials, in its proceedings (Lindes et al., 2017). 



 
Phase 3, August 2017-April 2019 – Architecture and Coverage Exploration 

An important part of the research on Lucia is to explore different possible ways of representing 
and processing knowledge within the Soar cognitive architecture.  The basic system, which we 
call System A, is implemented with all the grammar knowledge being translated into Soar 
production rules.  Work is currently in progress on implementing a System B that will put the 
grammar data into Soar’s semantic memory instead.  This makes it possible to use the new 
spreading activation feature in semantic memory to bias retrievals based on situational context.  
At this point, several simple test cases have been run and confirmed that spreading activation can 
indeed bias these retrievals.  Code is also working to elaborate the complex data structures 
needed to complete the comprehension steps.  More work is needed to build the tool to translate 
the grammar into semantic memory structures and complete the full processing algorithm in this 
environment. 
 
The overall ITL research project includes developing Rosie to be able to learn a variety of tasks 
involving navigation and manipulation in the real world, such as delivering objects to people in a 
building (Mininger & Laird, 2018), as well as a large set of games and puzzles (Kirk & Laird, 
2016). A collection of interaction scripts for teaching these tasks has been assembled, and we are 
currently part-way through the process of extending Lucia to process correctly all of these 
scripts. Most of what needs to be added is a large number of new vocabulary words, and we have 
software tools partially developed to automate the addition of these words. In addition, some 
additional complex syntactic constructions are needed, as well as some Soar code to properly 
handle the semantics of linguistic expressions that refer to things in a hypothetical situation not 
currently visible in the real world. 
 
Work has also been done on various analyses of how the existing system works. Grammatical 
productivity measures how well the grammar can recognize sentences it has not seen before. To 
model the creativity of human language, the grammar must have recursive features in order to 
produce an unbounded set of sentences from a finite set of grammatical knowledge. The Lucia 
grammar and processing do implement recursion, however to get a finite measure of productivity 
we must limit the depth of recursion.  An analysis of the productivity of the Lucia grammar 
shows that, without using any recursion and with the relatively small vocabulary we have so far, 
the grammar can produce over 400,000 unique, syntactically correct referring expressions and 
over 1.4 billion declarative sentences.  An analysis of processing dynamics is partially completed 
to show the statistics of the number of constructions built per input word and the number of Soar 
decision cycles used per construction. 
 
An important new insight that has been gained from this work is that if construction grammar is 
a cognitively plausible model of how to represent human linguistic knowledge, and human 
processing is done incrementally with a single path as our model assumes and much 
psycholinguistic research suggests, then there must be a repeating cycle in the processing where 
each new construction is selected, integrated into the developing comprehension state, and 
grounded to the agent’s knowledge. This insight has several implications. 
 
Together, the work on using semantic memory to store linguistic knowledge and the principle of 
building constructions one at a time have implications for how a cognitive architecture must 



work to do language processing. A recent paper by experts in cognitive architectures (Laird, 
Lebiere, & Rosenbloom, 2017) describes a Standard Model of the Mind, which by community 
consensus has been renamed the Common Model of Cognition (CMC). We have done an 
analysis of how the Lucia model relates to the CMC (Lindes, 2018). Some key research 
questions for future work emerge from this analysis. 
 
Our System B uses spreading activation in semantic memory to help select what construction to 
apply next. However, several retrievals from semantic memory are needed to fully integrate a 
construction into the comprehension state. If we leave all the detailed information in semantic 
memory, we violate the cognitive constraint that this detailed knowledge of language is not 
available to human consciousness. Furthermore, doing these multiple retrievals is too slow for 
real-time comprehension. Soar’s chunking mechanism should be able to be used to speed up this 
process, but if everything is chunked the contextual bias from spreading activation is lost. This 
suggests chunking the integration part but not the selection part of each construction cycle. We 
have yet to implement and test this idea. There is also the question of how the skilled knowledge 
produced by Soar’s chunking can be modified as new knowledge is built during language 
acquisition. 
 
The model of comprehension using construction cycles in a general cognitive architecture makes 
predictions about how each cycle will reference a variety of different memories in a certain 
predictable sequence. We have made a small initial effort to see how this theory might correlate 
with some of the large body of research on measuring brain responses during human language 
comprehension (eg. Brennan & Hale, 2019). 
 
A preliminary analysis of this comparison shows two significant changes that would have to be 
made to our model to better simulate brain responses (Lindes, 2019). First, activity in the brain 
tied to the processing of a particular word takes much longer than the average time between 
words in normal speech. This implies that the brain does some sort of parallel processing of 
words, in something like a cascade or pipeline. Implementing this in our model would be a 
significant change, and perhaps difficult to do in the current Soar architecture. Second, much 
research on brain responses to language emphasizes that the brain does a lot of prediction of 
what it expects to come next (eg. Bornkessel-Schlesewsky & Schlesewsky, 2019). Our model for 
System A has a very minimal implementation of prediction. With System B we can envision 
using partial matches of composite constructions as one way to do prediction and spreading 
activation to bias future lexical retrievals, but none of this has been implemented as yet. These 
suggestions point to important improvements that could be made to our model, and these will be 
a challenge for applying existing cognitive architectures. Much more remains to be explored 
along these lines. 
 
Expected Progress in Ongoing Work: Four main aspects of this problem are expected to be 
completed in the next year.  We will extend the grammar and processing algorithm as needed to 
cover the full set of approximately 500 sentences used for teaching Rosie the various tasks being 
worked on by the group.  The System B using semantic memory will be completed.  The 
analyses of both the grammar and the processing dynamics will be completed, along with some 
further exploration of how the processing data corresponds to empirical data on human sentence 



processing.  Finally, the results of this work will be documented in two or three more published 
papers and Peter Lindes’s doctoral dissertation. 
 
Tangible Outputs in This Phase: A presentation entitled “Cognitive Language Comprehension in 
Rosie” was presented at the 38th Soar Workshop.  A paper entitled “The Common Model of 
Cognition and humanlike language comprehension” was presented at the AAAI Fall Symposium 
last October and published in its proceedings (Lindes, 2018). A presentation entitled “Language 
Comprehension and the Frontiers of AI” was presented in a Computer Science Colloquium at 
Brigham Young University in October 2017.  A presentation entitled “Lucia: A Cognitive Model 
of Human Language Comprehension” was presented in a Computer Science Colloquium at 
Brigham Young University in February 2019. An abstract entitled “Predictions of a Model of 
Language Comprehension Compared to Brain Data” was accepted in April this year for 
presentation as a poster at the 17th International Conference on Cognitive Modeling and 
publishing in its proceedings (Lindes, 2019). 
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II. Task Representation Learning 

Research conducted by James Kirk under supervision from John Laird 
 
Task Representation 
Over the past years, we have worked to clarify the problem of learning through instruction the 
complete definition (from scratch) of a new task in a novel environment, focusing on discrete 
goal-oriented games and puzzles.  We have clarified a critical aspect of the problem of learning 
new goal-oriented tasks from scratch through instruction. Based on Newell’s original 
formulation of the problem space hypothesis, we have identified the core components of the 
problem space of a task, what we call the task elements. These include the actions, goals, failure 
conditions, and task-specific terms used to define games. We have shown that from a set of 
innate primitives, the building blocks of learning, our system can learn, through complex 
hierarchical composition, a large number of new task elements. 
 
We have also created tools to display visualizations of the internally created world states and 
graphical representations of the internal structures learned for the task elements, in real time 
while the agent is learning (online). These visualizations allow an expert (one who is familiar 
with the learned representations) teacher to actively see the representations created for different 
interpretations and how they map (or fail to map) to the current world state. 
 
Learning new Concepts 
Over the years, we have dramatically increased the number and complexity of new terms, or 
concepts, that can be learned. In our initial work [7] Rosie could only learn a handle of new 
terms that were defined simply “If a location is not below a block then the location is clear.” 
 
Concepts can now be defined by complex compositions of previous learned concepts, and a 
learned concept can have multiple task or domain-specific definitions. [4] For example, the agent 
can learn a general concept that an opponent's piece is black, which is used in many different 
games. The agent can then learn that in one game instance, red blocks are used for the opponent's 
pieces. Moreover, it can learn that in a different game, red blocks can be used for its pieces. 
Thus, the mapping, or grounding, of terms to agent concepts can be many-to-many and context 
dependent. Furthermore, concepts can be defined over sets of objects and be constrained by 
functions (such as ‘the number of red blocks’). To support these additions, the language system 



had to be extended to handle multiple types of anaphoric reference, complex sentence 
constructions, conjunction, and quantifiers.  
This hierarchal composition enabled the teaching of new concepts such as “attacking,” using a 
newly defined action to define a term. We have also expanded the concepts Rosie can learn by 
introducing new primitive concepts. Rosie is now precoded with primitive operators for subset 
of, product of, whether an object has a specific attribute or the same attribute as another object, 
and a new primitive action, mark, that creates a new value of an object by “writing” a string or 
value on it. This additional knowledge expanded the types of games Rosie could learn to include 
marking games such as Sudoku, KenKen, and Logi-5, and new variants of Tic-Tac-Toe that use 
marking ‘X’ instead of moving blocks. 
 
Learning Heuristics  
We also extended Rosie to teach it heuristics ("Prefer moving a block onto a corner location over 
moving the block onto an edge location.”  - Othello); search bounds ("The solution has six 
steps."); and opponent actions (“Your opponent can move a blue block onto a clear location.”) 
Though this has not been a focus of our research, it is extremely useful in reducing the search 
spaces of puzzles so that we can demonstrate that the agent can solve a task once it has learned it. 
 
Ambiguity and Knowledge Transfer 
Over the past year, we have worked on Rosie to extend its ability to effectively learn and transfer 
knowledge in more difficult learning scenarios, where ambiguity (due to many possible 
meanings) and learning distractors are present. Previous task learning systems have assumed a 
fixed set of words, or that new words and task elements can be directly mapped (one-to-one) to 
known primitives or subsymbolic representations in a single domain. However, as an agent 
learns many tasks in many different settings, there will inevitably be many-to-many mappings 
between words and meanings (the components of a task). In some cases, knowledge learned in 
previous tasks can interfere with a new task.  
 
Our recent efforts [1] enable Rosie to create, analyze, and debug many different interpretations 
of task elements in order to handle scenarios where ambiguity and knowledge interference can 
negatively impact the ability to accurately learn and transfer knowledge.  
 
In our approach, the agent learns to recognize the task elements by asking for if-then language 
definitions of the actions, goals, and failure conditions, creating internal declarative recognition 
structures from these definitions, and recursively learning all the supporting terms needed to 
ground(map) the structures to the world state. To ensure that Rosie correctly interprets an 
ambiguous situation, Rosie generates all possible declarative recognition structures, for each 
known meaning of the defining terms used. In order to determine the correct interpretation from 
the set of generated structures, Rosie leverages the external world state example. If the agent 
finds only one of the possible recognition structure can be detected, it learns this interpretation, 
otherwise if the agent finds that multiple structures from different interpretations can be satisfied 
(detected) in the current state, the agent analyzes each of the potentially matching interpretations 
and applies simple disambiguating strategies, either automatically, if possible, or through 
communication with the teacher. 
 



This new ability of Rosie to create, analyze, and debug multiple hierarchical symbolic 
recognition structures extends Rosie so that it can learn to correctly recognize and apply the 
element of a tasks when many interpretations are possible. Furthermore, it enables Rosie to 
efficiently communicate to resolve ambiguity and select correct interpretations. Rosie can now 
resolve cases of knowledge interference, such as when two known meanings of the term “clear” 
result in two interpretations of an action (“move the block onto the clear location”) that both 
result in the detection of actions in the current state. By analyzing the differences between those 
interpretations, Rosie can create and communicate simple disambiguating questions such as 
“how many actions are present 1 or 2?” or “how many clear objects are present 1 or 5?” in order 
to determine the correct interpretation. 
 
Expansion of learnable games 
A major goal of ITL is to support task learning that is general: the agent is not limited to a small 
set of tasks that it can learn. We have attempted over the years to teach Rosie an increasing 
variety of different games in different settings pushing the total number of games that Rosie is 
capable of successfully learning. With the advancements in learning new concepts and using 
multiple hierarchical structures to handle ambiguity in knowledge transfer, we have made Rosie 
capable of learning many more games and capable of transfer knowledge between tasks even 
when there is knowledge interference. One of the exciting aspects of the work is we have 
reached a point where we no longer need to make changes to the system to add new games and 
puzzles. 
Initially we were only able to teach Rosie a few games (Tower of Hanoi, Tic-Tac-Toe), which 
were then expanded into a small set of 11 games back in 2014. [7] This was expanded to in early 
supported work in 2016 to 17 games (with evaluations) [4], to 40 games the beginning of this 
year [1], and finally to 55 games that we can now teach Rosie. 
 
These games, which include variants indicated by (total number) or (names), are Tower of Hanoi 
(3), N-Puzzle (4), Marking puzzles (Sudoku, Killer Sudoku, Jigsawdoku, KenKen, Product 
KenKen, Logi-5, Shuffle, Survo, Suko, Sujiko, Kakuro), Map 4-Coloring,  Chess puzzles (N-
Queens, N-Kings, N-Rooks, N-Knights, Knight’s tour, Knight swapping, 4 Corner knight 
swapping), Peg solitaires (2), Card solitaires (Golf, Pyramid, Tri Peaks), River crossing puzzles 
(Fox, Goose & Bean, Missionaries and Cannibals, Jealous Husbands, Jealous Wives, Family 
crossing), Traveling Salesman in a grid, 3x3 stone games (Tic-Tac-Toe, Three Men's Morris, 
Picaria, Nine Holes), Othello, Breakthough, Frogs and Toads, Eight men on a raft, Stacking 
Frogs (3), Blocks World (2), Mazes (simple, block pushing), Sokoban, Mahjong puzzle, and a 
sorting puzzle. 
  
We have created a public archive as a resource for researchers in Interactive Task Learning that 
contains the teaching scripts and state representations for these games, as well as a video of 
Rosie learning. This is available online at www.umich.edu/~jrkirk/ijcai2019.html  
 
Evaluations of Research 
To evaluate transfer in task learning, we created instructions for 40 common games and puzzles 
and taught the agent sequences of the 40 games in 1000 randomly generated permutations. In 
each permutation, each game is taught, one after another, using scripts that simulate a teacher.  
 

http://www.umich.edu/%7Ejrkirk/ijcai2019.html


All 40 games are learned correctly in each permutation. The figure below shows the number of 
words, on average, used to teach each game in each position in the teaching order. At position 0, 
no other games have been taught, and at position 39 all other games have been taught. As more 
games are taught, the number of words required to teach a game decreases if there is transfer of 
the task elements shared between games. Games that have substantial conceptual overlap, such 
as Five-Puzzle and Eight-Puzzle, which share actions (slide) and learned predicates (clear, 
matched, adjacent), can be defined using very few words (only 31) at the end. The gradual 
decrease in the number of words is a reflection of the gradual increase in the probability that a 
related game is previously taught.  

 
The red line highlighted is for Killer Sudoku, a Sudoku variant that has constraints about the sum 
of values in specified section (as in KenKen). The number of words required to initially teach 
(position 0) this puzzle is high due to the number of constraints in the puzzle. However, because 
of the overlap in concepts with the other tasks (Sudoku, KenKen), it benefits the most from 
knowledge transfer, with a decrease of more than a factor of three. The Frogs and Toads puzzle 
(blue) and Blocks World puzzle (green) show the least transfer because they share only clear 
with other tasks. 
 
This experiment was then repeated with small clusters of games to further analyze knowledge 
transfer. These task clusters contain tasks that have a large conceptual overlap: Tic-Tac-Toe, 
Three Men's Morris, Nine Holes; Killer Sudoku, KenKen, Sudoku; and N Queens, N Rooks, and 
N Kings. The final cluster contains tasks with little overlap, with a single task selected from each 
of the other clusters. The figure above shows the results, again showing the number of words 
required to teach the task based on the position in the teaching order. Plots A-C show the 
dramatic effects of transfer in clusters of similar tasks, while Plot D shows almost no transfer 
between the unrelated tasks. This result is expected, but other task learning approaches that learn 
directly from subsymbolic representation have failed to replicate this type of task transfer that 
leads to dramatic learning speed up. 
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