
AFRL-AFOSR-VA-TR-2019-0201

Functional mapping approach to incoporate epistemic uncertainty in system reliability
assessment

SANKARAN MAHADEVAN
VANDERBILT UNIVERSITY

Final Report
03/06/2019

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTA1
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

DISTRIBUTION A: Distribution approved for public release



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 

aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information 

Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other 

provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE (DD-MM-YYYY) 

02/27/2019 

2.  REPORT TYPE 

Final Report 

3.  DATES COVERED (From - To) 

01 DEC 2014 - 30 NOV 2018 

4.  TITLE AND SUBTITLE 

Functional mapping approach to incorporate epistemic uncertainty in system 

reliability assessment 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 

FA9550-15-1-0018 

5c.  PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 

Sankaran Mahadevan 

5d.  PROJECT NUMBER 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Vanderbilt University 

110, 21st Ave S, Suite 973 

Nashville TN 37203-2416 

8. PERFORMING ORGANIZATION 

REPORT NUMBER 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 

875 NORTH RANDOLPH STREET, RM 3112 

ARLINGTON VA 22203-1954 

10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 

NUMBER(S) 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 

DISTRIBUTION A - Approved for Public Release 

13.  SUPPLEMENTARY NOTES 

14. ABSTRACT 

A functional mapping approach was developed to include both aleatory and epistemic uncertainty sources in reliability and 

uncertainty sensitivity analyses with multi-disciplinary time-dependent simulations. Adaptive surrogate modeling techniques 

were developed for problems with spatial and temporal variability, coupled multi-disciplinary models, and reliability analysis 

with multiple limit states. The prediction of model error in untested configurations was achieved by focusing on model form 

error in the governing equation instead of discrepancy in the model output. The methods were illustrated for a hypersonic 

vehicle panel under aero-thermo-mechanical loading, using four coupled disciplinary models. 

15.  SUBJECT TERMS 

Multi-disciplinary analysis, reliability, uncertainty, sensitivity, model error, surrogate modeling, hypersonic vehicle panel 

16.  SECURITY CLASSIFICATION OF: 17. LIMITATION OF 

ABSTRACT 

18. NUMBER 

OF 

PAGES 

 
1 

19a.  NAME OF RESPONSIBLE PERSON 

Sankaran Mahadevan a. REPORT 

 
 

Unclassified 

b. ABSTRACT 

 
 

Unclassified 

c. THIS PAGE 
 

Unclassifie 

d 

19b.  TELEPHONE NUMBER (Include area code) 

(615) 322-3040 

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18 

DISTRIBUTION A: Distribution approved for public release



 

INSTRUCTIONS FOR COMPLETING SF 298 
 

1. REPORT DATE. Full publication date, including 

day, month, if available. Must cite at least the year 

and be Year 2000 compliant, e.g. 30-06-1998; 

xx-06-1998; xx-xx-1998. 

 
2. REPORT TYPE. State the type of report, such as 

final, technical, interim, memorandum, master's 

thesis, progress, quarterly, research, special, group 

study, etc. 

 
3. DATE COVERED. Indicate the time during 

which the work was performed and the report was 

written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; 

May - Nov 1998; Nov 1998. 

 
4. TITLE. Enter title and subtitle with volume 

number and part number, if applicable. On classified 

documents, enter the title classification in 

parentheses. 

 
5a. CONTRACT NUMBER. Enter all contract 

numbers as they appear in the report, e.g. 

F33315-86-C-5169. 

 
5b. GRANT NUMBER. Enter all grant numbers as 

they appear in the report. e.g. AFOSR-82-1234. 

 
5c.  PROGRAM ELEMENT NUMBER.  Enter all 

program element numbers as they appear in the 

report, e.g. 61101A. 

 
5e. TASK NUMBER. Enter all task numbers as they 

appear in the report, e.g. 05; RF0330201; T4112. 

 
5f. WORK UNIT NUMBER. Enter all work unit 

numbers as they appear in the report, e.g. 001; 

AFAPL30480105. 

 
6. AUTHOR(S). Enter name(s) of person(s) 

responsible for writing the report, performing the 

research, or credited with the content of the report. 

The form of entry is the last name, first name, middle 

initial, and additional qualifiers separated by commas, 

e.g. Smith, Richard, J, Jr. 

 
7. PERFORMING ORGANIZATION NAME(S) AND 

ADDRESS(ES). Self-explanatory. 

8. PERFORMING ORGANIZATION REPORT NUMBER. 

Enter all unique alphanumeric report numbers assigned 

by the performing organization, e.g. BRL-1234; 

AFWL-TR-85-4017-Vol-21-PT-2. 

 
9. SPONSORING/MONITORING AGENCY NAME(S) 

AND ADDRESS(ES). Enter the name and address of 

the organization(s) financially responsible for and 

monitoring the work. 

 
10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if 

available, e.g. BRL, ARDEC, NADC. 

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S). 

Enter report number as assigned by the sponsoring/ 

monitoring agency, if available, e.g. BRL-TR-829; -215. 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT. 

Use agency-mandated availability statements to indicate 
the public availability or distribution limitations of the 

report. If additional limitations/ restrictions or special 

markings are indicated, follow agency authorization 

procedures, e.g. RD/FRD, PROPIN, 

ITAR, etc. Include copyright information. 

 
13. SUPPLEMENTARY NOTES.  Enter information 

not included elsewhere such as: prepared in cooperation 

with; translation of; report supersedes; old edition 

number, etc. 

 
14. ABSTRACT. A brief (approximately 200 words) 

factual summary of the most significant information. 

 
15. SUBJECT TERMS. Key words or phrases 

identifying major concepts in the report. 

 
16. SECURITY CLASSIFICATION. Enter security 

classification in accordance with security classification 

regulations, e.g. U, C, S, etc. If this form contains 

classified information, stamp classification level on the 

top and bottom of this page. 

 
17. LIMITATION OF ABSTRACT. This block must be 

completed to assign a distribution limitation to the 

abstract. Enter UU (Unclassified Unlimited) or SAR 

(Same as Report). An entry in this block is necessary if 

the abstract is to be limited. 

 
 

Standard Form 298 Back (Rev. 8/98) 

DISTRIBUTION A: Distribution approved for public release



1 
 

 

Final Technical Report 

February 2019 

 

To:          technicalreports@afosr.af.mil 

Subject: Final Report 

Grant Title: Functional Mapping Approach to Incorporate Epistemic Uncertainty in 
System Reliability Assessment 

Contract/Grant #: FA9550-15-1-0018 

Report Period: 12/01/2014-11/30/2018 

Program Officer: Jaimie Tiley 

 

 

 

 

 

Principal Investigator (PI): Sankaran Mahadevan 

Department of Civil and Environmental Engineering 

Vanderbilt University, Nashville, TN 

Email: sankaran.mahadevan@vanderbilt.edu 

Phone: 615-322-3040 

 

 

DISTRIBUTION A: Distribution approved for public release

mailto:sankaran.mahadevan@vanderbilt.edu


2 
 

Abstract 

Reliability analysis of aerospace systems requires the consideration of multiple failure modes, 
multiple inter-disciplinary interactions, and various sources of epistemic uncertainty arising from 
data and modeling inadequacies. Effective reliability analysis requires accurate modeling of the 
uncertainty sources and accurate reliability computation, while maintaining computational 
affordability. In this project, we successfully developed an effective functional mapping 
approach to include epistemic uncertainty sources in reliability analysis. In this approach, 
auxiliary variables are introduced to bring both aleatory and epistemic uncertainty sources to the 
same level of the stochastic analysis. This approach was extended to sensitivity analysis of multi-
disciplinary models and time-dependent simulations, in order to quantify the contributions of 
aleatory and epistemic sources to the uncertainty in the model output. Leveraging the functional 
mapping approach, adaptive surrogate modeling techniques were developed for problems with 
spatial and temporal variability, coupled multi-disciplinary models, and reliability analysis with 
multiple limit states. Since multi-disciplinary simulations of realistic systems are expensive, the 
adaptive surrogate modeling approach was further extended to identify the input setting, the 
individual disciplinary analysis, the particular time instant, and the particular surrogate model to 
improve, at each step of the surrogate training process, thus minimizing the effort in multi-
physics simulations. Several types of surrogate modeling approaches were developed: adaptive 
Kriging, support vector machines, neural networks, and probability-space models such as copula 
and mixture distribution models, to adapt to different aspects of the problem. The estimation of 
model error using calibration tests and extrapolation to prediction for untested configurations 
was significantly enhanced by focusing on model form error in the governing equation instead of 
the discrepancy in the model output. While the discrepancy term cannot be used in the prediction 
for untested configuration, the model form error can be used as long as the governing physics is 
the same. This idea was successfully developed through Bayesian state estimation to estimate the 
model form errors, and a surrogate model was developed to relate the system states to the model 
form errors; this surrogate model was then used to predict the model errors in the untested 
configuration for dynamic, coupled multi-disciplinary systems. The proposed methods were 
successfully illustrated for the reliability analysis of a hypersonic vehicle panel, using a coupled 
model of four disciplinary analyses, namely aerodynamics, aerodynamic heating, heat transfer, 
and structural deformation. 

Keywords: Multi-disciplinary analysis, reliability, uncertainty, sensitivity, model error, 
surrogate modeling, hypersonic vehicle panel. 
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I. Project Overview and Objectives 
The overall goal of this project was to investigate a systematic, rigorous and affordable 

computational approach to estimate the reliability of structural systems subjected to combined 
and extreme environments, in the presence of multiple sources of epistemic uncertainty, namely, 
data and model uncertainties, in addition to aleatory uncertainty (natural variability). The 
following objectives were pursued in order to achieve this goal: 

1. Investigate a functional mapping approach to effectively include data and model 
uncertainties in reliability estimation with respect to individual damage mechanisms. 

2. Investigate the combination of functional mapping and Bayesian networks to estimate 
system-level reliability, considering multiple damage mechanisms. 

3. Expand the functional mapping approach to include epistemic uncertainty in the 
description of variability over space and time.   

4. Expand the functional mapping approach to include heterogeneous information through a 
Bayesian network-based integration methodology, and to quantify the relative 
contributions of aleatory and epistemic uncertainty sources to the reliability assessment. 

The methods developed and investigated through the four objectives were assessed using 
several illustrative problems of gradually increasing complexity. In Year 1, we investigated the 
reliability analysis of a curved beam under various epistemic uncertainty sources, and under 
spatial and temporal variations of loads and properties. In subsequent years, we investigated the 
reliability analysis of a hypersonic vehicle panel, briefly described below. 

 
Hypersonic vehicle panel: A rigid, curved panel representing a deformed or post-buckled 
hypersonic aircraft panel is shown in Figure 1. This is a quasi-static, partial version of a 4-
discipline coupled aerothermoelastic problem 
(aerodynamics, aero-heating, heat transfer, and 
structural deformation), with the structural 
analysis removed, to avoid consideration of a 
fully coupled problem. The output quantities of 
interest are (1) temperature distribution in the 
panel and (2) instability of the panel. 

The reliability analysis objective is to 
compute the probability of the output 
temperature Tstr exceeding a threshold value at 
single or multiple locations and the probability 
that the time to instability is less than a required 
time interval. Epistemic uncertainty in the 
random field modeling of spatial variability in 
the input pressure and temperature needs to be 
considered. The problem can be solved at different levels of complexity, starting from 
deterministic, uniform pressure and temperature, to different variations of random field 
representation. The output temperature distribution is computed through a finite difference 
solution of a differential equation. This example leveraged ongoing in-house research at AFRL, 
where the focus was on developing Bayesian calibration and validation techniques for 
uncertainty quantification of a four-discipline coupled analysis of a hypersonic vehicle panel. 

 
 

 
Figure 1. Hypersonic vehicle panel 
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II. Research Accomplishments 
A few of the technical accomplishments are highlighted in the subsections below. 
• Including epistemic uncertainty in reliability analysis 
• Efficient surrogate modeling for reliability analysis with temporal variability 
• Sensitivity analysis of epistemic uncertainty  
• Reducing epistemic uncertainty in reliability analysis with multiple limit state functions 
• Adaptive surrogate modeling in multi-disciplinary reliability analysis 
• Reliability analysis of hypersonic vehicle panel under epistemic uncertainty 
• Model form error estimation and extrapolation to untested configuration 
 

A. Including Epistemic Uncertainty in Reliability Analysis 
In this accomplishment, the representation of various epistemic uncertainty using functional 

mapping and likelihood-based approaches was studied. 
 

(1) Functional Mapping Approach 
The traditional method for handling epistemic uncertainty is to implement a double-loop 

procedure, where realizations of aleatory uncertainty depend on the realizations of epistemic 
uncertainty. The double loop procedure can be denoted as “stochastic mapping” (as shown in 
Fig. 2a), i.e., for a specific value of epistemic uncertainty, we get a distribution of the random 
variable. In other words, a single value of the epistemic uncertainty leads to a random variable or 
uncertain quantity follows certain distribution, but not a single value. This is what leads to 
expensive nesting in uncertainty quantification computation, since two loops of sampling are 
required, an outer loop for the distribution parameters and an inner loop for the random variable. 

 

 

Figure 2a  Stochastic Mapping Figure 2b  Inverse CDF 

Functional mapping can overcome this challenge by creating a one-to-one relationship 
between specific realizations of epistemic parameters and corresponding specific realizations of 
random variables. Note that for a given value of epistemic uncertainty, a unique value of random 
variable is obtained corresponding to a CDF value. This is the basic sampling approach in the 
Monte Carlo method, known as the “inverse CDF” approach (as indicated in Fig. 2b). We can 
write this relationship for a normal random variable X as ),|(1

XXX uFX σµ−= , where u is the 
CDF value. Note that u is a realization of the uniform random variable U, ranging from 0 to 1. 
Thus we can write the functional mapping between X and ( Xµ , Xσ in the form 

),,( XXUhX σµ= . More generally, we can write X = h(U, p) which defines a one-to-one 
functional mapping between the distribution parameters p and the random variable X. This means 
that, with the help of an auxiliary uniform random variable U, a sample realization of a random 
variable X can be related to the corresponding sample realizations of distribution parameters p by 
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a single-level representation, instead of a nested two-level representation. This simple idea is 
proving to be very powerful in integrating multiple sources of uncertainty in reliability analysis 
in an efficient and effective manner. 

 
(2) Data uncertainty 

In practical applications, it is common to have only sparse point data and/or interval data on 
an input variable X , thus causing uncertainty in its PDF. Both parametric and non-parametric 
approaches have been developed to address the issue of data uncertainty caused due to the 
presence of limited data, which are discussed below 
(a) Parametric approach 

In a parametric approach, an input variable is represented using a distribution type and 
distribution parameters. The presence of limited data causes uncertainty regarding distribution 
type and parameters. In the Bayesian approach, this uncertainty is expressed using probability 
distributions for distribution type and parameters. 

Distribution parameter uncertainty: Let a dataset D   for a variable X  consist of n  point 
data ( 1 to )ip i n=  and m interval data [ , ] ( 1 to )j ja b j m= . The likelihood function for the 
distribution parameters Θ  can be constructed as 

X X X
1 1

( ) ( | [ ( | ) ( | )]
n m

i j j
i j

L f X p F X b F X a
= =

= = = = = − = =∏ ∏θ Θ θ) Θ θ Θ θ  (1) 

where ( )Xf x  and ( )XF x  represent the PDF and CDF of a variable X  respectively. From the 
likelihood function, the PDFs of the distribution parameters are obtained using Bayes’ theorem. 

Distribution type uncertainty: Two approaches are available to handle distribution type 
uncertainty - (1) Composite distribution of possible distribution types using Bayesian Model 
Averaging (BMA), or (2) Single distribution type that best describes the data using Bayesian 
Hypothesis Testing (BHT). The weights for averaging or selection can be computed by 
comparing the likelihoods of distribution types (in the presence of uniform prior probabilities).  
(b) Non-parametric approach  

   As opposed to the parametric approach, the non-parametric approach does not assume any 
particular distribution type or distribution parameters but the PDF is constructed using 
interpolation techniques. This approach uses a single PDF to represent the combination of both 
aleatory and epistemic uncertainty. 

Let a dataset D   for a variable X  consist of n  point data ( 1 to )ip i n=  and m interval 
data [ , ] ( 1 to )j ja b j m= ; the domain of X  is discretized into Q  points to model the non-
parametric distribution. Let the PDF values at these discretized points be equal to 

( 1, 2, , )iq i Q=  . Since ( 1, 2, , )iq i Qq = =   is unknown, they can be estimated by solving the 
following optimization problem: 

 

1 1

max ( ) ( | [ ( | ) ( | )]

. . 0; ( ) 0; ( ) d 1

n m

X i X j X j
i j

X X

L f X p F X b F X a

s t f x f x x

q
q q q q

q
= =

= = = − =

≥ ≥ =

∏ ∏

∫

) 
 (2) 

After obtaining the PDF values at these discretized points, interpolation techniques are used 
to estimate the PDF values at any other input values. 
 
(3) Model uncertainty 
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The representation of different types of model uncertainty such as model parameter 
uncertainty and model discrepancy were investigated.  
(a) Model parameter uncertainty 

 Model parameter uncertainty represents the uncertainty in the model parameters due to 
either natural variability or limited data or both. The three possible scenarios of model parameter 
uncertainty are – (1) model parameter is deterministic but unknown (epistemic uncertainty), (2) 
model parameter is stochastic with known distribution parameters (aleatory uncertainty), and (3) 
model parameter is stochastic with unknown distribution parameters (aleatory and epistemic 
uncertainty).  

If a model parameter is deterministic but unknown, it can be estimated using available data 
using model calibration procedure. The uncertainty (epistemic) arises in the estimation due to 
limited available data. As the amount of data increases, the uncertainty in the estimation of 
model parameters decreases. The likelihood-based approach used for estimating the distribution 
parameters in the data uncertainty section can be used to estimate model parameters.  

 Model parameters that are associated with aleatory uncertainty (probability distributions) 
and with fixed distribution parameters, can typically be considered as input variables for 
reliability analysis and the techniques used for quantification of uncertainty in inputs (parametric 
and non-parametric approaches) can also be used for model parameters.  If the distribution 
parameters are unknown, then model calibration procedure can be carried out to estimate the 
distribution parameters using available data.  
(b) Model discrepancy 

Model discrepancy represents the combined error introduced due to the assumptions and 
simplifications made in building a model (model form error) as well as the errors that arise in the 
methodology adopted in solving the model equations (numerical solution errors). Different types 
of numerical solution errors exist such as discretization error, round-off error, and truncation 
error. Suppose ( )obsg X , mod ( )elg X , and ( )Xδ  represent the observation, model prediction and 
model discrepancy respectively. For a given X x= , the three quantities are related as 

mod( ) ( ) ( )obs elg g δ= +x x x . The quantification of the model discrepancy is achieved by comparing 
the predictions from the simulation model with experimental observations at specific values of 
input variables X . In the Kennedy O’ Hagan (KOH) approach, a Kriging model is used to 
represent model discrepancy and its parameters are calibrated along with system model 
parameters.  
(c) Reliability analysis errors 

Different types of errors that arise in carrying out reliability analysis such as surrogate 
uncertainty and uncertainty quantification (UQ) error are also included in the investigation, as 
below. 

Surrogate uncertainty: The uncertainty associated with the prediction of a surrogate is called 
surrogate uncertainty. For example, the prediction of a GP model is a Gaussian distribution with 
parameters dependent on the input. When a GP surrogate is used, the prediction at any input is a 
Gaussian distribution with parameters dependent on the input. In most cases, only the mean 
predictions are used to estimate the failure probability. When the accuracy of the surrogate is 
high (i.e. the uncertainty of prediction is low), the treatment of using the mean predictions works 
well, and results in a single value of the reliability estimate. If the accuracy of the model 
prediction is low, it becomes necessary to also include the prediction uncertainty for reliability 
estimation. In order to quantify the effects of surrogate uncertainty on reliability analysis, an 
uncertainty quantification problem can be formulated as shown in Fig. 3.  
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Figure 3 Effects of surrogate uncertainty on reliability analysis 

Monte Carlo Simulation (MCS) error: MCS error represents the error due to the use of 
limited number of Monte Carlo samples for uncertainty propagation. The MCS error, also 
referred to as Uncertainty Quantification (UQ) error, is quantified as the difference between the 
empirical CDF (constructed using Monte Carlo samples after uncertainty propagation) and the 
true CDF of the output quantity of interest.  

 More detailed discussions about the representation of various sources of epistemic 
uncertainty and their inclusion in reliability analysis can be found in [J1, J2] listed in Section III.  

 
B. Efficient Surrogate Modeling Approach for Reliability Analysis with Temporal 

Variability [J3] 
Based on the spatial and temporal variability modeling in accomplishment A, we developed a 

single-loop Kriging (SILK) surrogate modeling method for time-dependent reliability analysis in 
[J4]. Current surrogate modeling methods for time-dependent reliability analysis implement a 
double-loop procedure, with the computation of extreme value response in the outer loop and 
optimization in the inner loop. The computational effort of the double-loop procedure is quite 
high even though improvements have been made to improve the efficiency of the inner loop. In 
the proposed method, the optimization loop used in current methods is completely removed. A 
single surrogate model is built for the purpose of time-dependent reliability assessment. Training 
points of random variables and over time are generated at the same level instead of at two 
separate levels. The surrogate model is refined adaptively based on a learning function modified 
from time-independent reliability analysis and a newly developed convergence criterion. This 
will reduce the epistemic uncertainty in reliability analysis in the most effective way. Strategies 
for building the surrogate model are investigated for problems with and without stochastic 
processes.  The efficiency of the developed SILK method is verified using numerical examples.  
As shown in Table 1, the new proposed SILK method is much more efficient than current 
available reliability analysis methods (i.e. Rice, Independent EGO, Mixed EGO) while the 
accuracy is also better than current methods. 

Table 1. Results of a numerical example 

Method Number of function evaluations 0( , )f sp t t  (×10-4) Error (%) 
SILK 18.35 1.08 0.92 
Rice  1017 0 100 

Independent EGO  212 1.31 20.18 
Mixed-EGO  69 1.09 0 

MCS  5×108 1.09 N/A 
 
C. Sensitivity Analysis of Epistemic Uncertainty in Reliability Analysis (C2) 

 
Reliability 
Analysis 

s
fp  

Surrogate 
prediction 
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Since there are multiple sources of epistemic uncertainty that may affect the reliability 
analysis result, in [C2], global sensitivity analysis methods are developed using the functional 
mapping approach to quantify contributions of various sources of epistemic uncertainty on the 
uncertainty of reliability analysis results.  

Global sensitivity analysis requires a one-to-one relationship between the inputs and the 
outputs. Here, inputs refer to the epistemic uncertainty sources and output refers to the failure 
probability. For a given realization of uncertain distribution type, uncertain distribution 
parameters and uncertain model parameters, the failure probability is represented by an 
unconditional PDF due to surrogate uncertainty and MCS error. As GSA requires one-to-one 
relationship, the uncertainty in the failure probability estimate due to surrogate uncertainty and 
MCS error can be represented using an auxiliary variable, which then results in a one-to-one 
relationship between epistemic inputs and failure probability. Note that the auxiliary variable in 
the following equation represents the combined contributions of both surrogate uncertainty and 
MCS error. 

 
, ( | ( | )

f

f f

p
U U

SU MCS p f pU F p f w dw
−∞

= = ∫T T T TΘ = θ,D = d ,Ψ = φ) Θ = θ,D = d ,Ψ = φ  (3) 

In Eq. (3), ,SU MCSU  represents the auxiliary variable for the combined contribution of surrogate 
uncertainty and MCS error. 

f

U
pF and

f

U
pf  represents the CDF and PDF of the unconditional 

distribution of the failure probability. , TΘ D and Ψ refers to the vector of uncertain model 
parameters, distribution type uncertainty variables and uncertain model parameters. , Tθ d and φ  
represent their realizations respectively. To further separate the uncertainty contributions due to 
surrogate uncertainty and MCS error, we can introduce two auxiliary variables. Thus, for a given 
realization of uncertain distribution type, uncertain distribution parameter, uncertain model 
parameter, auxiliary variable for surrogate uncertainty and the auxiliary variable for MCS error, 
failure probability results in a point estimate; resulting in a one-to-one mapping between the 
epistemic inputs and failure probability estimate. As distribution type uncertainty is a discrete 
variable, it cannot directly be used in GSA. To overcome this issue, we use the CDF of 
distribution type uncertainty, which is a continuous distribution. For illustration, consider a 
random variable with unknown distribution type but with two possible candidate distribution 
types are available such as Normal and Type 1 Extreme Value Distribution (EVD) with 
corresponding probability mass functions of 0.2 and 0.8 respectively. We can generate samples 
from this discrete distribution is by using its CDF, which follows a uniform distribution between 
0 and 1. Several samples can be drawn from this distribution; for all samples below 0.2, a normal 
distribution is assumed else a Type 1 EVD is assumed. Thus, the discrete variable is converted to 
a continuous variable and included in sensitivity analysis framework.  The overall procedure for 
generating deterministic failure probability estimates from the epistemic inputs is given below. 

• Generate samples of distribution type uncertainty, uncertain distribution parameters and 
uncertain model parameters. Using these realizations of epistemic inputs, a failure probability 
estimate is first estimated by including only surrogate uncertainty; this results in a PDF of 
failure probability estimate.  
• Generate a sample from this failure probability PDF after considering surrogate 
uncertainty by generating a sample from its corresponding auxiliary variable. 
• When MCS error is considered, the failure probability sample obtained in the previous 
step (after considering surrogate uncertainty) becomes a PDF. From this PDF, a sample of 
failure probability estimate is generated using the auxiliary variable associated with MCS 
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error. Using a generated sample of the auxiliary variable associating with MCS error, a 
sample of the failure probability estimate can be obtained. 

Thus, a one-to-one relationship is obtained between the epistemic inputs and failure 
probability estimate. Then, sensitivity analysis can be carried out using any of the existing 
techniques. Table 2 gives the global sensitivity analysis results of a cantilever beam problem. 

 
 Table 2. First order sensitivity indices of epistemic variables towards failure probability 

Variable First-order sensitivity index 
Pµ  0.48 
Pσ  0.086 
Pd  0.277 
SUu  0.049 
MCSu  0.105 

 
D. Reducing Epistemic Uncertainty in Reliability Analysis with Multiple Limit State 

Functions (J3, J8) 
In engineering application problems, multiple surrogate models are usually built to perform 

system reliability analysis. How to efficiently reduce the epistemic uncertainty due to surrogate 
modeling is a challenging problem. Current limit state surrogate modeling methods for system 
reliability analysis usually build surrogate models for failure modes individually or build 
composite limit states. In practical engineering applications, multiple system responses may be 
obtained from a single setting of inputs as shown in Fig. 4. In such cases, building surrogate 
models individually will ignore the correlation between different system responses and building 
composite limit states may be computationally expensive since the nonlinearity of composite 
limit state is usually higher than individual limit states. In [J3], we propose a new efficient 
Kriging surrogate modeling approach (EKSA) for system reliability analysis by constructing 
composite Kriging surrogates through the selection of Kriging surrogates constructed 
individually and Kriging surrogates built based on singular value decomposition (SVD). The 
resulting composite surrogate model will combine the advantages of both types of Kriging 
surrogate models and thus reduce the number of required training points. A new stopping 
criterion and a new surrogate model refinement strategy are proposed to reduce the epistemic 
uncertainty effectively and thus further improve the efficiency of this approach. The surrogate 
models are refined adaptively with high accuracy near the active failure boundary until the 
proposed new stopping criterion is satisfied. Fig. 5 shows the comparison of the learned limit 
states from the proposed EKSA method and that from current available methods. Following that, 
Table 3 gives the number of function evaluations required by different methods. The results 
show that the proposed method can reduce the epistemic uncertainty more effectively than 
current methods. 
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Fig. 4. Illustration of the system simulation problem  
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(a)  SVD-Kriging (b)  Individual Kriging models 
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(c)  Composite surrogate model 
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Fig. 5. Comparison of learned composite limit state from EKSA and true composite limit state 

 
Table 3. Results Comparison of a Series System Example  

 ILS-CL CLS EKSA MCS AK-MCS EGRA AK-MCS EGRA 
ˆ s

fp  0.0812 0.0801 0.0420 0.0328 0.0828 0.0835 
NOF 8+44.78 8+49.67 8+189 8+180 8+24.03 1×106 

(%)ε  2.75 4.07 49.7 60.72 0.84 N/A 
Note:  “NOF” is “Number of function evaluations”, which is given as “Number of initial training 
points”+ “Number of added training points”. 
 
E. Adaptive surrogate modeling for multi-disciplinary reliability analysis [J11, J12] 
An adaptive surrogate modeling framework is developed for the reliability analysis of coupled 
multi-disciplinary systems (e.g., a hypersonic vehicle panel) with spatio-temporal variability. 
The Kriging surrogate modeling method in conjunction with singular value decomposition is first 
employed to replace the original computer simulation models in the multidisciplinary analysis. 
Due to the limited computational resources, the initial surrogate models may not accurately 
represent the original physics simulation models, which results in errors in the reliability analysis 
of the hypersonic vehicle panel. A methodology is developed to analyze the effects of surrogate 
model uncertainty on the results of reliability analysis by considering the variability of the 
system response over space and time, and to adaptively allocate the computational resources to 
improve the accuracy of reliability analysis. A four-step resource allocation procedure is 
developed to determine at what input setting, which discipline, when, and which surrogate model 
improvement to allocate the computational resources to. The result comparisons of the proposed 
method and Monte Carlo simulation demonstrate that the proposed adaptive surrogate modeling 
method is able to efficiently and accurately assess the reliability of the panel subjected to failure 
modes of deformation and over-heating. 

Fig. 6 gives the overall flowchart of the proposed MDRA framework for the panel. There are 
mainly three steps, namely initial surrogate modeling, uncertainty quantification (UQ) and error 
analysis of the failure probability estimate, and uncertainty reduction of the failure probability 
estimate.  

 

 
Fig. 6. Overview of the proposed framework 
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Step 2: UQ and error analysis of failure probability estimate – Since the initial surrogate 
models may not accurately represent the original computer simulation models, we first quantify 
the uncertainty in the failure probability estimate due to surrogate model uncertainty. Based on 
this, we develop an approach to estimate the error of reliability analysis with the consideration of 
the variability over space and time. 

Step 3: Uncertainty reduction of failure probability estimate – If the error of reliability 
analysis can satisfy the accuracy requirement, we report the failure probability estimate. 
Otherwise, the surrogate models need to be refined. In this step, a new uncertainty reduction 
approach is proposed to effectively refine the surrogate model by adaptively allocating the 
computational resources to surrogate models of coupling and response variables.  

1. At which realization of input random variables and stochastic processes to refine the 
surrogate models?  

2. Even for a fixed realization of random variables and stochastic processes, the uncertainty 
of the system safety state is the combined effect of multiple disciplinary models. The 
question that needs to be answered is which disciplinary surrogates to refine? 

3. Since the surrogate model uncertainty will propagate and accumulate over time, we need 
to determine the best time instant at which to refine the disciplinary surrogates identified 
from the last step. 

4. For the identified discipline at a specific time instant, there are multiple response 
surrogate model and coupling surrogate models. In this step, we need to identify which 
surrogate model to refine. 

⋅  

 

Fig.7 Flowchart of uncertainty reduction 

The methodology and results are presented in detail in Refs. [J11, J12].  
 
F. Reliability Analysis of Hypersonic Vehicle Panel under Epistemic Uncertainty (J12) 

The above developed reliability analysis and surrogate modeling methods are applied to the 
reliability analysis of a panel structure on a hypersonic aircraft vehicle as depicted in Fig. 1. As 
the vehicle is subjected to hypersonic flow, an attached oblique shock is created at the forebody 
leading edge. This resulted aerodynamic pressure causing elastic deformation of the panel, which 
feeds back to alter the aerodynamic pressure on the panel. The panel is also subjected to 
aerothermal effects from aerodynamic heating. The aerothermal component is coupled with the 
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aeroelastic component. The stability of the panel structure in the hypersonic flow is studied. Fig. 
8 shows the coupled aerothermoelastic response of this panel, which is characterized by the four 
interacting disciplines including aerodynamic pressure, aerodynamic heating, heat transfer, and 
structural deformation.  

 

Fig. 8. Multidisciplinary analysis of a hypersonic aircraft panel 

Two failure modes of the hypersonic aircraft panel are considered, namely deformation 
(instability) and heating. In the failure mode of deformation, the panel is defined as failure if the 
deformation over space is negative and passes a certain threshold. In the failure mode of heating, 
failure of the panel occurs when the maximum temperature on the panel is larger than a threshold. 
The panel is failed is any failure mode happens. Based on these definitions, we define the 
reliability of the panel as follows 
 ( ) Pr{ ( , ) ( , ) , [0, ], }v TR t v T tτ ε τ ε τ= > ∩ < ∀ ∈ ∈Ωdd d d   (4) 
where [0, ] [0, 0.5] secondst =  is the time interval of interest, 0.075vε = −  is the threshold of 
deformation which is a negative value, and 470T Kε =  is threshold of temperature. 

Table 4 gives the random variables and stochastic processes of the hypersonic aircraft panel. 
Table 4. Random variables and stochastic processes of the hypersonic aircraft panel 

Variable Distribution Mean  Standard Deviation Correlation 
M  Gaussian 10.2 0.01 N/A 

T0 (K) Gaussian 313 1 N/A 
h  Lognormal 0.0031 2×10-5 N/A 
a  Lognormal 0.046 2×10-3 N/A 

AoA (degree) Gaussian 5.125 0.05 Eq. (5) 
At (Km) Gaussian 31.5 0.1 Eq. (6) 

 
 2

1 2 2 1( , ) exp( (( ) / ) )AoA AoAt t t tρ ζ= − −   (5) 
where  0.05AoA sζ =  is the correlation length of angle of attack. 
 2

1 2 2 1( , ) exp( (( ) / ) )
t tA At t t tρ ζ= − −   (6) 

where 0.05
tA sζ =  is the correlation length of altitude. 

Heat Transfer 
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Fig. 9 gives the time-dependent reliability analysis results of the hypersonic panel without 
considering epistemic uncertainty sources. Fig. 10 gives the reliability analysis results after 
incorporating the epistemic uncertainty sources. The considered uncertainty sources include 
model uncertainty and data uncertainty. The results show that the epistemic uncertainty sources 
affect the reliability analysis results significantly. 
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Fig. 9. Time-dependent failure probability of the multidisciplinary system 
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Fig. 10. Time-dependent failure probability of the panel after considering epistemic uncertainty 
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G. Model error extrapolation to untested configuration [C10] 
The above methods assume that the model error has been quantified before inclusion in the 
reliability analysis. This would be true if tests were conducted on the system of interest. 
However, the prediction system of interest is often different from the tested configuration. 
Therefore, a methodology is developed to estimate the discrepancy in the model output of 
untested coupled multi-physics systems, based on tests of related systems. Model predictions 
often exhibit discrepancy with respect to experimental observations, due to assumptions and 
approximations in the model. Bayesian approaches for estimating discrepancy in single models 
have been studied in the past. In this paper, we approach the problem of discrepancy prediction 
in coupled multiple models (especially multi-disciplinary models) using Bayesian state 
estimation methods. The proposed state estimation-based approach is found to have significant 
advantages over the previously studied Kennedy-O’Hagan method, in the estimation of 
discrepancies of hidden states, and in the identification of the sources of these discrepancies, 
namely model form errors. We adopt a substructuring-based approach to take advantage of the 
weak coupling where appropriate. The proposed approach is illustrated for a four-discipline 
problem related to aero-thermo-elastic response prediction of a hypersonic aircraft panel. 

 
The proposed methodology involves Bayesian estimation of parameters and model form errors 
(MFEs) in multi-disciplinary models of dynamic systems, and transferring these estimates from 
the tested structure to an untested one. First, a combined state and parameter estimation approach 
is developed, using state estimation to determine the MFEs, and MCMC-based parameter 
estimation to determine the model parameters. Next, artificial neural network (ANN) surrogate 
modeling is used to model the relationship between MFEs and system states. Finally, the model 
error in the untested system is predicted using the estimated model parameters from the first step 
and the ANN models for MFE-s from the second step. 
 
Step 1. Simultaneous estimation of model parameters and MFEs 
We assume that the analyst is unaware of the type of MFE-s and the specific equations affected 
by them. The underlying assumption is that all the disciplinary models are corrupted by 
modeling errors. The MFE-s are accounted for by introducing additive terms to the system model 
(Eq. 1) in the following manner: 

 ( ) ( ){ } ( ) ( ) ( )1 ,0: , , 0 ; 1, 2,. 0, .., ;i i in i it t t dt t d t dt id t Tn= + = ≤ ≤=b WX a X θ X X   (7) 

Here, ( )id tW  is a , 1X in ×  vector of derivatives of Brownian motion, and ( )tb  is a diagonal matrix 
of size , , ,i iN N×X X  with the thr − diagonal term denoting the intensity of the thr −  white-noise 

random process ( ) ( ).r
id tW  The coupled systems of stochastic differential equations represented 

by Eq. 7 is discretized in time using Ito-Taylor schemes (Kloeden and Platen, 1992) leading to 
the following discrete-time systems of equations: 

 ( ), 1: , 1 ,
ˆ,, , ; 1, 2,..., ; 1, 2,...,i k i n k k i k Tt i n k N−= = =θg X ξX   (8) 

Here, ,î kξ is a vector of zero-mean Gaussian random variables with
1 1 1 1 ˆ, ,E ˆ ˆT
i k i k  =  Σξξ ξ , 

and
1 1 2 2, ,E ˆ ˆ 0T
i k i k  = ξ ξ  , if 1 2i i≠  and 1 2k k≠  , 1 2, 1, 2,...,i i n= , and 1 2, 1, 2,..., Tk k N= . We estimate the system 
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states X  and the model parameters θ  simultaneously, using combined state and parameter 
estimation, with ( )p θ  as the prior pdf of the model parameters. The proposed procedure is based 
on the Metropolis-Hastings MCMC algorithm. In the absence of MFE-s and the associated 
process noise terms ,idW the likelihood can be evaluated directly as  ( ) ( ): 11 | | .T

T

N
N kk

p p
=

= ∏y yθ θ  
In this study, to account for the presence of the process noise terms, we evaluate the likelihood 
using Bayesian state estimation as 

 ( ) ( ) ( ) ( )1
1

1: 1 1 1: 1| | , | , | ,
T

T k k k k kk k

N

N k
k

p p p p d d−
=

− − −= ∏∫∫θ x θ x x θ x θ x xy y y   (9) 

Of the three terms inside the integral in the RHS of Eq. 7, the first term ( )| ,kkp y x θ can be 
evaluated using the measurement model [Eq. 2], the second term ( )1| ,k kp −x x θ can be evaluated 
using the process model, and the final term ( )1 1: 1| ,k kp − −yx θ can be determined using Bayesian 
state estimation with the process and measurement models. In this study, we adopt the ensemble 
Kalman filter (EnKF) for state estimation. By substituting the estimated values of system states 

; 1, 2,..., ,i i n=X  in the system model, we evaluate the term ( ); 1, 2,..., ,i t i n=ε  which represents the 
MFE-s in the n  disciplinary equations. See [C10] for details.  

Step 2. Formulating an ANN-based relationship between MFEs and system states 
 In Step 1, we presented a numerical approach to evaluate the MFEs in the tested 
configuration. The MFEs were estimated as random processes, and each MFE represents a scalar 
time-history of an external input associated with a single scalar governing equation. We now 
present an ANN-based approach to associate individual MFEs with the system states influencing 
it. This permits the transfer of the MFEs estimated from one configuration to another, as long as 
both configurations share the same governing equations. This approach can be adopted for partial 
differential equations discretized using finite difference as well as finite element schemes. 
 Consider the governing system of equations associated with one discipline of the multit-
discipline system of equations. The disciplinary equation is in the form of a partial differential 
equation, which can be discretized using the finite element framework into a system of ordinary 
differential equations. If the finite element mesh consists of elements of the same type, 
dimensions, and parameters, the system of equations governing the nodal degrees-of-freedom do 
not vary from one node to another. We assume that the form of the MFEs also do not vary across 
nodes. 
 
Step 3. Response prediction for an untested system 
We assume that the untested system, whose response is to be predicted, and the tested system 
share a common governing system of equations, but the two systems may differ in geometry, 
external inputs, and boundary conditions. This implies that the model parameters ( )1:~ |

TNpθ θ y  
estimated in Step 1, and the ANN models representing the MFE-s from Step 2, can be used to 
update the prediction system as well. We note that if the test and prediction systems differ in 
boundary conditions, the MFE-s associated with the elements at the boundary of the prediction 
system are not updated. 
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Figure 11 gives an illustration of model discrepancy prediction for the untested system, 
considering two output quantities, temperature and deformation; these are outputs of different 
disciplinary models. The plots show that the predicted discrepancy agrees well with the actual 
discrepancy in this problem. The details of the methodology and the numerical results are 
presented in [C10]. 
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Fig. 11. Prediction of discrepancy in displacement and temperature at a particular location in 
the untested panel 
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