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Summary

In recent years we have witnessed an explosion in the amounts of (often extremely high-dimensional) data being
acquired. As a result, data-driven techniques are increasingly applied, not only in traditional quantitative settings,
but also in a variety of non-traditional scenarios that challenge many common assumptions. For example, in contexts
such as social network analysis, collaborative filtering, personalized medicine, and personalized learning, we face a
variety of challenges due largely to the fact that an important — often the only — source of data is people. In such
applications, we want to learn about people using data that people supply. This presents several difficulties, including
the fact that such data is often “soft” in the sense that it consists of nonmetric data like categories or comparisons
rather than precise numerical values. Such data is also often constantly changing, necessitating approaches that can
handle dynamic models. Moreover, in many cases it is impossible to fully sample, and our observations are highly
incomplete.

It might seem impossible to extract much information from such data. Fortunately, in the examples considered
above, as well as in many other applications, the data often has a great deal of structure. For example, the data
might exhibit low-rank structure, or it may be possible to embed the data in a low-dimensional subspace or union of
subspaces. Such structure, when it exists, allows us to potentially overcome the limitations of missing data. The goal
of the research funded by this grant was to develop algorithms that can tackle such inverse problems when confronted
with “soft” data. While this is indeed possible, the approaches necessarily differ substantially from the approach taken
when given numerical measurements. As a part of this research, we addressed a number of fundamental theoretical
and algorithmic questions in the context of low-rank matrix recovery, multidimensional scaling, unfolding, and low-
dimensional dynamic models.
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1 Accomplishments

In this section I briefly summarize the research efforts supported by this grant. Please refer to the publications listed
at the end of this report for a more detailed description of these efforts.

1.1 Overview

The act of measurement is the cornerstone of quantitative research in nearly every scientific and engineering discipline.
Measurements provide the raw data we need to learn about the world around us, help limit the impact of our subjective
biases, and make the replication of experiments far easier. The success of this “data-driven” approach to science
can hardly be overstated, and as measurements have become increasingly easier and less expensive to obtain, we have
witnessed an explosion in the amounts of (often extremely high-dimensional) data that is being acquired. Moreover, the
success of this paradigm now extends far beyond the traditional quantitative “hard sciences.” Data-driven techniques
are increasingly being applied in a variety of non-traditional scenarios that challenge the assumptions taken for granted
in more traditional settings.

For example, as the dimensionality of the data we would like to work with grows, it can become challenging or
impossible to fully sample the data. This occurs in a variety of sensing applications (e.g., high-resolution medical
and scientific imaging) but also when working with the kind of data that arises in many common machine learning
problems (e.g., recommender systems, personalized medicine, and intelligent tutoring systems), where incomplete
data poses a significant challenge. Moreover, while centuries of experience has trained us to instinctively think of
a measurement as a numerical quantity that can be read off a scale (e.g., mass, length, time, voltage, etc.), in many
modern applications, the data is often of a more “soft” nature. For example, many machine learning systems often
involve an attempt to measure some quality of a person — such as a preference, opinion, feeling, ability, etc. — for which
there is no natural numerical scale. Moreover, in these contexts our main (or only) source of data often consists of
responses which are typically heavily quantized. More generally, due to various practical limitations, it is increasingly
common to encounter nonlinear measurement models in a wide array of applications.

In recent years, there has been a tremendous amount of progress in developing techniques for dealing with in-
complete data and nonlinearities in the observation process when the data exhibits certain forms of low-dimensional
structure. To name some particularly prominent examples, the fields of compressive sensing, matrix completion, and
phase retrieval all aim to address such problems by exploiting sparsity and/or low-rank structure. While these ap-
proaches are extremely successful when these models are good matches to the structure truly present in the data, there
can often be significant gaps between these models and the structure actually present in the real-world. For example,
our measurements may be generated according to some underlying continuous phenomenon, as opposed to the dis-
crete models (such as sparsity in a fixed dictionary) that are more commonly considered. Similar challenges can arise
whenever the underlying models are dynamically evolving over time. In such cases, novel theoretical and algorithmic
tools are required to develop computationally friendly extensions of existing models.

The focus of the research supported by this grant was to further develop theory and algorithms that can help us
tackle the kinds of inverse problems described above when confronted with incomplete and/or nonlinear measure-
ments, even extending to the case where the underlying signal of interest is dynamically changing with time. While
performing inference in these contexts is indeed possible, the approaches necessarily differ substantially from the ex-
isting methods, and required the development of novel low-dimensional signal models as well as new theoretical tools
and algorithms. Below I summarize the research accomplishments supported by this grant in four broad areas: (1)
learning from paired comparisons, (2) adaptive sampling for estimation and learning, (3) dynamic low-rank matrix
recovery, and (4) learning from point processes.

1.2 Learning from paired comparisons
1.2.1 Problem statement

In the context of learning from paired comparisons, our goal is to determine the location of a point in Euclidean space
based on distance comparisons to a set of known points, where our observations are nonmetric. In particular, let
2 € R™ be the true vector that we are trying to estimate, and let (p1,q1), - - -, (Pm, gm ) be pairs of “landmark™ points
in R™ which we initially assume to be known a priori. Rather than directly observing the raw distances from z, i.e.,
|lx — pi]| and ||z — ¢;||, we instead obtain only paired comparisons of the form ||z — p;|| < |Jz — ¢;||. Our goal is to
estimate x from a set of such inequalities. Nonmetric observations of this type arise in numerous applications and have
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Figure 1: An illustration of the localization problem from paired comparisons. The information that x is closer to p;
than g; tells us which side of a hyperplane x lies. Through many such comparisons we can hope to localize x to a high
degree of accuracy.

seen considerable interest in recent literature. These methods are often applied in situations where we have a collection
of items and hypothesize that it is possible to embed the items in R™ in such a way that the Euclidean distance between
points corresponds to their “dissimilarity,” with small distances corresponding to similar items. Here, we focus on the
sub-problem of adding a new point to a known (or previously learned) configuration of landmark points.

As a motivating example, we consider the problem of estimating a user’s preferences from limited response data.
This is useful, for instance, in recommender systems, information retrieval, targeted advertising, and psychological
studies. A common and intuitively appealing way to model preferences is via the ideal point model, which supposes
preference for a particular item varies inversely with Euclidean distance in a feature space. We assume that the items
to be rated are represented by points p; and g; in an n-dimensional Euclidean space. A user’s preference is modeled
as an additional point x in this space (called the individual’s “ideal point™). This represents a hypothetical “perfect”
item satisfying all of the user’s criteria for evaluating items.

Using response data consisting of paired comparisons between items (e.g., “user x prefers item p; to item g;”)
is a natural approach when dealing with human subjects since it avoids requiring people to assign precise numerical
scores to different items (which is generally a quite difficult task, especially when preferences may depend on multiple
factors). In contrast, human subjects often find pairwise judgements much easier to make. Data consisting of paired
comparisons is often generated implicitly in contexts where the user has the option to act on two (or more) alternatives;
for instance they may choose to watch a particular movie, or click a particular advertisement, out of those displayed
to them. In such contexts, the “true distances” in the ideal point model’s preference space are generally inaccessible
directly, but it is nevertheless still possible to obtain an estimate of a user’s ideal point.

1.2.2 Main results

The fundamental question which interests us here is how many comparisons we need (and how should we choose
them) to estimate x to a desired degree of accuracy. Thus, we consider the case where we are given an existing
embedding of the items (as in a mature recommender system) and focus on the on-line problem of locating a single
new user from their feedback (consisting of binary data generated from paired comparisons). The item embedding
could be generated using various methods, such as multidimensional scaling applied to a set of item features, or even
using the results of previous paired comparisons via an approach we describe below. Given such an embedding of ¢
items, there are a total of (ﬁ) = O(2) possible paired comparisons. Clearly, in a system with thousands (or more)
items, it will be prohibitive to acquire this many comparisons as a typical user will likely only provide comparisons
for a handful of items. Fortunately, in general we can expect that many, if not most, of the possible comparisons are
actually redundant. For example, of the comparisons illustrated in Figure 1, all but four are redundant and — at least in
the absence of noise — add no additional information.

Any precise answer to this question would depend on the underlying geometry of the item embedding. Each
comparison essentially divides R™ in two, indicating on which side of a hyperplane x lies, and some arrangements
of hyperplanes will yield better tessellations of the preference space than others. Thus, to gain some intuition on
this problem without reference to the geometry of a particular embedding, we will instead consider a probabilistic
model where the items are generated at random from a particular distribution. In this case we show in [6] (and
the preliminary work of [5]) that under certain natural assumptions on the distribution, it is possible to estimate the
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location of any x to within an error of € using a number of comparisons which, up to log factors, is proportional to
n/e. This is essentially optimal, so that no set of comparisons can provide a uniform guarantee with significantly
fewer comparisons. We also demonstrate several stability and robustness guarantees for various settings in which the
comparisons are subject to noise or errors in [6] (and the preliminary work of [4]). We also develop a simple extension
to an adaptive scheme where we adaptively select the comparisons (manifested here in adaptively altering the mean
and variance of the distribution generating the items) to substantially reduce the required number of comparisons,
described in [6]. Finally, in [11] we propose practical methods for learning the embedding of the items using only the
comparisons themselves by considering the setting where we have many users whose ideal points (the x’s) are known
and studying how to estimate the item embeddings. Combining these approaches, we can iteratively learn the full
embedding using only paired comparisons.

1.3 Adaptive sampling for estimation and learning
1.3.1 Problem statement

Suppose that we wish to estimate a sparse vector from a small number of noisy linear measurements. In the setting
where the measurements are selected in advance (independently of the signal) we now have a rich understanding of
both practical algorithms and the theoretical limits on the performance of these algorithms. A typical result from this
literature states that for a suitable measurement design, one can estimate a sparse vector with an accuracy that matches
the minimax lower bound up to a constant factor. Such results have had a tremendous impact in a variety of practical
settings. In particular, they provide the mathematical foundation for compressive sensing, a paradigm for efficient
sampling that has inspired a range of new sensor designs over the last decade.

A distinguishing feature of the standard compressive sensing paradigm is that the measurements are nonadaptive,
meaning that a fixed set of measurements are designed and acquired without allowing for any possibility of adapting
as the measurements begin to reveal the structure of the signal. While this can be attractive in the sense that it enables
simpler hardware design, in the context of sparse estimation this also leads to some clear drawbacks. In particular,
this would mean that even once the acquired measurements show us that portions of the signal are very likely to be
zero, we may still expend significant effort in “measuring” these zeros! In such a case, by adaptively choosing the
measurements, dramatic improvements may be possible.

Inspired by this potential, recent investigations have shown that we can often acquire a sparse (or compressible)
signal via far fewer measurements or far more accurately if we choose them adaptively. This body of work demon-
strates that adaptive sensing indeed offers the potential for dramatic improvements over nonadaptive sensing in many
settings. However, the existing approaches to adaptive sensing, which rely on being able to acquire arbitrary linear
measurements, cannot be applied in most real-world applications where the measurements must respect certain phys-
ical constraints. Our focus in this thrust was on constrained adaptive sensing or sampling, where our measurements
are restricted to be chosen from a particular set of allowable measurements/samples. To address such problems within
this more restrictive setting, new algorithms and theoretical analysis were required.

1.3.2 Main results

Our main results on this thrust consist of a detailed study of two main problem settings. The first consists of adaptively
selecting measurements from a fixed set of candidates, with the goal being to estimate a sparse vector as accurately
as possible (when these measurements are corrupted by noise). In [2] (and the preliminary work of [1]) we provide
a theoretical analysis of this problem for some sample cases. Our analysis demonstrates that there is a strong depen-
dence between the underlying structure of the measurement ensemble and the sparsity model. In some cases, such as
choosing Fourier measurements to estimate a sparse signal, we demonstrate that the benefits of adaptivity are much
less significant than is the case for more general measurements, where dramatic improvements are possible. However,
we also show that in other contexts, significant improvement remains possible. We demonstrate this empirically in [2]
by proposing a convex algorithm for selecting measurements and then demonstrating its benefits in a stylized MRI
application. (Note that an analysis of this algorithm was subsequently provided by applying novel results related to
graph sparsification which demonstrated that this algorithm is near optimal.)

Out second thrust consists of the problem where we would like to solve any kind of supervised learning problem,
but where the data lives on a low-dimensional manifold as opposed to being sparse. In [12] (and in the preliminary
work of [13]), we developed several novel algorithms for doing this by studying various eigenvalue properties of the
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alignment matrix that underlies many common manifold learning techniques. Via extensive empirical comparisons,
we showed that our proposed algorithms achieve state-of-the-art performance on a wide variety of real-world data sets.

1.4 Dynamic low-rank matrix recovery
1.4.1 Problem statement

While a rich literature now exists that studies the problem of when and how we can recover a low-rank matrix from a
small number of samples or measurements (summarized in [3]), these approaches are often limited in practice by the
fact that the underlying matrix may be dynamically evolving over time. For instance, in a recommendation system a
persons’s preferences may gradually change, and in a personalized learning system a student’s skills should hopefully
be (perhaps not so gradually) improving over time. To address such scenarios, we consider a simple first model for
how a low-rank matrix might be changing over time during the measurement process. For simplicity we will model
this through the following discrete dynamic process: at time ¢, we have a low-rank matrix X* € R™ "2 with rank 7,
which we assume is related to the matrix at previous time-steps via

Xt=f(xt. XY 4 €
where €’ represents noise. Then we observe each X* through a linear operator A : R?1 %72 — R™,

yt _ At(Xt) _’_Zt, yt’zt c Rm,t7
where 2! is measurement noise. In our problem we will suppose that we observe up to d time steps, and our goal is to
recover { X*}¢_, jointly from {y*}%_,.

The above model is sufficiently flexible to incorporate a wide variety of dynamics, but we will make several
simplifications. First, we note that we can impose the low-rank constraint explicitly by factorizing X! as X! =
Ut(vH)",Ut € Rm*T V't € R™*". In general, both Ut and V* may be changing over time. However, in some
applications, it is reasonable to assume that only one set of factors is changing. For example, in a recommendation
system where our matrix represents user preferences, if the rows correspond to items and the columns correspond to
users, then U*? contains the latent properties of the items and V¢ models the latent preferences of the users. In this
context it is reasonable to assume that only V¢ changes over time, and that there is a fixed matrix U (which we may
assume to be orthonormal) such that we can write X* = UV for all ¢. Similar arguments can be made in a variety of
other applications, including personalized learning systems, blind signal separation, and more.

Second, we assume a Markov property on f, so that X (or equivalently, V) only depends on the previous X*~!
(or V*=1). Furthermore, although other dynamic models could be accommodated, for the sake of simplicity in our
analysis we consider the simple model on V! where

Vi=vi-tpe t=2,....d
We will also assume that both ¢! and the measurement noise z* are i.i.d. zero-mean Gaussian noise. The main thrust

of this effort is to develop algorithms that can provably exploit this dynamic structure to achieve improved guarantees
than what would be possible by, for instance, simply recovering each V! independently.

1.4.2 Main results

To simplify our discussion, we will assume that our goal is to recover the matrix at the most recent time-step, i.e.,
we wish to estimate X from {y}¢_,. Our general approach can be stated as follows. In [14] we proposed a novel
estimator (denoted LOWEMS for locally weighted matrix smoothing) given by the following optimization program:

d
N 1 2
X = in AL (X)) —yt]|2,
e 2 g A0 vk

where C(r) = {X € R™*"2 : rank(X) < r}, and {w;}¢_, are non-negative weights. We further assume Zle wy =
1 to avoid ambiguity.
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100

Figure 2: Example realization of a point process. We observe event locations (circles) but their empirical density
provides only a sketch of the underlying intensity (line).

In [14] we provide theoretical guarantees on the performance of this estimator for two common choices for the
measurement operators A': the Gaussian measurement ensemble and the matrix sampling ensemble (which corre-
sponds to the matrix completion setting). In both cases, we provide the first theoretical guarantees for the dynamic
setting described above. We further demonstrated practical benefits in the context of a (Netflix) recommendation sys-
tem. The upshot of these results is that we provide guarantees that provide clear practical guidance in how to select
the weights w; in the LOWEMS estimator so as to optimally exploit observations from previous time samples. This
generalizes previous results for matrix completion/recovery in the static setting.

Additional empirical observations for this problem are described in [16] and [15]. In [16] we study a range of
different estimators aside from the LOWEMS estimator described above. Some lead to improved performance, but
at severe computational costs, with a compromise approach dubbed simultaneous LOWEMS achieving most of the
improved performance benefits at an only slightly increased computational cost (albeit, without the theoretical support
available for LOWEMYS). In [15] we study an extension of the LOWEMS estimator to the case where our observations
are binary quantized outcomes. Our proposed algorithm leads to moderately improved performance in a practical
application to personalized learning systems (a matrix completion problem where the data consists of incomplete
student responses, graded with correct/incorrect outcomes, on a set of homework problems). In the future we plan to
continue to study this setting. We hypothesize that the random walk model studied here is not particularly well-suited
to this application, and plan to explore the use of methods that aim to learn more accurate models of the underlying
dynamics from the data.

1.5 Learning from point processes
1.5.1 Problem statement

The traditional sensing paradigm in most of signal processing and machine learning is based upon the assumption that
we can begin by obtaining regularly-spaced (or potentially irregularly-spaced) samples of the phenomenon of interest.
Ideally, samples are taken sufficiently densely so that no detail falls below the observation resolution. However, for
many phenomenon, when viewed at an appropriate (and often the most appropriate) scale, it is much more natural to
model the data as a set of discrete events occuring at specific times. For example, when studying brain activity at a gross
scale (as in functional MRI) we can think of regularly sampling the “activity level” in each “voxel”. However, at finer
resolutions, a more natural way to model the data is as a spatio-temporal process of neurons located at points in space
and firing at specific moments in time. Similar considerations arise in many other physical phenomena (e.g., modeling
of earthquakes, lightning strikes, etc.), but these are perhaps even more present in various social systems/phenomena.
For example, the most natural way of modeling a social network consist of individual users participating in discrete
interactions at specific times. Analyzing such data requires a different set of tools. We model these event-based
interactions using point processes, focusing primarily on inference using Poisson processes and Hawkes processes.

Poisson processes work on the principle of independence between events and forms a useful model for a large
range of event-based applications including nuclear imaging, fluoroscopy, mass spectrometry, low-light imaging, and
medical image processing, just to name a few. We have specifically explored their application in the context of time-
of-flight mass spectrometry in [10]. The simplicity of Poisson models makes them the preferred choice over other
point processes when their independence assumption can be (adequately) met.

Unlike Poisson processes, Hawkes processes are autoregressive in that actions can create reactions. This allows
for feedback within the system. Hawkes processes can, for example, be used to model the relationship between earth-
quakes and aftershocks. Other applications of Hawkes processes include modeling social networks, communication
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intensity
event

Figure 3: Intensity functions and events for a multivariate Hawkes process with two subprocesses.

networks, (biological) neural networks, financial transactions, ecological systems, and sociological patterns.

In the cases of both Poisson processes and Hawkes processes, there is surprisingly little that is known regarding the
accuracy with which one can estimate the underlying parameters under certain natural linear modelling assumptions.
Below we describe our results in these two contexts.

1.5.2 Main results

A Poisson process is defined by an intensity function A that maps the observation domain T to a density in R,.. Higher
density regions are likely to have more events, as seen in Figure 2. When A lies in the linear span of some dictionary,
we established guarantees regarding the accuracy with which the dictionary coefficients x € R"™ are estimated. Our
results analyze the case where T is some uncountable set, while existing results were largely limited to countable
T. Under mild assumptions and using (possibly unnecessary) regularization, we showed in [8, 9] that the estimated
maximum-likelihood basis weights Z for a dictionary with Gram matrix I" approximate the true weights x according

to the ¢ norm bound
1Z = 2ll2 < D 2/ T [IM] o

with high probability. Operator ||T'~!||5 represent the spectral norm of I'~! and ||T'||.. represents the nuclear norm of
I, while || A]|oc = sup,er A(t). We also showed that improved results are possible when the weights are known to be
sparse [8].

A (multivariate) Hawkes process is composed of N subprocesses (each a point process on its own) that can poten-
tially influence each other. The set of events attributed to subprocess j is S; and the conditional intensity function for
subprocess ¢, given the history of event times 77, is

N
Niltlri) = pat) + )0 Ay Y ot — ).

j=1 keS;

The base intensity y;(t) describes a Poisson process while the excitation weights A;; and kernel ¢(¢) are responsible
for the autoregressive behavior of the process. An example of a two-subprocess Hawkes process with mutual excitation
is shown in Figure 3.

It is common to estimate the weights A;; of a Hawkes process to learn the connectivity of an event-driven network.
We explored the use and effectiveness of Hawkes processes in this context via an empirical study in [7]. We have con-
tinued to explore this an in unpublished results have established theoretical lower bounds and asymptotic guarantees
regarding the accuracy with which the A4;; can be estimated. Such results represent an important step in understanding
the behavior of Hawkes processes and, in particular, placing the appropriate degree of confidence in Hawkes models
learned from data. We expect these results to be formally published soon.
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3. Andrew Massimino, Ph.D. student (Ph.D. in progress, expected 2018)

Michael Moore, Ph.D. student (Ph.D. in progress, expected 2018)

Liangbei Xu, Ph.D. student (Ph.D. in progress, expected 2019)

SANES U

Matthew O’Shaughnessy, Undergraduate student (Graduated 2016, now Ph.D. student at Georgia Tech)
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3 Publications

The following publications were prepared in whole or part with the support of the Air Force Office of Scientific
Research under grant FA9550-14-0342.

[1] M. A. Davenport, A. K. Massimino, D. Needell, and T. Woolf. Constrained adaptive sensing. In Proc. Workshop
on Signal Processing with Adaptive Sparse Structured Representations (SPARS), Cambridge, United Kingdom,
July 2015.

[2] M. A. Davenport, A. K. Massimino, D. Needell, and T. Woolf. Constrained adaptive sensing. IEEE Trans. on
Signal Processing, 64(20):5437-5449, October 2016.

[3] M. A. Davenport and J. Romberg. An overview of low-rank matrix recovery from incomplete observations. /IEEE
J. of Selected Topics in Signal Processing, 10(4):608-622, June 2016.

[4] A. K. Massimino and M. A. Davenport. Binary stable embedding via paired comparisons. In Proc. IEEE Work.
on Statistical Signal Processing (SSP), Palma de Mallorca, Spain, June 2016.

[5] A. K. Massimino and M. A. Davenport. The geometry of random paired comparisons. In Proc. IEEE Int. Conf.
on Acoustics, Speech, and Signal Processing (ICASSP), New Orleans, Louisiana, March 2017.

[6] A. K. Massimino and M. A. Davenport. As you like it: Localization via paired comparisons. To be submitted to
J. Machine Learning Research, 2018.

[7] M. G. Moore and M. A. Davenport. Learning network structure via Hawkes processes. In Proc. Workshop on
Signal Processing with Adaptive Sparse Structured Representations (SPARS), Cambridge, United Kingdom, July
2015.

[8] M. G. Moore and M. A. Davenport. Sparse parametric estimation of poisson processes. In Proc. Work. on Signal
Processing with Adaptive Sparse Structured Representations (SPARS), Lisbon, Portugal, June 2017.

[9] M. G. Moore and M. A. Davenport. Estimation of Poisson arrival processes under linear models. 7o be submitted
to IEEE Trans. on Information Theory, 2018.

[10] M. G. Moore, A. K. Massimino, and M. A. Davenport. Randomized multi-pulse time-of-flight mass spectrometry.
In Proc. IEEE Int. Work. on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Cancun,
Mexico, December 2015.

[11] M. R. O’Shaughnessy and M. A. Davenport. Localizing users and items from paired comparisons. In Proc. IEEE
Int. Work. on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, Salerno, Italy, September 2016.

[12] H. Xu, L. Yu, M. A. Davenport, and H. Zha. A unified framework for manifold landmarking. Submitted to IEEE
Trans. on Signal Processing, December 2017.

[13] H. Xu, H. Zha, and M. A. Davenport. Active manifold learning via Gershgorin circle guided sample selection.
In Proc. AAAI Conf. on Artificial Intelligence (AAAI-15), Austin, Texas, January 2015.

[14] L. Xu and M. A. Davenport. Dynamic matrix recovery from incomplete observations under an exact low-rank
constraint. In Proc. Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain, December
2016.

[15] L. Xu and M. A. Davenport. Dynamic one-bit matrix completion. In Proc. Work. on Signal Processing with
Adaptive Sparse Structured Representations (SPARS), Lisbon, Portugal, June 2017.

[16] L. Xu and M. A. Davenport. Simultaneous recovery of a series of low-rank matrices by locally weighted matrix
smoothing. In Proc. IEEE Int. Work. on Computational Advances in Multi-Sensor Adaptive Processing (CAM-
SAP), Curacao, Dutch Antilles, December 2017.
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4 Interaction and Transitions

Prof. Mark A. Davenport presented research supported in whole or part by the Air Force Office of Scientific Research
under grant FA9550-14-0342 at the following venues.

Invited presentations

1.

10.

11.

12.

13.

14.

“Low-rank matrix recovery from incomplete observations: An overview and some recent advances,” Alan Turing
Institute, London, United Kingdom, June 2017.

“Localization via paired comparisons and nonmetric multidimensional scaling,” Department of Electrical and
Computer Engineering, University of Washington, Seattle, Washington, August 2016.

“Localization and nonmetric multidimensional scaling via paired comparisons,” Simons Institute Workshop on
Real-Time Decision Making, Berkeley, California, June 2016.

“Localization from paired comparisons,” Conference on Information Sciences and Systems (CISS), Princeton,
New Jersey, March 2016.

. “1-bit matrix completion,” Information and Inference Best Paper Prize Meeting, Oxford, United Kingdom,

August 2015.
“Constrained adaptive sensing,” ISI World Statistics Congress, Rio de Janiero, Brazil, July 2015.

“Localization via paired comparisons,” ShanghaiTech Symposium on Data Science, Shanghai, China, June
2015.

. “Adaptive sensing for sparse images,” Lorentz Center Workshop on Transformations in Optics, Leiden, The

Netherlands, May 2015.

“Compressive sensing,” Lorentz Center Workshop on Transformations in Optics, Leiden, The Netherlands, May
2015.

“Localization via paired comparisons,” Department of Mathematics, University of Georgia, Athens, Georgia,
March 2015.

“Localization via paired comparisons,” Department of Statistics, University of Wisconsin, Madison, Wisconsin,
February 2015.

“Learning from pairwise comparisons,” Information Theory and Applications Workshop (ITA), San Diego, Cal-
ifornia, February 2015.

“Matrix recovery from coarse observations,” Foundations of Computational Mathematics (FoCM): Workshop
on Computational Harmonic Analysis, Image, and Signal Processing, Montevideo, Uruguay, December 2014.

“On the power and limits of adaptivity for sparse signal acquisition,” Georgia Institute of Technology School of
Industrial and Systems Engineering Statistics Seminar, Atlanta, Georgia, October 2014.

Short courses and symposia

1.

Symposium on “Low-dimensional dynamical systems in signal processing and data analysis,” at IEEE Int. Work.
on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2017.

Special session on “Signal processing and adaptive systems,” at Asilomar Conf. on Signals, Systems, and
Computers, 2017.

. “Low-rank matrix completion: An overview and some recent advances,” Minitutorial on Compressed Sens-

ing/Dimensionality Reduction, SIAM Annual Meeting, Pittsburgh, Pennsylvania, July 2017. (Part of a series of
lectures co-organized with Deanna Needell and Jeff Blanchard)
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4. Symposium on “Randomness and efficient computation in signal processing,” at IEEE Int. Work. on Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2015.

5. Mini-symposium on “Finding and exploiting structure in data,” at SIAM Conf. on Applied Linear Algebra,
2015.
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