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Summary and overview 
The main goal of the completed research program was to provide fundamental flame data for 

conditions of relevance to air-breathing and rocket propulsion.  Specific focuses were placed on 

three areas of research: (1) Advancing the spherically expanding flame approach for 

investigating laminar flame propagation for heavy liquid fuels at engine relevant conditions 

using modern mathematical and modeling tools; (2) Measuring with reduced uncertainty 

fundamental flame properties of jet and rocket fuels under thermodynamic conditions that have 

not been considered adequately in the past; and (3) Providing support and validation for Hybrid 

Chemistry (HyChem) approach for modeling high-temperature combustion chemistry of 

practical jet and rocket fuels. 

During the reporting period, the following tasks were completed: 

1. Measurements of laminar flame speeds and extinction strain rates at atmospheric pressure 

and elevated mixture temperatures for flames of practical propulsion fuels.  The 

measurements were carried out in the well-established counterflow configuration. 

2. Advancement of the spherically expanding flame approach under constant volume 

conditions was via combined modeling and experimental efforts and the associated data 

uncertainty has been reduced notably. 
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3. Implementation of the spherically expanding flame technique for measuring laminar 

flame speeds of practical propulsion fuels up to 15 atm and 750 K. 

4. Support of the development of the HyChem kinetic models by Stanford University via 

systematic measurements and flame modeling. 

 
Technical discussion 
1. Background 

Laminar flame ignition, propagation, extinction, and structure can be investigated at near 

atmospheric and elevated pressures utilizing steady-state burner configurations.  However, at 

pressures well above 10 atm steady-state flows are susceptible to flow instabilities due to the 

increase in the Reynolds number (Re) and the fact that the burner diameter cannot be reduced 

below 5 mm or so in order to assure a reasonable spatial resolution with intrusive or non-

intrusive diagnostics. 

Laminar flame studies in steady-state experiments above 10 atm are limited.  For example, 

Seshadri and coworkers [1][2] measured extinction strain rates (Kext) of non-premixed H2, CH4, 

and C2H6 counterflow flames (CFF) for pressures up 20 atm.  Gomez and coworkers [3][4] 

established non-premixed CH4 and C2H6 CFFs for pressures up to 25 atm, and performed 

measurements of major species using a capillary probe.  Additionally, laminar co-flow diffusion 

flames have been used to quantify sooting behavior of gaseous fuel flames at P ≤ 100 atm [5]. 

In addition to issues related to Re, the flame thickness could decrease notably at high pressures, 

which, especially in premixed flames, makes flame speciation measurements rather challenging 

due to spatial resolution limitations resulting from the finite probe diameter size.  Thus,  [6] 

becomes the only flame observable that can be measured with increased accuracy at engine-

relevant P and Tu conditions [7] using the spherically expanding flame (SEF) method in constant 

volume chambers. 

Over the years,  has been measured using various experimental techniques including Bunsen 

flames (e.g., [8]-[10]), CFFs (e.g., [11][12]), burner-stabilized flames (e.g., [13][14]), and SEFs 

under constant pressure (CONP) (e.g., [15]-[17]) and constant volume (CONV) conditions (e.g., 

[18]-[22]).  While a large number of reliable  data has been produced at and near-atmospheric 

pressures and temperatures. 
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Practical liquid fuels are comprised of a large number of components and as a result modeling 

their kinetic behavior is a challenging task.  Significant progress has been made over the years 

using the traditional surrogate and the recently developed HyChem approaches (e.g., [23][24]).  

 data at engine-relevant conditions are essential for testing combustion models, and a 

literature survey ([24]-[84]) on  measurements for flames of pre-vaporized neat C7-C16 and jet 

and rocket fuels was carried out.  In Fig. 1 the survey results are grouped for: (1) jet and rocket 

fuels; (2) neat fuels with 7 ≤ C# ≤ 12; and (3) neat fuels with C# > 12, where C# is the average 

carbon number of the fuel. 

 
Figure 1. Number of laminar flame speed experimental studies for pre-vaporized liquid (neat 
and jet/rocket) fuels depicted as a function of pressure. 
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2. Summary of experimental and modeling efforts 

2.1 Laminar flame speeds under engine-relevant conditions: 

The spherically expanding flame method is the only approach for measuring laminar flame 

speeds at thermodynamic states that are relevant to engines.  A comprehensive evaluation of data 

obtained under constant pressure and constant volume conditions was carried out through 

experiments, development of a mathematically rigorous method for uncertainty quantification 

and propagation, and advancement of numerical models that describe the experiments accurately.  

The proposed uncertainty characterization approach accounts for parameters related to all 

measurements, data processing, and finally data interpretation.  With the aid of direct numerical 

simulations, an alternative approach was proposed to derive laminar flame speeds in constant 

pressure experiments by eliminating the need for using extrapolation equations developed on 

simplifying assumptions, which are known to be susceptible to major errors under certain 

conditions.  The propagation of spherical flames under constant volume conditions was 

investigated through experiments carried out in an entirely spherical chamber and the use of two 

numerical models.  The first involves the solution of the fully compressible one-dimensional 

conservation equations of mass, species, and energy.  The second model was developed based on 

thermodynamics similarly to existing literature, but radiation loss was introduced at the optically 

thin limit and approximations were made to allow for re-absorption with minimum 

computational cost.  It was shown that neglecting radiation in constant volume experiments 

could introduce errors as high as 15%.  Incorporating the aforementioned techniques, laminar 

flame speeds were measured and reported with properly quantified uncertainties for flames of 

synthesis gas for pressures ranging from 3 to 30 atm, and unburned mixture temperatures ranging 

from 298 to 550 K.  Selected measurements were carried out as well for methane and propane 

flames for pressures ranging from 3 to 7 atm, and unburned mixture temperature of 298 K.  The 

approaches introduced in this study allow for the determination of laminar flame speeds with 

notably reduced uncertainties under conditions of relevance to engines, which has major 

implications for the validation of kinetic models of surrogate and real fuels. 

The results have been published and can be found at: 

• C. Xiouris, T. Ye, J. Jayachandran, F.N. Egolfopoulos, Laminar Flame Speeds under 

Engine-Relevant Conditions: Uncertainty Quantification and Minimization in Spherically 

Expanding Flame Experiments, Combustion and Flame, 163 (2016) 270-283. 
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2.2 Near-boundary ignition behavior of reacting mixtures 

The autoignition behavior is key towards providing insight into a fuel’s behavior and 

performance and equally important towards developing kinetic models.  However, there has been 

evidence in past literature that under certain conditions legacy reactor experiments may exhibit 

inhomogeneities that could potentially reduce the scientific value of the reported data.  In this 

study, detailed one-dimensional simulations were carried out in order to provide additional 

insight into the aforementioned observations.  The main focus of the present investigation is on 

the effects of a colder wall relatively to the core of the reacting mixture, and the attendant 

development of thermal boundary layers.  It is determined that the thermal stratification could 

alter the ignition behavior for fuels that exhibit distinct negative temperature coefficient behavior 

and could cause also light and heavy species concentration stratification due to Ludwig-Soret 

diffusion.  More specifically, simulations performed for n-heptane/air mixtures revealed that 

localized exothermic centers could develop for a range of initial mixture temperatures.  

Furthermore, simulations for hydrogen/oxygen/argon mixtures showed that species stratification 

caused by Ludwig-Soret diffusion could lead to increased local heat release rates. 

The results have been published and can be found at: 

• J. Jayachandran, F.N. Egolfopoulos, Thermal and Ludwig-Soret diffusion effects on near-

boundary ignition behavior of reacting mixtures, Proceedings of the Combustion 

Institute 36 (2017) 1505-1511. 
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2.3 Binary diffusion coefficients and non-premixed flames extinction of long-chain alkanes 

This study resolved the experimental and modeling discrepancies previously observed for the 

extinction strain rates of counterflow, non-premixed n-decane and n-dodecane/nitrogen mixture 

versus oxygen.  To achieve this goal, a recently developed transport theory of cylindrical 

molecular structure in dilute gases is used to model the binary diffusion coefficients of long-

chain n-alkanes up to n-dodecane in N2 and He.  The updated diffusion coefficients are found to 

be significantly different from early estimates made from the law of corresponding states.  The 

diffusion coefficient update removes the early difficulties in modeling the extinction strain rates 

for non-premixed extinction of n-decane and n-dodecane.  It was found that the mixture averaged 

transport formulation can provide good predictions provided that the Soret effect on the transport 

of large fuel molecules is properly accounted for. 

The results have been published and can be found at: 

• C. Liu, R. Zhao, R. Xu, F.N. Egolfopoulos, H. Wang, Binary diffusion coefficients and 

non-premixed flames extinction of long-chain alkanes, Proceedings of the Combustion 

Institute 36 (2017) 1523-1530. 
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2.4 A physics-based approach to modeling real-fuel combustion chemistry (HyChem) 

Real distillate fuels usually contain thousands of hydrocarbon components.  Over a wide range of 

combustion conditions, large hydrocarbon molecules undergo thermal decomposition to form a 

small set of low molecular weight fragments.  In the case of conventional petroleum-derived 

fuels, the composition variation of the decomposition products is washed out due to the principle 

of large component number in real, multicomponent fuels.  From a joint consideration of 

elemental conservation, thermodynamics and chemical kinetics, it is shown that the composition 

of the thermal decomposition products is a weak function of the thermodynamic condition, the 

fuel-oxidizer ratio and the fuel composition within the range of temperatures of relevance to 

flames and high temperature ignition.  Based on these findings, a hybrid chemistry (HyChem) 

approach was explored towards the modeling the high-temperature oxidation of real, distillate 

fuels.  In this approach, the kinetics of thermal and oxidative pyrolysis of the fuel is modeled 

using lumped kinetic parameters derived from experiments, while the oxidation of the pyrolysis 

fragments is described by a detailed reaction model.  In support of this major effort in reaction 

kinetics, measurements of laminar flame speeds up to 15 atm and 750 K were carried out using 

the constant volume spherically expending flame method for: (1) Jet and rocket fuels; (2) JP10; 

and (3) Bio-derived jet fuel and its blends with a conventional Jet A. 

The results have been published and can be found at: 

• H. Wang, R. Xu, K. Wang, C.T. Bowman, R.K. Hanson, D.F. Davidson, K. Brezinsky, 

F.N. Egolfopoulos, A physics-based approach to modeling real-fuel combustion 

chemistry - I. Evidence from experiments, and thermodynamic, chemical kinetic and 

statistical considerations, Combustion and Flame, 193 (2018) 502-519. 

• R. Xu, K. Wang, S. Banerjee, J. Shao, T. Parise, Y. Zhu, S. Wang, A. Movaghar, D.J. 

Lee, R. Zhao, X. Han, Y. Gao, T. Lu, K. Brezinsky, F.N. Egolfopoulos, D.F. Davidson, 

R.K. Hanson, C.T. Bowman, H. Wang, A physics-based approach to modeling real-fuel 

combustion chemistry - II. Reaction kinetic models of jet and rocket fuels, Combustion 

and Flame 193 (2018) 520-537. 

• Y. Tao, R. Xu, K. Wang, J. Shao, S.E. Johnson, A. Movaghar, X. Han, J-W. Park, T. Lu, 

K. Brezinsky, F.N. Egolfopoulos, D.F. Davidson, R.K. Hanson, C.T. Bowman, H. Wang, 
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A physics-based approach to modeling real-fuel combustion chemistry - III. Reaction 

kinetic models of JP10, Combustion and Flame 198 (2018) 466-476. 

• K. Wang, R. Xu, T. Parise, J. Shao, A. Movaghar, D.J Lee; J.-W, Park, Y. Gao, T. Lu,  

F.N. Egolfopoulos, D.F. Davidson, R.K. Hanson, C.T. Bowman, H. Wang, A physics-

based approach to modeling real-fuel combustion chemistry - IV. HyChem modeling of 

combustion kinetics of a bio-derived jet fuel and its blends with a conventional Jet A, 

Combustion and Flame 198 (2018) 477-489. 

 

  



 9 

2.5 Laminar flame propagation into a reacting mixture 

The laminar flame speed is an important property of a reacting mixture and it is used extensively 

for the characterization of the combustion process in practical devices.  However, under engine-

relevant conditions considerable reactivity may be present in the unburned mixture, introducing 

thus challenges due to couplings of auto-ignition and flame propagation phenomena.  In this 

study, the propagation of transient, one-dimensional laminar flames into a reacting unburned 

mixture was investigated numerically in order to identify the parameters influencing the mass 

burning rate in the conduction-reaction controlled regime at constant pressure.  It was found that 

the fuel chemical classification significantly influences the burning rate.  More specifically, for 

hydrogen flames, the “evolution” of the burning rate does not depend on the initial unburned 

mixture temperature.  On the other hand, for n-heptane flames that exhibit low temperature 

chemistry, the burning rate depends on the instantaneous temperature and composition of the 

unburned mixture in a coupled way.  A new approach was developed allowing for the decoupling 

of the flame chemistry from the ignition dynamics as well as for the decoupling of parameters 

influencing the burning rate, so that meaningful sensitivity analysis could be performed.  It was 

determined that the burning rate is not directly affected by fuel specific reactions even in the 

presence of low temperature chemistry whose effect is indirect through the modification of the 

reactants composition entering the flame.  The controlling parameters include but not limited to 

mixture conductivity, enthalpy, and the species composition evolution in the unburned mixture. 

The results have been published and can be found at: 

• A. Ansari, J. Jayachandran, F.N. Egolfopoulos, Parameters influencing the burning rate 

of laminar flames propagating into a reacting mixture, Proceedings of the Combustion 

Institute 37 (2019) 1513-1520. 
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2.6 Effect of unsteady pressure rise on flame propagation and near-cold-wall ignition 

Thermodynamic pressure variations during combustion can be encountered in various types of 

engines. Yet, hardly any studies have been conducted to investigate the effects of transient 

pressure rise on flame propagation as well as on the ignition of the unburned gas.  In this study, 

the effects of unsteady pressure rise were parametrically studied using a one-dimensional 

reacting flow model in which the thermodynamic pressure variation is an independent variable 

and thus its rate of rise can be controlled.  It was determined that large rates of pressure rise can 

significantly increase the mass burning flux of a laminar flame and that this modification 

becomes more pronounced at higher pressure and temperature conditions.  Furthermore, it was 

shown that the development of ignition near a cold wall, for mixtures that exhibit negative 

temperature coefficient behavior, is very sensitive to rate of change of pressure.  The near-wall 

ignition behavior was found also to be rather sensitive to the prevailing pressures and 

temperatures whose values control whether ignition will occur in the main-gas or within the 

thermal boundary layer. 

The results have been published and can be found at: 

• J. Jayachandran, F.N. Egolfopoulos, Effect of unsteady pressure rise on flame 

propagation and near-cold-wall ignition, Proceedings of the Combustion Institute 37 

(2019) 1639-1646. 
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