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§1. OBJECTIVES

The primary objective of this research is the investigation of a biologically inspired method-
ology for the automated analysis and optimization of layout design. The problem can be multi-
disciplinary and involve multiple objectives, and can account for realistic engineering require-
ments.

In aerospace systems development, there is a major gap in the number and types of configura-
tions that are available between the conceptual and detailed design phases of vehicle development.
This research introduced a framework which facilitates the availability of a large number of con-
figurations by simultaneously performing size, shape and topology optimizations during early
stages of design.

§2. MAIN ACCOMPLISHMENTS

1. Integrated topology, shape and sizing optimization of trusses. For linear problems, i.e., those
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Figure 1: Possible ground structure for the problem of a one load span.

in which the objective function and constraints satisfy additivity1 and homogeneity2 with
respect to their input, the optimization problem can be formulated as follows: find x ∈ R

n

that minimizes
min
x∈Rn

cTx, (1)

subject to the linear constraints:

Ax ≤ b (2)

x ≥ 0 (3)

where cT is a covector of x, and A : Rn → R
m is a linear transformation on the admissible

set of modulating variables with (possibly nill) image b ∈ R
m. Unless m = n, which

guarantees a single solution for nonsingular A, we expect non-unique solutions to this
problem.

A ground structure is a predefined framework specifying both geometry (the positions of the
nodes) and topology (member-node connectivities), which naturally restricts the allowed
topologies of the optimized structure (see Fig. 1). Using a finite element discretization of a
truss, the compliance optimization problem becomes a sizing problem for a fixed geometry:

min
a∈Rm,u∈Rn

fTu (4)

s.t. K(a)u = f (5)
m∑
i=1

vi = V (6)

ai ≥ 0 (7)

where K(a) is the reduced global structural stiffness shown explicitly as a function of the
member areas. The problem consists of minimizing the compliance in terms of the design
variables a. According to the area bounds (7) the truss’s topology is allowed to vary as a
member’s area may go to zero. V is a supplied upper bound on the total volume of the
structure, and vi = aili is the ith member’s volume defined by the product of its area,

1f(u) + f(x) = f(u+ x)∀u, x ∈ S
2αf(u) = f(αu)∀u ∈ S, α ∈ R
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ai, with its length. If the global stiffness is written in terms of member volumes K(v), so
Ki =

∑m
i=1

Ei

l2i
ΓiΓ

T
i the problem (2.9)-(2.12) is equivalent to a maximization in u subject

to nonlinear constraints on the individual member strain energies

max
u∈Rn

fTu (8)

s.t. uTKiu ≤ 1 (9)

where, for a positive semidefinite3, symmetric K(v), which is the case, we can use the

decomposition uKiu =

(√
Ei

li
ΓT
i u

)2

to arrive at a well-known LP formulation of the

minimum compliance problems in terms of u alone:

max
u∈Rn

fTu (10)

s.t. − 1 ≤
√
Ei

li
ΓT
i u ≤ 1 (11)

This problem admits an equivalent LP formulation in terms of slack variables t
′
and t

′′

min
t′ ,t′′∈Rm

m∑
i=1

(t
′
i + t

′′
i )li (12)

s.t.

m∑
i=1

σi(t
′′
i − t

′
i)Γi + f = 0 (13)

t
′
i, t

′′
i ≥ 0 (14)

where, if we make the substitution ti =
√
Ei(t

′′
i − t

′
i) for the ith member force and ai =

(t
′
i + t

′′
i ) for the corresponding member’s area, we find that (2.15)-(2.16) is equivalent to a

minimization of the volume, constrained by static requirements and stress conditions

min
a∈Rm

m∑
i=0

aili (15)

s.t.

m∑
i=0

tiΓi + f = 0 (16)

−σiai ≤ ti ≤ σiai (17)

3A matrix, K, is positive definite if xTKx > 0 for all x �= 0. A positive semidefinite matrix is one which
loosens the restriction on inequality to allow x = 0.
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which is Hemp’s4 linear programming formulation of Michell’s problem with the scaling
σi =

√
Ei. By duality in linear programming, a global optimum is guaranteed, though

it need not be unique. This makes sense if we reflect that εi = l−1
i ΓT

i u, so both of
Michell’s criteria are reflected in the dual formulations. Numerical solutions to LP are
easily determined using Danzig’s simplex algorithm. For example, applying LP to the
ground structure in Fig. 1 gives the optimum shown in Fig. 2 with a volume VLP = 16.0.

The next step is to extend the problem to an initial ground topology for which the spatial
positions of the unrestrained nodes are allowed to vary. To this end, we consider the
complete set of nodal coordinates in the non-reduced system. If p ∈ {1, ..., Nd}, corresponds
to a possible degree of freedom the initial nodal positions can be collected in y ∈ R

Nd. If
k ∈ {1, ..., d} the component yp corresponds to the kth component of node j’s position.

Obtainable geometries are specified by a choice of a set Y ⊂ R
Nd, such that y ∈ Y is a

vector of allowed nodal positions. The problem can now be formulated as follows:

min
a∈Rm,u∈Rn,y∈Y

fTu (18)

s.t. K(a,y)u = f (19)
m∑
i=1

aili(y) = V (20)

ai ≥ 0 (21)

The admission of this nodal design variable affects the problem data in several ways, and
may furnish added difficulty with regards to the phenomena of so-called ‘melting nodes.’
As the end nodes of a given member are varied the angle ϕi,k(y), which member i makes
with respect to axis k, changes. By this consideration so too does the direction cosine
vector, Γi(y). The individual member lengths are dependent on y in a more direct fashion,
like

li(y) =

√√√√ d∑
k=1

(
y
ĵ
(target)
i,k

− y
ĵ
(source)
i,k

)2

where two nodes are considered melting if y
ĵ
(source)
i,k

= y
ĵ
(target)
i,k

∀k, or li(y) = 0.

Figure 2: LP solution to the one load span using the ground structure in Fig 1.

4Hemp, WS, Optimum Structures, Clarendon Press, Oxford, 1973.
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While the presence of melting nodes is crucial to limiting the number of bars, they may
also form a singularity in the model, manifest in two ways: the function li(·) ceases to
be differentiable for such geometries, and the global stiffness matrix becomes singular. To
overcome these difficulties, Achtziger5 provides an alternate evaluation for the functions
li(·) and K(·, ·) as follows:

For each spatial dimension k, define a vector

v
(k)
i := [v(k)p ]i =

⎧⎪⎨
⎪⎩

1 p = ĵ
(source)
i,k

−1 p = ĵ
(target)
i,k

0 else

associated with the ith member whose Nd elements beget the matrix

Ci :=
d∑

k=1

v
(k)
i

(
v
(k)
i

)T
(22)

where Ci ∈ R
Nd × R

Nd. The projection matrix, P ∈ R
n × R

Nd is defined

P =
(
1n×n 0n×s

)
(23)

so that when it left multiplies a vector with Nd elements the first p = 1, ..., n are retained,
and the remaining, restrained degrees p = n + 1, ...Nd are nullified. In particular, these
allow for the substitutions li(y) = yTCiy and Γi =

1
li(y)

PCiy. If a node melts we have

yTCiy = 0, which implies Ciy = 0. The denominator of Γi is addressed by a suitable
change of variables.

Using similar manipulations to those yielding the linear programming problem LP, we
arrive at a nonlinear programming (NP) form for simultaneous member size and truss
shape optimization

min
μ,λ∈Rm

y∈Y

m∑
i=1

(
t
′
i + t

′′
i

)
yTCiy (24)

s.t.

m∑
i=1

σi

(
t
′′
i − t

′
i

)
PCiy + f = 0 (25)

t
′
i, t

′′
i ≥ 0 (26)

which is seen to be cubic in the objective function and quadratic in the dynamic constraints.
If we reassert the change of variables ai = (t

′
i + t

′′
i )li(y) and ti =

√
Ei(t

′′
i − t

′
i)li(y) we

recover a similar minimum volume problem. Approximate solutions satisfying the necessary
first-order Karush-Kuhn-Tucker (KKT) conditions are readily found using the method of

5 Achtziger, W. (2007). On simultaneous optimization of truss geometry and topology. Structural and
Multidisciplinary Optimization, 33(4-5), 285-304.
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sequential quadratic programing (SQP). Applying NP to the ground structure of Fig. 1
gives the framework in Fig. 3, which has a volume VNP = 9.6462 and whose height is the
same as the length of the mid span length, a.

The LPand NP problems provide efficient local optimizers. Given an initial ground struc-
ture, and constraints, the LP form guarantees a solution for both statically determinate and
statically indeterminate truss structures. The existence of such solutions are, in part, due to
a duality criterion in linear programming which stipulates that a solution to minimization
problem is an optimum only if it is also the solution to a corresponding maximization prob-
lem, but more specifically through their satisfaction of Michell’s criteria. If the problem is
convex the global optimum is easily obtainable. Otherwise, one expects either non-unique
solutions, say a minimum volume that is attainable by several layouts, or a multitude of
local optima, or volumes, such that a global optimum is not readily discernible. The NP
form provides a more robust search as concerns minimum volume trusses, allowing for the
structure’s geometry to be considered in concert with individual member sizing. As with
the linear problem, various optima are attainable, each of which will typically satisfy the
first order KKT conditions.

A restriction to either approach is that they can only loosely be interpreted as optimizing
the topology—that is, by allowing members to vanish from the framework. Those members
whose areas shrink to zero are eliminated from the structure, but are such that they may
reappear, as required, to bear load. This is to say that an initial topology is defined for the
structure such that the subsequent obtainable, or allowable, topologies are understood to
be subsets of the original. For the nonlinear case, melting nodes provide another avenue for
topology optimization, in particular individual members may vanish (li = 0) or reemerge
(li = 0 → li 	= 0). This annihilation, or generation, is restricted, however, because only
those predefined members are allowed to participate in the design-space search.

Figure 3: NP solution to the one load span using the ground structure in Fig. 1.
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Either means of topology optimization (vanishing areas and melting nodes) suffer from the
same limitation: they rely on a predefined topology, and therefore are limited in which op-
timum can ultimately be expressed. As per Michell’s observation, an optimum framework
is optimum only with respect to the set of possible frameworks considered. To determine
the ideal structure we must consider all those structures satisfying the required equilibrium
and stress constraints. In the continuum limit, the entire design space can be actualized.
Such a structure would require members on the order of infintesimal lengths, which is im-
practical for actual truss constructions. Instead, one generally considers a finite, discretized
search space: a ground structure. An increasingly dense and connected ground structure
can approximate a continuous design space, yet the computational resources required to do
so quickly becomes prohibitive. For example, analyzing a problem with twice the aspect
ratio of a similar, original problem, would require at least twice as many design variables
to maintain the same ground structure density. Generally speaking, a more refined ground
structure will also produce an overabundance of redundant design variables, which can add
undesired, unwarranted, complexity.

The proposed methodology seeks to avoid these shortcomings, providing a novel program
for identifying optimal truss layouts—that is, simultaneous size, shape, and topology opti-
mization, without the precondition of a ground structure. This approach works in tandem:
a Genetic Algorithm6 (GA) is encoded to explore pure topological information using the
formalism of map L-systems and a subordinate program exploits this information and con-
figures the trusses’ geometry and material allocation according to NP. To start, we require
a simply connected geometry of three or more line segments, termed the initial map in the
sense of an L-system. This topological construct is discretized to be compatible with later
geometric considerations and assumes that possible connections are realized by (straight)
lines. Assigning to each edge a marked label from an alphabet, Σ, and an axiom, ω. By
specifying a set of productions and applying them in parallel a given number of times we
generate a novel topology from the initial map. In a post processing step the developed
topology is provided a more specific geometry: map vertices become nodes and are given
a location, and connections become members with determined length. This information is
provided to the NP form and the optimum volume, if it exists, is approximated.

For the remainder, the initial map7 is chosen such that predetermined vertices correspond
to restraint and load sites in the problem. This need not be the case—various approaches
can be employed to mobilize vertices in the bulk as support or load sites, either though di-
rect implementation, or by exploiting the geometrical symmetries of a problem. Note that
by specifying an initial we have not pre-determined those obtainable topologies; instead,
this consideration influences the dynamics of cellular and evolutionary development8. Con-
sequently, this map exists in a gradation between Michell’s upper bound (a finite design
space with finite boundary) and lower bound (an unbounded, continuous design space),
as we can stretch and refine the topology as desired. It remains to determine, provided

6 Goldberg, D. E. (2006). Genetic algorithms. Pearson Education India.
7 Pedro, H. T. C., and Kobayashi, M. H. (2011). On a cellular division method for topology opti- mization.

International Journal for Numerical Methods in Engineering, 88(11), 1175-1197.
8That is, how the topology grows over successive application of productions, and the paths investigated by

the the coupled GA.
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some map, which axiom and productions (which grammar) should be supplied to develop
the topology of an optimum structure. In the sequel we will refer to this methodology as
Evolutionary Programming EP, for brevity.

Genetic Implementation. We would like to optimize a truss problem (TP) with s supports
and p applied loads. First, connect these by a convex polygon of degree at least n ≥ s+p ≥ 3
to construct a map �. Set an alphabet Σ := {λ, 0, ..., ηnt − 1}, where ηnt is a set number
of non-terminal tokens. A trial candidate for TP� is constructed like

a�candidate = [ηdc, ω, P ] (27)

where ηdc is the number of developmental cycles, which are applications of the production
rules. The axiom, ω ∈ Σ∗, is generated by assigning a marked label to each of the maps
edges taken from {0, ..., ηnt}. Production rules P = [P0, ..., Pηnt−1] are like those described
for map L-systems, and are applied to the axiom ηdc many times. Passing the resulting
topology to NP yields an optimum volume V �

candidate which is, for all intents, determined,
up to the attainable minima of TP�, according to a�candidate. These genetic attributes are
readily encoded in a binary string such as

a�candidate = b
(ηdc)
1 ...b(ηdc)

η1
b
(ω)
1 ...b(ω)

η2
b
(P )
1 ...b(P )

η3
(28)

where ηdc is relegated to a η1 = 4 bit representation, providing for (at most) seventeen
developmental cycles. In other words, we consider ηdc = (2 + (b1...b4)2mod m1) possible
divisions, with bi ∈ {0, 1} and 1 ≤ m1 ≤ (10000)2 = 16. A minimum ηdc ≥ 2 is required
so that progress is made away from the axiom; the maximum number is set by choosing
a value m1 ∈ N at most one greater than the maximum value expressed by η1 bits. For
example, if m1 = 3 there are six ways to obtain ηdc = 2 and five to obtain ηdc = 3 or
ηdc = 4. Depending on the level of refinement we might insist on a larger m1, expanding
the bit count as needed; that is, choosing m1 ≥ 17 has no effect for η1 = 4. The axiom
is stored in η2 = 17n bits, seventeen for each element, or label. Directionality (−→,←−) is
assigned to each label using the first entry, b1, of the seventeen; the remaining bits set the
edge label (b2...b17)2mod ηnt ∈ Σ. To each nonterminal we assign a production of the form

Y → Z1...Zm2

where Y ∈ Σm is mapped to a sequence of Zi, each denoted by a bit string b1...bm3
rep-

resenting either: a directed non-terminal Xi ∈ Σm, a terminal x ∈ Σ, the empty token
λ, or a possible division site [Xi]. Observe the homology between biological optimization
through cellular division and this parametrization for a truss layout. Organisms begin their
development as single cells which develop to some characteristic topology according to bi-
ological processes that compile and execute the objectives encoded in DNA. In analogy to
this encoding of developmental source over helical structures, the axiom wraps the initial
map with directed labels from Σ (acting as the nucleotides) and is matured according to
the productions, which are representative of those biological processes actualizing the pri-
mordial instructions in DNA; the resulting topology, as opposed to the driving biochemical
mechanisms, being of import.

8



Such are the Npop individuals considered by the GA, which are assigned a fitness value
according to the volume determined from NP. In the processing of each fitness evaluation,
the axiom is developed to its final state and the initial geometry is supplied. To avoid
potential geometric instabilities a constrained Delaunay triangulation is employed to “
shore up” the geometry. This operation takes an initial set of points with predefined
edges, or regions, and triangulates (produces a grid of triangles) in such a way to maximize
the minimal angle of the resulting regions. From an initial, randomly generated, pool
of genetic information, the population is subjected to Ngen generations of competition
according to the selection, crossover, and mutation. Selection is accomplished by the
tournament method, which pits m4 randomly determined individuals against each other
until a set percentage of the future generations genetic inheritance is selected; the remaining
individuals are chosen from the fittest (elite) of the current generation. A single point
crossover, as described in the prequel, is used for mutation. After each crossover step a bit
flip operator is applied to each daughter individual. As the name suggests, this operator
produces a mutant by assigning to each bit in its binary representation a chance μ that it
flips—that is, 0 → 1 or 1 → 0, and are applied to non-elite individuals.

Three structural benchmark problems are studies according to LP, NP, and EP. Aside

(a) (b)

(c) (d)

Figure 4: Michell optimum cantilevers: (a) the initial case presented by Michell with a single
fixed support, (b) the variant solved by Chan with two fixed supports, and Prager cantilevers:
(c) N = 6 (left) and N = 11 (right) node optima for a symmetric cantilever with two pinned
supports and a single applied load, (d) optimum non-symmetric cantilever.
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from Allison’s results, we compareEP against the benchmark values generated by Achtziger5

with the Sparse Nonlinear OPTimizer (SNOPT), an implementation of the SQP method
developed by Gill et al.9 that approximates the QP subproblem with a reduced-Hessian
algorithm. The eigenresults were determined using SciPy’s Sequential Least SQuares Pro-
gramming (SLSQP) method, an SQP solver that replaces the quadratic subproblem with
a linear least squares subproblem.

The first test case is a two load cantilever solved by Allison et al.10 using a method differing
from our own in several ways. Because minimum bounds are set on the attainable member
areas the basic formulation requires a Sequential Linear Programming (SLP) solution and
no global optimum is secured. It ignores direct geometry optimization, or variations of
nodal positions, by choosing a parameter Ci,j ∈ {0, 1} (i and j are two connected ver-
tices) which removes bar li,j from the system if Ci,j = 0, completely disregarding a vertex
(node) if all members connected to it vanish. This should really be understood in the
sense of mobilizing sub-topologies of the initial topology determined from ωηdc

- solutions
otherwise attained directly by application of LP, and thus not necessarily solutions which
are optimum with respect to the geometry. To enforce geometric stability the initial map
is chosen as a region connecting restrained and loaded joints, as ours, but is pre-divided
into triangles. To maintain these triangular regions the allowed production divisions are
restricted to compatible sites occurring adjacent to different vertices. A peculiarity in their
formulation

min
A,C

∑
ρCi,jAi,j li,j

s.t. σmin ≤ σi,j ≤ σmax

where ρ, Ai,j , and li,j are the density, area and length of a member connecting nodes i to j,
is the seeming lack of consideration for Newtons equilibrium criteria. It is indicated how-
ever, that (allowable) stresses are determined from member areas using the force method
solved by SLP iteration.

The second test case is a finite variant of the optimum cantilever investigated by Michell
in which a vertical load applied at a point A is ultimately supported by a force and couple
acting on point B a horizontal distance AB from A. The resulting analytical, or Michell
optimum, solution is given in Fig. 4a. Chan11 considered a similar scenario: two pinned
support aligned vertically to accommodate the lack of a flexural capacity in rods (Fig. 4b),
albeit for limited aspect ratios. Observe that no moment is required, and that equilibrium
is satisfied by a pair of equivalent forces, either acting on one or the other support. Lewinski
et al.12 extended these solutions to provide optima for all aspect ratios and load directions.

9Gill, P. E., Murray, W., and Saunders, M. A. (2005). SNOPT: An SQP algorithm for large-scale constrained
optimization. SIAM review, 47(1), 99-131.

10 Allison, J. T., Khetan, A., and Lohan, D. J. (2013, May). Managing variable-dimension structural opti-
mization problems using generative algorithms. The Proceedings of the 10th World Congress on Structural and
Multidisciplinary Optimization (WCSMO), Orlando, FL.

11 Chan, A. S. L. (1960). The design of Michell optimum structures. College of Aeronautics Cranfield.
12 Lewinski, T., Zhou, M., and Rozvany, G. I. N. (1994). Extended exact solutions for least-weight truss

layouts, part I: cantilever with a horizontal axis of symmetry. International Journal of Mechanical Sciences,
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Figure 5: Optimum Michell framework for a span of five symmetric loads between two supports.

Of particular note is his recognition that Michell optima are arrived at by the limiting case
of ideal (weightless) nodes, and that practical optima are determined respective to the
node count of the finite structure. Prager13 explored the finite limits of such frameworks
using a circle of relative displacement, first for symmetric cantilevers, and later extending
to the general finite cantilever with a single load and two vertically aligned supports. Of
particular note is his recognition that Michell optima are arrived at by the limiting case of
ideal (weightless) nodes, and that practical optima are determined respective to the node
count of the finite structure.

The third test case is a five load bridge whose exact solution was provided only recently
by Lewinski14. This result extends Michell’s solution for a single load situated between
two supports to an arbitrary number of evenly spaced loads. In total, these developments
provide minimum bounds for the volumes of the examined frameworks, and suggest the
topologies solutions might hope to attain.

Henceforth, all values are normalized and, as such, given without units to simplify the
numerical treatment. Each force (member or applied) is taken proportional to a typical
applied force F . The member stresses are taken against the stress bound σ, which is equiv-
alent to setting σ = 1; their areas are non-dimensionalized by the ratio F

σ ; their lengths are
scaled by a typical length, l, and is enforced through the ground structure or initial map.

36(5), 375-398.
Lewinski, T., Zhou, M., and Rozvany, G. I. N. (1994). Extended exact least-weight truss layouts, part ii:

Unsymmetric cantilevers. International journal of mechanical sciences, 36(5), 399-419.
13 Prager, W. (1977). Optimal layout of cantilever trusses. Journal of Optimization Theory and Applications,

23(1), 111-117.
Prager, W. (1978). Nearly optimal design of trusses. Computers & Structures, 8(3-4), 451-454.
Prager, W. (1978). Optimal layout of trusses with finite numbers of joints. Journal of the Mechanics and

Physics of Solids, 26(4), 241-250.
14Lewinski, T. (2018). Michell Structures. Springer.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Two load non-symmetric cantilever: (a) the general structural scenario, (b) the ground
structure used for the LP and NP solutions to the scenario, (c) the axiom used by Allison, (d)
the optimum structure generated by Allison, (e) LP solution, (f) the NP solution, (g) the the
initial map applied to conform with the load and restrain sites, (h) the EP solution.
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and V by the quantity Fl
σ . A scaled Young’s modulus, E = 1 is used, and d = 2 (as is the

case for planar problems) for each.

The two load cantilever. We consider the scenario described in Fig. 6a of two vertically
applied unit loads, one at coordinate (1,0) and the other at (2,0), and two pinned supports
aligned vertically at (0,1) and (0,2). The ground structure consists of a 2×1 grid of N = 6
nodes (see Fig. 6b), each connected to its nearest neighbors for a total m = 10 potential
members. The initial geometry is collected in the vector ȳ ∈ R

Nd, where Nd = 12. With
two pinned supports there are n = 2(6−2) = 8 reduced global degrees of freedom, so f ∈ R

8.

The optimum structure obtained by Allison using the initial map Fig 6c is the frame-
work shown in Fig 6d, which obtains an actual volume of VSLP = 15880 cu-in. Using
the stress bound σ = 25 cu-in, the typical load P = 100 kip, and the typical length
L = 360 in the volume normalized to VSLP = 11.03. By (2.10)-(2.12) the LP solution
(t̄

′
, t̄

′′
) ∈ R

10
+ × R

10
+ gives the framework in Fig. 6e with an optimal, or minimal volume

V = 11.00. To determine an NP solution, we stipulate the set of admissible geometries,
Y = {y ∈ R

8 | yp = ȳp for p = n + 1, ..., Nd}, and commence from the feasible point

(t̄
′
, t̄

′′
, ȳ) towards a KKT point, (t

′
, t

′′
,y) ∈ R

10
+ ×R

10
+ ×Y . According to SLSQP the opti-

mum volume in the nonlinear program is VSLSQP = 10.7952. Starting from the initial map
Fig. 6g EP determines the minimum structure Fig 6h with a a volume VEP = 10.3741.
This simple solution is 5.95% less than the Allison and LP minimums, and 3.90% less than
the NP solution, which illustrates (in a small way) the gains attainable by EP.

The single load cantilever We turn to the scenario described in Fig. 7a of a vertically
applied unit load load at coordinate (3,1), and three pinned supports aligned vertically at
(0,1), (0,2), and (0,3). The topological domain consists of a 3 × 2 grid of N = 12 nodes
(see Fig. 7b), each connected to its nearest neighbors for a total m = 27 potential mem-
bers. The initial geometry is collected in the vector ȳ ∈ R

Nd, where Nd = 24. Given three
pinned supports there are n = 2(12−3) = 18 reduced global degrees of freedom, so f ∈ R

18.

The LP solution (t̄
′
, t̄

′′
) ∈ R

27
+ ×R

27
+ to this ground structure evidently yields a single frame-

work (reflected in Fig. 7c&e) with an optimal, or minimal volume V = 10. We stipulate
the set of admissible geometries, Y = {y ∈ R

24 | yp = ȳp for p = n+ 1, ..., Nd}, and start

from the linear solution (t̄
′
, t̄

′′
, ȳ) towards the nonlinear solution (t

′
, t

′′
,y) ∈ R

27
+ ×R

27
+ ×Y .

The resulting solutions differ, with that from SNOPT (Fig. 7d) yielding a smaller optimal
volume, VSNOPT = 9.114, than that from SLSQP, VSLSQP = 9.133, by approximately
0.2%. It is interesting that, where SLSQP converges to and terminates at Prager’s sym-
metric N = 6 layout, SNOPT finds the same N = 6 solution in one iteration, yet continues
to an optimum approaching, but not quite converging to, the symmetric N = 11 optimum.
Inspecting the whole geometry, so both stressed and zero potential connections, it seems
SLSQP only mobilizes nodes 2, 5, and 10; conversely, the sparse method fixes node 8 and
varies the remaining free variables. Further numerical investigations reveal this topology
is attained by SLSQP only for initial (feasible) geometries in a neighborhood of that opti-
mum. Notice that the SNOPT result is not a simple truss, but produces a framework of
intersecting members. The EP solution, initial map and structure in Figs. 7g&h, yields a
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Single load symmetric cantilever: (a) the general structural scenario, aspect ratio 1.5,
(b) the ground structure used for the LP and NP solutions to the scenario, (c) LP solution
using SNOPT, (d) the NP solution using SNOPT, (e) the LP solution using SLSQP, (f) the
NP solution using SLSQP, (g) the the initial map applied to conform with the load and restraint
sites, (h) the EP solution.
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volume VEP = 9.120—less than SLSQP alone, but not as much as SNOPT.

The volumes obtained by all three methods agree15 with the lower limit for a symmetric
cantilever with 1.5 aspect ratio, Vcant,1.5 ≈ 9.

The five load span The next scenario (see Fig. 8a) entails a span of five unit loads evenly
spaced on a unit interval between a pinned support (0,0), and a roller (6,0). The domain
is set by N = 12 nodes arranged in a 6× 1 grid (see Fig. 8b), each connected to its nearest
neighbors for a total m = 33 potential members. The initial geometry is again collected in
a vector ȳ ∈ R

24. For a single pinned support and roller there are n = 2(12− 1)− 1 = 21
reduced global degrees of freedom.

LP sizing provides a multitude of solutions (t̄
′
, t̄

′′
) ∈ R

33 × R
33 (two cases are shown

in Fig. 8c&e), each with the same minimal volume, V = 56. For simultaneous sizing
and geometry optimization we again stipulate the set of admissible geometries, Y = {y ∈
R

24 | yp = ȳp for p = 22, ..., 24}, and embark from the linear solution. In contrast to the
prior scenario, SLSQP yields a solution, VSLSQP = 34.9881, which is marginally smaller
than the SNOPT value, VSNOPT = 34.9924. SLSQP generates a symmetric structure that
seems a reasonable extension of the SNOPT estimate. The base geometry suggests this
layout is arrived at by sliding node 9 away from 10, towards 8, which disengages member
l39 and and activates l29, forming the second triangle. Observe that the ground structure
disallows topologies with five support triangles, and that both reproduce the vanishing bars
l01 and l56. The optimum solution generated by EP, the initial map and structure given
in Figs. 8g&h, avoids these topological shortcomings, generating a symmetric framework
in accords with Fig. 5 and a superior volume VEP = 34.6056, about 1% lighter than either
NP solution.

The volumes obtained by all three methods agree with the lower limit for a five load span
with total length Lspan = 6, that is Vspan,5 = 34.2284.

These results shows that the evolutionary programme introduced in this research topic
successfully provides optimzed truss layouts—that is, sizing, geometry and topology op-
timization. The method performs, in the benchmark problems above, similarly or better
than the best existing methods employing ground structures, and significantly better than
those of Allison, which does not accomplish shape optimization. A journal paper is under
preparation for this research topic.

2. Hybrid Cellular Division and Level Set Based Global-Local Design Framework for Structural
Shape and Topology Optimization. This second research topic is similar to the previous one,
but searches for more generic optimized structural frames as opposed to trusses, as in the
first topic.

In aerospace industries, the success of achieving a well developed vehicle that meets all the
top level requirements needs high quality conceptual designs. Current early stage design
procedures fail to yield a high number of configurations that could be further refined in

15For a given aspect ratio the optimum, non-dimensionalized volume is developed by an iterative scheme and
plotted in [34]. Due to the quality of our copy, reading for 1.5 gives a volume between 8.8 and 9.0.
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later stages of design. The challenges are due to lack of high fidelity simulations, integration
of limited number of disciplines and more importantly lack of understanding of complex
physics involved in that problem. The research in this topic introduces a new framework
which facilitates the availability of a large number of configurations by simultaneously per-
forming shape and topology optimizations during early stages of design. Cellular division

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: The five load span: (a) the general structural scenario, aspect ratio, (b) the ground
structure used for the LP and NP solutions, (c) LP solution using SNOPT, (d) NP solution
using SNOPT, (e) the LP solution using SLSQP, (f) the NP solution using SLSQP, (g) the the
initial map applied to conform with the load and restrain sites, (h) the EP solution.
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and level set based global-local optimization scheme is performed. Cellular division based
design methodology is an innovative biologically-inspired layout and topology optimization
method aimed at generating unconventional structural configurations by a global design
space exploration. The approach facilitates creation of various designs that need further
optimization to meet the multi-physics requirements. Level set method defines the struc-
tural boundary implicitly and optimizes based on the physical system behavior to handle
designs with complicated shape changes, but it is highly dependent on its initial design
choices. A combination of these two approaches with their individual strengths is syner-
gistically integrated for evolving a globally optimized configuration from an open-ended
design space. The new design framework was demonstrated on benchmark structural stiff-
ness design problems and an aerospace application. Preliminary results of the research in
this topic can be found in the conference papers:

• Hao Li, Ramana V. Grandhi and Marcelo H. Kobayashi (2018) “Level-set based cel-
lular division method for structural shape and topology optimization,” SciTech 2018,
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con-
ference, https://doi.org/10.2514/6.2018-1387, Kissimmee, FL 2018.

• Ramana V. Grandhi, Hao Li, Marcelo H. Kobayashi, and Raymond M. Kolonay “Ve-
hicle Configuration Design using Cellular-Division and Level-Set Based Topology Op-
timization,” EngOpt2018, 6th International Conference on Engineering Optimization,
Lisbon, Portugal, 2018.

The final results of this research topic can be found in the upcoming journal paper:

• Hao Li, Ramana V. Grandhi, Marcelo H. Kobayashi and Raymond M. Kolonay (2019)
“Hybrid Cellular Division and Level Set Based Global-Local Design Framework for
Structural Shape and Topology Optimization,” under review at Structural and Mul-
tidisciplinary Optimization.

3. Cellwork method. This third research topic seeks to extend the methodology above to
three-dimensional layouts. As a first step in that direction, a novel cellwork L-system is
introduced. The original cellwork L-system is characterized by the following16:

• A finite set of cells, each cell surrounded by one or more faces.

• Faces that are bounded by a finite, closed set of edges that meet at vertices.

• Facets intersecting at edges, and edges crossing at vertices.

These facets, edges and vertices must satisfy the following requirements:

(a) Every facet is part of the boundary of a cell, and this boundary is connected.

(b) There are no isolated vertices.

(c) Every edge is a part of the boundary of a facet and this boundary is connected.

The development of three dimensional layouts is modeled after a novel cellwork L system.
Cellwork L systems are defined by an alphabet, Σ, an axiom, ω, and production rules P .

16Prusinkiewicz, P., and Lindenmayer, A. (2012). The algorithmic beauty of plants. Springer Science and
Business Media.
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Figure 9: Phases of the derivation step

The alphabet provides labels for the edges and define other symbols that enters the cellular
division. The axiom holds the labels of the edges of the initial cellwork. The production
rules rewrite the edges and place the markers along the edges. For instance, the production

→
A : 14 →

→
D

←
C2[

→
E5]

→
B3F

rewrites the edges in faces labeled 1 or 4 (see Fig. 9). It divides edges A in four and
places a marker of type E in the faces 1 and 4. Markers on the same face with consistent
orientation and that label the new face with the same letter are connected and the face is
divided. The new faces are labeled according to the subscripts in the adjacent new edges
(the new face containing the edge C is labeled 2, while the new face containing the edge
B is labeled 3—see Fig. 9). If the new edges form a closed set and carry the same label,
a new face is formed and the cell is divided. The new faces are labeled according to the
subscripts in the adjacent new edges (the new face containing the edge C is labeled 2, while
the new face containing the edge B is labeled 3i—see Fig. 9). If the new edges form a
closed set and carry the same label, a new face is formed and the cell is divided.

In summary, the derivation step described above consists of three phases:

(a) Each edge of the cellwork is rewritten according to the corresponding production rule.

(b) Each face is scanned for matching markers. The first matching pair of markers that
satisfies the criteria of face division (consistent orientation and face labeling) are
connected and all remaining markers are discarded.
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(c) Each cell is scanned for loops. If a loop is found with edges with the same label for
the new face, then the new face is formed and the cell is divided along the new face.

The original cellwork L system can be used to model the development of interesting three
dimensional biological layouts (see Fig. 10). However, two issues prevent its use for auto-
matic layout generation: (1) the production rules can be ambiguous, and (2) the procedure
do not specify the shape of new faces.

p1 : A : 123 → C3[E1]B2[D1]C3
p2 : A : 4 → CB4[F1]C4
p3 : B : ∗ → A
p4 : C : ∗ → B
p5 : E : ∗ → D
p6 : F : 123 → HGH
p7 : F : 4 → H4[F1]G4[F1]H4
p8 : G : ∗ → F
p9 : H : ∗ → G

Figure 10: Developmental sequence of a model of epidermal cells ?

To understand how the production rules can be ambiguous, consider the following rules:

→
A : 1 →

→
C

←
E

→
A : 2 →

→
A

→
B

These rules are ambiguous since they specify two different divisions for the same edge.

Regarding the second issue, when a circular sequence of edges is found that is suitable for
cellular division, the original method does not specify what surface to use.

The problem with the production rules is that they rewrite edges and the edges are the same
entities regardless of the face they attached to. So for consistence, rules for different faces
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can only differ in the markers they place at the different faces. We suggest the following
variant for the production rules:

→
A →

→
C[3

∧
F 1][6

∨
D2]

→
E.

With this new production, the edge is always partitioned in the same way regardless of
the faces adjacent to it—see figure 11. The markers now carry two face labels (the left
and right subscripts), and an arrow head denoting its orientation (∨, ∧ denote a marker
oriented towards or away from the juncture, respectively—this new notation for the marker
orientation emphasizes the different orientations for the edges and the markers). The
subscript at the right of the marker label denotes the face label where the marker can be
inserted, whereas the left subscript denotes the label of the potential novel face: the source
marker providing the label to the new face at the right of the new edge, while the target
marker provides the label to the new face at the right of the new edge.

In this topic, the cellwork L system with the proposed production rules has been developed.

Figure 11: Example of consistent edge productions

Regarding the second topic, we establish that new faces are flat.

Currently, the cellworks L-systems outlined above has been implemented and tested. Two
examples of layouts using the code are depicted below in Figs. 12 and 13. These results
show that the cellworks L-systems can generate layouts for three-dimensional structural
design.

4. Load paths in structural design. In this research topic, a load function method for load flow
calculation in plane elasticity problems is pursued. The load functions are directly derived
from 2D equilibrium equations. This research topic is motived by the in the previous topics
and seeks for natural pathways for the load in space.

The stresses are written in terms of the load functions and the load flow is calculated using
the load function contours. The load functions are defined using generalized Beltrami
representation. A constructive proof is given for the existence of load functions. A set of
Poisson?s equations in terms of load functions and stress components are developed and
an efficient numerical procedure to solve them is discussed. Numerical results show the
proposed load function method is able to define the load paths and obtain the load flow
using an Airy stress function for problems with available closed form solution, and also
can be easily integrated into the numerical approaches to calculate load paths for complex
problems. Details of the formulation can be found in the journal paper:

20



(a) cycle zero (b) cycle one (c) cycle two

(d) cycle three (e) cycle four (f) cycle five

Figure 12: Cellworks example. Edge types are indicated with different colors.
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(a) cycle zero (b) cycle one (c) cycle two

(d) cycle three (e) cycle four (f) cycle five

Figure 13: Cellworks example. Edge types are indicated with different colors.
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• Ali Y. Tamijania, Kaveh Gharibia, Marcelo H. Kobayashi and Raymond M. Kolonay
(2018) “Load paths visualization in plane elasticity using load function method,”
International Journal of Solids and Structures, Volume 135, 15 March 2018, Pages
99-109.
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