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Executive Summary

The ubiquity of wall turbulence, in aerospace applications and elsewhere, has made this phenomenon a topic
of study over many decades. Yet it still poses intellectual and practical challenges that preclude rigorous
analytical predictive capabilities. In recent work under AFOSR sponsorship, we laid groundwork towards
this goal, defining an exact analysis of the Navier-Stokes equations (NSE) for canonical wall turbulence that
is amenable to extension to include control and which can be performed without resort to high performance
computing (McKeon & Sharma, 2010).

In the present research, we proposed an extension of the resolvent analysis in canonical flows, which had
focused on the dynamics of the linear Navier-Stokes operator, to the nonlinear forcing term. The nonlin-
earity couples turbulent activity at different wavenumbers and frequencies through its quadratic nature,
dynamically linking triadically consistent structures and establishing energy transfer paths. Importantly, it
also determines the mean velocity profile through the profile of Reynolds stress. Thus, full characterization
of the nonlinear forcing in the resolvent analysis is equivalent to making the formulation self-consistent and
self-sustaining. Our goals were to provide a rigorous, non-empirical framework to reconstruct the mean
velocity profile from an assembly of correctly-weighted resolvent modes, to determine weights for individual
triadic interactions, and to use these results to investigate the potential adaptation of resolvent analysis to
give new insight into wall and sub-grid scale turbulence models. The study included analysis, modeling and
experimental demonstration of the excitation of individual triadic interactions using dynamic roughness, and
extending our results from unperturbed to controlled flow.

The structure of the resolvent operator was exploited by using state-of-the-art matrix approximation (ran-
domized approximation) and data reduction techniques to preserve the low calculation overhead, with a view
to maintaining the efficiency of the resolvent analysis in comparison with direct simulation.

This research resulted in a series of manuscripts (11 published, 3 under review) pertaining to increasingly
sophisticated treatments of nonlinearity in resolvent analysis, recovery and modeling of the mean velocity
profile, experimental demonstration of synthetic nonlinear interactions, and the proposal of resolvent analysis
as a tool by which to vet the likely efficacy of proposed control strategies at significantly reduced cost relative
to either full, direct simulation or experiment.

The work has suggested several avenues for future development, with a view to generating self-sustaining,
nonlinear, low-order models of wall turbulence which exploit the mathematical structure of the (spatiotem-
poral) resolvent to obtain efficient representations of dynamically important flow features.
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1 Introduction and Objectives

The work performed under this grant pertained to the incorporation of nonlinear forcing into the resolvent
analysis approach proposed by McKeon & Sharma [1]. The specific objectives of the research, as listed in
the original proposal, were as follows.

Extend the resolvent framework from the current (successful) focus on the operator governing
the linear dynamics, and the corresponding velocity response, to characterize the nonlinear
interactions. These regulate the forcing input, govern the mean velocity profile (currently
assumed) and describe how different wavenumber/frequency combinations must interact to
reconstruct the full turbulent velocity and pressure fields in incompressible wall turbulence.

To reach this objective, the following individual tasks were proposed.

1. Characterize our existing results concerning scaling of the velocity modes obtained by projecting results
from simulation and experiment onto resolvent modes in terms of weights and nonlinear interactions
(see section 4.1).

2. Identify and model the key characteristics of the nonlinear forcing term giving rise to the correct
Reynolds stress profile, such that the mean velocity is correctly recovered from the analysis (see section
4.2).

3. Identify and model the key characteristics of the triadic resolvent mode interactions governing the
nonlinear forcing at specific wavenumber/frequency combinations, such that the system of figure 1
approaches closure (see section 4.3).

4. Use dynamic roughness perturbation to excite a synthetic wavenumber/frequency triad in a canonical
turbulent boundary layer and compare measured (phase-lock reconstructed) velocity response with
resolvent predictions (see section 4.4).

5. Exploit rules governing permitted nonlinear interactions between wavenumber/frequency triplets to
propose new means of modeling wall turbulence near the wall and at small scales, i.e. in terms
amenable to description in terms of new wall models and sub-grid scale models (see section 4.5).

It was also proposed to continue to exploit the structure of the resolvent operator, using state-of-the-art
matrix approximation and data reduction techniques to preserve the low calculation overhead, with a view
to maintaining the efficiency of the resolvent analysis in comparison with direct simulation. We anticipated
performing exploratory studies of the feasibility of extending our results from unperturbed flow to non-
canonical cases, i.e. under control.

4
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2 Background

The analysis employed in this work is a logical development of the resolvent analysis laid out by McKeon
& Sharma [1] for incompressible turbulent flows. The essence of that approach is described in Figure 1.
The resolvent is the transfer function between the nonlinear terms in the Navier-Stokes equations, which
are treated as a forcing of the linear dynamics, and the linear state response (here indicated in terms of
the velocity fluctuations, i.e. for a divergence-free basis, relative to the turbulent mean). The analysis
accounts for the amplification of forcing input due to the non-normality of the resolvent [2], which is similar
to the linearized Navier-Stokes operator familiar from hydrodynamic stability theory although without the
restrictions on the magnitude of the perturbation from the equilibrium (laminar) state. Analysis of the
resolvent using a singular value decomposition (SVD) subject to an energy norm at each spatio-temporal scale
reveals that it can be approximated in an extremely low-order fashion when there is a physical mechanism
extracting energy from the mean flow [3]. Equivalently, the spatio-temporal basis used in the analysis
efficiently identifies forcing structure which is preferentially amplified by the resolvent, giving rise to the
“most likely observable” response mode shapes at each scale. The analysis can be considered to be the
equation-driven equivalent of data analysis techniques such as Proper Orthogonal Decomposition, which
require full-field information rather than simply the governing equations [4]. Full details of the analysis will
be laid out in the context of compressible turbulent boundary layers in Section 3 below.

Notably, the cost of resolvent analysis is significantly less than high performance computations, since it
rests on linear algebra techniques which have been the subject of intensive development in other fields in
recent years. For a one-dimensional turbulent mean profile, i.e. a quasi-parallel assumption for a turbulent
boundary or a periodic domain for an internal flow, the cost of performing the SVD is so low that analysis
can proceed on a laptop computer. More computing power is required for two-dimensional mean flows - with
associated data storage limitations which have limited the size of the domain which can be considered - but
still at the local core rather than national HPC facility level.

A recent review of resolvent analysis for incompressible wall turbulence and an overview of what can be
learned about turbulence structure and self-sustaining mechanisms is given in [5]. The approach has now
been used to analyze a wide range of turbulent flow configurations.

In this work, we continue our investigation into resolvent modeling of wall turbulence, focusing on what
can be learned about and from the nonlinear interactions between resolvent modes in the pursuit of closure
modeling strategies for the loop of Figure 1. The approach taken towards each of the objectives listed in the
previous section is described in what follows, grouped by analysis, experiments and modeling directions.

u ⋅ ∇u

linear dynamics

fu

Figure 1: A high-level description of the turbulence process in resolvent analysis. The lower block contains
the linear dynamics of the fluctuations interacting with the mean velocity profile. After [1].
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3 Summary of Results

An outline of key results and outcomes from the grant is given in this section. The archival manuscripts
which give full information are identified (and appended to this report).

3.1 Analysis of turbulent flows using resolvent analysis: efficient projections of
data onto resolvent modes, characterization of the nonlinear forcing and
consistency with the mean velocity profile

Results from the first three objectives of section 1 are grouped together in this subsection because of a
common enabling work. Efforts to find the most efficient resolvent basis for parallel turbulent shear flows
are described in terms of:

� an Orr-Sommerfield/Squire (OS/SQ) decomposition of the resolvent,

� the subsequent extremely low rank projections of exact coherent states (as a proxy for fully turbulent
flows) onto the OS/SQ basis, capture of the nonlinear forcing, and consistent recovery of the (assumed)
mean profile, and a method to iterate on the weights of resolvent modes to obtain nonlinear, self-
sustaining ECS solutions with knowledge of the mean flow (using ECS as a proxy for fully turbulent
solutions of the Navier-Stokes equations)

� a method to obtain self-sustaining ECS solutions without prior knowledge of the mean profile, i.e.
starting from the analytic, laminar profile and iterating to convergence to a solution,

� low rank projections of fully turbulent channel flow onto the OS/SQ resolvent basis, and

� connection of these projected weights with, and extension of, scaling results for (triadic/resonant)
nonlinear resolvent mode interactions.

These results correspond to a increasingly sophisticated set of methods to close the nonlinear loop of Figure 1.

3.1.1 Resolvent analysis based on the Orr-Sommerfield/Squire decomposition

Rosenberg, K. & McKeon, B. J. Efficient representations of exact coherent states of the Navier-Stokes equa-
tions using resolvent analysis Fluid Dyn. Res., 51, 011401 (2019).

The standard resolvent decomposition is optimal in the kinetic energy norm. However, in wall-bounded
turbulence the kinetic energy is often dominated by the the streamwise velocity, which means that all three
velocity components may not be approximated uniformly well [6, 7]. In such situations, an alternative
decomposition that more faithfully represents the underlying dynamics may be desirable. To this end, we
proposed [8] an alternative decomposition of H, which reveals a critical insight about wall turbulence and
consequently leads to a more efficient resolvent basis.

The resolvent in velocity-vorticity form for an incompressible turbulent flow with a one-dimensional mean
velocity profile, U(y), can be written as

(v̂
η̂
) = (Hvv 0

Hηv Hηη
)(ĝv
ĝη

) , (1)

where

Hvv = (−iω −∆−1LOS)−1 , (2)

Hηη = (−iω −LSQ)−1 , (3)

Hηv = −ikzHηηU ′Hvv. (4)

6
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The parameterization of H is performed with respect to the streamwise/spanwise wavenumber and temporal
frequency triplet, k = (kx, kz, ω).
Apparently, Hvv and Hηv are forced by ĝv only, while Hηη is forced by ĝη only. This motivates the separation
of the response Hp into two distinct families:

( v̂
η̂OS) = (HvvHηv

) ĝv, (5)

η̂SQ =Hηη ĝη. (6)

In the following, we refer to the family of modes in Equation 5 as Orr-Sommerfield (OS) modes and the
family in Equation 6 as Squire (SQ) modes. The separation of η̂ into two distinct families is common practice
in linear stability analysis, where the SQ and OS modes are, respectively, the homogeneous and particular
solutions of the Squire equation: (−iω − LSQ)η̂ = −ikzU ′v̂ [2]. That is, the OS modes can be interpreted
as a response to the wall-normal velocity. This interpretation still holds in the nonlinear setting, since the
second component of 5 can be written as η̂OS = −ikzHηηU ′v̂. However, the SQ modes are no longer the
homogeneous solutions, but are now interpreted as the response to forcing by ĝη.

Note that only the OS modes contain a v̂ response, such that the SQ modes contribute only to the η̂ response,
i.e., to the wall-parallel velocity components. There is thus the potential for interaction between the OS and
SQ vorticity in ways that are not admitted by the standard resolvent decomposition. This fact is of central
importance for the OS-SQ resolvent decomposition, and it will be demonstrated in what follows that this
drastically improves the accuracy of a low-order resolvent-based representation of the second-order statistics
for turbulent channel flow.

An SVD of each operator in Equation 5 is performed separately, and the resulting decomposition is referred
to as the OS-SQ decomposition of the resolvent. The approximation of the response becomes

(v̂
η̂
) ≈

NOS

∑
j=1

ψOS
j σOS

j χOS
j +

NSQ

∑
k=1

ψSQ
k σSQ

k χSQ
k . (7)

Note that Equation 7 is now a sum of NOS + NSQ terms. Furthermore, while the left and right singular
vectors of each family still comprise orthonormal sets with respect to the appropriate inner product, it is
not guaranteed that modes belonging to different families are orthonormal, e.g. ⟨ψOS

j , ψSQ
k ⟩ ≠ δjk in general.

3.1.2 Low-rank capture of linear response and nonlinear forcing in Exact Coherent States
(ECS)

Rosenberg, K. & McKeon, B. J. Efficient representations of exact coherent states of the Navier-Stokes equa-
tions using resolvent analysis Fluid Dyn. Res., 51, 011401 (2019).

The decomposition above was applied to traveling wave ECS by [8], who showed that the method led to
a low-order representation of both upper (not shown) and lower branch (Figure 2) solutions in terms of
resolvent modes. In contrast to projection onto modes obtained from the full resolvent decomposition, all
components of the Reynolds stresses were equally well-captured. Further, the nonlinear forcing (i.e., the
gradients of Reynolds stress) was also captured in a low order way, meaning that this approach has the
potential to capture both the linear and nonlinear components of Figure 1.

An iterative method to optimize mode weights by including both nonlinear interactions between scales, a
constraint that the assumed mean profile was recovered and the requirement for a self-sustaining solution
was also developed for ECS based on the Matlab function fminunc [9]. It was shown to converge to the true
solution for equilibrium ECS (for the EQ1 solution in only 16 iterations), and remains under development
as a promising tool to obtain nonlinear, self-sustaining solutions using the resolvent basis.

7
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Figure 2: Comparison of the capture of the P4L traveling wave solution by the OS-SQ approach (top line)
and the standard resolvent basis. Left to right: < u2 >, < v2 >, < w2 >, < uv >. P4L solution (open circles),
reconstruction with 1 (dotted green), 3 (dashed red), and 10 (solid blue) singular mode pairs.

3.1.3 Convergence to exact coherent solutions starting from the laminar velocity profile

Rosenberg, K. & McKeon, B. J. Computing exact coherent states in channels starting from the laminar
profile: a resolvent-based approach Phys. Rev. E 100(2), 021101(2019).

A priori knowledge of U(y, z) can be considered a very limiting assumption. It has been demonstrated
in [10] that progress can be made in finding ECS in Couette and Poiseuille flow starting from an initial
laminar profile, based on an iterative procedure and resolvent analysis. We use the laminar profile as an
input to the resolvent operator. The fluctuating velocity field is approximated by the leading singular mode
of the resolvent operator. The nonlinear self-interaction is computed and used as the forcing into the mean
momentum equation, which is solved to provide an updated mean velocity input. The procedure is then
repeated until three conditions are met: (i) the cycle self-sustains (i.e. the updated mean profile, U(y, z),
converges), (ii) the resolvent associated with the new mean velocity is itself low-rank, and (iii) U(y, z) is
(nearly) neutrally stable.

Figure 3 shows the results for Poiseuille flow: the magnitude of the û, v̂, and ŵ components of the funda-
mental streamwise Fourier mode, along with the resulting mean velocity field (deviation from laminar). The
first three columns show the first, second, and fifth iterations respectively and the last column showing the
converged solution obtained from Channelflow (requiring four Newton iterations). There is a close corre-
spondence between the final iteration and the true solution (relative error of 1.4%), as well as localization
of the fluctuations around the critical layer U(y, z) = c = 0.88. This ECS solution has not been previously
reported, to our knowledge.

The approach represents a low-order, resolvent-based method to compute self-sustaining solutions for lower
branch ECS in channels, requiring the specification of only two unknown parameters, namely the wavespeed
and amplitude of a single streamwise-varying Fourier mode. The low-dimensionality of the approach leverages
the properties of the resolvent operator for the underlying (nearly) neutrally stable (streamwise-averaged)
mean flow and perhaps suggests that (lower-branch) solutions of the Navier-Stokes equation can be described
in extraordinarily simple forms.

The framework is quite general in its formulation and could be applied to other exact solutions. In addition to
starting from a laminar solution, simple analytic expressions for the mean forcing may be useful to generate
an initial roll/streak mean flow, as explored by [11] and [12]. A potential improvement to the current
formulation would be to incorporate an optimization step to more directly drive the mean flow towards a
neutrally stable configuration. While the current approach seems only applicable to lower-branch states at

8
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3: Poiseuille flow: The amplitude as a function of spanwise (horizontal axis) and wall-normal (vertical
axis) distance of the (a)-(d) u-component, (e)-(h) v-component, and (i)-(l) w-component of the fundamental
streamwise Fourier mode kxf

along with the (m)-(p) resulting mean velocity U(y, z) (shown as the devia-
tion from laminar) generated from the self-interaction of the single Fourier mode. The first three columns
represent the first, second, and fifth iterations respectively for an initial laminar profile, and the last column
shows the converged field computed using Channelflow with iteration 5 as an input. The white dashed line
in the last column designates the location of the critical layer, U(y, z) = c = 0.88.
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these moderate Reynolds numbers, there is evidence these ideas can be extended to upper-branch states,
though at higher Reynolds numbers [13], and is a subject of future work; however, flows with more than one
energetically significant streamwise-varying mode would require more sophisticated modeling efforts. We wish
to eventually extend this methodology to the computation of periodic orbits as well. Ultimately, we hope the
results presented herein will inform the continued efforts to model turbulence using the 2D/3C framework,
particularly by augmenting them with frequency-based input/output (resolvent-based) techniques.

3.1.4 Optimization of resolvent mode weights in fully-turbulent channel flow

McMullen, R., Rosenberg, K. & McKeon, B. J. Interaction of Orr-Sommerfeld and Squire modes in a low-
order model of turbulent channel flow (In preparation.)

While the utility of the decomposition into Orr-Sommerfeld and Squire modes for highly simplified flows like
ECS has been established, an open question is whether or not it remains relevant for high Reynolds number
turbulence. In this work, it has been shown that the second-order statistics of turbulent channel flow can
be accurately modeled using a low-order approximation based on this framework. It was additionally shown
that the vorticity produced by the Orr-Sommerfeld and Squire modes act to oppose each other, and this
observation reveals information about how the resolvent weights for the two families scale relative to each
other with Reynolds number. Altogether, these insights point to a mechanism in wall-bounded turbulent
flows (here channel flow) that is important for low-order modeling efforts.

As introduced by [6], the model three-dimensional streamwise energy spectra are

Er(y, kx, kz, c) = Re{tr(ArX)} , (8)

with rε{uu, vv,ww,uv}, and where Re{ ⋅} is the real part of a complex number and tr( ⋅ ) is the matrix
trace. Note that we have chosen to parameterize the spectra in terms of the wavespeed c = ω/kx since
resolvent modes tend to be localized about the critical layers yc, where U(yc) = c [1], and it has been observed
experimentally that the range of energetic wavespeeds is relatively compact, with the most energetic motions
typically being confined to the range 8 ≲ c ≲ Ucl [14], where Ucl is the mean centerline velocity. In Equation 8,
the matrix Auu, for example, with entries

Auu,ij = σiσj ûiû∗j , (9)

represents the contributions of the singular values and response modes and can be determined a priori from
the SVD of the resolvent. The matrix X , with entries

Xij = χ∗i χj , (10)

is the weights matrix. Apparent from this definition is that X T = χχ∗ ≥ 0, where χ is the vector of weights
and ⪰ denotes the Löwner order, i.e., X is a rank-1 positive-semidefinite matrix. The OS-SQ decomposition
is incorporated into this framework simply by partitioning the Ar and X matrices as

Ar = (AOS/OS
r AOS/SQ

r

ASQ/OS
r ASQ/SQ

r

) , X = ( XOS/OS XOS/SQ

XOS/SQ∗ XSQ/SQ) , (11)

where the superscript X/Y denotes the family of the ith and jth mode, respectively, in Equations 9-10.

The goal is to compute the weights matrix such that the deviation between the wavespeed-integrated model
spectra in 8 and the time-averaged DNS spectra is minimized. After discretization of the wavespeed range
c ∈ [0, Ucl], this can be formally cast as the following optimization problem: For fixed kx and kz,

minimize
{Xl}l=1,2,...,Nc , e

e

subject to
∥EDNS

r −∑Nc

l=1 kx dcRe{tr(Ar,lXl)}∥2

∥EDNS
r ∥2 ≤ e

Xl ⪰ 0, l = 1,2, . . . ,Nc,

(12)
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Figure 4: Premultiplied one-dimensional spectra from the model (dotted contours) and DNS (solid contours).
(a,c,e,g) Standard resolvent decomposition using N = 6 modes per wavenumber-frequency triplet; (b,d,f,h)
OS-SQ resolvent decomposition using NOS = NSQ = 3 modes per wavenumber-frequency triplet. (a,b) kxEuu,
(c,d) kxEvv, (e,f) kxEww, (g,h) −kxEuv. Contour levels are from 10% to 90% of the DNS maximum in 20%
increments.
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where the subscript l denotes a quantity evaluated at c = cl. Note that the norm ∥ ⋅ ∥ is not the simple kinetic
energy norm. It is defined as

∥f∥2 = ∫
y+max

y+
min

∣f(log y+)∣2 d log y+ (13)

and is designed to penalize deviations across the channel equally [6]. Thus deviations from the DNS spectra
are enforced for y+min ≤ y+ ≤ y+max, where we take y+min = 5 and y+max = Reτ − 1.

Equations 12 represent a semidefinite program (SDP) for the weights matrices Xl and can therefore be solved
efficiently using a convex optimization software package. Note that imposing the rank-1 constraint on the Xl
would make 12 non-convex. [6] employed an iterative rank-reduction procedure to recover rank-1 matrices
from the full-rank solution [15]. However, we do not employ this algorithm here and instead choose to work
with the full-rank weights matrices. In this case, the Xl can be interpreted as the covariance matrices of the
weights, similar to [16]. Finally, since the optimization is performed for second-order statistics, the present
approach does not provide phase information about modes with different wavenumbers. This means that the
computed weights do not yield a closed, self-consistent system, as such information is necessary to recover
the mean velocity profile. Extension of the method to incorporate phase is a direction for future work.

The performance of the model spectra obtained by integrating over all resolvent modes is evaluated by
comparing them to the time-averaged statistics from the DNS. The premultiplied 1D kx model spectra,

kxEr(y, kx) = ∫
kz,max

kz,min
∫

Ucl

0
k2xEr(y, kx, kz, c)dcdkz, (14)

are compared to the DNS using NOS = NSQ = 3 modes, i.e., six modes per wavenumber-frequency triplet,
in Figure 4, which is plotted in terms of λ+x = 2π/k+x . Overall, the agreement between the model and DNS
spectra is very good, and in particular, the peaks are captured well. Also shown are the spectra obtained
using the standard decomposition with the same total number of modes. The performance is significantly
worse, with kxEuu and kxEww being greatly over-predicted, and kxEvv and −kxEuv being under-predicted.

Subsequent integration over kx gives the intensities, which are shown in figure 5. The deviation errors are
4.3%, 0.95%, 0.66%, and 3.8% for ⟨u2⟩, ⟨v2⟩, ⟨w2⟩, and ⟨−uv⟩, respectively. These should be compared with
errors of 30%, 14%, 12%, and 31% using the standard resolvent decomposition, shown in the dashed curves.
The OS/SQ basis gives very good agreement with the data with a significant reduction in degrees of freedom:
only six modes per wavenumber-frequency triplet.

To further examine the relationship between the OS and SQ modes, we decompose the intensities shown in 5
into contributions from OS modes only, SQ modes only, and a cross term (C) that represents the interaction
of OS and SQ modes, e.g. ⟨u2⟩ becomes

⟨u2⟩ = ⟨(uOS)2⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

OS

+ ⟨(uSQ)2⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

SQ

+2 ⟨uOSuSQ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

. (15)

The results with N = 3 for ⟨u2⟩, ⟨w2⟩, and ⟨−uv⟩ are shown in 6. The decomposition for ⟨v2⟩ is not shown
since, as seen from 6, the SQ modes have no v response, and hence ⟨v2⟩ = ⟨(vOS)2⟩. Similarly, there is no
SQ-only contribution to ⟨−uv⟩. For ⟨u2⟩ and ⟨w2⟩, the OS and SQ terms are extremely similar, with the
OS term having slightly larger magnitude. However, for all three components the C term is negative, which
supports the claim that the SQ vorticity acts to saturate the OS vorticity. In fact, information about the
phase relationship between the OS and SQ modes can be deduced from this observation. Note that the third
term in 15 is simply twice the covariance of uOS and uSQ.

In summary, the OS/SQ decomposition that we previously applied to the ECS solution is shown to be im-
portant for efficient representation of fully turbulent velocity fields from DNS, with the same opposing phase
relationship leading to saturation of the wall-normal vorticity relative to the standard resolvent decomposi-
tion.
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Figure 5: Intensities from the model with NOS = NSQ = 3 modes per wavenumber-frequency triplet (—) and
DNS (—). Also shown in dashed lines are the intensities obtained from the standard resolvent decomposition
approach using the same total number of modes.

3.1.5 Scaling of resolvent mode weights by consideration of mode interactions

McMullen, R., Rosenberg, K. & McKeon, B. J. Interaction of Orr-Sommerfeld and Squire modes in a low-
order model of turbulent channel flow (In preparation.)

Further progress in determining Reynolds number scaling can be made using the mode weights (strictly the
mode magnitudes) determined from the optimization above and the properties of the mean velocity profile.
Moarref et al. [3] leveraged universal scaling regimes of the mean velocity profile to derive the Re scaling
for several universal classes of resolvent modes. Here, we extend this to the OS-SQ resolvent decomposition,
showing analytically and with reference to the optimized weights that for the outer and geometrically self-
similar classes, each family of modes has a distinct scaling for the singular values. From this, the scalings
of each submatrix of the energy density matrices Ar given in Equation 11 can be determined. Combining
these scalings with the hypothesis that competition of the OS and SQ modes remains relevant at different
Reynolds numbers and in different regions of the flow enables the relative scaling of the OS and SQ weights
belonging to the universal classes to be deduced.

The universal classes investigated here are the inner, outer, and geometrically self-similar classes. These
consist of resolvent modes that are localized within the near-wall, wake, and logarithmic regions of the flow,
respectively, and rely on universality of the mean velocity profile under the appropriate scaling in these
regions.

The outer class length scales are
k̃x = Rekx, k̃z = kz, ỹ = y, (16)
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Figure 6: (a) ⟨u2⟩, (b) ⟨w2⟩, (c) ⟨−uv⟩ decomposed into OS (—), SQ (—), and C (—) terms for N = 3.

and the outer class wave parameters are

So ∶ {
0 ≤ Ucl − c ≲ 6.17
kz/kx ≳ γRe/Reτ,min

(17)

The upper bound on the wavespeed defect Ucl − c = 6.17 is obtained from the setting the minimum critical
layer location at the bottom of the outer region, i.e., Ucl − U(y = 0.1) = 6.17.As Equation 17 indicates, the
outer class modes must satisfy an aspect ratio constraint for all Re considered, where the minimum aspect
ratio is γ when Re = Reτ,min [3]. Here, Reτ,min = 934. From Equation 16 and continuity, it follows that

û =
⎛
⎜
⎝

ũ
Re−1ṽ
Re−1w̃

⎞
⎟
⎠
. (18)

where ⋅̃ indicates a quantity that is approximately Re-invariant for modes belonging to the outer class. See
also [17] and [18] for the scaling of each velocity component, as well as for the components of the forcing
modes.

The outer-scaled versions of the weighted resolvent operators are

(FvHvvF−1
v

FηHηvF−1
v

) = ( ReF̃vH̃vvF̃
−1
v

Re2F̃ηH̃ηvF̃−1
v

) (19)

FηHηηF−1
η = ReF̃ηH̃ηηF̃−1

η . (20)

Performing the SVDs of Equations 19 and 20, we have for the leading singular values,

σOS
j = Re2σ̃OS

j , σSQ
j = Reσ̃SQ

j . (21)

Note that because the components of 19 do not scale uniformly for outer class modes, the scaling of the OS
singular values is only expected to hold for the first several modes. However, since good agreement between
the model and DNS spectra is achieved using only a small number of modes, it is reasonable to adopt the
scalings in what follows.

As for the inner class modes, competition between the OS and SQ modes requires that all three terms are
of the same order for arbitrary Re, which is satisfied if

RRRRRRRRRRRR

χSQ
j

χOS
j

RRRRRRRRRRRR
∼ Re (22)

for modes belonging to the universal outer class.
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The weights ratio
√
X

SQ/SQ
11 /XOS/OS

11 for the three Reynolds numbers is shown in the top row of 7 for several

values of the outer-scaled wavenumber combinations (k̃x, k̃x) and a minimum aspect ratio γ =
√

10. In
agreement with 22, the data from all three Reynolds numbers show reasonable collapse onto a single curve
for Ucl − c ≲ 6.17 when scaled by Re−1, as seen in the bottom row of 7.

Figure 7: (a)-(d) Leading weights ratio for Re = 934 (blue), Re = 2003 (red), and Re = 4219 (green) with
N = 2. (e)-(h) Weights ratio scaled according to 22. Each column represents a different scaled streamwise
wavenumber k̃x: (a),(e) k̃x = 4219; (b),(f) k̃x = 8438; (c),(g) k̃x = 12657; (d),(h) k̃x = 16876. In all cases the
spanwise wavenumber is kz = γk̃x/Reτ,min, with γ =

√
10. The dashed line indicates the upper end of the

wavespeed defect range, Ucl − c = 6.17, where the outer class scaling is expected to hold.

Related results can be obtained by consideration of the inner and logarithmic scaling regions of the mean
velocity profile, where the former has special implications for self-similarity and self-sustaining turbulence,
e.g. [19].

Some preliminary steps have been made towards reconciliation of resolvent analysis and results from the
mean momentum balance approach, but further advances will require additional progress with regards to
the mode weights, as under investigation [20].

3.2 Experimental excitation of a triadic interaction

McKeon, B. J., Jacobi, I. & Duvvuri, S. Dynamic roughness for manipulation and control of turbulent
boundary layers: a review. AIAA J., 56(6) 2179-2193 (2018).

This grant funded an experimental study on the generation and characterization of synthetic triadic inter-
actions in a turbulent boundary layer using dynamic roughness actuation (Figure 8). Preliminary work is
reported in [21], then expanded and discussed in [22].

These measurements, reported in [23], show for the first time clear evidence of the direct triadic interaction
of large-scale velocity modes in the turbulent boundary layer. This had been hinted at in the single frequency
experiments by the excitation of harmonics and via the integrated observations of the preceding section, but
the triadic nature of the coupling was not directly observable from within the shroud of the envelope of the
small scale motions.

The harmonic excitation of two frequencies using a dynamic roughness forcing (a spanwise rib, oscillating
from flush with the plate to a constant amplitude with harmonic waveform) permits reconstruction of the
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Figure 8: Schematic of the directly excited nonlinear interactions, from [23]

x/δ

x+

y/δ y+

û1 + û2

û3 + û4 + û5 + û6

∑
i ûi / U∞

Figure 9: Synthetic turbulence fields. Top: linearly excited modes, û1 + û2 (from Duvvuri & McKeon [21]).
Bottom: sum of directly excited modes, û3 + û4 + û5 + û6.

boundary layer response associated with the two forced modes as well as four triadically coupled modes
excited by direct nonlinear interaction (sum, difference and two harmonics at twice the forcing frequencies).
Temporal phase variations, φ(t), can be converted to the spatial domain, a process which is simplified because
all modes have the same convection velocity. Figure 9 shows the linearly excited field, i.e. û1 + û2, and the
directly excited, synthetic turbulence field, û3 + û4 + û5 + û6.

The success of this simple study in a turbulent boundary layer - which the Navier-Stokes equations dictate!
- suggests the ability to excite scales indirectly within the boundary layer by means of the non-linear cou-
pling between the desired scales and the forced scales, and further to create and characterize a synthetic
contribution to a turbulent boundary layer.

3.3 New approaches to turbulence modeling and control

3.3.1 Measures of non-normality

Symon, S., Rosenberg, K., Dawson, S. T. M. & McKeon, B. J. Non-normality and classification of amplifi-
cation mechanisms associated with turbulent mean flows Phys. Rev. Fluids, 3(5), 053902 (2018)

We investigated the nature of the non-normality of the resolvent and compared it to results from stability,
i.e. the eigenspectrum of the NSE linearized about the laminar base flow, in order to gain further under-
standing concerning the origin of amplification in resolvent analysis. Eigenspectra and pseudospectra of the
mean-linearized Navier-Stokes operator were used to characterize amplification mechanisms in laminar and
turbulent flows in which linear mechanisms are important. Success of mean flow (linear) stability analysis for
a particular frequency was shown to depend on whether two scalar measures of non-normality agree: (1) the
product between the resolvent norm and the distance from the imaginary axis to the closest eigenvalue and
(2) the inverse of the inner product between the most amplified resolvent forcing and response modes. If they
agree, the resolvent operator can be rewritten in its dyadic representation to reveal that adjoint and forward
stability modes are proportional to forcing and response resolvent modes at that frequency. Hence the real
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parts of the eigenvalues are important since they are responsible for resonant amplification and the resolvent
operator is low rank when the eigenvalues are sufficiently separated in the spectrum. If the amplification is
pseudoresonant, then resolvent analysis is more suitable to understand the origin of flow structures.

Two test cases were studied: low Reynolds number cylinder flow and turbulent channel flow. The first deals
mainly with resonant mechanisms, hence the success of both classical and mean stability analysis with respect
to predicting the critical Reynolds number and global frequency of the saturated flow. Both scalar measures
of non-normality agree for the base and mean flows, and the region where the forcing and response modes
overlap scales with the length of the recirculation bubble. In the case of turbulent channel flow, structures
result from both resonant and pseudoresonant mechanisms, suggesting that both are necessary elements to
sustain turbulence. Mean shear is exploited most efficiently by stationary disturbances while bounds on the
pseudospectra illustrate how pseudoresonance is responsible for the most amplified disturbances at spatial
wavenumbers and temporal frequencies corresponding to well-known turbulent structures.

(a) (b) (c)

(a) (b) (c)

Figure 10: Spectral results for (top) a mode representative of the near-wall cycle and (bottom) corresponding
to the wavenumber triplet of (kx, kz, ω) = (0,2π/3,0). Left-to-right: velocity amplitudes for the optimal
forcing mode, and the optimal response mode, the eigenvalues of the associated linearized NSE operator in
red circles overlaid with contours of the pseudospectrum, and the resolvent norm (solid black line) along
with the inverse distance from the imaginary axis to the nearest eigenvalue (dotted red line).

3.3.2 Coherent structures and uniform momentum zones from resolvent modes

Saxton-Fox, T. & McKeon, B. J. Coherent structures, uniform momentum zones and the streamwise energy
spectrum in wall-bounded turbulent flows J. Fluid Mech., 826, R6, 1-12 (2017)

It has been shown [24] that coherent bulges in velocity isocontours and uniform momentum, commonly
observed in experiment and simulation, have a simple representation via resolvent modes using the first sin-
gular vector at a wavenumber-frequency combination representative of large-scale motions (LSMs). Figure 11
shows the three-dimensional structure of the LSM representative model with and without the mean veloc-
ity field superimposed, and a comparison between the instantaneous flow field in a wall-normal-streamwise
field from the simple model and PIV data for Reτ 900. In (a), the streamwise velocity isosurface is seen
to alternate between protruding above and protruding below its mean position, giving the appearance of
bulges. In (b), the structure is observed to be periodic in the streamwise and spanwise directions, with
a compact wall-normal coherence and a phase change of π across its height. The structure of the LSM
representative model compares favourably with that of the instantaneous structure in the PIV data. In
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the laboratory frame velocity field, a positive fluctuating structure corresponds to the absence of a visible
structure (downward protrusion of isocontours), and the streamwise length scale of the structure, which is
constant in the fluctuating field, is observed to change as a function of the wall-normal height. The amplitude
of the LSM representative model was deduced from a single frame of PIV, and is therefore the largest source
of uncertainty in the model.

(a) (c) resolvent model
(b) (d) PIV

Figure 11: Instantaneous streamwise velocity field Ũ (a) and fluctuating velocity field ũ (b) from an LSM-
representative resolvent mode . In (c), a wall-normalstreamwise slice of the laboratory frame velocity field is
shown with the contour range Ũ/U∞ = 0 ∶ 0.05 ∶ 1 and every other isocontour outlined in black for visibility.
Representative snapshot from laboratory PIV with the same colorscale (d).

An analytical relationship between a laboratory frame streamwise velocity isocontour and the fluctuating
velocity field was derived and used to generate model histograms of instantaneous velocity over various
windows, with reasonable comparison to the results from PIV data (at a level perhaps surprising for such
a simple model). A model of a single scale can reproduce two UMZs. Then it can be anticipated that the
superposition of a very small number of such models could lead to the three to five UMZs observed across
Reτ = 103 − 104 by [25]. Superposition of a few scales that are dominant in the energy spectrum, e.g. from
the LSM energy band, the superstructures or VLSMs and the near-wall cycle, would lead to a modelled flow
that is compatible with the energetic features of real wall-bounded flows. Superposition of multiple modes
can also be used to allow for the representation of more complex phenomena, such as the meandering of
structures [26] and amplitude modulation of small scales [5].

3.3.3 Resolvent as a tool to evaluate control technologies - Opposition control example

Toedtli, S., Luhar, M. & McKeon, B. J. Predicting the response of turbulent channel flow to varying-phase
opposition control: Resolvent analysis as a tool for flow control design Phys. Rev. Fluids, 4(7), 073905
(2019)

We have evaluated the capabilities of a low-order flow model based on resolvent analysis for the purpose of
controller design for drag reduction in wall-bounded turbulent flows. We modified the analysis to account for
an opposition control boundary condition in earlier work [27]. Here use Direct Numerical Simulation studies
to show that the model is able to approximate the trends in mean wall shear stress, which is commonly used
as measure for drag reduction.We also derive an analytical expression that decomposes the drag reduction in
internal flows into terms that can be predicted directly by the model and terms that allow for quantification
of model error if high-fidelity data are available. We then show by example of varying-phase opposition
control in a low-Reynolds-number turbulent channel flow that the drag reduction predicted by the resolvent
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(a) DNS (b) resolvent model

Figure 12: Effect of wave speed and streamwise wave number on the mean Reynolds stress contribution of
individual resolvent modes: (a) effect of wave speed c (darker colors indicate faster wave speeds), and (b)
effect of streamwise wave number kx (darker colors indicating smaller streamwise wave numbers).

model captures the trend observed in direct numerical simulation (DNS) over a wide range of controller
parameters. The DNS results confirm the resolvent model prediction that the attainable drag reduction
strongly depends on the relative phase between sensor measurement and actuator response, which raises
interesting flow physics questions for future studies. The good agreement between the resolvent model and
DNS further reveals that resolvent analysis, which at its heart is a linear technique, is able to approximate
the response of the full nonlinear system to control.

While performing this work, we also formalized a sub-sampling techniques that exploits the characteristics of
the resolvent operator to further reduce the degrees of freedom required to model the flow under opposition
control. We have previously shown, e.g. [27], that the Reynolds stress contribution of a single mode is
localized around its critical layer, i.e. around the wall-normal location yc where its wavespeed equals the
local mean velocity c ≈ u(yc). Conversely, one can say that the dominant contribution to the Reynolds stress
at a fixed y comes from modes whose critical layer yc correspond to that y. From the previous argument
we expect that the dominant Reynolds stress contribution at each gridpoint yi is given by modes with
wavespeed c = u(yi). This suggests that the sampled wavespeeds should correspond to the discretized mean
velocity profile, so that 0 ≤ ω ≤ kxUcl (as mentioned before) and ∆ωi(kx) = kx∆u(yi). Note that while
empirical knowledge is required to justify this range of ω, no empirical knowledge is required to evaluate it:
the temporal frequency vector is fully determined by the given mean velocity profile and wall-normal grid.
The localization of the mean Reynolds stress contribution of individual modes around the critical layer, yc,
is shown in Figures 12a and 12b for varying c and kx, respectively. The wall-normal profiles for different
c look very similar and the location of their peak moves slowly away from the wall as the wave speed is
increased. This suggests that not all the wave speeds resolved in the model baseline are required to capture
the wall-normal shape of the mean Reynolds stress profile, since resolvent modes with similar wave speeds
largely overlap in y. The wall-normal profiles look very similar for various kx and that the peak magnitude
slowly decreases as kx increases. This observation holds for all sufficiently large streamwise and spanwise
wave numbers and suggests that the spatial wave numbers can be subsampled as well as the wave speeds.

Based on these insights, a sub-sampling was employed in the control studies corresponding to a reduction in
degrees of freedom from 85 × 85 × 86 (baseline) to 16 × 22 × 44 (subsampled model) resolved wave numbers.
The missing wave numbers are linearly interpolated. The resolvent model for the Reynolds stress was
calculated by assessing the −uv contributed by the summation of first resolvent modes across wavenumbers
and frequencies, weighted by their singular values, i.e. the response to unit amplitude broadband forcing. A
comparison of the Reynolds stress arising from the full and sub-sampled resolvent models for uncontrolled
channel flow is shown in Figure 13b. The agreement is excellent, thus, in order to make accurate predictions
the model only needs to resolve a small subset of the DNS wave numbers. Further (not shown), the controlled
resolvent modes obey the Reynolds number scaling laws of the uncontrolled resolvent operator derived by
[3].

The varying-phase opposition control scheme (9) introduced in the preceding section is used as a test to
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Figure 13: Uncontrolled Reynolds stress profiles from DNS and the resolvent model. Figure (a): (blue) DNS
data of Lee & Moser [28] (uncontrolled flow), (black) present DNS (uncontrolled flow). Figure (b): (blue)
resolvent model baseline (uncontrolled flow), (black) subsampled model (uncontrolled flow). Note that the
resolvent model predictions are normalized with the maximum Reynolds stress of the uncontrolled profile.

evaluate the capabilities of the resolvent model for controller design. To this end, a total of 50 simulations of
opposition control were performed, covering a parameter range of five sensor locations y+d = [5,10,15,20,25]
and ten phase shifts between the sensed wall normal velocity and the (negative of) the wall transpiration
(actuation) in response, ∠Ad = [3π/4, π/2,3π/8, π/4, π/8,0, π/8, π/4, π/2,3π/4]. The drag reduction in the
subsampled resolvent model and the DNS was calculated for each case. The raw DR data were subsequently
interpolated using bilinear splines and normalized with the respective maximum DR.

The resulting map of drag reduction as a function of yd and ∠Ad is shown in Figure 14, where Figure 14a
is the resolvent model prediction and Figure 14b shows the DNS results. Each map is normalized by its
maximum DR, which corresponds to 5% (resolvent model) and 21% (DNS), respectively. Bright shading
(positive numbers) represent drag reduction, while dark colors (negative numbers) indicate drag increase.
The solid black lines outline a few selected contour levels and the contour lines of Figure 14a are replotted
as dotted blue lines in Figure 14b to facilitate comparison between resolvent model and DNS. Note that the
contour levels of both plots are identical.

Figure 14b shows that the resolvent model is able to capture the trend observed in DNS over a wide range
of parameters, but at a fraction of the cost. In terms of computational time, panels of Figure 14b took
approximately 70 CPU hours on a laptop (resolvent model) and 4500 CPU hours on a computing cluster
(DNS).

In both frameworks, the effect of the controller strongly depends on the phase shift ∠Ad and generally
speaking a small negative shift (e.g., ∠Ad = /4) leads to improved drag reduction, while a positive phase shift
deteriorates the control performance and eventually leads to drag increase. Furthermore, both frameworks
show that for a fixed positive phase shift ∠Ad > 0 the control performance decreases as yd increases, while for
a fixed negative phase shift /2 <∠Ad < 0 the control performance initially increases, reaches a maximum, and
then decreases as the sensor moves away from the wall. The qualitative agreement between the resolvent
model and DNS can be made more clear by comparing the overlaid contour lines in Figure 14b. It is
apparent that the contours of ξ of the resolvent model and the DNS collapse for ∠Ad > 0 over the entire
range of yd. This suggests that the model error between the resolvent approach and the DNS, reflected in
the comparison of Reynolds stress profiles in Figure 13, is small with regards to the turbulent drag reduction
trends for positive phase shifts. The model error in turbulent DR increases for more negative ∠Ad. However,
the resolvent model is still able to capture the trend of the DNS reasonably well and also the parameter
combination leading to maximum drag reduction is similar in both frameworks and corresponds to y+d ≈ 1015
and ∠Ad ≈ /4. A formal representation of the model error is included in [31].

Our results suggest that resolvent analysis can provide a suitable flow model to design feedback flow control
schemes for the purpose of drag reduction in incompressible wall-bounded turbulent flows even at techno-
logically relevant Reynolds numbers.
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Figure 14: Contour map showing the drag reduction as a function of sensor location y+d and phase shift ∠Ad.
Figure (a) shows the prediction of the resolvent model, figure (b) displays DNS data, both contour maps
are normalized with the respective maximum DR. The vertical dashed black line denotes opposition control
(∠Ad = 0) and the contour lines of figure (a) are replotted as dotted blue lines in figure (b).

3.3.4 Low-order models of linear and nonlinear effects in wall turbulence

McMullen, R., Rosenberg, K. & McKeon, B. J. Interaction of Orr-Sommerfeld and Squire modes in a low-
order model of turbulent channel flow (In preparation.)

The results presented herein have several important implications for equation-driven modeling of turbulent
channel flow. The first is that partitioning the resolvent operator into Orr-Sommerfeld and Squire subsystems,
originally presented in the context of ECS [8], is also advantageous in terms of its ability to develop compact
representations of fully turbulent channel flow at high Reynolds number. Furthermore, it provides valuable
insight into the complex dynamics by identifying the competition mechanism between the OS and SQ modes,
which has ramifications for modeling nonlinear interactions. Specifically, considering that for large Re, the
OS singular values in the logarithmic and outer regions of the flow are much larger than the SQ ones, it may
be tempting from a modeling perspective to neglect the SQ family of modes. However, doing so does not
take into account the relative scaling of the forcing terms ĝv and ĝη in 1 – it implicitly assumes they remain
of the same order. The present results indicate that this is not the case. In fact, the scaling results of the
weights for all of the classes can be summarized as ∣χSQ

j /χOS
j ∣ ∼ σOS

j /σSQ
j .

Though the absolute scalings of the weights were not determined, the present work can be considered
a starting point to guide further modeling efforts toward quantifying nonlinear interactions in turbulent
channel flow. For instance, it is particularly intriguing that the v statistics depend only on the OS modes.
Consequently, if the scaling of the OS weights can be determined from these, empirically or otherwise,
then the results given above can be used to determine the scaling of the SQ weights, effectively reducing
the number of unknowns by half. Then a single computation at a relatively low Reynolds number could
be combined with the scalings to make predictions of the spectra at Reynolds numbers that are currently
unattainable by simulations.

Taken together, the results point to the competition between the OS and SQ modes being an important
mechanism in turbulent channel flow that should be respected in order to accurately model the statistics.
We hypothesize that if this mechanism could be interrupted, the dynamics, and consequently the statistics,
of the system would be significantly different. This line of inquiry is the subject of ongoing work.
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3.4 Review articles

The support of this grant enabled the PI to contribute to three review articles related to the work under
this and previous AFOSR grants.

1. The PI wrote the second ever (invited) Perspectives article in the Journal of Fluid Mechanics [5]. This
article provided a pedagogical review of the origins and development of resolvent analysis for wall
turbulence.

2. Our review of the use of dynamic roughness for manipulation of turbulent boundary layers [22] appeared
in a special issue of the AIAA Journal on Flow Control.

3. The PI contributed to the section on Resolvent Analysis in a multi-author review on Modal Decompo-
sitions in fluid mechanics [4].
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4 Conclusions and Outlook

This grant enabled progress to be made in the understanding of the flow physics underlying wall turbulence,
and in particular the efficiencies associated with a spatio-temporal representation of the equations of motion,
embodied in the low-rank characteristics of the resolvent operator and the limitations on the permitted
nonlinear interactions between resolvent modes.

In particular, we have demonstrated that a significant reduction in degrees of freedom required to represent
turbulent channel flow can be obtained using an Orr-Sommerfield/Squire approach to resolvent analysis, and
that further exploitation of self-similarity will be possible in the pursuit of low-order models of self-sustaining
turbulent flows.

We have demonstrated the utility of the spatio-temporal formulation in describing nonlinear interactions
in both computational and experimental settings, exploiting dynamic roughness actuation in the latter to
generate synthetic turbulence.

We propose that the resolvent formulation is a useful tool by which to test control strategies at a significantly
reduced cost: before expensive DNS studies or experiments are commissioned to investigate a particular
approach, resolvent analysis can (or even should) be used to identify broad trends and locally optimal
configurations.

Lastly, we have identified several results which will feature in ongoing efforts to develop low-order models
of self-sustaining wall turbulence using resolvent analysis to describe the important linear and nonlinear
phenomena involved.
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5 Archival products under this grant

1. Symon, S., Rosenberg, K., Dawson, S. T. M. & McKeon, B. J. Non-normality and classification of
amplification mechanisms associated with turbulent mean flows Phys. Rev. Fluids, 3(5), 053902
(2018) [29]

2. Rosenberg, K. & McKeon, B. J. Efficient representations of exact coherent states of the Navier-Stokes
equations using resolvent analysis Fluid Dyn. Res., 51, 011401 (2019)

3. McKeon, B. J., Jacobi, I. & Duvvuri, S. Dynamic roughness for manipulation and control of turbulent
boundary layers: a review. AIAA J., 56(6), 2178-2193 (2018) [22]

4. Taira, K., Brunton, S. L., Dawson, S. T., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt,
O., Gordeyev, S., Theofilis, V. & Ukeiley, L. S. Modal analysis of fluid flows AIAA J., 55(12), 4013-
4041(2017). http://arc.aiaa.org/doi/abs/10.2514/1.J056060 [4]

5. Jacobi, I. & McKeon, B. J. Phase relationships between scales in the perturbed turbulent boundary
layer J. Turb 18(12), 1120-1143 (2017) [30]

6. Saxton-Fox, T. & McKeon, B. J. Coherent structures, uniform momentum zones and the streamwise
energy spectrum in wall-bounded turbulent flows J. Fluid Mech., 826, R6, 1-12 (2017) [24]

7. McKeon, B. J. The engine behind (wall) turbulence: perspectives on scale interactions J. Fluid Mech.
(Perspectives), 817, P1 (2017) [5]

8. Symon, S., Sipp, D. Schmid, P. & McKeon, B. J. Mean and unsteady flow reconstruction using data-
assimilation and resolvent analysis AIAA J. (to appear, https://doi.org/10.2514/1.J057889)

9. Toedtli, S., Luhar, M. & McKeon, B. J. Predicting the response of turbulent channel flow to varying-
phase opposition control: Resolvent analysis as a tool for flow control design Phys. Rev. Fluids, 4(7),
073905 (2019) [31]

10. Rosenberg, K. & McKeon, B. J. Computing exact coherent states in channels starting from the laminar
profile: a resolvent-based approach Phys. Rev. E 100(2), 021101(2019).

11. Huynh, D. P. & McKeon, B. J. Characterization of the spatio-temporal response of a turbulent bound-
ary layer to dynamic roughness Flow, Turb. and Comb. (to appear).

12. Huynh, D. P. & McKeon, B. J. Measurements of a turbulent boundary layer-compliant surface system
in response to targeted, dynamic roughness forcing (Under review.)

13. Huynh, D. P. & McKeon, B. J. Resolvent analysis and experimental measurements on the effect of an
elastic compliant wall on a dynamic roughness-forced turbulent boundary layer (In preparation.)

14. McMullen, R., Rosenberg, K. & McKeon, B. J. Interaction of Orr-Sommerfeld and Squire modes in a
low-order model of turbulent channel flow (In preparation.)

24

DISTRIBUTION A: Distribution approved for public release.



6 References

[1] B. J. McKeon and A. S. Sharma. A critical layer model for turbulent pipe flow. J. Fluid Mech.,
658:336–382, 2010.

[2] P J Schmid and D S Henningson. Stability and Transition in Shear Flows. Springer-Verlag, New York,
2001.

[3] R. Moarref, A. S. Sharma, J. A. Tropp, and B. J. McKeon. Model-based scaling and prediction of the
streamwise energy intensity in high-Reynolds number turbulent channels. J. Fluid Mech., 734:275–316,
2013.

[4] K. Taira, S. L. Brunton, S. T. M. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, O. T. Schmidt,
S. Gordeyev, V. Theofilis, and L. S. Ukeiley. Modal analysis of fluid flows: An overview. AIAA J., 55
(12):4013–4041, 2017.

[5] B. J. McKeon. The engine behind (wall) turbulence: Perspectives on scale interactions. J. Fluid Mech.,
817:P1, 2017.

[6] R. Moarref, M. R. Jovanović, A. S. Sharma, J. A. Tropp, and B. J. McKeon. A low-order decomposition
of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids, 26(051701),
2014.

[7] A. S. Sharma, R. Moarref, B. J. McKeon, J. S. Park, M. Graham, and A. P. Willis. Low-dimensional
representations of exact coherent states of the Navier-Stokes equations from the resolvent model of wall
turbulence. Phys. Rev. E, 93:021102(R), 2016.

[8] K. Rosenberg and B. J. McKeon. Efficient representation of exact coherent states of the Navier-Stokes
equations using resolvent analysis. Fluid Dyn. Res., 51(011401), 2019.

[9] K. Rosenberg. Resolvent-based modeling of flows in a channel. Ph.d., California Institute of Technology,
2018.

[10] K. Rosenberg and B. J. McKeon. Computing exact coherent states in channels starting from the laminar
profile: a resolvent-based approach. Phys. Rev. E, 100(2)(021101), 2019.

[11] F. Waleffe. On a self-sustaining process in shear flows. Phys. Fluids, 9(4):883–900, 1997.

[12] P. Hall and S. J. Sherwin. Streamwise vortices in shear flows: harbingers of transition and the skeleton
of coherent structures. J. Fluid Mech., 661:178–205, 2010.

[13] Lee M. and R. D. Moser. The high-Reynolds-number asymptotic developemnt of nonlinear equilibrium
states in plane Couette flow. J. Fluid Mech., 750:99, 2014.

[14] J. LeHew, M. Guala, and B. J. McKeon. A study of the three-dimensional spectral energy distribution
in a zero pressure gradient turbulent boundary layer. Expts. in Fluids, 51(4):997–1012, 2011.

[15] Yongwei Huang and Daniel P Palomar. Rank-constrained separable semidefinite programming with
applications to optimal beamforming. IEEE Transactions on Signal Processing, 58(2):664–678, 2009.

[16] A. Towne, O. T. Schmidt, and T. Colonius. Spectral proper orthogonal decomposition and its relation-
ship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech., 847:821–867, 2018.

[17] A. S. Sharma, R. Moarref, and B. J. McKeon. Scaling and interaction of self-similar modes in models
of high-Reynolds number wall turbulence. Phil. Trans. Royal Soc. A, 375(2089)(20160089), 2016.

[18] R. Moarref, A. S. Sharma, J. A. Tropp, and B. J. McKeon. A foundation for analytical developments
in the logarithmic region of turbulent channels. ArXiv, (1409.6047), 2014.

[19] B. J. McKeon. Self-similar hierarchies and attached eddies. Phys. Rev. Fluids, 4(8):082601, 2019.

25

DISTRIBUTION A: Distribution approved for public release.



[20] R. McMullen, K. Rosenberg, and B. J. McKeon. Interaction of Orr-Sommerfeld and Squire modes in a
low-order model of turbulent channel flow. In preparation.

[21] S. Duvvuri and B. J. McKeon. Phase relations in a forced turbulent boundary layer: implications for
modeling of high Reynolds number wall turbulence. Phil. Trans. Royal Soc. A, 375(2089)(20160080),
2017.

[22] B. J. McKeon, I. Jacobi, and S. Duvvuri. Dynamic roughness for manipulation and control of turbulent
boundary layers: An overview. AIAA J., 56(6):2178–2193, 2018.

[23] S. Duvvuri and B. J. McKeon. Non-linear interactions isolated through scale synthesis in experimental
wall turbulence. Phys. Rev. Fluids, 1(3):032401(R), 2016.

[24] T. Saxton-Fox and B. J. McKeon. Coherent structures, uniform momentum zones and the streamwise
energy spectrum in wall-bounded turbulent flows. J. Fluid Mech., 826(R6), 2017.

[25] C.M. de Silva, N. Hutchins, and I. Marusic. Uniform momentum zones in turbulent boundary layers.
J. Fluid Mech., 786:309–331, 2016.

[26] A. S. Sharma and B. J. McKeon. On coherent structure in wall turbulence. J. Fluid Mech., 728:196–238,
2013.

[27] M. Luhar, A. S. Sharma, and B. J. McKeon. Opposition control within the resolvent analysis framework.
J. Fluid Mech., 749:597–626, 2014.

[28] Lee M. and R. D. Moser. Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J.
Fluid Mech., 774:395, 2015.

[29] S. S. Todtli, M. Luhar, and B. J. McKeon. Predicting the response of turbulent channel flow to
varying-phase opposition control: resolvent analysis as a tool for flow control design. Phys. Rev. Fluids,
4(7):073905, 2019.

[30] S. Symon, K. Rosenberg, S. T. M. Dawson, and B. J. McKeon. Non-normality and classification of
amplification mechanisms in stability and resolvent analysis. Phys. Rev. Fluids, 3(053902), 2018.

[31] I. Jacobi and B. J. McKeon. Phase-relationships between scales in the perturbed turbulent boundary
layer. J. Turb., pages 1–24, 2017.

26

DISTRIBUTION A: Distribution approved for public release.


	DTIC TITLE PAGE
	FA9550-16-1-0361 SF298
	FA 9550-16-1-0361_final report
	amazonaws.com
	https://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/164-d0e1ad429642845737b149c129dad421_AFOSR_nonlin_final_2019.pdf





