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Executive Summary

Obtaining data from high-speed boundary layers requires either rare flight tests, large-scale, expensive ex-
perimental facilities or massive, challenging numerical simulations. The former two approaches provide
challenges due to short run times, limited diagnostic accessibility, sensitivity of the flow to intrusive mea-
surement techniques and stringent resolution requirements (spatial and temporal).

This work sought to lay the foundation for predictive tools which exploit recent developments in incom-
pressible turbulent flows related to resolvent analysis, or the identification of the natural amplification and
nonlinear interaction mechanisms of the equations of motion.

The modeling advances developed under this grant offer the potential to lead to significant savings in the
prediction of energetic turbulent structures in compressible turbulent boundary layers (relative to full sim-
ulations). A full predictive capability would require learning the relative weights (magnitudes and phases)
of these structures (mode shapes), which is determined by nonlinear interactions. The focus of this work
was on the linear dynamics of compressible flows; study of the nonlinear forcing is reserved for future work.
The key conclusion is that the equations of motion support Morkovin’s hypothesis over a broad range of
conditions as Mach number increases, with the important implication that developments in incompressible
flows may be exploited for the compressible regime.

This research resulted in one manuscript to be published in the Journal of Fluid Mechanics [1], one currently
under review [2], one in preparation [3] and two AIAA conference papers [4], [5].
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1 Introduction and Objectives

The work performed under this grant pertained to the extension of the resolvent analysis developed by
McKeon & Sharma (2010)[6] for incompressible wall turbulence to compressible boundary layer flows. The
over-arching goal was to exploit recent developments in order reduction, sparsity and structure in the Navier-
Stokes equations to provide the Air Force with a suite of tools of increasing complexity (laptop to HPC) and
fidelity to model high-speed turbulent boundary layers (canonical and practical).

Obtaining data from high-speed boundary layers requires either rare flight tests, large-scale, expensive ex-
perimental facilities or massive, challenging numerical simulations. The former two approaches provide
challenges due to short run times, limited diagnostic accessibility, sensitivity of the flow to intrusive mea-
surement techniques and stringent resolution requirements (spatial and temporal). In addition, the flow
state can be sensitive to facility conditions, such as freestream noise and tripping configuration. Typically
point measurements, wall-normal line profiles and/or surface information may be obtained, usually of a
limited number of variables. Direct Numerical Simulations, which would provide full-field information on
the complete state, exist, but are numerically challenging due to algorithmic demands nd the enormous res-
olution requirement. Further, detailed characterization of flow inlet and boundary conditions is required to
obtain agreement with experiments. Impressive calculations can be performed, e.g. [7, 8], but remain out of
reach for complex geometries. Large Eddy Simulations (LES) and Reynolds-Averaged Navier-Stokes calcu-
lations (RANS) of compressible boundary layers require insight specific to compressible flows to implement
appropriate wall, sub-grid scale and/or eddy viscosity type models.

Thus, there is an opportunity to lay the foundation for predictive tools which exploit recent developments in
incompressible turbulent flows related to resolvent analysis, or the identification of the natural amplification
and nonlinear interaction mechanisms of the equations of motion.

The specific objectives of the research, as listed in the original proposal, were as follows.

Develop and validate compressible resolvent analysis for the modeling of compressible wall
turbulence, and (secondary) advance the capability to incorporate coupling between turbulence
and a wall with generalized properties.

1. Develop resolvent analysis for wall turbulence with non-zero Mach number. The essence of this develop-
ment will be the identification of a suitable norm for decomposition of the resolvent in the wall-normal
direction, the choice of which and implications thereof - is less obvious than in incompressible flow.
Identify and exploit mathematical simplifications analogous to those identified above for incompress-
ible flow (if any but there is reason to believe that the low rank nature of wall turbulence is not an
exclusively incompressible phenomenon).

2. Validate compressible resolvent analysis against experimental and numerical observations in the lit-
erature. Investigate and document different mechanisms underlying compressible and incompressible
wall turbulence, as illuminated by the resolvent analysis. Identify origins of structure, reasons for
similarities and differences, and Reynolds number and wall-normal scalings for the compressible case.

A secondary objective was also proposed:

3. Advance the modeling of turbulence-wall interaction via the incorporation of general linearized wall
boundary conditions into the compressible resolvent analysis. Consider the coupled interaction of
wall turbulence with surface of various properties corresponding to compliant, vibrating and morphing
(actively driven) walls.

It was anticipated that progress on this secondary objective would be limited given the proposed scope and
duration of the main project.

The proposed timeline is outlined in Figure 1. The project essentially ran to this schedule, with the exceptions
that only a small portion of the final year was devoted to considering wall boundary conditions, and that the
availability of personnel and the difficulty of the project ultimately led to staffing by postdoctoral scholars
rather than GRAs. Dr. Scott Dawson and Dr. Jane Bae performed this role.
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Figure 1: Timeline from original proposal (essentially reflective of actual schedule).

2 Background

The analysis employed in this work is a logical development of the resolvent analysis laid out by McKeon
& Sharma [6] for incompressible turbulent flows. The essence of that approach is described in Figure 2.
The resolvent is the transfer function between the nonlinear terms in the Navier-Stokes equations, which
are treated as a forcing of the linear dynamics, and the linear state response (here indicated in terms of
the velocity fluctuations, i.e. for a divergence-free basis, relative to the turbulent mean). The analysis
accounts for the amplification of forcing input due to the non-normality of the resolvent [9], which is similar
to the linearized Navier-Stokes operator familiar from hydrodynamic stability theory although without the
restrictions on the magnitude of the perturbation from the equilibrium (laminar) state. Analysis of the
resolvent using a singular value decomposition (SVD) subject to an energy norm at each spatio-temporal scale
reveals that it can be approximated in an extremely low-order fashion when there is a physical mechanism
extracting energy from the mean flow [10]. Equivalently, the spatio-temporal basis used in the analysis
efficiently identifies forcing structure which is preferentially amplified by the resolvent, giving rise to the
“most likely observable” response mode shapes at each scale. The analysis can be considered to be the
equation-driven equivalent of data analysis techniques such as Proper Orthogonal Decomposition, which
require full-field information rather than simply the governing equations [11]. Full details of the analysis will
be laid out in the context of compressible turbulent boundary layers in Section 3 below.

Notably, the cost of resolvent analysis is significantly less than high performance computations, since it
rests on linear algebra techniques which have been the subject of intensive development in other fields in
recent years. For a one-dimensional turbulent mean profile, i.e. a quasi-parallel assumption for a turbulent
boundary or a periodic domain for an internal flow, the cost of performing the SVD is so low that analysis
can proceed on a laptop computer. More computing power is required for two-dimensional mean flows - with
associated data storage limitations which have limited the size of the domain which can be considered - but
still at the local core rather than national HPC facility level.

A recent review of resolvent analysis for incompressible wall turbulence and an overview of what can be
learned about turbulence structure and self-sustaining mechanisms is given in [12]. The approach has now
been used to analyze a wide range of turbulent flow configurations. The focus of our current work in
incompressible wall turbulence now pertains to “closing the loop”, or determining the characteristics of the
nonlinear forcing that lead to self-sustaining turbulence and consistency with the turbulent mean profile
used in forming the resolvent. As will be discussed below, these efforts can be said to have direct relevance
to compressible turbulent boundary layers as a result of the work performed under this grant.
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Figure 2: A high-level description of the turbulence process in resolvent analysis. The lower block contains
the linear dynamics of the fluctuations interacting with the mean velocity profile. After [6].

Figure 3: Complexity hierarchies.

3 Approach

The approach taken was to develop a suite of tools to address increasing importance of the effects of com-
pressibility and model complexity, ranging from analytical approximations of reoslvent mode shapes in an
incompressible turbulent boundary layer with a passive scalar to detailed information about the relative
magnitudes of thermodynamic and velocity fluctuations for Mach number M > 1. A schematic of the steps
in this approach is shown in Figure 3.

Resolvent analysis for a passive scalar in a turbulent boundary layer was developed first, during which period
a method for semi-analytic approximation of the most amplified resolvent modes was also developed and used
to reconstruct scalar variance and velocity-covariance statistics, demonstrating the efficacy of the analysis
for such flows.

Our efforts then focused on compressible turbulent boundary layers, i.e. coupled velocity and thermody-
namic variables at non-zero Mach number. Considerable effort was invested in determining the signature of
compressibility in resolvent analysis, the differences between compressible and incompressible mean flows,
and the norm to be used in the SVD.

Finally, an assessment of the differences between the results of resolvent analysis for incompressible and
compressible turbulent boundary layers was made with a view to assessing Morkovin’s hypothesis in the
context of resolvent analysis, and (related) to determining which, if any, elements of the progress made in
the linear and nonlinear analysis of incompressible wall turbulence were also relevant for Mach numbers
greater than one.

6
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4 Summary of Results

An outline of key results and outcomes from the grant is given in this section. The archival manuscripts
which give full information are identified (and appended to this report).

4.1 Resolvent formulation for compressible turbulent boundary layers

For a fully developed, locally parallel, compressible flow with the directions x1, x2 and x3 signifying the
streamwise, wall-normal, and spanwise directions, respectively, the state variable becomes q = [q1, q2, q3, q4, q5]

� =

[u1, u2, u3, ρ, T ]�. As in the incompressible analysis, it is decomposed using the Fourier transform in homo-
geneous directions and time,

q(x1, x2, x3, t) =∭
∞

−∞
q̂(x2;κ1, κ3, ω)e

i(κ1x1+κ3x3−ωt)dκ1dκ3dω, (1)

where (̂⋅) denotes variables in the transformed domain, and the triplet (κ1, κ3, ω) identifies the streamwise
and spanwise wavenumbers and the temporal frequency, respectively. Here, the superscript � denotes the
transpose for real variables (vectors) and the conjugate transpose for complex values.

The mean turbulent state, q̄(x2) = [ū1(x2),0,0, ρ̄(x2), T̄ (x2)]
�, corresponds to (κ1, κ3, ω) = (0,0,0) and is

assumed to be known. In our work, this was obtained from publicly available DNS databases, in particular
the adiabatic wall studies of Bernadini & Pirozzoli [13, 14]. The parallel-flow assumption, which is reasonable
as the base flow variations depend on the viscous time scale compared to the much faster convective times
scale for fluctuations, leads to a significantly more straightforward interpretation of underlying physical
mechanisms than for two-dimensional mean flows, which are reserved for future work.

The governing equations for the compressible turbulent boundary layer can be rewritten in the Fourier
domain for each (κ1, κ3, ω) ≠ (0,0,0) in the form

q̂(x2;κ1, κ3, ω) = [−iωI + L(κ1, κ3, ω)]
−1
f̂(x2;κ1, κ3, ω) = Hf̂(x2;κ1, κ3, ω), (2)

where L is the linearised operator of the governing equations around the supersonic turbulent mean profile
[15] and f̂ contains the nonlinear terms. The operator H = [−iωI + L(κ1, κ3, ω)]

−1
is called the resolvent

operator and exists if there are no eigenvalues of L with zero real part.

For the compressible boundary layer, the boundary conditions at the wall are given by

ui(x2 = 0) = 0, T (x2 = 0) = T̄ (x2 = 0). (3)

The boundary conditions on the velocity fluctuations are the usual no-slip conditions, and the boundary
condition on the temperature fluctuation is consistent for a gas flowing over a solid wall.

The boundary conditions at the freestream are given by

ui(x2 →∞), ρ(x2 →∞), T (x2 →∞) < ∞, (4)

which are less restrictive than requiring all fluctuations to be zero at infinity. However, in supersonic flow,
waves may propagate to infinity and this boundary condition allows the waves with constant amplitude to
be included.

Note that some of the norm and mean profile studies were performed for compressible planar Couette flow
rather than boundary layer because the simplicity of the mean profile in the laminar case led to some simpler
analytical developments with regards to the sensitivity of the eigenspectrum and modeling of resolvent mode
shapes.

In what follows, superscript + denotes wall units defined in terms of ρ̄ and µ at the wall and the friction
velocity uτ .

7
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Figure 4: Leading resolvent modes for laminar planar Couette flow (a) M = 0, Re = 1000, (κ1, κ3) =

(5π/3,10π/3), c = 0.5; (b) M = 2, Re = 2000, (κ1, κ3) = (5π/3,10π/3), c = 0.5, Chu norm; (c) M = 2,
Re = 2000, (κ1, κ3) = (5π/3,10π/3), c = 0.5, kinetic energy pseudonorm. Red and blue represent positive and
negative fluctuations about the mean.

4.2 Effect of norm and mean velocity profile

The identification of a suitable norm (inner product) is required to perform an SVD of the resolvent. This is
most naturally simply the 2-norm, i.e. the kinetic energy norm, for incompressible flows, but this becomes
a semi-norm for the compressible case, and other definitions can be constructed here. Chu [16] introduced a
norm that is familiar from compressible stability studies and which eliminates pressure-induced (compression)
work:

2E = (q,q)E = ∥q∥2
E = ∫

∞

0
(ρ̄u�iui +

T̄

γρ̄M2
ρ�ρ +

ρ̄

γ(γ − 1)T̄M2
T �T)dx2 (5)

This norm was adopted and found to give interpretable results for compressible resolvent analysis.

Comparisons between the leading response modes (first singular functions) using the kinetic energy semi-
norm for incompressible and compressible Couette flow, and the Chu norm for M = 2 are shown in Figure 4.
Compressibility has a noticeable effect on the mode shapes shown, but it is clear that some of this can be
attributed to the difference in norm applied.

The mean profile used (compressible or incompressible) also has an effect, as shown in Figure 5. The velocity
mode amplitude obtained for this flow from the compressible analysis using an incompressible mean profile
and semi-norm are almost indistinguishable from their incompressible counterparts [5].

8
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Figure 5: Leading resolvent modes amplitudes in planar Couette flow for incompressible (IC in the figure
legend), compressible (C, with M=2), incompressible with a compressible mean, compressible with an in-
compressible (kinetic energy pseudo-norm, and compressible with an incompressible mean and pseud-norm,
with Re = 1000, kx = 5π/3, kz = 10π/3, and c = ω/kx = 0.5.

4.3 Passive scalar modeling

The incompressible resolvent analysis was first extended to account for a passive scalar, i.e. adding a scalar
equation which is driven by, but uncoupled from, the momentum and continuity equations. The analysis then
provides a scalar mode shape additional to the other state variables, corresponding to the most amplified full
state input forcing. The mode shapes were found to be relatively insensitive to the inclusion or weighting
of the magnitude of the temperature response in the norm, meaning that the kinetic energy dominates the
resolvent in the presence of this kind of scalar and a kinetic energy semi-norm can be used. The passive
scalar modeling results are described in [4]; a description of two key results follows.

Examination of the scalar equation led to the identification of self-similar scaling for the scalar response.
The scalar equation becomes self-similar for any two conditions and wavenumber triplets which obey

ω1Pr1 = ω0Pr0, kx1Pr1 = kx0Pr0, k2
x1 + k

2
z1 = k

2
x0 + k

2
z0. (6)

These results are complementary to the self-similar scalings of the velocity modes that were established by
[10].

The resolvent framework can also be used to model single point statistics. In [10], the resolvent framework
was used to model energy spectra and densities of streamwise velocity in turbulent channel flow; this approach
was extended to model passive scalar statistics in a turbulent boundary layer.

The DNS velocity and temperature profiles were obtained from the zero-pressure-gradient turbulent boundary
layer simulations of [17]. The mean profiles and turbulent statistics are computed from data collected at a
constant streamwise location, corresponding to a friction Reynolds number of approximately 900. The scalar
field has unit Prandtl number, and the dimensionless scalar field has a value of unit at the wall, and zero
in the far field. In contrast to the experimental data, here we keep the mean scalar field with an opposite
gradient to the mean streamwise velocity.

9
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Following [10], the premulitiplied streamwise energy density of the resolvent model is given by

Euu(y;kx, kz, c) = k
2
xkz [σ1(kx, kz, c)∣u1(y;kx, kz, c)∣]

2
, (7)

where σ1 is the leading singular value, and u1 is the streamwise component of the leading response mode,
and the associated integrated energy density as a function of wall-normal location:

Euu(y) =∭
kx,kz,c

Euu(y;kx, kz, c)d log(kx)d log(kz)dc. (8)

We may similarly define the equivalent quantities for the fluctuating temperature field:

ETT (y;kx, kz, c) = k
2
xkz [σ1(kx, kz, c)∣T1(y;kx, kz, c)∣]

2
(9)

ETT (y) =∭
kx,kz,c

ETT (y;kx, kz, c)d log(kx)d log(kz)dc, (10)

where T1 is the temperature component of the leading resolvent response mode. We can further consider
the cross-correlation between streamwise velocity and temperature:

EuT (y;kx, kz, c) = k
2
xkzσ1(kx, kz, c)u

∗
1(y;kx, kz, c)T1(y;kx, kz, c) (11)

EuT (y) =∭
kx,kz,c

EUT (y;kx, kz, c)d log(kx)d log(kz)dc. (12)

It was demonstrated in [10] that introducing an empirical weighting function into the integral in equation 8
can give a quantitatively accurate fit to the equivalent directly measured quantities in numerical simulations.
For example, we may introduce a weight function Wuu into the integral in equation 8 to give the weighted
energy intensity

Euu,W (y) =∭
kx,kz,c

Wuu(c)Euu(y;kx, kz, c)d log(kx)d log(kz)dc. (13)

Wuu may be computed using a regularized least-squares optimization.

The same methods may be applied to predict the scalar fluctuation energy, as well as the covariance between
u and T . The latter is shown in Figure 6. Not only can an accurate prediction be made when directly
fitting the corresponding (and similarly defined) weight functions WTT and WuT , but it is further observed
that using only Wuu also gives estimated statistics that match the main features of the scalar statistics
of the DNS data. The fact that the streamwise velocity is typically the dominant component in leading
resolvent response modes seems to be part of the underlying reason as to why statistics in this component
are easiest to predict using resolvent analysis [10]. The similarity between the streamwise velocity and
scalar components of response modes, along with the strong statistical correlation between these fluctuating
quantities in turbulent shear flows (e.g. [18]), suggests the utility of the resolvent framework for modeling
scalar fluctuations. The results from this grant appear to indicate that this inference is well-founded.

4.4 Semi-analytical mode shope predictions

A methodology for approximating leading resolvent (i.e., pseudospectral) modes for quasi-parallel shear-
driven flows using prescribed analytic functions was developed [1]. These functions arise from the considera-
tion of wavepacket pseudoeigenmodes of simplified linear operators [19], and give an accurate approximation
of the class of nominally wall-detached modes that are centred about the critical layer.

In essence, the method reduces the space of possible mode shapes from an infinite-dimensional space (which
in practice is approximated by a high dimensional space defined by the numerical discretisation) to a two-
dimensional family of functions. Once this template function is identified, the optimal shape parameters
(which govern the width and phase variation of the mode) may be found as the minimisers of a cost function,
which is directly related to the resolvent norm of the underlying operator. In practice, this amounts to finding
the roots of a pair of coupled equations, which may be arranged to be polynomials in the shape parameters.
In addition, it is possible to derive differential equations in parameter space that govern the evolution of

10
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Figure 6: Measured and predicted/fitted scalar energy density (left) and and streamwise velocity-scalar
covariance (right).

these optimal shape parameters. Using this method, optimal mode shapes may be found by finding the
appropriate root of a polynomial. In addition, the variation in mode shape as a function of wavenumber and
Reynolds number may be captured by evolving a low dimensional differential equation in parameter space.

This characterisation provides a theoretical framework for understanding the origin of structures observed
in turbulent boundary layers, and allows for rapid estimation of dominant resolvent mode characteristics
without the need for operator discretisation or large numerical computations. The method remains accurate
even when the modes have some amount of “attachment” to the wall, and in particular large-scale and
very-large-scale motions, and sheds some additional light onto the classical lift-up and Orr amplification
mechanisms in shear-driven flows.

Figure 7 shows the comparison between results for the Squire operator and the full Navier–Stokes system
for laminar planar Couette flow. The latter analysis relies on additional simplifications to arrive at a scalar
differential operator which has a leading response mode (left singular vector) which approximates the wall-
normal vorticity component of the response mode of the Navier–Stokes resolvent operator.

Importantly, this method precludes the need for the formulation and decomposition of discretised linear op-
erators, leading to substantial reduction in computational cost. The extent of the reduction in computational
cost is dependent on the size of the discretisation, and on the extent and resolution of the parameter space
(e.g., wavenumbers and temporal frequencies) that one wishes to study.

4.5 Compressible turbulent boundary layer

The major portion of the research was devoted to analyzing compressible turbulent boundary layers [2]. Since
the properties of the resolvent mode are determine by the mean profiles (for this study of velocity, density and
temperature), different transformations were studied to determine whether the self-similarity associated with
the incompressible mean velocity could be recovered. The generalized semi-local transformation of Trettel
& Larsson [20] was found to give good collapse of the mean velocity profile in the inner (and logarithmic)
region over a range of Mach numbers. This transformation is given by

x∗2 =
ρ̄ (τw/ρ̄)

1/2
x2

µ̄
, (14)

ū∗1 = ∫
ū+1

0
(
ρ̄

ρ̄w
)

1/2
(1 +

1

2ρ̄

dρ̄

dx2
x2 −

1

µ̄

dµ̄

dx2
x2)dū+1 . (15)

Here, the subscript w indicates quantities evaluated at the wall and τw is the wall shear stress. The results
of this transformation are illustrated in figure 8(a) and (b), and an improved collapse of the mean velocity

11
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Figure 7: Comparison between true (numerically computed, ) and predicted ( ) mode amplitudes for
laminar Couette flow with Re = 1000 and kx = 100 and aspect ratios kz/kx ∈ {0.5,1,2,4,8}.

profile in the inner and logarithmic region for the various Mach numbers is achieved. This scaling gives rise
to a local Reynolds number at each wall-normal location

Re∗τ(x2) =
ρ̄(τw/ρ̄)

1/2δ
µ̄

(16)

such that x∗2 = (x2/δ)Re
∗
τ . While this transformation works well for the inner and logarithmic region, the

collapse is not as good for the outer region. We find that best collapse is achieved with the transformation

ū⋆1 = ū
+
1 (

ρ̄

ρ̄w
)

1/2
, (17)

which is equivalent to scaling the velocity with the semi-local u∗τ =
√
τw/ρ̄ instead of uτ =

√
τw/ρ̄w, and the

results are given in figure 8(c) and (d). A different transformation for the outer layer is expected, since the
transformation given in (15) is based on the idea that the momentum conservation is equivalent to the stress
balance condition, which only holds in the inner layer of nearly parallel shear flow at reasonable turbulence
Mach numbers. Note that despite the better scaling in the outer region, the collapse is not perfect, which is
a known issue for low Reynolds number boundary layer flows. Still, the inner, logarithmic and outer layer
all utilise the semi-local scaling to achieve a universal mean velocity profile.

The importance of this transformation to collapse the mean profile to the incompressible result lies in the
validity of the scaling results for resolvent mode shapes obtained in our earlier incompressible work, which
is explored in detail in [2].

We find that the resolvent operator is low-rank for the supersonic turbulent boundary layer as well as the
subsonic one. The energy contribution of ψk to the total response subject to broadband forcing in the wall-
normal direction can be quantified by σ2

k/(∑j σj). A three-dimensional depiction of the principal energy
contribution from the leading response mode ψ1 for the incompressible case and the M∞ = 4 as a function
of streamwise and spanwise wavenumbers and wave speeds is given in figure 9.

The results from the incompressible and compressible turbulent boundary layer show similarities in region
where the principal energy contribution of the incompressible boundary layer is concentrated and thus low-
rank approximation is valid for the incompressible regime. This region coincides with the most energetic
wavenumbers from DNS of incompressible channel flows [2]. The most notable difference between the in-
compressible and compressible results is in the triangular region where the freestream relative Mach number,
M∞, is greater than unity. The relative Mach number, defined as

M(x2) =
(κ1ū1(x2) − ω)M∞
(κ2

1 + κ
2
3)

1/2
T̄ (x2)

1/2
, (18)
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Figure 8: (a) Turbulent mean streamwise velocity profile ū+1(x
+
2), (b) the transformed velocity profile ū∗1(x

∗
2)

under the Trettel & Larsson scaling [20], (c) the defect velocity ū+1,∞−ū
+
1(x2/δ) with respect to the freestream,

and (d) the transformed defect velocity ū⋆1,∞ − ū⋆1(x2/δ). Lines indicate M∞ = 0 ( ), M∞ = 2,Reτ = 450
( ), M∞ = 2,Reτ = 900 ( ), M∞ = 3 ( ), and M∞ = 4 ( ).
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(a) (b)

Figure 9: Energy contained in the principal response mode relative to the total response, σ2
1/(∑j σ

2
j ), for

different streamwise and spanwise wavelengths and wall-normal distance for the (a) incompressible and (b)
M∞ = 4 cases. The contour surface is σ2

1/(∑j σ
2
j ) = 0.75 coloured by wall-normal distance from the wall.

can be understood as the local Mach number of the mean flow in the direction of the wavenumber vector,
[κ1, κ3]

�, relative to the wave speed at a given wall-normal location x2.

The region with M∞ > 1, i.e. the relatively supersonic region, increases with Mach number (not shown)
and grows from the wall towards the freestream. In linear stability theory, M has been used to classify
disturbances as subsonic, sonic, or supersonic depending on its value at the boundary layer [15, 9]. Moreover,
it has been shown that if M > 1, a compressible boundary layer is unstable to inviscid waves regardless of any
other feature of the velocity and temperature profiles [15]. Considering that the family of modes with M > 1
does not have any counterpart in incompressible boundary layers, it is expected that the most deviation
between the behaviour of the compressible and incompressible boundary layers occurs in this regime. In
particular, the irregular low-rank behaviour present in the relatively supersonic region in figure 9(b) is
due to the discrete acoustic eigenmodes of the system approaching the wave speed c, thus giving resonant
amplification of the resolvent operator [5]. Representative response mode shapes (Figure 10) also reflect the
emergence of the acoustic modes.

Due to the orthonormality constraint of the resolvent modes, the comparisons between the compressible
and incompressible resolvent modes above are made for for normalised response modes (̃qi)1. However, the
distribution of energy among the kinetic and thermodynamic variables for the supersonic cases can also be
examined. The ratio of turbulent kinetic energy to the sum of the mean-square density and temperature
fluctuations obtained from DNS [13, 14] as a function of x2 is shown in Figure 11. In particular, we plot

(
ET
EK

)

DNS

= γM2
∞

ρ̄ui,rmsui,rms

ρ2
rms/ρ̄

2 + T 2
rms/T̄

2
, (19)

where rms denotes the root-mean-squared fluctuations from DNS. For all wall-normal locations, the the ratio
increases with Mach number. Moreover, the ratio increases as a function of x2 for a fixed Mach number.
In order to compare the results from the resolvent modes to DNS, we define the energy ratio of the most
energetic mode as

(
ET
EK

)

res

=
ET
EK

(arg max
κ1,κ3

Φu1u1
(κ1, κ3)) , (20)

where Φu1u1 is the premultiplied streamwise energy spectra for the channel flow at Reτ = 550 obtained a
priori from [21]. The agreement between the ratio of kinetic and thermodynamic energy given by the most
energetic principal response mode of the resolvent analysis and the DNS is excellent in the logarithmic region.
The discrepancy in the outer region, especially for the higher Mach numbers, may be due to the larger value
of Re∗τ compared to the Reτ of the premultiplied spectra used to choose the wave parameters for the most
energetic modes. In the inner region, the estimated energy ratio plateaus, deviating from the DNS profile.

14
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Figure 10: The response modes (u1)1 for the (a) incompressible and (b) supersonic (M∞ = 2, Reτ = 450)
turbulent boundary layer with λ1/δ = 0.01, λ3/δ = 10, and c = 0.14 (blue), 0.26 (red), 0.38 (green). Reference
lines are x2 = x

c
2 ( ) and x2 = x

s
2 ( ).

This could be due to the increased contributions from relatively supersonic region, which is more prevalent
in the near-wall region. Additionally, it has been shown in [22] that the energetic contribution of structures
with convection velocities less than 10uτ is negligible in real turbulent flows, which corresponds to the region
where the mismatch is pronounced.

The observation that the correct energy distribution between ET and EK can be obtained by considering
the most energetic principal response modes in a wide range of wall normal locations is a useful tool in terms
of modelling and flow prediction.

4.6 Wall compliance

Our previous work has incorporated a compliant wall boundary condition into the incompressible resolvent
analysis [23, 24]. Development of the compressible equivalent was not achieved during the grant period;
however experiments were performed in a water tunnel to examine the response of a compliant surface
to a forced turbulent boundary layer under AFOSR (FA 9550-16-1-0361) and ONR (N00014-17-1-2960)
funding during the same period. The positive comparison between the observed response and the resolvent
predictions is sufficient to give confidence in the modeling capability for incompressible flows. However a
dedicated analysis for the compressible resolvent analysis with wall parameters that will be relevant for
compressible flows in air (which will differ significantly due to the mass ratio between air and most walls) is
required to make progress on this topic.
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Figure 11: The values of ET /EK at the most energetic wave parameters as defined in Equation (20) for the
principal resolvent modes (×) and DNS (solid line) for M∞ = 2, Reτ = 450 (blue), M∞ = 3 (red), and M∞ = 4
(green).

5 Conclusions and Outlook

Resolvent analysis has been used to study the most amplified structures and associated gain characteristics in
compressible turbulent boundary layers under a quasi-parallel assumption and with adiabatic walls. Under
a semi-local scaling which collapses incompressible and compressible mean velocity profiles, the resolvent
reveals the same characteristics across Mach number close to the wall, giving support to Morkovin’s hypoth-
esis. For an increasing wall-normal range, which grows from the wall outwards with increasing Mach number
and which is determined by the local Mach number of the flow, the presence of acoustic eigenmodes changes
the response, leading to localization in the wall-normal direction around the relative sonic line instead of the
critical layer. The balance between thermodynamic and kinetic energy in the leading resolvent modes has
promising agreement with DNS results.

A semi-analytical approach for predicting mode shapes has been proposed and validated for wall detached
modes using pseudo-wavepacket theory. This enables the determination of mode structure without perform-
ing an SVD.

Resolvent analysis for an incompressible turbulent boundary layer with passive scalar was also developed
and used to predict velocity-temperature covariance statistics using a simple weighting.

The modeling advances developed under this grant offer the potential to lead to significant savings in the
prediction of energetic turbulent structures in compressible turbulent boundary layers (relative to full sim-
ulations). A full predictive capability would require learning the relative weights (magnitudes and phases)
of these structures (mode shapes), which is determined by nonlinear interactions. The focus of this work
was on the linear dynamics of compressible flows; study of the nonlinear forcing is reserved for future work.
The key conclusion is that the equations of motion support Morkovin’s hypothesis over a broad range of
conditions as Mach number increases, with the important implication that developments in incompressible
flows may be exploited for the compressible regime.
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The resolvent formulation of the Navier–Stokes equations gives a means for the char-
acterisation and prediction of features of turbulent flows—such as statistics, structures
and their nonlinear interactions—using the singular value decomposition of the resolvent
operator based on the appropriate turbulent mean, following the framework developed
by McKeon & Sharma (2010). This work will describe a methodology for approximating
leading resolvent (i.e., pseudospectral) modes for shear-driven turbulent flows using
prescribed analytic functions. We will demonstrate that these functions, which arise
from the consideration of wavepacket pseudoeigenmodes of simplified linear operators
(Trefethen 2005), in particular give an accurate approximation of the class of nominally
wall-detached modes that are centred about the critical layer. Focussing in particular
on modelling wall-normal vorticity modes, we present a series of simplifications to the
governing equations that result in scalar differential operators that are amenable to such
analysis. We validate our method on a model operator related to the Squire equation, and
show for this simplified case how wavepacket pseudomodes relate to truncated asymptotic
expansions of Airy functions. We demonstrate that the leading wall-normal vorticity
response mode for the full Navier–Stokes equations may be accurately approximated
by considering a second order scalar operator, equipped with a non-standard scalar
inner product. Using this method, optimal mode shapes may be found by finding the
appropriate root of a polynomial. In addition, the variation in mode shape as a function
of wavenumber and Reynolds number may be captured by evolving a low dimensional
differential equation in parameter space. This characterisation provides a theoretical
framework for understanding the origin of observed structures, and allows for rapid
estimation of dominant resolvent mode characteristics without the need for operator
discretisation or large numerical computations. We explore regions of validity for this
method, and in particular find that it remains accurate even when the modes have some
amount of “attachment” to the wall. In particular, we demonstrate that the region of
validity contains the regions in parameter space where large-scale and very-large-scale
motions typically reside. We relate these findings to classical lift-up and Orr amplification
mechanisms in shear-driven flows.

1. Introduction

The identification of pertinent structures that arise in the transition towards, and
as coherent features within, turbulent wall-bounded flows has been the focus of much
research over the past several decades. Qualitatively, such analysis includes identification
and classification of empirically-observed structures, such as near-wall streaks (Kline et al.

† Email address for correspondence: sdawson5@iit.edu
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2 S. T. M. Dawson and B. J. McKeon

1967), hairpin structures (Theodorsen 1952; Head & Bandyopadhyay 1981) and their
grouping in large-scale motions (Zhou et al. 1999; Guala et al. 2006), and very large-scale
motions or superstructures (Kim & Adrian 1999; Guala et al. 2006; Hutchins & Marusic
2007). For more details concerning the (sometimes debated) properties, taxonomy and
dynamics of such structures, see reviews such as Robinson (1991), Smits et al. (2011),
and Jiménez (2018), and references within.

On a quantitative level, a starting point for the prediction of coherent structure
comes from consideration of properties of the governing equations, most typically in
linearised form. Features emergent in wall-bounded turbulent flows often bear little
resemblance to modes identified from classical stability analysis (Drazin & Reid 2004),
where two-dimensional modes are predicted to be the least stable by Squire’s theorem,
and mean-linearised flows often have only stable eigenvalues (Reynolds & Tiederman
1967; Del Alamo & Jimenez 2006; Cossu et al. 2009). Perhaps the most important
realisation in the study of such linear operators is the fact that their non-normality
can result in high amplification (in either the time or frequency domain), which cannot
be predicted from their spectra alone (Böberg & Brösa 1988; Butler & Farrell 1992;
Reddy & Henningson 1993; Trefethen et al. 1993; Schmid & Henningson 1994; McKeon
& Sharma 2010; Bamieh & Dahleh 2001; Jovanović & Bamieh 2005; Schmid 2007; Hwang
& Cossu 2010; Schmid & Henningson 2012). Operator nonnormality is responsible for
both finite-time energy growth of the linear system from a from a given initial condition,
and the amplification resulting from continual forcing (be it stochastic or harmonic).
Indeed, these two notions are mathematically related via the Kriess constant of the
operator (Schmid 2007).

While most initial works considered laminar base flows (with one notable exception be-
ing Farrell & Ioannou (1993), who considered mean-linearised equations using stochastic
forcing), more recent developments have used similar methods for prediction of turbulent
features by linearizing about states computed from turbulent data and/or models (which
is most often a mean state). For example, Del Alamo & Jimenez (2006) and Cossu
et al. (2009) have demonstrated transient growth of near wall-streaks and large scale
motions for turbulent channel and zero-pressure-gradient boundary layers respectively,
while Schoppa & Hussain (2002) has showed that a turbulent mean with the addition
of low-speed streaks can give rise to the growth of structures in the near-wall region of
turbulent channel flow.

The characterisation of the nonlinear Navier–Stokes equations in the frequency domain
as the linear resolvent operator acting on the nonlinear “forcing” terms, as developed by
McKeon & Sharma (2010) has been particularly fruitful for elucidating operator-based
predictions of structure in wall-bounded turbulence, including very large scale motions
and their scaling (McKeon & Sharma 2010), and hairpin structures (Sharma & McKeon
2013). McKeon (2017) summarizes further developments in this area. Note that this
approach has also been applied in other contexts, such as in the study of cavity (Gómez
et al. 2016; Qadri & Schmid 2017), airfoil (Yeh & Taira 2018), and jet (Garnaud et al.
2013; Jeun et al. 2016; Towne et al. 2018; Schmidt et al. 2018) flows.

While such developments are recent and ongoing, many of the underlying physical
mechanisms in shear flows have been understood for at least several decades. These
include the Orr mechanism (Orr 1907; Jiménez 2013), which amplifies upstream-leaning
disturbances while tilting them towards the downstream direction, and the lift-up mech-
anism (Landahl 1980, 1975), in which wall-normal disturbances lead to large streamwise
responses. Streamwise inhomogeneity provides an additional mechanism for amplification
of disturbances (Chomaz 2005; Hack & Moin 2017), which, as with the Orr and lift-up
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mechanisms, arises through different aspects of non normality of the underlying linear
operator (Symon et al. 2018).

Recent results concerning the pseudospectral properties of certain matrices (Trefethen
& Chapman 2004) and linear differential operators by (Trefethen 2005) have revealed
criteria by which pseudomodes exist that are localised in both space and spatial frequency,
and are highly amplified by the associated resolvent operator. This method of analysis
has been used, for example, in the analysis of swept wing flow by Obrist & Schmid (2010,
2011).

An alternative route to quantitatively define coherent structure in turbulent flows
is to consider data collected from simulations or experiments. The proper orthogonal
decomposition (Lumley 1967), which computes spatial modes of highest energy in a
dataset, is perhaps the most ubiquitous such method. The original formulation computes
a set of energetically optimal modes for each temporal frequency. This method was
recently shown by Towne et al. (2018) to give modes equivalent to resolvent response
modes, under the assumption that the true forcing to the system, arising from the
nonlinear term in the Navier–Stokes equations, results in uncorrelated resolvent response
mode expansion coefficients. Note that quantitatively correct prediction of characteristics
of wall-bounded turbulence using resolvent-based approaches can be improved by consid-
ering the properties of the nonlinear forcing terms, which are dependent on second order
turbulence statistics (Zare et al. 2017). Connections may also be made between resolvent
analysis and the dynamic mode decomposition (Schmid & Sesterhenn 2008; Schmid
2010; Rowley et al. 2009), which computes spatial modes from the eigendecomposition
of an linear operator that best matches the evolution of the data between adjacent
snapshots, as described in Sharma et al. (2016) and Towne et al. (2018). A widely used
POD variant computes modes without filtering into temporal frequencies, which gives a
basis that can be used to project the Navier–Stokes equations onto to obtain a reduced-
order model (Berkooz et al. 1993; Holmes et al. 2012). Note in particular that this has
been used to describe the dynamics of coherent structures in wall-bounded turbulent
flows, such as those associated with the near-wall cycle (Aubry et al. 1988). Reviews of
modal decomposition techniques, and their use in reduced-order modelling, may be found
respectively in Taira et al. (2017) and Rowley & Dawson (2017).

With the exception of very simple systems, the identification of mode shapes typically
requires resorting to numerical methods, applied either to the discretised (and most-
often linearised) governing equations, or to data collected from experiments or numerical
simulations of their evolution. In this work, we describe methods to approximate mode
shapes and amplification mechanisms without requiring the formation of discretised
operators, for shear flows with arbitrary mean velocity profiles. In section 2, we provide
a review of the mathematical concepts that underpin our analysis. Section 3 presents the
formulation and sample results for resolvent analysis of a turbulent boundary layer, and
presents a sequence of simplifications to the governing equations that retain the correct
features of the leading resolvent response mode. In Section 4, we detail a procedure for
estimating mode shapes by solving an optimisation problem using a prescribed template
function, which may be derived either from approximations to exact solutions of the
given operator, or from the wavepacket pseudomode theory introduced in section 2.

2. Mathematical preliminaries: The resolvent and pseudospectra of a
linearised operator

This section presents material on the pseudospectral analysis of a mean-linearised
system, which will provide background for the analysis in later sections. Section 2.1 intro-
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duces the resolvent formulation of a nonlinear system. The singular value decomposition
of the resolvent and its connection with pseudospectra is discussed in Section 2.2. Section
2.3 discusses the underlying theory behind the existence of wavepacket pseudospectral
modes, which will be related to our subsequent analysis.

2.1. The resolvent form of a nonlinear dynamical system

We begin by considering a nonlinear dynamical system

u̇ = g(u). (2.1)

Let u0 denote the temporal mean of the state of the system, where we are assuming that
the dynamics are statistically stationary. Expressing the system state as u(t) = u0+u′(t),
we may rewrite equation 2.1 as

u̇′ = g(u0 + u′) =
∂g

∂u

∣∣∣∣
u0

u′ + f(u), (2.2)

where we have linearised about the mean state, but retained the full dynamics of the
system with the remaining nonlinear dynamics f(u). Taking a Fourier transform in time,
equation 2.2 may be expressed as(

−iω − ∂g

∂u

∣∣∣∣
u0

)
û′ = f̂(u),

where ·̂ denotes a Fourier-transformed function. The mean-subtracted state of the system
may then be expressed by

û′ =

(
−iω − ∂g

∂u

∣∣∣∣
u0

)−1

f̂(u′) = Hωf̂(u′), (2.3)

where we refer to Hω as the associated resolvent operator for this system for a given
frequency ω, where we are assuming here that this inverse exists (i.e., that iω is not an

eigenvalue of ∂g
∂u

∣∣∣
u0

). It is important to note that we have not made any approximations

to the nonlinear system at this point, and have only made the assumption that the system
is statistically stationary in time with a well-defined mean.

2.2. The singular value decomposition of the resolvent operator

From equation 2.3, the properties of the mean-subtracted state u′ will depend both
on the nature of the nonlinear term f̂ , and the properties of the linear operator Hω =

(−iω + L)−1, where following on from section 2.1, we let L = − ∂g
∂u

∣∣∣
u0

. In particular, if

Hω amplifies a small number of directions, or “modes” to a much larger degree than all
others, then so long as these directions are excited to some extent by f̂ , this can allow
prediction of the dominant features of u′ by studying only Hω.

More precisely, we consider the singular value decomposition of the resolvent operator

Hω =
∞∑
j=1

σjψjφ
∗
j , (2.4)

with σk > σk+1 for all k. For the remainder of this work, we will consider Hω to be a
discretised operator, with a corresponding singular value decomposition (SVD) defined
in the same manner as 2.4, but with a finite sum of modes. The SVD of a linear operator
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requires the definition of an inner product (or more precisely, inner products on both the
input and output spaces), which prescribes how the adjoint is prescribed and computed
(and also induces the norms used in defining various properties of the SVD). For discrete
operators, we may characterise an inner product by a positive definite weighting matrix
M for which

〈x1,x2〉 = xT̄1 Mx2, (2.5)

where ·T̄ denotes the conjugate transpose. If M characterises the inner product on the
spaces containing both the forcing and response functions of a finite-dimensional linear
operator L (which we consider the discretisation of a linear operator L), the adjoint
L∗ satisfies 〈Lx1,x2〉 = 〈x1,L∗x2〉, from which one may show that L∗ = M−1LT̄M .
Throughout this paper we will largely work with (infinite-dimensional) operators acting
on a continuous domain, with the understanding that numerical computation of the SVD
is performed on a finite-dimensional discrete approximation.

For some aspects of this work, it will be convenient to think of the leading singular
values and vectors of Hω as defined in the following manner:

σ1 = max
‖φ‖=1

‖Hωφ‖ := ‖Hω‖, (2.6)

ψ1 = argmax
ψ: ‖ψ‖=1

‖H∗ωψ‖, (2.7)

φ1 = argmax
φ: ‖φ‖=1

‖Hωφ‖, (2.8)

where here and throughout we use the spectral norm when taking the norm of an operator.
Note that we also have the relationship ψ1 = σ−1

1 Hωφ1, which may also be rearranged as
φ1 = σ1H−1

ω ψ1. In other words, φ1 gives the shape of the forcing which gives rise to the
largest amplification (a factor of σ1) upon the application of the operator Hω, the result
of which is the (scaled by σ1) response mode ψ1. It will also be useful to recognise that
these singular values and vectors are related to the smallest singular values and vectors
of H−1

ω = (−iω + L), by

σ1 =

(
min
‖ψ‖=1

‖H−1
ω ψ‖

)−1

, (2.9)

ψ1 = argmin
ψ: ‖ψ‖=1

‖H−1
ω ψ‖, (2.10)

φ1 = argmin
φ: ‖φ‖=1

‖
(
H−1
ω

)∗
φ‖. (2.11)

In this work, we will make use of these definitions, that allow us to define leading singular
values and vectors as solutions to an optimisation problem. Roughly speaking, we will
search for analytic functions that become as small as possible upon the action of (−iω+
L) = H−1

ω , and reason from equation 2.10 they will be close approximations to leading
resolvent response modes.

These ideas may be formalised as follows. For a linear operator L and some ε > 0,
define the ε-pseudospectrum as a set Λε(L) ⊂ C satisfying

Λε(L) = {z : (L+ E)u = zu, for some u and E , with ‖E‖ 6 ε} . (2.12)

Here E is an operator mapping between the same spaces as L. Note in particular that
we have the equivalent definition of pseudospectra based on the norm of the resolvent:

z ∈ Λε(L)\Λ(L) ⇐⇒ ‖(−z + L)−1‖ > ε−1,

where here the \ operator refers to set exclusion. In particular, for any z ∈ C, εz =
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6 S. T. M. Dawson and B. J. McKeon

min{ε : z ∈ Λε(L)} = σ−1
1 (z), where σ1(z) is the largest singular value of (−z + L)−1.

Furthermore, the corresponding pseudoeigenvector u satisfying (L+ E)u = zu, for some
E with ‖E‖ = εz is the left singular vector of (−z + L)−1 corresponding to σ1(z).
Note that the presence of the operator norm in the definition means that, unlike when
looking at the spectrum, the definition of pseudospectra requires that we work in a vector
space equipped with a norm, which the ε-pseudospectrum associated with an operator is
dependent upon.

2.3. Conditions for the existence of wavepacket resolvent modes

Here we briefly describe the conditions under which a linear differential operator per-
mits wavepacket pseudomodes corresponding to small ε (or equivalently, large resolvent
norm). More complete description of this phenomenon, as well as the related proofs,
may be found in Trefethen & Embree (2005) and Trefethen (2005). For some (small)
parameter h > 0, we may define a family of scaled differential operators

Djh = (ih)j
dj

(dy)j
, (2.13)

which we assume to act on a closed finite interval. We may then assemble any arbitrary
n-th order differential operator Lh acting on a scalar variable u(y) by

(Lhu)(y) =
n∑
j=0

cj(y)Djhu(y). (2.14)

Defining a test function vh(y) = exp(−iky/h) for a complex scalar k, we have

(Lhvh)(y) =
n∑
j=0

cj(y)kjvh(y) = f(y, k)vh(y), (2.15)

where we refer to f(y, k) as the symbol corresponding to the family of differential
operators Lh. We will consider potential pseudoeigenvalues λ = f(y∗, k∗). The symbol
f(y, k) is said to satisfy the twist condition for real k if we have

Im

(
∂yf

∂kf

)
> 0. (2.16)

When the twist condition is satisfied for some (y∗, k∗), one it can be a pseudomode
ψ(y; y∗, k∗) (of unit norm) that has phase variation matching vh close to y∗, satisfying
both

‖(−λ+ Lh)ψ(y; y∗, k∗)‖ 6M−1/h (2.17)

for some M > 1, and also that

|ψ(y; y∗, k∗)|
max |ψ(y; y∗, k∗)|

6 C exp
(
−b(y − y∗)2/h

)
, (2.18)

for some b, C > 0. In other words, we have modes that are spatially localised near y∗, have
localised spatial frequency k∗, and are “asymptotically good” pseudoeigenfuctions. Note
that the region of C where the twist condition is satisfied is independent of the choice
of norm. Note also that this theory developed in Trefethen (2005) builds upon earlier
observations of certain classes of equations by Davies (1999a,b). More generally, these
ideas are closely related to classical WKBJ expansions, which have also been utilised
recently by Leonard (2016) in the context of studying approximate inviscid solutions for
channel flow.
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The shape of resolvent modes 7

In this work, using these ideas as justification and inspiration, for a given temporal
frequency (where λ = iω), we will assume that the leading resolvent response mode may
be closely approximated by a function that is localised in the wall-normal direction, both
spatially (as for functions satisfying equation 2.18) and in the frequency domain (as is
the case for the test functions vh). When this assumption is justified, it allows for a
reformulation of resolvent analysis in terms of finding the spatial width and frequency
of a template function ψ that minimises ‖(−λ + L)ψ‖, and thus are close to the true
leading resolvent response mode (from equation 2.10).

3. The behaviour of leading resolvent modes in wall-bounded
turbulence

This section will apply the concepts introduced in section 2 to explore methods
by which the shape of resolvent modes may be approximated. In this section and
elsewhere, we will largely focus on a boundary layer configuration, which is assumed to be
approximately homogeneous in the streamwise direction (as well as being homogeneous
in the spanwise direction), though the analysis holds for any (approximately) parallel
shear-driven turbulent flow.

In section 3.1 we introduce a resolvent formulation of the Navier–Stokes equations.
The setup is similar to that developed in McKeon & Sharma (2010), though following
more closely the formulation used in Rosenberg & McKeon (2018). Following this, in
section 3.2 we will present a sequence of simplifications to the governing equations, that
will render them amenable to application of wavepacket pseudomode theory. We will
additionally present some sample results to motivate these developments, as well as those
later presented in section 4.

3.1. A resolvent formulation of the Navier–Stokes equations

We will restrict attention to flows which are (approximately) homogenous in the
streamwise (x) and spanwise (z) directions, with a mean streamwise velocity (u, v, w) =
(U, 0, 0) that varies in the wall normal (y) direction. We will consider the incompressible
Navier–Stokes equations in (wall-normal) velocity-vorticity form, and will take Fourier
transforms in the streamwise and spanwise directions, with wavenumbers given by kx
and kz. Applying the procedure detailed in section 2.1 gives(

v̂
η̂

)
=

(
−iω +∆−1Los 0

ikzUy −iω + Lsq

)−1

︸ ︷︷ ︸
Hk

(
f̂v
f̂η

)
. (3.1)

where v̂ and η̂ = ikzû − ikxŵ are the Fourier-transformed wall-normal velocity and
vorticity fields, Uy is the wall-normal gradient of the streamwise velocity, and the
Laplacian ∆ = ∂yy − k2

⊥, with k2
⊥ = k2

x + k2
z . The Orr-Sommerfeld (OS) and Squire

(SQ) operators are given respectively by

Los = ikxU∆− ikxUyy −
1

Re
∆2, (3.2)

Lsq = ikxU −
1

Re
∆. (3.3)

Further details concerning the equivalence of this formulation to one using primitive
variables (in particular the implicit restriction of the forcing to the solenoidal component)
is given in Rosenberg & McKeon (2018). The resolvent operator Hk is now parametrised
by the spatiotemporal wavevector k = (ω, kx, kz).
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8 S. T. M. Dawson and B. J. McKeon

The SVD of the resolvent operator is computed using an inner product that is
proportional to kinetic energy for a given set of spatial wavenumbers (Gustavsson 1986;
Butler & Farrell 1992), defined by

〈(v̂1, η̂1), (v̂2, η̂2)〉 =
1

k2

∫
y

(
−¯̂v1∆v̂2 + ¯̂η1η̂2

)
dy, (3.4)

where the overbar denotes complex conjugation.

In later sections, we will consider the following two scalar inner products arising from
the components of 3.4:

〈ẑ1, ẑ2〉 =
1

k2
⊥

∫
y

¯̂z1ẑ2dy, (3.5)

〈ẑ1, ẑ2〉∆ = − 1

k2
⊥

∫
y

¯̂z1∆ẑ2dy. (3.6)

That is to say, when considering scalar operators, we will assume that the inner product
is the “standard” one unless using a ∆-subscript. We will also refer to 〈·, ·〉∆ as the
Laplacian inner product.

We will now present some sample results that will motivate many of the developments
in the remainder of this paper. We consider a turbulent boundary layer with friction
Reynolds number Reτ = 900. Mean velocity profiles are obtained from the DNS data
of Wu et al. (2017), by averaging data at a single streamwise location. Figure 1 shows
leading resolvent response mode shapes for this system. The wavenumbers kx = π/2,
and kz = 2π and wavespeed (c = 0.8U∞) have been chosen to be consistent with the
typical size of large-scale motions in zero-pressure-gradient boundary layers (e.g., Monty
et al. (2009); Kovasznay et al. (1970); Cantwell (1981); Saxton-Fox & McKeon (2017)).
Here and throughout, the resolvent operator is discretised using a Chebyshev collocation
method, utilising the toolbox of Weideman & Reddy (2000).

We observe that the mode is dominated by the wall-normal vorticity component, which
is centred on and localised around the critical layer, and has an approximately linear
variation in phase within this region. These observations, which are typical of modes that
are “detached” from the wall, suggests that this numerically computed mode resembles a
wavepacket mode as described in section 2.3. Here and throughout, we consider a mode to
be detached from the wall if its shape is not substantially effected by the wall’s presence.
In section 4 we will seek to predict the shape of this mode without explicitly computing
an SVD (or indeed, without explicitly forming a discretised resolvent operator). Making
this procedure tractable, however, will require simplification of the governing equations,
which are described in section 3.2.

3.2. Simplifications to the Navier–Stokes operator for resolvent mode approximation

Following Rosenberg & McKeon (2018), rather than studying the full system we may
start by separating the resolvent modes into those being forced by fv and fη separately.
In particular, defining scalar resolvent operators

Hvv = (−iω +∆−1Los)−1, (3.7)

Hηη = (−iω + Lsq)−1, (3.8)
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Figure 1. (a) Mean velocity profile for a turbulent boundary layer at Reτ = 900 (−) and
critical layer location corresponding to a wavespeed c = 0.8U∞ (··). (b) Amplitude and (c)
phase of wall normal velocity (−·) and vorticity (-) for leading resolvent response modes with
kx = π/2, kz = 2π and c = 0.8U∞.

the Orr-Sommerfeld (OS) and Squire (SQ) modes may be computed by taking SVD’s of
the reduced resolvent operators given as(

v̂
η̂os

)
=

(
Hvv 0

ikzHηηUyHvv 0

)
︸ ︷︷ ︸

Hos,k

(
ĝv
0

)
, (3.9)

(
0
η̂sq

)
=

(
0 0
0 Hηη

)
︸ ︷︷ ︸
Hsq,k

(
0
ĝη

)
. (3.10)

While the modes computed from different subsystems are no longer orthogonal, Rosen-
berg & McKeon (2018) demonstrated they can provide a basis that better captures dy-
namical features of the system. Our interest in this decomposition is primarily concerned
with using this decomposition to simplify the required analysis. Figure 2 shows the η-
component of the response modes of the OS and SQ subsystems for the same parameters
considered in figure 1. We observe in particular that the OS operator gives the same
mode shape as the full system, with the SQ mode also sharing the same qualitative
characteristics. This suggests that the ability to predict and understand the shape of the
vorticity response of the full system can be reduced to studying only the OS subsystem.

In order to make the ensuing analysis more tractable, we will require additional
simplifications. Note first that the components of the OS and SQ sub-operators may
be written in scalar form as

v̂ = Hvv ĝv (3.11)

η̂os = Hηv ĝv, (3.12)

η̂sq = Hηη ĝη, (3.13)

where Hηv = (ikzHηηUyHvv) is the off-diagonal term in Hos,k in equation 3.9.
When considering the SVD of these subsystems, it is important that we use the

appropriate inner product on both the input and output spaces. Since the response is en-
ergetically dominated by wall-normal vorticity, it is reasonable that a close approximation
to the η response of the full system (which itself is approximated by the OS response) can
be obtained just by considering the scalar operator in equation 3.12. Figure 3 shows that
this assumption is indeed valid for the sample parameters considered in this section. As
well as simplifying the analysis, reducing the full resolvent operator to a scalar operator
brings us closer to being able to apply the wavepacket pseudomode theory discussed in
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Figure 2. (a) Amplitude and (b) phase of wall normal vorticity response mode computed from
full system (−), SQ subsystem (−·), and OS subsystem (−−), with the same parameters as in
figure 1.

section 2.3. An additional requirement for the direct application of this theory is that
the operator under consideration be representable as a differential operator in the form
of equation 2.14. The operator in equation 3.12 does not satisfy this property, as the OS
component contains the inverse Laplacian.

Motivated by this, we now present an approximating simplification to 2.14, which we
believe to be novel. This development will take advantage of the similarity between the
OS and SQ operators, and will consider variations of the “standard” inner products
discussed in section 3.1. We start by taking advantage of the localised nature of the
resolvent response modes, and assume that the mean velocity profile may be linearised
about the critical layer location, yc. Under this assumption, we have

Hvv = ∆−1Hηη∆. (3.14)

This means that the operator that we are attempting to simplify is

HLinηv = (ikzUyc)HηηHvv (3.15)

= (ikzUyc)Hηη∆−1Hηη∆, (3.16)

where Uyc is the wall-normal gradient in the mean velocity profile at the critical layer
location, yc, and the Lin superscript denotes that the mean velocity profile has been
linearised about yc. Figures 2 and 3 show that the resolvent response modes of Hηη do
not quantitatively match those of Hηv. This is because the leading forcing mode of Hηη
does not coincide with the mode most amplified by Hvv. Given that the leading resolvent
modes are dependent on the choice of inner product, it is reasonable to ask if a different
choice of inner product could be used in the SVD of Hηη, such that the leading forcing
mode approximately coincides with the leading response of Hvv. Physically, what we are
seeking to do is to find an inner product weighting that will most amplify the lift-up
mechanism (at the expense of optimising the Orr mechanism in isolation).

Let H∗ηη denote the adjoint of Hηη with respect to the standard scalar inner product,
equation 3.5. If we instead consider the “Laplacian” inner product, we obtain

H∗,∆ηη = ∆−1H∗ηη∆.

This has the same form as equation 3.14, except with the (standard) adjoint of Hηη,
which amounts to taking the complex conjugate of the critical layer term. Note also that
Hηη with the regular inner product has leading forcing and response modes (i.e., right
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Figure 3. (a) Amplitude and (b) phase of wall normal vorticity response mode computed from
the OS subsystem (−), the scalar off-diagonal term Hηv of OS subsystem (−·), and its simplified
scalar approximation computed using Hηη with a Laplacian inner product (−−), all with the
same parameters as in figure 1.

and left singular vectors) that differ only in the direction of the phase change. We also
then have (

H∗ηη
)∗,∆

= ∆−1Hηη∆,
which is identical to equation 3.14, meaning in particular that both share the same
resolvent forcing and response modes. If we are to weight this operator explicitly to
compute an SVD in the Laplacian scalar norm, we obtain

HW,∆vv =
[(
H∗ηη

)∗,∆]W,∆
= ∆−1/2Hηη∆1/2. (3.17)

Therefore, computing this SVD should give a leading forcing mode for Hηη that
coincides with the leading response mode of Hvv, thus minimising the “projection loss”
of the total amplification. In effect, we are modifying the inner product used for Hηη
such that it’s leading forcing mode aligns with the leading response mode of Hvv. This
analysis therefore relies on the assumption that the total amplification is dominated by
the lift-up, rather than the Orr, mechanism. With this assumption, this trick allows us to
compute optimal response mode shapes by only considering the Squire operator, which is
a differential operator of the general form given in equation 2.13, rather than the full OS
operator, which is not. It will be shown later that this assumption holds except for large
k2
⊥, in which case the Laplacian approaches a constant, and so Hηη and Hvv converge to

the same operator. Figure 3 shows that this modification to the inner product allows us
to closely match the wall-normal vorticity component of the response mode of the full
Navier–Stokes system, for the sample parameters chosen. We will discuss reasons for the
success of this approximation, and in particular the relative balance between optimising
the Orr and lift-up mechanisms, in section 4.

4. Predicting the shape of resolvent modes

This section will present a method that allows for the prediction of resolvent mode
shapes, focusing in particular on the wall-normal vorticity component. The main idea will
be to assume the existence of a mode that is localised in both wall-normal location, and
wall-normal spatial frequency, and then find the parameters which result from maximum
amplification of the resolvent operator, or equivalently, minimisation of the action of its
inverse, on a given function. We will start by predicting the shape of a model operator
(which is closely related to the Squire operator) in sections 4.1, which relates mode shapes
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12 S. T. M. Dawson and B. J. McKeon

to asymptotic expansions of Airy functions, and 4.2, which approximates mode shapes
under the assumption of the existence of wavepacket pseudomodes. This latter approach
is then extended to consider the shape of modes for the full incompressible Navier–Stokes
system in section 4.3, using the approximations presented in section 3.2. We will validate
our method first on laminar Couette flow with a linear velocity profile in section 4.3,
before returning to the turbulent boundary layer configuration in section 4.4.

4.1. Relationship between wavepacket resolvent modes and Airy functions

Before applying wavepacket pseudomode theory more generally, in this section we focus
on a model (Airy) operator that is equivalent to the Squire operator with a linearised
mean velocity profile. This analysis will show how numerically computed resolvent
response modes relate to exact analytical solutions to simplified governing equations.
Linearising the mean velocity profile about the critical layer, the Squire equation reduces
to

(−iω + LLinsq ) = ikxUyc(y − yc)− Re−1∆. (4.1)

For clarity, we let R = kxUycRe, and consider the closely-related operator

T = (ikxUyc)
−1(−iω + LLinsq ) = −(iR)−1 d

2

dy2
+
(
y − yc + (iR)−1k2

⊥
)

= −(iR)−1 d
2

dy2
+ (y − yc − ωci)

= −(iR)−1 d
2

dy2
+ (y − λ), (4.2)

where λ = yc+ωci, and ωc = R−1k2
⊥, and we are assuming that kx 6= 0. Note that we are

generally interested in performing resolvent analysis along the axis of neutral stability
(i.e., for real-valued frequencies with no growth or decay), but here we are incorporating
the viscous dissipation term ωc into λ, so in general λ is complex for this analysis. T is
a complex Airy-type operator, and is identical to the operator considered, for example,
in Reddy et al. (1993) as a model for studying the pseudospectra of the Orr-Sommerfeld
operator. The equation T u = 0 has a general solution that can be expressed by two
independent Airy functions, such as

u(y) = c1Ai[z] + c2Ai[e
2πi/3z],

with

z = (iR)1/3 (y − λ) . (4.3)

Note that distinct solutions are obtained through the choice of contour in the complex
plane when applying standard Laplace transform methods.

Shown in figure 4 are eigenvalues and selected eigenfuctions of T with Dirichlet
boundary conditions on a finite domain y ∈ [−1, 1], with R = 3000. In figure 5, these
numerical eigenfunctions are compared to Ai[z], Ai[e2πi/3z], and Ai[e−2πi/3z], and it
is seen that Ai[e2πi/3z] (when appropriately-scaled) closely matches the numerically
computed eigenfunctions on the finite domain. Note that if we had chosen eigenvalues on
the left branch (i.e., with negative real component), then the Ai[z] solution would have
been accurate for all cases. This can be seen more clearly by overlaying the y-domain on
the amplitude of the Airy functions in the complex plane, as shown in figure 6.
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Figure 4. Spectrum (left) and selected eigenfunctions (right) of T with Dirichlet boundary
conditions on the domain y ∈ [−1, 1], with R = 3000. Absolute value and real component of
eigenfunctions are shown with thick and thin lines, respectively.
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Figure 5. Comparison between absolute value (left) and real component (right) of numerically
computed eigenfunctions (grey solid lines) of T with R = 3000, and those obtained from

analytical solutions of the Airy equation Ai[z], Ai[e2πi/3z], and Ai[e−2πi/3z]. The analytic

solution Ai[e2πi/3z] closely matches the numerical solution for all cases, and is the only analytic
solution shown in the right subplot.

On an infinite domain (and when acting on square-integrable functions) T has an
empty spectrum, and ε-pseudospectra that are independent of location on the real axis
(that is, the boundaries of the pseudospectrum for various ε are horizontal lines).

As discussed in Reddy et al. (1993), a solution to T u = 0 which is within ε of a function
that satisfies the appropriate boundary conditions will be an ε-pseudoeigenfunction. We
consider the pseudospectra of T , again for the finite domain y ∈ [−1, 1]. As discussed
in section 2.2, this amounts to computing the leading singular values and vectors of
the resolvent of T for each λ ∈ C of interest. In particular, we may seek analytic
approximations of these resolvent (optimal pseudospectral) modes using the same method
as for eigenfunctions. In other words, for a given λ ∈ C, we are interested in finding
a function which is as close as possible to an eigenmode of T . Noting that the Airy
functions are continuous, the fact that there are regions of C for which they are very
close to satisfying the boundary conditions of the finite domain suggest that these regions
correspond to very large values of resolvent norm σ1.

Figure 7 shows ε-pseudospectra for T , along with optimal pseudoeigenmodes (i.e.,
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(a) (b)

Figure 6. Contour plots of the magnitude of solutions Ai[z] (left) and Ai[e2πi/3z] (right) to the
Airy equation, with intervals overlaid representing the domains of the eigenfunctions considered
in figures 4 and 5. 14 logarithmically-spaced contours between contours are 10−70 (black) and
1060 (white) are shown.
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Figure 7. (left) ε-pseudospectra of T (with parameters equal to those for figures 4 and 5),
with contour levels corresponding to ε ∈ {10−15, 10−14, · · · , 10−1}, and (right) amplitudes of
resolvent modes for locations in C as indicated on the left subplot. The right subplot compares
numerically computed modes (grey) with Airy functions Ai[z] (··), and Ai[e2πi/3z] (−−).

resolvent modes) and Airy function approximations thereof, for specified locations in the
centre of the domain. In the central region, the pseudospectral properties of T resemble
that of the operator on an infinite domain, where resolvent modes, which are “detached”
from the boundary, are invariant to horizontal translation within this region. Moreover,
resolvent modes within this region will resemble translated versions of eigenmodes along
the inclined branches at the same vertical position. We observe that, as ε increases and we
approach the real axis, the analytical Airy functions become less accurate, owing to their
growth in magnitude occurring closer and closer to the critical layer, eventually saturating
the component resembling the numerically computed response mode. As discussed in
Reddy et al. (1993), these Airy functions can be used to compute constructive lower
bounds to the pseudospectrum of T , though these bounds are inaccurate whenever the
Airy functions diverge far away from y = Re(λ). The fact that ωc = R−1k2

⊥ means that
the most physically-relevant region of the complex plane is in the upper half-plane, which
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means that the Airy functions themselves are not close approximations of physically-
relevant resolvent modes.

Away from the origin, one may approximate Airy functions by simpler expressions
that do not involve integrals. The derivation of such asymptotic approximations involves
finding a location in the complex that has a dominant contribution to the contour integral.
We may derive the approximation (e.g., Olver (2014); Vallée & Soares (2010))

Ai(z) ≈ 1

2

√
πz−1/4 exp

(
−2

3
z3/2

)
∼ exp

(
−2

3
z3/2

)
, (4.4)

which is accurate for large |z|, where here z = γ(y−λ), where (with reference to equation
4.3) we have γ = (iR)1/3, λ = ik2

⊥/R = ωci, and we assume for now that yc = 0.
Expanding the exponential term gives

exp

(
−2

3
z3/2

)
= exp

[
−2

3
(−λγ)3/2

(
1− 3

2

y

λ
+

3

8

( y
λ

)2

− . . .
)]

,

and thus

Ai(z) ∼ C exp

[
(−λγ)3/2 y

λ
− 1

4
(−λγ)3/2

( y
λ

)2

− · · ·
]
, (4.5)

where we must take care when dealing with multi-valued roots. In particular, for a
bounded approximation, we require that

Re
[
(−λγ)3/2λ−1

]
= 0.

If λ = |λ|eiθλ , then we find that this condition is only satisfied when θλ = 3π
2 . Note

that this corresponds to the lower half plane region where Airy functions can give close
approximations to the numerically-computed solutions. Assuming yc = 0, so that λ = ωci,
for ωc < 0 we obtain an approximation of the form

ψ(y) ∼ exp

[
−i
√
|ωc|Ry −

1

4

√
R

|ωc|
y2

]
. (4.6)

4.2. Predicting wavepacket modes for a model operator

Section 4.1 demonstrated that, in certain regimes, resolvent modes may be approxi-
mated by a function of the general form

ψ(y) = c exp
(
aiy − by2

)
, (4.7)

where a ∈ R and b > 0 are functions of ωc and R, and

c =

(
2b

π

)1/4

is a constant that gives ψ unit norm with respect to the regular scalar inner product.
This section will present an alternative analysis with this template function as a

starting point. Applying wavepacket pseudomode theory as described in section 2.3, one
may show that T satisfies the twist condition (equation 2.16) is satisfied within the half
strip

{λ : −1 < Re(λ) < 1, Im(λ) < 0} . (4.8)

The Imag(λ) < 0 condition is consistent with the predicted condition for a spatially
localised mode from the truncated asymptotic expansion of an Airy function in equation
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16 S. T. M. Dawson and B. J. McKeon

Figure 8. Contours of the cost function JT as a function of shape parameters (a, b) for R = 3000
and several values of ωc, with global minima identified with filled circles. 25 contour levels spaced
logarithmically between 10−8 (black) and 104 (white) are used.

4.6. Note that the region described in equation 4.8 is outside the region that is most
physically relevant for resolvent analysis of the Squire operator, where a positive k2

⊥
and R give a positive imaginary component of ωc. Despite this, figure 7 shows that
even outside this region, the numerically computed pseudomode still maintains the same
spatially localised structure. To predict the shape of resolvent modes outside this region,
we will seek to directly optimize the shape parameters in the template function, equation
4.7. In particular, we wish to find the values of a and b for which ‖T ψ‖ is minimized.
That is, we seek the minimum of the cost function

JT (a, b;R,ωc) = ‖T ψ‖2 =

∫ ∞
y=−∞

(T ψ)
∗

(T ψ)dy, (4.9)

where we are assuming that our mode is “detached” and localised, so can integrate over
an infinite domain, and are assuming a standard inner product for this model operator
(note that including a constant multiplicative factor of k−2

⊥ as in equation 3.5 does not
affect mode shapes or singular values). For simplicity, we again take yc = 0. Note that
the leading resolvent singular value is related to this cost function by

σ1(R,ωc) =

[
min
a,b

JT (a, b;R,ωc)

]−1/2

.

Noting that we have

T ∗ = (iR)−1Dyy + (y + iωc) ,

ψ∗(y) = c exp[−ayi− by2],

it can be shown that

T ψ(y) = − 1

iR

[
4b2y2 − i(4ab+R)y − a2 − 2b−Rωc

]
ψ(y),

(T ψ(y))
∗

=
1

iR

[
4b2y2 + i(4ab+R)y − a2 − 2b−Rωc

]
ψ∗(y).

From this, we may compute

JT (a, b;R,ωc) =
1

4b
+

3

R2
b2 +

2(3a2 +Rωc)

R2
b+

a4 + 2aR+ 2ωca
2R+ ω2

cR
2

R2
. (4.10)

Contours of this cost function for R = 3000 and several values of ωc are shown in
figure 8. We may analytically determine the locations of these minima as follows. This
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The shape of resolvent modes 17

cost function is minimised when

∂JT
∂a

=
2

R2

(
6ab+ 2a3 + 2Rωca+R

)
= 0 (4.11)

∂JT
∂b

= − 1

4b2
+

2

R2

(
3b+ 3a2 +Rωc

)
= 0 (4.12)

The equations 4.11 and 4.12 may be solved to give the parameters {a, b} minimising
JT , with care taken to select the correct minimising solution. It is also possible to obtain a
parametrised family of solutions as follows. Assuming thatR is fixed, suppose that we seek
the optimal values (a(ωc), b(ωc)) for a range of values of ωc. By implicitly differentiating
equations 4.11 and 4.12 with respect to ωc, the following ordinary differential equations
governing the evolution of the optimal mode shape parameters may be found:

∂a

∂ωc
=

−R3a

ωcR3 + 3(a2 + b)R2 + 12ωcb3R+ 36b3(b− a2)
, (4.13)

∂b

∂ωc
=

−4b3R(ωcR− 3a2 + 3b)

ωcR3 + 3(a2 + b)R2 + 12ωcb3R+ 36b3(b− a2)
. (4.14)

Note that this approach assumes that the global minimiser of JT stays on the same
branch, and is smoothly continuous with ωc. Figure 9 shows that the predicted values
of the optimal values of parameters a and b closely match both the asymptotic approx-
imations (for ωc < 0), and the values obtained from fitting the numerically computed
modes. The width parameter for this fit to the numerically-computed mode data is found
by fitting a Gaussian function to the amplitude of the computed mode using MATLAB’s
fit command. The phase parameter is found by considering the gradient of the phase
in a small region near the critical layer location. The predicted shape parameters are
obtained from evolving the equations 4.13 and 4.14 from an initial condition obtained by
solving equations 4.11 and 4.12 directly (at ωc = 0). Here, and in subsequent sections,
such solutions (along with the symbolic computation of integrals) are obtained using
Mathematica. Note that one could also use the asymptotic approximation 4.6 for initial
conditions, where we must start from a sufficiently large negative value of ωc to ensure
that the initial conditions are accurate. It is additionally shown that the value of the cost
function JT for these optimal shape parameters closely matches the value of the cost
function that may be computed directly from the numerically computed singular value.
In essence, this shows that the optimal mode and amplification across all functions is
closely approximated by the optimal over the class of functions of the form given in
equation 4.7.

We may also consider the behaviour of the optimal shape parameters as R varies.
Keeping ωc constant, from equations 4.11-4.12 we obtain

∂a

∂R
=

(1 + 2ωca)R3 + 4a(a2 + 3b)R2 + 12b3R− 96a3b3

2R (ωcR3 + 3(a2 + b)R2 + 12ωcb3R+ 36b3(b− a2))
(4.15)

∂b

∂R
=

4b3
(
ω2
cR

2 + 3R(−a+ ωca
2 + 9ωcb) + 6a4 + 18b2

)
R (ωcR3 + 3(a2 + b)R2 + 12ωcb3R+ 36b3(b− a2))

(4.16)

In the limit of large R and for ωc 6= 0, (and assuming restrictions on the growth of a and
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Figure 9. Prediction of optimal shape parameters a (a) and b (b) as a function of ωc = Imag(λ)
with R = 3000 using both the truncated asymptotic Airy function approximation (equation 4.6,
black dashed lines) and minimising the cost function given in equation 4.10 (grey lines), in
comparison to values fitted to numerically computed eigenfunctions on a finite domain (circles).
(c) compares the cost function value to the true value (σ−2

1 ) obtained from the resolvent norm.

b with R), we have the approximations

∂a

∂R
≈ 1

2ωcR
(4.17)

∂b

∂R
≈ 4b3ωc

R2
, (4.18)
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from which we may infer the scalings a → C, b ∝ R1/2. For large R but with Rωc � 1,
we instead obtain

∂a

∂R
≈ 1

3(a2 + b)
(4.19)

∂b

∂R
≈ − 4ab3

R2(a2 + b)
, (4.20)

which can be shown to permit a consistent asymptotic solution with a ∝ R1/3 and
b ∝ R2/3. This scaling of b corresponds to a mode with that scales with R1/3, which
agrees with the critical layer scaling (Drazin & Reid 2004), and can also be inferred
from the transformation described in equation 4.3. Figure 10 shows that these scalings
closely match the shape parameter trends obtained from the numerically computed
modes. Moreover, these shape parameters are accurately predicted from finding optimal
parameters of cost function JT , which can be obtained either from solving equations 4.11
and 4.12 for each ωc and R, or by evolving the differential equations 4.15 and 4.16 over
R. It should be noted that, even for this model system, computing the leading resolvent
modes directly can require substantial computational resources for large R, highlighting
an advantage of approximations using the methods described in this section. We lastly
note that one could seek alternative parameterisations of the two-dimensional space of
optimal mode shapes, such as by varying R while keeping ωcR (= k2

⊥) constant.

4.3. Predicting the shape of resolvent modes for laminar Couette flow

In this section, we will extend the analysis in section 4.2 to consider the Navier–Stokes
operator and suboperators considered in sections 3.1 and 3.2. We again will restrict our
attention to predicting the vorticity component of the leading response mode of the
resolvent operators Hk, Hos,k and Hsq,k. For the Squire suboperator, the analysis is
almost identical to that of the model operator considered in section 4.2. To predict the
mode shapes of the full system, we rely on the fact that the response is dominated by
the effect of the OS suboperator, which we analyse using the simplifying approximations
introduced in section 3.2. In particular, this also results in a methodology similar to that
used in section 4.2, but with a modification to use the Laplacian scalar inner product
(equation 3.6.

We begin by again assuming mode shapes of the form

ψsq(y) = csq exp
(
asqiy − bsqy2

)
,

ψos(y) = cos exp
(
aosiy − bosy2

)
,

but now to satisfy the unit-norm requirements of the relevant inner products (equation
3.5) for the SQ operator, equation 3.6 for the OS) we have

cos =

(
2bsq
π

)1/4

k⊥, csq =

(
2bos
π

)1/4

k⊥(bos + a2
os + k2

⊥),

where, with reference to the previous section, we have k2
⊥ = ωcR. Using the approxima-

tion to the Orr-Sommerfeld operator introduced in section 3.2, and noting that Uyc = 1,
the relevant cost functions for optimizing the shape of the SQ and OS template functions
are
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Figure 10. Comparison between predicted (−) and fitted (−−) parameters a (subplot a) and
b (b), and associated singular value (c) as a function R.

Jsq(a, b;R,k) = ‖UyckxT ψos‖2 =
U2
yck

2
x

k2
⊥

∫ ∞
y=−∞

(T ψos)∗ (T ψos)dy (4.21)

Jos(a, b;R,k) = ‖UyckxT ψos‖2∆ =
U2
yck

2
x

k2
⊥

∫ ∞
y=−∞

(T ψos)∗,∆ (T ψos)dy

= −
U2
yck

2
x

k2
⊥

∫ ∞
y=−∞

(T ψos)∗∆(T ψos)dy (4.22)
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For laminar Couette flow we have Uyc = 1 for all yc in the domain, but we keep this
term so that the equations are directly applicable for arbitrary mean velocity profiles.
Also note that while the cost function for the Squire modes is “exact” given the assumed
template function and a linear mean velocity profile, the OS modes are relying on the
accuracy of a simplified operator (being the scalar Squire operator with a Laplacian inner
product) capturing the correct behavior of the response mode.

Substituting in the mode template functions (and dropping the subscripts on a and b
parameters for brevity), explicit expressions for the cost functions are

Jsq(a, b;R,k) =
U2
yck

2
x

k2
⊥

[
1

4b
+

3

R2
b2 +

2(3a2 + k2
⊥)

R2
b+

a4 + 2aR+ 2k2
⊥a

2 + k4
⊥

R2

]
,

(4.23)

Jos(a, b;R,k) =
U2
yck

2
x

4k2
⊥b (b+ a2 + k2

⊥)R2

[
(3b+ a2 + k2

⊥)R2 + 16ab(3b+ a2 + k2
⊥)R

+4b
(
15b3 + (a2 + k2

⊥)3 + 9b2(5a2 + k2
⊥) + 3b(a2 + k2

⊥)(5a2 + k2
⊥)
)]
.

(4.24)
As before, the minima of these cost functions may be found by selecting the appropriate
solution to the equations

∂Jsq
∂a

=
2U2

yck
2
x

k2
⊥R

2

(
6ab+ 2a3 + 2k2

⊥a+R
)

= 0 (4.25)

∂Jsq
∂b

=
U2
yck

2
x

k2
⊥

[
− 1

4b2
+

2

R2

(
3b+ 3a2 + k2

⊥
)]

= 0 (4.26)

∂Jos
∂a

=
U2
yck

2
x

k2
⊥ (b+ a2 + k2

⊥)
2

[
1 + 4R−1

(
ba2 + 4k2

⊥b+ (a2 + k2
⊥)2
)

+4R−2a
(
15b3 + 9b(a2 + k2

⊥)2 + (a2 + k2
⊥)3 + 3b2(5a2 + 9k2

⊥
)]

= 0

(4.27)

∂Jos
∂b

=
U2
yck

2
x

k2
⊥ (b+ a2 + k2

⊥)
2

[
−3

4
+

1

2
b−1(a2 + k2

⊥) + b−2(a2 + k2
⊥)2 +

8

R
a(a2 + k2

⊥)

+
2

R2

(
15a3 + (a2 + k2

⊥)2(7a2 + k2
⊥) + 9b2(5a2 + 3k2

⊥) + 9b(5a2 + k2
⊥)(a2 + k2

⊥)
)]

= 0.
(4.28)

Figure 11 compares the predicted shape parameters to those obtained from fitting these
parameters to numerically-computed modes, which are computed for Re = 1000 and
various values of kx and kz/kx. We observe in subplots (a) and (c) that the Squire
mode parameters are accurately predicted from solving equations 4.25 and 4.26. Subplots
(b) and (d) show that solving equations 4.27 and 4.28 predicts the fitted parameters
to the leading resolvent response mode of the Squire operator with Laplacian inner
product. Furthermore, this prediction also accurately predicts the shape of the wall-
normal vorticity component of leading response modes for the full Navier–Stokes system.
Note that the scaling laws for small kx are identical to those for small R observed in
figure 10. The trends at high kx differ from those in figure 10, due to the fact that here
we keep kz proportional to kx (and thus k⊥ ∝ R), whereas in figure 10 constant ωc
resulted in k2

⊥ ∝ R. These trends can again be inferred from studying the dominant
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Figure 11. Comparison between predicted (−) and fitted (◦) mode shape parameters a (subplots
a,b) and b (c,d) for the Squire operator with a standard (a,c) and Laplacian (b,d) inner
product, as a function of streamwise wavenumber kx, for Re = 1000 and spatial aspect ratios
kz/kx ∈ {0.5, 1, 2, 4, 8}. Also shown are fitted shape parameters for the η component of the full
Navier–Stokes system (×’s).

terms in the evolution equations for the governing parameters, which can be computed
from considering the partial derivatives of Jsq and Jos with respect to a and b, which we
omit for brevity.

For large kx, the mode shapes for both operators converge, which may be explained
by the fact that the Laplacian operator is dominated by the constant k2

⊥ term in this
regime. As a consequence, here analysis of the Squire operator gives accurate predictions
of the behaviour of the full Navier–Stokes system, particularly for the mode width, which
approaches a constant value with increasing kx. There is some difference between the
phase gradient parameter a for the full system and for the Squire system with both the
standard and Laplacian inner product (with the value for the full system lying between
those for the two simplified systems), though this difference decreases as kx increases and
the phase variation decays towards zero.

Figure 12 plots predicted and true mode amplitudes for several of the cases considered
in figure 11. The predicted mode shapes for η closely match the computed modes for
both the Squire and full Navier–Stokes system, with the modes for the latter being very
close to those of the OS subsystem. The largest discrepancy arises in the kx = 1 case,
where the tails of the mode amplitudes are significantly heavier than those of a Gaussian
distribution, and extend far from the critical layer towards the wall. This phenomenon
is related to a wider distribution in the v-component of the mode (not plotted), and
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Figure 12. Comparison between true (numerically computed, solid lines) and predicted (dotted
lines) mode amplitude for laminar Couette flow with Re = 1000 and kx = 1 (a,b) 10 (c,d)
and 100 (e,f), and aspect ratios kz/kx ∈ {0.5, 1, 2, 4, 8}. Subplots (a,c,e) show results for the
Squire subsystem, while subplots (b,d,f) are for the Navier–Stokes operator. The dashed lines
in subplots (b,d,f) also show (numerically computed) mode amplitudes for the Orr-Sommerfeld
subsystem.

gives a larger variation in fitted b values for this kx for the full Navier–Stokes system, as
observed in figure 11.

Figure 13 compares the leading resolvent singular values for the Squire and Navier–
Stokes systems to those estimated from the minima of the cost functions Jsq and Jos, for
the same wavenumbers considered in figure 11. The cost functions are able to accurately
predict the singular values of the scalar Squire operator with both the regular and
Laplacian inner product, though this is only accurate for the full Navier–Stokes system
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Figure 13. Comparison between predicted and computed leading singular values for the Squire
subsystem with regular (predicted −−, computed ×), and Laplacian (predicted −, computed ◦)
inner product, for Re = 1000 and spatial aspect ratios kz/kx ∈ {0.5, 1, 2, 4, 8}. Also shown are
computed singular values for the full Navier–Stokes system (··).

for large kx (and thus large k2
⊥). In particular, these model operators are incapable of

predicting the increase in singular value for high-aspect-ratio (i.e., large kz/kx) modes
that is observed, though we have shown that they still accurately predict mode shapes
in this regime.

4.4. Predicting mode shapes for a turbulent boundary layer

This section applies the methodology developed in sections 4.2 and 4.3 to a turbulent
boundary layer. By linearizing the mean velocity profile about the critical layer, the
equations for predicting mode shape parameters are the same as those developed in
section 4.3 (i.e., equations 4.23-4.28), though now Uyc and R = kxUycRe are dependent
on the critical layer location. Figure 14 shows the predicted and true response mode
shapes for the Squire and Navier–Stokes resolvent operators for two pairs of spatial
wavenumbers and various critical layer locations. Note that the case where {kx, kz, c} =
{π/2, 2π, 0.8U∞} as considered in figures 1-3 as representative of a typical large-scale
motion, is included. The location typical of very large-scale motions (c ≈ 0.6U∞) is
also included, though these structures would correspond to slightly smaller streamwise
wavenumbers than kx = π/2. We observe that mode amplitude and phase variation (in
the local region of high amplitude) is accurately estimated, provided the mode is not
substantially affected by the presence of the wall. This shows in particular the validity of
using a mean velocity profile linearised about the critical layer to estimate mode shapes.

Figure 15 compares predicted and fitted mode shape parameters as a function of kx
for various aspect ratios kz/kx, for a wavespeed c = 0.8U∞, with predicted and true
modes shapes plotted in figure 16. We observe the same trends, and similar accuracy in
prediction of parameters as for laminar Couette flow (figure 11).
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Figure 14. True (solid lines) and predicted (dashed) leading resolvent mode amplitudes and
phases for the Squire system (top row) and wall-normal vorticity component of the Navier–Stokes
system (bottom) for a turbulent boundary layer with Reτ = 900. Modes are shown for two
wavenumber pairs, (kx, kz) = (π/2, 2π) and (10π, 10π), and temporal frequencies corresponding
to wavespeeds of 0.6U∞, 0.7U∞, 0.8U∞, 0.9U∞, with critical layer locations indicated by dotted
lines.

5. Discussion and conclusions

This work has presented a method for approximating leading resolvent response modes
for quasi-parallel shear-driven flows. This method relies on the assumption that the true
mode may be closely approximated by a simple template function, the general form of
which can be reasoned from consideration of wavepacket pseudomode theory. In essence,
the method reduces the space of possible mode shapes from an infinite-dimensional space
(which in practice is approximated by a high dimensional space defined by the numerical
discretisation) to a two-dimensional family of functions. Once this template function is
identified, the optimal shape parameters (which govern the width and phase variation of
the mode) may be found as the minimisers of a cost function, which is directly related to
the resolvent norm of the underlying operator. In practice, this amounts to finding the
roots of a pair of coupled equations, which may be arranged to be polynomials in the
shape parameters. In addition, it is possible to derive differential equations in parameter
space that govern the evolution of these optimal shape parameters. Importantly, this
method precludes the need for the formulation and decomposition of discretised linear
operators, leading to substantial reduction in computational cost. The extent of the
reduction in computational cost is dependent on the size of the discretisation, and
on the extent and resolution of the parameter space (e.g., wavenumbers and temporal
frequencies) that one wishes to study. The method may be readily applied to a model
operator, as considered in section 4.2, and in the analysis of the Squire operator in sections
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Figure 15. Comparison between predicted (−) and fitted (◦) mode shape parameters a (subplots
a,b) and b (c,d) for the Squire operator with a standard (a,c) and Laplacian (b,d) inner product,
as a function of streamwise wavenumber kx, for various mode aspect ratios for a turbulent
boundary layer with Reτ = 900 and c = 0.8U∞. Also shown are fitted shape parameters for the
η component of the full Navier–Stokes system (×’S).

4.3-4.4. Application for the full Navier–Stokes system relies on additional simplifications
to arrive at a scalar differential operator which has a leading response mode (left singular
vector) which approximates the wall-normal vorticity component of the response mode
of the Navier–Stokes resolvent operator, as detailed in section 3.2. This simplification is
made in three steps. Firstly, the observation that the wall-normal vorticity response
is dominated by the Orr-Sommerfeld component (equation 3.9). Secondly, that this
operator is in turn dominated by the vorticity response to velocity forcing, governed
by the scalar operator (equation 3.12). Finally, the leading left singular vector of this
scalar operator may be approximated by that of the Squire operator furnished with the
scalar Laplacian inner product (equation 3.6). This results in an operator which may be
studied by applying the same techniques as those used for the model/Squire system. Note
that, even without this analysis, study of the Squire operator (for which the associated
cost function has a simpler form) typically gives the same qualitative behaviour observed
for the full system. In particular, the Squire system obeys many of the same scaling laws
of mode shape parameters with wavenumbers and Reynolds numbers. More detailed
analysis of scaling and self-similarity properties of resolvent modes in wall-bounded flows
are given in Moarref et al. (2013).

While the vorticity response mode shapes of the Squire and Orr-Sommerfeld resolvent
operators are qualitatively similar, they represent quite different physical phenomena.
The Squire resolvent operator describes amplification through forcing in the same com-
ponent, with an upstream-leaning optimal forcing mode giving a downstream-leaning
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Figure 16. Comparison between true (numerically computed, solid lines) and predicted (dotted
lines) mode amplitudes for various kx, and aspect ratios kz/kx ∈ {0.5, 1, 2, 4, 8}, for a turbulent
boundary layer with Reτ = 900 and c = 0.8U∞. The black horizontal dotted line indicates the
critical layer location. Subplots (a,c,e) show results for the Squire subsystem, while subplots
(b,d,f) are for the η-component of the Navier–Stokes operator. The dashed lines in subplots
(b,d,f) also show (numerically computed) mode amplitudes for the Orr-Sommerfeld subsystem.

response mode. This is a manifestation of the classical Orr mechanism. Note in particular
that the Squire forcing mode has the same amplitude profile as the response mode, but
with an opposite phase variation. The Orr-Sommerfeld sub-operator on the other hand
typically has a leading response mode that is dominated by the wall-normal vorticity
component, but is forced primarily by wall-normal velocity, in a manner resembling the
lift-up mechanism. Despite this phenomenological difference, we have shown that the
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shape of the response may be accurately predicted from the Squire operator with a
modified inner product.

This work has focused on characterising the shape of the (dominant) wall-normal
vorticity component resolvent modes for parallel wall-bounded flows. It is possible that
these methods could be extended for application to more complex geometries, and other
mode components. For most of the cases considered in this work, the cost function had
only one local minimum corresponding to a wavepacket mode (i.e., with b > 0), with the
exception being for negative ωc for the model operator considered in section 4.2, as seen
in figure 8. More complex geometries might result in more complex cost functions, for
which more care must be taken to select the true global optimum. Note that the operators
considered here also typically have a large spectral gap between the first and second
singular value. Future work could also seek to identify modes corresponding to additional
singular values, which would be of particular interest for situations where the operator
does not exhibit low-rank behaviour (i.e., there does not exist a large gap between the
leading and second singular values). Similar methods could also be applied to study
optimal forcing modes in more detail, and to compute nonlinear forcing terms induced
from analytic approximations to wavepacket modes. This would provide an alternative
route to study phenomena such as the self-similarity of the nonlinear forcing (Sharma
et al. 2017).

In terms of the methodology itself, there are a number of possible refinements that
could be investigated. For example, nonlinear terms in the expansion of the mean velocity
profile about the critical layer could be retained, and additional terms in the template
function (for example, a term could be added to allow for the phase variation to be
cubic in y− yc). The former modification might be particularly useful when dealing with
mean velocity profiles that have stationary points, such as in channel flow. Such additions
would lead to more complex cost functions, but the same techniques of analysis should
be applicable. The accuracy of the assumed form of the modes relies on the mode being
far enough away from the wall. Further extensions of the methodology could seek to
explicitly model the effect of the wall.

The authors acknowledge support from the Air Force Office of Scientific Research grant
FA9550-16-1-0232 (program manager Ivett Leyva). The authors also thank Peter Schmid,
Anthony Leonard, and Kevin Rosenberg for valuable discussions, and Xiaohua Wu for
allowing us to use his turbulent boundary layer database.
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The resolvent formulation of McKeon & Sharma (2010) is extended to the compressible
Navier-Stokes equations. Resolvent analysis is applied to the supersonic turbulent bound-
ary layer in order to study the validity of Morkovin’s hypothesis, which postulates that
high-speed turbulence structure in zero pressure-gradient turbulent boundary layers re-
mains largely the same as its incompressible counterpart. Supersonic turbulent boundary
layers with adiabatic wall boundary conditions at Mach numbers ranging from 2 to 4 are
considered. Resolvent analysis highlights two distinct regions of the supersonic turbulent
boundary layer in the wave parameter space: the relatively supersonic region and the
relatively subsonic region. In the relatively supersonic region, where the flow is supersonic
relative to the freestream, resolvent modes display structures consistent with the eddy
Mach wave radiation that are absent in the incompressible regime. In the relatively
subsonic region, we show that the low-rank approximation of the resolvent operator is
effective and that the model exhibits universal and geometrically self-similar behaviour
via a transformation given by the semi-local scaling. Moreover, with semi-local scaling,
we show that the resolvent modes follow the same scaling law as their incompressible
counterparts in this region, which has implications for modelling and the prediction of
turbulent high-speed wall-bounded flows. We also show that the thermodynamic variables
exhibit similar mode shapes to the streamwise velocity modes, supporting the strong
Reynolds analogy. Finally, we demonstrate that the principal resolvent modes can be used
to predict the energy distribution between momentum and thermodynamic fluctuations.

1. Introduction

The prediction and modelling of turbulent high-speed wall-bounded flows remain an
active field of study for their tremendous technological importance in the aerospace indus-
try with respect to high-speed vehicles, where the turbulent boundary layers determine
the aerodynamic drag and heat transfer. With respect to supersonic and hypersonic
turbulent boundary layers, a major role has been historically played by experiments,
with direct numerical simulations (DNS) becoming more and more common in the last
decade.
Experimental investigations of supersonic and hypersonic turbulent boundary layers

have been conducted historically with hot-wire anemometry (Kistler 1959; Laderman
& Demetriades 1974; Owen et al. 1975; Spina & Smits 1987; Konrad & Smits 1998)
(see also Roy & Blottner 2006, for a review), which suffer from uncertainties associated
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with mixed-mode sensitivity (Kovasznay 1953) and were later shown to suffer from poor
frequency response and spatial resolution (Williams et al. 2018). In addition to hot-
wire anemometry, direct measurements of spatially varying velocity fields of high-speed
turbulent boundary layers have been attempted using particle image velocimetry (Ekoto
et al. 2008; Tichenor et al. 2013; Peltier et al. 2016; Williams et al. 2018), which range
up to Mach number of 7.5 for a flat-plate turbulent boundary layer.
Complementary to experiments, DNS of high-speed turbulent boundary layers have

been conducted to overcome the experimental difficulties and provide access to three-
dimensional turbulence statistics. Several DNS have been conducted with emphasis on
studying Morkovin’s scaling in turbulent boundary layers with moderate freestreamMach
numbers (Guarini et al. 2000; Maeder 2000; Pirozzoli et al. 2004; Mart́ın 2007; Shahab
et al. 2011; Bernardini & Pirozzoli 2011; Pirozzoli & Bernardini 2011; Hadjadj et al. 2015;
Poggie et al. 2015; Trettel & Larsson 2016; Modesti & Pirozzoli 2016) for both adiabatic
and isothermal wall boundary conditions. Higher Mach number hypersonic studies for
turbulent boundary layers have also recently been available (Duan et al. 2010, 2011;
Duan & Martin 2011; Lagha et al. 2011; Zhang et al. 2014, 2018) with data sets of up to
Mach number of 20.
In spite of the recent developments in the numerical experiments, simulations of

supersonic turbulent boundary layers still remain a daunting challenge. DNS in the
incompressible regime (Simens et al. 2009) as well as earlier experiments (Erm & Joubert
1991) show that a fully developed state of the boundary layer requires the use of
an extremely long computational domain, which makes accurate numerical simulations
extremely computationally demanding. Simulations in the supersonic regime are further
slowed down by the inherently larger computational effort and the possible occurrence of
‘eddy shocklets’. This creates a critical demand for model-based approaches that describe
and predict the behaviour of turbulent flows at technologically relevant high Reynolds
numbers in the supersonic regime.
Resolvent analysis forms a rich tool to understand and predict flows using a low-rank

approximation of the linear sub-system with the nonlinear interactions being considered
a forcing term. Previous studies on incompressible flows show that resolvent analysis can
capture a range of phenomena already observed in wall turbulence from near-wall streak
and quasi-streamwise vortices (McKeon & Sharma 2010), hairpin vortices (Sharma &
McKeon 2013) and the corresponding pressure signature (Luhar et al. 2014), very large
scale motions (McKeon & Sharma 2010), to scaling of the statistics (Moarref et al.

2013). As such, it yields an efficient basis for the flow, which can be used to provide a low
order representation of the key dynamical processes of turbulence. Several studies have
investigated more sophisticated means of shaping the nonlinear forcing from data and
analytical considerations (Moarref et al. 2014; Zare et al. 2017; Towne et al. 2019). For
turbulent channel flows (and consequently for turbulent boundary layers), the resolvent
has a universal scaling with Reynolds number, and in the overlap region of the mean
velocity, it admits geometric self-similarity (Moarref et al. 2013, 2014). This observation
has strong implications for modelling: resolvent modes throughout the entire region can
be described in terms of modes assessed at one wall-normal plane. For example, under the
correct scaling of the wall-parallel wavenumbers, the self-similar hierarchies of response
modes give rise to self-similar families of vortical structures. However, there has been
less work applying this operator based decomposition to fully-developed compressible
flows, with the exception of the recent studies on compressible jet flows (Jeun et al. 2016;
Towne et al. 2018; Schmidt et al. 2018) and subsonic aerofoils (Yeh & Taira 2019).
The main goal of this work is to extend the resolvent analysis framework to compress-

ible flows and, in particular, to supersonic turbulent boundary layers. The resolvent
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framework allows the decomposition of the governing equations in the wavenumber-
frequency space, making a more in depth comparison of the underlying mechanisms
possible. We utilise this tool to compare the mechanisms driving the incompressible
and compressible boundary layer which will allows us to validate Morkovin’s hypothesis
(Morkovin 1962) on a mode-by-mode basis. Morkovin (1962) concluded from the analysis
of supersonic boundary layer data available at the time that for moderate Mach numbers
“the essential dynamics of these shear flows will follow the incompressible pattern.” The
hypothesis was used and reformulated by Bradshaw (1974) to indicate that high-speed
boundary layers can be computed using the same model as at low speeds by assuming that
the density fluctuations are weak. Another consequence of Morkovin’s hypothesis is the
analogy between the temperature and velocity fields that leads to velocity-temperature
relations such as the classical Walz formula (Walz 1969) and the strong Reynolds analogy
and its variants (Morkovin 1962; Gaviglio 1987; Huang et al. 1995; Zhang et al. 2014).
It also motivates the so-called ‘compressibility transformations’ that transform the mean
velocity and Reynolds stress profiles in a compressible boundary layer to equivalent
incompressible profiles by accounting for mean property variations across the thickness
of the boundary layer (Van Driest 1951; Brun et al. 2008; Zhang et al. 2012; Trettel &
Larsson 2016; Yang & Lv 2018).
The paper is organised as follows. We first introduce the compressible Navier-Stokes

equations and the resolvent operator in §2, where we discuss the relevant resolvent norm,
boundary conditions and computational methods. In §3, we discuss the characteristics of
the resolvent modes for the supersonic turbulent boundary layer and define the relatively
supersonic and subsonic region. We show that the response modes in the relatively
supersonic region display Mach waves. We also highlight the low-rank behaviour of the
resolvent operator and discuss the necessary conditions for universality of the resolvent
modes in the relatively subsonic region. In §4, we then provide the Reynolds and Mach
number scaling for the principal resolvent modes and amplification factor for the inner,
logarithmic and outer region of the boundary layer and demonstrate that the leading
response mode is enough to predict the energy distribution between momentum and
thermodynamic fluctuations. Finally, we conclude the paper in §5.

2. Resolvent formulation of compressible turbulent boundary layer

2.1. Compressible Navier-Stokes equations

The non-dimensional compressible Navier-Stokes equations for a perfect gas are given
by

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
=− 1

γM2

∂p

∂xi
+

1

Re

∂

∂xj

[
µ

(
∂ui

∂xj
+

∂uj

∂xi

)
+ λ

∂uk

∂xk
δij

]
, (2.1)

∂ρ

∂t
+ uj

∂ρ

∂xj
=− ρ

∂ui

∂xi
, (2.2)

ρ

(
∂T

∂t
+ uj

∂T

∂xj

)
=− (γ − 1)p

∂ui

∂xi
+

γ

PrRe

∂

∂xj

(
k
∂T

∂xj

)

+ γ(γ − 1)
M2

Re
µ

[
∂ui

∂xj

∂ui

∂xj
+

∂ui

∂xj

∂uj

∂xi
+ λ

(
∂uk

∂xk

)2
]
, (2.3)

where ρ, p, ui, T are, respectively, density, pressure, velocity components, and temper-
ature. Variables µ, λ are the coefficients of first and second viscosity, respectively, k is
the coefficient of thermal conductivity, γ = cp/cv is the ratio of specific heats, and δij is
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4 H. J. Bae, S. T. M. Dawson and B. J. McKeon

the Kronecker delta. We formulate the equations in nondimensionalised form using the
Mach, Reynolds, and Prandtl numbers, given respectively by

M =
u∗

√
γRT ∗

, Re =
ρ∗u∗l∗

µ∗
, Pr =

µ∗cp
k∗

, (2.4)

where (·)∗ denotes reference (dimensional) quantities, l is a length scale, and R is the
gas constant. The system is closed with the equation of state, p = ρT .

Here, we assume constant specific heat coefficients and constant Prandtl number, Pr =
0.72, and we set γ = 1.4 (diatomic gas). Furthermore, we assume that viscosity varies
with temperature according to the Sutherland formula

µ(T ) =
T 3/2(1 + C)

T + C
(2.5)

with C = S/T ∗, where S = 110.4K, and that the second coefficient of viscosity λ follows
the Stokes’ assumption λ = −2/3µ.

2.2. Resolvent operator

Assuming a fully developed, locally parallel flow with the directions x1, x2 and x3

signifying the streamwise, wall-normal, and spanwise directions, respectively, the state
variable q = [q1, q2, q3, q4, q5]

† = [u1, u2, u3, ρ, T ]
† is decomposed using the Fourier

transform in homogeneous directions and time,

q(x1, x2, x3, t) =

∫∫∫ ∞

−∞

q̂(x2;κ1, κ3, ω)e
i(κ1x1+κ3x3−ωt)dκ1dκ3dω, (2.6)

where (̂·) denotes variables in the transformed domain, and the triplet (κ1, κ3, ω) identifies
the streamwise and spanwise wavenumbers and the temporal frequency, respectively.
Here, the superscript † denotes the transpose for real variables (vectors) and the conjugate
transpose for complex values.

Note that the mean turbulent state, q̄(x2) = [ū1(x2), 0, 0, ρ̄(x2), T̄ (x2)]
†, corresponds to

(κ1, κ3, ω) = (0, 0, 0) and is assumed to be known. More generally, the shape of the mean
profile acts as a constraint on the full nonlinear closure. Furthermore, with the parallel-
flow assumption, which is reasonable as the base flow variations depend on the viscous
time scale compared to the much faster convective times scale for fluctuations, the mean
momentum equation (2.1) gives a constant p̄(x2). In the remainder of the paper, we scale
the pressure such that p̄ = 1 for simplicity. Note that the spatially-developing turbulent
boundary layer can be studied using resolvent analysis, and the associated increase in
computational effort is not prohibitive. However, the interpretation of the underlying
physical mechanisms is significantly more straightforward for the quasi-parallel, one-
dimensional mean.

Following a similar approach to McKeon & Sharma (2010), the governing equations
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Resolvent-based study of supersonic turbulent boundary layers 5

(2.1)–(2.3) can be rewritten in the Fourier domain for each (κ1, κ3, ω) 6= (0, 0, 0) as

− iωûi + ū1∂1ûi + û2∂2ūi = − 1

γM2

(
∂iT̂ + ∂iρ̂T̄

2 + ρ̂T̄ ∂iT̄
)

+
T̄

Re

[
µ̄∂j (∂j ûi + ∂iûj) + λ̄∂i (∂j ûj) +

∂µ̄

∂T
∂j T̂ (∂j ūi + ∂iūj)

]
+ f̂i (2.7)

− iωρ̂+ ū1∂1ρ̂+ û2∂2ρ̄ = −ρ̄∂iûi + f̂4 (2.8)

− iωT̂ + ū1∂1T̂ + û2∂2T̄ = −(γ − 1)T̄ ∂iûi

+
γT̄

PrRe

[
µ̄∂j∂j T̂ +

∂2µ̄

∂T 2
(∂2T̄ )

2T̂ + 2
∂µ̄

∂T
∂2T̄ ∂2T̂ +

∂µ̄

∂T
∂2
2 T̄ T̂

]
+ f̂5, (2.9)

where f̂ contains the nonlinear terms and (∂1, ∂2, ∂3) = (iκ1, d/dy, iκ3). This can be
equivalently expressed as

q̂(x2;κ1, κ3, ω) = [−iωI + L(κ1, κ3, ω)]
−1
f̂(x2;κ1, κ3, ω), (2.10)

where L is the linearised operator of the governing equations around the supersonic
turbulent mean profile (Mack 1984). The operator H = [−iωI + L(κ1, κ3, ω)]

−1
is called

the resolvent operator and exists if there are no eigenvalues of L with zero real part.

2.3. Choice of resolvent norm

From (2.10), we wish to find a decomposition of the resolvent that enables us to
identify high gain input and output modes with respect to the linear operator. For the
resolvent analysis, the decomposition is given by the Schmidt decomposition (called the
singular value decomposition for the discrete case). However, this decomposition must
be accompanied by a choice of inner product and the corresponding norm. In the case
of the incompressible resolvent operator, the natural and physically meaningful norm is
the kinetic energy norm, which is defined as

2K = (q, q)K = ‖q‖2K =

∫ ∞

0

ρ̄u†
iui dx2. (2.11)

Unfortunately, there is no obvious choice for the compressible case and the standard in-
compressible kinetic energy norm becomes a seminorm on this space; however, Chu (1965)
introduced a norm that eliminates pressure related energy transfer terms (compression
work),

2E = (q, q)E = ‖q‖2E =

∫ ∞

0

(
ρ̄u†

iui +
T̄

γρ̄M2
ρ†ρ+

ρ̄

γ(γ − 1)T̄M2
T †T

)
dx2 (2.12)

which has been used in numerous other studies of compressible flows where the definition
of an inner product is required (e.g., Hanifi et al. 1996; Malik et al. 2006; Özgen & Kırcalı
2008; Malik et al. 2008; de Pando et al. 2014; Bitter & Shepherd 2014; Dawson & McKeon
2019), and this norm will be used for the remainder of the paper. Discussion of other
possible inner products and assumptions for compressible flows are given in Rowley et al.

(2004). Preliminary study on the sensitivity of the resolvent modes with respect to the
compressible inner product was studied in Dawson & McKeon (2019) for the compressible
planar Couette flow, and the differences are attributed to both the change in mean profiles
and the compressible fluctuation equations rather than the choice of the inner product.
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6 H. J. Bae, S. T. M. Dawson and B. J. McKeon

We take the Schmidt decomposition of the resolvent, namely,

H =

∞∑

j=1

ψj(κ1, x2, κ3, ω)σj(κ1, κ3, ω)φ
†
j(κ1, x2, κ3, ω), (2.13)

with an orthogonality condition

(ψi(κ1, x2, κ3, ω),ψj(κ1, x2, κ3, ω))E = δij , (2.14)

(φi(κ1, x2, κ3, ω),φj(κ1, x2, κ3, ω))E = δij , (2.15)

(2.16)

and σj > σj+1 > 0. The φj and ψj form the right and left Schmidt bases (singular
vectors) for the forcing and velocity fields, and the real σj are the singular values. This
decomposition is unique up to a pre-multiplying unitary complex factor on both bases
corresponding to a phase shift (Young 1988).
This basis pair can then be used to decompose arbitrary forcing and the resulting state

vector at a particular Fourier component such that

f̂ (x2;κ1, κ3, ω) =

∞∑

j=1

φj(κ1, x2, κ3, ω)aj(κ1, κ3, ω) (2.17)

q̂(x2;κ1, κ3, ω) =

∞∑

j=1

σj(κ1, κ3, ω)ψj(κ1, x2, κ3, ω)aj(κ1, κ3, ω). (2.18)

Clearly the forcing shape that gives the largest energy is given by aj = δ1j . Moreover,
we later show that the resolvent operator is low-rank, i.e. σ1 ≫ σ2, where the flow is
most energetic. Thus, in this paper, we focus on the principal Schmidt bases (singular
vectors), i.e. the principal forcing mode φ1 and the principal response mode ψ1 =
[(q1)1, (q2)1, (q3)1, (q4)1, (q5)1]

† = [(u1)1, (u2)1, (u3)1, ρ1, T1]
†, and the principal singular

value σ1.

2.4. Boundary conditions

For the compressible boundary layer, the boundary conditions at the wall are given by

ui(x2 = 0) = 0, T (x2 = 0) = T̄ (x2 = 0). (2.19)

The boundary conditions on the velocity fluctuations are the usual no-slip conditions,
and the boundary condition on the temperature fluctuation is consistent for a gas flowing
over a solid wall.
The boundary conditions at the freestream are given by

ui(x2 → ∞), ρ(x2 → ∞), T (x2 → ∞) < ∞, (2.20)

which are less restrictive than requiring all fluctuations to be zero at infinity. However,
in supersonic flow, waves may propagate to infinity and this boundary condition allows
the waves with constant amplitude to be included.

2.5. Computational methods

Following the Schmidt decomposition in (2.13), there are an infinite number of singular
values in principle. However, we solve the discrete equations using a spectral collocation
methods with (N2+1) points in the wall-normal direction, limiting the number of singular
values to 5(N2 + 1), the size of the state vector q.
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Resolvent-based study of supersonic turbulent boundary layers 7

The discrete points in x2 are given by a rational transformation of the Chebyshev
collocation points. The Chebyshev collocation points are defined as

x′
2 = cos

πj

N2
, j = 0, 1, . . . , N2 (2.21)

in the domain −1 6 x′
2 6 1. The rational transformation

x2 = a
1 + x′

2

1− x′
2

(2.22)

maps x′
2 to the semi-infinite domain, where a/δ = 2 is the wall-normal location containing

N2/2 points (Grosch & Orszag 1977; Christov 1982) and δ is the boundary layer thickness
corresponding to the location where mean velocity reaches 99% of the freestream velocity.
With this transformation, the value of a function χ(x2) can be expressed as

χ(x2) =

N2∑

n=0

bnTn

(
x2 − a

x2 + a

)
=

N2∑

n=0

bnTn(x
′
2), (2.23)

where Tn is the nth order Chebyshev polynomial and bn is the coefficient for the
corresponding Chebyshev polynomial. Similarly, the derivative of the function χ(x2)
can be then expressed as

∂

∂x2
χ(x2) =

(
∂x′

2

∂x2

) N2∑

n=0

bn
∂

∂x′
2

Tn(x
′
2). (2.24)

The rational transformation of the Chebyshev collocation points allows the use of spectral
methods for the semi-infinite domain required for the turbulent boundary layer. The
stretching of the collocation points such that the majority of the points lie within
x2/δ 6 2 is appropriate for most of the energy containing modes that are located within
the boundary layer. However, in supersonic flows, waves may propagate to infinity and
thus become under-resolved due to the fact the grid resolution ∆x2 → ∞ as x2 → ∞.
Nonetheless, the limitation stems from resolving a semi-infinite domain with a finite
number of discrete points, and thus any choice of decomposition in the wall-normal
direction suffers from this limitation. The resolvent modes considered for this paper
are primarily located within the boundary layer, and thus we are not affected by this
limitation.

The turbulent mean profiles for the supersonic case are obtained from direct numerical
simulations of a spatially evolving zero-pressure-gradient supersonic turbulent boundary
layer with the wall temperature set to its nominally adiabatic value (Bernardini &
Pirozzoli 2011; Pirozzoli & Bernardini 2011), which are compared against a DNS of
an incompressible turbulent boundary layer (Jiménez et al. 2010). The cases are chosen
such that Reτ is similar to the Reynolds number for the incompressible case (Reτ ≈ 450).
An additional case with M∞ = 2 and Reτ = 900 was chosen to observe Reynolds number
effects. The specific cases used are listed in table 1 along with their respective resolution
in numerical computations, where N2 is the number of collocation grid points in the x2

direction, N1 and N3 are the number of spatial frequencies for κ1 and κ2, and Nc is the
number of grid points for the wave speed c = ω/κ1.
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8 H. J. Bae, S. T. M. Dawson and B. J. McKeon

M∞ Mτ Reτ Reθ N1 N2 N3 Nc log (∆λ1/δ) log (∆λ3/δ) ∆x2,min/δ

0 0 445.5 1100.0 81 400 81 25 0.05 0.05 3.08 × 10−5

2 0.074 447.7 2081.6 81 400 81 25 0.05 0.05 3.08 × 10−5

2 0.067 898.5 4747.1 81 400 81 25 0.05 0.05 3.08 × 10−5

3 0.091 502.0 4342.9 81 400 81 25 0.05 0.05 3.08 × 10−5

4 0.103 504.6 5914.9 81 400 81 25 0.05 0.05 3.08 × 10−5

Table 1: The freestream Mach number M∞, friction Mach number Mτ , friction Reynolds
number Reτ , Reynolds number based on momentum thickness Reθ, and grid resolutions
for the different cases. Ni is the number of grid points in the xi direction and Nc is the
number of grid points for the wave speed c = ω/κ1. ∆λi and ∆x2 are the grid resolutions
in the wall-parallel and wall-normal directions, respectively.

3. Characteristics of resolvent modes for compressible turbulent

boundary layer

We first examine the energy contained in the principal response mode. The energy
contribution of ψk to the total response subject to broadband forcing in the wall-
normal direction can be quantified by σ2

k/(
∑

j σj). Figure 1 shows the principal energy
contribution from the principal response mode ψ1 for the incompressible case and the
M∞ = 4 case at two wall-normal locations x+

2 = 15 and x2/δ = 0.2, where the superscript
+ denotes wall units defined in terms of ρ̄ and µ at the wall and the friction velocity uτ .
The results from the incompressible and compressible turbulent boundary layer show

similarities in region where the principal energy contribution of the incompressible
boundary layer is concentrated and thus low-rank approximation is valid for the in-
compressible regime. This region coincides with the most energetic wavenumbers from
DNS of incompressible channel flows identified by the premultiplied energy spectra given
by the contour lines in the figure.
The most notable difference between the incompressible and compressible results is the

triangular region marked by freestream relative Mach number, M∞, greater than unity
(figure 1(b)). The relative Mach number, defined as

M(x2) =
(κ1ū1(x2)− ω)M∞

(κ2
1 + κ2

3)
1/2

T̄ (x2)1/2
, (3.1)

can be understood as the local Mach number of the mean flow in the direction of the
wavenumber vector, [κ1, κ3]

†, relative to the wave speed at a given wall-normal location
x2. A three-dimensional depiction of the principal energy contribution as a function
of streamwise and spanwise wavenumbers and wave speeds is given in figure 2 for the
incompressible case and the compressible case at three different Mach numbers. It is
clear that the region with M∞ > 1, i.e. the relatively supersonic region, increases with
Mach number and grows from the wall towards the freestream. In linear stability theory,
M has been used to classify disturbances as subsonic, sonic, or supersonic depending on
its value at the boundary layer (Mack 1984; Schmid & Henningson 2000). Moreover, it
has been shown that if M > 1, a compressible boundary layer is unstable to inviscid
waves regardless of any other feature of the velocity and temperature profiles (Mack
1984). Considering that the family of modes with M > 1 does not have any counterpart
in incompressible boundary layers, it is expected that the most deviation between the
behaviour of the compressible and incompressible boundary layers occurs in this regime.
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Resolvent-based study of supersonic turbulent boundary layers 9

(a) (b)

(c) (d)

Figure 1: Energy contained in the principal response mode relative to the total
response, σ2

1/(
∑

j σ
2
j ), for different streamwise and spanwise wavelengths for the (a,c)

incompressible and (b,d) compressible (M∞ = 4) turbulent boundary layer at (a,b)
x+
2 = 15 and (c,d) x2/δ = 0.2. The contours are 10%, 50%, and 90% of the maximum

energy of the premultiplied energy spectra for channel flow at Reτ ≈ 550 (Del Alamo
et al. 2004) at the corresponding wall-normal locations. The white dashed line indicates
the relative Mach number of unity, M∞ = 1.

In particular, the irregular low-rank behaviour present in the relatively supersonic region
in figure 1(b), marked by bright regions, is due to the discrete acoustic eigenmodes of the
system approaching the wave speed c, thus giving resonant amplification of the resolvent
operator (Dawson & McKeon 2019). For details, see Appendix A.

The second, and less significant, difference can be seen for the two spectra at x2/δ =
0.2, where the region of high energy contribution covers a much wider range of wall-
parallel wavelengths for the M∞ = 4 case, with the ‘nose’ of the spectra located at a
smaller (λ1/δ, λ3/δ).

The first observation regarding the relative Mach number of unity can be explained
by the formation of Mach waves in the relatively supersonic region. The second can be
comprehended in terms of the correct scaling required for the compressible boundary
layer. The two main observations will be discussed in the remainder of this section.
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10 H. J. Bae, S. T. M. Dawson and B. J. McKeon

(a) (b)

(c) (d)

Figure 2: Energy contained in the principal response mode relative to the total response,
σ2
1/(
∑

j σ
2
j ), for different streamwise and spanwise wavelengths and wall-normal distance

for the (a) incompressible, (b) M∞ = 2, Reτ = 450, (c) M∞ = 3 and (d) M∞ = 4 cases.
The contour surface is σ2

1/(
∑

j σ
2
j ) = 0.75 coloured by wall-normal distance from the

wall.

3.1. Relatively supersonic region and Mach waves

As displayed by the energy contribution in figure 1, the resolvent operator is shown to
be low-rank for the supersonic turbulent boundary layer as well. Moarref et al. (2013)
showed that significant understanding of the scaling of wall turbulence can be obtained by
using the simple rank-1 model. Here, we employ the same rank-1 model by only keeping
the most energetic forcing and response directions corresponding to σ1 and compute the
premultiplied one-dimensional energy density of the principal response of H defined as

Eqq(x2, ω) =

5∑

i=1

∫∫
κ2
1κ3 [σ1(κ1, κ3, ω)|(qi)1|(κ1, x2, κ3, ω)]

2
d log κ1d log κ3

max
∫∫

κ2
1κ3σ1(κ1, κ3, ω)2 d log κ1d log κ3

. (3.2)

In figure 3(a) and (b), we plot the energy density as a function of wave speed c and x2

for both the incompressible and supersonic (M∞ = 2, Reτ = 450) turbulent boundary
layers. Unlike the incompressible case, where the energy density is localised around the
mean velocity profile (solid line), the compressible case shows a second region which is
displaced from the mean velocity. The overlaid relative sonic line (dashed line), where
the velocity profile corresponds to relative streamwise Mach number of unity at each
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(a) (b)

(c) (d)

Figure 3: Premultiplied one-dimensional energy density Eqq for the (a) incompressible and
(b) compressible (M∞ = 2, Reτ = 450) cases, and the energy density for the compressible
case conditionally sampled to (c) M < 1 and (d) M > 1. The turbulent mean velocity
profile, ū1 ( ) and the relative sonic line c̄ ( ) are shown for reference.

wall-normal location, shows that the displacement of the areas of high energy density are
indicative of Mach waves. The relative sonic line c̄ is given by solving

M =
(κ1ū1 − κ1c̄)M∞

(κ2
1 + κ2

3)
1/2

T̄ 1/2
= 1 (3.3)

at each x2 for κ3 = 0, i.e. c̄ = ū1 − T̄ 1/2/M∞, and indicates the minimum streamwise
velocity at each x2 where a relatively supersonic region exists. By conditionally sampling
the energy intensity for M∞ < 1 or M∞ > 1 (as shown in figure 3(c) and (d)), the two
phenomenon can clearly be separated, and the region of high energy density resembling
Mach waves are attributed entirely to the relatively supersonic region of M∞ > 1.
In figure 4, we plot a few of the principal streamwise velocity response modes (u1)1 for

both the incompressible and compressible (M∞ = 2,Reτ = 450) cases at (λ1/δ, λ3/δ) =
(0.01, 10), which lie within the region M∞ > 1 for the compressible case for a variety of
wave speeds. Note that the modes under consideration are essentially two-dimensional,
as we need λ1 ≪ λ3 in order for the relatively supersonic region to exist for a wide
range of wall-normal locations. This aspect ratio has not been studied in the past in
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Figure 4: The response modes (u1)1 for the (a) incompressible and (b) supersonic (M∞ =
2, Reτ = 450) turbulent boundary layer with λ1/δ = 0.01, λ3/δ = 10, and c = 0.14
(blue), 0.26 (red), 0.38 (green). Reference lines are x2 = xc

2 ( ) and x2 = xs
2 ( ).

the context of unforced turbulent boundary layers and the mode shapes that occur here
are different from the nominal three-dimensional case. Examining the principal response
modes, we see the the modes for the incompressible case (figure 4(a)) are centred at
the critical layer xc

2, where ū1(x
c
2) = c, but the modes corresponding to M∞ > 1 for the

compressible case (figure 4(b)) are centred at the sonic layer, xs
2, where M(xs

2) = 1. These
response modes are consistent with Mach waves that propagate towards the freestream
and the idea of eddy shocklets (Phillips 1960; Ffowcs Williams & Maidanik 1965), where
the instantaneous supersonic events cause local shock-like structures in the boundary
layer. However, the formation of eddy shocklets from superimposed Mach waves require
additional knowledge of phase for each wave parameter and is not dealt with here in
regards to the linear analysis.

3.2. Relatively subsonic region and universality of resolvent modes

In order for the resolvent modes to exhibit universal behaviour for different Reτ , the
modes must have a narrow footprint in the wall-normal direction such that the resolvent
modes are purely affected by a certain part of the mean velocity that scales uniquely
with Reynolds number (Moarref et al. 2013). Moreover, the necessary condition for the
existence of geometrically self-similar resolvent modes is the presence of a logarithmic
region in the turbulent mean velocity profile.
In order for the resolvent modes to be universal for the supersonic boundary layer, not

only do the modes have to be localised in x2, but the mean velocity profile must have a
scaling law similar to that of the incompressible case such that different regions of the
mean profiles collapse for various M∞ and Reτ . In compressible flows, viscous heating
causes non-uniform mean density and viscosity, which results in a mean velocity profile
that no longer satisfies the scaling of its incompressible counterpart. Many attempts
have been made to recover the scalings in this regime (Wilson 1950; Van Driest 1951;
Coles 1964; Zhang et al. 2012; Trettel & Larsson 2016, among others), with particular
emphasis on the logarithmic region. Most of these attempts have been made by seeking
a transformation of ū1 and x2 such that the compressible velocity profile maps onto an
equivalent incompressible profile. The most recent of these approaches given by Trettel
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Figure 5: (a) Turbulent mean streamwise velocity profile ū+
1 (x

+
2 ), (b) the transformed

velocity profile ū∗
1(x

∗
2) given by (3.5), (c) the defect velocity ū+

1,∞− ū+
1 (x2/δ) with respect

to the freestream, and (d) the transformed defect velocity ū⋆
1,∞− ū⋆

1(x2/δ) given by (3.7).
Lines indicate M∞ = 0 ( ), M∞ = 2, Reτ = 450 ( ), M∞ = 2, Reτ = 900 ( ),
M∞ = 3 ( ), and M∞ = 4 ( ).

& Larsson (2016) utilises a semi-local scaling in x2 and a integrated stress-balance
condition, which assumes that the sum of viscous and Reynolds stresses in both the
raw and transformed states must be equal, for the scaling of ū1 such that

x∗
2 =

ρ̄ (τw/ρ̄)
1/2

x2

µ̄
, (3.4)

ū∗
1 =

∫ ū+

1

0

(
ρ̄

ρ̄w

)1/2(
1 +

1

2ρ̄

dρ̄

dx2
x2 −

1

µ̄

dµ̄

dx2
x2

)
dū+

1 . (3.5)

Here, the subscript w indicates quantities evaluated at the wall and τw is the wall shear
stress. The results of this transformation are illustrated in figure 5(a) and (b), and an
improved collapse of the mean velocity profile in the inner and logarithmic region for the
various Mach numbers is achieved. The semi-local scaling x∗

2 used here was introduced
by Lobb et al. (1955), revisited by Huang et al. (1995) and Coleman et al. (1995) and
generalised by Trettel & Larsson (2016). This scaling gives rise to a local Reynolds number
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(Cebeci & Bradshaw 2012; Patel et al. 2015) at each wall-normal location

Re∗τ (x2) =
ρ̄(τw/ρ̄)

1/2δ

µ̄
(3.6)

such that x∗
2 = (x2/δ)Re

∗
τ . While the transformation proposed by Trettel & Larsson

(2016) works well for the inner and logarithmic region, the collapse is not as good for
the outer region. We find that best collapse is achieved with the transformation

ū⋆
1 = ū+

1

(
ρ̄

ρ̄w

)1/2

, (3.7)

which is equivalent to scaling the velocity with the semi-local u∗
τ =

√
τw/ρ̄ instead of

uτ =
√
τw/ρ̄w, and the results are given in figure 5(c) and (d). A different transformation

for the outer layer is expected, since the transformation given in (3.5) is based on the
idea that the momentum conservation is equivalent to the stress balance condition, which
only holds in the inner layer of nearly parallel shear flow at reasonable turbulence Mach
numbers. Note that despite the better scaling in the outer region, the collapse is not
perfect, which is a known issue for low Reynolds number boundary layer flows. Still, the
inner, logarithmic and outer layer all utilise the semi-local scaling to achieve a universal
mean velocity profile.
Given that the transformation of the turbulent supersonic mean velocity profile given

in (3.4)–(3.7) produces a reasonable match to the incompressible profile in the inner,
outer and logarithmic regions, the relatively subsonic (M∞ < 1) resolvent modes are
expected to have a universal behaviour in both Reynolds and Mach number, as the one-
dimensional energy density conditioned to M∞ < 1 in figure 3(c) show a localisation
with respect to x2. Moreover, the existence of a logarithmic region in the transformed
mean streamwise velocity profile satisfies the necessary condition for the geometrically
self-similar modes to be present. Due to the transformation in both ū1 and x2, the scaling
of the resolvent modes should be with respect to the semi-local variables, x∗

2 and Re∗τ .
The semi-local scaling also provides explanation of the discrepancy between the prin-

cipal energy contribution in the incompressible boundary layer (figure 1(c)) and the
supersonic one (figure 1(d)). For the supersonic case of M∞ = 4, the semi-local Reynolds
number at x2/δ = 0.2 is Re∗τ = 1020, which is significantly larger than the Reynolds
number of the incompressible case (Reτ = 450). In figure 6, we instead compare against
the results from the incompressible turbulent boundary at Reτ = 1040 with the mean
velocity profile from Schlatter & Örlü (2010) and the premultiplied energy spectra from
turbulent channel flow at Reτ = 950 (Del Alamo et al. 2004), which show a better
qualitative comparison between the two principal energy contribution spectra than the
comparison given in figure 1.

4. Scaling of the principal singular value and resolvent modes

4.1. Scaling of the principal response mode

As observed in §3.2, the mean streamwise velocity profile with the semi-local scaling
collapses to the incompressible boundary layer profile. This implies that the same scaling
used in Moarref et al. (2013) for the incompressible channel flow can be extended to the
compressible boundary layer by using the length-scale x∗

2 and Reynolds number Re∗τ . The
proposed scaling of the resolvent analysis for the different classes of the the compressible
boundary layer are given in table 2.
Note that the semi-local scaling already incorporates the Mach number (see figure 7).
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(a) (b)

Figure 6: Energy contained in the principal response mode relative to the total response
for different streamwise and spanwise wavelengths for the (a) incompressible (Reτ =
1040) and (b) compressible (M∞ = 4, Re∗τ = 1020) turbulent boundary layer at x2/δ =
0.2. The contours are 10%, 50%, and 90% of the maximum energy of the premultiplied
energy spectra for channel flow at Reτ ≈ 950 (Del Alamo et al. 2004) at the corresponding
wall-normal location.

For an adiabatic wall, the mean temperature profile is given by

T̄

T̄∞

= 1 + r
γ − 1

2
M2

∞

[
1−

(
ū1

ū1,∞

)2
]
, (4.1)

where r = Pr1/3 is the recovery factor (Walz 1969). Given the definition of the semi-local
Reynolds number (3.6) and the mean equation of state p̄ = ρ̄T̄ = 1, we have

Re∗τ = Reτ
µ̄/µ̄w√
ρ̄/ρ̄w

= Reτ

(
T̄ /T̄w

)3/2
+ Cw

(
T̄ /T̄w

)3/2
(1 + Cw)

, (4.2)

where Cw = S/Tw. When x2 = 0, we have that Re∗τ = Reτ as expected. In the limit
x2 → ∞, T̄ /T̄w = 1/

(
1 + r(γ − 1)M2

∞/2
)
and we have

Re∗τ (x2 → ∞) = Reτ
1 + Cw

(
1 + r(γ − 1)M2

∞/2
)3/2

1 + Cw
(4.3)

giving approximately a M3
∞ dependence for high Mach numbers.

In order for a fair comparison between the incompressible and compressible response
modes, the compressible velocity modes must be normalised by the kinetic energy content
in the response modes due to the orthonormality constraint of the singular vectors and the
different norms used for the two cases. We define turbulent kinetic energy and turbulent
thermodynamic energy as

EK = (q, q)K =

∫ ∞

0

ρ̄u†
iuidx2, ET =

∫ ∞

0

1

γM2
∞

(
ρ†ρ

ρ̄2
+

T †T

T̄ 2

)
dx2, (4.4)

respectively. We normalise the velocity and density and temperature modes such that

(̃ui)1 =
ρ̄1/2(ui)1√

EK

, ρ̃1 =
ρ1/(γM

2
∞ρ̄2)1/2√
ET

, T̃1 =
T1/(γM

2
∞T̄ 2)1/2√
ET

. (4.5)
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Class κ1-scale κ3-scale x2-scale c-scale (u1)1, ρ1, T1-scale

Inner κref
1

Re∗

τ

Reref
τ

κref
3

Re∗

τ

Reref
τ

x∗

2 ū1

(

x∗

2 = xref*
2

) 1√
Re∗

τ

Outer κref
1

Reref
τ

Re∗

τ

κref
3

x2

δ
cref 1

Logarithmic κref
1

xref
2 xref∗

2

xc
2x

c∗
2

κref
3

xref
2

xc
2

x2

xref
2

–

√

xc

2

δ

Table 2: Expected length scales for the universal modes of the resolvent operator for the
turbulent boundary layer.

0 0.2 0.4 0.6 0.8 1
0
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1000

1500
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2500

3000

Figure 7: Semi-local friction Reynolds number Re∗τ as a function of x2 for M∞ = 0 ( ),
M∞ = 2, Reτ = 450 ( ), M∞ = 2, Reτ = 900 ( ), M∞ = 3 ( ), and M∞ = 4
( ).

The relationship between EK and ET is later discussed in §4.2.
Because the difference between Reτ and Re∗τ grows as x2 increases (see figure 7),

the difference between the two scalings is expected to be most pronounced in the outer
region, defined as (ū⋆

1,∞ − ū⋆
1) . 6 with κ3/κ1 & ǫRe∗τ/Re

∗
τ,min, ǫ ≈

√
10 (see Appendix

B and Moarref et al. 2013, for details). In this region, the x2 dependent coefficients of H

such as ū1 − c (and T̄ and ρ̄) are independent of Reτ . And in the incompressible case,
the balance between the viscous dissipation term and the mean advection term in the
resolvent requires scaling of the spanwise coordinate in δ and the streamwise coordinate
with δReτ (Moarref et al. 2013). Thus, the universal modes in the outer region for the
incompressible case are given by the wave parameters

qout,+i = qi

(
κ1 = κref

1

Rerefτ

Reτ
, κ3 = κref

3 , c = cref

)
(4.6)

in wall units. Using semi-local variables, we expect the wave parameters for the com-
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Figure 8: Normalised and scaled response modes in the outer region for streamwise

velocity (a) (̃u1)
out,+

1 and (b) (̃u1)
out,∗

1 , density (c) ρ̃out,+1 and (d) ρ̃out,∗1 and temperature

(e) T̃ out,+
1 and (f) T̃ out,∗

1 . Lines indicate M∞ = 0 ( ), M∞ = 2, Reτ = 450 ( ),
M∞ = 2, Reτ = 900 ( ), M∞ = 3 ( ), and M∞ = 4 ( ).
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pressible case to be

qout,∗i = qi

(
κ1 = κref

1

Rerefτ

Re∗τ
, κ3 = κref

3 , c = cref

)
. (4.7)

Due to the scaling of the wall-normal distance in outer units as well as the orthonor-
mality condition for the velocity and thermodynamic quantities, the response mode
height is expected to scale in outer units. In figure 8, we plot the normalised and
scaled principal streamwise velocity, density and temperature response modes, with
the reference parameters Reτ = 445.5, κref

1 = 1, κref
3 = 10 and cref/ū1,∞ = 0.98.

The collapse among different Mach numbers is excellent for the semi-local scaling, and
the streamwise velocity modes for the supersonic cases are indistinguishable from the
incompressible response modes. Although not shown, the wall-normal response modes
exhibit a similar collapse when scaled with Re∗τ as opposed to Reτ , as proposed in
Sharma et al. (2017) for the incompressible case. The collapse is not as good for the
spanwise response modes, although the mode shape is still very similar among different
Mach numbers. Furthermore, the mode shapes are similar for the streamwise velocity,
density and temperature. The similarity in density and temperature response modes can
be explained by fact that from the equation of state, the two are linked with the pressure
fluctuations. Moreover, the similarity between the streamwise velocity and thermal modes
reinforce the strong Reynolds analogy, which links the transport of momentum and heat
transfer and concludes that the velocity and temperature profiles are correlated.
In the case of the inner region, the deviation of Reτ and Re∗τ is not as significant,

leading to a similar result for both the wall-unit scaling and the semi-local scaling. For
the universal modes in the inner region, where the streamwise and spanwise coordinates
are given in wall units, we expect the universal wave parameters to be

qin,∗i = qi

(
κ1 = κref

1

Re∗τ

Rerefτ

, κ3 = κref
3

Re∗τ

Rerefτ

, c = ū1(x
∗
2 = xref∗

2 )

)
(4.8)

for xref∗
2 < 30 and κ3/κ1 & ǫ, and analogously defined for qin,+i . In figure 9, we plot the

normalised and scaled principal streamwise velocity, density and temperature response
modes for reference Reynolds number, Rerefτ = 445.5 and wave parameters κref

1 = 1, κref
3 =

10 and x
ref+/∗
2 = 10. Here, the scaling of the wall-normal distance is in semi-local (or wall)

units. Thus, the orthonormality condition for the velocity and thermodynamic quantities
concludes that the response mode height is expected to scale as 1/

√
Re∗τ (or 1/

√
Reτ ).

Again, the collapse of the response modes among different Mach numbers are good for
both cases, and the streamwise velocity modes also collapse with the incompressible case.
The wall-normal and spanwise velocity modes also collapse for the various Mach numbers
to the incompressible case but are not shown for brevity. The mode shapes for density and
temperature are almost identical for the same reason discussed above. The temperature
and density modes scaled in wall units are not shown, but they are almost identical to
the ones given in semi-local units.
Finally, while the Reτ for the cases under consideration is too small for a clearly defined

logarithmic region, we consider the self-similar response modes. The wave parameters in
this region are given by

qlog,∗i = qi

(
κ1 = κref

1

xref
2 xref*

2

xc
2x

c∗
2

, κ3 = κref
3

xref
2

xc
2

, c

)
(4.9)

for wave speeds c in the logarithmic region (30/Re∗τ < x2/δ < 0.15), where xref
2 denotes

the critical layer for cref. The wave parameters in wall units are given analogously for
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Figure 9: Normalised and scaled response modes in the inner region for streamwise

velocity (a) (̃u1)
in,+

1 and (b) (̃u1)
in,∗

1 , (c) density, ρ̃in,∗1 and (d) temperature T̃ in,∗
1 scaled

by either Re−1/2
τ (a) or Re∗−1/2

τ (b,c,d) for reference parameters Rerefτ = 445.5, κref
1 = 1,

κref
3 = 10 and x

∗/+,ref
2 = 10. Lines indicate M∞ = 0 ( ), M∞ = 2, Reτ = 450 ( ),

M∞ = 2, Reτ = 900 ( ), M∞ = 3 ( ), and M∞ = 4 ( ).

qlog,+i . In figure 10, we plot the normalised and scaled principal streamwise velocity, den-

sity and temperature response modes for reference Reynolds number, Rerefτ = 445.5, and
reference wave parameters κref

1 = 1, κref
3 = 10, and cref/ū1,∞ = 0.5. The orthonormality

condition for the velocity and thermodynamic quantities give the response mode height
scaling of

√
xc
2/δ. Similar to the outer region, the semi-local scaling gives a better collapse

among the supersonic response modes for various Mach numbers. While the agreement
with the incompressible case is not perfect, some improvement is made from the use of
the semi-local scale. As mentioned earlier, the Reτ for cases under consideration is too
low for an actual logarithmic layer and a better collapse is expected for higher Reynolds
numbers. Additionally, as in the case of the inner and outer region, the temperature and
density modes are identical and are similar to the streamwise velocity mode shape as
well.
In addition to the universality and self-similarity of the response modes, the scaling

of the principal singular values is also investigated. The expected scaling of the singular
values for the incompressible case are given by 1/Reτ in the inner region, x+2

2 x2/δ in the
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Figure 10: Normalised and scaled response modes in the logarithmic region for streamwise

velocity (a) (̃u1)
log,+

1 and (b) (̃u1)
log,∗

1 , (c) density ρ̃log,∗1 and (d) temperature T̃ log,∗
1 scaled

by
√
xc
2 for reference parameters Rerefτ = 445.5, κref

1 = 1, κref
3 = 10 and cref = 0.5. Lines

indicate M∞ = 0 ( ), M∞ = 2, Reτ = 450 ( ), M∞ = 2, Reτ = 900 ( ), M∞ = 3
( ), and M∞ = 4 ( ).

logarithmic region and Re2τ in the outer region (Moarref et al. 2013; Sharma et al. 2017).
The scaling of the principal singular values with the corresponding semi-local scaling is
plotted in figure 11(a), (b), and (c). However a better approximation can be given by
performing a scaling analysis on the resolvent operator H (see Appendix B for details).
The elements of the resolvent operator matrix, and thus the leading singular value, can
be shown to follow 1/

√
Re∗τRe

⋆
τ in the inner region, x⋆

2x
∗
2x2/δ in the logarithmic region,

and Re∗τRe
⋆
τ in the outer region, where Re⋆τ = ρ̄uτδ/µ̄ and x⋆

2 = Re⋆τx2/δ. This is due to
the presence of the factor T̄ µ̄/Re (or equivalently µ̄/(Reρ̄)) in the governing equations
combined with the semi-local scaling of the κ1, κ3 and x2. The new proposed scaling for
the principal singular values are given in figure 11(d) for the outer region. Notice the
better collapse, especially in the innermost and outermost contour lines. The modified
scaling for the inner and logarithmic region are not shown as Re∗τ ≈ Re⋆τ in this region
and no visible changes are detected.

DISTRIBUTION A: Distribution approved for public release



Resolvent-based study of supersonic turbulent boundary layers 21

101 102 103 104

101

102

103

104

(a)

10-1 100 101 102 103
10-1

100

101

102

103

(b)

10-2 10-1 100 101
10-2

10-1

100

101

(c)

10-2 10-1 100 101
10-2

10-1

100

101

(d)

Figure 11: Principal singular value in the relatively subsonic region for (a) c =
ū1,∞(x∗

2 = 10) for the inner layer, (b) c/ū1,∞ = 0.7 for the logarithmic layer, and
(c,d) c/ū1,∞ = 0.88 for the outer layer. Contour lines are (a) (102, 104, 106, 108)/Re∗τ ,
(b) (10−3, 10−1, 101, 103) × x∗2

2 x2/δ, (c) (10−7, 10−5, 10−3, 10−1, 101) × Re∗2τ , and (d)
(10−7, 10−4, 10−1, 102) × Re⋆τRe

∗
τ . Lines indicate M∞ = 0 ( ), M∞ = 2, Reτ = 450

( ), M∞ = 2, Reτ = 900 ( ), M∞ = 3 ( ), and M∞ = 4 ( ). Arrows indicate
direction of increasing σ1.

4.2. Scaling of the kinetic and thermodynamic energy ratio

Due to the orthonormality constraint of the resolvent modes, the comparison between
the compressible and incompressible resolvent modes in the previous section was for nor-

malised response modes (̃qi)1. However, it is equally important to assess the distribution
of energy among the kinetic and thermodynamic variables for the supersonic cases.
In figure 12(a), (b) and (c), we plot the spectra of the ratio of thermodynamic energy

and kinetic energy ET /EK for the resolvent modes for M∞ = 2 and Reτ = 450 for two
different wall normal heights. For the incompressible case, this ratio would be uniformly
zero. Close to the wall, where relatively supersonic region is present, the thermodynamic
energy clearly dominates in the relatively supersonic region as expected. Further away
from the wall at x2/δ = 0.2 and x2/δ = 0.5, the thermodynamic energy still dominates in
a smaller region with λ3 > λ1 with the strongest amplification centred around κ1 ≈ 0.5.
This may be explained by the observation from Pirozzoli & Bernardini (2011) that in
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Figure 12: The spectra of the ratio of turbulent thermodynamic and kinetic energy,
ET /EK computed from the principal resolvent modes at (a) xs

2 = 15, (b) x2/δ = 0.2 and
(c) x2/δ = 0.5 for the M∞ = 2, Reτ = 450 case. The relative sonic line c̄ ( ) is shown
for reference. (d) The values of ET /EK at the most energetic wave parameters as defined
in (4.11) for the principal resolvent modes (×) and DNS ( ) for M∞ = 2, Reτ = 450
(blue), M∞ = 3 (red), and M∞ = 4 (green).

this region, the thermal streaks spread significantly in the spanwise direction compared
to the velocity streaks. It is also consistent with the observation that large-scale pressure-
carrying eddies or wavepackets, which are correlated with thermodynamic fluctuations,
are more coherent in the spanwise direction for both incompressible (Sillero et al. 2014)
and hypersonic (Duan et al. 2016) boundary layers.
We also plot the ratio of turbulent kinetic energy to the sum of the mean-square density

and temperature fluctuations obtained from DNS (Bernardini & Pirozzoli 2011; Pirozzoli
& Bernardini 2011) as a function of x2 in figure 12(d). In particular, we plot

(
ET

EK

)DNS

= γM2
∞

ρ̄ui,rmsui,rms

ρ2rms/ρ̄
2 + T 2

rms/T̄
2
, (4.10)

where rms denotes the root-mean-squared fluctuations from DNS. For all wall-normal
locations, the the ratio increases with Mach number. Moreover, the ratio increases as a
function of x2 for a fixed Mach number. In order to compare the results from the resolvent
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modes to DNS, we define the energy ratio of the most energetic mode as
(
ET

EK

)res

=
ET

EK

(
arg max

κ1,κ3

Φu1u1
(κ1, κ3)

)
, (4.11)

where Φu1u1
is the premultiplied streamwise energy spectra for the channel flow at Reτ =

550 obtained a priori from Del Alamo et al. (2004). The (ET /EK)res given by these
wave parameters is plotted in figure 12(c). The agreement between the ratio of kinetic
and thermodynamic energy given by the most energetic principal response mode of the
resolvent analysis and the DNS is excellent in the logarithmic region. The discrepancy
in the outer region, especially for the higher Mach numbers, may be due to the larger
value of Re∗τ compared to the Reτ of the premultiplied spectra used to choose the wave
parameters for the most energetic modes. In the inner region, the estimated energy ratio
plateaus, deviating from the DNS profile. This could be due to the increased contributions
from relatively supersonic region, which is more prevalent in the near-wall region (see
figures 1 and 2). Additionally, it is shown in LeHew et al. (2011) that the energetic
contribution of structures with convection velocities less than 10uτ is negligible in real
turbulent flows, which corresponds to the region where the mismatch is pronounced.
The observation that the correct energy distribution between ET and EK can be

obtained by considering the most energetic principal response modes in a wide range of
wall normal locations is a useful tool in terms of modelling and flow prediction.

5. Conclusions

We have extended the resolvent analysis to the compressible Navier-Stokes equations
and have applied it to supersonic zero-pressure-gradient turbulent boundary layer. From
the low-rank approximation formulated for individual wall-parallel wavenumbers and
frequencies, we have identified two distinct regions in the wave parameter space: the
relatively supersonic region and the relatively subsonic region.
In the relatively supersonic region, marked by relative Mach number greater than unity,

we show that the resolvent modes are centred around the relative sonic line rather than
the critical layer and that the majority of the energy is carried by the thermodynamic
fluctuations. These response modes are consistent with acoustic Mach waves propagating
towards the freestream and the idea of eddy shocklets, where the instantaneous supersonic
events cause local shock-like structures in the boundary layer. Additionally, the modes in
this region are also shown to follow a modal amplification mechanism. The range of wave
parameters corresponding to the relatively supersonic region, where the compressibility
effects are concentrated, grows with Mach number, which might be an indicator of why
the Morkovin’s hypothesis fails for high Mach numbers.
In the relatively subsonic region, we show that the principal response modes are lo-

calised around the critical layer corresponding to the mean velocity profile. Furthermore,
with the semi-local scaling proposed by Trettel & Larsson (2016), the mean velocity
profiles can collapse for various Reynolds and Mach numbers. This provides the necessary
condition for the resolvent modes to exhibit universality and geometrically self-similarity
when scaled with the semi-local Reynolds number and wall-normal distance. We show
that the principal response modes are indeed universal and self-similar and that they
follow the same scaling laws as the incompressible boundary layer when normalised by
the fluctuating kinetic energy. This validates the notion of Morkovin’s hypothesis for
the relatively subsonic region on a mode-by-mode basis. Moreover, the velocity modes
and the temperature and density modes are qualitatively similar, consistent with the
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strong Reynolds analogy. We also provide scaling laws for the amplification factor of the
principal response mode.

Finally we show that the energy distribution between the velocity fluctuations and the
thermodynamic fluctuations can be predicted from the energy distribution of the most
energetic response mode. Coupled with the universality and self-similarity of the resolvent
modes in the relatively subsonic region, this has implications in modelling and prediction
of high-speed turbulence. As in the incompressible case, the self-similar resolvent modes
facilitate analytical developments in the logarithmic region of the boundary layer. Ad-
ditionally, this allows prediction tools developed for resolvent analysis of incompressible
fluids to be applied to supersonic boundary layers.

The results show that the main difference between the compressible Navier-Stokes
equations and the incompressible equations are due to density variations in the wall-
normal direction and the acoustic contribution in the relatively supersonic region. The
full nonlinear closure then propagates the deviation through triadic interactions, which
results in the variation in the mean velocity profile. Future efforts will be focused on
studying the effect of the feedback loop by incorporating limited self-interactions to
estimate the forcing term as in Rosenberg et al. (2019) for the incompressible Navier-
Stokes equations. Also, further efforts are necessary to study the effects of higher Mach
numbers and different wall boundary conditions such as cooled walls.

The authors acknowledge support from the Air Force Office of Scientific Research grant
FA9550-16-1-0232.

Appendix A. Modal amplification mechanism in the relatively

supersonic region

The spectrum of the linear operator L is obtained from solving the eigenvalue problem
Lq = iωq. Here, we plot the results for the M∞ = 4 case in terms of the complex
wave speed c = ℜ(c) + iℑ(c) in figure 13. The spectrum for (κ1, κ3) = (0.2, 2) shown
in figure 13(a) consists of viscous modes that is typical for both incompressible and
compressible boundary layers flows. Note that the freestream velocity projected onto
[κ1, κ3]

†, M∞ = 0.39 is subsonic, and thus relatively supersonic modes are absent in this
case. However, the spectrum for (κ1, κ3) = (1, 2) (figure 13(b), where relatively supersonic
regions are present, show an additional feature indicative of “acoustic” eigenmodes along
ℑ(c) = 0. In the relatively supersonic region, the resolvent norm shows peaks in both the
leading singular value and the energy contained in the principal resolvent mode due to
spectral amplification of these acoustic eigenmodes near their defined wave speeds.

For a given wave speed c, we can plot the distance dΛ from ω = cκ1 to the closest
acoustic eigenvalue as a function of wavenumbers κ1 and κ3. In figure 14, the inverse
of the minimum eigenvalue distance is shown to correlate well with the leading singular
value, which leads to correlation with the principal energy contribution σ1/(

∑
j σj). As

mentioned before, this is due to the resonant amplification of the resolvent operator
through modal amplification mechanisms. The change in discrete location of the acoustic
eigenvalues as a function of κ1 and κ3 explains the irregular patterns in figure 1(b) in
the relatively supersonic region.
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Figure 13: Eigenvalues for the linearised operator L for the compressible (M∞ = 4)
turbulent boundary layer for wave parameters (a) (κ1, κ3) = (0.2, 2) and (b) (κ1, κ3) =
(1, 2).
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Figure 14: Inverse of the distance of the wave speed to the closest acoustic eigenvalue
with ℑ(c) = 0, κ1/dΛ ( ), compared with the premultiplied principal singular value
κ1σ1 ( ) and energy contribution from the leading singular value σ1/(

∑
j σj) ( ) for

κ3 = 2.

Appendix B. Reynolds number scaling of the principal singular value

In inner region where the collapse of the mean velocity profile is achieved through the
semi-local scaling, the coordinates scale as

κ1 ∼ Re∗τ , κ3 ∼ Re∗τ , d/dx2 ∼ Re∗τ . (B 1)

We then analyse the scaling of the linear operator H by assessing the Reynolds number
dependency of the terms in the linearised operator L. In this process, we assume that
the Mach number plays a secondary role, since we know Re∗τ (or Re⋆τ ) reflects the Mach
number dependency as seen in §4.1. Doing so, the linear operator L approximately scales
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as

L ∼
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As Re∗τ ≈ Re⋆τ in this region, the scaling can be seen as L ∼
√
Re∗τRe

⋆
τ , giving H =

(iωI+L)−1 ∼ 1/
√
Re∗τRe

⋆
τ . Thus, the leading singular value is expected to be proportional

to 1/
√
Re∗τRe

⋆
τ .

In the outer region, the coordinates scale as

κ1 ∼ 1/Re∗τ , κ3 ∼ 1, d/dx2 ∼ 1. (B 3)

Additionally, if we assume that κ2
3 dominates κ2

1 for all values of Re∗τ , such that for
the streamwise wavenumber in the outer coordinate given by κ−

1 = Re∗τκ1 we have
κ3/κ

−
1 > ǫ/Re∗τ , the linear operator L scales as
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The resolvent H then scales as Re∗τRe
⋆
τ , which gives the scaling for the leading singular

value σ1.
Finally, for the logarithmic region, the differential operators are scaled as

κ1 ∼ 1/(xc∗
2 xc

2), κ3 ∼ 1/xc
2, d/dx2 ∼ 1/xc

2. (B 5)

We also assume that the spanwise coordinate dominates the spanwise coordinate, i.e.
(κ3/κ1) > ǫ with a conservative estimation of ǫ ≈

√
10, and arrive at

L ∼
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And a similar analysis as the inner and outer regions reveals that the singular values
scale with x∗

2x
⋆
2x2.
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This work develops a framework for studying the behavior of a passive scalar field in in-
compressible wall-bounded turbulence using the resolvent operator. This approach expresses
the state of the system as the result of applying a linear (resolvent) operator to the nonlinear
terms in the governing Navier-Stokes equations. By augmenting the system with a passive
scalar equation, this formulation is used to study the relationship between velocity and scalar
fluctuations. Additional insight into the mechanisms responsible for driving scalar fluctua-
tions is attained by considering the resolvent form of the passive scalar equation in isolation
from the momentum equations. We demonstrate that the passive scalar resolvent operator
admits rescaling properties that relates the behavior of scalar fields with different diffusivities,
and investigate the ability of this modeling framework to predict statistical properties of the
fluctuating scalar field.

I. Introduction
The behavior of a passive scalar field (e.g. density or temperature) within turbulent flows is of importance both

for understanding turbulent mixing and heat transfer, and also to provide context and interpretation for experimental
techniques that measure such fields (e.g., [1]). Many aspects of passive scalar behavior in wall-bounded turbulence
remain active areas of investigation, including scalar scaling laws and statistics [2–4], modulation of scalar fields by
emergent structures in transitional flow [5, 6], and correlations between the scalar and momentum fields [7] and various
functions and derivatives thereof [8, 9]. See [10] for a review of many other aspects of passive scalar behavior in
turbulence. Of particular interest is the extent to which, and contexts in which, the strong Reynolds analogy applies for
predicting and understanding the behavior of scalar fields (e.g. [11, 12]). Note also that the utility of developing an
understanding of passive scalar dynamics extends to the compressible regime if one assumes Morkovin’s hypothesis
[13] that the dominant effects of (mild) compressibility are accounted for by changes in the relevant mean profiles.

The resolvent of a given linear operator gives information about its pseudospectral properties [14, 15], which is of
particular relevance for highly nonnormal operators [16], such as those that arise in shear flows. Indeed, considering the
leading singular vectors of the resolvent operator obtained from linearizing about the turbulent mean has been found to
give a useful reduced-order representation of wall-bounded turbulent flows [17–20]. This approach has shown promise
and success for the prediction of numerous pertinent features of wall-boulder turbulence, including structures [19] and
statistics [21] in wall-bounded turbulence, as well as showing promise for use as a reduced order modeling framework
for control [22]. Note that this and similar approaches has also been applied to a range of other fluids systems, such as
turbulent jet [23–25] and cavity flows [26, 27].

The present work explores the potential for studying passive scalar dynamics in wall-bounded shear flows using the
resolvent framework. The incorporation of a passive scalar field into resolvent analysis is presented in section II, before
results from applying this analysis to turbulent boundary layer profiles, using both experimental and numerical mean
flow data, are given in section III

*Postdoctoral Scholar, Graduate Aerospace Laboratories, AIAA member
†Theodore von Karman Professor of Aeronautics, Graduate Aerospace Laboratories, AIAA Associate Fellow
‡Postdoctoral Scholar, Department of Mechanical and Aerospace Engineering
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II. Resolvent formulation with a passive scalar field
Upon taking a temporal Fourier transform, the incompressible Navier-Stokes equations may be written as



−iω + (∇u0) · + u0 · ∇ − Re−1∆ ∇

∇T 0





uω

pω


 =



fω

0




where p is the pressure, u0 is the mean velocity, and uω and fω represent the mean-subtracted velocity, and nonlinear
(forcing) term respectively. We consider wall-bounded flow with a mean velocity component in the streamwise direction
only, which is assumed to not vary in the streamwise or spanwise directions. In this case we may take a spatial Fourier
transform in the streamwise and spanwise directions, giving




−iω + ikxU − Re−1∆ DyU 0 ikx
0 −iω + ikxU − Re−1∆ 0 Dy

0 0 −iω + ikxU − Re−1∆ ikz
ikx Dy ikz 0







u
v

w

p




= f , (1)

where U is the mean streamwise velocity (i.e., u0 = (U (y),0,0)), kx and kz are the streamwise and spanwise wave
numbers, Dy is the partial derivative operator in the wall-normal direction, and ∆ = Dyy − k2

x − k2
z . Here u and P

represent mean-subtracted quantities (as do v and w, though they are assumed to have zero mean component), and for
clarity we have dropped the ω subscripts. We wish to incorporate an additional equation governing the transport of a
passive scalar in the system, denoted by TTOT = T0 + T , with T0 being the mean field. We will use terminology as if
this is a temperature field, but note that the findings hold for any scalar. The scalar satisfies the advection-diffusion
equation (after temporal Fourier transform)

− iωT + u · ∇T − (RePr)−1
∆T = 0, (2)

where Pr is the Prandtl number, which represents the ratio between viscous and thermal diffusion. Decomposing
this into mean (which we again assume only varies in the wall-normal direction) and fluctuating components, and
subtracting off the mean equation, we have

− iωT + UikxT + vDyT0 − (RePr)−1
∆T = −(ukx + vDy + wkz )T = fT . (3)

We may insert this as an additional equation into Eq. 1, to obtain



−iω + ikxU − Re−1∆ DyU 0 ikx 0
0 −iω + ikxU − Re−1∆ 0 Dy 0
0 0 −iω + ikxU − Re−1∆ ikz 0

ikx Dy ikz 0 0
0 DyT0 0 0 −iω + ikxU − (RePr)−1∆







u
v

w

p
T




=



f

0
fT



, (4)

where we have dropped the primes from elements of the state vector. Note in particular that there is forcing in the
temperature equation, but not the linear continuity equation. Eq. 4 may be rearranged and expressed compactly as

q = Hω fq, (5)

where q = [u v w p T]T , fq = [ fu fv fw 0 fT ]T and Hω is the inverse of the operator on the left side of Eq. 4.
Resolvent analysis proceeds by considering the leading singular vectors of the singular value decomposition (SVD) of
Hω (or equivalently, the singular vectors corresponding to the smallest singular values of the operator in Eq. 4). The
leading resolvent response and forcing modes are the leading left and right singular vectors ofHω , respectively.

Note also that if we keep the inner product as the (turbulent kinetic) energy norm, then the velocity forcing and
response modes will be both unaffected by the additional equation in the system. However, we may propagate the
forcing mode through the resolvent operator to determine the response of the scalar. Note that this is similar to the
approach taken in [28], for example, to compute pressure response modes. Viewing our underlying vector space as that
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Fig. 1 Mean streamwise velocity and pressure profiles for a turbulent boundary layer at Reτ = 910. Tempera-
ture data obtained from [30].

containing all values of the state q, the energy norm for incompressible fluids is really a seminorm, as it does not satisfy
the uniqueness property that ‖q‖ = 0 implies q = 0. This means that there are, mathematically speaking, multiple
solutions to the SVD problem when using the energy seminorm as defined. However, the velocity field is fixed for the
family of solutions to the SVD, and the pressure and temperature fields may be determined such that they satisfy the
governing equations. In the case of pressure, this means that the pressure field is that which enforces incompressibility
of the resolvent modes (which may be computed either from the resolvent operator, or through Green’s functions [28]).

III. Results and analysis
We now apply the formulation presented in Section II to a turbulent boundary layer with no external pressure

gradient. The majority of the results presented in this section will use mean streamwise velocity and scalar (temperature)
profiles obtained from wind tunnel experiments at Reτ = 910, shown in Fig. 1. The temperature gradient is obtained
by heating the boundary upstream of the measurement plane, where here and henceforth we flip the sign of the scalar
field (i.e., we consider as a variable the temperature deficit from the wall temperature), which results in the gradient of
the mean scalar field having the same sign as that for the velocity. The heating elements were heated to a temperature
22 K above than the freestream air temperature. Comparison to statistics for an unheated boundary layer confirmed
that the temperature field could be considered as a passive scalar field for this configuration. The Prandtl number is
assumed to be 0.7 throughout. Refer to [29–32] for further details about the experimental setup. As is typical, the
thermal boundary later extends further from the wall than the velocity boundary layer. We assume that variations in
the streamwise direction are sufficiently small that we can perform a local (one dimensional) analysis as described in
Section II.

Resolvent analysis is performed using a Chebyshev pseudospectral method, with a domain extending 10δ in the
wall-normal direction, where δ is the boundary layer thickness corresponding to the location where the mean velocity
is 99% of the freestream. We show in Figs. 2 and 3 typical results (in the form of amplitude of leading forcing and
response modes) from carrying out the analysis as described in section II, for a given set of spatial wavenumbers, and
temporal frequencies corresponding to wave speeds of c+ = ω/kx = 10 and 20. Shown are the amplitude of the forcing
and response mode components in the velocity and temperature field, as well as the response shapes for each component
in a two dimensional cross-section at a fixed spanwise location. The kinetic energy norm is used, so the inner product
is not weighted, and consequently the forcing modes do not have any scalar component. In both cases the modes are

3
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typically localized near the critical layer, with those in Fig. 2 “attached” to the wall, and those in Fig. 3 detached, owing
to the critical layer being further from the wall. We make the preliminary observation that, for this set of wavenumbers
the temperature response mode amplitude looks similar to that of the streamwise velocity for both cases.

This is explored further in Fig. 4, where the (scaled) amplitude and phase of the streamwise velocity and temperature
response mode components are plotted together for three wave speeds. We find that the temperature response does
indeed closely match the response in streamwise velocity, with the largest discrepancy occurring when the critical layer
is closest to the wall.

To understand the behavior of the scalar field in more detail, we will now turn our attention back to the governing
equations to study the expected behavior for this system under a variety of conditions. By rearranging Eq. 3, we have

(−iω + Uikx − (RePr)−1
∆)T = fT − vDyT0. (6)

If T is not included in the norm, then fT may be set to zero (note that this is non-physical, as there would still be a
fluctuations due to the forcing in the velocity). Since the velocity response mode is determined without considering this
equation, we may consider v as known. This means that the T component of the response mode may be computed using

T = (−iω + Uikx − (RePr)−1
∆)−1(−vDyT0). (7)

Rather than explicitly using Eq. 4, this allows us to compute the response mode(s) of the scalar after computing the
regular resolvent operator, which reduces the maximum sizes of the matrices that we need to assemble, and also allows
for passive scalar modes to be computed after-the-fact when velocity response modes are known. We emphasize that
this may only be done when the inner product does not give any weight to the passive scalar (though later we will
demonstrate that the choice of inner product generally has negligible effect on the shapes of each component of a given
mode). The formulation given in Eq. 7 also suggests that the behavior of the scalar response can be studied without
explicit knowledge of the velocity response. This idea is explored in Section A.

A. Passive scalar analysis without momentum equations
Considering Eq. 7, we may draw an analogy with the resolvent formulation of the Navier-Stokes equations. That is,

we have an input, or forcing, which is acted on by the operator

Qω = (−iω + Uikx − (RePr)−1
∆)−1 (8)

to obtain the scalar response for a given velocity response. It is natural, then, to wonder how much the scalar response
depends on the particular forcing, as opposed to the properties of the operator Qω itself. To analyze this, we consider
the optimal forcing and response modes for Qω (obtained as usual through an SVD) in Fig. 5. We observe that the
“uncoupled” response modes, obtained from Qω , have a similar shape to the coupled (i.e., with “forcing” of Qω as
defined in Eq. 7) mode. The similarity between the streamwise velocity and scalar response modes further suggest that
streamwise velocity response mode shapes can also be approximated using a scalar operator similar to that defined in
Eq. 8. While the forcing for the coupled case (−vDyT0), and the right singular vectors of Qω in the uncoupled case) are
typically supported in a similar wall-normal location (with the former typically being supported on a larger region),
the phase variation between the two is quite different. In particular, the coupled forcing modes (−vDyT0) have very
little phase variation with wall-normal height, while the decoupled scalar forcing is inclined upstream. The fact that
similar responses are observed for different forcing inputs suggests that the scalar operator Qω is acting as a highly
directional amplifier, and amplifying the component of the forcing in the direction of its optimal forcing, but providing
little amplification to the remaining component. This is the same general principle that can allow resolvent analysis
to make predictions about turbulent flows without specific knowledge of the forcing: so long as the forcing has some
component in the direction of optimal forcing, that component will excite the optimal response.

This observation that the uncoupled scalar equations predict features observed in the full system is broadly consistent
with the conclusions of other methods of analysis for passive scalar dynamics [33]. These findings also mean that, at
least in some regimes, the scalar response is relatively insensitive to the precise shape of the mean scalar field, since
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Fig. 2 Resolvent modes (forcing and response) with the inclusion of a passive temperature field, with Pr = 0.7,
kx = π/3, kz = 2π, and c+ = ω/kx = 10. The top four subplots show the amplitudes of each component of
the forcing and response modes (each having unit norm), while the lower subplots show response mode shapes
in a two dimensional cross-section at a fixed spanwise location. Red and blue contours represent positive and
negative fluctuations, respectively, with contour levels for each field scaled by the maximum of each mode
component. Also shown is the location of the critical layer, where c+ = U .

5

DISTRIBUTION A: Distribution approved for public release



0 1 2 3
0

0.5

1

y

u

Forcing

Response

Critical Layer

0 0.5 1
0

0.5

1
v

0 1 2
0

0.5

1

y

w

0 1 2
0

0.5

1
T

Fig. 3 As for Fig. 2, but with c+ = 20.
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Fig. 4 Amplitude (left) and phase (right) of streamwise velocity and passive scalar components of resolvent
response modes with kx = π/3, kz = 2π, and c+ = 10 (top row), 15 (center), and 20 (bottom).
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Fig. 5 Scalar forcing and response modes identified both from the computed velocity modes (coupled), and
from taking an SVD of Qω (decoupled), with kx = π/3, kz = 2π, and c+ = 10 (left subplots) and 20 (right). The
top row of plots show the scaled response amplitudes of the coupled and decoupled scalar modes in comparison
to the streamwise velocity component, while the lower subplots show forcing and response modes in a two
dimensional cross-section at a fixed spanwise location.

the analysis of the scalar operator does not account for the mean scalar profile (though note that, while it is not done
here, one could use the gradient of the mean scalar field to weight the norm used in the study of the scalar operator).
This suggests that it is reasonable to investigate the dynamics of scalar fields with different properties, even without the
availability of modified mean scalar field data. This is investigated in Section B.

B. Effect of scalar diffusivity and boundary conditions
We show in Figs. 6 and 7 the effect of the Prandtl number (i.e. scalar diffusivity) on the passive scalar component of

the resolvent response mode. As discussed at the end of Section A, this is done without changing the mean scalar field.
We observe that larger Pr typically corresponds to a larger response, which is more concentrated on the critical layer.
We can understand this behavior by considering the limits of small and large scalar diffusivity.
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Fig. 6 Passive scalar resolvent response modes, for Pr ranging from 0.00001 (lightest gray) to 10000 (black).
Also shown in blue are the streamwise velocity component of the modes, and in red are the Green’s function
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As Pr → ∞, the diffusion term becomes negligible. This means that

T → (−iω + Uikx )−1vDyT0 = i(Ukx − ω)−1vDyT0,

= ikx (U − c+)−1vDyT0.

=

 −ikx
‖U−c+ ‖

vDyT0, y < ycr it
ikx

‖U−c+ ‖
vDyT0, y > ycr it

which has a singularity when Ukx = ω (i.e., on the critical layer), so long as vDyT0 is nonzero at this location. We thus
expect for the amplitude of the scalar mode to approach a delta function at the critical layer, with the phase jumping by
π across the critical layer (when −iω + Uikx changes sign). Aside from this, we also expect for the phase to match
v, offset by π/2, as this is the only complex term in the equation. If T0 is an increasing function, then DyT0 will be
negative. This means that we expect the scalar response to have a phase offset from v of +π/2 below the critical layer,
and −π/2 above it.

In this case of negligibly small Prandtl number, the diffusive term will dominate. We observe in Figs. 6 and 7 that
the magnitude of the response becomes wider, with a peak amplitude further from the wall than the other modes for
c+ = 10 and 15. The phase also becomes approximately constant and locked to the phase of the streamwise velocity
response at the critical layer. This is the location of the peak for low scalar diffusion, so for fast diffusion it makes sense
that the scalar will quickly dissipate throughout the domain at this phase.

If we ignore the non-diffusion terms from the right hand side of Eq. 6, we obtain

∆T =
(
−(k2

x + k2
z ) + Dyy

)
T = −(RePr)vDyT0. (9)

The Pr term on the right hand side of this equation explains the observation in Fig. 7 that the size of the temperature
response is proportional to Pr for small Pr. Eq. 9 (which is now self-adjoint, and allowing for the application of
Sturm-Liouville theory) can be solved directly using Green’s functions. In particular, when using Dirichlet boundary
conditions at the wall and in the far field, we have the Green’s function

G(y, ξ) =

 1
2k

[
ek⊥ (y−ξ) + e−k⊥ (y+ξ)

]
y ≤ ξ

1
2k

[
ek⊥ (ξ−y) + e−k⊥ (y+ξ)

]
y > ξ

, (10)

where k⊥ =

√
k2
x + k2

z . The fluctuating scalar field response can then be computed through

T (y) = −RePr
∫ ∞

0
G(y, ξ)v(ξ)

∂T0

∂y

�����y=ξ

dξ. (11)

Figs. 6 and 7 show that this approximation is indeed accurate for small Pr . Note also that while we only consider one
set of spatiotemporal wavenumbers here, the range of Prandtl numbers at which these asymptotic approximations are
accurate will be wavenumber-dependent.

So far, we have assumed Dirichlet boundary conditions on T , which corresponds to a constant temperature wall.
We compare these results to those assuming an adiabatic wall (Neumann boundary conditions) in Figs. 8 and 9. We
observe, as might be expected, that the resulting modes differ the most for smaller wave speeds, where the critical layer,
and the location of the response mode, are closer to the wall. In particular, adiabatic boundary conditions allow for
larger scalar response amplitudes closer to the wall.

C. Scaling relationships of passive scalar diffusivity
The analysis in Section A suggests that the scalar response can, in many cases, be attributed to the properties of

the operator Qω , rather than the nature in which it is forced. To study such ideas further, we seek a transformation in
spatio-temporal wavenumber space that accounts for the effect of different Prandtl numbers. Note first that we have

Qω = Pr
[
−i(ωPr + UkxPr) − (Re)−1(Dyy − k2

x − k2
z )

]−1
. (12)
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Fig. 8 Comparison between the magnitude of the leading passive scalar resolvent response mode as a function
of Prandtl number for an isothermal (solid lines) and adiabatic (dashed) wall, for c+ = 10 (left) 15 (center) and
20 (right), with kx = π/3 and kz = 2π throughout.
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Fig. 9 Comparison between scalar response for an isothermal (solid) and adiabatic (dashed) wall, for various
wave speeds and Prandtl numbers. The spatial wavenumbers are fixed, with kx = π/3 and kz = 2π.
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It is then evident that kx and kz may be adjusted as Pr varies such that Qω is only changed by a scalar factor (Pr). In
particular, suppose that Q0,ω corresponds to ω0, kx0, kz0, and Pr0. Then if we let

ω1Pr1 = ω0Pr0, kx1Pr1 = kx0Pr0, k2
x1 + k2

z1 = k2
x0 + k2

z0, (13)

we find that
Q1,ω

Pr1
=
Q0,ω

Pr0
. (14)

To test how well the temperature response collapses under these rescalings, we show in Fig. 10 the results from applying
the relations defined in Eq. 13, for a given set of ω0, kx0, kz0, and Pr0. Note that in order to ensure real wave numbers,
we require that

Pr2
1 >

Pr2
0 k2

x0

k2
x0 + k2

z0

.

We observe that the passive scalar response shapes collapse well, except for higher Prandtl numbers and low wave
speeds. In these cases, the most prominent discrepancy is the emergence of a secondary response peak located further
from the wall. This corresponds to cases where the wall-normal velocity response reaches a peak further from the wall
than the peak responses of the streamwise velocity and the passive scalar. This is consistent with our previous analysis:
the component of the response due to the amplifying properties of Qω match, but those due to the nature of the forcing
do not, which is most apparent when the forcing peak (i.e., the wall-normal velocity response) is at a different location
to the peak response of Qω . Note once more that Qω is independent of the mean scalar profile, so it is possible to
analyze it for varying Prandtl number without having to account for differences in the mean scalar gradient that would
come with changing Prandtl numbers.

D. Effect of norm
The SVD computes optimal forcing and response modes of the resolvent operator with respect to a specified

(semi)norm. Up to this point, we have chosen a norm corresponding to the kinetic energy of the flow. We now
investigate more general norms of the form

E =
1
2

∫
Ω

(
u2 + αT2

)
dV, (15)

for a variety of values of α (the previous results have implicitly used α = 0). We show in Fig. 11 that the shape of the
forcing and response modes is largely unaffected by different values of α. This suggests that the outcomes of analysis
are insensitive to the choice of norm. It further suggests that, even for nonzero α, it should be possible to compute
the scalar mode after the velocity mode has been computed. The phase variation of the modes are not shown, but
collapse similarly for each α. Note that we could also choose different norms for forcing and response, which is not
considered here. We postulate that this could be a consequence of both a large spectral gap between the leading and
subdominant singular values, and that the optimal scalar response arises from forcing in a similar wall-normal location
to the the wall-normal velocity of the optimal streamwise velocity response, as discussed in Section A. Further studies
(not presented here) indicate that the almost identical mode shapes do not always extend to suboptimal modes, though
they seem to do so for smaller Pr, for example. In addition, this lack of sensitivity of the optimal mode shapes does
not seem to be universal across all wavenumbers. For example, large kz gives rise to much larger variation in optimal
modes.

E. Prediction of turbulent statistics
One of the main goals of seeking a reduced order modeling framework for turbulent flows is the ability to make

predictions about quantities of interest, which could otherwise only be evaluated from high fidelity simulations or
experiments. In this section, we explore the ability of the resolvent framework to model single point statistics. In [21],
the resolvent framework is used to model energy spectra and densities of streamwise velocity in turbulent channel flow.
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Fig. 10 Normalized response modes for Prandtl numbers 0.5 (blue curves), 1 (red), 5 (yellow), and 25 (purple)
whereω, kx and kz have been adjusted such that Prkx = π/6, k2

x +k2
z = (1+4)π2, with c+ = 10 (top), 15 (center)

and 20 (bottom).
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Fig. 11 Forcing and response modes (absolute value) for norms with α ranging from 0 (lightest shading) to
10000 (black), with kx = π/3, kz = 2π, and c+ = 15. The lower 8 subplots show the same modes as the upper 8,
but where the mode components have been normalized such that they have maximum of 1.
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In this section, we explore how this approach can be extended to model passive scalar statistics in a turbulent boundary
layer.

Whereas the previous results presented in this work have use experimentally measured velocity and temperature
profiles, for this section we use direct numerical simulation data of a zero-pressure-gradient turbulent boundary layer.
The DNS data was obtained from the simulations described in [34] and [6]. The mean profiles and turbulent statistics
are computed from data collected at a constant streamwise location, corresponding to a friction Reynolds number of
approximately 900. The scalar field has unit Prandtl number, and the dimensionless scalar field has a value of unit at the
wall, and zero in the far field. In contrast to the experimental data, here we keep the mean scalar field with an opposite
gradient to the mean streamwise velocity.

Following [21], we define the premulitiplied streamwise energy density of the resolvent model by

Euu (y; kx , kz ,c) = k2
x kz

[
σ1(kx , kz ,c) |u1(y; kx , kz ,c) |

]2 , (16)

where σ1 is the leading singular value, and u1 is the streamwise component of the leading response mode, and the
associated integrated energy density as a function of wall-normal location:

Euu (y) =

$
kx,kz,c

Euu (y; kx , kz ,c)d log(kx )d log(kz )dc. (17)

Note that the exponent of 2 on the kx term in Eq. 16 arises due to the fact that we integrate over c rather than ω in
Eq. 17. We may similarly define the equivalent quantities for the fluctuating temperature field:

ETT (y; kx , kz ,c) = k2
x kz

[
σ1(kx , kz ,c) |T1(y; kx , kz ,c) |

]2 (18)

ETT (y) =

$
kx,kz,c

ETT (y; kx , kz ,c)d log(kx )d log(kz )dc, (19)

where T1 is the temperature component of the leading resolvent response mode. We can further consider the cross-
correlation between streamwise velocity and temperature:

EuT (y; kx , kz ,c) = k2
x kzσ1(kx , kz ,c)u∗1 (y; kx , kz ,c)T1(y; kx , kz ,c) (20)

EuT (y) =

$
kx,kz,c

EUT (y; kx , kz ,c)d log(kx )d log(kz )dc. (21)

It was demonstrated in [21] that introducing an empirical weighting function into the integral in Eq. 17 can give a
quantitatively accurate fit to the equivalent directly measured quantities in numerical simulations. For example, we may
introduce a weight function Wuu into the integral in Eq. 17 to give the weighted energy intensity

Euu,W (y) =

$
kx,kz,c

Wuu (c)Euu (y; kx , kz ,c)d log(kx )d log(kz )dc. (22)

Wuu may be computed using a regularized least-squares optimization, as described in [21]. Figure 12 shows Wuu , as
well as a comparison between the fitted energy density and that computed from DNS data. Also shown for comparison
is the energy density computed with a constant weight function. This shows that the unweighted resolvent prediction is
able to approximately capture the peak in energy density, and that the primary effect of Wuu is to suppress the predicted
energy content towards the upper edge of the boundary layer (as well as slightly shifting the inner energy density peak).

In Fig. 13, we apply the same methods to predict the scalar fluctuation energy, as well as the covariance between u
and T . Not only can an accurate prediction be made when directly fitting the corresponding (and similarly defined)
weight functions WTT and WuT , but it is further observed that using only Wuu also gives estimated statistics that match
the main features of the scalar statistics of the DNS data. Note that the amplitude of the predicted scalar energy density
will also be affected by the choice of norm used for resolvent analysis. As with the majority of results presented here,
these results are based on a kinetic energy seminorm that does not weight the scalar field.
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wall-normal location, (right) optimal weight function Wuu (c)
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The fact that the streamwise velocity is typically the dominant component in leading resolvent response modes
seems to be part of the underlying reason as to why statistics in this component are easiest to predict using resolvent
analysis [21]. A modification that decomposes the underlying operators into Orr-Sommerfeld and Squire components is
given in [35], which shows promise for improved capabilities for modeling non-streamwise velocity components. The
similarity between the streamwise velocity and scalar components of response modes, as has been discussed previously
in this work, along with the strong statistical correlation between these fluctuating quantities in turbulent shear flows
(e.g. [7]), suggests the utility of the resolvent framework for modeling scalar fluctuations. The results of this section
appear to indicate that this inference is well-founded.

IV. Conclusions
This work has extended resolvent analysis of incompressible wall-bounded turbulence to include a passive scalar

field. This gives a framework for studying and predicting structures and statistics of scalar fluctuations at specified
length and timescales, and in particular their correspondence with fluctuations in the velocity field. Similar observations
(in terms of mode shapes) for the passive scalar field are observed when considering the passive scalar operator
independently from the velocity field. This suggests that, in certain regimes, passive scalar structures are largely a
result of the most amplified modes of the passive scalar operator itself, which can be predicted independently of the
velocity field. This allowed for the analysis of the effect of scalar diffusivity, where mode shapes in the limits of
small and large diffusivity were presented, and a scaling relationship was derived that allows for the identification of
families of spatial wavenumbers and scalar diffusivities that are predicted to share similar scalar response mode shapes.
The similarity between passive scalar and streamwise velocity modes (as might be expected from invoking the strong
Reynolds analogy) also suggests that a similar decoupled scalar operator can also be used to analyze the streamwise
velocity component of resolvent response modes. This scalar operator is more conducive to analytic treatment than the
full Navier-Stokes system, and further analysis in this direction is the subject of ongoing work.
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Studying the Effects of Compressibility in Planar Couette Flow
using Resolvent Analysis

Scott T. M. Dawson* and Beverley J. McKeon†

California Institute of Technology, Pasadena, CA, 91125

Analysis of the resolvent operator is used to study the properties of compressible planar
Couette flow. In particular, we study how changing the Mach number affects the shape and
amplitude of responses to optimal disturbances across a range of spatial and temporal frequen-
cies. We consider Mach numbers up to 5, and show that the dependence of the resolvent norm
(leading singular value) on streamwise and spanwise wavenumbers follows similar trends to
the incompressible case, with the amplitude of the resolvent norm typically decreasing with
increasing Mach number. An exception to this occurs when acoustic eigenmodes (which are
not present in the incompressible regime) have eigenvalues sufficiently close to the temporal
frequency ω such that modal resonance with this mode is the dominant contributor to the re-
solvent gain. This occurs, for example, for streamwise-constant disturbances for sufficiently
low spanwise wavenumber. In addition, the resolvent formulation of the governing equations
allows us to study independently the effects due to an altered mean/equilibrium profile due to
compressibility, and the effects due to the changing linearized Navier-Stokes equations. This
approach provides a framework for the study of compressible turbulent wall-bounded flows.

I. Nomenclature

ũ = Total velocity
u0 = Mean velocity
U0 = Mean streamwise velocity
u = Mean-subtracted velocity
ρ̃ = Total density
ρ0 = Mean density
ρ = Mean-subtracted density
T̃ = Total temperature
T0 = Mean temperature
T = Mean-subtracted temperature
µ̃ = Total viscosity
µ0 = Mean viscosity
µ = Mean-subtracted viscosity
λ̃ = Total second coefficient of viscosity
λ0 = Mean second coefficient of viscosity
λ = Mean-subtracted second coefficient of viscosity
q̃ = Total state vector (ũ, ρ̃,T̃ ).
q0 = Mean state vector (u0, ρ0,T0).
q = Mean-subtracted state vector (u, ρ,T ).
M = Mach number
Re = Reynolds number
Pr = Prandtl number

*Postdoctoral Scholar, Graduate Aerospace Laboratories, AIAA member
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cp = Specific heat at constant pressure
cv = Specific heat at constant volume
γ = Ratio of specific heats, cp/cv
R = Universal gas constant, cp − cv
U∗ = Dimensional reference velocity
T ∗ = Dimensional reference temperature
ρ∗ = Dimensional reference density
H∗ = Dimensional reference distance
µ∗ = Dimensional reference viscosity
κ∗ = Dimensional reference thermal conductivity
ω = Temporal frequency
c = Wavespeed, ω/kx
L = Linearized compressible Navier-Stokes operator
f = Nonlinear terms in the compressible Navier-Stokes equations
Dy = First derivative operator in wall-normal direction
Dyy = Second derivative operator in wall-normal direction
∇ = Spatial derivative operator
kx = Streamwise wavenumber
kz = Spanwise wavenumber
X0,y = First derivative of quantity X0 with respect to the wall-normal coordinate
X0,y = First derivative of quantity X0with respect to the wall-normal coordinate
X0,T = First derivative of quantity X0 with respect to the mean temperature
X0,TT = Second derivative of quantity X0 with respect to the mean temperature
Hω = Resolvent operator for temporal frequency ω
W = Inner product weighting operator

II. Introduction
Studies over the past decade have demonstrated that the properties of the mean-linearized resolvent operator provides

a framework with which to understand and predict the properties of incompressible wall-bounded turbulence [1–4]. The
utility of this approach is enhanced by the fact that it requires no assumptions about the size of the nonlinear “forcing"
term in the governing equations, and that it can account for both spectral and non-normal sources of amplification (e.g.,
[5, 6]). Note that while compressible resolvent analysis has been applied to a number of flows, most notably in the
study of jets [7–10], there has been little work extending findings of resolvent analysis of wall-bounded turbulent flows
to the compressible regime.

The present work, while motivated by turbulent flows, will develop, validate, and apply these resolvent analysis
methods to compressible, laminar Couette flow. While not studied as comprehensively as its incompressible counterpart,
there is a substantial body of work studying the properties of the linearized Navier-Stokes operator for this system,
characterizing both the spectral [11–16] and transient growth [14, 15, 17] characteristics. In particular, note that unlike
its incompressible counterpart, compressible laminar Couette flow can be asymptotically unstable [11, 12]. On the other
hand, the maximum transient growth of perturbations over a finite time horizon typically decreases with increasing
Mach number [17], though the opposite is true when only considering two-dimensional perturbations [14]. Note that
there also exists a sizable body of work on the modal and nonmodal stability properties of compressible boundary
layers [18–24]. That said, there has been little work looking at the compressible Couette system with the type of
frequency-specific analysis that comes from the resolvent operator. Therefore, as well as developing methods of analysis
that will ultimately be applied to turbulent flows, we believe that the findings of the present work will be of independent
interest.

Generally speaking, we are motivated by questions relating to what properties of wall-bounded turbulence extend to
the compressible regime. Such questions have been well-studied previously, with perhaps the most prominent specific
examples being Morkovin’s hypothesis [25] that the changing mean profile drives the majority of the changing dynamics
with Mach number, and the Van Driest transformation [26] and its extensions and variants (e.g., [27]). It is hoped that
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the approach outlined in this work will ultimately complement recent experimental and numerical data for compressible
wall-bounded flows (e.g., [28–31]).

Sect. III describes the resolvent formulation of the compressible Navier-Stokes equations, while Sect. IV shows
results from applying this formulation to compressible planar Couette flow.

III. The compressible Navier-Stokes equations
We consider compressible flow of a fluid that has the properties of a perfect gas with constant specific heat

coefficients, and constant Prandtl number. The formulation and assumptions are relatively standard for previous works
that have considered modal and nonmodal stability analysis of compressible flows, e.g., [15, 17, 22].

The velocity, density, and temperature are decomposed into mean and fluctuating components as follows, with a ·̃
denoting the total field:

ũ = u0 + u, ρ̃ = ρ0 + ρ, T̃ = T0 + T, (1)

with other variables (e.g., viscosity) decomposed similarly. Let the state of the system be given by q̃ = q0 +q, where q =

(u,v,w, ρ,T ) representing the mean-subtracted state. We formulate the Navier-Stokes equations in nondimensionalized
form using the Mach, Reynolds, and Prandtl numbers, given respectively by

M =
U∗√
γRT ∗

, (2)

Re =
ρ∗U∗H∗

µ∗
, (3)

Pr =
µ∗cp
κ∗

, (4)

where the asterisk superscript denotes a reference (dimensional) quantity. The compressible Navier-Stokes equations
are then given by

ρ̃
Dũ j

Dt
= −

1
γM2∇p̃ +

1
Re

[
µ̃∇2ũ j +

∂

∂x j
(λ̃∇ · ũ) + µ̃

∂

∂x j
(∇ · ũ) + (∇µ̃) · (∇ũ j ) + (∇µ̃) ·

∂ũ

∂x j

]
(5)

∂ ρ̃

∂t
= −∇ · ( ρ̃ũ) (6)

ρ̃
DT̃
Dt

= (1 − γ) p̃∇ · ũ +
γ

Re
∇ ·

(
µ̃

Pr
∇T̃

)
+ λ̃(∇ · ũ)2 +

µ̃

2

(
∇ũ + (∇ũ)T

)2
, (7)

where D
Dt = ∂

∂t + ũ · ∇.
We assume that the viscosity varies with temperature according to the Sutherland formula

µ̃(T̃ ) =
T̃3/2(1 + C)

T̃ + C
, (8)

where the constant C = 0.5. The second coefficient of viscosity λ is assumed to follow Stokes’ assumption, λ̃ = −2/3µ̃.
Upon using the decomposition in Eq. 1, eliminating pressure using the equation of state p̃ = ρ̃T̃ , and assuming

that u0 = (U0,0,0), we find from the momentum equation that p0 is constant in y, and we scale pressure such that this
constant is 1. This leads to the following equations describing the variation of the mean state q0 = (U0,0,0, ρ0,T0) in
the y-direction:

d
dy

(
µ0

dU0

dy

)
= 0, (9)

d
dy

(
µ0

Pr
dT0

dy

)
+ (γ − 1)M2µ0

(
dU0

dy

)
= 0, (10)

ρ0T0 = 1. (11)
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The governing equations for the fluctuating component of the state q = (u,v,w, ρ,T ), upon temporal Fourier transform,
may written as

(−iωI + L)q = f , (12)

where L is the linearization of Eqs. 5-7, and f contains all of the remaining nonlinear terms. After also taking spatial
Fourier transforms in the streamwise and spanwise directions, the sub-operators of L are given by

L11 = ikxU0 + Re−1T0
(
2k2

x µ0 + k2
z µ0 + k2

xλ0 − µ0Dyy − µ0,yDy

)
L12 = U0,y − ikx Re−1T0

(
λ0Dy + µ0Dy + µ0,y

)
L13 = kx kz Re−1T0(λ0 + µ0)

L14 = ikx
(
γM2

)−1
T2

0

L15 = ikx
(
γM2

)−1
− Re−1T0

(
U0,yy µ0,T + U0,yT0,y µ0,TT + U0,y µ0,T Dy

)
L21 = −ikx Re−1T0(λ0,y + (λ0 + µ0)Dy )

L22 = ikxU0 + Re−1T0
(
µ0(k2

x + k2
z ) − (2µ0 + λ0)Dyy − λ0,yDy − 2µ0,yDy

)
L23 = −ikz Re−1T0

(
λ0,y + (λ0 + µ0)Dy

)
L24 =

(
γM2

)−1
T0(T0,y + T0Dy )

L25 =
(
γM2

)−1
(T0ρ0,y + Dy ) − ikx Re−1T0U0,y µ0,T

L31 = kx kz Re−1T0(µ0 + λ0)

L32 = −ikz Re−1T0
(
(µ0 + λ0)Dy + µ0,y

)
L33 = ikxU0 + Re−1T0

(
µ0(k2

x + k2
z ) − µ0Dyy + k2

z (µ0 + λ0) − µ0,yDy

)
L34 = ikz

(
γM2

)−1
T2

0

L35 = ikz
(
γM2

)−1

L41 = ikz ρ0

L42 = ρ0,y + ρ0Dy

L43 = ikz ρ0

L44 = ikxU0

L45 = 0

L51 = ikx (γ − 1)T0 − 2γ(γ − 1)M2Re−1T0µ0U0,yDy

L52 = T0,y + (γ − 1)T0Dy − 2ikxγ(γ − 1)M2Re−1T0µ0U0,y

L53 = ikz (γ − 1)T0

L54 = 0

L55 = ikxU0 − γRe−1
(
Pr−1T0

(
2T0,y µ0,T Dy + (T0,y )2µ0,TT + T0,yy µ0,T − µ0(k2

x + k2
z ) + µ0Dyy

)
− (γ − 1)M2T0µ0,T (U0,y )2

)
,

where subscripts y and T following commas denote derivatives with respect to wall-normal position and mean
temperature, respectively. Resolvent analysis considers the leading singular vectors and values of the operator

Hω = (−iωI + L)−1,

which requires the definition of an inner product on the space in which the state q resides. We are particularly interested
in the (spectral) norm of this operator, which is equal to the leading singular value. We take an inner product which
enforces that there is no pressure-related work, given by

〈q1,q2〉 =

∫
Ω

q̄2Wq1dx, (13)
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where the overbar denotes the complex conjugate, and the weighting operator W is given by

W = diag
(
ρ0, ρ0, ρ0,

T0

γρ0 M2 ,
ρ0

γ(γ − 1)T0 M2

)
. (14)

This norm seems to originate with the work of Chu [32], but is also attributed to Mack [33], where it was first used in
the context of modal analysis. This norm (or equivalent/similar norms using different thermodynamic variables) have
been used in numerous other studies of compressible flows where the definition of an inner product is required (e.g.,
[15, 17, 22, 34, 35]). Discussion of other possible inner products and assumptions for compressible flows are given in
[36]. The standard incompressible kinetic energy norm (which is a pseudonorm on this space, and which we will use
for purposes of comparison) is proportional to

WK = diag (ρ0, ρ0, ρ0,0,0) . (15)

IV. Resolvent analysis of compressible laminar Couette flow
We consider flow between two parallel plates with no external pressure gradient, with the top plate moving at a

constant velocity, and the bottom plate stationary. With reference to Eqs. 2-4, let the characteristic velocity, temperature,
density, and viscosity be those of the upper surface, with the lower surface stationary and adiabatic. The characteristic
length is the distance between the upper and lower surfaces. We assume a fixed Prandtl number of 0.72. The resolvent
operator for this system is then parametrized by Re, Ma, kx , kz , and c = ω/kx . We will not be able to comprehensively
explore the full parameter space, but will present results abstained from varying one or more parameters that highlight
certain typical features of this system. The governing equations are discretized using a Chebyshev collocation method,
which is implemented using the toolbox given in [37]. The code is validated by comparing the eigenvalues of the
linearized compressible Navier-Stokes operator to those reported in the literature (e.g., [12]).

A. Mean profiles
Eqs. 9-10 may be solved numerically on the domain y ∈ [0,1] given the (non dimensional) boundary conditions for

the mean profiles
U0(0) = 0, U0(1) = 1, T0(0) = TL , T0(1) = 1,

where TL is the mean temperature of the lower wall. The following procedure is similar to that given in [12, 17], for
example. Defining the recovery temperature Tr and recovery factor r

Tr = 1 +
(γ − 1)Pr M2

2
, (16)

r =
TL

Tr
, (17)

it can be shown from Eq. 10 that the mean temperature is a quadratic function of the mean velocity, given by

T0(y) = Tr

[
r + (1 − r)U0(y) −

(
1 − T−1

r U0(y)2
)]
. (18)

In this work we will focus on the case where the lower wall is adiabatic, for which we have r = 1. Using Eqs. 8 and 18,
Eq. 9 may then be solved numerically to obtain U0(y). Note that this is easiest to do by assuming that U0 is monotone
in y, and solving for y as a function of U0. Figure 1 shows mean velocity, temperature, density, and viscosity profiles
for various Mach numbers. Note that these mean profiles are independent of Reynolds number.

B. Code validation and sample results
Fig. 2 shows the resolvent norm and spectrum of the linear operator for kx = kz = 0.1, M = 2, and Re = 2 × 105,

which match parameters considered in [17], for example. For comparison, we also plot the resolvent norm for the
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Fig. 1 Mean streamwise velocity, temperature, density, and viscosity for compressible planar Couette flow at
various Mach numbers.
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Fig. 2 (Upper subplot) The leading four resolvent singular values for a range of wavespeeds c = cr (top), and
eigenvalues of the system for kx = kz = 0.1, M = 2, and Re = 2 × 105. Also plotted is the leading singular value
for the incompressible (M = 0) case, and for the M = 2 case where an incompressible norm is used. The circles
represent wavespeeds that have resolvent response modes plotted in Fig. 3. (Lower subplot) Eigenvalues for the
system with these parameters for the compressible (M = 2) and incompressible (M = 0) cases.
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incompressible case, as well as the compressible case with an incompressible (kinetic energy) inner product. The
spectrum is obtained from solving the eigenvalue problem Lq = iωq, and we plot results in terms of the complex
wavespeed c = cr + ici = ω/kx . The spectrum consists of viscous modes that make a “Y" shape that is typical for both
incompressible and compressible Couette flows [12], as well as a set of “acoustic" eigenmodes that extend to large
positive and negative wavepeeds for the compressible case, only two of which are included in the domain shown in
Fig. 2. The resolvent norm shows peaks due to spectral amplification of these acoustic eigenmodes near their defined
wavespeeds. In this region, the second singular value matches the leading singular value for the incompressible case.
There is also a large region of high amplification for wavespeeds within the range of the mean velocity profile (i.e.,
between 0 and 1) for both the compressible and incompressible cases. This non-modal amplification is a consequence
of the nonnormality of the system, and particularly the extreme sensitivity of modes near the intersection of branches in
the “Y" [38]. In this region, the leading singular value for the compressible case appears to be insensitive to the choice
of inner product, which reflects the the modes in this region are dominated by the momentum variables.

Fig. 3 plots sample resolvent response modes for selected wavespeeds for this system, which correspond to
(compressible) singular values indicated by circles in Fig. 2. The compressible resolvent response mode at c = −0.5
closely resembles the neighboring acoustic eigenmode, which spans across the entire domain with very little phase
variation in the wall-normal direction. At c = 0, the leading compressible resolvent response mode is dominated by the
density and temperature fields, which have fluctuations localized near the lower wall. At these two wavespeeds, the
incompressible resolvent response mode is qualitatively different from the compressible case.

For wavespeeds slightly larger than 0, the leading mode for the compressible case swaps to a mode that is dominated
by streamwise and spanwise velocity components (as well as temperature), as shown for c = 0.15. This type of mode
persists across all other wavespeeds giving a critical layer within the physical domain (that is, a location where the
wavespeed matches the local mean velocity). The relatively constant leading resolvent singular value for 0.2 ≤ c ≤ 0.8
may be explained by the fact that the leading resolvent modes are mostly “detached" from the boundaries within this
region for these wavenumbers, and thus have properties that are somewhat independent of the critical layer location
(though they will be influenced to some extent by changing mean properties at different locations). The decrease
in singular value close to either wall may then be explained by the boundary conditions imposing a constraint that
impedes the amplification mechanism giving rise to this mode shape. For this range of wavespeeds, the compressible
and incompressible modes share similar features. Connections with incompressible case, and the affect of Mach
number variation, will be further explored in Sect. C. While this section only considered one sample case, many of the
observations are at least qualitatively typical of those observed across a range of parameter values.

C. Effect of Mach number on resolvent gains
This section will focus on studying the variation of resolvent norm (i.e., the leading singular value of the resolvent

operator) with kx , kz , and M . We will consider two Reynolds numbers: Re = 2 × 105 as considered in Sect. B, and a
substantially lower value of Re = 103. By varying the spatial wavenumbers kx and kz , we may identify the size and
shape of structures that are most amplified by the resolvent operator. Fig. 4 shows the resolvent norm (leading singular
value) for various Mach numbers, with the wavespeed fixed at c = 0.5 (similar results are obtained at other wavespeeds).
The M = 0 case uses the incompressible Navier-Stokes equations and kinetic energy norm. In all cases, there is a
local maximum for kx → 0 and kz ≈ 2 (with substantially higher amplification for the higher Reynolds number case),
which is typical for incompressible flows (e.g., [39]). Note that this peak is also similar to that observed for maximum
transient growth for compressible Couette flows [17]. As M increases, we also observe for the low Re case the growth
of a region of high amplification for small kx and kz . It may be shown that this peak arises due to the presence of an
(acoustically dominated) eigenvalue near cr = 0.5, which moves closer to the marginally stability axis with increasing
Mach number.

Fig. 4 shows high resolvent norm for both Reynolds numbers as kx approaches 0. To study this limit in more
detail, we show in Fig. 5 the resolvent norm for kx = 0 for both Reynolds numbers and all Mach numbers considered.
We observe the local maximum at kz ≈ 2 for all cases except for when Re = 103 and M = 5. This peak reduces in
amplitude with increasing M , and the value of kz at this maximum shows little dependence with either Re or M . We
also observe an increase in σ1 for low values of kz for both Reynolds numbers, and all nonzero Mach numbers. This
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Fig. 4 Resolvent gain (σ1) as a function of kx , kz and M for Re = 103 (top two rows) and 2 × 105 (bottom two
rows), c = 0.5. Contours are logarithmically spaces at values 10−8, 10−7, . . . 1016.
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behavior was apparent from the Re = 103 case in Fig. 4, but was not apparent for the Re = 2 × 105 case due to the range
of kx plotted. This increase in σ1 as kz → 0 has a constant slope of -2 (on the log-log plot) across all Mach and both
Reynolds numbers, with the onset of this scaling occurring at larger kz for larger Mach and smaller Reynolds numbers.
As mentioned previously, this low kz behavior for the compressible system is due to an acoustic eigenmode approaching
the origin, thus giving resonant amplification of the resolvent operator. To show this directly, we demonstrate in Fig. 6
that the resolvent norm in the low kz limit matches the inverse of the distance of the closest eigenvalue from ω = 0.
This represents a lower bound on the resolvent norm, which is achieved for purely modal amplification mechanisms.
For further discussion of such acoustic modes may be found in past modal analyses of this system [12, 13]. In contrast,
we observe the peak at kz ≈ 2 must occur from nonmodal amplification (as has been observed previously in the contest
of finite-time optimal transient growth analysis (e.g., [14, 17]).

To study this peak in more detail, in Fig. 7 we now fix kz to a constant value of 2.332, and study how the resolvent
norm σ1 (as well as the premultiplied resolvent norm kxσ1) varies with kx . As before, we observe qualitatively similar
behavior across all Reynolds and Mach numbers, with the maximum σ1 occurring in the low Reynolds number limit.
Additionally, while σ1 approaches its maximum value as kx → 0, the premultiplied plots show clear peaks for kx
values that increase with M and decrease with Re. The oscillations that occur for large kx in the M = 5 case appear to
be caused by the appearance of acoustic modes at this wavespeed for certain kx values.

D. Effect of compressible inner product and mean on mode shape
In this section, we present sample results comparing typical resolvent response mode shapes for compressible

and incompressible flow. All modes in this section are computed with Re = 1000, kx = 5π/3, kz = 10π/3, and
c = ω/kx = 0.5. Figs. 8 (incompressible), 9 (compressible, with a Mach number of 2) and 10 (as for Fig. 9, but with a
kinetic energy pseudo-norm as described in Eq. 15) show resolvent response mode shapes for these parameters. For
the incompressible case, we augment the standard incompressible Navier-Stokes equations with a passive scalar field,
which is not weighted in the (standard incompressible) inner product. Further details of this formulation are given in
[40].

For these parameters, compressibility has a noticeable effect on the mode shapes, particularly for the wall-normal
component of velocity. However, Fig. 10, which considers compressible flow but with a (pseudo)-norm based on kinetic
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energy only (as used in incompressible analysis), shows that some of variation is due to the choice of inner product
used. This dependency on inner product weighting is in contrast to the incompressible case with a passive scalar, where
previous work ([41]) suggests that changing the inner product to weight the scalar field had negligible effect on the mode
shapes. The changes when compressibility is introduced are due to both the change in mean profiles, and due to the
compressible fluctuation equations. The resolvent framework is amenable to the study of each of these individual effects
in isolation. Fig. 11 shows sample results exploring this matter, where compressible and incompressible equations for
fluctuations are used with means from both compressible and incompressible Couette flow. Note in particular that the
velocity response amplitude functions for the compressible fluctuation equations when using an incompressible mean
and pseudo-norm are almost identical to those for the fully incompressible case.

V. Conclusions
This work has analyzed properties of the resolvent operator for compressible laminar Couette flow. We have

presented sample results showing how the gain associated with the response to optimal disturbances changes for
nonzero Mach number. In the cases where the leading response mode has the majority of its energy associated with the
momentum (rather than thermodynamic) variables, there are typically qualitative similarities between the compressible
and incompressible cases. An increasing Mach number typically reduces the amplification associated with such modes,
which is consistent with previous findings for transient growth analysis [17].The presence of acoustic modes, however,
can lead to qualitative changes in the leading resolvent response modes, due to resonant amplification from this mode.
While we have only considered the case where a single acoustic mode affects the resolvent norm, note that the tuned
synchronization of multiple acoustic modes [16] could have an even greater influence. Both sources of amplification
appear to follow relatively simple scaling relationships with respect to the governing parameters, which could be utilized
for the efficient characterization of this system (and could be identified from either physical/mathematical insights,
or empirically from numerically computed data). Further work could also study componentwise amplification [39]
of the compressible operator, which could provide further insight into the linear amplification mechanism present in
the system. While this work has only considered laminar Couette flow, the properties of turbulent-mean-linearized
operators for compressible wall-bounded flows share similar properties. This suggests that this approach could be
utilized to study the properties of structures within compressible turbulent flows, in a manner akin to the approaches
that have been successfully applied in the incompressible regime (e.g., [4]).
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Fig. 8 Leading resolvent modes for incompressible, laminar Couette flow, with Re = 1000, kx = 5π/3, kz =

10π/3, and c = ω/kx = 0.5. Red and blue contours represent positive and negative values respectively of the
mean-subtracted variables

Fig. 9 Leading resolvent modes for compressible, laminar Couette flow, with M = 2, Re = 1000, kx = 5π/3,
kz = 10π/3, and c = ω/kx = 0.5, using an inner product as defined in eq. 14. Red and blue contours represent
positive and negative values respectively of the mean-subtracted variables

Fig. 10 Leading resolvent modes for compressible, laminar Couette flow, with M = 2, Re = 1000, kx = 5π/3,
kz = 10π/3, and c = ω/kx = 0.5, using a kinetic energy pseudo-norm. Red and blue contours represent positive
and negative values respectively of the mean-subtracted variables
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[39] Jovanović, M. R., and Bamieh, B., “Componentwise energy amplification in channel flows,” Journal of Fluid Mechanics, Vol.
534, 2005, pp. 145–183.

[40] Dawson, S. T. M., Saxton-Fox, T., and McKeon, B. J., “Modeling Passive Scalar Dynamics in Wall-Bounded Turbulence using
Resolvent Analysis,” 2018 AIAA Fluid Dynamics Conference, 2018, p. 4042.

[41] Dawson, S. T. M., Saxton-Fox, T., and McKeon, B. J., “Modeling Passive Scalar Dynamics in Wall-Bounded Turbulence using
Resolvent Analysis,” 2018 Fluid Dynamics Conference, 2018, p. 4042.

16

DISTRIBUTION A: Distribution approved for public release


	DTIC Title Page - 
	FA9550-16-1-0232_SF_298
	FA9550-16-1-0232_finalreport
	amazonaws.com
	https://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/161-6d5e221a5ffc0cca8d64876a060d4dcd_McKeon_compresolvent_final.pdf
	AFOSR_final_2019
	ModeShape
	Introduction
	Mathematical preliminaries: The resolvent and pseudospectra of a linearised operator
	The resolvent form of a nonlinear dynamical system
	The singular value decomposition of the resolvent operator
	Conditions for the existence of wavepacket resolvent modes

	The behaviour of leading resolvent modes in wall-bounded turbulence 
	A resolvent formulation of the Navier–Stokes equations
	Simplifications to the Navier–Stokes operator for resolvent mode approximation

	Predicting the shape of resolvent modes
	 Relationship between wavepacket resolvent modes and Airy functions
	Predicting wavepacket modes for a model operator
	Predicting the shape of resolvent modes for laminar Couette flow
	Predicting mode shapes for a turbulent boundary layer

	Discussion and conclusions

	comp_bl_res
	DawsonAIAAscalar18
	Introduction
	Resolvent formulation with a passive scalar field
	Results and analysis
	Passive scalar analysis without momentum equations
	Effect of scalar diffusivity and boundary conditions
	Scaling relationships of passive scalar diffusivity
	Effect of norm
	Prediction of turbulent statistics

	Conclusions

	Dawson_CompressibleAIAA_SciTech2019
	Nomenclature
	Introduction
	The compressible Navier-Stokes equations
	Resolvent analysis of compressible laminar Couette flow
	Mean profiles
	Code validation and sample results
	Effect of Mach number on resolvent gains
	Effect of compressible inner product and mean on mode shape

	Conclusions







